

ibm.com/redbooks

Front cover

IBM WebSphere Telecommunications
Web Services Server Programming
Guide

Architecture and component overview

Design considerations and best
practices

Creating a custom service
implementation

John Bergland
Rajasekhar Durvasula

Jochen Kappel
Hailong Luo

Bala Sivasubramanian

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM WebSphere Telecommunications Web Services
Server Programming Guide

September 2008

SG24-7589-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2008)

This edition applies to IBM WebSphere Telecommunications Web Services Server Programming Guide
Version 6.2.

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team that wrote this book . xi
Co-authors of foundation material for this IBM Redbooks publication xii
Special acknowledgement to the following people for their contributions: xiv
Become a published author . xiv
Comments welcome. xiv

Chapter 1. Introduction to the IBM WebSphere Telecommunications Web Services
Server. 1

1.1 Overview of IBM WebSphere Telecommunications Web Services Server 2
1.2 Business value and positioning. 3

1.2.1 Revenue generating services . 3
1.2.2 Innovative third-party services . 3

1.3 Functional component description . 3
1.3.1 Access gateway - providing secure, policy-driven, and third-party access 4
1.3.2 Web service implementations based on Parlay X V2.1 Web Services standards . 4

1.4 Introduction to the sample scenario described in this IBM Redbooks publication. 5
1.5 Roadmap to the chapters in this IBM Redbooks publication. 6

Chapter 2. Architecture, components, and tooling . 9
2.1 IBM WebSphere Telecommunications Web Services Server System architecture overview

10
2.1.1 The role of Direct Connect and Parlay connector based services 11
2.1.2 The role of IBM WebSphere Telecommunications Web Services Server in IMS

architecture . 12
2.1.3 Components that make up the IBM WebSphere Telecommunications Web Services

Server . 13
2.2 Service Policy Manager . 14

2.2.1 Underlying Service Policy Manager definitions in the context of IBM WebSphere
Telecommunications Web Services Server . 14

2.2.2 Key features of the SPM and architectural overview . 15
2.3 Telecom Web Services Access Gateway . 16

2.3.1 Telecom Web Services Access Gateway architecture . 17
2.4 Service Platform and the Web service implementations. 19

2.4.1 Parlay X Web service implementations architecture. 20
2.4.2 Parlay services . 24
2.4.3 Direct Connect services . 24

2.5 Extensibility . 25
2.5.1 Telecom Web Services Access Gateway extensibility . 25
2.5.2 Parlay X Web service implementations extensibility . 27

2.6 Tooling . 28
2.6.1 Tooling for developing Service Implementations . 28
2.6.2 Tooling for developing mediation flows. 30
2.6.3 Tooling for developing client applications . 31

Chapter 3. Working with service policies and the Service Policy Manager. 33

© Copyright IBM Corp. 2008. All rights reserved. iii

3.1 Focus of this chapter within the context of the common use case 34
3.2 Overview of policies . 35
3.3 Overview of the Service Policy Manager . 36

3.3.1 SPM runtime component . 36
3.3.2 SPM console. 36

3.4 Deploying the Service Policy Manager components . 37
3.4.1 Deploying the Service Policy Manager runtime component 37
3.4.2 Deploying the Service Policy Manager console . 44
3.4.3 Start the Service Policy Manager applications . 50

3.5 Initializing policies . 51
3.5.1 Initialize the basic policies. 51
3.5.2 Initialize the additional policies for specified Web service implementations 52

3.6 Creating a new policy . 53
3.6.1 Create default policy . 53
3.6.2 Enabling a new requestor for IBM WebSphere Telecommunications Web Services

Server . 58
3.6.3 Creating the custom policy . 58

3.7 Sample for Service Policy Manager - SIP addressing conversion 61
3.7.1 Use case description for new policy to be created . 61
3.7.2 Use case realization . 62
3.7.3 Test the sample . 64

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and
the mediation primitives . 67

4.1 Introduction to Access Gateway and mediation flows. 68
4.2 Mediation primitives . 69

4.2.1 Mediation primitives used by the Access Gateway. 71
4.3 Default Access Gateway flow . 72
4.4 Working with Telecom Web Services Access Gateway mediation primitives 75

4.4.1 Message Element Removal mediation primitive . 76
4.4.2 Transaction Recorder mediation primitive. 76
4.4.3 Policy Subscription mediation primitive. 77
4.4.4 Network Statistics mediation primitive. 78
4.4.5 Service Authorization mediation primitive . 79
4.4.6 Parlay X Group Resolution mediation primitive. 80
4.4.7 SLA Enforcement mediation primitives . 81
4.4.8 Transaction Identifier mediation primitive . 82
4.4.9 JMX Notification mediation primitive . 84
4.4.10 Service Invocation mediation primitives . 86
4.4.11 CEI Event Emitter mediation primitives. 87
4.4.12 Custom mediation primitives. 87

4.5 Tooling / WebSphere Integration Developer Plug-in . 88
4.5.1 IBM WebSphere Telecommunications Web Services Server WebSphere Integration

Developer Plug-in installation . 88
4.6 Using the default mediation flow in WebSphere Integration Developer 99

4.6.1 Deploying the default mediation flow . 105

Chapter 5. Developing and customizing a custom Access Gateway flow. 127
5.1 The focus of this chapter within the context of the common use case 128
5.2 Customize a default mediation flow . 128

5.2.1 Design guidelines for custom mediation primitive . 129
5.2.2 Key custom primitive functions . 131
5.2.3 Use case description for the customization. 142
5.2.4 Load the default flow. 145

iv IBM WebSphere Telecommunications Web Services Server Programming Guide

5.2.5 Adding the new mediation primitive to the mediation flow 145
5.2.6 Develop the mediation primitive logic . 147
5.2.7 Assemble the EAR . 149
5.2.8 Deploy the EAR to the runtime environment. 152

5.3 Extending the WebSphere Integration Developer Tooling Environment 153
5.3.1 Create a plug-in . 155
5.3.2 Generate the mediation meta-data . 161
5.3.3 Develop the mediation business logic. 162
5.3.4 Deploy the plug-in to the tool environment . 166
5.3.5 Deploy the primitives to run time. 168
5.3.6 Using the plug-in to customize a flow . 168
5.3.7 Test your custom flow and primitive . 169

5.4 Develop a custom mediation flow . 173
5.4.1 Design guidelines for new mediation flows . 173
5.4.2 Use case description for the new mediation flow . 175
5.4.3 Create a new mediation module . 177
5.4.4 Import WSDLs. 179
5.4.5 Create the ExceptionType business object. 180
5.4.6 Import IBM WebSphere Telecommunications Web Services Server SOAP header

data types . 182
5.4.7 Create the assembly . 183
5.4.8 Construct the mediation flow. 190
5.4.9 Assemble the EAR . 200
5.4.10 Deploy the EAR to the runtime environment. 201

Chapter 6. Common components . 203
6.1 Common components . 204
6.2 Description of common components provided with IBM WebSphere Telecommunications

Web Services Server . 204
6.2.1 Admission Control component Web service . 205
6.2.2 Traffic Shaping component Web service . 205
6.2.3 Network Resources component Web service . 206
6.2.4 Notification Management component Web service. 206
6.2.5 PX Notification Delivery Component Web service (Parlay X-specific) 206
6.2.6 Faults and Alarms component Web service . 207
6.2.7 Usage Records component Web service . 207
6.2.8 Privacy component Web service. 207

6.3 WSDL documentation available for the common components 208
6.3.1 Admission Control component API . 208
6.3.2 Traffic Shaping component API . 208
6.3.3 PX Notification component API . 208
6.3.4 Notification Management component API: Notification Administration component

Web service . 209
6.3.5 Network Resources component API . 210
6.3.6 Fault and Alarms component API . 210
6.3.7 Usage Records component API . 210
6.3.8 Privacy component API. 210

6.4 Common component Web service client MBeans. 210
6.5 Configuration for the common components . 211
6.6 Invoking IBM WebSphere Telecommunications Web Services Server common

components . 211
6.6.1 Service Platform package . 213
6.6.2 Invoking IBM WebSphere Telecommunications Web Services Server Admission

 Contents v

Control common components. 214
6.6.3 Invoking IBM WebSphere Telecommunications Web Services Server Traffic Shaping

common components . 215
6.6.4 Invoking IBM WebSphere Telecommunications Web Services Server Fault and

Alarm common components . 218
6.6.5 Invoking IBM WebSphere Telecommunications Web Services Server Network

Resource common components . 220
6.6.6 Invoking IBM WebSphere Telecommunications Web Services Server Usage

Records common components . 222

Chapter 7. Design considerations for the service implementation 227
7.1 Architecture overview . 228
7.2 Telecom Web Services . 228

7.2.1 Parlay X Web Services . 228
7.3 Design considerations. 230

7.3.1 Conforming to IBM WebSphere Telecommunications Web Services Server
conventions. 230

7.4 Sample Parlay X Web service scenario . 246
7.4.1 Presence Supplier detailed design . 246

7.5 Conclusion . 250

Chapter 8. Developing the service implementation . 251
8.1 Introduction . 252
8.2 Focus of this chapter within the context of the common use case 252

8.2.1 Dependencies of the IBM WebSphere Telecommunications Web Services Server
environment . 253

8.3 Development environment . 254
8.3.1 Development utilities . 254
8.3.2 Service Platform Application Template . 256
8.3.3 Creating a custom service project. 257
8.3.4 Update procedure for custom service implementations 263

8.4 Developing a Sample Parlay X Web service. 264
8.4.1 Service implementation prerequisites . 264
8.4.2 Generating Web service bindings . 270
8.4.3 Guidelines for IBM WebSphere Telecommunications Web Services Server service

implementations . 277
8.4.4 IBM WebSphere Telecommunications Web Services Server common component

invocations . 283
8.5 Implementing the core logic of the service . 287
8.6 Configurations for a new service. 291

8.6.1 Admission Control configuration settings . 291
8.6.2 Traffic Shaping configuration settings. 292
8.6.3 Initial service policy settings . 293

8.7 Management provisions for new service. 299
8.7.1 Developing the JMX MBean for service . 300
8.7.2 MBean implementation for sample scenario . 303

8.8 Deploy and test . 326
8.8.1 Deployment procedure . 326
8.8.2 Service administration. 331
8.8.3 Test client . 339
8.8.4 Test environment configuration. 354
8.8.5 Test execution. 362

Appendix A. Developing custom common components. 371

vi IBM WebSphere Telecommunications Web Services Server Programming Guide

Creating a IBM WebSphere Telecommunications Web Services Server service
implementation project . 372

Integrating with IBM WebSphere Telecommunications Web Services Server administration
console . 372

Other resources for learning more about custom common components 372

Appendix B. Developing service provider integrations. 375
Integrating group resolution . 376
Referenced faults . 377
Integrating Service Policy Management. 377

Replacing the implementation. 377
Accessing from the SPM Administrative MBeans and Web Services. 377

Integrating privacy management . 378
Integrating with database tables . 378
Integrating with the IBM WebSphere Telecommunications Web Services Server

Administration MBeans. 379
Developing a JMX Event Listener . 379
Developing a CEI Event Listener . 383
IMS Client Toolkit . 384

Appendix C. Developing a Usage Record Billing Mediator common component . . 385
Table definitions for the Usage Records Billing Mediator. 386

Appendix D. Sample Usage Record cleanup program . 389
Sample code . 390

Appendix E. Additional material . 399
Locating the Web material . 399
Using the Web material . 399

Related publications . 401
IBM Redbooks . 401
Online resources . 401
How to get Redbooks. 401
Help from IBM . 401

Index . 403

 Contents vii

viii IBM WebSphere Telecommunications Web Services Server Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Alerts®
DB2®
Domino®
IBM®

IMS™
Lotus®
NetView®
OS/2®
Rational®

Redbooks®
Redbooks (logo) ®
Tivoli®
WebSphere®
Workplace™

The following terms are trademarks of other companies:

Direct Connect, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro Devices,
Inc.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or
its affiliates.

EJB, Enterprise JavaBeans, J2EE, Java, JavaBeans, JavaServer, JDBC, JDK, JMX, JSP, JVM, Sun, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Expression, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x IBM WebSphere Telecommunications Web Services Server Programming Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication is a programming guide that provides developers with the
information they need to create new Web service implementations for IBM WebSphere®
Telecommunications Web Services Server.

IBM WebSphere Telecommunications Web Services Server allows you to expose high-level
Web service interfaces to network services for third parties.

Third parties are typically external service providers, customers, or organizational divisions
that want to develop new services that integrate with the service provider network
infrastructure. Web service interfaces provide access to service capabilities in a programming
language and technology independent way. Each Web service interface can have multiple
back-end implementations for connecting with a service provider's environment. For example,
a Web service interface may connect to a service provider's network through the Session
Initiation Protocol (SIP), using a Parlay Connector through a Parlay Gateway, through native
service provider protocols, or using custom integrated services.

In this IBM Redbooks publication, we provide specific references, best practices, guidance,
and implementation examples for programming IBM WebSphere Telecommunications Web
Services Server components and customize it for your organization’s particular needs. More
specifically, we discuss the following items within the context of a common example scenario:

� Working with the Service Policy Manager and creating a custom policy

� Working with the Access Gateway to make modifications to a default mediation flow,
create a custom mediation primitive, or create a completely new mediation flow from
scratch

� Creating a custom Parlay X Service Implementation, which is based on creating the
Publish () operation within a Presence Supplier interface.

The team that wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Austin Center.

 Rajasekhar Durvasula is an Advisory IT Architect with BPTSE Team,
based at IBM India Software Labs. Raj carries over 10 years of rich
experience in application development, product development, and delivery
services. Raj is a team member of Industry Business Partner Technical
Strategy & Enablement, focusing on the Asia Pacific region. Raj leads the
design and deployment of large scale Enterprise Application Integration
projects in telecom vertical. His interest areas are IMS™, SDP, SOA,
Business Integration, and Project Methodologies. He works with IBM IMS

Service Plane, USCE & SDP, as well as IBM SOA Foundation products.

© Copyright IBM Corp. 2008. All rights reserved. xi

 Jochen Kappel is a Senior IT Architect in the IBM Telecom Solutions Lab
in Europe. He has a 22-year experience in building solutions for wireless
and wireline telecom operators, focusing on service creation, next
generation networks, and service delivery platforms. Jochen's areas of
expertise include end-to-end systems integration, application architecture
and development, and technical team leadership. He is an IBM certified
Telecommunications IT Architect. and holds a Diploma in Electrical
Engineering and Telecommunications from the Technical University

Darmstadt, Germany.

 Hailong Luo is an Advisory IT Specialist and Field Technical Sales
Specialist (FTSS) in IBM China. He currently serves in a lead role in
supporting Huawei with their telecom applications. Hailong has been the
team lead for strategic POC efforts for Huawei, using his skills on both IBM
WebSphere Telecommunications Web Services Server and WebSphere
Process Server. Hailong is one of the earliest members of Open
Partnership Center (OPC), acting as a WebSphere team leader and
establishing a strong team to support Business Partners. In addition to his
in-depth knowledge of IBM WebSphere Telecommunications Web Services
Server and WebSphere Process Server, he has experience in SOMA, SOA,

and system architecture.

Bala Sivasubramanian is an IBM Accredited Senior IT Specialist for
Business Applications from IBM GBS US Wireless Data Services and
communication practice. He is a Board Member of Advisory & Senior
Accreditation for IT Specialist. He has more than eight years of experience
in the IT Industry and has specialized in telco industry for more than five
years. His expertise includes AIX®, Linux®, WebSphere products, and
programming in Java™, J2EE™, Web Services, developing BPEL, and
XML. He focuses primarily on designing, developing, and integrating
solutions that use Java, J2EE, Web Services, BPEL, and JMS. He is also a

Sun™ Certified Java Programmer and SEI PSP Level 5 Engineer from SEI, Carnegie Melon
University, Pittsburgh. Additionally, he holds a degree in Computer Engineering from Madurai
Kamaraj University, TamilNadu, India.

John Bergland is a project leader at the ITSO, Cambridge Center. He
manages projects that produce IBM Redbooks that focus on IBM
WebSphere technology. Before joining the ITSO in 2003, John worked as
an Advisory IT Specialist with IBM Software Services for Lotus® (ISSL),
specializing in Notes and Domino® messaging and collaborative solutions.

Co-authors of foundation material for this IBM Redbooks
publication

This IBM Redbooks publication is based upon much of the work from the following people,
who produced both the IBM WebSphere Telecommunications Web Services Server 6.2
Service Platform System Level Design Document, and the IBM WebSphere
Telecommunications Web Services Server Programming Guide Version 6.2.

xii IBM WebSphere Telecommunications Web Services Server Programming Guide

Scott Broussard is a Senior Software Engineer and IBM Master Inventor
with 15 plateau works in SWG AIM WebSphere Service Provider
Development. He has worked on the IBM WebSphere Telecommunications
Web Services Server and related software for the past nine years. He has
worked on the Java JVM™ team with a focus on the windowing features of
the Java runtime across several IBM platforms. He has also worked in the
OS/2® Multimedia project in the area of user interfaces involving the
Workplace™ Shell and OpenDoc. Scott holds a BS degree in Computer

Science from the University of Missouri at Rolla.

Michael Gilfix works in architecture and strategy for IBM software group's
WebSphere Business Process Management (BPM) and connectivity
product portfolio, helping customers to build, automate, and derive insight
from their business applications and processes. Prior to that, he worked in
IBM software group's telecom industry solutions. He was the lead architect
for the IBM WebSphere Telecommunications Web Services Server product
from its inception through several product releases. Before that, he was an
architect on the IBM SIP stack, which has been integrated and shipped with

WebSphere Application Server as of Version 6.1.

Tim Tedford is an Advisory Software Engineer at the IBM Development
Lab in Austin, Texas. He has over 20 years of experience, including 10
years with IBM, in software development, support, and system integration in
the financial and telecom areas. His current area of expertise is in the
development of Service Oriented Architecture (SOA) and WebSphere
Enterprise Service Bus (WESB) based implementations, Web services
design and development, and advanced Java and J2EE technologies. He is
currently responsible for the development and support of the Access
Gateway component of the IBM WebSphere Telecommunications Web
Services Server product, which contains a set of mediation primitive

plug-ins that extends the Mediation Flow Editor of the IBM WebSphere Integration Developer
product and a set of mediation module flows that provides support policy-driven traffic
monitoring, capture, authorization, and management capabilities for the Parlay X V2.1
Service Implementations provided with IBM WebSphere Telecommunications Web Services
Server. He holds a bachelor's degree in Computer Science from Worcester State College.

Velma Pavlasek is an Advisory Programmer and member of the IBM
WebSphere Telecommunications Web Services Server Web Services
Server team. She has been a member of the IBM WebSphere
Telecommunications Web Services Server team for three years, and has
been at IBM for thirty years. During the IBM Redbooks publication
residency, Velma helped the team to achieve a deeper understanding of the
Common Components.

Dhandapani Shanmugam is a Staff Software Engineer within the IMS
IBM WebSphere Telecommunications Web Services Server Development
team. His education includes an MS in Software Systems & BE - ECE.
Dhandapani has eight years of IT experience, of which more than four
years have been with IBM-ISL. He has been working on IBM WebSphere
Telecommunications Web Services Server for the past three releases.
Currently, he is part of the IBM WebSphere Telecommunications Web
Services Server Development team in ISL Bangalore.

 Preface xiii

Special acknowledgement to the following people for their
contributions:

Thank you to the following people for their sponsorship and support of this effort, together
with technical guidance.

� Larry Irvin - Project sponsor. IBM Software Group, Application and Integration
Middleware Software, BLM, SWG Communication Sector Solutions, IBM, Austin, TX

� Cristi Nesbitt Ullmann- IMS Chief Programmer, IBM Software Group, Application and
Integration Middleware Software, IBM, Austin, TX.

� Catherine Camillone - IP Multimedia Subsystem Development Team Lead, IBM Software
Group, Application and Integration Middleware Software, IBM, Austin, TX

� Glen Bartels - Program Director, WebSphere Service Provider Development. IBM
Software Group, Application and Integration Middleware Software.

� Anthony Wrobel - Lead Architect, IMS Applications, IBM Software Group, Application and
Integration Middleware

� Jeffrey Martin - Technical Enablement Specialist: AIM.SOA Implementation, IBM
Software Group, Application and Integration Middleware Software

� Jon Etkins - IT Support Specialist, Austin ITSO, IBM Sales & Distribution, ibm.com

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

xiv IBM WebSphere Telecommunications Web Services Server Programming Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xv

xvi IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 1. Introduction to the IBM
WebSphere Telecommunications
Web Services Server

IBM WebSphere Telecommunications Web Services Server allows you to expose high-level
Web service interfaces to network services for third parties.

Third parties are typically external service providers, customers, or organizational divisions
that want to develop new services that integrate with the service provider network
infrastructure. Web service interfaces provide access to service capabilities in a programming
language and technology independent way. Each Web service interface can have multiple
back-end implementations for connecting with a service provider's environment. For example,
a Web service interface may connect to a service provider's network through the Session
Initiation Protocol (SIP), using a Parlay Connector through a Parlay Gateway, through native
service provider protocols, or using custom integrated services.

In this IBM Redbooks publication, we provide specific references, best practices guidance,
and implementation examples for programming IBM WebSphere Telecommunications Web
Services Server components to customize it for your organization’s particular needs. More
specifically, it discusses the following within the context of a common use case:

� Working with the Service Policy Manager and creating a custom policy

� Working with the Access Gateway to make modifications to a default mediation flow,
create a custom mediation primitive, or create a completely new mediation flow from
scratch

� Creating a custom Parlay X Service Implementation, which is based on creating the
Publish () operation within a Presence Supplier interface

This chapter provides an overview of the IBM WebSphere Telecommunications Web Services
Server and describes how it can provide business value. Additionally, this chapter introduces
the common use case we refer to throughout this IBM Redbooks publication.

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 Overview of IBM WebSphere Telecommunications Web
Services Server

IBM WebSphere Telecommunications Web Services Server enables service providers to
provide third parties secure, reliable, and policy driven access to telecom network
capabilities. Third-party application developers can enhance consumer and enterprise
applications by utilizing valuable service provider network services, such as messaging,
location, presence, and call handling through open standards-based Web Services. IBM
WebSphere Telecommunications Web Services Server's access gateway function provides a
common control point for service providers to define, manage, and enforce policies and
Service Level Agreements (SLA) for third-party services and subscribers. The service
provider controls which applications and which users have access to which network services
and under what conditions.

Figure 1-1 illustrates the emphasis on service exposure, enabling secure, policy-driven
delivery of telecom network capabilities through industry-standard Web services.

Figure 1-1 Enabling secure, policy-driven delivery of telecom network capabilities through Web services

WebSphere Telecom Web Services Server
Enabling secure, policy-driven delivery of telecom network capabilities through
industry-standard Web services

3rd Party
Call

Location Call
Notification

PresenceSMS/MMS Terminal
Status

Network Services

Field Force
Management

Partner

Logistics
Partner

Content
Partner

Web 2.0
Consumer

Enterprise
Customer

Internal
SP Hosted

Service

Service Exposure

TWSS Access Gateway

Security Policy Enforcement Network Protection

PSTN Wireless IMS

* Note - this is only a representative sample of possible service implementations.

2 IBM WebSphere Telecommunications Web Services Server Programming Guide

1.2 Business value and positioning

IBM WebSphere Telecommunications Web Services Server delivers value by allowing service
providers to expose services in a secure. reliable, and policy controlled way. By providing
capabilities to expose network services, this allows for the service providers to potentially host
new revenue generating services, and to capitalize on innovative third-party services.

1.2.1 Revenue generating services

The changing telecommunications market is driving telecom service providers to look for new
revenue generating services. Their business is changing from a relatively few hosted
services, to hundreds, if not thousands, of services. Most of these services are provided by
third-party partners and service providers. New services will be rapidly developed from easy
to use fragments of configurable service functions to create highly personalized services:

� Offer new revenue generating services and business models by providing third parties with
industry standard defined Web services access to network service capabilities.

� Retain high value customers and third-party service providers with flexible policy driven
service level agreements at the service, customer set, or individual subscriber level.

� Protect underlying network resources from unauthorized access and overload with secure,
policy-based access, and effective traffic management capabilities.

1.2.2 Innovative third-party services

IBM WebSphere Telecommunications Web Services Server abstracts core network
functionality, opening it to the large community of IT application developers and providing the
following benefits:

� Isolation from telecom network complexity: The Telecom Web Services
Service-Orientated Architecture enables third-party developers to focus their creativity on
business function and service creation, rather than low-level implementation.

� Simplification of skill requirements: Network services are abstracted as Web services,
enabling a large audience of Web developers to access service functions without requiring
detailed infrastructure knowledge.

� Protection from evolving network technologies: Service provider networks are
experiencing rapid change. While telecom Web service implementations may require
changes to address network evolution, applications using these Web Services remain the
same.

1.3 Functional component description

This section describes the primary components that make up the IBM WebSphere
Telecommunications Web Services Server and the functions that they perform. Subsequent
chapters in the IBM Redbooks publication provide a more in-depth examination of each
component.

Chapter 1. Introduction to the IBM WebSphere Telecommunications Web Services Server 3

The IBM WebSphere Telecommunications Web Services Server is the foundation for
managing third-party Web service access and provides the platform for telecom Web service
implementations. The IBM WebSphere Telecommunications Web Services Server is
comprised of two major components:

� The front-end Telecom Web Services access gateway

� The back-end service implementations

1.3.1 Access gateway - providing secure, policy-driven, and third-party access

The access gateway provides policy-driven traffic monitoring, capture, authorization, and
management capabilities that are enforced for each Web service request using knowledge of
the requestor, target service, and invoked operation.

The access gateway is built upon the WebSphere Enterprise Service Bus (ESB) product. This
provides flexibility for constructing tailored Web service messaging processing in accordance
with the service provider's network policies. The access gateway provides pluggable ESB
components, each designed to serve a specific purpose. Specific details of each of the ESB
components, the mediation primitives, is provided in Chapter 4, “Design considerations for
Access Gateway flows - base mediation flows and the mediation primitives” on page 67.

1.3.2 Web service implementations based on Parlay X V2.1 Web Services
standards

IBM WebSphere Telecommunications Web Services Server Service provides Web service
implementations based on the Parlay X V2.1 Web Services standards for the Web service
interface abstraction IMS network functions, including:

� Parlay X V2.1 Third Party Call, supporting the WebSphere V6.1 SIP application server call
management function

� Parlay X V2.1 Call Notification, supporting the WebSphere V6.1 SIP application server call
management function

� Parlay X V2.1 Presence for WebSphere Presence Server

� Parlay X V2.1 Terminal Status for WebSphere Presence Server

To facilitate the rapid development of new service implementations, reusable components are
provided that can be shared by all service implementations. The common services are
utilized by the Parlay X V2.1 Web service implementations provided in the IBM WebSphere
Telecommunications Web Services Server and are available for use in developing additional
implementations through IBM services. The key common services components are discussed
in Chapter 6, “Common components” on page 203.

Note: For a complete list of all the Web service implementations based on the Parlay X
V2.1 Web Services standards provided with IBM WebSphere Telecommunications Web
service Server, refer to the IBM WebSphere Telecommunications Web Services Server
Information Center at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

4 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

1.4 Introduction to the sample scenario described in this IBM
Redbooks publication

Throughout this IBM Redbooks publication, we use a common example scenario in order to
illustrate the procedure and the best practices for customizing the IBM WebSphere
Telecommunications Web Services Server components, including the Service Policy
Manager, the access gateway, and the development of a custom service implementation that
gets deployed on the IBM WebSphere Telecommunications Web Services Server Service
platform. The use of this example scenario helps to provide context within the following key
areas of customization:

� Creation of a custom policy to determine if SIP addressing conversion needs to occur

� Modifying the default mediation flow for the Access Gateway by adding a custom primitive
which, based on the custom policy, transforms the address for SIP addressing

� Creation of a custom service implementation that publishes the Presence status for a
SOAP request.

Figure 1-2 illustrates the conceptual overview of this sample scenario.

Figure 1-2 Conceptual overview of the use case

Calls

Service Platform

Service Policy Manager
• Default/Generic Policy
• Custom Policy

Example:

Access Gateway

Service Operations
• Publish()

Request Flow

SOAP
Request

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

1
2

4
Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

6

Presence
Supplier

Publish Implementation5

Presence
Server

7

1. SOAP request is submitted.
2. Request proceeds through the Mediation Flow in the Access Gateway.
3. The Policy Retrieval Mediation Primitive calls the Service Policy Manager. All service

policies are retrieved from the Service Policy Manager – including the policy for SIP
addressing conversion.

4. The policies are placed into the SOAP header of the request to be called upon as
necessary.

5. Request calls the Presence Supplier service implementation.
6. Common Components called within the service implementation logic.
7. Service implementation logic calls to the Presence server, then gets a response back.

service.config.enableURItransform

SPM Console

Polic
y In

formatio
n
3

Comm on
Component

Comm on
Component

Com mon
Component

Com mon
Component

Comm on
Component

Comm on
Component

Com mon
Component

Chapter 1. Introduction to the IBM WebSphere Telecommunications Web Services Server 5

1.5 Roadmap to the chapters in this IBM Redbooks publication

Figure 1-3 illustrates a visual guide to the chapters in this IBM Redbooks publication.

Figure 1-3 Overview of the chapters and topics covered in this IBM Redbooks publication

� This chapter provides an overview of the IBM WebSphere Telecommunications Web
Services Server and describes how it can provide business value. Additionally, this
chapter introduces the common use case we refer to throughout this IBM Redbooks
publication.

� Chapter 2, “Architecture, components, and tooling” on page 9 discusses the architecture
of IBM WebSphere Telecommunications Web Services Server. We provide both an overall
system architecture overview, and examine how this product fits into the larger IMS
architecture. We then discuss each of the components that make up the IBM WebSphere
Telecommunications Web Services Server, namely the Service Policy Manager, the
Access Gateway, and the Service Platform. Finally, we examine the key tooling
components required to work with the IBM WebSphere Telecommunications Web
Services Server.

� Chapter 3, “Working with service policies and the Service Policy Manager” on page 33
discusses service policies and the role of the Service Policy Manager in IBM WebSphere
Telecommunications Web Services Server. It begins with an overview of the Service Policy
Manager, discussing both the role of the runtime component and the Service Policy

Roadmap to the chapters in this Redbook

– Review of key
architecture

– Conforming to
TWSS
conventions

– Presence
Supplier Detailed
Design

Customizing the
flow of the

Access Gateway

5

– Setting up
development
environment

– Service Application
Template

– Steps for developing
the service
implementation

– Mediation
Primitives

– Default Access
Gateway Flow

– Tooling / Installing
the WID Plug-in

Design
Considerations

For
Access Gateway

4

- Service Policy
Manager

- Deploying the
SPM
components

- In itia lizing
policies

- Creating new
policy

- Use case
sample policy

Policies
and the
Service
Policy

Manager

3

– System
Architecture
Overview

– Service Policy
Manager

– Access Gateway
– Parlay X Web

Service
Implementations

– Tooling

Architecture,
components
and tooling

2

– Value
proposi tion

– Features
– Introduction to

Use Case

Introduction
to

Telcom Web
Services Server

1

– Customizing
the default flow

– Extending the
tooling WID
Plug-in

– Creating a
custom flow

Developing the
Service

Implementation

8
Design

Considerations
For the

Service Logic
Implementation

7

SP
M

 a
nd

 A
G

Fo

cu
s

Se
rv

ic
e

Im
pl

em
en

ta
tio

n
Fo

cu
s

– Overview o f
components

– Interfaces
– Code snippets of

how to call

Common
Components

6

6 IBM WebSphere Telecommunications Web Services Server Programming Guide

Manager console. It also discusses how to deploy and configure each of the
subcomponents.

� Chapter 4, “Design considerations for Access Gateway flows - base mediation flows and
the mediation primitives” on page 67 provides an overview of the default mediation flow
provided with IBM WebSphere Telecom Communications Server and discusses each of
the default mediation primitives included.1 We also discuss how to install the WebSphere
Integration Developer Tooling required to begin working with the default mediation flow in
the Access Gateway.

� Chapter 5, “Developing and customizing a custom Access Gateway flow” on page 127
describes how to develop and customize an Access Gateway Flow. In particular it covers
the following customizations associated with the mediation flows:

– Customizing the Default Mediation Flow by creating and adding a new mediation
primitive into the default flow,

– Extending the WebSphere Integration Developer Tooling Environment by converting a
custom mediation primitive to a WebSphere Integration Developer Plug-in

– Creating a new Mediation Flow from the beginning

� Chapter 6, “Common components” on page 203 discusses the common components
provided with the Service Platform for IBM WebSphere Telecommunications Web
Services Server. The common components are unique to IBM WebSphere
Telecommunications Web Services Server in that they provide value and flexibility for
customizing service implementations. Since the custom components are exposed through
Web service implementations, this allows for substitution without requiring modifications to
service implementation code. Common components are shared within the application
server by all deployed service implementations.

� Chapter 7, “Design considerations for the service implementation” on page 227 introduces
you to the design aspects of Service Implementations on Service platform component of
IBM WebSphere Telecommunications Web Services Server. These design principles may
be used as reference by architects and developers working on custom service
implementations.

� Chapter 8, “Developing the service implementation” on page 251 describes the approach
and steps required to develop the custom service implementation from our common
sample scenario, namely the Presence publish operation. This chapter begins with a
review of the development configuration requirements to begin creating the service
implementation, then proceeds into the key steps for developing a Parlay X Web service. It
discusses the core logic of the service implementation code, then discusses how to unit
test and ultimately deploy and test the completed sample.

1 For this IBM Redbooks publication, we discuss the mediation primitives provided with IBM WebSphere
Telecommunications Web Services Server Version 6.2. For the latest information on mediation primitives provided
with the product, also refer to the Information Center at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

Chapter 1. Introduction to the IBM WebSphere Telecommunications Web Services Server 7

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

8 IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 2. Architecture, components, and
tooling

This chapter discusses the architecture of IBM WebSphere Telecommunications Web
Services Server. We provide both a system architecture overview, and discuss each of the
components that make up the IBM WebSphere Telecommunications Web Services Server,
namely the Service Policy Manager, the Access Gateway, and the Service Platform. Finally,
we examine the key tooling components required for customization of the IBM WebSphere
Telecommunications Web Services Server.

2

© Copyright IBM Corp. 2008. All rights reserved. 9

2.1 IBM WebSphere Telecommunications Web Services Server
System architecture overview

IBM WebSphere Telecommunications Web Services Server enables service providers to
expose high-level Web service interfaces for network services for third-party access.

Third parties are internal and external customers of service providers. They can be different
internal divisions within an organization that wish to develop new services based on a core
infrastructure function or external customers that wish to integrate new or enhance existing
services. The Web service interfaces provide technology-agnostic access to service
capabilities; each Web service interface can have multiple implementations (also referred to
as instantiations or flavors) in a given service provider environment, providing access to IMS
services through SIP, PSTN functionality through a Parlay/OSA gateway, Direct Connect™
access to network protocols, or custom integrated services. IBM WebSphere
Telecommunications Web Services Server provides a middleware infrastructure for managing
Web service access and provides an environment for hosting Web service API
implementations.

The use of high-level Web service APIs as a means of exposing functions to third parties
offers the following benefits:

� Isolation from evolving network technologies: With the emergence of the IMS architecture
as a viable implementation standard, service provider networks are experiencing rapid
change. Web services APIs provide a convenient, open standards-based abstraction for
accessing service function. While Web service API implementations might require
changes to address network evolution, Web service API application client code can
remain the same.

� Focus on business functions: The Web services SOA architectural model promotes the
definition of coarse-grained Web service interfaces that expose business-level functions.
This enables third-party integrators to focus on service creation, rather than low-level
implementation.

� Simplification of skill requirements: The use of high level Web service APIs reduces cost
for deployment of new integrated services by enabling a large audience of Web
programmers to access service function without requiring detailed infrastructure
knowledge.

Figure 2-1 on page 11 illustrates an overview of the IBM WebSphere Telecommunications
Web Services Server architecture, emphasizing how it is constructed from three key
components:

� Telecom Web Services Access Gateway

� Service Policy Manager

� Service Implementations

The role and functionality of each of these three components is discussed in much greater
detail in 2.1.3, “Components that make up the IBM WebSphere Telecommunications Web
Services Server” on page 13.

10 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 2-1 Architectural overview for IBM WebSphere Telecommunications Web Services Server

2.1.1 The role of Direct Connect and Parlay connector based services

The IBM WebSphere Telecommunications Web Services Server architecture enables Parlay
X and other Web services to be efficiently implemented through the use of various other
telecom protocols. This provides a standardized bridge from industry standard Web Services
to existing lower level telecom network protocols. The IBM WebSphere Telecommunications
Web Services Server infrastructure supports three broad categories of back-end network
connectivity, including IP Multimedia Subsystem (IMS), Parlay/OSA, and Direct Connection to
various telecom network elements.

IBM WebSphere Telecommunications Web Services Server runs on WebSphere V6.1, which
provide a converged HTTP/ SIP (Session Initiation Protocol) container. Through the use of
the SIP container, IBM WebSphere Telecommunications Web Services Server service
implementations can communicate with SIP and other IMS devices and components. This
protocol enables interoperability with call sessions and well as other IMS system
components, such as the S-CSCF, the Presence Server, and the XML Document
Management Server.

IBM WebSphere Telecommunications Web Services Server also enables connectivity to a
variety of network elements that are common within a Telecom Service Provider environment.
IBM WebSphere Telecommunications Web Services Server connects to these elements
directly using the appropriate network protocol, such as SMPP for short messaging, MM7 for
multimedia messaging, MLP for location, and potentially others. IBM WebSphere
Telecommunications Web Services Server can utilize the Web container and JCA Connector
Architecture to connect to these network elements.

Telecom Web Services Server Structure
Secure, controlled access enabled
through three key components:

Telecom Web Services Access Gateway
Policy enforcement and network protection
Simplified operations support
Flexibility to customize service processing based
on policies

Service Policy Manager
Common repository for management of
requesters, services and subscriptions
Enables granular authorization and control of
services with easy administration

Service Implementations
Out-of-the-box Parlay X Service Implementations
Flexible legacy and next generation network
support
Rich traffic management and subscriber
protection

Client
applications

Service Implementations (Parlay X)

S-CSCF Parlay
Gateway

Presence
Server

Native
P rotocols

ParlaySIPSIP/ISC

Web Services

Service
Policy

Manager

SMSC,
MMSC,

Location

SMS, MMS ,
Location

IM S Call
Control P resence Legacy Call

Control

ES
B

Group List ResolutionGroup List Resolution

Network StatisticsNetwork Statist ics

Message InterceptMessage Intercept

AuthenticationAuthentication

Policy / Subscript ion
Retrieval

Policy / Subscription
Retrieval

Capacity and SLA
Management

Capacity and SLA
Management

Telecom Web Services Access Gateway

AuthorizationAuthorization

Service InvocationService Invocation

Chapter 2. Architecture, components, and tooling 11

IBM WebSphere Telecommunications Web Services Server also enables connectivity to a
Parlay/OSA (Open Service Architecture) Gateway, which provides a connectivity to wireline
and wireless network infrastructures. These implementations are needed for call control
related Web Services (third-party call, call handling, terminal status, and so on) for earlier
networks, but can also be used for location, SMS/MMS messaging, accounting, and other
functions. The IBM WebSphere Telecommunications Web Services Server Parlay Connector
component provides flexibility configuration to enable an IBM WebSphere
Telecommunications Web Services Server Web service implementation to be a Parlay client
application and integrate with a Parlay Gateway that is deployed in the service provider
environment. Parlay communication is done over IIOP/CORBA communications and involves
a sophisticated authorization strategy through the Parlay Framework.

The Parlay Gateway provides interoperability with service providers that own and operate
PSTN networks. The Direct Connect capabilities provide an optimal integration between IBM
WebSphere Telecommunications Web Services Server and common network elements found
in a service provider environment and generally are associated with data services, such as
SMS/MMS messaging, location, Presence, and so on. Both the Parlay Gateway and Direct
Connect capabilities enable IBM WebSphere Telecommunications Web Services Server to
integrate with existing networks, and provide a migration step for IBM WebSphere
Telecommunications Web Services Server to integrate with emerging next generation
SIP/IMS based networks.

2.1.2 The role of IBM WebSphere Telecommunications Web Services Server in
IMS architecture

Before discussing the specific architectural components that comprise IBM WebSphere
Telecommunications Web Services Server, let us examine where IBM WebSphere
Telecommunications Web Services Server fits into the greater IP-Multimedia Subsystem
(IMS) architecture.

The IP-Multimedia Subsystem (IMS) describes the next generation architecture for
implementing IP-based telephony and multimedia services.

The IMS architecture describes functional relationships between network elements that
provide call processing and service request routing at the core of the service provider
network. The interfaces between network elements are based on IETF standard
technologies, particularly the Session Initiation Protocol (SIP) and Diameter protocols. SIP is
a signaling protocol used to establish media sessions between network entities. The goal of
IMS is to enable service providers to rapidly create and deploy new services. The use of
standard Internet technologies allows service providers access to a larger pool of technical
resources and commoditized deployment platforms. Figure 2-2 on page 13 illustrates the role
of IBM WebSphere Telecommunications Web Services Server within a logical view of the IMS
architecture.

12 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 2-2 IBM WebSphere Telecommunications Web Services Server role as AS in IMS architecture

Figure 2-2 is a typical logical view of the IMS network functional areas. Some of the relevant
acronyms for IBM WebSphere Telecommunications Web Services Server are expanded here:

P-CSCF Proxy Call Server Control Function
I-CSCF Interrogating Call Server Control Function
S-CSCF Serving Call Server Control Function
HSS Home Subscriber Server
SIP AS Session Initiation Protocol Application Server

An in-depth description of the function of these components is provided in the IMS Spec -
3GPP 23.228, found at:

http://www.3gpp.org/ftp/Specs/html-info/23228.htm

2.1.3 Components that make up the IBM WebSphere Telecommunications
Web Services Server

IBM WebSphere Telecommunications Web Services Server is divided into three functional
areas:

� Service Policy Manager

The Service Policy Manager is primarily used by the Service implementations and ESB
component to coordinate on policy information.

� Telecom Web Services Access Gateway

Telecom Web Services Access Gateway provides policy-driven traffic monitoring,
message capture, authorization, and management capabilities. These services are

TWSS

Access
Network S-CSCF

TWSS
Access

Gateway

IMS Terminal

Web Service
Client

Application

SGW

MGCF

MGW

MRFC

MRFP

HSS

SLF

OSA AS

OSA-SCS
SIP AS

TWSS
Service
Impls

gsmSCF

IM-SSF

BGCF

I-CSCF

P-CSCF

Chapter 2. Architecture, components, and tooling 13

http://www.3gpp.org/ftp/Specs/html-info/23228.htm

provided at the application layer, and they are enforced for each Web service request
using knowledge of the requester, target service, and invoked operation.

� Service Platform, which contains the Web service implementations.

The Service Platform facilitates service exposure through standardized interfaces.

Figure 2-3 provides an overview of IBM WebSphere Telecommunications Web Services
Server architecture.

Figure 2-3 Overview of the three IBM WebSphere Telecommunications Web Services Server
components

2.2 Service Policy Manager

The Service Policy Manager is used by Service Implementations and ESB components to
coordinate policy information. It provides a structured data store and administrative interfaces
for managing requesters, services, policies, and subscriptions within IBM WebSphere
Telecommunications Web Services Server. The Web service implementations consist of an
application server with enhanced support for telecom integration functions. The IBM
WebSphere Telecommunications Web Services Server Product provides support for Parlay X
V2.1, which is an industry standard set of interfaces to telecom functions, and other
nonstandard Web service interfaces. Parlay X Web service implementations can adapt
arbitrary Web service interface definitions and back-end network element implementations.

2.2.1 Underlying Service Policy Manager definitions in the context of IBM
WebSphere Telecommunications Web Services Server

The Service Policy Manager is based upon service policies, requestors, services, and
subscriptions. This section helps to define what each of these is and what role it plays in
regard to the Service Policy Manager.

Requester
In IBM WebSphere Telecommunications Web Services Server, a requester is uniquely
identified entity that wishes to access a service. The requester is the actual security entity
obtained from WebSphere global security. A requester can be a user (like a subscriber), or an
authority, or a company such as a large telco service provider. For example, a company (large

Client
Application

Access Gateway (ESB)

Web Service
Exports

Mediation
Flows

Service
Policy Mgr

B
inding

Service
Platform

Service
Impl

B
inding

Service
Impl

B
inding

Service
Impl

B
inding

...

14 IBM WebSphere Telecommunications Web Services Server Programming Guide

telco service provider), as a requester, can fetch service policies for a subscriber that it
manages. During the run time, a requester could be a current user principal, or another user
the current user principal delegates.

Service
A service is a collection of self-contained functions that perform a defined task and expose it
through a well known interface. Users of the service only need to know what it does and what
the interface is; the user does not need to know how it is implemented or deployed.
Operations are important, but are sometimes considered part of the service.

Subscription
A subscription is a relationship between a requester and a service or an operation. The
subscription is Policy Manager’s authorization mechanism to grant a requester the permission
to access and personalize a service in the form of policies. A requester must subscribe to the
service before a policy can be added to the service by the requester.

Service policy
A policy is a configuration value that is associated with a particular scope of operation
determined by the requester, service, and operation being executed. The configuration values
can be of various data types, and control behavior of IBM WebSphere Telecommunications
Web Services Server components within the Access Gateway or Service Platform. For
example, presence service may have a presence subscription timeout policy, presence
notification duration, and frequency policies. Third-party call service may have a call session
timeout and a charging method (online or offline) policy. A service policy can often be used to
describe QOS, or quality of service, for example, minimum and maximum bit-rate, as well as
service availability rate. Note that not all policies relate to QoS.

2.2.2 Key features of the SPM and architectural overview

Highlights of the Service Policy Manager include:

� Highly structured data storage to store definitions of requesters, services, subscriptions,
and policies

– Hierarchical policy structure

– Policies are name/value pairs

• Example: requester.service.Authorized, value=true.

� Simplified setup and administration of requester groups and services

– Flexible policy granularity

– Global polices or policy by requester, service, or operation

� Policies used to personalize service by requester supporting features, such as:

– Requester groups (Gold, Silver, and Bronze)

– Geo-localization to enable centralized access with local service execution

• Example: Select SMS service implementation based on the requester’s country (for
example, UK).

– Authorization and Service Execution

• Example: Select the SMS ConfirmDelivery operation.

Chapter 2. Architecture, components, and tooling 15

Figure 2-4 illustrates both the architecture of the Service Policy Manager within IBM
WebSphere Telecommunications Web Services Server and shows how a process flow
executes when a Web service request enters the system, and then is routed to the service
implementations.

Service implementations store dynamically-updatable, service-specific policies into a policy
manager system, and the policy/subscription mediation primitive fetches policies from the
policy manager system and populates SOAP headers with policy information. This policy
information is then passed along with the request to downstream mediation primitives and
back-end service implementations for policy-based decision making during service execution.

Figure 2-4 How a process flow executes when a Web service request enters the system

2.3 Telecom Web Services Access Gateway

Telecom Web Services Access Gateway consists of a telecom-added function on top of
WebSphere Enterprise Service Bus and provides policy-driven traffic monitoring, capture,
authorization, and other message processing capabilities. These services are provided at the
application layer, and are enforced for each Web service request using knowledge of the
requester, target service, and invoked operation.

Note: A detailed discussion on how to deploy the SPM and work with policies, including
how to create a custom policy, is provided in Chapter 3, “Working with service policies and
the Service Policy Manager” on page 33.

Service Access Gateway

Client
Application

Policy Retrieval
Mediation Primitive

Service Platform

Service Policy Manager

Presence
Terminal Status
Third Party Call
Payment
Call Notification
……………

SPM Console

Mediation
Flows

SCA
Export

SCA
Import

Data Store
Policy Administrator

Service Provider

Client
Applications

(Jython Script)

Existing Policy
Management
Infrastructure

Web
Service

Web
Service

Web
Service

SPM Architecture Overview

16 IBM WebSphere Telecommunications Web Services Server Programming Guide

Highlights of the Access Gateway include:

� Uses Enterprise Service Bus to provide policy-driven authorization, SLA enforcement, and
management capabilities.

These services are enforced for each Web service request using knowledge of the
requester, target service, and invoked operation.

� Access Gateway provides flexibility for the construction of tailored/customized message
processing logic.

– In accordance with service provider network policies/requirements.

– WebSphere Integration Developer tooling allows the service provider to model its
unique network policies, enable new features, and deploy customized logic into Access
Gateway.

2.3.1 Telecom Web Services Access Gateway architecture

Telecom Web Services Access Gateway acts as a process-driven, message processing
element. Process flows are used to capture and implement common business logic for service
requests.

Telecom Web Services Access Gateway acts as a message processing intermediary. All Web
service requests and responses pass through Telecom Web Services Access Gateway.
Telecom Web Services Access Gateway consists of a telecom-specific function added on top
of the WebSphere ESB platform. This telecom function is provided in the form of mediation
primitives that can be used to construct mediation flows containing message processing
logic.

Figure 2-5 illustrates a logical view of the Telecom Web Services Access Gateway
architecture.

Figure 2-5 IBM WebSphere Telecommunications Web Services Server Access Gateway architecture

Client
Application

ESB
Platform TWSS Serv ice

Platform

Service
Interface

Mediation
FlowWSDL

Group
Resolution

Service
Authorization

Transaction
Recorder

Policy/
Subscription

Network
Statistics

Service
Impl

Binding

Service
Impl

Binding

Service
Impl

Binding

...

SCA
ExportsSCA
ExportsSCA
Exports

TWSS Access Gateway

Se
rv

ic
e

In
vo

ca
tio

n
M

ed
ia

tio
n

Pr
im

iti
ve

TWSS Access
Gateway
Mediation

Module

Service
Creation
Tooling

Group
Resolution
Mediation
Primit ive

Group
Resolution
Mediat ion
Primitive

Group
Resolution
Mediation
Primitive

Service
Process
Tooling

Mediation
Flows

Mediat ion
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primit ive

Mediation
Primitive

Generation Generation

Chapter 2. Architecture, components, and tooling 17

The execution of message processing logic within WebSphere ESB is orchestrated by a
mediation flow module. The flow definition is produced within the WebSphere Integration
Developer tooling. The flow definition artifacts are used by WebSphere Integration Developer
to generated J2EE deployable code, in the form of an EAR, for deployment on top of the
WebSphere ESB run time. Flow definitions describe the wiring between interfaces and
mediation primitives; mediation primitives are units of logic that correspond to message
processing elements in the visual flow programming environment. Examples of mediation
primitives are a message logging primitive, a policy retrieval primitive, or a group resolution
primitive.

Role of the Access Gateway
All Web service requests and responses pass through and are inspected by Telecom Web
Services Access Gateway. Telecom Web Services Access Gateway acts as an intermediary
for all communication between client and service endpoints, processing both incoming
requests to Parlay X Web service implementations and outgoing requests made by Parlay X
Web service implementations. Access gateway mediation primitives have access to the
SOAP message in its entirety, including headers and body. This allows mediation primitives to
determine the initiating requester, target service, and invoked operation. In addition,
information is communicated to other Telecom Web Services Access Gateway mediation
primitives and back-end components using SOAP headers. This ensures that information is
available for any external Web service requests that need to include this information. For
example, policy data is passed in the form of SOAP headers between mediation primitives
and relayed to Parlay X Web service implementations during invocation of them.

Flow of information - from client operation request to invoking the
appropriate service implementation
Upon receipt of an application client operation request and after evaluating mediation flow
logic for the incoming request, Telecom Web Services Access Gateway creates its own
back-end request to the appropriate service implementation. This invocation is performed
using runtime selection of the back-end service implementation based on policy information.
Upon receipt of the response from the service implementation, Telecom Web Services
Access Gateway evaluates mediation flow logic on the returned response and then issues an
appropriate response to the client application. For Parlay X Web service implementations that
are capable of issuing outbound requests, initiated through a notification service or through
other means, these implementations must also send outbound requests through Telecom
Web Services Access Gateway to be processed in a similar fashion.

All communication between the external third-party client application and Telecom Web
Services Access Gateway is done using SOAP/HTTP(S) using document literal encoding.
This provides maximum interoperability between endpoints, as literal encoding has the widest
platform support and interoperability characteristics. Communication between Telecom Web
Services Access Gateway and back-end service implementation uses SOAP over the most
appropriate transport. Both HTTP and secure HTTPS transports can be used for delivering
the SOAP message. WS-security can be enabled for mediation module flows within the
standard WebSphere Integration Developer tooling.

Note:

� Details on how to install the WebSphere Integration Developer Plug-in to begin working
with the Mediation flow artifacts is described in 4.5, “Tooling / WebSphere Integration
Developer Plug-in” on page 88.

� Technical details on how to customize Access Gateway flows and create custom
mediation primitives is discussed in depth in Chapter 5, “Developing and customizing a
custom Access Gateway flow” on page 127.

18 IBM WebSphere Telecommunications Web Services Server Programming Guide

Role of mediation primitives
Telecom Web Services Access Gateway components are provided in the form of additional
mediation primitives that extend WebSphere ESB and plug into the WebSphere Integration
Developer Tooling Environment. Each mediation primitive is designed to serve a specific,
well-scoped purpose; the preference is create a bunch of different variations of a mediation
primitive over a larger, more generalized primitive. This allows the system integrator to
choose the most appropriate primitive when designing a mediation flow. This aligns with the
visual programming primitives within WebSphere Integration Developer tooling; the system
integrator selects the mediation primitive most appropriate for a given situation when creating
a mediation flow. This approach also encourages code reuse; rather than trying to create
generalized logic, each primitive can excel at its particular specialty. As mediation primitives
appear in the WebSphere Integration Developer tooling palette, over time this palette can
expand to include additional telecom function, resulting in a highly industry-specific business
logic creation environment.

Mediation modules follow the SCA component model used within WebSphere ESB. The SCA
component model is described within the WebSphere ESB Information Center
documentation. Each mediation model contains a one or more SCA exports that correspond
to a Services Description Language (WSDL) interface definition and are exposed as a Web
service to external client requesters. Mediation modules can also contain SCA imports for
accessing back-end functions. In the current WebSphere ESB implementation, each import
must be associated with a single endpoint, whose value can be configured statically during
deployment of the mediation module. As a result, an additional mediation primitive is provided
with Telecom Web Services Access Gateway to enable runtime, policy-driven selection of
back-end services.

The WebSphere ESB platform provides flexibility for the construction of tailored message
processing logic in accordance with service provider network policies. This logic is typically
unique to each service provider network and can also vary according to the particular service
being invoked. The mediation primitive programming model offers a point of extensibility for
the creation of customer-specific function, providing a well-defined programming model that
furthers the capabilities of the WebSphere Integration Developer Tooling Environment. IBM
WebSphere Telecommunications Web Services Server provides a set of default mediation
flows as part of its component deliverables. Service providers can choose to use this flow
as-is or to construct a customized flow and mediation primitives using WebSphere Integration
Developer.

2.4 Service Platform and the Web service implementations

IBM WebSphere Telecommunications Web Services Server hosts the Parlay X Web service
implementations that maps Web service interfaces to service provider network functions. The
term service implementation is used to refer to the implementation code of the Web service
API; a single Web service interface can have multiple service implementations that provide a
different mapping of the same API to service provider network function. IBM WebSphere
Telecommunications Web Services Server consists of an WebSphere Application Server
instance, WebSphere Application Server Version 6.1 or higher, for SIP protocol support with
additional Telecom Web Services service implementations applications deployed on the
instance. Telecom Web Services service implementations provide support function for Parlay

Note: A description and functional specification for each of the default mediation primitives
provided with IBM WebSphere Telecommunications Web Services Server V6.2 is provided
in Chapter 4, “Design considerations for Access Gateway flows - base mediation flows and
the mediation primitives” on page 67.

Chapter 2. Architecture, components, and tooling 19

X Web service implementations and are accessible through Web services. The components
are intended to be accessed using local Web service invocations; this allows WebSphere
Application Server to perform local optimizations and reduce the cost of Telecom Web
Services service implementations Web service calls. Thus, in a cluster deployment, each
Parlay X Web service implementations WebSphere Application Server instance within will
have these Telecom Web Services service implementations installed locally.

IBM WebSphere Telecommunications Web Services Server focuses on the use of Parlay X
APIs as the Web service interface abstraction for telecom network function, but the
architecture is general enough to provide infrastructure services for any kind of Web service
implementation.

The Parlay X Web service implementations provide access to IMS, Parlay, and other telecom
network elements

2.4.1 Parlay X Web service implementations architecture

IBM WebSphere Telecommunications Web Services Server provides a development platform,
execution environment, and common set of components to facilitate rapid development of
Web service implementations.

The term service implementation describes an implementation of any Web service API. An
individual Web service API can have more than one service implementation, with a different
back end for each API realization. The Parlay X Web service APIs are the first instantiation of
services. Consequently, parts of the design can include a function that provides specific
support for Parlay X services, but the architecture is general enough to provide infrastructure
services for any kind of Web service implementation.

Figure 2-6 on page 21 provides an overview of IBM WebSphere Telecommunications Web
Services Server architecture, with a specific focus on the Service Platform.

20 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 2-6 IBM WebSphere Telecommunications Web Services Server service platform architecture

All Web service requests and responses pass through and are inspected by Telecom Web
Services Access Gateway before being passed on for processing. Telecom Web Services
Access Gateway acts as an intermediary for all communication between client and service
endpoints, processing both incoming requests to Parlay X Web service implementations and
outgoing requests made by Parlay X Web service implementations. For each incoming
request, Telecom Web Services Access Gateway consults policy information from the
Subscription Management system in order to select the service endpoint and invoke the
appropriate service implementation. Parlay X Web service implementations provide a bridge
between the Web service API and core network, typically initiating one or more network-level
activities for each request. For Parlay X Web service implementations capable of issuing
outbound requests, either provisioned through a notification service or through other means,
these implementations must send outbound requests through Telecom Web Services Access
Gateway to be processed in a similar fashion.

Communication between Telecom Web Services Access Gateway and Parlay X Web service
implementations uses SOAP messages over HTTP. The HTTP transport should be used
when tighter latency response times are required. Document literal is the preferred SOAP
message encoding format. It allows maximum interoperability between Web service clients.
Document literal encoding should be used as the encoding format when generating all Web
service proxy stubs. The architectural design focuses primarily on the use of document literal
encoding over HTTP. HTTPS communication is also assumed to be an alternative transport to
HTTP where HTTP is mentioned within this document, but requires additional
deployment-time configuration.

Service Platform

Converged HTTP/SIP Container

Binding

Service
Logic

Common
Logic

EJB Container

Binding

Service
Logic
EJB

Entity
Beans

JMS Provider

Queue

Client
Application

Service Implementat ion-
Specific Artifacts

Common, Cross Service
Component Artifacts

Serv ice Implementation-
Specific J2EE Conf iguration

JCA Providers

Direct
Connect

MBean
Config

Diameter
Stack

SIP Stack

HTTP Stack

Service
Creation
Tooling

TWSS
Access Gateway

Service Provider
Core Network

HTTP/Web Service
Access

IMS Signaling
(ISC/SIP)

Charging & User
Profiles (Diameter)

Core Network
Protocols & Serv ices

Chapter 2. Architecture, components, and tooling 21

IBM WebSphere Telecommunications Web Services Server consists of a WebSphere
Application Server (WebSphere Application Server) environment with support for IMS
protocols. The converged HTTP/SIP Servlet container is used for hosting Web and SIP
application logic. SIP Servlets can interact with the IMS SIP signaling elements according to
the 3GPP ISC interface. The IMS Connector stack provides a client API for accessing
Diameter services for integration of security, user profile, and accounting functionality. For
direct access to network protocols for which a stack in base WebSphere Application Server
does not exist, the Java Connector Architecture (JCA) framework provides a means of
extending the application server environment with additional protocol stacks. Finally, the Java
Messaging Service (JMS) provided with base WebSphere Application Server can be used for
asynchronous, latency-insensitive, and high throughput communication between application
components.

Parlay X Web service implementations are based primarily on the Web container
programming model for Web service implementation bindings and common service
components. JAX-RPC Servlets are the recommended Web service implementation binding,
although Parlay X Web service implementations are free to choose the method that is most
efficient for the given application (for example, use of EJB™ bindings if transactions are
necessary).

Common components
In addition to these WebSphere Application Server facilities, Telecom Web Services service
implementations contain support function for Web service implementations. Each of these
components has an associated Web Services Description Language (WSDL) interface and is
Web Services accessible. This allows for substitution and customization of Telecom Web
Services service implementations by deploying a different implementation of the Telecom
Web Services service implementations interface and selecting the new implementation
through its new endpoint. Telecom Web Services service implementations should be
accessed using local Web service invocations. This allows for WebSphere Application Server
to perform some in-process optimizations, reducing calling impact. As a result, within a
clustered configuration, each WebSphere Application Server instance within the cluster will
have Telecom Web Services service implementations deployed locally so that they can be
accessed by Parlay X Web service implementations using local Web service invocations.

All components are to be bundled as individual J2EE enterprise application archive (EAR)
files for deployment within the WebSphere Application Server environment. Parlay X Web
service implementations EAR files should contain all service logic and runtime dependencies.
Telecom Web Services service implementations should each have their own EAR file that
contains the component logic. The use of EAR packaging promotes separation between
individual service implementations, as well as access to Telecom Web Services service
implementations. The use of EAR packaging also promotes substitution of interfaces: each
interface implementation (for example, a SIP or SMPP implementation of an SMS service or a
customized common component implementation) will have a corresponding EAR file. This
implementation can be selected at runtime by using the appropriate endpoint information for
the invocation.

Figure 2-7 on page 23 provides an overview of Telecom Web Services service
implementations, deployed in EAR form on top of a WebSphere Application Server instance.
Some of these components exist to facilitate development of Parlay X Web service
implementations; new Parlay X Web service implementations should choose to include
whichever Telecom Web Services service implementations are appropriate.

Note: Common components are discussed in greater detail in Chapter 6, “Common
components” on page 203.

22 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 2-7 IBM WebSphere Telecommunications Web Services Server service platform and common components

When creating a Web service implementation, you must select a concrete binding to the
J2EE programming model. Parlay X Web service implementations architecture favors a Web
container programming model. The recommended choice of service implementation bindings
is a Servlet-based binding, such as JAX-RPC Servlets, although service implementations are
free to choose the most efficient access strategy for their particular application. The Servlet
threading model favors short execution of Servlet methods. Thus, Parlay X Web service
implementations should avoid performing large chunks or high latency work within Servlet
methods. This should be addressed either through design of the Web service interface or
through use of JMS queues within the design of the service implementation.

The service logic Servlets contains the glue code for each service that invokes the
appropriate Telecom Web Services service implementations. While each service has unique
requirements that influence the chosen architecture, the general suggested architecture for
creating Parlay X Web service implementations is to use a service controller model, where
the service is broken into two main parts: a front-end controller that contains logic that is
common to all potential implementations of a Web service interface and a back end that
provides network-specific logic. This enables substitution of the back end for different network
access contexts; however, the level of substitutability is at the Web service abstraction and
corresponding EAR file. Thus, this separation should be maintained at the code level and
each access context should be built as a separate EAR. This architecture is particularly
useful for Direct Connect protocol function, where each back end can make use of a different
network protocol to perform the desired function. This architecture is also implied by service

Service Platform

Converged HTTP/SIP Container

Web Serv ice Incoming
(SOAP over HTTP)

Web Serv ice Outgoing
(SOAP over HTTP)

B
inding

Service
Logic

Serv lets

Data
Source

Signaling
SIP Servlets

MBean
Config

Network
Resources

Web Service

Admission Control
Web Service

Fault and Alarm
Web Service

Usage Record
Web Service

Traffic Shaping
Web Service

Privacy
Web Service

WAS Admin Console
Service

Implementation
Admin

Serv ice Platform
Components

Admin

Resource
Specification

Admin

EJB Container

Binding

Service
Logic
EJB

Service
Entity
Beans

JMS Provider

Queue

Privacy
Service

Service Implementation-
Specific Artifacts

Common, Cross Service
Component Artifacts

Service Implementation-
Specific J2EE Conf igurat ion

JCA Providers

Direct
Connect

IMS Signaling
(ISC/SIP)

Configuration
(JMX)

External
Integration

PX Notif ication
Delivery

Web Serv ice

Chapter 2. Architecture, components, and tooling 23

implementations that make use of SIP Servlets, where the HTTP interactions are used to
control SIP protocol logic.

2.4.2 Parlay services

Parlay/OSA APIs, also known as Open Systems Architecture APIs, enable you to expose
network capabilities as IT interfaces. IBM WebSphere Telecommunications Web Services
Server comprises Parlay connector, a component that allows to deploy services as Parlay
client applications. These services are capable of interacting with a Parlay Gateway and
eventually establish communication with a Parlay service capability function, such as, for
example, Parlay V4.2 specification, Part 14, Presence and Availability Management SCF.

2.4.3 Direct Connect services

Telecom services can be implemented to interact with network elements directly in some
cases. Telecom Web service Server comprises Web services that implement Short Message
Peer to Peer (SMPP), Multimedia Messaging (MM7), Mobile Location Protocol (MLP), and
XML Capability Application Part (XCAP) application protocols out-of-box. All these
implementations utilize J2EE Connectors (JCA) as the medium to connect to respective
network elements. The WebSphere Application Server, which is the underlying application
server environment for IBM WebSphere Telecommunications Web Services Server, supports
a J2EE connector adhering to the JCA V1.5 specification. The JCA programming model
offers extensive facilities for defining a wide range of interfaces for protocol communication
and allows for creation of container managed threads for performing lower level message and
data processing tasks.

As a guideline to implement Direct Connect implementation using a J2EE connector, consider
the following situations:

� When the service implementation needs to access a protocol that is not natively
supported within the WebSphere Application Server protocol stack, specifically the
byte-level protocols.

� When there is a need for handling asynchronous, inbound notifications from the network
interfaces that cannot be handled using J2EE messaging components directly.

When there is a need for a service implementation to access a proprietary APIs for tight
integration with a older network element or COTS application. Such APIs sometimes require
a different transaction model than that can be provided by an application server environment.
Such integration with the network interfaces or applications is encapsulated into a JCA
connector. This approach isolates the remainder of the service logic from the specifics of
integration.

Note: To learn more about Parlay V4.2 specifications, refer to the link below:

http://portal.etsi.org/docbox/TISPAN/Open/OSA/Parlay42.html

Note: JCA connector architecture has limited support for failover within WebSphere
Application Server. The backup connector instances can be supplied within the cluster, but
these instances cannot share state directly; a JMS queue can be used internally to ease
the process of failover. However, without additional state, the connector might not be able
to provider proper failover behavior. Thus, it is the responsibility of a higher level service to
ensure that failover requirements are met and interface as a low-level element with the
J2EE connector.

24 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://portal.etsi.org/docbox/TISPAN/Open/OSA/Parlay42.html

2.5 Extensibility

The following section provides an overview of possibilities for extending and customizing both
the Access Gateway and the service implementation.

2.5.1 Telecom Web Services Access Gateway extensibility

The mediation primitive approach of WebSphere ESB provides a well defined mechanism for
packaging and managing delivered components, while enabling customized logic to be
introduced in a non-invasive manner.

Mediation primitives should be designed to serve a specific purpose. Thus, a system
integrator can select the most appropriate mediation primitive within the tooling for the task at
hand. The WebSphere Integration Developer tooling also provides an extensible mechanism
for adding additional mediation primitives into the tooling palette. This provides a
telecom-specific flow creation environment and easy access to telecom-specific functions
during flow customization.

Recognizing that message processing flows will be unique for each network's policies and the
organization requirements for each service provider, Telecom Web Services Access Gateway
tooling approach provides an environment where message processing logic can easily be
customized. IBM WebSphere Telecommunications Web Services Server includes a set of
default flows that encompass a standard set of message processing logic. These flows are
delivered both in binary form and in a form that can be imported into the WebSphere
Integration Developer tooling for customization. The intent of the binary form is to provide
functions out-of-the-box, while the flow can then be easily customized and extended for the
target environment.

Note: Chapter 5, “Developing and customizing a custom Access Gateway flow” on
page 127 provides actual examples in which the Access Gateway can be extended and
customized to meet your organization’s specific needs.

Chapter 2. Architecture, components, and tooling 25

Figure 2-8 highlights the role of WebSphere Integration Developer tooling within the IBM
WebSphere Telecommunications Web Services Server architecture. Telecom Web Services
Access Gateway components are delivered as binary mediation primitives that plug in to the
WebSphere ESB run time. Message processing logic consists of a process model called a
mediation flow that describes the interactions between mediation primitives (through wiring of
input and output terminals) and Web Services Description Language (WSDL) interfaces.
Each WSDL interface is associated with an SCA export or import. An SCA export is a callable
interface, while an SCA import is an invocation to another interface. Each SCA export or
import is given a binding, which determines how the interface can be called. SOAP/HTTP
Web service bindings are used within the IBM WebSphere Telecommunications Web
Services Server architecture.

Figure 2-8 IBM WebSphere Telecommunications Web Services Server Access Gateway Architecture and the role of
WebSphere Integration Developer tooling

During execution of the mediation flow, a data object (called a Service Mediation Object
(SMO)) is passed between mediation primitives. This data object is a business object
representation of the Web service SOAP request; Telecom Web Services Access Gateway
components use a loosely coupled SOAP model for passing data between components, but
include additional information within SOAP headers for processing by downstream elements.
This data is also included within the back-end request to Telecom Web Services service
implementations.

Client
Applicat ion

ESB
Platform TWSS Service

Platform

Service
Interface

Mediation
FlowWSDL

Group
Resolution

Service
Authorization

Transact ion
Recorder

Policy/
Subscription

Network
Statistics

Service
Impl

Binding

Service
Impl

Binding

Service
Impl

Binding

...

SCA
Exports

SCA
Exports

SCA
Exports

TWSS Access Gateway

Se
rv

ic
e

In
vo

ca
tio

n
M

ed
ia

tio
n

Pr
im

iti
ve

TWSS Access
Gateway
Mediation

Module

SLA
Enhancement

Mediation
Primitive

Message
Interception
Mediat ion
Primitive

CEI Event
Enter

Mediation
Primitive

Service
Process
Tooling

Mediat ion
Primitive

Mediation
Primitive

Mediation
Primit ive

Mediation
Primitive

Mediation
Primitive

Generation Generation

Mediation
Flows

WSDL

Serv ice implementations are concrete instantiates of
Web Service interfaces to network funct ion. Services
teams may choose to use those implementations as-is,
substitute their own implementat ions using the same
interfaces, or create their own Web Service interfaces.

The TWSS Access Gateway provides a point of
f lexibility for integrating service logic and enhancing
service implementation function using SOA
composition techniques. A default set of default flows
will be provided with the TWSS Access Gateway.

External Service
Definition

WebSphere Integration
Developer Tooling

May be customized by
the services team

All the items highlighted in yellow capture the semantics of
the service. The serv ice is instantiated by reading those
art ifacts into the tooling to generate implementat ion code.

Process
Model

DXXXX
Process

Development

Consumed
to create
binding

Rational Tooling

UML
Model

Service
Model

Service
Creation
Tooling

Common B2B Web
Service Function

26 IBM WebSphere Telecommunications Web Services Server Programming Guide

To create deployable code, the WebSphere Integration Developer tooling generates J2EE
staging projects (such as Web and EJB projects) from the flow description artifacts. These
staging projects are then bundled into a J2EE EAR for execution within the WebSphere ESB
server. Additional configuration and deployment of the flow can then be achieved through the
WebSphere ESB administration console.

Mediation primitives within Telecom Web Services Access Gateway are intended to be
policy-driven. In a typical flow, the policy mediation primitive calls out to a service policy
Management system that contains requester-specific policy data for tailoring execution flow.
This policy information is inserted into the SOAP headers for processing by downstream
elements. Additional Telecom Web Services Access Gateway mediation primitives should
look for policy information to provide any required configuration information. Mediation
primitives can also possess static properties that can be configured within the tooling on the
properties page; however, such properties can only be statically set within the tooling and
thus should only be used for default or flow-context specific data.

2.5.2 Parlay X Web service implementations extensibility

Telecom Web Services service implementations are callable through a Web service interface
that is defined using the Web Services Description Language (WSDL) interface. The WSDL
for a particular service must match between the Access Gateway and its Service
Implementation running on the Service Platform.

Implementations of the WSDL interfaces are designed to solve a specific, narrowly scoped
goal. A single interface can have multiple implementation flavors, for example, performing the
task specified within the interface through different means. The appropriate implementation
flavor is selected at run time through the appropriate endpoint; this allows for substitution of
interface implementations through configuration, without requiring changes to the code.

Within IBM WebSphere Telecommunications Web Services Server, there are two basic
categories of components: Parlay X Web service implementations and Telecom Web
Services service implementations. Each of these categories corresponds to a potential
substitution point. For example, an SMS interface can be substituted with a service
implementation that provides SMS functionality over SIP or one that provides a similar
function over SMPP and Telecom Web Services service implementations can be substituted
with customer-unique implementations. Since components are bundled as individual EARs,
an interface can be substituted by deploying a new EAR containing the new implementation
and then setting the invocation endpoint to point to the new EAR.

The rationale behind this approach is that generalization of component function is difficult,
while creating domain specific components is much easier to get right and typically results in
higher performance code. The best implementation can then be selected at run time
according to the requirements of the service being delivered.

This approach also increases the independence of additional Parlay X Web service
implementations, and Telecom Web Services service implementations can be built with and
maintained by reducing the coupling between components.

The substitution methodology also has advantages for serviceability: a minor upgrade can be
performed by deploying a new EAR containing the new version and changing the endpoint to
correspond to the new implementation. A IBM WebSphere Telecommunications Web
Services Server architectural requirement is that each component read in its set runtime
configuration at the start of each call flow (or sequence of interactions) and that such
information remain constant throughout the lifetime of the call flow. This supports the
substitutability concept, allowing for maintenance without interruption.

Chapter 2. Architecture, components, and tooling 27

Substitution can be done at on a component basis for minor upgrades, and for major release
levels, a complete system substitution should be done by setting up a new system in parallel,
and then routing a new workload to the new system.

2.6 Tooling

The following section describes the tooling required to work with IBM WebSphere
Telecommunications Web Services Server. There are three areas (see Figure 2-9) of
development activities around IBM WebSphere Telecommunications Web Services Server,
each one requiring its specific set of tools.

Figure 2-9 Development activities

2.6.1 Tooling for developing Service Implementations

The Rational® Application Developer v7 (RAD) development environment is used to develop
service implementations.

Rational Application Developer provides a single, comprehensive development environment
designed to meet a variety of development needs, from Web interfaces to server-side
applications, from individual development to advanced team environments, from Java
development to application integration. Rational Application Developer is part of the Rational
Software Development Platform series of products, which is a platform of products all built on
Eclipse, which is an open-source platform for creating application development tools. Each
product in the Rational desktop family offers the same integrated development environment

Note: Chapter 8, “Developing the service implementation” on page 251 discusses the
approach and process for developing a custom service implementation.

Client
Application

Access Gateway (ESB)

Web Service
Exports

Mediation
Flows

Service
Policy Mgr

B
inding

Service
Platform

Service
Impl

B
inding

Service
Impl

B
inding

Service
Impl

B
inding

...

Develop client applications Develop new mediation flows

Customize default mediation flows

Develop new service
implementations

28 IBM WebSphere Telecommunications Web Services Server Programming Guide

(IDE). The differences among these products reflect which plug-in tools are available in each
configuration. The IBM Rational Application Developer is a full suite of development, analysis,
and deployment tools for rapidly implementing J2EE applications, Enterprise JavaBeans™,
portlets, and Web applications.

A summary of the key features of Version 7 that are relevant to developing service
implementations or client applications are:

� Full support for Java EE V1.4, Java SE V5.0, and IBM WebSphere Application Server
V6.1.

� Based on Eclipse V3.2.

� Application Developer V7.0 supports Java 5. There is tooling for such features as Web
tooling.

� Web Tooling.

– The Web Diagram Editor is rewritten to leverage the Graphical Modeling Framework
(GMF).

– Drag and drop functionality (from the Palette) in the Web Diagram Editor updates the
diagram and (behind the scenes) generates appropriate code (keeping diagram and
code in-sync).

� JavaServer™ Faces (JSF):

– Full support for JSF V1.1.

– New version of the IBM JSF Widget Library (JWL), including AJAX-like behavior.

– Support for JSF portlet bridge.

– Support for standard JSF only mode (which excludes usage of IBM-specific JSF
components) as well as support for third-party JSF components.

– Support for multiple faces configuration files.

� Test Server environments.

– Test environments included for WebSphere Application Server V6.1, V6.0, V5.1, and
WebSphere Portal V6.0, V5.1, and WebSphere Express V5.1.

– Integration with IBM WebSphere Application Server V6.0 for deployment, testing, and
administration is the same (test environment, separate install, and Network
Deployment edition).

� XML.

– Updated support for XML and XSLT tooling.

– Updated support for XML schema editing, including visual modeling.

– Updated support for XML schema to Java code generation.

� Web services.

– Series of usability improvements in Web services development (improved skeleton
merge for top-down Web service creation, simplified editing of WSDL and XML
schema, and remote WSDL validation).

– Complex schema support with SDO.

– Enhanced support for XSD.

– Support for WSDL and XSD modeling.

Chapter 2. Architecture, components, and tooling 29

� Debugging.

– Support for debugging WebSphere Jython administration scripts.

– Support for DB2® V9.0 Stored Procedure Debug.

2.6.2 Tooling for developing mediation flows

The WebSphere Integration Developer environment is used to customize the Parlay X
message processing flows. Customizing the flows is optional and customization depends on
the needs of your environment. WebSphere Integration Developer tooling is also necessary to
create custom flows for non-Parlay X Web services.

The IBM WebSphere Integration Developer is a role-based development environment based
on the Eclipse V3.0 platform. It can be used in conjunction with other Rational and
WebSphere tools. Each user has a unique tooling perspective based on their role (for
example, J2EE developer, business analyst, or integration developer).

To simplify and accelerate the development of integrated applications, this environment
provides a layer of abstraction that separates the visually-presented components you work
with from the underlying implementation.

You can use WebSphere Integration Developer to graphically model and assemble mediation
components from mediation primitives, and assemble mediation modules from mediation
components:

� If the interface for SCA mediation components are not imported, you can use the
Simplified Interface Editor to create the interface. You can use this editor to specify and
edit interfaces (operations and parameters) of mediation modules.

� You can use the Mediation Flow Editor to map between operations on the endpoints of a
mediation to define the set of mediation flows needed for this application. You can use a
set of predefined mediation primitives to visually compose a mediation flow.

� You can use the Business Object Editor to construct the messages that are used in
mediations.

� You can use other editors to extend the development environment to meet your business
needs, for example:

– Create and edit custom mediation primitives, and add them to the Mediation Flow
Editor.

– Create and edit message descriptors.

Applications created using the WebSphere Integration Developer conform to a number of
industry-wide standards. These include:

� J2EE Connector Architecture is used for connectivity.

� Java Message Service (JMS) is used for asynchronous messaging, and in cases where
guaranteed delivery of data is required.

� Simple Object Access Protocol (SOAP) is used for integrating Web Services.

� Web Services Description Language (WSDL) is used for describing services.

In addition to the business process and integration, WebSphere Integration Developer also
provides support for development of mediation services. Mediation services intercept and
modify messages that are passed between existing services (providers) and clients
(requesters) that want to use those services. Mediation modules are typically deployed on the
WebSphere Enterprise Service Bus.

30 IBM WebSphere Telecommunications Web Services Server Programming Guide

For example, mediation flows can be used to find services with specific characteristics that a
requester is seeking and to resolve interface differences between requesters and providers.
For complex interactions, mediation primitives can be linked sequentially. Typical mediations
include:

� Transforming a message from the sending service to a format that the receiving service
can process

� Conditionally routing a message to one or more target services based on the contents of
the message

� Augmenting a message by adding data from a data source

In addition to these mediations that are included with the base tool, the IBM WebSphere
Telecommunications Web Services Server WebSphere Integration Developer plug-in offers
several additional mediation primitives that are essential to handle IBM WebSphere
Telecommunications Web Services Server service requests, such as:

� Adding IBM WebSphere Telecommunications Web Services Server headers to the
request

� Retrieving the relevant policies for an incoming request and adding them to the message
header

2.6.3 Tooling for developing client applications

The whole IBM WebSphere Telecommunications Web Services Server environment is based
on a Service-Oriented Architecture design. As such, the client applications are only
dependent on the definition of the Web service interfaces that are exposed by IBM
WebSphere Telecommunications Web Services Server. The client applications can be
implemented in any technology that allows you to send and receive SOAP messages.

A suitable set of tools to build the client side applications is provided by the IBM Rational
Application Developer, which is covered in 2.6.1, “Tooling for developing Service
Implementations” on page 28.

However, if your applications are built on the standard Parlay X Web Services API, this can
save valuable development efforts by using the WebSphere Telecom Toolkit. This toolkit is an
Eclipse plug-in to the Rational Application Developer.

The WebSphere Telecom Toolkit has two features, namely Telecom Web Services feature
and the IMS Enablement feature. The Telecom Web Services feature provides a complete
environment to develop and test Telecom client applications using Parlay X V2.1 APIs. The
feature includes wizards, cheat sheets, snippets, samples, and a simulator that emulates a
real telecommunication network. The IMS Enablement feature provides a collection of tools
for developing other IP Multimedia Subsystem applications.

Using the Telecom Web Services feature of the WebSphere Telecom Toolkit gives you a fast
start to build Parlay X based applications as well as to run tests independent of the back-end
services.

Chapter 2. Architecture, components, and tooling 31

Table 2-1 provides the complete set of tools provided by the Telecom Web Services feature.
The tools are categorized into application development tools and application testing tools.
The application development tools include the telecom application templates, snippets,
WSDL import wizard, cheat sheets, and telecom Web samples. The Application Testing tools
include the simulator configuration Editor, the simulator and the runtime views.

Table 2-1 WebSphere Telecom Toolkit features

Feature Description

Application templates The Telecom Web Application Template sample provides a
template Web project to develop new applications. The template,
when imported into the Rational Application Developer
workspace, creates Web and Enterprise Application projects.
The Web project contains all the required Parlay X API jars in its
classpath.

Cheat Sheets The telecom cheat sheets provide guided steps to create a new
application using the telecom Web application template sample.

WSDL Import wizard The Parlay X V2.1 WSDL import wizard is used to import Parlay
V2.1 WSDLs into an existing project.

Snippets The telecom snippets are used to insert predefined working code
into a Java class or Java Server Page. There are snippets to call
various Parlay X Web services, which include:
� Short Message Service
� Multimedia Message Service
� Terminal Location
� Terminal Status
� Accounting
� Payment
� Notification Administration
� Third Party Call
� Audio call
� Group Management
� Presence

Application Samples The telecom samples built using the toolkit can be deployed and
tested on the Web services client simulator. The toolkit also
provides a tutorial with step-by-step guidance on how to build the
sample.

Simulator configuration The toolkit ships a default simulator configuration along with the
telecom samples. The user can create a custom simulator
configuration using the Telecom Simulator Configuration wizard.
The simulator configuration editor is used to edit a user created
custom simulator configuration.

Simulators The Web Services Client Simulator emulates a Parlay X gateway
and provides a test suite to test user developed Parlay X Web
applications without the need of a real network. The simulator
uses a configuration file to configure its test data.

Runtime views The simulator runtime views display the simulator runtime data
while the simulator is in operation.

32 IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 3. Working with service policies
and the Service Policy Manager

This chapter discusses service policies and the role of the Service Policy Manager in IBM
WebSphere Telecommunications Web Services Server. It begins with an overview of the
Service Policy Manager, discussing both the role of the runtime component and the Service
Policy Manager console. It also discusses how to deploy and configure each of the
subcomponents.

With a foundation in place for the Service Policy Manager, it then discusses policies. We
begin with a discussion about how to initialize base policies required for the Access Gateway
and default mediation flow. Next, we discuss how to create a new policy.

Finally, this chapter provides a sample use case on creating a policy for SIP address
conversion.

Specific topics in this chapter include:

� “Overview of policies” on page 35

� “Overview of the Service Policy Manager” on page 36

� “Deploying the Service Policy Manager components” on page 37

� “Initializing policies” on page 51

� “Creating a new policy” on page 53

� “Sample for Service Policy Manager - SIP addressing conversion” on page 61

3

© Copyright IBM Corp. 2008. All rights reserved. 33

3.1 Focus of this chapter within the context of the common use
case

This chapter focuses on three aspects for setting up the initial policies and creating a custom
policy.

� “Deploying the Service Policy Manager components” on page 37

� “Initializing policies” on page 51

� “Creating a new policy” on page 53

This chapter also includes a sample service policy for SIP adressing conversion, discussed in
the following sections:

� “Sample for Service Policy Manager - SIP addressing conversion” on page 61

� “Use case realization” on page 62

Figure 3-1 illustrates the primary focus of this chapter within the context of the common use
case.

Figure 3-1 Creating a custom policy for SIP Address conversion called by a mediation flow

Calls

Service Platform

Service Policy Manager
• Default/Generic Policy
• Custom Policy

Example:

Access Gateway

Service Operations
• Publish()

Request Flow

SOAP
Request

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

1
2

4
Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

6

Presence
Supplier

Publish Implementation5

Presence
Server

7

1. SOAP request is submitted.
2. Request proceeds through the Mediation Flow in the Access Gateway.
3. The Policy Retrieval Mediation Primitive calls the Service Policy Manager. All service

policies are retrieved from the Service Policy Manager – including the policy for SIP
addressing conversion.

4. The policies are placed into the SOAP header of the request to be called upon as
necessary.

5. Request calls the Presence Supplier service implementation.
6. Common Components called within the service implementation logic.
7. Service implementation logic calls to the Presence server, then gets a response back.

service.config.enableURItransform

SPM Console

Polic
y In

form
atio

n
3

Comm on
Component

Comm on
Component

Com mon
Component

Com mon
Component

Comm on
Component

Comm on
Component

Com mon
Component

Creating a custom policy for SIP Address conversion
to be called by the customized mediation flow

34 IBM WebSphere Telecommunications Web Services Server Programming Guide

3.2 Overview of policies

The Service Policy Manager provides management, storage, and retrieval functions for the
policy configuration data, and the runtime data used to customize service delivery for a given
requester. It manages hierarchical policy definitions and service subscriptions for requesters.
The key benefits of this component are a common database for the management of
requesters, services and subscriptions, support for attaching policies to managed entities,
and hierarchical resolution of policies enabling rich policy resolution with easy administration.

Using policy management capabilities, an enterprise-level administrator manages definitions
of third-party requesters, service definitions, and service relationships; they also personalize
the services provided to groups and to individual requesters in a way that is scalable.

A service policy defines a piece of runtime configuration data for a particular service. Service
policies can be associated directly with requesters (as part of a subscription) to provide
personalization of service delivery. It is defined as a name and a value, with the interpretation
of the service policy performed by message processing or application logic.

You access Service Policy Manager from your applications through a Web service, which
enables Service Policy Manager to be deployed and managed independent of the
applications that utilize it. Service Policy Manager uses a Web services interface and must be
integrated with the service provider environment. Service Policy Manager recognizes policies
as data, which it manages and stores, but the services that define and use these data are
solely responsible for interpreting it.

Figure 3-2 Service Policy Manager architecture overview

Service Access Gateway

Client
Application

Policy Retrieval
Mediation Primitive

Service Platform

Service Policy Manager

Presence
Terminal Status
Third Party Call
Payment
Call Notification
……………

SPM Console

Mediation
Flows

SCA
Export

SCA
Import

Data Store
Policy Administrator

Service Provider

Client
Applications

(Jython Script)

Existing Policy
Management
Infrastructure

Web
Service

Web
Service

JMX

SPM Architecture Overview

Chapter 3. Working with service policies and the Service Policy Manager 35

3.3 Overview of the Service Policy Manager

The Service Policy Manager is split into two parts:

� The runtime subcomponent

� The console

The following section gives an overview of each component, and then discusses how to
deploy each one.

3.3.1 SPM runtime component

The runtime subcomponent provides the actual storage, management, and policy resolution
capabilities. Its functions can be accessed through two sets of interfaces, both of which are
available either through Web services or through Jython scripting (using the WebSphere
Application Server wsadmin tool), or through MBeans that can be accessed within wsadmin.
The wsadmin tool now supports the Jython scripting for advanced automation capabilities.

The policy access interface is used by non-administrative applications to look up policies. It is
a set of administrative interfaces through which requesters, services, subscriptions, data
types, and policy values can be managed

The Service Policy Manager resolves policy values using a hierarchical algorithm. The
requester and service information can be organized into a tree hierarchy that allows for
groupings of requesters and services. The subscriptions can be set within the requester tree
scope, and policies can be set within the requester and service tree scopes. The lookup
process is hierarchical, allowing requesters and services that are lower in the tree to inherit
subscriptions and policy values from their parents.

Each service represents an interface that is managed within the Service Policy Manager.
Multiple service implementations, or back-end implementations, can be registered within the
Service Policy Manager, and policies can be administered across the service as a whole or
within the context of each unique back end.

A special value of ALL can be used to apply the policy across one element of the scoping. For
example, defining a policy at a scope of (ALL, myservice, ALL), will define an attribute or
value pair for the service myservice across all requesters and operations. The Service Policy
Manager uses a hierarchical resolution algorithm to determine the final set of policy attribute
or value pairs for a given service context.

3.3.2 SPM console

The Service Policy Manager console provides an administrative view of the requesters,
services, operations, subscriptions, and policies that are managed by the Service Policy
Manager.

IBM WebSphere Telecommunications Web Services Server Service Policy administrators use
this console application to create, modify, and remove operational policy data that controls the
behavior of the IBM WebSphere Telecommunications Web Services Server. This information
is defined within various scopes. The scopes are indexed in two ways: by the requester name
of the application invoking the system, and by the service identifier and operation name of the
service being invoked.

36 IBM WebSphere Telecommunications Web Services Server Programming Guide

This administration console communicates with the Service Policy Manager run time through
a Web service invocation. The endpoint URL of the Web service is configured here. It enables
this console application to communicate with the Service Policy Manager where the policy
data is stored.

3.4 Deploying the Service Policy Manager components

The following section discusses how to deploy both the runtime component and the console
for the Service Policy Manager.

3.4.1 Deploying the Service Policy Manager runtime component

The Service Policy Manager runtime component is a single enterprise application that must
be deployed in the cluster. You can install and deploy the application on the deployment
manager. Then, you can synchronize all nodes in the cluster to replicate the application
across the cluster.

1. Launch the WebSphere Administrative Console in the Web browser by using the address
http://<IP Address> :<Port number>/ibm/console/. Enter the User ID and click the
Login button.

2. In the navigation window, select Applications → Install New Applications (Figure 3-3).

Figure 3-3 WebSphere Application Server navigation window - Applications

Note: Before you begin, you must make sure the Service Policy Manager applications
have been installed. First, perform an initial check within the file system for
SPM_Runtime.ear and SPM_Console.ear.

These files always appear in <$WAS_install_root>/installableApps/TWSS-Base/ directory.

Check the IBM WebSphere Telecommunications Web Services Server InfoCenter for
Service Policy Manager Application installation guidance.

Also, you need to initialize the database for Service Policy Manager. Check the IBM
WebSphere Telecommunications Web Services Server InfoCenter for guidance about
installing database initialization files for Service Policy Manager and how to connect to the
database:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

Use the WebSphere administrative console to prepare the cluster environment for
deployment of Service Policy Manager applications. Refer to the WebSphere Application
Server Network Deployment InfoCenter for information about creating the cluster:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Chapter 3. Working with service policies and the Service Policy Manager 37

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

3. Locate the SPM_Runtime.EAR file, select Show me all installation options and
parameters, and click Next (Figure 3-4).

Figure 3-4 Preparing for the application installation

4. In the Preparing for the application installation window, keep the defaults and click Next.
(Figure 3-5).

Figure 3-5 Preparing for the application installation

5. In the Select installation options window, keep the defaults and click Next (Figure 3-6 on
page 39).

38 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-6 Deploy the Service Policy Manager runtime component step 1

6. In the Map modules to servers window, map all of the modules to the cluster that you
created for deployment of Service Policy Manager applications (Figure 3-7).

Figure 3-7 Deploy the Service Policy Manager runtime component step 2

Chapter 3. Working with service policies and the Service Policy Manager 39

7. In the Provide JSP™ reloading options for Web modules window, keep the defaults and
click Next (Figure 3-8).

Figure 3-8 Deploy the Service Policy Manager runtime component step 3

8. In the Map shared libraries window, keep the defaults and click Next (Figure 3-9).

Figure 3-9 Deploy the Service Policy Manager runtime component step 4

9. In the Initialize parameters for servlets window, keep the defaults and click Next
(Figure 3-10 on page 41).

40 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-10 Deploy the Service Policy Manager runtime component step 5

10.In the Map resource references to resources window:

a. Select the uSe default method radio button.

b. Select the Authentication data entry from the drop-down list, select the modules, and
click the Apply button.

c. Click Next (Figure 3-11).

Figure 3-11 Deploy the Service Policy Manager runtime component step 6

Chapter 3. Working with service policies and the Service Policy Manager 41

11.In the Map virtual hosts for Web modules window, keep the default values and click Next
(Figure 12).

Figure 3-12 Deploy the Service Policy Manager runtime component step 7

12.In the Map context roots for Web modules window, keep the defaults and click Next
(Figure 3-13).

Figure 3-13 Deploy the Service Policy Manager runtime component step 8

42 IBM WebSphere Telecommunications Web Services Server Programming Guide

13.In the Map security roles to users or groups window, map the PolicyAdministrator to the
desired users, groups, or both. This is the role used to manage requester, service, and
policies. On the other hand, you can just select the Everyone option for no security
(Figure 14 on page 44).

Figure 3-14 Deploy the Service Policy Manager runtime component step 9

Chapter 3. Working with service policies and the Service Policy Manager 43

14.Review the summary information and click Finish (Figure 3-15).

Figure 3-15 Deploy the Service Policy Manager runtime component step 10

15.When finished, click Save to apply the configuration (Figure 3-16).

Figure 3-16 Deploy the Service Policy Manager runtime component step 11

3.4.2 Deploying the Service Policy Manager console

The Service Policy Manager console provides a graphical Web interface for using the runtime
subcomponent to manage various entities. You can deploy the console either in stand-alone
fashion or within a full portal runtime environment. When you deploy it in the cluster
environment, you can install and deploy the application on the deployment manager, and then
you can synchronize all nodes in the cluster to replicate the application across the cluster.
This deployment is similar to the deployment of the Service Policy Manager runtime
component:

1. Launch the WebSphere Administrative Console in a Web browser using the address
http://<IP Address> :<Port number>/ibm/console/. Enter the User ID and click the
Login button.

2. In the navigation window, select Applications → Install New Applications.

3. Locate the SPM_Console.EAR file, select Show me all installation options and
parameters, and click Next (Figure 3-17 on page 45).

44 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-17 Preparing for the application installation

4. In the Application Security Warnings window, click Continue.

5. In the Step 1: Select installation options window, keep the defaults and click Next.

6. In the Map modules to servers window, map all of the modules to the cluster which you
created for deployment of Service Policy Manager applications (Figure 3-18).

Figure 3-18 Deploy the Service Policy Manager console step 2

7. In the Provide JSP reloading options for Web modules window, keep the defaults and click
Next.

8. In the Map shared libraries window, keep the defaults and click Next.

Chapter 3. Working with service policies and the Service Policy Manager 45

9. In the prompt Application Resource Warning window, click Continue (Figure 3-19).

Figure 3-19 Deploy the Service Policy Manager console step 4

10.In the Initialize parameters for servlets window, keep the defaults and click Next.

11.In the Map virtual hosts for Web modules window, keep the defaults and click Next.

12.In the Map context roots for Web modules window, keep the defaults and click Next.

13.In the Map security roles to users or groups page window, map the PolicyAdministrator to
the desired users, groups, or both. This is the role used to add policies. On the other hand,
you can just select the Everyone option for no security (Figure 3-20 on page 47).

To look up users, perform the following steps:

a. Click the Look up users button.

b. On the prompt page, click Search to retrieve all available users.

c. Select the users and move them into the Selected list.

d. When done, click OK (Figure 3-21).

46 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-20 Deploy the Service Policy Manager console step 8

Figure 3-21 Select users for Service Policy Manager

Chapter 3. Working with service policies and the Service Policy Manager 47

14.To look up and add groups, perform the following steps;

a. Click Look up groups in the prompt window.

b. Click Search to retrieve all available groups.

c. Select the groups and move them into the Selected list.

d. When you are done, click OK (Figure 3-22).

Figure 3-22 Select groups for Service Policy Manager

e. After you have selected users and groups for the module, check the All authenticated
check box (Figure 3-23 on page 49).

48 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-23 Selected users and groups

15.Review the summary information and click Finish.

16.When finished, click Save to apply the configuration (Figure 3-24).

Figure 3-24 Save to master configuration

17.You will see the window shown in Figure 3-25, which indicates a successful save and
synchronization.

Figure 3-25 Save and synchronization success

Chapter 3. Working with service policies and the Service Policy Manager 49

3.4.3 Start the Service Policy Manager applications

After the deployment of Service Policy applications, that, Service Policy Manager runtime
component and Service Policy Manager console, you can now use the WebSphere
Application Server Administrative Console to start the applications:

1. Launch the WebSphere Administrative Console in the web browser with the address
http://<IP Address> :<Port number>/ibm/console/. Enter the User ID and click the
Login button.

2. In the navigation window, select Applications → Enterprise Applications.

3. Select both Service Policy Manager Console and Service Policy Manager Runtime, then
click Start (Figure 3-26).

Figure 3-26 Select the applications to start

4. You will get the message indicating that you are successful, similar to the one shown in
Figure 3-27.

Figure 3-27 Application success started

50 IBM WebSphere Telecommunications Web Services Server Programming Guide

3.5 Initializing policies

After deploying the Service Policy Manager applications, that is, Service Policy Manager
runtime component and Service Policy Manager console, you can run scripts to initialize
policies for the Access Gateway and for each of the Web service implementations you plan to
deploy.

3.5.1 Initialize the basic policies

You need to initialize the base policies so that the Access Gateway can get them to
communicate with back-end service implementations. The base policy scripts for Access
Gateway should be located under <install root>/installableApps/TWSS-Base/scripts directory.

1. Log in to the host where the policy script has been installed.

2. Change the directory to <WAS ROOT>/bin.

3. Initialize the first default policies by running the following command:

./wsadmin.sh -lang jython -f <WAS
ROOT)/installableApps/TWSS-Base/scripts/ag_pol.py

4. Check the message on the screen, making sure the initialization is successful:

WASX7209I: Connected to process "dmgr" on node twss01CellManager01 using SOAP
connector; The type of process is: DeploymentManager
sys-package-mgr: processing new jar,
'/opt/IBM/WebSphere/AppServer/lib/startup.jar'

Note about the specific version this section is based on: This IBM Redbooks
publication is using IBM WebSphere Telecommunications Web Services Server V6.2 to
describe these concepts. It also goes into detail on some user tasks that are overlapping
with the InfoCenter, such as the steps for installing SPM EARs, and configuration steps,
such as running scripts to initialize policies.

At the time this IBM Redbooks publication was written, IBM WebSphere
Telecommunications Web Services Server V6.3 was also close to completion, but had not
yet been formally released. All the concepts and interfaces are consistent, however, and
some installation and configuration steps have been improved in V6.3. Therefore, some of
these details are changed to match the context of V6.3. Refer to the InfoCenter for the
latest and most complete installation and configuration steps associated with the version
that you are using.

You can refer to the InfoCenter at the following URL:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

However, for the screen captures in this IBM Redbooks publication, and for the sake of
readability, we specifically used IBM WebSphere Telecommunications Web Services
Server V6.2. We have included a description of the configuration steps necessary for the
use case.

Note: The Service Policy Manager applications, that is, Service Policy Manager runtime
component and Service Policy Manager console, should be running when you run the
policy scripts.

Chapter 3. Working with service policies and the Service Policy Manager 51

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

sys-package-mgr: processing new jar,
'/opt/IBM/WebSphere/AppServer/lib/bootstrap.jar'

[req=ALL,svc=ALL,op=ALL,name=message.sla.LocalServiceRate,value=0,type=Numeric]
-> Success
[req=ALL,svc=ALL,op=ALL,name=message.sla.LocalOperationRate,value=0,type=Numeri
c] -> Success

5. Initialize other default policies by running the following command:

./wsadmin.sh -lang jython -f <WAS
ROOT)/installableApps/TWSS-Base/scripts/ag_px21_services.py
WASX7209I: Connected to process "dmgr" on node linuxCellManager01 using SOAP
connector; The type of process is: DeploymentManager
[Fri Nov 23 14:59:47 2007] SOAC7528I: Operation definition successfully
created.
[Mon Mar 03 15:20:24 2008] SOAC7528I: Operation definition successfully
created.
[Mon Mar 03 15:20:24 2008] SOAC7527I: Defined new operation:
service=[http://www.csapi.org/wsdl/parlayx/presence/notification/v2_3/interface
],operation=notifySubscription,enabled=True,description=[]
[Mon Mar 03 15:20:24 2008] SOAC7528I: Operation definition successfully
created.
[Mon Mar 03 15:20:24 2008] SOAC7527I: Defined new operation:
service=[http://www.csapi.org/wsdl/parlayx/presence/notification/v2_3/interface
],operation=subscriptionEnded,enabled=True,description=[]
[Mon Mar 03 15:20:24 2008] SOAC7528I: Operation definition successfully
created.

3.5.2 Initialize the additional policies for specified Web service
implementations

The IBM WebSphere Telecommunications Web Services Server product supports a large
number of Web service implementations, many of which are based on Parlay X specifications.
At this point, we will use “Parlay X Presence over SIP/IMS” for our demonstration.

1. Got to the IBM WebSphere Telecommunications Web Services Server information center
at http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp for the list
of Policy scripts for the Web service implementations, as shown in Figure 3-28 on
page 53.

Note: The policy script can be run many times. In the case where the policy already exists,
you will get a message stating that the policy already exists on the second or further
successful initialization.

52 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

Figure 3-28 Policy script list for service implementation

2. Initialize the default policies for Parlay X Presence over SIP/IMS:

./wsadmin.sh -lang jython -f <WAS
ROOT)/installableApps/TWSS-Service/scripts/px21_prs_ims_pol.py

3. Check the output message and make sure the initialization is successful.

3.6 Creating a new policy

Policy information in the incoming request may override the default policy configuration. If the
policies’ information in the header is more restrictive than the policies stored in the Service
Policy Manager, the policy information in the header will override the stored policies.

3.6.1 Create default policy

The IBM WebSphere Telecommunications Web Services Server includes default policies for
Access Gateway, and many of the Web service implementations sets. You initialize the default
policies by running scripts after you install the Service Policy Manager. Once initialized, you
should configure the default policies and set the correct value for each policy.

1. Reference to the IBM WebSphere Telecommunications Web Services Server InfoCenter
at http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp for the
default policies (see Figure 3-29 on page 54).

Chapter 3. Working with service policies and the Service Policy Manager 53

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

Figure 3-29 IBM WebSphere Telecommunications Web Services Server reference for default
policies

2. Launch the Service Policy Manager Console in the web browser using the address
http://<IP Address>:<Port number>/spm/console/. Enter the user ID and click the Login
button (Figure 3-30).

Figure 3-30 Service Policy Manager Console launch window

3. In the Service Policy Manager connection details window (see Figure 3-31 on page 55):

a. Select the connection URL.

b. Input the password.

c. Select the connection timeout time from the drop-down list box.

d. Click Connect.

54 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-31 Service Policy Manager Console connect window

4. The Service Policy Manager console Welcome window opens (see Figure 3-32).

Figure 3-32 Service Policy Manager Console Welcome window

Chapter 3. Working with service policies and the Service Policy Manager 55

5. In the navigation window, click Policy Administration (see Figure 3-33).

Figure 3-33 Policy Administration window

6. In the Policy Administration window (see Figure 3-34):

a. Click the Select a Service command button.

b. Expand Parlay X in the service tree view.

c. Select the Presence.

d. Select the interface in the Type Service listview.

e. Click Create Policy.

Figure 3-34 Policy Administration window for presence services

56 IBM WebSphere Telecommunications Web Services Server Programming Guide

7. In the Create Policy window (see Figure 3-35):

a. Input the Policy Name.

b. Select the Policy Type.

c. Input the Policy Value.

d. Click Create Policy.

Figure 3-35 Create new policy window

8. Repeat steps 6 through 7 to create all the required default policies (see Figure 3-36).

Figure 3-36 Default Presence policies

Chapter 3. Working with service policies and the Service Policy Manager 57

3.6.2 Enabling a new requestor for IBM WebSphere Telecommunications Web
Services Server

In order to enable a new requestor for IBM WebSphere Telecommunications Web Services
Server, you need to first to create a new requestor and a new subscription. Both processes
are defined in these next sections, within the context of creating the custom policy.

The relationship between a requester and a service or an operation is managed through a
subscription. The subscription is Policy Manager’s authorization mechanism to grant a
requester the permission to access and personalize a service in the form of policies. A
requester must subscribe to the service before a policy can be added to the service by the
requester.

A requester ID must be made known to the WebSphere user registry (LDAP or other) so that
it is a known identity that can be authenticated when security is enabled. Additionally, there
are some roles that the user should be mapped to. Typically, you should set up a group in the
user registry for all client requesters so that roles, such as PolicyAccessor, can be mapped to
it. Then, when adding a new user, the action can be done as a member of the group. Creating
a similar requester group in the SPM Console, under authenticated, and then putting user1
into that group, is desirable.

3.6.3 Creating the custom policy

Policies can be defined at different scopes:

� Global
� Service-specific
� Operation-specific
� Requester-service specific
� Requester-specific scopes

Policies defined in high level scope can be overridden by the same policy defined in a lower
level.

Create new requester
To create a new requester, do the following steps:

1. Log in to the Service Policy Manager Console and, in the navigation window, click
Requester Administration (Figure 3-37 on page 59).

Important: To configure the Access Gateway to invoke Web service implementations, a
policy (service.Endpoint) must be created for the specific service on the Service Policy
Manager.

This policy must be created for all requesters, for all operations, and for a specific service.
You can define it for both all and unauthenticated requesters, but it needs to be set in the
scope of each Web service implementation.

58 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-37 Requester Administration window

2. In the Requester Administration window, click Create Requester.

3. In the Create Requester window, select the requester type from the Type drop-down list
box, select the Parent for the new requester, input the Request name, input the
Description, check the Enabled check box, and click Create Requester (Figure 3-38).

Figure 3-38 Create new requester

Chapter 3. Working with service policies and the Service Policy Manager 59

4. Repeat step 2 through 3 to add all the users that are required (Figure 3-39).

Figure 3-39 List of all requesters

Create new subscription
A subscription is a relationship between a requester and a service or an operation. The
subscription is Policy Manager’s authorization mechanism to grant a requester the permission
to access and personalize a service in the form of policies. A requester must subscribe to the
service before a policy can be added to the service by the requester. Do the following steps to
create a new subscription:

1. Log in the Service Policy Manager Console, and in the navigation window, click
Subscription Administration.

2. In the Subscription Administration window, select the requester from the Requester tree,
and click Create Subscription (Figure 3-40).

Figure 3-40 Subscription Administration window

3. In the create subscription window, click the Select a Service button, select the service in
the service tree, select the interface from the Type Service list view, select the operation
from the Operation list view, check that the Implementation is correct, and click Create
Subscription (Figure 3-41 on page 61).

60 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-41 Create new subscription

3.7 Sample for Service Policy Manager - SIP addressing
conversion

In this section, we discuss how to create a sample service policy for SIP addressing
conversion. First, we describe the use case and proposed functionality for the service policy,
and then give step-by-step instructions on how to create the policy.

3.7.1 Use case description for new policy to be created

Policy limits apply to a three-level hierarchy:

� Requester
� Service
� Operation

Requester limits govern all traffic from a specific requester across all services. Service limits
constrain the rate of requests for all operations executed against that service, regardless of
the distribution of requests to the individual operations.

Through policy attributes, policy information contains dynamic runtime configuration
information that is used as input for decision logic during service execution. Policy information
allows personalization of service execution because policy information can be resolved
uniquely for each (requester, service, and operation) tuple. The policy configuration
information required is unique to each service implementation and is chosen at design time.
Each service implementation should uniquely identify its service name using the convention
(service name)_(category/flavor) when defining new policies.

If we had a situation where we needed to transform the format of an URI during a Web
service request, we may decide to do that transformation in an Access Gateway mediation
primitive, and utilize a policy to control its operation.

Chapter 3. Working with service policies and the Service Policy Manager 61

In this case, we create a specific policy to control the transformation:

1. We create two requesters, in this case, user1, sip:user1@example.com, and so on

2. We create a Boolean policy, that is, service.config.enableURItransformation, to publish the
operation of presence service.

When the client mediation flow retrieves the TRUE value of the policy, it will change the soap
message content, that is SOAPHeader → requesterID, and transform the requesterID from
user1 to sip:user1@example.com, which is the SIP standard format.

Figure 3-42 illustrates this conversion.

Figure 3-42 Service Policy Manager Use Case

3.7.2 Use case realization

As described previously, this sample SIP Addressing conversion requires us to create two
requesters and a policy on Service Policy Manager console. To do these tasks, do the
following steps:

1. Log in the Service Policy Manager Console, and in the navigation winnow, click
Requester Administration.

2. In the Requester Administration window (Figure 3-43 on page 63), click Create
Requester.

3. In the Create Requester window:

a. Select Requester from the Type drop-down list box,

b. Select All from the Parent listview,

c. Input “user1” as the Request name,

d. Input the description.

e. Check the Enabled check box.

f. Click Create Requester.

Service Access Gateway (Global Security enabled)

Client
Application

user1

Policy Retrieval
Mediation Primitive

Service Platform
sip:user1@example.com

Service Policy Manager

PX21_PRS_IMS

Publish()

SPM Console

Mediation
Flows

SCA
Export

SCA
Import

Data Store

service.config.enableURItransformation=true

SPM Use Case: SIP Address conversion

62 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 3-43 Create sample user1

4. In the Requester Administration window, click Create Requester again.

5. In the Create Requester window (Figure 3-44):

a. Select Requester from the Type drop-down list box.

b. Select All from the Parent listview.

c. Input “sip:user1@example.com” as the request name.

d. Input the description.

e. Check the Enabled check box.

f. Click Create Requester.

Figure 3-44 Create sample SIP user1

Chapter 3. Working with service policies and the Service Policy Manager 63

6. In the navigation window, click Policy Administration.

7. In the Policy Administration window:

a. Click the Select a Service button.

b. Expand Parlay X in the service tree.

c. Select Presence.

d. Select the supplier interface in the Type Service listview.

e. Select Publish in the Operation box.

f. Click Create Policy.

8. In the create policy window (Figure 3-45):

a. Input service.config.enableURItransformation as the Policy Name.

b. Select Boolean from the Policy Type box.

c. Input false as the Policy Value,

d. Click Create Policy.

Figure 3-45 Create sample policy for the specify operation

9. Congratulations, you have finished the policy settings for the sample. You can now check
that the requester and policy that you created are correct.

3.7.3 Test the sample

To test the sample, we need the application running on the Access Gateway to retrieve the
policy and make the change in the SOAP message.

64 IBM WebSphere Telecommunications Web Services Server Programming Guide

The test the application through Access Gateway, do the following steps:

1. Enable Global Security and add “user1” to the user registry.

2. Open the trace so that we can receive the detailed SOAP message.

3. Deploy the client side media flow application, which should make the change in the SOAP
message.

After a successful test, you should get the following message from the trace.log file, which
indicates that the "service.config.enableURItransformation" policy value is true. The
requesterID will be changed from user1 to sip:user1@example.com.

<SOAPHeader>
 <requesterID>user1</requesterID>
 <policies>
 <policy attribute="service.config.enableURItransformation"
value="true"/>
 </policies>
 </value>
 </SOAPHeader>

After it is modified by the mediation flow, the requester ID has been changed as follows:

<SOAPHeader>
 <requesterID>sip:user1@example.com</requesterID>
 <policies>
 <policy attribute="service.config.enableURItransformation"
value="true"/>
 </policies>
 </value>
 </SOAPHeader>

We have not actually created a sample here, but only defined a policy, run an existing flow,
and utilized trace to verify that the policy is actually made available to the flow. The custom
flow that extends this use case is defined in Chapter 4, “Design considerations for Access
Gateway flows - base mediation flows and the mediation primitives” on page 67 and
illustrated in Chapter 5, “Developing and customizing a custom Access Gateway flow” on
page 127.

Chapter 3. Working with service policies and the Service Policy Manager 65

66 IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 4. Design considerations for
Access Gateway flows - base
mediation flows and the
mediation primitives

IBM WebSphere Telecommunications Web Services Server Access Gateway, built on
WebSphere Enterprise Service Bus, provides flexibility for tailored/customized message
processing logic.

� Mediation primitives are small, goal driven pieces of message processing logic that can be
combined and rearranged in different configurations.

� A default flow or “wiring” of the mediation primitives is provided for out-of-the box
implementations The default message processing flow for the Access Gateway makes use
of the various mediation primitives in a set sequence.

IBM WebSphere Telecommunications Web Services Server Access Gateway logic can be
customized according to service provider network policies through tailoring of ESB mediation
flows. WebSphere Integration Developer tooling can be used to create customized mediation
flows. Ultimately, this reduces service creation and deployment time while lowering the
necessary skill level for service development.

In this chapter, we provide an overview of the default mediation flow provided with the IBM
WebSphere Telecommunications Web Services Server V6.2 and discuss each of the default
mediation primitives included. We also discuss how to install the WebSphere Integration
Developer tooling required to begin working with the default mediation flow in the Access
Gateway.

Once the developer understands how to work with the default mediation flow, we discuss how
to proceed with customizations in Chapter 5, “Developing and customizing a custom Access
Gateway flow” on page 127.

4

© Copyright IBM Corp. 2008. All rights reserved. 67

4.1 Introduction to Access Gateway and mediation flows

Telecom Web Services Access Gateway acts as a message processing intermediary. All Web
service requests and responses pass through Telecom Web Services Access Gateway.
Telecom Web Services Access Gateway consists of a telecom-specific function added on top
of the WebSphere ESB platform. The telecom function is provided in the form of mediation
primitives that can be used to construct mediation flows containing message processing logic.

The execution of message processing logic within WebSphere ESB is orchestrated by a
mediation flow module. The flow definition is produced within the WebSphere Integration
Developer tooling.

IBM WebSphere Telecommunications Web Services Server includes a set of default flows,
one for each Parlay X interface. It is a model of a typical service provider processing function.
Each default flow invokes the mediation primitives provided with the Access Gateway in a set
sequence. Each default flow is designed to support the accounting of requests, service or
operation level authorization, message capture for regulatory purposes, and traffic level
enforcement.

Figure 4-1 on page 69 illustrates the concept of how a mediation flow serves to support and
manage requests, authorization, traffic level enforcement, and logging when required. Note
that WebSphere Integration Developer is for creating and editing the flows. The flows are
actually managed through the administration console by editing the SCA Module Properties.

68 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-1 Out-of-the-box Access Gateway components and default processing flow

4.2 Mediation primitives

Mediation primitives plug in to the WebSphere Integration Developer tooling palette. They can
be used as primitive operations when creating Access Gateway mediation flows. A set of
default flows is provided when you install the Access Gateway. To create a customized logic
unit, you can utilize the WebSphere Integration Developer tooling to assemble flows among
the different components.

Telecom Web Services Access Gateway

Authentication

Policy/Subscription
Retrieval

Authorization

Capacity and SLA
Management

Group List
Resolution

Message Intercept

Network Statistics

Service Invocation

E
S

B

Mediation flows and primitives

WebSphere Integration Developer
are created and edited using

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 69

Figure 4-2 illustrates several of the primitives provided with the default mediation flow for the
Presence Publish service installed with the WebSphere Integration Developer Plug-in. (The
installation of the WebSphere Integration Developer Plug-in is discussed in 4.5, “Tooling /
WebSphere Integration Developer Plug-in” on page 88.)

Figure 4-2 Example set of mediation primitives provided with the WebSphere Integration Developer plug-in

Access Gateway mediation primitives consist of Java code that implements a component
interface for the Access Gateway. A mediation primitive is a logical unit that has a failure
terminal and a number of input and output terminals.

Data objects are passed during execution of an Access Gateway flow between I/O terminals.
The data objects use a representation called Service Message Object (SMO) for the Simple
Object Access Protocol (SOAP) message being processed for a Web service invocation. The
SMO object arrives at a mediation primitive's input terminal during execution flow, which
allows control to be passed on to the primitive's mediate method.

The mediation primitive can then process the message and determine where to place the
response on its defined output terminal, according to the semantics of that terminal.
Mediation flows are created by wiring or connecting the input and output terminals.

Mediation primitives are the primary programming model for the Access Gateway
subcomponents. Mediation primitives use a pipeline architecture. You can insert additional
mediation primitives anywhere in the flow, change the order of execution (subject to some
constraints), and so on. The pipeline architecture is based on the SOAP processing model,
where additional SOAP headers may be added, modified, or removed prior to passing
execution to the next downstream element.

70 IBM WebSphere Telecommunications Web Services Server Programming Guide

Individual mediation primitives have unique semantics or expectations, which define the input
at its terminal and the data which must be present in order to execute its logic. Adding
additional headers to the SOAP message for processing downstream elements, or requiring
upstream primitives to insert certain headers, are examples of unique semantics. The
semantics or expectations may place added constraints on how a component is used within a
mediation flow.

4.2.1 Mediation primitives used by the Access Gateway

This section lists the mediation primitives which are mandatory for a base Access Gateway
configuration, and those which are optional.

Mandatory mediation primitives
The following components are considered mandatory for a base Access Gateway
configuration and flow:

� Transaction Identifier mediation primitive

� Policy Retrieval mediation primitive

� Service Invocation mediation primitive

The mandatory components provide base services that support mediation primitives:

� The transaction identifier mediation primitive records information about the transaction
within a table that is typically referenced by other mediation primitives.

� The Policy Retrieval mediation primitive retrieves policy data based on the requester,
service, and operation being called. This data is used as decision parameter within the
mediation primitive's execution flow.

Optional plug-ins used by the default Access Gateway flow
The following components are optional plug-ins and are used by the default Access Gateway
flow:

� Network Statistics mediation primitive

� Message Logger mediation primitive

� Service Authorization mediation primitive

� Transaction recorder mediation primitive

� SLA Enforcement mediation primitives

� Group Resolution mediation primitive (Parlay X-specific)

� JMX™ Notification mediation primitive

� CEI Event Emitter mediation primitive

� Message Element Remover mediation primitive (required on the response flow to be the
last mediator, namely, at the end of the flow.)

� Fault Transformation mediation primitive (required in the fault/error flow)

Finally, the following mediation primitive is part of the WebSphere ESB product offering and is
included in the default flows:

� Message Interceptor mediation primitive

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 71

4.3 Default Access Gateway flow

Default flows are provided with Telecom Web Services Access Gateway for each Parlay X
interface. The default flows are provided in binary form as an EAR that can be deployed
directly to WebSphere ESB and as a project interchange that can be imported into the
WebSphere Integration Developer Tooling Environment for customization. The default flows
are designed to support accounting of requests, service/operation level authorization,
message capture for regulatory purposes, and traffic level enforcement according to
requester service level agreements.

Figure 4-3 illustrates the logic provided as part of the default flows.

Figure 4-3 Default Access Gateway message processing flow logic

Service Invocation
Mediation Primitive

(10)

SCA Import
Response

Network Statistics
Mediation Primitive

(11)

Filter
Step

Message Logger
Mediation Primitive

(12)

Message Element
Remover

Mediation Primitive
(13)

Response for
SCA Export

Response
SMO

SCA Export
Invocation

Message Element
Remover

Mediation Primitive
(1)

Transaction
Identifier

Mediation Primitive
(2)

Policy Retrieval
Mediation Primitive

(3)

Transaction
Recorder

Mediation Primitive
(4)

Network Statistics
Mediation Primitive

(5)

Filter
Step

Message Logger
Mediation Primitive

(6)

Logging
Policy

Enabled

Otherwise

Service
Authorization

Mediation Primitive
(7)

Group Resolution
Mediation Primitive
(Parlay X-specif ic)

(8)

SLA Cluster
Enforcement

Mediation Primitive
(9)

Request
SMO

This primitive is included
only for Parlay X
interfaces that use groups

Logging
Policy

Enabled

Otherwise

SCA Dynamic
Import

Note: This section is intended to provide an overview of the functionality of the different
mediation primitives provided in the default flow and to give an understanding of the overall
sequence of the flow between primitives. Details on how to perform specific customizations
for mediation primitives is provided in Chapter 5, “Developing and customizing a custom
Access Gateway flow” on page 127.

72 IBM WebSphere Telecommunications Web Services Server Programming Guide

Analysis of sequence and actions in the Default Flow
Upon receipt of a Web service request, the following mediation primitives are executed in
sequence:

1. Message Element Remover mediation primitive: Remove SOAP Header elements
selectively based on the configuration of the Access Gateway.

2. Transaction Identifier mediation primitive: Record information about the transaction, such
as the unique ID, requester, service, and operation. This information will be referenced by
other accounting data. If no transaction ID is provided in a SOAP header from an
upstream mediation primitive (that is, the transaction ID generation mediation primitive),
then the WebSphere ESB message ID will be used as the transaction ID. The ID will then
be added to the SOAP message header for downstream elements.

3. Policy Retrieval mediation primitive: Retrieve the policy/subscription information from the
Service Policy Management system. This calls the specific service policy requested. The
resulting information is inserted as SOAP headers into the SMO to be passed between
mediation primitives.

4. Transaction Recorder mediation primitive: If transaction recording is enabled by policy
attributes, then the information about the transaction, such as the unique ID, requester,
service, and operation, is recorded to a database table

5. Network Statistics mediation primitive: If network statistics are being recorded for the
particular service operation, statistics are recorded about the request.

6. Message Logger mediation primitive: If messages should be captured for the particular
service operation, then the message is logged to a database. This is done using the
message recording mediation primitives provided with WebSphere ESB.

7. Service Authorization mediation primitive: If applicable, authorization based on requester,
service requested, and operation is verified.

8. Group Resolution mediation primitive: Optional only for Parlay X flows that use groups.
Expands all group URIs into a flat list of member URIs by resolving groups through the
Group List Management Service. This component will perform recursive resolution of
groups to expand nested sub-groups. The list of targets in the operation will then be
replaced with the flat, full list of member URIs.

9. SLA Enforcement mediation primitive: If SLA monitoring and enforcement is enabled, then
monitoring information is adjusted and the statistics information checked to ensure that a
request can be processed given the constraints.

10.Service Invocation mediation primitive: The service invocation mediation primitive is then
called to select the appropriate back-end service and perform the back-end Web service
invocation. Following this mediation primitive, the SMO is sent through an Import call to
the back-end service.

11.Network Statistics mediation primitive: When the response is received, the mediation
response flow executes. The flow starts with the network statistics mediation primitive. If
network statistics are being recorded for the particular service operation, then statistics
are recorded about the response.

12.Message Logger mediation primitive: If messages should be captured for the response,
then the message is logged to a database using the WebSphere ESB provided mediation
primitive.

13.Message Element Remover mediation primitive: The Message Element Remover checks
the user principal against the requester exception list. If the requester is not in the list, the
message element remover removes the IBM WebSphere Telecommunications Web
Services Server headers element (using an appropriate XPath selector), if IBM
WebSphere Telecommunications Web Services Server headers exist.

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 73

Upon completion of the flow, the response object is returned to the SCA export invocation as
the Web service response.

Error handling within the flow
If a failure occurs during the execution of the request portion of the flow, then the fault
handling segment of the flow is invoked. When handling a Web service response, the
response is always returned to the requester despite faults in the flow. This ensures
consistency with the back-end system. Errors during a request flow are signified by the output
of the mediation primitive placed on its fault terminal. This fault terminal is wired to the fault
processing segment of the flow, which returns the error response to the requester.

The Access Gateway performs a transformation step to convert a fault to a WSDL defined
error type in a fault situation. This step is performed just prior to returning the error response
to the Web service client, and it matches the client expected output from the WSDL interface.

The default fault handling flow segment executes the following mediation primitives in
sequence (see Figure 4-4 on page 75):

1. The network statistics mediation primitive is called to log statistics about the fault event.

2. The message interceptor mediation primitive is called to log the actual fault object being
returned to the requester.

3. The JMX Notification mediation primitive will emit a JMX Notification with the error
information.

4. The CEI event emitter mediation primitive is called to emit a common base event (CBE).
By emitting CBEs, the fault information can be picked up by external security/monitoring
systems, such as Tivoli® products.

5. An XSLT transformation is performed to create an appropriate Web Services Description
Language (WSDL) default fault from the SMO. This provides an appropriate fault response
for the caller. The XSLT transformation mediation primitive is provided with the
WebSphere ESB platform.

74 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-4 Fault handling flow for default Access Gateway flow

Any outgoing requests that originate from within a service implementation, that is, Web
service notifications, must also pass through Telecom Web Services Access Gateway. These
outbound requests are subject to standard message processing logic. This allows for logging,
recording of network statistics, and other policy-driven acts on outbound notifications.

4.4 Working with Telecom Web Services Access Gateway
mediation primitives

In order to add additional mediation primitives or customize a flow, it is important to
understand the function of each primitive and its interaction with messages.

Each mediation primitive executes message processing logic on the SOAP request as the
message passes through the flow. Some mediation primitives record data about the request
and others insert headers to be used by downstream mediation primitives.

Wiring from mediation
primitive fault terminal

Network Statistics
Mediation Primitive

(1)

Message Logger
Mediation Primitive

(2)

JMX Notification
Mediation Primitive

(3)

Fault
Transformation
to WSDL type

(5)

Logging
Policy

Enabled

OtherwiseFilter
Step

Filter
Step

CEI Emitter
Mediation Primitive

(4)

Response for
SCA Export

Otherwise

CEI
Enabled

Only these are
present in a

response flow

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 75

4.4.1 Message Element Removal mediation primitive

The Message Element Removal mediation primitive compares the authenticated requester
identity with the exception list property to determine if twssHeaders should be removed or
not.

This component inserts the following SOAP header for use by downstream components,
provided the headers have not already been inserted by upstream components:

<twss:twssHeaders>
<twss:globalTransactionID>
<!-- Global transaction ID that can be used for correlated

logged transactions. If this header already exists from
an upstream mediation primitive, then this header will
be preserved and that transaction ID used for logging.
Otherwise, the WebSphere ESB message ID will be used. -->

 </twss:globalTransactionID>
<twss:requesterID>
<!-- The requester ID. If this header already exists, then

it will be preserved and its contents used for logging.
Otherwise, the WebSphere Application Server user principal will be

used. If the
requester is unauthenticated (that is, security is turned
off), then the special requester "UNAUTHENTICATED" will be
used. -->

</twss:requesterID>
</twss:twssHeaders>

Note that for outbound notification, the service platform has already inserted the requesterID
within the message. In that case, only the globalTransactionID header is added.

Faults and Alarms
� SOAC4023: No value was specified for the {2} element in twssHeaders.

4.4.2 Transaction Recorder mediation primitive

The Transaction Recorder mediation primitive logs information about the Web service request
to a database for accounting purposes and for reference by other mediation primitive tables.
The mediation primitive also inserts information about the transaction into the SOAP headers.

Added SOAP headers
<twss:twssHeaders>
<twss:globalTransactionID>
<!-- Global transaction ID that can be used for correlated

logged transactions. If this header already exists from
an upstream mediation primitive, then this header will
be preserved and that transaction ID used for logging.
Otherwise, the WebSphere ESB message ID will be used. -->

 </twss:globalTransactionID>

Note: In addition to the information referenced below, see also the IBM WebSphere
Telecommunications Web Services Server 6.2 Information Center at
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp.

76 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

<twss:requesterID>
<!-- The requester ID. If this header already exists, then

it will be preserved and its contents used for logging.
Otherwise, the WebSphere Application Server user principal will be

used. If the
requester is unauthenticated (that is, security is turned
off), then the special requester "UNAUTHENTICATED" will be
used. -->

</twss:requesterID>
 …
</twss:twssHeaders>

Table 4-1 illustrates the fields and each of their associated attributes contained in the
transactions database.

Table 4-1 Transactions database table definition

Faults and Alarms
� Illegal Transaction ID Fault: This fault will be generated when attempting to insert a

non-unique transaction ID. This indicates that an entry in the transactions table already
exists for this ID. The fault is placed on the fault terminal and a JMX notification is
generated.

� Data Store Not Available Alarm: Indicates that an error occurred while accessing the
database to write out transaction information. A fault is placed on the fault terminal and a
JMX notification is generated.

4.4.3 Policy Subscription mediation primitive

The policy or subscription mediation primitive fetches policy information from a Service Policy
Management system and populates SOAP headers with policy information. This policy
information is then passed along with the request to downstream mediation primitives and
back-end Parlay X Web service implementations for policy-based decision making during
service execution.

Field Key Data Type Contents

TRANSACTIONID PK VARCHAR(127) Unique transaction
identifier

REQUESTER VARCHAR(250) Requester identity

SERVICE VARCHAR(250) The service being invoked

SERVICEOPERATION VARCHAR(250) The service operation
being invoked

ADDTIME TIMESTAMP Transaction creation time

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 77

Used SOAP headers
<twss:twssHeaders>

…
<twss:requesterID>

<!-- Used for the lookup of the requester's policies. If this
header is missing, "UNAUTHENTICATED" is assumed. -->

</twss:requesterID>
…

</twss:twssHeaders>

Added SOAP headers
<twss:twssHeaders>

…
<twss:policies>

<twss:policy attribute="attrib_name" value="attrib_value"/>
<twss:policy attribute="attrib_name" value="attrib_value"/>
…

</twss:policies>
…

</twss:twssHeaders>

Policy interface
This component uses the Service Policy Manager access interface to perform policy
resolution.

Faults and Alarms
� Policy subsystem Not Available: An error occurred while contacting the policy

management system. A fault is placed on the fault terminal and a JMX notification is
generated.

� Policy Retrieval Fault: An error occurred retrieving policy information for a particular
(requester, service, or operation) tuple. A fault is placed on the fault terminal and a JMX
notification is generated.

4.4.4 Network Statistics mediation primitive

The Network Statistics mediation primitive records message entry and exit information. The
statistics are stored in a database for use by network operations. This information can be
used to construct traffic summaries for network analysis and capacity planning.

Table 4-2 shows the data type and default value for a network statistics service policy.

Table 4-2 Network statistics service policies

Table 4-3 shows the fields and their respective attrtibutes contained within the
NETWORKSTATISTICS database table definition.

Name Type Description

Message.statistics.RecordStati
stics

Boolean: true or false Statistics recording enabled.
Default value: true

78 IBM WebSphere Telecommunications Web Services Server Programming Guide

Table 4-3 NETWORKSTATISTICS database table definition

Table 4-4 shows the fields and their respective attrtibutes contained within the
TRANSACTIONS database table definition.

Table 4-4 TRANSACTIONS database table definition

Faults and Alarms
� Data Store Not Available Alarm: Indicates an error occurred accessing the database for

writing out transaction information. A fault is placed on the fault terminal and a JMX
notification is generated.

4.4.5 Service Authorization mediation primitive

The Service Authorization mediation primitive provides fine-grained authorization for access
to services. It functions as an application layer authorization service that looks at a policy
attribute that indicates whether, for a given requester, access to the service or operation can
succeed. The service authorization component follows simple block or pass semantics: All
authorization policies must be allowed for the request to be processed.

Field Key Data type Contents

ENTRYID PK VARCHAR(127) Unique identifier for
the entry.

TRANSACTIONID FK VARCHAR(127) Unique transaction
identifier. Note there
can be multiple entries
under a given
transaction ID.

MESSAGETYPE CHAR(1) I: inbound;
O:outbound; F: fault.

EVENTTYPE VARCHAR(250) The event type,
indicating at what point
in the execution this
statistic is being
recorded.

EVENTTIME TIMESTAMP Time of message.

Field Data Type Contents

TRANSACTIONID VARCHAR(127) Unique transaction identifier.

REQUESTER VARCHAR(250) Requester identity.

SERVICE VARCHAR(250) The service being invoked.

SERVICEOPERATION VARCHAR(250) The service operation being
invoked.

MESSAGETYPE CHAR(1) I: inbound; O: outbound; F:fault.

EVENTTYPE VARCHAR(250) The event type indicating at
what point in the execution this
statistic is being recorded.

EVENTTIME TIMESTAMP Time of message.

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 79

Table 4-5 shows the service policies and their data types within the Service Authorization
mediation primitive.

Table 4-5 Service policies

4.4.6 Parlay X Group Resolution mediation primitive

For Parlay X Web service implementations that can accept group URIs within a list of targets
for a given operation, the group resolution mediation primitive resolves group URIs within
those operations to their member URIs. The expanded groups are placed into the SOAP
headers for downstream processing.

This component will act as a Parlay X V2.1 Address List Management interface client
requester to perform the actual resolution. This component uses the Parlay X V2.1 Address
List Management Group::queryMembers() interface to resolve groups. The endpoint is
configurable in the ESB Administration console under SCA Modules.

Added SOAP headers
<twss:twssHeaders>

…
<twss:operationTargets>

<!-- The number of targets for this operation once all groups
have been resolved. Duplicates are included in this count.
Downstream compnents should assume a default value of '1'
If this header is not present. -->

</twss:operationTargets>
<twss:resolvedGroups>

<twss:GroupList groupURI="glmgroup:name@domain">
(member)member1@domain(/member>
(member)member2@domain(/member>
…

</twss:GroupList>
<twss:GroupList groupURI="glmgroup:other@domain">

…
</twss:GroupList>
…

</twss:resolvedGroups>
…

</twss:twssHeaders>

Name Type Description

requester.service.Authorized Boolean Access to a service allowed for
requester. Default value: true.

requester.operation.Authorized Boolean Access to perform a service
operation allowed for requester.
Assumed Default value: true.

requester.AnonymousAccessAl
lowed

Boolean Indicates whether anonymous
requests should be allowed to
pass. Default value: true.

80 IBM WebSphere Telecommunications Web Services Server Programming Guide

Faults and Alarms
� Group Resolution Sub-system Not Available Alarm: An error occurred contacting the

Address List Management service. A fault is placed on the fault terminal and a JMX
notification is generated.

� Group Resolution Fault: An error occurred while resolving a group. A fault is placed on the
fault terminal and a JMX notification is generated.

4.4.7 SLA Enforcement mediation primitives

The SLA Enforcement mediation primitives measure the system use by requester to enforce
policy-driven service level agreements.

There are two instances (or versions) of this mediation primitive: one to track SLA statistics on
a per-server basis and the other to track SLA statistics across the cluster of WebSphere ESB
instances. In a load-balanced environment with a random distribution of requests, the local
enforcement mediation primitive can be used as a light-weight version of cluster enforcement.
The cluster enforcement scheme provides a higher threshold for limiting inbound requests by
implementing a distributed reservation algorithm using WebSphere Application Server high
availability manager facilities.

Table 4-6 shows the service policies and their data types within the local enforcement
mediation primitive.

Table 4-6 Service policies for the local enforcement mediation primitive

Name Type Description

message.sla.LocalEnabled Boolean SLA measurements enabled.
Default value: true.

message.sla.LocalWeight Integer Weight for the tuple (requester,
service, or operation). Default
value: 0.

message.sla.LocalRequesterR
ate

Integer The number of requesters per
second to admit in the system
for this requester. Default value:
0 (denied).

message.sla.LocalServiceRate Integer The number of service requests
per second to admit in the
system for this requester.
Default value: 0 (denied).

message.sla.LocalOperationR
ate

Integer The number of operation
requests per second to admit in
the system for this requester.
Default value: 0 (denied).

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 81

Table 4-7 shows the service policies and their data types within the cluster enforcement
mediation primitive.

Table 4-7 Service policies for the cluster enforcement mediation primitive

Used SOAP headers
<twss:twssHeaders>

…
<twss:requesterID>

(!-- The requester ID. If this headerismissing,then
"UNAUTHENTICATED" is assumed. -->

</twss:requesterID>
<twss:operationTargets>

<!-- Used to calculate the weighting or cost of this request. If
this header is not provided, then a default of '1' is
assumed. -->

</twss:operationTargets>
…

</twss:twssHeaders>

4.4.8 Transaction Identifier mediation primitive

The Transaction Identifier mediation primitive examines SOAP headers to determine if an
upstream mediation primitive has supplied a global transaction ID or requester ID for a Web
service request.

If no global transaction ID exists, the Transaction Identifier mediation primitive generates a
Universal Unique Identifier (UUID) (RFC 4122) and inserts it in a globalTransactionID SOAP
header.

If no requester ID exists, the Transaction Identifier mediation primitive gets the WebSphere
Application Server user principal for the request and inserts that ID into a requester SOAP
header. Because downstream mediation primitives typically use these headers, place the
Transaction Identifier mediation primitive at the start of custom access gateway flows.

Name Type Description

message.sla.ClusterEnabled Boolean SLA measurements enabled.
Default value: true.

message.sla.ClusterWeight Integer Weight for the tuple (requester,
service, or operation). Default
value: 0.

message.sla.ClusterRequester
Rate

Integer The number of requesters per
second to admit in the system
for this requester. Default value:
0 (denied).

message.sla.ClusterServiceRa
te

Integer The number of service requests
per second to admit in the
system for this requester.
Default value: 0 (denied).

message.sla.ClusterOperation
Rate

Integer The number of operation
requests per second to admit in
the system for this requester.
Default value: 0 (denied).

82 IBM WebSphere Telecommunications Web Services Server Programming Guide

Policy configuration
This mediation primitive uses the following policies for runtime configuration:

� None

Mediation primitive properties
� None

Upstream SOAP headers
The following SOAP header elements are expected from upstream mediation primitives:

� None

Added SOAP headers
The SOAP header elements shown in Example 4-1 are added or modified for downstream
mediation primitives.

Example 4-1 SOAP header elements for downstream mediation primitives

<twss:twssHeaders>
 ...
 <twss:globalTransactionID>
 <!-- Global transaction ID that can be used for correlating
 transactions. If this header already exists from an
 upstream mediation primitive, this header is
 preserved and that transaction ID is used for logging.
 Otherwise, a UUID is used. -->
 </twss:globalTransactionID>
 <twss:requesterID>
 <!-- The requester ID. If this header already exists,
 it is preserved and used as the requester identity.
 Otherwise, the WAS user principal is used. If the
 requester is unauthenticated (for example, security is turned
 off), the special requester "unauthenticated" is
 used. -->
 </twss:requesterID>
 ...
</twss:twssHeaders>

Message handling
Messages that are successfully processed by the Transaction Identifier mediation primitive
are passed to the output terminal of the mediation primitive. If an error occurs while
processing the message, the message is redirected to the fault terminal.

The Service Message Object (SMO) data object transient context
("context/transient/exceptionType") indicates whether a service-related or policy-related
exception occurred. For the Transaction Identifier mediation primitive, this context is always
set to service.

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 83

The fault information is set in the SMO headers, as indicated in Table 4-8.

Table 4-8 Fault information for message handling set in the SMO headers

4.4.9 JMX Notification mediation primitive

The JMX Notification mediation primitive is used to emit Java Management Extensions (JMX)
notifications through the WebSphere Application JMX infrastructure. WebSphere Application
Server provides plug-points that IBM and third-party software use to receive those
notifications and gather management-related information. The JMX Notification mediation
primitive gathers information about access gateway processing faults from the Service
Message Object (SMO) headers according to the SMO schema.

SMO headers
The headers used by other access gateway mediation primitives are described in Table 4-9.

Table 4-9 SMO headers

The notification contains the detailed fault string with the origin element used as the
originating class for the JMX notification.

SMO header (represented by XPath) Contents

ServiceMessageObject/context/failInfo/failureString The full message text that represents the fault situation
with substituted variables. For example, SOAC4025E:
Error occurred.

ServiceMessageObject/context/failInfo/origin The name of the mediation primitive class that originated
the fault.

ServiceMessageObject/SOAPFaultInfo/faultcode The IBM WebSphere Telecommunications Web Services
Server message code representing the fault situation. For
example, SOAC4025E.

ServiceMessageObject/SOAPFaultInfo/faultstring The full message text that represents the fault situation
with substituted variables. For example, SOAC4025E:
Error occurred.

SMO header (represented by XPath) Content

ServiceMessageObject/context/failInfo/failureString The full message text that represents the fault situation
with substituted variables. For example, SOAC4025E:
Error occurred.

ServiceMessageObject/context/failInfo/origin The name of the mediation primitive class that originates
the fault.

ServiceMessageObject/SOAPFaultInfo/faultcode The IBM WebSphere Telecommunications Web Services
Server message code that represents the fault situation.
For example, SOAC4025E.

ServiceMessageObject/SOAPFaultInfo/faultstring The full message text that represents the fault situation
with substituted variables. For example, SOAC4025E:
Error occurred.

ServiceMessageObject/context/transient/exceptionType The exception type element under the transient context
may contain one of two values: service or policy. These
values represent the context of the fault, indicating whether
it was caused by the operation of the service or a
policy-related action.

84 IBM WebSphere Telecommunications Web Services Server Programming Guide

When running in a secured environment, the JMX Notification mediation primitive must have
access to the administrative user name and password to have sufficient privileges to emit
notification events. These credentials can be configured as part of the mediation primitive
configuration properties.

Policy configuration
This mediation primitive uses the following policies for runtime configuration:

� None

Mediation primitive properties
This mediation primitive uses the configuration properties shown in Table 4-10. These
properties can be modified using WebSphere Integration Developer tooling. Properties that
are promoted can be configured using the Integrated Solutions Console.

When running in a secured environment, the JMX Notification mediation primitive must have
access to the administrative user name and password to have sufficient privileges to emit
notification events. These credentials can be configured as part of the mediation primitive
configuration properties.

Table 4-10 Mediation primitive configuration properties

Upstream SOAP headers
The following SOAP header elements are expected from upstream mediation primitives:

� None

Added SOAP headers
The following SOAP header elements are added or modified for downstream mediation
primitives:

� None

Message handling
Messages that are successfully processed by the JMX Notification mediation primitive are
passed to the output terminal of the mediation primitive. If an error occurs while processing
the message, the error is logged for tracing.

Property Type Promoted? Description

adminUserName string Yes The administrative user name used to run as
the administrative user principal when emitting
JMX notifications. This user name is needed
only when security is enabled.
Default: (blank).

adminPassword string Yes The administrative user password used to run
as the administrative principal when emitting
JMX notifications. Encrypt the password with
the AdminTool provided with IBM WebSphere
Telecommunications Web Services Server:
java -jar AdminTool.jarencryptpassword
Default: (blank).

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 85

4.4.10 Service Invocation mediation primitives

The Service Invocation mediation primitive performs runtime selection of the back-end
service implementation to invoke. A policy attribute is used to provide the endpoint of the
back-end service. The service invocation mediation primitive also provides a session
propagation function between the calling Web service client and back-end Web service.

Table 4-11 shows the service policies and their data types within the service invocation
mediation primitives.

Table 4-11 Service policies for service invocation mediation primitives

Used SOAP headers
Parlay X Web service implementations might need to act as Web service client requesters to
external third-party entities to deliver notifications. These notifications pass through Telecom
Web Services Access Gateway for processing. An additional header must be added that
indicates the endpoint of the final notification delivery destination. If this header is present, its
endpoint overrides any policies.

<twss:twssHeaders>
…
<twss:notification>

<twss:destination>
<!-- The notification endpoint destination -->

</twss:destination>
</twss:notification>
…

</twss:twssHeaders>

Name Type Description

service.Endpoint String The endpoint to invoke for this
service. This policy attribute
corresponds to the service
provider's service to implement
mapping for the (requester,
service, or operation) tuple.
Default value: Raises a fault if
this attribute does not exist.

service.notification.Username String The user name used for
transport-level security in
delivering outbound
notifications.
Default value: no transport-level
security if not present.

service.notification.Password String Contains an encrypted
password used for
transport-level security in
delivering outbound
notifications. The password
should be encrypted with the
administration tool provided
with IBM WebSphere
Telecommunications Web
Services Server.
Default value: no transport-level
security if not present.

86 IBM WebSphere Telecommunications Web Services Server Programming Guide

Faults and Alarms
� No Service Endpoint Policy Alarm: The policy attribute indicating the back-end endpoint to

use is missing. A fault is placed on the fault terminal and a JMX notification is generated.

4.4.11 CEI Event Emitter mediation primitives

The common event infrastructure (CEI) provides a means for applications to emit events in a
common format that can be filtered, categorized, and monitored by external applications.

The common format used is the common base event (CBE), an extensible XML format for
events. The CEI Event Emitter mediation primitive uses the CEI client API to emit CBEs that
contain information about the SOAP fault being returned to the requester. The SOAP fault
contains within the body the application exception that initiated the fault. The mediation
primitive makes use of CEI event filtering to determine whether or not to emit the fault.
Filtering is configured through CEI administration.

shows the service policies and their data types within the CEI Event Emitter mediation
primitive.

Table 4-12 Service policies for CEI Event Emitter mediation primitive

Table 4-13 shows the CBE Extensions.

Table 4-13 CBE Extensions

Faults and Alarms
� CEI Emission Alarm: An error occurred while sending the fault information through CEI. A

JMX notification is generated.

4.4.12 Custom mediation primitives

The WebSphere Integration Developer tooling allows the creation of custom primitives
through Java snippets. A custom mediation primitive gets placed on the canvas and a code
editor allows for the insertion of Java mediation code.

Name Type Description

message.cei.Enabled Boolean CEI event emission enabled.
Default value: true.

Name Type Description

soapHeaders Element All SOAP headers at the time of
the fault as sub elements.

faultCode String SOAP fault code.

faultString String Human readable SOAP fault
string.

faultActor String SOAP actor that caused the
fault.

detail String Application-specific error
information.

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 87

The process for creating a custom mediation primitive is discussed thoroughly, together with
an example implementation, in Chapter 5, “Developing and customizing a custom Access
Gateway flow” on page 127.

4.5 Tooling / WebSphere Integration Developer Plug-in

A custom access gateway flow is created using WebSphere Integration Developer and the
IBM WebSphere Telecommunications Web Services Server WebSphere Integration
Developer Access Gateway mediation primitive plug-ins. These are available as part of the
IBM WebSphere Telecommunications Web Services Server product and are provided on a
separate image from the IBM WebSphere Telecommunications Web Services Server runtime
components. The process is similar to creating a standard WebSphere Integration Developer
Mediation Module with a few specific steps to include IBM WebSphere Telecommunications
Web Services Server requirements.

The flow definition is produced within the WebSphere Integration Developer tooling. The
following section discusses how to install the WebSphere Integration Developer Plug-in so
that you may begin working with the default mediation flows provided with the IBM
WebSphere Telecommunications Web Services Server product.

4.5.1 IBM WebSphere Telecommunications Web Services Server WebSphere
Integration Developer Plug-in installation

This section describes the steps for downloading and installing the WebSphere Integration
Developer toolkit.

Note: The WebSphere Integration Developer Plug-ins Installer is a separate CD image that
is part of the IBM WebSphere Telecommunications Web Services Server product offering.

Also note that the specific instructions listed here pertain to IBM WebSphere
Telecommunications Web Services Server V6.2. For different versions of IBM WebSphere
Telecommunications Web Services Server, refer to the information center for complete
installation instructions at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

88 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

Do the following steps:

1. Download the IBM WebSphere Telecommunications Web Services Server WebSphere
Integration Developer Plug-in (TWSS_WIDPlugin_C14CAEN.zip). Open the zip file and
extract the contents (Figure 4-5).

Figure 4-5 Contents of the WebSphere Integration Developer Plug-in .zip file

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 89

2. After extracting the zip file’s contents, the contents will appear as shown in Figure 4-6 on
page 90.

Figure 4-6 Contents of the WebSphere Integration Developer Plug-In

3. Open the WIDPlugin folder and navigate to folder that represents the operating system
(OS) where WebSphere Integration Developer has been installed (Figure 4-7).

90 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-7 Selecting the proper OS for WebSphere Integration Developer Plug-in

4. Once selected, navigate to the setup.exe file to initiate the installation (Figure 4-8).

Figure 4-8 Setup executable for WebSphere Integration Developer Plug-in

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 91

5. Launch the setup.exe and select the Language in the drop-down menu. Click OK to
continue the installation of IBM WebSphere Telecommunications Web Services Server
WebSphere Integration Developer Plug-in Installer (Figure 4-9).

Figure 4-9 Selecting language

92 IBM WebSphere Telecommunications Web Services Server Programming Guide

6. The IBM WebSphere Telecommunications Web Services Server WebSphere Integration
Developer Plug-in Installer will take few minutes to initialize. Click Next on the initial
windows that present you with the license agreement and provide an overview about the
functionality of the WebSphere Integration Developer plug-in (see Figure 4-10). Click Next
until you are prompted to enter a directory location for installing the plug-in.

Figure 4-10 Series of windows relating to the license agreement and beginning the installation

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 93

7. Browse the directory where you have installed the WebSphere Integration Developer, for
example, choose the WebSphere Integration Developer Home installation directory. Click
the Next button to proceed, as shown in Figure 4-11.

Figure 4-11 Selecting the installation directory

8. Select the features for IBM WebSphere Telecommunications Web Services Server
WebSphere Integration Developer plug-ins you would like to install by enabling the check
box next to IBM WebSphere Telecom Web Services Server IMS WID Plug-ins and
Click Next (Figure 4-12).

Figure 4-12 Selecting the features

9. Verify the installation path and features that you have selected to install. Click Next
(Figure 4-13 on page 95).

94 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-13 Verifying the installation path

10.Finally, the installation will begin. This will take several minutes to complete (Figure 4-14).
Click Finish once the installation is complete.

Figure 4-14 Installation in progress and completion

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 95

Verifying the installation of the WebSphere Integration Developer
Plug-in
The following section describes several steps to validate the installation of this plug-in.

The actual mediation primitive plug-ins are installed in the
<WID_home>\wstools\eclipse\plugins directory, as shown in Figure 4-15.

Figure 4-15 Mediation primitive plug-ins

The AG default flows are installed in the TWSS folder within the <WID_HOME>\TWSS
directory.

Important: After installing or updating any mediation primitive plug-ins for WebSphere
Integration Developer, you must restart WebSphere Integration Developer using the -clean
option (C:\WID61\wid.exe -clean) for the plug-ins to load.

96 IBM WebSphere Telecommunications Web Services Server Programming Guide

To verify the IBM WebSphere Telecommunications Web Services Server WebSphere
Integration Developer Plug-in installation, follow these steps:

11.Navigate to the WebSphere Integration Developer Home directory and search for the
folder name TWSS (Figure 4-16).

Figure 4-16 Verifying installation location

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 97

12.Open the TWSS Folder. This is the directory that contains the default mediation flows, as
shown in Figure 4-17.

Figure 4-17 Default flows directory

The file names have the form PX21_xx_FLOW.zip, where xx is an identifier of the Parlay X
service. For example, the project interchange file for Address List Management (ALM) is
PX21_ALM_FLOW.zip.

We will use the existing presence mediation flow (PX21_PRS_FLOW) as a sample and the
basis for our sample scenario throughout the remainder of the IBM Redbooks publication.
This PX21_PRS_FLOW is shown in Figure 4-18.

Figure 4-18 File for existing default Presence mediation flow

98 IBM WebSphere Telecommunications Web Services Server Programming Guide

4.6 Using the default mediation flow in WebSphere Integration
Developer

To successfully import and begin using the default Presence mediation flow in WebSphere
Integration Developer, perform the following steps:

1. Launch the WebSphere Integration Developer (Figure 4-19).

Figure 4-19 WebSphere Integration Developer splash window

2. Browse to the workspace where you would like to import the default flow mediation flow.
Click OK (Figure 4-20).

Figure 4-20 Selecting a workspace

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 99

3. Once the WebSphere Integration Developer is opened, it will take us to the default
window, which looks similar to Figure 4-21.

Figure 4-21 Initial workspace for WebSphere Integration Developer

100 IBM WebSphere Telecommunications Web Services Server Programming Guide

4. As we need to import the default flow mediation, right-click the Business Integration
perspective, which pops up a window. Select the option Project Interchange to import the
default mediation flow. Click Next (Figure 4-22).

Figure 4-22 Preparing to import the default flow mediation

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 101

5. Click the Browse button and navigate to the folder that contains the default mediation flow,
for example, C:\<WID_HOME_DIRECTORY>\TWSS\. Click Finish (Figure 4-23).

Figure 4-23 Import Project Interchange Contents window

102 IBM WebSphere Telecommunications Web Services Server Programming Guide

6. The default mediation flow will open, displaying the Business Perspective, as shown in
Figure 4-24.

Figure 4-24 WebSphere Integration Developer mediation flow

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 103

7. Double-click PX21_PRS_FLOW, which will open the mediation flow and expose the visual
representation of the Parlay X interfaces (Figure 4-25).

Figure 4-25 Visual representation of the Parlay X interfaces

Once the mediation flow loaded successfully, we need to build the mediation flow within the
context of a project.

Building the default mediation flow within the context of a project
1. Select Project in the toolbar and click Build Project.

2. After the project builds successfully, look at the Problem tab for any errors, as shown in
Figure 4-26 on page 105.

Presence Supplier Interface

Note: In Figure 4-26 on page 105, these are normal warnings, not errors. Why do we
see these at this time? This is an ActivationSpec warning that, during the initial deploy,
shows as a warning in the admin console. You can ignore these warnings and move on.

104 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-26 Problems reported during project creation

4.6.1 Deploying the default mediation flow

1. Right-click the project PX21_PRS_FLOW and select the Export feature. Once the Export
feature is selected, as list of options appear. Highlight the EAR file and click Next
(Figure 4-27).

Figure 4-27 Export window

2. Select the EAR Project PX21_PRS_FLOWApp from the drop-down menu and browse the
destination where you want to keep the EAR, for example, - c:\ PX21_PRS_FLOWApp.ear.

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 105

3. Click Finish (Figure 4-28).

Figure 4-28 EAR Export window

106 IBM WebSphere Telecommunications Web Services Server Programming Guide

4. Launch the IBM WebSphere Telecommunications Web Services Server Access Gateway
console in the web browser using the address http://<IP Address> :< Port
number>/ibm/console/. Enter the User ID Admin and click the Login button, as shown in
Figure 4-29.

Figure 4-29 Logging into the Administrative Console

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 107

5. Once you have logged in, the IBM WebSphere Telecommunications Web Services Server
Console Access Gateway home page will appear, as shown in Figure 4-30.

Figure 4-30 IBM WebSphere Telecommunications Web Services Server Console Access Gateway home page

6. Click Applications and select Install New Application. You will be prompted to select the
default mediation flow EAR, which is exported from WebSphere Integration Developer
(Figure 4-31 on page 109).

108 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-31 Enterprise Applications window

7. Select the Local File system radio button and click Browse to navigate the meditation
flow EAR. Click Next (Figure 4-32).

Figure 4-32 Preparing for the application installation

8. In this window, you can specify several general options that determine how WebSphere
Application Server installs your application. Specifically, it allows you to:

– Specify a prefix for beans.

– Select whether to override default bindings.

– Specify whether to use a default host name for Web modules.

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 109

Leave the default options as is and click Next (Figure 4-33).

Figure 4-33 Preparing for the application installation window

9. In this next step, you have the option to select installation option settings. Use the default
options and click Next, as shown in Figure 4-33. Meanwhile, some explanation about the
different options here is helpful.

Use this window to specify options for the installation of an application onto a WebSphere
Application Server deployment target. The default values for the options are used if you do
not specify a value. After application installation finishes, you can specify values for many
of these options from an enterprise application settings page.

The Select installation options window is the same for the application installation and
update wizards.

Installation options are described in Table 4-14.

Table 4-14 Description of installation options

Note: Table 4-14 provides a description of the installation options and how these affect
the installation. Use the default options and click Next, as shown in Figure 4-33.

Installation option Description Notes

Pre-compile JSP Specify whether to precompile
JavaServer Pages (JSP) files as a part
of installation. The default is not to
precompile JSP files.

Data type - Boolean
Default - false

110 IBM WebSphere Telecommunications Web Services Server Programming Guide

Distribute application Specifies whether the product expands
application binaries in the installation
location during installation and deletes
application binaries during
uninstallation.

The default is to enable application
distribution. Application binaries for
installed applications are expanded to
the directory specified.

� On single-server
products, the binaries are
deleted when you uninstall
and save changes to the
configuration.

� On multiple-server
products, the binaries are
deleted when you uninstall
and save changes to the
configuration and
synchronize changes.

� If you disable this option,
then you must ensure that
the application binaries are
expanded appropriately in
the destination directories
of all nodes where the
application runs.

� Important: If you disable
this option and you do not
copy and expand the
application binaries to the
nodes, a later saving of the
configuration or manual
synchronization does not
move the application
binaries to the nodes for
you.

Data type - Boolean
Default - false

Use binary configuration Specifies whether the application
server uses the binding, extensions,
and deployment descriptors located
with the application deployment
document, the deployment.xml file
(default), or those located in the
enterprise application resource (EAR)
file.

This Use binary configuration field is
the same as the Use metadata from
binaries setting on an Enterprise
Application settings page.

Data type - Boolean
Default - false

Installation option Description Notes

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 111

Deploy enterprise
beans

Specifies whether the EJBDeploy tool
runs during application installation.
The tool generates code needed to run
enterprise bean (EJB) files.

You must enable this setting in
the following situations:
� The EAR file was

assembled using an
assembly tool such as
Rational Application
Developer or WebSphere
Integration Developer and
the EJBDeploy tool was not
run during assembly.

� Enabling this setting might
cause the installation
program to run for several
minutes.

Data type - Boolean
Default-true

Application name Specifies a logical name for the
application. An application name must
be unique within a cell and cannot
contain an disallowed character.

This Application name field is the same
as the Name setting on an Enterprise
application settings page.

An application name cannot
begin with a period (.), cannot
contain leading or trailing
spaces, and cannot contain
non-alphabetic characters,
such as “/”, “$”, “*”, “%”, and so
on.
Data type - String

Create MBeans for
resources

Specifies whether to create MBeans for
resources such as servlets or JSP files
within an application when the
application starts. The default is to
create MBeans.

Data type - Boolean
Default - true

Enable class reloading Specifies whether to enable class
reloading when application files are
updated.

The default is not to enable
class reloading.
Data type - Boolean
Default - false

Reload interval in
seconds

Specifies the number of seconds to
scan the application's file system for
updated files. The default is the value
of the reloading interval attribute in the
IBM extension
(META-INF/ibm-application-ext.xmi)
file of the EAR file.

� The reloading interval
attribute takes effect only if
class reloading is enabled.

� To enable reloading, specify
a value greater than zero
(for example, 1 to
2147483647). To disable
reloading, specify zero (0).
The range is from 0 to
2147483647.

� This Reload interval in
seconds field is the same
as the Reloading interval
setting on an Enterprise
Application settings page.

Data type - Integer
Unit - Seconds
Default - 3

Installation option Description Notes

112 IBM WebSphere Telecommunications Web Services Server Programming Guide

Deploy Web services Specifies whether the Web services
deploy tool wsdeploy runs during
application installation. The tool
generates code needed to run
applications using Web services.

The default is not to run the
wsdeploy tool. You must enable
this setting if the EAR file
contains modules using Web
services and has not previously
had the wsdeploy tool run on it,
either from the Deploy menu
choice of an assembly tool or
from a command line.
Data type - Boolean
Default -false

Validate input
off/warn/fail

Specifies whether WebSphere
Application Server examines the
application references specified during
application installation or updating and,
if validation is enabled, warns you of
incorrect references or fails the
operation.
An application typically refers to
resources using data sources for
container managed persistence (CMP)
beans or using resource references or
resource environment references
defined in deployment descriptors. The
validation checks whether the resource
referred to by the application is defined
in the scope of the deployment target of
that application.

Select off for no resource
validation, warn for warning
messages about incorrect
resource references, or fail to
stop operations that fail as a
result of incorrect resource
references.
This Validate input off/warn/fail
field is the same as the
Validation setting on an
Enterprise Application settings
page.
Data type - String
Default - warn

Process embedded
configuration

Specifies whether the embedded
configuration should be processed. An
embedded configuration consists of
files such as resource.xml and
variables.xml.

When selected or true, the
embedded configuration is
loaded to the application scope
from the .ear file. If the .ear file
does not contain an embedded
configuration, the default is
false. If the .ear file contains an
embedded configuration, the
default is true.
Data type - Boolean
Default - false

Installation option Description Notes

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 113

Use the default options and click Next, as shown in Figure 4-34.

Figure 4-34 Installation options window

10.In this next step, we focus on selecting servers and mapping modules to the servers’
settings. This window allows you to specify deployment targets where you want to install
the modules contained in your application. Modules can be installed on the same
deployment target or dispersed among several deployment targets:

– On single-server products, a deployment target can be an application server or Web
server.

– On multiple-server products, a deployment target can be an application server, cluster
of application servers, or Web server.

To view this administrative console window, select Applications → Enterprise
Applications → application_name → Map modules to servers. This window is similar
to the Map modules to servers window on the application installation and update wizards.

In this window, each module must map to one or more desired targets identified under
Server.
Details on how to change the settings are described in Table 4-15 on page 115.

114 IBM WebSphere Telecommunications Web Services Server Programming Guide

Table 4-15 Details for selecting servers and mapping modules to servers’ settings

Function Steps Notes

To change a mapping � In the list of mappings,
select the Select check box
beside each module that
you want mapped to the
same target(s).

� From the Clusters and
Servers drop-down list,
select one or more targets.
Select only appropriate
deployment targets for a
module. Modules that use
WebSphere Application
Server Version 6.x features
cannot be installed onto a
Version 5.x target server.

� Click Apply.

Use the Ctrl key to select
multiple targets. For example,
to have a Web server serve
your application, press the Ctrl
key and then select an
application server and the Web
server together. The plug-in
configuration file
plug-in-cfg.xml for that Web
server will be generated based
on the applications that are
routed through it.

Clusters and servers Lists the names of available
deployment targets. This list is
the same for every application
that is installed in the cell.
From this list, select only
appropriate deployment targets
for a module. You can install an
application, enterprise bean
(EJB) module or Web module
developed for a Version 5.x
product on a 5.x or 6.x
deployment target.
If the module supports J2EE
V1.4, calls a V6.x API, or uses a
V6.x feature, then you must
install the module on a V6.x
deployment target.

� Does not support Java 2
Platform, Enterprise Edition
(J2EE) V1.4.

� Does not call any V6.x
runtime application
programming interfaces
(APIs).

� Does not use any V6.x
product features.

Module Specifies the name of a module
in the installed (or deployed)
application.

�

URI Specifies the location of the
module relative to the root of
the application (EAR file).

�

Server Specifies the name of each
deployment target to which the
module currently is mapped.

To change the deployment
targets for a module, select one
or more targets from the
Clusters and Servers
drop-down list and click Apply.
The new mapping replaces the
previous mapping.

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 115

Click Select All Items and click the Apply button. Later, the Server field will be updated.
Click Next to continue, as shown in Figure 4-35.

Figure 4-35 Specify deployment targets where you want to install the modules

11.This next window provides options to perform the EJB Deploy. If the Deploy enterprise
bean setting is enabled on the Select installation options window, then you can specify
options for the EJB deployment tool on the Provide options to perform the EJB Deploy
window. In this window, you can specify extra class paths, RMIC options, database types,
and database schema names to be used while running the EJB deployment tool. The tool
is run on the EAR file during installation after you click Finish. Refer to man page for the
ejbdeploy command for more information about this topic.

Use the default values and click Next, as shown in Figure 4-36 on page 117.

116 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-36 Provide options to perform the EJB Deploy

12.Figure 4-37 on page 118 provides listener bindings for message-driven beans.

– Message-driven beans

For each message-driven bean, you must specify a queue or topic to which the bean
will listen. A message-driven bean is invoked by a Java Messaging Service (JMS)
listener when a message arrives on the input queue that the listener is monitoring. A
deployer specifies a listener port or JNDI name of an activation specification as defined
in a connector module (.rar file) under WebSphere Bindings on the Beans page of an
assembly tool EJB deployment descriptor editor. An example JNDI name for a listener
port used by a Store application might be StoreMdbListener. The binding definition is
stored in IBM bindings files such as ibm-ejb-jar-bnd.xmi. If a deployer chooses to
generate default bindings when installing the application, the install wizard assigns
JNDI names to incomplete bindings.

• For EJB V2.x message-driven beans deployed as JCA V1.5-compliant resources,
the install wizard assigns JNDI names corresponding to activationSpec instances in
the form eis/MDB_ejb-name.

• For EJB V2.x message-driven beans deployed against listener ports, the listener
ports are derived from the message-driven bean <ejb-name> tag with the string
Port appended.

– During application installation using the administrative console, you can specify a
listener port name or an activation specification JNDI name for every message-driven
bean on the Provide Listener Ports or activation specification JNDI name for
messaging beans panel. A listener port name must be provided when using the JMS
providers: Version 5 default messaging, WebSphere MQ, or generic. An activation
specification must be provided when the application's resources are configured using
the default messaging provider or any generic J2C resource adapter that supports
inbound messaging. If neither is specified, then a validation error is displayed after you
click Finish in the Summary window. Also, if the module containing the

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 117

message-driven bean is deployed on a V5.x deployment target and a listener port is
not specified, then a validation error is displayed after you click Next.

– After application installation, you can specify JNDI names and configure
message-driven beans on console pages by selecting Resources → JMS → JMS
Providers or under Resources → Resource Adapters.

Use the default values and click Next (Figure 4-37).

Figure 4-37 Provide listener bindings for message-driven beans

13.The next window alerts you to any application Application Resource warnings. Use the
default values and click Continue (Figure 4-38).

Figure 4-38 Application Resource Warnings

14.Leave the default values and click Next (Figure 4-39).

118 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-39 Install New Application

15.Use the default values and click Next (Figure 4-40).

Figure 4-40 Map virtual hosts for Web modules

16.Use the default values and click Next (Figure 4-41).

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 119

Figure 4-41 Ensure all unprotected 2.x methods have the correct level of protection

17.Use the default values and click Next (Figure 4-42 on page 120).

Figure 4-42 Edit module properties

120 IBM WebSphere Telecommunications Web Services Server Programming Guide

18.Use the default values and click Finish (Figure 4-43).

Figure 4-43 Summary

19.The default mediation flow will be installed, as shown in Figure 4-44.

Figure 4-44 Default mediation flow installation

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 121

20.Once the default mediation flow application installs successfully, click Save to Master
Configuration (Figure 4-45).

Figure 4-45 Save to Master Configuration

21.Use the default options and click the Save button (Figure 4-46).

122 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-46 Enterprise Applications Save

22.Click Applications and select Enterprise Applications. All the applications will be listed
on the right side of the window where you can see that the default flow has been installed
(Figure 4-47).

Figure 4-47 Enterprise Applications installed

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 123

23.Select the application PX21_PRS_FLOWApp and click the Start button (Figure 4-48).

Figure 4-48 Enterprise Applications starting

24.Once the application starts successfully, the window shown in Figure 4-49 will appear.

Figure 4-49 Enterprise Applications started

25.Navigate to IBM WebSphere Telecommunications Web Services Server Access Gateway
machine and look for log files that the Application started successfully (Figure 4-50 on
page 125).

124 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 4-50 Log files started

Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives 125

126 IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 5. Developing and customizing a
custom Access Gateway flow

This chapter describes how to develop and customize an Access Gateway flow. More
specifically, it covers the following customizations for the Access Gateway:

� Customizing the default mediation flow by creating and adding a new mediation primitive
into the default mediation flow

� Extending the WebSphere Integration Developer Tooling Environment by converting the
custom mediation primitive to a WebSphere Integration Developer Plug-in

� Creating a new mediation flow from scratch

5

Note: The sample code for these customizations are available for download. Refer to
Appendix E, “Additional material” on page 399 for detailed instructions on how to download
and work with this sample code.

© Copyright IBM Corp. 2008. All rights reserved. 127

5.1 The focus of this chapter within the context of the common
use case

This chapter focuses on three aspects for customizing the mediation flow in the Access
Gateway.

� “Customize a default mediation flow” on page 128

� “Extending the WebSphere Integration Developer Tooling Environment” on page 153

� “Develop a custom mediation flow” on page 173

Figure 5-1 illustrates the primary focus of this chapter within the context of the common use
case.

Figure 5-1 Overview of the focus of this chapter

5.2 Customize a default mediation flow

This section explains how to customize one of the default mediation flows by adding a custom
mediation primitive to the flow. We use one of the flows that is provided as part of the IBM
WebSphere Telecommunications Web Services Server WebSphere Integration Developer
plug-in, namely the Parlay X PresenceSupplier interface.

The key activities are shown in Figure 5-2 on page 129.

Calls

Service Platform

Service Policy Manager
• Default/Generic Policy
• Custom Policy

Example:

Access Gateway

Service Operations
• Publish()

Request Flow

SOAP
Request

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

1
2

4
Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

6

Presence
Supplier

Publish Implementation5

Presence
Server

7

1. SOAP request is submitted.
2. Request proceeds through the Mediation Flow in the Access Gateway.
3. The Policy Retrieval Mediation Primitive calls the Service Policy Manager. All service

policies are retrieved from the Service Policy Manager – including the policy for SIP
addressing conversion.

4. The policies are placed into the SOAP header of the request to be called upon as
necessary.

5. Request calls the Presence Supplier service implementation.
6. Common Components called within the service implementation logic.
7. Service implementation logic calls to the Presence server, then gets a response back.

service.config.enableURItransform

SPM Console

Polic
y In

form
atio

n
3

Comm on
Component

Comm on
Component

Com mon
Component

Com mon
Component

Comm on
Component

Comm on
Component

Com mon
Component

128 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-2 Development process to customize a default flow

First, we import the PX21_PRS_FLOW.zip project interchange file into our development
environment. We then will add a custom primitive to the flow and implement a sample
business logic. Lastly, we will export the flow and deploy it to the runtime environment.

We will provide only a brief description of those steps that have already been described in
previous chapters.

5.2.1 Design guidelines for custom mediation primitive

WebSphere Integration Developer tooling allows the creation of custom primitives through
Java snippets. A custom mediation primitive gets placed on the canvas and a code editor
allows for the insertion of Java mediation code. This method is well documented in the
WebSphere Integration Developer Information Center.

This methodology provides a quick and easy way for the creation of a custom mediation
primitive. However, it is limited in terms of reuse. Each project must import the custom
mediation primitive call and recreate the addition of the custom primitive. Custom mediation
primitives can also be packaged in such a way as to extend the WebSphere Integration
Developer tooling palette. This allows for greater reuse of custom primitive code and is
described in 5.3, “Extending the WebSphere Integration Developer Tooling Environment” on
page 153.

Mediation primitives implement a pipelined architecture, where information can be passed
between primitives in the form of SOAP headers. The following are guidelines for the design
and implementation of custom mediation primitives to best fit into this architecture. Consider
the following:

� Mediation primitives should contain narrowly defined, well scoped functions. This model
encourages different mediation primitives for different variations of function, rather than a
complex configuration. The best primitive can be chosen (or substituted) to meet a specific
need when constructing a flow.

� Try to minimize the upstream assumptions of mediation primitives. The aim of mediation
primitives is to be able to control their point of execution within the flow. By minimizing
assumptions about headers from elements higher in the pipeline, flexibility of use will be
gained.

Load
Default flow

Add custom
primitive

Implement
Primitive logic

Export
Module

MyMediation.ear

WID runtime

WID

Business Integration Perspective

WAS/ESB runtime

PX21_PRS_FLOW.zip

Chapter 5. Developing and customizing a custom Access Gateway flow 129

Properties and policies are two means to configure the behavior of your mediation primitive
and thus increase flexibility. Each of them has it specific area of use that needs to taken into
account when designing your primitive:

Properties Mediation primitive properties are defined in the properties group file
of the mediation primitive plug-in. These properties can be defined as
“promotable” or not. Properties that are not promotable can only be set
using the WebSphere Integration Developer tooling environment.
Promotable properties that are promoted can be modified using the
WebSphere ESB Administration Console after the mediation module
has been deployed. Both of these property types would be used for
properties that are common for the mediation module irrespective of
the requester, service, and operation that may get invoked, such as a
datasource name, spm endpoint, and so on. See 5.3.2, “Generate the
mediation meta-data” on page 161 for details and examples about the
definition of properties.

Policies Another option is to define a service policy that is retrieved by the IBM
WebSphere Telecommunications Web Services Server mediation
primitive PolicyRetrieval and stored in the IBM WebSphere
Telecommunications Web Services Server SOAP header. This type of
property would be useful if the value of the policy needs to be set
based on the requester, service, and operation getting invoked. For
example, the policy message.LoggingEnabled is useful if you need
trace data for a given requester having issues trying to access a
particular service and operation. Then you can turn on tracing for the
individual requester, service, or operation tuple while disabling tracing
for all others. Handling of policies by a custom primitive is covered in
“Read IBM WebSphere Telecommunications Web Services Server
policies” on page 138 and “Add a new policy” on page 139.

There are four options for the implementation of a custom primitive. Table 5-1 describes these
options and provides some information that can be used to decide which option to pick.

Table 5-1 Design options for custom mediations

Option Description Pros (+) and Cons (-)

Custom mediation -
Implementation: Visual

Use a custom mediation.
Implement the business logic
using the built-in visual snippet
editor.
This option is not covered in this
book.

� (-) Limitations in
WebSphere Integration
Developer V6.0.2 regarding
imports.

� (-) Support for complex
business logic.

� (-) Mediate-method scope
only (no other custom
methods).

Custom mediation -
Implementation: Java

Use a custom mediation.
Implement the business logic
using the build-in Java editor.
This option is described in 5.2,
“Customize a default mediation
flow” on page 128.

� (-) Limitations in
WebSphere Integration
Developer V6.0.2 regarding
imports. Requires fully
specified class names.

� (-) Support for complex
business logic.

� (-) Mediate-method scope
only (no other custom
methods).

130 IBM WebSphere Telecommunications Web Services Server Programming Guide

5.2.2 Key custom primitive functions

In this section, we will provide code samples for some of the key functions you will most likely
need to implement in a custom mediation primitive.

A custom primitive provides information to downstream mediation primitives or to the service
implementation by enriching or modifying the headers of the Service Message Object, as
shown in Figure 5-3.

Figure 5-3 Custom primitive key functions

A custom service primitive receives a Service Message Object (SMO) that contains the body
for the original request and the headers that have been added by all primitives and handlers
that intercepted the flow before it reaches the custom primitive.

Custom mediation -
Implementation: Invoke

Use a custom mediation.
Implement the business logic in
a separate class that is invoked
by the custom mediation. This
class offers an SCA export.
This option is not covered in this
IBM Redbooks publication.

� (+) Complex logic execution
off-loaded from flow
processing.

� (+) Reusability.
� (+) Easy to migrate to a

WebSphere Integration
Developer plug-in.

Custom primitive and
WebSphere Integration
Developer plug-in

Define a plug-in. Implement the
business logic in a separate
class.
This option is described in 5.3,
“Extending the WebSphere
Integration Developer Tooling
Environment” on page 153.

� (+) Reusability.
� (+) Flexibility.
� (-) Slightly more effort to

design and implement.

Option Description Pros (+) and Cons (-)

PolicyRetrieval

SMO

Custom Primitive

SMOSMO

...

SMO
+ policies

SMO
+ policies
+ your new policies
+ custom soap header(s)

(1) Get headers

(2) Get policies
(3) Update header (5) Custom soap header(s)

(4) Add new policyInbound

request
To next
primitive

Chapter 5. Developing and customizing a custom Access Gateway flow 131

It can interact with the SMO in five ways:

1. Read headers to get information required to execute the primitive’s business logic.

2. Read the policies to enforce customizable behavior of the primitive’s business logic.

3. Update header elements.

4. Create new IBM WebSphere Telecommunications Web Services Server header policy
elements to pass new data to the downstream primitives and service implementations.

5. Create custom SOAP header(s) to pass new data to the downstream custom primitives
and service implementations.

In the following paragraphs, we will introduce code snippets that demonstrate how to read
headers as well as how to update header elements.

All non-static properties that are required by a custom primitive should be either defined as
policies or promotable properties to enable easy runtime modifications (see 5.2.1, “Design
guidelines for custom mediation primitive” on page 129). In this section, we will look at the use
of policies by a custom primitive. The PolicyRetrieval primitive, which is one of the mandatory
primitives in a flow, adds all policies that are defined for the requester, service, and operation
through to the SMO header. Code snippets in the following paragraphs provide examples on
how to retrieve the policies from the SMO header as well as to add new policies.

In a final paragraph, we introduce code snippets to cover fault handling inside a custom
primitive.

Service Message Object (SMO) structure
Service message objects (SMOs) are enhanced Service Data Objects (SDOs). SMO
provides an abstraction layer for processing and manipulating messages exchanged between
services. The SMO contains a representation of the following groups of data:

� Context information (data other than the message payload).

� Header information associated with the message. For example, Java Message Service
(JMS) headers if a message has been conveyed using the JMS API.

� Body: The business payload of the message. The payload is the application data
exchanged between service endpoints.

Figure 5-4 on page 133 shows the structure of the SMO.

Note: As the IBM WebSphere Telecommunications Web Services Server header is
defined by a WSDL, it is not possible to add new elements to it during run time. Simple
name/value pair data can be added to the IBM WebSphere Telecommunications Web
Services Server header by adding it as policy data. Additional SOAP header(s) can
also be used to pass additional data to downstream custom mediation primitives or
Service Implementations by importing custom WSDL into the mediation module and
having a custom mediation primitive create and add the custom SOAP header(s) to the
message.

132 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-4 The Service Message Object structure

Each part of the SMO serves a different purpose:

� Context: Allows data that is not part of the message payload to be passed between
mediation primitives.

– Correlation: The correlation context can link a specific request message with its
response.

– Transient: Transient context is restricted to a single message flow, and cannot link
requests and responses.

– Failinfo: Represents exception information for use when a fail terminal is wired.

� Headers: Header information associated with the message.

– SMOHeader: Models generic header fields (for example, version)

– SOAPHeader: Models the SOAP headers.

– SOAPFaultInfo: Models the SOAP fault information.

– Properties: Models a list of properties whose names are not fixed from one message
instance to the next.

� Body: Contains the message payload (the application data exchanged between service
endpoints) as, for example, defined in the Parlay X WDLS.

Note: For a detailed description of the SMO structure, refer to the WebSphere Integration
Developer V6.0.2 InfoCenter.

ServiceMessageObject

1

1

body

0..1

0..1

0..1

0..1

0..1

0..1

0..*

0..1

0..*

context

headers

JMSHeader

SOAPHeader

SOAPFaultinfo

properties

SMOHeader

failInfo

correlation

transient

Chapter 5. Developing and customizing a custom Access Gateway flow 133

Information that is specific to IBM WebSphere Telecommunications Web Services Server
request handling is added to a SOAP header called “twssHeaders”. Figure 5-5 shows the
basic structure of the IBM WebSphere Telecommunications Web Services Server header.

Figure 5-5 The IBM WebSphere Telecommunications Web Services Server Header structure

The value element of the IBM WebSphere Telecommunications Web Services Server header
contains some key information required for processing the request:

� globalTransactionID: This is the unique identifier of the transaction.

� requesterID: This element contains the ID that has been used to authenticate the
requester (for example, a user name). The requesterID element is always present. If
security is disabled on the access gateway, then the special “unauthenticated” value is
used.

� policies: This is a list of policies. The policy is one entry per policy that is retrieved from the
policy manager. Each entry contains a policy name and policy value.

� serviceID: This is the URI of the service interface.

Example 5-1 is a sample of a real SMO as documented in the trace of an incoming request.

Example 5-1 Example of a Service Message Object

<ServiceMessageObject:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ServiceMessageObject="http://www.ibm.com/websphere/sibx/smo/v6.0.1"
xmlns:_local="http://www.csapi.org/schema/parlayx/presence/supplier/v2_3/local"
xmlns:_pX2="http://PX21_PRS_FLOW" xmlns:_v10="http://www.ibm.com/schema/twss/v1_0"
xmlns:interface="http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface">
 <context>
 <transient xsi:type="_pX2:ExceptionType"/>
 </context>
 <headers>
 <SMOHeader>
 <MessageUUID>3251235D-0119-4000-E000-6AE2C0A80166</MessageUUID>
 <Version>
 <Version>6</Version>
 <Release>0</Release>
 <Modification>2</Modification>
 </Version>
 <MessageType>Request</MessageType>
 </SMOHeader>
 <SOAPHeader>

SOAPHeader

name

prefix

value

nameSpace <nameSpace>http://www.ibm.com/schema/twss/v1_0</nameSpace>

<name>twssHeaders</name>

<prefix>twss</prefix>

<value xsi:type="_v10:twssHeaders">
<globalTransactionID>anyID</globalTransactionID>
<requesterID>username</requesterID>
<policies>

<policy attribute=“policy.name1" value=“policy.value"/>
…

<policy attribute=“policy.nameN" value=“policy.value"/>
</policies>
<serviceID>/presence/supplier</serviceID>

</value>

134 IBM WebSphere Telecommunications Web Services Server Programming Guide

 <nameSpace>http://www.ibm.com/schema/twss/v1_0</nameSpace>
 <name>twssHeaders</name>
 <prefix>twss</prefix>
 <value xsi:type="_v10:twssHeaders">
 <globalTransactionID>3251235D-0119-4000-E000-6AE2C0A80166</globalTransactionID>
 <requesterID>sip:user2@example.com</requesterID>
 <policies>

 <policy attribute="service.config.enableURItrace" value="true"/>
 <policy attribute="message.groups.MaxGroupSize" value="100"/>

 <policy attribute="service.config.presence.supplier.PresenceServerURI" value=""/>
 <policy attribute="requester.anonymousAccessAllowed" value="true"/>
 <policy attribute="message.sla.LocalOperationRate" value="0"/>

 <policy attribute="service.config.enableURItransformation" value="true"/>
 <policy attribute="service.standard.NestedGroupSupport" value="false"/>

 <policy attribute="message.sla.ClusterWeight" value="0"/>
 <policy attribute="message.sla.LocalEnabled" value="false"/>
 <policy attribute="service.config.requestIDorig" value="user2"/>
 </policies>
<serviceID>http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface</serviceID>
 </value>
 </SOAPHeader>
 </headers>
 <body xsi:type="interface:PresenceSupplier_publishRequest">
 <publish>
 <_local:presence>
 <lastChange>2002-11-11T11:11:11.0Z</lastChange>
 <note>hi this is my new status</note>
 <typeAndValue>
 <UnionElement>Activity</UnionElement>
 <Activity>Travel</Activity>
 </typeAndValue>
 </_local:presence>
 </publish>
 </body>
</ServiceMessageObject:smo>

Required imports
The functions described in this section will require you to import certain classes from the
WebSphere Enterprise Service Bus run time, as shown in Example 5-2.

Example 5-2 Required imports

/* base Java classes */
import java.util.List;
import java.util.logging.Logger;
import java.util.logging.Level;

/* IBM WebSphere Enterprise Service Bus classes - emf.jar */
import commonj.sdo.DataObject;

/* IBM WebSphere Enterprise Service Bus classes - wbiBOS.jar */
import com.ibm.websphere.bo.BOFactory;

/* IBM WebSphere Enterprise Service Bus classes - sca.jar */
import com.ibm.websphere.sca.ServiceManager;

Chapter 5. Developing and customizing a custom Access Gateway flow 135

/* IBM WebSphere Enterprise Service Bus classes - smobo.jar */
import com.ibm.websphere.sibx.smobo.ServiceMessageObject;
import com.ibm.websphere.sibx.smobo.ServiceMessageObjectFactory;
iimport com.ibm.websphere.sibx.smobo.ContextType;
import com.ibm.websphere.sibx.smobo.HeadersType;
import com.ibm.websphere.sibx.smobo.FailInfoType;
import com.ibm.websphere.sibx.smobo.SOAPFaultInfoType;
import com.ibm.websphere.sibx.smobo.SOAPHeaderType;
mport com.ibm.ws.sibx.smobo.util.XMLSerialisationHelper;

/* IBM WebSphere Enterprise Service Bus classes - sibx.mediation.engine.jar */
import com.ibm.wsspi.sibx.mediation.InputTerminal;
import com.ibm.wsspi.sibx.mediation.OutputTerminal;
import com.ibm.wsspi.sibx.mediation.MediationBusinessException;
import com.ibm.wsspi.sibx.mediation.MediationConfigurationException;
import com.ibm.wsspi.sibx.mediation.esb.ESBMediationPrimitive;

Read SMO headers
The code snippet in Example 5-3 shows how to extract the IBM WebSphere
Telecommunications Web Services Server headers from the SOAP header.

Example 5-3 Extract IBM WebSphere Telecommunications Web Services Server SOAP headers

/* Extract the HeadersType data object which will contain all headers*/
HeadersType headertype = ((ServiceMessageObject) message).getHeaders();

/* Extract All SOAP headers attached to SMO */
List soaphdrs = headertype.getSOAPHeader();

/* From list of SOAP headers , get the IBM WebSphere Telecommunications Web Services Server Soap
header data object, named "twssHeaders" */
DataObject twssDO = getSoapHeader(soaphdrs, "twssHeaders");

First, you extract all headers from the Service Message Object into a HeadersType object.

The HeadersType class implements methods to extract each of the various headers (see
“Service Message Object (SMO) structure” on page 132) into a list.

The methods to extract headers are:

� SMOHeaderType getSMOHeader()

� List getSOAPHeader()

� SOAPFaultInfoType getSOAPFaultInfo()

� List getProperties()

� JMSHeaderType getJMSHeader() (if JMS has been used as transport mechanism)

� MQHeaderType getMQHeader() (if MQ has been used as transport mechanism)

In our example, as we are interested in the contents of the SOAP header, we will use the
getSOAPHeader method to extract the list.

136 IBM WebSphere Telecommunications Web Services Server Programming Guide

We will retrieve the IBM WebSphere Telecommunications Web Services Server headers from
this list and create a DataObject holding them. In Example 5-3 on page 136, this is done by
the small helper method getSoapHeader. This method takes the list of SOAP headers and a
string that identifies the specific header we are interested in as input.

An example implementation of this function is shown in Example 5-4.

Example 5-4 Extract the IBM WebSphere Telecommunications Web Services Server headers from the
SOAP header

private DataObject getSoapHeader(List soapHeaderList, String headerName) {
SOAPHeaderType soapHeader = null;

if (soapHeaderList != null) {

for (int i=0; i<soapHeaderList.size(); i++) {
soapHeader = (SOAPHeaderType)soapHeaderList.get(i);
if (soapHeader.getName().equals(headerName)) {

return (DataObject)soapHeader.getValue();
}

}
}
return null;

}

In this sample, we loop through each header in the list of SOAP headers until we find the
element named “twssHeaders”. This is returned as DataObject.

Read and update a IBM WebSphere Telecommunications Web Services
Server header element
The examples provided in this paragraph assume that we have extracted the IBM WebSphere
Telecommunications Web Services Server headers from a message to an object named
twssDO (see Example 5-3 on page 136).

A DataObject offers these key methods to access and manipulate the elements:

� void setString(String property, String value): Set a property with a string value.

� String getString(String property): Get the current value of a property as a string.

� boolean isSet(String property): Check if the property is set.

� void unset(String property): Empty the property.

In Example 5-5, we use the isSet and getString methods to retrieve the requesterID element
from the IBM WebSphere Telecommunications Web Services Server header.

Example 5-5 Get a IBM WebSphere Telecommunications Web Services Server header element

if (twssDO.isSet("requesterID")){
String requesterID = twssDO.getString("requesterID");

}

Note: The get... and set... methods are available for various types.

Chapter 5. Developing and customizing a custom Access Gateway flow 137

To update a IBM WebSphere Telecommunications Web Services Server header element, we
use the set-methods shown in Example 5-6.

Example 5-6 Update a IBM WebSphere Telecommunications Web Services Server header element

if (twssDO.isSet("requesterID")){

// write new value to header
twssDO.setString("requesterID",newRequesterID);

}

Read IBM WebSphere Telecommunications Web Services Server
policies
The examples provided in this paragraph assume that we have extracted the IBM WebSphere
Telecommunications Web Services Server headers from message to an object named
twssDO (see Example 5-3 on page 136).

Policies are a means to configure the behavior of a custom primitive. As such, it is important
to understand how to extract a policy from the IBM WebSphere Telecommunications Web
Services Server header.

The custom mediation needs to know which policy it is looking for. There is no generic
mechanism to filter the policies unless certain naming conventions have been defined for all
policies that are in scope of the mediation.

In Example 5-7, we assume that the custom mediation knows which policy to retrieve.

Example 5-7 Read IBM WebSphere Telecommunications Web Services Server policies

// Extract the policies from the IBM WebSphere Telecommunications Web Services
Server Header

List policiesList = null;
boolean isEnabled = false;

// if the IBM WebSphere Telecommunications Web Services Server policies header is
set, get the list of policies
if (twssDO.isSet(“policies“)) {

policiesList = twssDO.getList(“policies/policy“);
}

// get the setting for the Address Transformation policy
isEnabled = getBooleanPropertyValue(policiesList,”service.config.myPolicy”,true);

In the example, we retrieve the list of all policies from the header using the DataObjects
getList-method. Then we retrieve the policy we are looking for from this list. This is
encapsulated in another method, which is shown in Example 5-8 on page 139.

Note: The property can be specified as a simple XPath expression. The property
“policy/policies” will get the list of policies from the header (see also Example 5-7 on
page 138).

138 IBM WebSphere Telecommunications Web Services Server Programming Guide

Example 5-8 Scan policylist

public static boolean getBooleanPropertyValue(List policiesList, String
policyName, boolean defaultVal) {

DataObject policy = null;

for (int x=0; x < policiesList.size(); x++) {
policy = (DataObject)policiesList.get(x);
if (policy.get("attribute").equals(policyName)) {

return policy.getBoolean("value");
}

}
return defaultVal;

}

The method expects a list of policies as input as well as the name of the policy to find and a
default value to use in case the policy is not found.

Add a new policy
Adding a new policy is the recommended way for a custom primitive to pass on additional
information to downstream components.

The code snippet in Example 5-9 shows how to add a new policy to the IBM WebSphere
Telecommunications Web Services Server header.

Example 5-9 Add a new policy to the IBM WebSphere Telecommunications Web Services Server header

// assumes the policies have already been extracted into policiesList

// get a Business Object
ServiceManager serviceManager = new ServiceManager();
BOFactory bof = (BOFactory) serviceManager.locateService("com/ibm/websphere/bo/BOFactory");

// create the new policy element
DataObject newPolicy = bof.createByElement("http://www.ibm.com/schema/twss/v1_0", "policy");
newPolicy.set("attribute", "service.config.requestIDorig");
newPolicy.set("value", requesterID);

// add new policy to the list
policiesList.add(newPolicy);

The new policy needs to be instantiated as new business object to be added to the list of
existing policies (the one that had been retrieved from the header in the previous paragraph).

First, we use the ServiceManager to instantiate a Business Object Factory.

Among others, the Business Object Factory provides a method called createByElement to
create a new business object. This method takes two arguments:

� The namespace of the target business object, which is
“http://www.ibm.com/schema/twss/v1_0” for the IBM WebSphere Telecommunications
Web Services Server Headers.

� The name of the element (“policy”).

Chapter 5. Developing and customizing a custom Access Gateway flow 139

Each policy is described by a name and a value. We use the DataObject “set” method to add
both the attribute (the policy name) and the value.

We define the name of the policy to be “service.config.requestIDorig”. The value is set to
the requesterID, which initially had been retrieved from the header (see Example 5-5 on
page 137).

We add the policy DataObject to the list of policies. Thus, the new policy is added to the IBM
WebSphere Telecommunications Web Services Server headers when the outgoing message
is created for this custom primitive.

Handle terminals
A custom primitive needs to instantiate OutputTerminal objects in order to fire messages to
these terminals. Example 5-10 shows the required code to create a standard out as well as
an optional fault terminal.

Example 5-10 Get the output terminals

// gets the out and fault terminals from the mediation services

OutputTerminal outTerminal = getMediationServices().getOutputTerminal(“out“);

OutputTerminal faultTerminal = getMediationServices().getOutputTerminal(“fault”);

The OutputTerminal class implements a fire method that takes a DataObject as parameter.
Example 5-11 shows a code snippet that fires a message to the outTerminal.

Example 5-11 Fire a message to an output terminal

if (outTerminal != null) {
outTerminal.fire(message);

}

Fault handling
IBM WebSphere Telecommunications Web Services Server mediation primitives that can
issue faults have an additional output terminal added named fault. As shown in “Service
Message Object (SMO) structure” on page 132, the SMO comprises two elements that carry
fault information:

� The context contains a faultinfo element.

� The SOAPFaultinfo header.

To send a fault, create a FailInfoType object and a SOAPFaultInfo object, add them to the
SMO, and fire a message on the fault terminal.

To handle a fault for Parlay X service requests, the fault terminal should be wired to the IBM
WebSphere Telecommunications Web Services Server fault flow. A simplified version is
shown in Figure 5-6 on page 141.

Note: The names of the output terminals must match the ones defined in the Terminal
Properties of your custom primitive.

140 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-6 Default fault flow

Starting with the primitive that has fired a message to the fault terminal, this message triggers
a JMX notification. Driven by policies, the fault may be logged and a CEI event may be
emitted. Both have been left out in the above flow to focus on the essentials.

The IBM WebSphere Telecommunications Web Services Server Fault flow then contains a
message filter on the SMO context/transient/exceptionType (a BusinessObject added to all
the IBM WebSphere Telecommunications Web Services Server mediation module projects).
The exceptionType should be set to service or policy depending on whether a
ServiceException or PolicyException fault will be returned.

The PolicyXSLT adds a body that contains a PolicyException to the SOAP message, while the
ServiceXSLT adds a body with a ServiceException.

Example 5-12 shows a sample code snippet that we used in our custom primitive to create
the fault headers and fire a message to the fault output terminal.

Example 5-12 Fault handling

// set the exceptionType in the messae context. Allowed values are “service” or
“policy”

message.set("context/transient/exceptionType", “service”);
// set faultCode and faultMsg
String faultCode = “CustomFault0001”;
String faultMsg = “Detailed description about the fault that occured”;

//get the context from the message
ContextType contextType = ((ServiceMessageObject)message).getContext();

// add Fail Info and Soap fault to SMO
FailInfoType failInfo = getFailInfoTypeObject(faultMsg);
contextType.setFailInfo(failInfo);

SOAPFaultInfoType soapfaultInfo = getSoapFaultInfoTypeObject(faultMsg, faultCode);
headerType.setSOAPFaultInfo(soapfaultInfo);

//fire message to fault terminal
if (faultTerminal != null) {

faultTerminal.fire(message);
}

Chapter 5. Developing and customizing a custom Access Gateway flow 141

In the example, we set the ExceptionType of the transient context to “service” to indicate that
the failure has been caused by the service logic. Remember that the other option would be
“policy”.

We then define a custom fault code and the text that describes the fault. Custom fault codes
can be used; just assign the detailed text, and do not use getExceptonText.

We get the context from the message by calling the getContext method of the message. The
context is required in order to add the faultinfo in a subsequent step using the setFailInfo
method of the context object.

To create the FailInfoType object, which needs to be added to the context, we invoke the
method shown in Example 5-13.

Example 5-13 .Create a FaultInfoType object

private FailInfoType getFailInfoTypeObject(String failMsg) {

FailInfoType failinfo =
ServiceMessageObjectFactory.eINSTANCE.createFailInfoType();

failinfo.setOrigin(this.getClass().getName());
failinfo.setFailureString(failMsg);

return failinfo;
}

Similarly, we have implemented a method to create a SoapFaultInfo object. This code is
shown in Example 5-14.

Example 5-14 Create a SoapFaulInfoType object

private SOAPFaultInfoType getSoapFaultInfoTypeObject(String faultMsg,
String faultCode) {

SOAPFaultInfoType soapfaultinfotype =
ServiceMessageObjectFactory.eINSTANCE.createSOAPFaultInfoType();

soapfaultinfotype.setFaultcode(faultCode);
soapfaultinfotype.setFaultstring(faultMsg);

return soapfaultinfotype;
}

We use the setSOAPFaultInfo provided by the HeadersType class to add this header to the
message.

5.2.3 Use case description for the customization

In order to demonstrate as many of the SMO interactions as possible, we have created a
fictitious use case. This use case is based on the default mediation flow for the Parlay X
PresenceSupplier publish operation.

142 IBM WebSphere Telecommunications Web Services Server Programming Guide

The requirements for the mediation flow are as follows:

� The mediation flow transforms user names into SIP URIs. The user name is provided by
the incoming request.

� The SIP URI follows this pattern: sip:username@exmaple.com.

� It is possible to enable/disable the transformation.

� The original user name is kept as a reference.

To fulfill these requirements, we add an AddressTransformation custom primitive to the default
flow, as shown in Figure 5-7.

Figure 5-7 Customized Presence Supplier Mediation Module

Client
Application

ESB
Platform

TWSS Service
Platform

Service
Interface

Mediation
FlowWSDL

Group
Resolution

Service
Authorization

Transaction
Recorder

Policy
Retrieval

Network
Statistics

Service
Impl

B
inding

...

SCA
Exports

TWSS Access Gateway

S
er

vi
ce

In
vo

ca
tio

n
M

ed
ia

tio
n

P
rim

iti
ve

TWSS Access
Gateway
Mediation
Module

Service
Creation
Tooling

Service
Process
Tooling

PX21_PRS_FLOW
PresenceSupplier:publish

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Generation Generation

Address
Transformation

Custom
Primitive

Msg Element
Remover

Transaction
Identifier

Message
Filter

Message
Logger

SLA
Enforcement

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Chapter 5. Developing and customizing a custom Access Gateway flow 143

The default flow, as contained in the IBM WebSphere Telecommunications Web Services
Server WebSphere Integration Developer plug-in (see 4.3, “Default Access Gateway flow” on
page 72), needs to be modified, as shown in Figure 5-8.

Figure 5-8 Customized request flow

The Address Transformation custom primitive implements this business logic:

1. It retrieve the enableURItransformation policy from the SMO header.

2. If enableURItransformation is true, then it:

a. Gets the requesterID header from the SMO header.

b. Creates a new requesterID with the format sip:requesterID@example.com.

c. Updates the requesterID header with the new value.

d. Creates a new policy named service.config.requesterIDorig that contains the original
value of requesterID.

The custom primitive shall be inserted into the flow at the very end, just before the endpoint is
selected and the service implementation is called.

Note: As discussed in 5.2.1, “Design guidelines for custom mediation primitive” on
page 129, there are various options to implement these requirements. We have decided to
implement a custom primitive that handles all requirements.

One alternative option would be to use a similar pattern as applied to the MessageLogger
in the default flows, as follows:

1. Insert a MessageFilter into the flow to retrieve and enforce the
enableURItransformation policy.

2. Insert a AddressTransformation custom primitive that just provides the transformation.

Service Invocation
Mediation Primitive

(11)

SCA Import
Response

Network Statistics
Mediation Primitive

(12)

Filter
Step

Message Logger
Mediation Primitive

(13)

Message Element
Remover

Mediation Primitive
(14)

Response for
SCA Export

Response
SMO

SCA Export
Invocation

Message Element
Remover

Mediation Primitive
(1)

Transaction
Identifier

Mediation Primitive
(2)

Policy Retrieval
Mediation Primitive

(3)

Transaction
Recorder

Mediation Primitive
(4)

Network Statistics
Mediation Primitive

(5)

Filter
Step

Message Logger
Mediation Primitive

(6)

Logging
Policy

Enabled

Otherwise

Service
Authorization

Mediation Primitive
(7)

Group Resolution
Mediation Primitive
(Parlay X-specific)

(8)

SLA Cluster
Enforcement

Mediation Primitive
(9)

Request
SMO

This primitive is included
only for Parlay X
interfaces that use groups

Logging
Policy

Enabled

Otherwise

SCA Dynamic
Import

Address
Transformation

(10)

TWSS Mediation
Primitive

Custom Mediation
Primitive

Legend:

144 IBM WebSphere Telecommunications Web Services Server Programming Guide

5.2.4 Load the default flow

As our goal is to modify the mediation flow of the PresenceSupplier publish request, we first
need to load the default flow into WebSphere Integration Developer (for a detailed description,
see 4.6, “Using the default mediation flow in WebSphere Integration Developer” on page 99):

1. Start WebSphere Integration Developer and select File → Import. In the Import window,
select Project Interchange. Click Next.

2. Browse to the WID_INSTALL/TWSS directory and select the archive
PX21_PRS_FLOW.zip. Click Finish to start the import.

3. You should now switch to the Business Integration perspective. The import project
structure is shown in Figure 5-9.

Figure 5-9 The imported default flow

5.2.5 Adding the new mediation primitive to the mediation flow

In this section, we will add a custom mediation to the default request flow:

1. In the project outline (see Figure 5-9), expand Mediation Logic, then Flows, and double
click the flow PX21_PRS_FLOW. This opens the mediation flow editor (see Figure 5-10 on
page 146).

2. In the upper pane, scroll down and locate the PresenceSupplier interface. Select the
publish operation. The request flow is now displayed in the lower pane.

Note: The use case requires global security to be switched on for the application server.
This results in the user name, which is used to authenticate the incoming request to be
added to the SOAP header as requesterID.

Chapter 5. Developing and customizing a custom Access Gateway flow 145

Figure 5-10 Default request flow for PresenceSupplier publish operation

In our use case, we must insert the custom mediation at the very end of the flow, that is,
between the SLAClusterEnforcement and the ServiceInvocation primitive.

3. Click the Custom Mediation primitive in the flow editor’s tool palette and drag it onto
the canvas. This will create a CustomMediation1 primitive. Change its name to
AddressTransformation.

4. Disconnect the existing connection at the place where we want to insert our custom
mediation. Select the wire between the output terminal of the SLAClusterEnforcement and
the input terminal of the ServiceInvocation primitive and delete it.

5. Now insert the AddressTransformation into the flow. Click the Output terminal of the
SLAClusterEnforcement primitive and drag the wire to the Input terminal on the
AddressTransformation primitive.

6. Click the Output terminal of the AddressTransformation primitive and drag the wire to the
Input terminal on the ServiceInvocation primitive.

7. Click the Fail terminal of the AddressTransformation primitive and drag the wire to the
Input terminal on the NetworkStatistics primitive.

Your flow now should look like Figure 5-11 on page 147.

146 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-11 AddressTransformation inserted into the flow

5.2.6 Develop the mediation primitive logic

Using the snippets described in 5.2.2, “Key custom primitive functions” on page 131, we are
now able to develop the business logic of our custom mediation:

1. Select the AddressTransformation primitive.

2. In the Properties tab, click Details.

3. For Implementation, select Java.

4. Copy the code listed in Example 5-15 to the scroll box in the Details tab.

Example 5-15 Custom logic

final String policyName = "service.config.enableURItransformation";
final boolean polURIdefault = false;
boolean polURI = polURIdefault;

System.out.println("Custom Primitive AddressTransformation: method entered");

// get the Service Messge Object (SMO) from the input terminal
com.ibm.websphere.sibx.smobo.ServiceMessageObject smo =
(com.ibm.websphere.sibx.smobo.ServiceMessageObject)input1;

// now get the HeadersType opbject from the SMO. This contains all headers (SMO, SOAP, ...)
com.ibm.websphere.sibx.smobo.HeadersType headers = smo.getHeaders();

// get all SOAP headers from the SMO
java.util.List soapHdrs = headers.getSOAPHeader();
commonj.sdo.DataObject twssHdrs = null;

// extract the IBM WebSphere Telecommunications Web Services Server headers from the list of
SOAP headers
if (soapHdrs != null) {

for (int i=0; i<soapHdrs.size(); i++) {
com.ibm.websphere.sibx.smobo.SOAPHeaderType soapHdr =

(com.ibm.websphere.sibx.smobo.SOAPHeaderType)soapHdrs.get(i);
if (soapHdr.getName().equals("twssHeaders")) {

Chapter 5. Developing and customizing a custom Access Gateway flow 147

twssHdrs = (commonj.sdo.DataObject)soapHdr.getValue();
}

}
} else {

System.out.println("Custom Primitive AddressTransformation: no soap headers found");
}

// get the policies from the IBM WebSphere Telecommunications Web Services Server Header
java.util.List policies = null;
if (twssHdrs.isSet("policies")) {
 policies = (java.util.List)twssHdrs.get("policies/policy");
} else {

System.out.println("Custom Primitive AddressTransformation: no policies found");
}

commonj.sdo.DataObject policy = null;
System.out.println("Custom Primitive AddressTransformation: policy "+policyName+" set to
default:"+polURIdefault);

for (int x=0; x < policies.size(); x++) {
policy = (commonj.sdo.DataObject)policies.get(x);

 if (policy.get("attribute").equals(policyName)) {
polURI = policy.getBoolean("value");
System.out.println("Custom Primitive AddressTransformation: policy "+policyName+" found,

value: "+policy.getBoolean("value"));
 }
}

// service.config.enableURItrace = false
if (polURI) {

// now get the requester ID and enhance it means: user => user@example.com
if (twssHdrs.isSet("requesterID")) {

 String reqID = twssHdrs.get("requesterID").toString();
 reqID = "sip:"+reqID+"@example.com";
 twssHdrs.setString("requesterID",reqID);

System.out.println("Custom Primitive AddressTransformation: new requesterID
is:"+twssHdrs.get("requesterID").toString());

} else {
System.out.println("Custom Primitive AddressTransformation: no requesterID found");

}
}

System.out.println("Custom Primitive AddressTransformation: method exited");
return input1;

148 IBM WebSphere Telecommunications Web Services Server Programming Guide

5.2.7 Assemble the EAR

Once any custom tooling is done in WebSphere Integration Developer, using either the
PX_ESB_xx_FLOW.zip files or your custom flows, the ESB flow application EAR is exported
from WebSphere Integration Developer. Before this EAR is ready for execution on the ESB
Server, some customizations in the generated code are necessary. The ESB Installer now
provides an Ant task to automate these customizations. This flowearpostproc tool is provided
by the IBM WebSphere Telecommunications Web Services Server product to provide
automation for some specific customizations that are necessary in our standard flows. For
each Flow EAR, the deployer should run the flowearpostproc.bat, which uses the
flowearpostproc.xml.

Due to the limitations in the WebSphere Integration Developer tooling related to modifications
of generated deployment descriptors getting overwritten when WebSphere Integration
Developer regenerates, the use of any modifications in the generated deployment descriptors
of the IMS IBM WebSphere Telecommunications Web Services Server components is also
not supported.

The IMS IBM WebSphere Telecommunications Web Services Server WebSphere Integration
Developer Plug-ins installer contains a flowearpostproc.bat file that can apply a specific set of
customizations to the exported EAR (either delivered in the Access Gateway Installer or
exported from the WebSphere Integration Developer tool).

In particular, the use of security that requires the customization of the deployment descriptors
of the Access Gateway Flow Web Services, such as web.xml and application.xml, is not
supported using WebSphere Integration Developer or the embedded ESB server. The
flowearpostproc.bat file can be used to update an ESB Flow EAR deployment descriptors so
that security roles and URL constraints are applied, and then when the EAR is installed on
the stand-alone ESB Server, security can be used.

Note: Under WebSphere Integration Developer
(WID_HOME\eclipse\plugins\org.apache.ant_1.6.2), there is an Ant plug-in. This version of
Ant can be used to execute these customizations. This tool is provided in the WebSphere
Integration Developer Plug-ins Installer, and the flowearpostproc.zip if an iFix is delivered.
Make sure you have got at least the version provided with IBM WebSphere
Telecommunications Web Services Server V6.2 IFix 0004 Fix Pack and beyond.

Note: The flowearpostproc tool delivered with IBM WebSphere Telecommunications Web
Services Server WebSphere Integration Developer plug-ins is only used with IBM
WebSphere Telecommunications Web Services Server Access Gateway default flows after
they have been imported into WebSphere Integration Developer, customized or not, and
then exported back out.

This tool is not intended for use on any other flow EARs and any attempt to use the tool on
any other flow EAR is not supported.

Chapter 5. Developing and customizing a custom Access Gateway flow 149

To create your deployable archive, follow these steps:

1. In WebSphere Integration Developer, select File → Export. In the Export selection
window (Figure 5-12), select EAR and click Next.

Figure 5-12 Export window

2. In the EAR export window, select the project you want to deploy and the destination
directory for the exported EAR file (Figure 5-13).

Figure 5-13 EAR export window

You now need to apply the customizations to the exported EAR file by running the post
processing tool. In order to run the flowearpostproc.bat to update deployment descriptors,
context root, and so on, follow these procedures.

150 IBM WebSphere Telecommunications Web Services Server Programming Guide

Set WID_HOME= to point to your WebSphere Integration Developer installation. The
flowearpostproc.bat command arguments are shown in Table 5-2.

Table 5-2 Arguments for flowearpostproc.bat

For example, run the command (must be one continuous line) shown in Example 5-16.

Example 5-16 EAR post processing command

flowearpostproc.bat -buildfile flowearpostproc.xml -Dear.in=”PX_ESB_ALM_FLOW.ear”
-Dear.dir=”C:/Deploy” -Dflow.name=PX_ESB_ALM_FLOW

To process the EAR file, follow these steps:

1. Open a command-line window.

2. Go to the WID_HOME/TWSS directory (where the flowearpostproc.bat file is located).

3. Enter this command:

flowearpostproc.bat -buildfile flowearpostproc.xml
-Dear.in=”PX21_PRS_FLOWCUSTApp.ear” -Dear.dir=”C:/Deploy”
-Dflow.name=PX21_PRS_FLOW

Argument Description Example

-buildfile The XML ant build file flowearpostproc.xml

-Dear.in The name of the EAR input file MyFlowApp.ear

-Dear.dir Working directory containing
the EAR file

C:\\MyDir

-Dflow.name The name of the mediation flow.
It must match the capitalization
used for the project name, not
EAR name.

PX21_PRS_FLOW

Note: The customizations that are made in the EAR by flowearpostproc.xml are:

� The Application Roles and URL constraints are defined for security.

� The Web Root Context is defined for Web service URIs.

� The Web service URIs are defined.

Note: The flowearpostproc is only provided when customizing one of the IBM WebSphere
Telecommunications Web Services Server Access Gateway default flows. Each AG default
flow project interchange file has a flowearpostproc.properties file that contains values used
by the flowearpostproc process that are specific to this flow. This post-processing step is
not required for your own custom, non-default flows.

Chapter 5. Developing and customizing a custom Access Gateway flow 151

5.2.8 Deploy the EAR to the runtime environment

Follow the instructions provided in 4.6.1, “Deploying the default mediation flow” on page 105
to install the EAR file on the server.

To run the custom mediation flow, you need to enable global security on the server. In order
for your application to receive the requesterID in the SOAP headers, be sure to set the
following parameters during the installation of the application:

� In Step 7, “Map security roles to users/groups”, of the installation configuration, check All
Authenticated (Figure 5-14).

Figure 5-14 Map security roles to users/groups

152 IBM WebSphere Telecommunications Web Services Server Programming Guide

� In Step 8, click Role and select the PresenceServiceRole (Figure 5-15).

Figure 5-15 Ensure correct level of protection

5.3 Extending the WebSphere Integration Developer Tooling
Environment

A more reusable approach to creating custom mediation primitives is to package mediation
primitives so that they plug into the WebSphere Integration Developer tooling palette. The
palette is the toolbar to the left of the assembly diagram window within the WebSphere
Integration Developer tooling.

Eclipse plug-in code must be generated and an icon included for the tooling palette.

If you want to test the plug-in, this requires creating a JAR that contains the mediation
primitive runtime code and placing that code within the WebSphere Application Server class
path.

Mediation primitives that extend the tooling palette can also have static properties that can be
set on the primitives. These properties are described within the Eclipse plug-in descriptor and
appear within the properties view below the assembly diagram canvas. Properties can be set
on each primitive instance that is added into the canvas. Property values can be promotable
or non-promotable. If defined as promotable, their values can be set or changed during run

Note: The plug-ins are not automatically loaded; they are only loaded when WebSphere
Integration Developer is started with the -clean option. In addition, the mediation primitive
plug-ins are installed into the eclipse plugins directory of the wid tooling directory (wstools),
so the full path is <WID_HOME>\wstools\eclipse\plugins.

Chapter 5. Developing and customizing a custom Access Gateway flow 153

time using the WebSphere ESB administration console (see also 5.2.1, “Design guidelines for
custom mediation primitive” on page 129).

Figure 5-16 introduces the key steps and artifacts of the plug-in development process.

Figure 5-16 The plug-in development process

There are two main sets of activities:

� Describe the plug-in and its properties that represent your custom primitive on the tool
using WebSphere Integration Developer and the plug-in development environment.

� Develop the business logic of your custom primitive using the Java development
perspective of WebSphere Integration Developer.

The following section will guide you step by step through each of the activities in Figure 5-16
to build a custom primitive plug-in.

Note: Make sure you have the plug-in development capability enabled in WebSphere
Integration Developer. Select Window → Preferences. Expand Workbench and click
Capabilities. Make sure that the Eclipse Developer entry is checked.

Note: In addition to the information mentioned here, we also recommend referencing the
WebSphere Integration Developer InfoCenter, which contains detailed descriptions on
contributing your own plug-in:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.wbit.hel
p.sib.mediation.ui.doc/topics/rcustspi.html

.mednode

Create
Plug-in project

Generate
metadata

plugin.xml

define
extensions

propertygroup.xml

define
properties

Create
Java project

Export
plug-in

Export
primitive

MyPlugin.jar

MyPrimitive.jar

MyPrimitive.class

WID runtime

WID

Plug-in Development Perspective

WID

Java Perspective

WID

Mediation Metadata Generation

WAS/ESB runtime

Implement
Business logic

154 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.wbit.help.sib.mediation.ui.doc/topics/rcustspi.html

5.3.1 Create a plug-in

In this section, we will create a mediation primitive Eclipse plug-in. This plug-in will provide a
new mediation primitive to the WebSphere Integration Developer mediation flow editor
palette.

Create the plug-in project
1. Using WebSphere Integration Developer, open the plug-in development perspective by

selecting Window → Open → Perspective Other... and choose Plug-in Development
from the offered list.

2. Create a plug-in project by selecting File → New → Plug-in Project. The New Plug-In
Project window opens (Figure 5-17).

Figure 5-17 New Plug-In Project window

3. Enter com.ibm.itso.example.primitive as the project name. Keep the default options, and
click Next.

Note: If you do not see Plug-in Development in the list, check the Show all option.

Chapter 5. Developing and customizing a custom Access Gateway flow 155

4. Uncheck the option to generate a Java class (see Figure 5-18) and click Finish.

Figure 5-18 New plug-in content

The new project is created and the content is displayed in the Package Explorer.

Edit plugin.xml
Create these extensions in the plugin.xml:

� com.ibm.wbit.sib.mediation.primitives.registry.mediationPrimitiveHandlers

Defines the terminals of your primitive, and identifies the properties file where the
primitive's properties are defined and the .mednode file that you will generate in 5.3.2,
“Generate the mediation meta-data” on page 161.

� com.ibm.wbit.sib.mediation.primitives.registry.mediationPrimitiveUIContribution

Builds on medationPrimitiveHandler and adds information to contribute the
medationPrimitiveHandler to the Mediation Flow editor's palette.

1. Open plugin.xml in the Plug-in Manifest editor, and switch to the Extensions page.

2. Click Add. This opens the New Extension wizard (Figure 5-19 on page 157).

156 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-19 New Extension

3. Uncheck Show only extension points from required plug-ins to view the list of plug-ins.

4. Select com.ibm.wbit.sib.mediation.primitives.registry.mediationPrimitiveHandlers.
Click Finish. An entry appears in the All Extensions list (Figure 5-20).

Figure 5-20 Add New Handler

Chapter 5. Developing and customizing a custom Access Gateway flow 157

5. In Figure 5-20, right-click
com.ibm.wbit.sib.mediation.primitives.registry.mediationPrimitiveHandlers and
select New → medationPrimitiveHandler. A medationPrimitiveHandler is added for the
extension.

6. Select the handler and set its properties, as shown in Figure 5-21.

Figure 5-21 Extension Element Details window

7. Add short and long description and terminal categories for the handler.

8. Select the handler, right-click it, and select New... → shortDescription.

9. Click Body Text at the bottom of the Extensions page. Enter a short description for the
primitive (“Custom MediationPrimitive for AddressTransformation”). Click Add.

10.Similarly, add text for the longDescription (“This mediation transforms requesterIDs into
SIP URIs”).

11.Add the input terminal for the handler by selecting it, right-click it, and select New... →
terminalCategory.

12.In Extension Element Details, select input as the type and enter “in” as the name.

13.Add the output terminal for the handler by selecting it, right-click it, and select New... →
terminalCategory.

14.In Extension Element Details, select output as the type and enter “out” as the name.

15.Add the fault terminal for the handler by selecting it, right-click it, and select New... →
terminalCategory.

16.In Extension Element Details, select output as type and enter “fault” as the name.

17.Add the fail terminal for the handler by selecting it, right-click it, and select New... →
terminalCategory.

18.In Extension Element Details, select fail as the type and enter “fail” as the name.

Figure 5-22 on page 159 shows the fully specified handler.

Note: The typeNamespace must begin with mednode://mednodes, and end with
FileName.mednode. A file of this name will be created when we generate the mediation
metadata.

Note: The fail terminal MUST be named fail.

158 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-22 Mediation primitive handler with details

19.We need to add another extension to specify the UI properties. Click Add... to open the
New Extension window.

20.In the New Extension window, select
com.ibm.wbit.sib.mediation.primitives.registry.mediationPrimitiveUIContribution
from the list and click Finish.

21.IOn the extension page, right-click
com.ibm.wbit.sib.mediation.primitives.registry.mediationPrimitiveUIContribution
and select New → mediationPrimitiveUIContribution.

22.Set the properties of mediationPrimitiveUIContribution, as shown in Figure 5-23, and save
them.

Figure 5-23 Extension Element Details for the UI contribution

Create the required folders in the plug-in project
We need to create additional folders for the plug-in project. One folder will hold the images of
the icons used to represent the custom mediation primitive in the flow editor. The second
folder contains the propertygroup-files, which describe the properties of the custom primitive.

Do to following steps to create the folders:

1. Create a folder named icons in the plug-in project. Select the plug-in project, right click it,
and select New → Folder. Enter icons as the Folder Name.

2. Place your icons into the new folder. The small icon (16x16) will appear on the palette. The
large icon (32 x 32) will appear on the canvas. Icon file names must match the ones you
have specified in Figure 5-23.

Note: Enter just a / for the paletteCategory to place your custom primitive icon in the root of
the palette. Enter /ITSO to create a new group of ITSO primitives.

Chapter 5. Developing and customizing a custom Access Gateway flow 159

3. Create a folder named propertygroups in the plug-in project, and create a property group
XML file in this folder by selecting File → New → Other → XML → XML. Click Next.
Choose Create an XML file from scratch. Click Next. Name the file
AddressTransformationPropertyGroup.xml and click Finish.

Your project structure should now look similar to the one shown in Figure 5-24.

Figure 5-24 Plug-in project structure

Edit the propertygroup file
In AddressTransformationPropertyGroup.xml file, we will describe the properties of this new
primitive, so as to derive the UI for the properties view Details page in the mediation flow
editor. The Java class, which later implements the business logic of the primitive, must have
getter and setter methods that correspond to each of these properties.

For our AddressTransformation primitive, we will just add one property, sipDomain, that
enables the mediation flow developer to specify the domain name, that will be appended to
the requester ID to build the SIP URI. The property’s default is set to example.com.

Add the required properties to AddressTransformationPropertyGroup.xml by entering the
XML code shown in Example 5-17.

Example 5-17 AddressTransformationPropertyGroup.xml

<?xml version="1.0" encoding="UTF-8"?>
<pg:BasePropertyGroups name="AddressTransformationPropertyGroups"
resourceBundle="TwssRedbookExamples"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:pg="http://www.ibm.com/propertygroup/6.0.1">

<propertyGroup name="AddressTransformationPropertyGroup"
xsi:type="pg:BasePropertyGroup" >

<!-- domain name using String Property -->
<property name="sipDomain" displayName="Domain Name"
defaultValue="example.com" required="true" propertyType="String"
xsi:type="pg:ConstraintSingleValuedProperty">

<description>
Your domain name, required to build SIP URIs

</description>
</property>

</propertyGroup>

Note: The propertygroup filename must match the one you have specified in Figure 5-21
on page 158.

160 IBM WebSphere Telecommunications Web Services Server Programming Guide

</pg:BasePropertyGroups>

Do not forget to save your project.

5.3.2 Generate the mediation meta-data

In this section, we will generate the mediation metadata (.mednode file) for the mediation
primitive using the Mediation Metadata Generation view. The .mednode file contains the
runtime representation of the mediationPrimitiveHandlers and must be placed at the root of
the Java project that you create in 5.3.2, “Generate the mediation meta-data” on page 161.

Launch the runtime workbench from the plug-in development perspective:

1. From the menu, select Run → Run As → Runtime Workbench. If necessary, create a
new configuration by selecting Runtime Workbench and clicking New. Accept the
defaults. Click Run. This will open a new Eclipse IDE.

2. In the new IDE that is launched, select Window → Show view → Other → Mediation
Development → Mediation Metadata Generation.

Note: When promoting properties, the WebSphere Integration Developer tooling generates
an Alias name and Alias value for the promoted property. These aliases are what is visible
in the ESB Admin console. The generated names are always made unique by added
numeric values to the names. If you are adding the same mediation primitive to the flow
several times (in different operations), then you can end up with a multiple of aliases for the
same property.

We recommend that you change the alias name to be consistent for all operations if you
want to manage a single property from the Admin Console.

Note: You will find the specification of the propertygroup.xml in the WebSphere Integration
Developer InfoCenter found at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp

Chapter 5. Developing and customizing a custom Access Gateway flow 161

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp

3. The mediation primitives that you created are displayed here. Use this view to generate a
.mednode file for your primitive. Select the primitives that you want and click Generate. A
status of OK indicates that the .mednode file was successfully generated (Figure 5-25).

Figure 5-25 Mediation Metadata Generator

A file named AddressTransformation.mednode is created in the plug-in project's mednodes
folder. You may need to refresh your view to see this file, as shown in Figure 5-26.

Figure 5-26 The generated .mednode file

5.3.3 Develop the mediation business logic

Create a Java project, and write the code to implement your mediation primitive.

Write your Java implementation code for the mediation primitive in the inherited mediate()
method. The mediate method takes an InputTerminal and a DataObject. Use the
InputTerminal only if you have multiple input terminals. The DataObject is your message. You
can use the getters and setters in the DataObject interface to read and write the values in
your messages, identified through an XPath expression. DataObject is part of the Service
Data Object (SDO) emerging standard. This message parameter can also be cast to a
ServiceMessageObject (SMO) in the com.ibm.websphere.sibx.smobo package as part of the
Service Message Object APIs. This interface is useful for accessing individual sections of the
Service Message Object, such as the body, context, and headers. See the examples in 5.2.2,
“Key custom primitive functions” on page 131 for more details on how to work with the SMO.

Follow these step to create the Java project:

1. Create a Java project by selecting File → New → Project → Java Project. Click Next.
This opens the New Java Project window (Figure 5-27 on page 163).

162 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-27 New Java Project

2. Enter the project name, com.ibm.itso.example.primitive.logic, and click Next.

3. Switch to the Libraries page, and click Add Library. In the Add Library window
(Figure 5-28), select WebSphere ESB Server v6.0 and click Next.

Figure 5-28 Add Library

Chapter 5. Developing and customizing a custom Access Gateway flow 163

4. In the next window (Figure 5-29), check the option to configure WebSphere ESB Server's
classpath. Click Finish.

Figure 5-29 Add classpath

5. Click Finish in the New Java Project window (Figure 5-30) to create the project.

Figure 5-30 Java project settings

6. Copy AddressTransformation.mednode from the plug-in project (see “Generate the
mediation meta-data” on page 161) to the root of the Java project.

7. Switch to the Java perspective. Select the Java project and select File → New → Class.
This opens the New Java Class window (Figure 5-31 on page 165).

164 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-31 New Java class

8. Enter com.ibm.itso.example.primitive.logic as the package name and
AddressTransformationMediation as the class name. Click Finish.

Your Package Explorer now contains two projects with a structure, as shown in Figure 5-32.

Figure 5-32 Plug-in and implementation project structure

9. Double click the AddressTransformationMediation.java file to open the Java editor.

10.The source code for this class is provided in the additional materials of this IBM Redbooks
publication. (See Appendix E, “Additional material” on page 399 for details on how to
download this material.) It makes use of all the snippets introduced in 5.2.2, “Key custom
primitive functions” on page 131. Once downloaded, just copy the Java code to this Java
file.

Chapter 5. Developing and customizing a custom Access Gateway flow 165

5.3.4 Deploy the plug-in to the tool environment

Deploy your plug-in so that your mediation primitives appear in the Mediation Flow Editor
palette:

1. Open the plug-in project's build.properties file in the Build Properties Editor, and make
sure that the mednodes, icons, and propertygroups folders are selected under Binary
Build (Figure 5-33).

Figure 5-33 Build properties

2. To export the project, right-click the plug-in project and select Export → Deployable
plug-ins and fragments. Click Next to open the Export plug-ins window (Figure 5-34 on
page 167).

166 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-34 Export plug-ins and fragments window

3. Select Deploy as a directory structure and specify the destination directory
WIDInstall\wstools\eclipse. Click Finish to start the export.

4. Shut down WebSphere Integration Developer and start it using the -clean option.

5. Open a mediation flow component in the Mediation Flow editor. The
AddressTransformation mediation primitive's icon should appear in the palette ().

Chapter 5. Developing and customizing a custom Access Gateway flow 167

5.3.5 Deploy the primitives to run time

The Java implementation of the plug-in needs to be deployed to the WebSphere ESB runtime
environment:

1. Export the Java project as JAR. Right-click the Java project and select Export → JAR file
and click Next. This opens the JAR Export window (Figure 5-35).

Figure 5-35 Export JAR window

2. In the root folder, select .mednode only, but keep the Java class selected. Export the jar to
WESB_HOME/lib/ext. Click Finish to start the export.

5.3.6 Using the plug-in to customize a flow

Now let us customize a default mediation flow using the AddressTransformation primitive we
just have developed and deployed.

We base our sample on the same use case in 5.2.3, “Use case description for the
customization” on page 142:

1. Load the default PresenceSupplier Mediation module into WebSphere Integration
Developer, as described in 5.2.4, “Load the default flow” on page 145.

2. Open the flow editor and select the PresenceSupplier publish operation. The flow is
displayed in the editor now.

3. Select the Address Transformation primitive in the palette and drag it onto the flow
editor.

Note: If you intend to test your primitive in a mediation flow using the universal test
environment, you need to export the JAR file to WIDInstall\runtimes\bi-v6\lib\ext.

168 IBM WebSphere Telecommunications Web Services Server Programming Guide

4. First, disconnect the existing connection at the place where we want to insert our custom
primitive. Click the output connection of the SLAClusterEnnforcement primitive and delete
it.

5. Now connect the custom primitive into the flow. Click the Output terminal of the
SLAClusterEnforcement primitive and drag the wire to the Input terminal on the
AddressTransformation primitive.

6. Click the Output terminal of the AddressTransformation primitive and drag the wire to the
Input terminal on the Service Invocation primitive.

7. Click the Fault terminal of the AddressTransformation primitive and drag the wire to the
Input terminal on the NetworkStatistics primitive.

8. Select the AddressTransformation primitive and click the Details tab in the properties
view to adjust the properties (Figure 5-36). You will see the custom property “Domain
Name” with its default, as specified in “Edit the propertygroup file” on page 160.

Figure 5-36 AddressTransformation primitive inserted into the flow

You are now ready to export the customized flow and deploy it to the run time to test it (see
5.2.7, “Assemble the EAR” on page 149 and 5.2.8, “Deploy the EAR to the runtime
environment” on page 152 for reference).

5.3.7 Test your custom flow and primitive

This section introduces some test cases using the primitive and the flow we have just created.
The prerequisites to run this flow are:

� A test client (for example, WebSphere Integration Developer or any other SOAP test tool)

� A working service implementation of the PresenceSupplier publish operation

� A working presence server and XDMS server

� A working Service Policy Manager used by the access gateway to retrieve policy data

Chapter 5. Developing and customizing a custom Access Gateway flow 169

Once you have deployed your mediation module to the server run time, you are ready to send
SOAP requests to test the flow.

For our tests, we have used a publish request, as shown in Example 5-18.

Example 5-18 Sample publish request message

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:loc="http://www.csapi.org/schema/parlayx/presence/supplier/v2_3/local">
 <soapenv:Header/>
 <soapenv:Body>
 <loc:publish>
 <loc:presence>
 <lastChange>2002-11-11T11:11:11</lastChange>

 <note>testing my primitive</note>
 <typeAndValue>
 <UnionElement>Activity</UnionElement>
 <Activity>Travel</Activity>
 </typeAndValue>
 </loc:presence>
 </loc:publish>
 </soapenv:Body>
</soapenv:Envelope>

Now let us have a look at how our custom primitive behaves by running some test cases.

We will look at the snapshot of traces that shows:

� The input message, when received by the AddressTransformation primitive

� Any information written to the log by the AddressTransformation primitive

� The input message, when received by the subsequent Service Invocation primitive

To increase readability, we have removed some of the headers in the message log that are
not important for the test cases.

Test case 1- Custom policy defined (false)
The policy service.config.enableURItransformation is set to false.

The resulting entries in trace.log are shown in Figure 5-37 on page 171.

170 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-37 Test case 1 trace

The AddressTransformation primitive does not change the requestID. The message is
forwarded to the service implementation, which responds with a fault when it receives an
invalid SIP URI.

The response is shown in Example 5-19.

Example 5-19 Test case 1 response

<soapenv:Envelope">
 <soapenv:Header/>
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode
xmlns:p826="http://www.csapi.org/schema/parlayx/common/v2_1">p826:ServiceException
</faultcode>
 <faultstring>SOAX7551</faultstring>
 <detail encodingStyle="">
 <_v21:ServiceException
xmlns:_v21="http://www.csapi.org/schema/parlayx/common/v2_1">
 <messageId>SOAX7551</messageId>
 <text>SOAX7551E:Caught Exception in _ method for Requester URI
_.</text>
 <variables>publish</variables>
 <variables>user1</variables>
 </_v21:ServiceException>
 </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

Chapter 5. Developing and customizing a custom Access Gateway flow 171

Test case 2 - Custom policy defined (true)
This test case covers the actual address transformation.

The trace that is written by the AddressTransformation primitive is shown in Figure 5-38.

Figure 5-38 Test case 2 - AddressTransformation

The message that is received by the subsequent primitive (the Service Invocation) is shown in
Figure 5-39.

Figure 5-39 Test case 2 - Service Invocation

172 IBM WebSphere Telecommunications Web Services Server Programming Guide

As we can see, the incoming requesterID “user1” has been transformed to the
“sip:user1@example.com” format. The original value has been added as a new policy.

The resulting response from the service implementation is shown in Example 5-20.

Example 5-20 Test case 2 response

<soapenv:Envelope">
 <soapenv:Header/>
 <soapenv:Body>
 <_local:publishResponse
xmlns:_local="http://www.csapi.org/schema/parlayx/presence/supplier/v2_3/local"/>
 </soapenv:Body>
</soapenv:Envelope>

Test case 3 - no custom policy defined
In this test case, the custom flow should basically behave as described in “Test case 2 -
Custom policy defined (true)” on page 172.

As the custom policy cannot be found in the header, the custom primitive will use a predefined
default value, which in this test case has been set to true.

Figure 5-40 shows the output of the primitive, which indicates that a default value has been
used.

Figure 5-40 Test case 3 trace

5.4 Develop a custom mediation flow

This section shows how to develop a new mediation flow from scratch. We cover the full
development life cycle of a new mediation flow for IBM WebSphere Telecommunications Web
Services Server, starting by designing the solution, developing and testing the flow, and finally
assembling and deploying the executables to the runtime environment.

5.4.1 Design guidelines for new mediation flows

A custom access gateway flow is created using the IBM WebSphere Integration Developer
and the IBM WebSphere Telecommunications Web Services Server WebSphere Integration
Developer Access Gateway mediation primitive plug-ins. These are available as part of the
IBM WebSphere Telecommunications Web Services Server product and are provided on a
separate image from the IBM WebSphere Telecommunications Web Services Server runtime
components. The process is similar to creating a standard WebSphere Integration Developer
Mediation Module with a few specific steps to include IBM WebSphere Telecommunications
Web Services Server requirements.

The mandatory components provide base function for an Telecom Web Services Access
Gateway flow and are required by downstream mediation primitives.

Chapter 5. Developing and customizing a custom Access Gateway flow 173

The following mediation primitives are mandatory within a base Access Gateway
configuration and flow:

Message Removal The message removal mediation primitive removes specific SOAP
headers that may have been passed into the Access Gateway by the
client application.

Transaction Identifier
The transaction identifier mediation primitive determines the requester
of the message and the global transaction ID for the message.

Policy Retrieval The policy retrieval mediation primitive retrieves policy data for an
operation and populates the policy SOAP headers within the data
object passed between mediation primitives. This policy data is used
to drive the execution logic of the flow.

Service Invocation Performs runtime selection of which back-end service implementation
to invoke.

The following components are optional plug-ins and are used by the default Telecom Web
Services Access Gateway flow. Use of the service invocation mediation primitive is highly
recommended for flows that invoke Telecom Web Services service implementations:

Network Statistics Records Web service request/response entry and exit information.

Transaction Recorder
Writes information about a Web service request passing through the
Access Gateway to a database table for accounting purposes. (See
the note below for additional discussion on how this differs from
Message Logger.)

JMX Notification Used to emit Java Management Extensions (JMX) notifications by
means of the WebSphere Application JMX infrastructure.

Service Authorization
Provides fine-grained authorization for access to Web services.

SLA Enforcement Controls the type of traffic admitted into the network for individual
requesters.

Group Resolution (Parlay X-specific) Resolves group URIs to a collection of member
URIs.

The following mediation primitives are provided as part of the WebSphere WebSphere
Integration Developer/ ESB product offering:

Message Logger Performs logging. Using the Flow Editor in WebSphere Integration
Developer, modify the Root property of the mediation primitive to
specify the XPath expression to specify the part of the SMO to be
logged.

XSL Transformation You can use the XSLT mediation primitive to change the headers or
the body of your messages.

CEI Event Emitter Emits Common Event Infrastructure (CEI) events.

174 IBM WebSphere Telecommunications Web Services Server Programming Guide

5.4.2 Use case description for the new mediation flow

For our example, we assume that an operator has implemented an IMS based conferencing
service, which he now wants to expose to third parties, so that they can make use of this
functionality when building new applications.

We assume the conferencing service implementation is available and exposes a Web service
interface. In the next sections, we demonstrate how to build a custom mediation flow that:

� Exports the conferencing Web service interface.

� Applies default primitives to incoming requests.

� Applies default primitives to the responses.

� Forwards the request to the service implementation.

Note: How is Transaction Recorder different from Message Logger?

� Transaction Recorder: Logs information about the Web service request to a database
for accounting purposes and has a description of the transaction for other accounting
data.

� Message Logger: Logs an XML transcoded copy of the Service Message Object
(SMO). This mediation primitive contains a property named 'Root', which represents an
XPATH statement defining the scope of the message to be logged. You can specify /,
/body, /headers, or your own XPath expression. / refers to the complete SMO, /body
refers to the body section of the SMO, and /headers refers to the headers of the SMO. If
you specify your own XPath expression, the part of the SMO you specify is processed.
The message to be logged is converted to XML from the point specified by Root.

Tip: How can the Message Logger be customized to only record what the customer
needs?

The incoming SOAP message could contain some confidential information that the
customer may not be in a position to log, so it become necessary to customize this
component in order to record only, for example, the header information received from the
user.

This can be accomplished using the Flow Editor in WebSphere Integration Developer and
modifying the Root property of the mediation primitive to specify the XPath expression to
specify the part of the SMO to be logged.

Chapter 5. Developing and customizing a custom Access Gateway flow 175

Figure 5-41 shows the IBM WebSphere Telecommunications Web Services Server Access
Gateway and the artifacts we use or create in this section.

Figure 5-41 A custom mediation flow for a conferencing service

Let us assume the following scenario: Your company has developed an IMS-based
conferencing service. The service exposes a simple Web service interface to start immediate
conference calls through callback calls to all participants.

Product management has decided to offer access to this service to third parties. The plan is
to expose the current interface using the already existing IBM WebSphere
Telecommunications Web Services Server infrastructure.

Development has build a service implementation and has provided you with the WSDL file of
the service. As a next step, it needs to build a custom mediation flow based on the following
requirements:

� No authorization is required for the incoming requests.

� The requests shall be logged based on policy settings.

� The service implementation endpoint shall be defined by a policy.

The following request and response flow shown in Figure 5-42 on page 177 has been
designed and needs to be implemented.

Client
Application

ESB
Platform

Service
Interface

Mediation
Flow

Conferencing
WSDL

Msg Element
Remover

Transaction
Identifier

Policy
Retrieval

SCA
Exports

TWSS Access Gateway

S
er

vi
ce

In
vo

ca
tio

n
M

ed
ia

tio
n

P
rim

iti
ve

TWSS Access
Gateway
Mediation
Module

Message
Filter

Mediation
Primitive

Service
Process
Tooling

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Generation Generation

Message
Logger

Mediation
Primitive

CONFERENCE_
FLOW

176 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-42 Mediation flow for the custom mediation module

5.4.3 Create a new mediation module

Use the WebSphere Integration Developer Tooling Environment to create a new mediation
module.

Follow these steps to create a mediation module:

1. In the WebSphere Integration Developer menu, select File → New → Mediation Module.
If Mediation Module is not available in the New menu, select File → New → Other... to
select Mediation Module from the list, as shown in Figure 5-43 on page 178.

Service Invocation
Mediation Primitive

(6)

SCA Import
Response

Message Element
Remover

Mediation Primitive
(13)

Response for
SCA Export

Response
SMO

SCA Export
Invocation

Message Element
Remover

Mediation Primitive
(1)

Transaction
Identifier

Mediation Primitive
(2)

Policy Retrieval
Mediation Primitive

(3)

Request
SMO

SCA Dynamic
Import

TWSS Mediatio
Primitive

Custom Mediat
Primitive

Legend:

Filter
Step

Message Logger
Mediation Primitive

(5)

Logging Policy
Enabled

Otherwise

Network Statistics
Mediation Primitive

(12)

Chapter 5. Developing and customizing a custom Access Gateway flow 177

Figure 5-43 Select Mediation Flow Wizard

2. In the New Mediation Module wizard (Figure 5-44):

– Enter CONFERENCE_FLOW as Module Name.

– Ensure WebSphere ESB is the chosen target run time.

– Check Create Mediation Flow Component.

Figure 5-44 New Mediation Module Wizard

3. Click Finish.

4. Change to the Business Integration perspective.

178 IBM WebSphere Telecommunications Web Services Server Programming Guide

5.4.4 Import WSDLs

Import the WSDL files that you are going to be using. In our example, this will be the WSDL
that defines the interface to our multi-party conference call service.

To import the interface definitions of the target service, follow these steps:

1. In the Business Integration perspective, right-click Interfaces and click Import…. This will
open the Select Import window (Figure 5-45).

Figure 5-45 Select Import

Chapter 5. Developing and customizing a custom Access Gateway flow 179

2. Select WSDL/Interface and click Next. This will display the WSDL/Interface Import
window (Figure 5-46).

Figure 5-46 WSDL/Interface Import

3. Click Browse... and browse to the directory containing your WSDL file.

4. On the left side, expand the directory and select your WSDL file on the right side.

5. Click Finish.

5.4.5 Create the ExceptionType business object

We must manually create the business object exceptionType that the IBM WebSphere
Telecommunications Web Services Server mediation primitives use in a flow. It is included in
the Service Message Object XML structure that flows among mediators. exceptionType is
used in a fault flow to return exceptions that occur in mediation primitives back to the caller.
All exceptions must be wrapped with Web Services Description Language (WSDL)-defined
faults. The exceptionType object has a single string attribute that is assigned the value service
or policy by a mediator when an exception occurs. These exceptions may not be defined in
your chosen WSDL; however, the object still must exist when using IBM WebSphere
Telecommunications Web Services Server mediation primitives.

In the Business Integration perspective, you will see your new mediation module in the
left-most panel and under the main project node, a few sub-nodes.

1. Right-click Data Types. Select New → Business Object. This starts the New Business
Object wizard (Figure 5-47 on page 181).

180 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-47 New Business Object wizard

2. Enter ExceptionType as the Name.

3. Click Finish.

4. After the wizard has created the new business object (it should appear in the business
integration view), the business object editor opens. Select the business object
ExceptionType and click the Add attribute icon on the action bar of the editor.

5. Change the attribute name to exceptionType.

You should see a business object that contains one attribute (Figure 5-48).

Figure 5-48 ExceptionType business object

Chapter 5. Developing and customizing a custom Access Gateway flow 181

6. Select File → Save to save your workspace.

5.4.6 Import IBM WebSphere Telecommunications Web Services Server SOAP
header data types

The mediation primitives all access or modify SOAP headers in the Service Message Object
(SMO) during a call flow. The IBM WebSphere Telecommunications Web Services Server
mandatory mediation primitives enrich the SOAP header to convey additional information (for
example, the policies) to the downstream primitives. The IBM WebSphere
Telecommunications Web Services Server SOAP Header Data Types must be imported into
the tool to be available to the primitives.

To import the IBM WebSphere Telecommunications Web Services Server SOAP Header data
types, follow these steps:

1. In the Business Integration perspective, right-click Data Types.

2. Click Import….

3. Select WSDL/Interface and click Next. This opens the Import window (Figure 5-49).

Figure 5-49 WSDL/Interface Import

4. Click Browse... and navigate to the ${WID_HOME}\TWSS directory where the file
twss_headers.wsdl resides and select it. It is delivered in the IBM WebSphere
Telecommunications Web Services Server WebSphere Integration Developer Plug-ins
installer or the latest updates. Put a check in the box next to twss_headers.wsdl.

182 IBM WebSphere Telecommunications Web Services Server Programming Guide

5. Click Finish.

You will see the IBM WebSphere Telecommunications Web Services Server data types
defined in that WSDL under the Data Types node in your project (Figure 5-50).

Figure 5-50 Imported data types

5.4.7 Create the assembly

We will use the assembly diagram to specify the SCA imports and exports and to connect
these to the mediation flow. The assembly editor is the component of WebSphere Integration
Developer where individual components are customized and wired to each other.

Note: You may need to extract one of the default flow archives to get the
twss_headers.wsdl file.

Chapter 5. Developing and customizing a custom Access Gateway flow 183

To connect the components of the Mediation Module, perform the following steps:

1. Double-click the Assembly Diagram sub-node under the top project node. The Assembly
Editor opens with a default mediation flow component, as show in Figure 5-51.

Figure 5-51 Assembly Diagram

2. Perform the following steps for each Web service interface you have imported:

a. The mediation flow component needs to provide an interface to connect the SCA
export to. The SCA export represents the interface that is exposed by the flow.
Right-click the flow component and select Add → Interface to add an interface. This
will open the Add Interface selection window (Figure 5-52 on page 185).

184 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-52 Add Interface

b. In the Add Interface window, select the interface you want to add from the list of
imported interfaces. In our case, this is the Conferencing interface. Click OK to add the
interface to the mediation flow. The flow component will have an interface added.

Chapter 5. Developing and customizing a custom Access Gateway flow 185

c. The mediation flow component needs also to provide a reference to connect the SCA
import to. The SCA import represents the interface that is exposed by the service
implementation. Right-click the flow component again and select Add → Reference to
add a reference. This will open the Add Reference window (Figure 5-53).

Figure 5-53 Add Reference

d. In the Add Reference window, select the interface you want to add from the list of
imported interfaces. In our case, this is the Conferencing interface. Click OK to add the
reference to the mediation flow. The flow component will have an output terminal for
that interface type. The mediation flow component now should look like Figure 5-54.

Figure 5-54 Mediation flow with interface and reference

e. From the list of interfaces in the Business Integration view, drag and drop the interface
used in step a on page 184 (the conferencing interface) to the Assembly Diagram
editor. The Component Creation window is displayed (Figure 5-55 on page 187).

ReferenceInterface

186 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-55 Component Creation

f. In the Component Creation wizard, select Import with Web service Binding and click
OK.

g. In Web service Import Details window (Figure 5-56), leave Use an existing web
service port selected and click Browse... to open the Service Port Selection window
(Figure 5-57 on page 188).

Figure 5-56 Web service Import Details

Chapter 5. Developing and customizing a custom Access Gateway flow 187

Figure 5-57 Service Port Selection

h. Select the conferencing WSDL, which defines the Web service interface and click OK.
This creates the ConferencingImport1 SCA import component.

i. Click the Output terminal of the mediation flow, drag the wire to the Input
terminal of the Import you just created, and drop it there. Your Assembly Diagram
should now look similar to Figure 5-58.

Figure 5-58 Mediation flow connected to SCA import component

j. Right-click the mediation flow component and select Generate Export… → Web
service Binding. The Transport Selection window opens (Figure 5-59).

Figure 5-59 Transport Selection

188 IBM WebSphere Telecommunications Web Services Server Programming Guide

k. Select the soap/http transport. The tooling auto-generates a binding file for the export,
which is represented by the SCA export component in the Assembly Diagram, which
now looks like Figure 5-60.

Figure 5-60 Final assembly diagram

l. Right-click the mediation flow component again, and click Generate Implementation.
This opens the Generate Implementation window (Figure 5-61).

Figure 5-61 Generate Implementation

Chapter 5. Developing and customizing a custom Access Gateway flow 189

m. Select the current project folder, or create a new one if desired, and click OK. This
opens the mediation flow editor, where you will create your flow (Figure 5-62).

Figure 5-62 Mediation Flow Editor

5.4.8 Construct the mediation flow

In the mediation flow editor, there are two panes. The top pane, Operations connections,
shows the interfaces on the left and references on the right. Each operation on the left must
be connected to its respective reference on the right. To do this, hover over the operation on
the interface you want to connect, click the connector (Figure 5-63), and drag it onto the
operation of the reference to connect both together.

Figure 5-63 Connect export with import operations

Once the connection is in place and an operation is selected, the flow for that operation can
be built in the bottom panel.

The bottom panel is activated when an operation is selected in the top panel.

There are several nodes present in the flow by default, as shown in Figure 5-64 on page 191.

190 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-64 Default Mediation Flow nodes

Where:

� Input node: This is where the message flow originates.

� Callout node: This is the final node in the request flow; it connects to the back-end Web
service.

� Input Response node: Sends a response message directly back to the caller without
invoking the back-end service.

� Input Fault Nodes: If there are Services Description Language (WSDL) defined faults,
there will be fault nodes as well.

The bottom panel contains the mediation primitive palette on the left side. The palette
provides access to groups of primitives or atomic primitives:

�Group of IBM WebSphere Telecommunications Web Services Server mediation
primitives

�Group of ESB mediation primitives

�Group of ESB exception handling primitives

�XSLT transformation primitive

�Custom mediation primitive

�Your custom primitive added as plug-in

The group of IBM WebSphere Telecommunications Web Services Server mediation primitives
comprises 11 atomic primitives:

1. Group Resolution

2. JMX Notification

3. Message Element Remover

4. Network Statistics

Chapter 5. Developing and customizing a custom Access Gateway flow 191

5. Policy Retrieval

6. Service Authorization

7. Service Invocation

8. SLA Cluster Enforcement

9. SLA Local Enforcement

10. Transaction Identifier

11. Transaction Recorder

The group of ESB primitives covers these functions:

� Message Filter

� Database Lookup

� Message Logger

� Event Emitter

� Message Element Setter

� Endpoint Lookup

The third group provides two primitives to handle failure situations:

� Fail

� Stop

Primitives can be added to the flow by dragging/dropping the primitive icons onto the editor.

Build the request flow
To build your custom mediation request flow, you need to execute the following steps:

1. Register the IBM WebSphere Telecommunications Web Services Server business object
with the flow to include the object in the Service Message object.

a. Click on the Input node and view its properties in the Details tab.

b. Click Browse to add the ExceptionType object as the Transient Context. This will open
the Data Type Selection window (Figure 5-65 on page 193).

192 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-65 Data Type Selection window

c. In the Data Type Selection window, select the ExceptionType and click OK. This adds
the ExceptionType to the transient context of the input message.

To build the request flow, add the primitives you have defined in your design (see 5.4.1,
“Design guidelines for new mediation flows” on page 173) to your flow.

2. The Message Element Remover primitive.

a. Select the Message Element Remover primitive in the palette and drag it onto the
flow editor.

b. Click the Output terminal of the Input Node and drag the wire to the Input terminal on
the Message Element Remover primitive. Your mediation flow should look like the one
in Figure 5-66. WebSphere Integration Developer automatically assigns the message
type to the input and output terminals.

Figure 5-66 Wire mediation primitives

Note: WebSphere Integration Developer automatically assigns the message type to
the input and output terminals. You can verify the assigned message type. Select
the primitive and then select the Terminal tab in the Properties view. Expand the
input or output terminal categories and click the terminal (the default is in or out).
The message type is displayed on the right. Click Change... in case you need to
modify the message type.

Chapter 5. Developing and customizing a custom Access Gateway flow 193

3. The Transaction Identifier primitive.

a. Select the Transaction Identifier primitive in the palette and drag it onto the flow
editor.

b. Click the Output terminal of the Message Element Remover primitive and drag the wire
to the Input terminal on the Transaction Identifier primitive.

4. The Policy Retrieval primitive.

a. Select the Policy Retrieval primitive in the palette and drag it onto the flow editor.

b. Click the Output terminal of the Transaction Identifier primitive and drag the wire to the
Input terminal on the Policy Retrieval primitive.

5. The Message Filter primitive.

a. Select the Message Filter primitive in the palette and drag it onto the flow editor.

b. Click the Output terminal of the Policy Retrieval primitive and drag the wire to the Input
terminal on the Message Filter primitive.

The message filter routes the message to the Message Logger primitive based on a
policy. To implement this behavior, we first need to add an additional output terminal to the
Message Filter.

c. Select the Message Filter primitive and then click the Terminal tab in the Properties
view.

d. Right-click Output terminal and select Add Output Terminal. This opens the New
Dynamic Terminal window (Figure 5-67).

Figure 5-67 New Dynamic Terminal

e. Enter toLogger as the Terminal Name and click OK. This will add a second output
terminal to the Message Filter primitive (Figure 5-68 on page 195).

Note: The Message Element Remover primitive by default contains a XPath
expression to remove any IBM WebSphere Telecommunications Web Services
Server Headers from the SOAP header
(/headers/SOAPHeader[name=twssHeaders]). Click the Details tab in the
Properties view to verify the XPath. Click Custom XPath... to open the XPath Editor
in case you need to change the default expression.

194 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-68 Message filter with two output terminals

f. To define the filter logic, click the Details tab in the Properties view.

g. Click Add.... This opens the Add/Edit Properties window (Figure 5-69).

Figure 5-69 Add/Edit properties

Chapter 5. Developing and customizing a custom Access Gateway flow 195

h. In the Add/Edit properties window, select toLogger as the Terminal name. Click
Custom XPath... to evaluate the policy. This opens the XPath Expression® Builder
(Figure 5-70).

Figure 5-70 XPath Expression Builder

i. In the XPath Expression Builder, check Override and enter
//headers/SOAPHeader[name=”twssHeaders”]/value/policies/policy[@attribute=”mess
age.LoggingEnabled”]/@value=”true” as the expression. Click OK.

j. In the Add/Edit properties window, click Finish.

6. The Message Logger primitive

a. Select the Message Logger primitive in the palette and drag it onto the flow editor.

b. Click the toLogger Output terminal of the Message Filter primitive and drag the wire to
the Input terminal on the Message Logger primitive.

7. The Service Invocation primitive.

a. Select the Service Invocation primitive in the palette and drag it onto the flow
editor.

b. Click the default Output terminal of the Message Filter primitive and drag the wire to the
Input terminal on the Service Invocation primitive.

c. Click the Output terminal of the Message Logger primitive and drag the wire to the
Input terminal on the Service Invocation primitive.

Note: By default, the message body will be logged. You can modify the default and
specify which parts of the message shall be logged. Select the Message Logger
primitive and click the Details tab in the Properties view. The Root attribute contains
an XPath expression that defines the part of the message that will be logged. The
default is /body.

196 IBM WebSphere Telecommunications Web Services Server Programming Guide

8. Click the Output terminal of the Service Invocation primitive and drag the wire to the Input
terminal on CallOut node.

Your main request flow is now finished and looks like the one shown in Figure 5-71.

Figure 5-71 Request flow

Build the fault flow
Here we add the flows that handle the faults.

To convey the fault, we need convert the startConference request message type to a
startConference_faultMsg type. This is required because the input terminal of the Conference
Input Fault node expects a startConference_faultMsg message type. To convert the message
type, we insert a XSLT transformation mediation primitive into the flow (see “Fault handling”
on page 140 for more information).

Follow these steps to add the transformation primitive:

1. Add and connect the XSL Transformation primitive.

a. Select the XSL Transformation primitive in the palette and drag it onto the flow
editor.

b. Click the Output terminal of the XSL Transformation primitive and drag the wire to the
Input terminal on the Input Fault node.

Chapter 5. Developing and customizing a custom Access Gateway flow 197

c. Click the Output terminal of the Service Invocation primitive and drag the wire to the
Input terminal on the XSL Transformation primitive. Your flow should look like
Figure 5-72.

Figure 5-72 XSL transformation wired to the flow

2. Configure the transformation.

a. Select the XSL Transformation primitive. Click the Details tab in the Properties view.

b. Click New to open the XSLT Mapping window (Figure 5-73).

Figure 5-73 New XSLT Mapping

c. Select / as Message Root, startConferencingRequest as Input, and
startConferencing_faultMsg as output.

d. Click Finish. A new XML Map is created (Figure 5-74), assigned to the XSL
Transformation, and the XML to XML Mapping editor opens.

198 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-74 XML Map

e. In the source pane of the Mapping editor (Figure 5-75 on page 199) expand smo →
ServiceMessageObject → context → failInfo → failureString.

Figure 5-75 IXML to XML Mapping editor

f. In the Target pane, expand smo → ServiceMessageObject → body →
startConferencing_fault.

g. Right-click failureString and click Create Mapping to map the fault description from
the context to the body.

Chapter 5. Developing and customizing a custom Access Gateway flow 199

h. Because we selected / as root, we need to manually map the remaining fields. Click
smo in the Source, then click smo in the Target. Right-click and select Match
Mapping. All remaining fields should now be mapped.

3. To finish the fault flows, wire the fault terminals of the Transaction Identifier and the Policy
Retrieval primitives to the input terminal of the XSL Transformation.

Build the response flow
To build your custom mediation response flow you need to execute the following steps:

1. Select the Response tab at the bottom of the mediation flow editor. The back-end Web
service responses invoke the response flow.

2. Click the primitives you want in your flow and drag them to the Output terminal. Click the
Output terminal and drag the wire to the Input terminal on another node.

For our example, we add a Network Statistics primitive and an Message Element Remover to
both the response flow as well as the fault response flow. The final response flow is shown in
Figure 5-76.

Figure 5-76 Response flow

5.4.9 Assemble the EAR

To create your deployable archive, follow these steps.

1. In WebSphere Integration Developer, select File → Export. In the Export selection
window (Figure 5-77), select EAR and click Next.

200 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 5-77 Export window

2. In the EAR export window, select the project you want to deploy and the destination
directory for the exported EAR file (Figure 5-78 on page 201).

Figure 5-78 EAR export window

5.4.10 Deploy the EAR to the runtime environment

Follow the instructions in 4.6.1, “Deploying the default mediation flow” on page 105 to install
the mediation flow EAR file on the server.

Chapter 5. Developing and customizing a custom Access Gateway flow 201

202 IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 6. Common components

This chapter discusses the common components provided with the Service Platform for IBM
WebSphere Telecommunications Web Services Server. The common components are unique
to IBM WebSphere Telecommunications Web Services Server in that they provide value and
flexibility for customizing service implementations through Web service implementation
substitution without requiring modifications to service implementation code. Common
components are shared within the application server by all deployed service implementations.

In this chapter, we describe these common components provided with the product. From a
technical perspective, we describe:

� A recommended order in which to call them

� References to the WSDL documentation for each of the common components

� A discussion of the required input parameters and expected outputs for each of the
components

� Guidance for how to invoke the common components

� Sample code snippets illustrating how to invoke the common components used in the
sample scenario for this IBM Redbooks publication

6

© Copyright IBM Corp. 2008. All rights reserved. 203

6.1 Common components

All access to service platform common components is through Web Services. This provides
flexibility for customizing service implementations through Web Services implementation
substitution without requiring modifications to service implementation code. Common
components are shared within the application server by all deployed service implementations.
To maximize the performance of Web service invocations, all invocations to common
components will be performed locally, using XML schema types that closely match native
Java types. This allows WebSphere Application Server to optimize Web Services invocation
and minimize impact to the system.

Figure 6-1 shows the IBM WebSphere Telecommunications Web Services Server Service
platform artifacts.

Figure 6-1 IBM WebSphere Telecommunications Web Services Server Service platform artifacts

6.2 Description of common components provided with IBM
WebSphere Telecommunications Web Services Server

The following section discusses each of the common components and what their key function
is.

Service Platform

Converged HTTP/SIP Container

Web Serv ice Incoming
(SOAP over HTTP)

Web Serv ice Outgoing
(SOAP over HTTP)

B
inding

Service
Logic

Serv lets

Data
Source

Signaling
SIP Servlets

MBean
Config

Network
Resources

Web Service

Admission Control
Web Service

Fault and Alarm
Web Service

Usage Record
Web Service

Traffic Shaping
Web Service

Privacy
Web Service

WAS Admin Console
Service

Implementation
Admin

Serv ice Platform
Components

Admin

Resource
Specification

Admin

EJB Container

Binding

Service
Logic
EJB

Service
Entity
Beans

JMS Provider

Queue

Privacy
Service

Service Implementation-
Specific Artifacts

Common, Cross Service
Component Artifacts

Service Implementation-
Specific J2EE Conf iguration

JCA Providers

Direct
Connect

IMS Signaling
(ISC/SIP)

Configuration
(JMX)

External
Integration

PX Not if ication
Delivery

Web Serv ice

204 IBM WebSphere Telecommunications Web Services Server Programming Guide

6.2.1 Admission Control component Web service

The Admission Control component provides a function to ensure that the number of service
implementation Web service requests admitted into the system (server and cluster level) do
not exceed a configured rate for a given time interval. Immediately upon receipt of a Web
service request, service implementation logic should invoke the Admission Control
component to determine whether to accept or reject the Web service request. If the request is
accepted, then processing continues as normal. If the request is rejected, then an error
message is returned to the requester. This allows service providers to control how much
traffic will be accepted by each service and ensure that servers do not exceed planned
capacity in the advent of a flood of requests.

Admission Control traffic information is maintained locally in-memory for each application
server instance. The request rate is measured in requests per second for each service. A
hierarchical rate limiting bucket algorithm will be used to control the rate of admitted requests.
Service and operation limits will be configurable through MBeans provided with the Admission
Control component.

6.2.2 Traffic Shaping component Web service

Traffic Shaping controls the rate at which traffic initiated by Web Services can be directed
towards an element in the network. The intent is to keep service implementations from
saturating the network element with work. A service implementation may interact with one or
more network elements. Each network element will be associated with a resource
specification defined through the Network Resources common component. The network
resource specification defines the rate of traffic that can be directed towards the network
element. Traffic Shaping will employ a token bucket-based mechanism to allow for limiting
traffic burst size and average rate. The implementation of this component takes a
non-queuing approach to Traffic Shaping.

The Traffic Shaping component is intended to control traffic being generated by a Web
service request outbound towards the network; it does not control the rate of inbound traffic
from the network. In addition, the Traffic Shaping component is intended to control the rate of
flow of traffic. It does not implement a reservation scheme (for example, around the handling
of notifications) against network resource capacity.

Integration of Traffic Shaping into the service implementation will be specific to service
requirements, specifically, determining which Network Resources are involved, the point in
the processing logic at which Traffic Shaping occurs, and the calculation of the cost of
generated traffic. For some services, there will be a direct correlation between the up front
cost and the back-end interaction. For others (particularly SIP), there will be some decoupling
as certain protocol actions commit the service implementation to completing a set of
exchanges. Weight estimates can be used to compensate in such situations.

Traffic measurements for Traffic Shaping must be applied across the cluster. A single active
coordinator will be used to maintain in-memory traffic information for shaping traffic across
the cluster. Local Traffic Shaping session beans will communicate with the active coordinator
through a reservation protocol designed to reduce intra-cluster communication. This requires
local Traffic Shaping instances to estimate their traffic rate and reserve traffic for a given
resource across the cluster for local traffic. This approach also offers the advantage that
multiple service implementations that are deployed within the same cluster and that talk to the
same resource can share Traffic Shaping information.

Chapter 6. Common components 205

6.2.3 Network Resources component Web service

The resource name component provides a means of defining specifications (resource
attributes) for network resources (elements) that the service platform will interact with. The
information in these specifications is used to tailor the behavior of the service platform
towards the element. For example, the message processing capacity of the network element
can be used by the service platform to control the rate at which traffic is generated towards
the element. Resource attributes can also be used for storing additional properties regarding
protocol interactions with the element.

This component provides a Web service interface to access resource attributes from other
elements. It is used by the Traffic Shaping common component to fetch network resource
properties. Resource names are intended to be a flexible set of properties, and thus can be
used by other components and services.

6.2.4 Notification Management component Web service

The Notification Management component captures information about activate notifications on
the service platform for administrative purposes. Service implementations register and
remove notifications as they are created or torn down. The Notification Management
component also gathers some rudimentary statistics about notification deliveries and failures.
This can provide some useful statistics for an administrator to gain insight into notification
delivery in a running system. This component is only intended for capturing information about
all notifications on the platform and for capturing statistics around notification delivery
attempts; service implementations should still manage storage of notification data in the
manner that is most efficient for the service. The Notification Management component
includes an administrative interface for querying notification information and terminating
active notifications.

The goal of this component is to provide simple information that can be used by an
administrator or care representative to view information about active notifications in the
system. The API also allows those individuals to reset outstanding notifications through
termination; upon termination, the client-side application would need to re-establish the
notification.

6.2.5 PX Notification Delivery Component Web service (Parlay X-specific)

Many Parlay X service implementations require sending outbound Web service notifications
to Web service clients as an indicator of network events. A single network event might result
in multiple outbound notifications. The PX notification delivery component provides facilities
for the delivery of notifications to the destination endpoint through the Access Gateway. This
component also provides an asynchronous model for invocation, where an application can
send a notification, continue its processing without blocking, and then receive a confirmation
of delivery. This component will be Parlay X-specific, as it will contain an interface design
intended to deliver Parlay X notifications and its implementation will need to include Parlay
X-specific stubs.

Note: The administrative interface is a Web Services interface, and a user interface is not
yet provided in the product.

206 IBM WebSphere Telecommunications Web Services Server Programming Guide

The PX notification delivery component decouples the service implementation from the
mechanics of the notification delivery. This includes any necessary persistence of
notifications and modification of outbound messages to go through the Access Gateway front
end.

6.2.6 Faults and Alarms component Web service

An alarm is typically generated when administrative action is needed. When encountering
error conditions, service implementations will need to output fault information and potentially
emit an alarm for severe error conditions. Fault and alarm information will both be emitted in
common base event (CBE) format using CEI and through JMX management notifications.
The CBE format is an extensible XML schema for describing event information. The Faults
and Alarms component will provide the extensions to the CBE format to describe
implementation faults. CEI will be used as the infrastructure for notifying interested parties of
events and will provide a persistent event repository that supports flexible event queries
based on XPath. The advantage to this approach is that CEI decouples the service platform
from interested parties, providing event persistence, and integration with external systems.
JMX notifications can be used to allow third parties to hook into WebSphere Application
Server and process notifications, such as by generating SNMP alerts. Because there is no
listener for CEI from JMX notifications, this component will output CBE events in addition to
JMX notifications.

While CEI can be used for the emission of any kind of business event, given the large volume
of business events passing through the service platform, the use of CEI will be limited to the
alarm and fault event generation encapsulated by this component. This will limit the number
of application server instances that must be set aside for processing of CEI events. This
limitation is reasonable, since the real-time events that are of most interest to security and
monitoring tools are abnormal conditions. The CEI client API comes embedded with the base
WebSphere Application Server and can be activated for free by customers that wish to use
the CEI infrastructure. The Faults and Alarms component will make use of the CEI emitter
client API only.

6.2.7 Usage Records component Web service

Each service implementation should generate a service usage record that describes how the
service was used for accounting and billing purposes. Each service usage record will contain
common usage record information and service data describing the service delivered. Service
data is packed into a single data field for efficient storage. This field must be parsed and
expanded during processing of the usage record. The codes identifying those attributes and
the format of attribute values will be unique to each service implementation.

6.2.8 Privacy component Web service

The privacy interface provides a means for service implementations to determine whether the
requester is allowed to view requested information. It checks whether the requester is allowed
to perform an operation on a target (view or update or other operation). IBM WebSphere
Telecommunications Web Services Server and all service implementations integrate with the
privacy interface, however, there is not a standard privacy implementation that is provided in
the IBM WebSphere Telecommunications Web Services Server product, since it generally
requires service provider integration with the user terminal registry and security systems. For
example, a location-based service should not allow everyone to openly view a subscriber's
location. Another example is when a user wishes to block or restrict visibility to his or her
information, such as who may view a user's buddy list.

Chapter 6. Common components 207

The privacy interface defines an external Web service integration point following the common
component model for communication with a Service provider's privacy system. An
implementation of the Privacy component is not provided with the service platform. Instead,
the client-side portion of the Web service will be included within the service implementations,
allowing for invocation of the integration implementation.

The privacy interface essentially acts as a filter to determine whether a request is allowed to
be executed against the back-end system. The request is evaluated in the context of the tuple
(requester, service, operation, and target). For operations that may execute against multiple
targets within a single invocation, the privacy session bean should be consulted for each
target.

6.3 WSDL documentation available for the common
components

WSDL is available for the Service Platform common components that are described below.

6.3.1 Admission Control component API

Refer the IBM WebSphere Telecommunications Web Services Server InfoCenter:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javado
c.doc/admctl/index.html?noframes=true

6.3.2 Traffic Shaping component API

Refer the IBM WebSphere Telecommunications Web Services Server InfoCenter:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javado
c.doc/traffic/index.html?noframes=true

6.3.3 PX Notification component API

Refer the IBM WebSphere Telecommunications Web Services Server InfoCenter (PX
Notification component Web service)

� Link to call direction WSDL documentation: CallDirection:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxcd/overview.html

Note: In order to make sure that this information is kept current, we refer to the Information
Center for details on the common component APIs.

WSDL documentation for all the common components can be found at this URL:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.javadoc.doc/wsdl_c.html

Links are provided below for direct links to each of the specific APIs.

208 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/wsdl_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/admctl/index.html?noframes=true
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/traffic/index.html?noframes=true
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxcd/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxcd/overview.html

� Link to call notification WSDL documentation: CallNotification:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxcn/overview.html

� Link to delivery confirmation callback WSDL documentation:
DeliveryConfirmationCallbackInterface:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxdcc/overview.html

� Link to message notification WSDL documentation: MessageNotification:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxmm/overview.html

� Link to presence notification WSDL documentation: PresenceNotification:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxprs/overview.html

� Link to SMS notification WSDL documentation: SmsNotification:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxsms/overview.html

� Link to terminal location notification call direction WSDL documentation:
TerminalLocationNotification:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxtl/overview.html

� Link to terminal status notification WSDL documentation: TerminalStatusNotification:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/pxnotify/pxts/overview.html

6.3.4 Notification Management component API: Notification Administration
component Web service

� Link to notification administration service WSDL documentation:
NotificationAdministrationService:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/notify/nmadm/overview.html

� Link to notification administration support WSDL documentation:
NotificationAdministrationSupport:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/notify/nmadmsup/overview.html

� Link to notification registration WSDL documentation: NotificationRegistration:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/notify/nmreg/overview.html

� Link to notification statistic publishing WSDL documentation:
NotificationStatisticPublishing:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.jav
adoc.doc/notify/nmreg/overview.html

Chapter 6. Common components 209

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxcn/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxdcc/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxdcc/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxmm/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxprs/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxprs/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxsms/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxtl/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxtl/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxts/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/notify/nmadm/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/notify/nmadmsup/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/notify/nmreg/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/notify/nmreg/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/notify/nmreg/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxdcc/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxdcc/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxprs/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxprs/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxtl/overview.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/pxnotify/pxtl/overview.html

6.3.5 Network Resources component API

Refer the IBM WebSphere Telecommunications Web Services Server InfoCenter:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javado
c.doc/netres/index.html?noframes=true

6.3.6 Fault and Alarms component API

Refer the IBM WebSphere Telecommunications Web Services Server InfoCenter:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javado
c.doc/fltalm/index.html?noframes=true

6.3.7 Usage Records component API

Refer the IBM WebSphere Telecommunications Web Services Server InfoCenter:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javado
c.doc/userec/index.html?noframes=true

6.3.8 Privacy component API

Refer the IBM WebSphere Telecommunications Web Services Server InfoCenter:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javado
c.doc/privacy/index.html?noframes=true

6.4 Common component Web service client MBeans

The Web service client stubs that communicate with the common components use a common
set of MBeans for configuring the invocation settings. These MBeans are reused in each
application, appearing in the scope of the application. These configuration properties are:

� AdmissionControlClientMBean
� TrafficShapingClientMBean
� FaultAlarmClientMBean
� NetworkResourceClientMBean
� NotifyManagementClientMBean
� PrivacyClientMBean
� PxNotifyClientMBean
� UsageRecordClientMBean

Table 6-1 shows how to configure the invocation settings.

210 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/netres/index.html?noframes=true
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/fltalm/index.html?noframes=true
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/userec/index.html?noframes=true
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.javadoc.doc/privacy/index.html?noframes=true

Table 6-1 Configuring the invocation settings

6.5 Configuration for the common components

The configuration parameters for server-side components are documented in the InfoCenter
at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.
twss.javadoc.doc/wsdl_c.html

You can also refer to 6.3, “WSDL documentation available for the common components” on
page 208. For specific configuration of the common components used in the sample service
implementation used in this IBM Redbooks publication, refer to Chapter 8, “Developing the
service implementation” on page 251.

6.6 Invoking IBM WebSphere Telecommunications Web
Services Server common components

Telecom Web Services service implementations consist of several reusable common
components deployed on top of the WebSphere Application Server platform that provides a
common function for implementing Web services for a service provider network.

The common components are intended to be shared by all Parlay X Web service
implementations and to facilitate rapid development of new services. Telecom Web Services
service implementations are packaged as an individual J2EE EAR and is Web service
callable.

Local Web service invocations are used (by virtue of the enableInProcessConnections
configuration setting) to access Telecom Web Services service implementations. The
components should be deployed on each instance of WebSphere Application Server within a
clustered environment.

Parlay X Web service implementations provides functions in the following areas:

� Traffic management: Controls how much traffic is processed and output by the system to
prevent overload conditions or excessive use of resources.

� Web service notification support: Facilitates the creation and delivery of Web service
notifications to third-party applications.

Name Type String

EndPointURI String The endpoint URI used for
calling the common
component. If set to blank, then
calling the common component
is disabled.

UserName String The user name to use for
transport authentication.

Password String The password to use for
transport authentication.

Timeout int Web service invocation timeout.

Chapter 6. Common components 211

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/wsdl_c.html

� Information control: Controls access to sensitive information, that is, information privacy.

� Auditing: Records information about service usage and fault information.

� Notification Management: Enables viewing and management of notifications enabled
within the system.

� Fault and Alarms: Alerts® an administrator if a serious error occurs that needs
administrative action.

The goal of Telecom Web Services service implementations is to provide supporting function
for the service implementations, but to never be limiting. Service implementations should
always be constructed in the most efficient manner within the context of the service. The
following provides a suggested template and ordering for the invocation of Telecom Web
Services service implementations for each service:

1. Call Admission Control: This determines whether there is enough capacity to handle the
service request and whether a request should be accepted into the system. This should
be the first thing performed by each service.

2. Call privacy: This determines whether the requester has access to execute a service
operation for a given target. Parlay X Web service implementations can iterate over all
members of the group.

3. Notification Management: If a notification is being started or stopped, this enables the
appropriate information to be shared with the Administration system.

4. Call Traffic Shaping: This determines whether the back end can handle the traffic being
generated by this request. This call should include a calculation of the traffic being
generated by this Web service request.

5. Call usage record: This creates an initial usage record describing the start time of the
service.

6. The core logic of the service implementation is executed at this step, performing service
processing, with potential calls to the other remaining Telecom Web Services service
implementations. Typically, the core logic of the service is dependent on the service
operation that is being invoked by the service client application. At this step, the incoming
SOAP message is deciphered and an appropriate protocol-specific request is prepared
utilizing the request context information that is made available through SOAP headers.
The constructed request is then sent by the core logic to the back-end network element
and responses are handled. Request processing can vary based on the protocol and the
network element behavior. For more information about handling requests, refer to 8.5,
“Implementing the core logic of the service” on page 287.

7. Call usage record: This records the stop time of a service once processing comes to an
end.

The decision regarding when to output Usage Records is service implementation-specific.
Usage Records provide crucial information used for billing; however, too many Usage
Records can also greatly reduce the performance of the system. This should be balanced in
the design of a custom service.

The ServicePlatform class provides a convenient factory for common component clients that
utilize the configuration in the IBM WebSphere Telecommunications Web Services Server
Administration Console. These clients also provide asserted identity handling for passing the
necessary IMS security credentials. These clients also provide caching for Web service client
stubs and local invocations so that the performance impact of making a Web service call is
minimized.

212 IBM WebSphere Telecommunications Web Services Server Programming Guide

Also of note, a convention has been adapted and used within Parlay X Web service
implementations for the invocation of Telecom Web Services service implementations. When
an endpoint is set to an empty value in IBM WebSphere Telecommunications Web Services
Server Administration Console, then the functionality provided by the common component is
considered disabled. In such cases, the service implementation logic should omit the function
associated with the Telecom Web Services service implementations. Custom Parlay X Web
service implementations should follow this convention in order to comply with IBM
WebSphere Telecommunications Web Services Server architecture.

If the service implementation is using the PXNotification component to send an asynchronous
notification, the service should also implement the DeliveryConfirmationCallback Web service
interface so that it can receive confirmations that the notification was delivered.

If the service implementation is using the Notification Management component to manage
notifications, the service NotificationAdministrationSupport Web service interface must also
be implemented so that it can receive actions from the Notification Manager.

6.6.1 Service Platform package

IBM WebSphere Telecommunications Web Services Server provides the service platform
package with the ability to efficiently invoke the common components and leverage the
capabilities of IBM WebSphere Telecommunications Web Services Server.

ServicePlatform class
The ServicePlatform class provides public interfaces into the IBM WebSphere
Telecommunications Web Services Server Service Platform so that new service
implementations can be more easily developed.

ServicePlatformHandler class
The Service Platform Handler class is a handler that should be defined in the
webservices.xml for each Web service implementation. Example 6-1 illustrates an example
webservices.xml.

Example 6-1 webservice.xml

<handler>
<description>ServicePlatformHandler</description>
<handler-name>ServicePlatformHandler</handler-name>
<handler-class>com.ibm.twss.platform.ServicePlatformHandler</handler-class>

</handler>

ServicePlatformLogger class
The Service Platform Logger object provides the API for logging and tracing.

Refer to the InfoCenter for APIs of ServicePlatform package for more information and for best
practices in using the ServicePlatform package:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.
twss.javadoc.doc/soaruntimepublicjavadoc/com/ibm/twss/platform/package-summary.htm
l

Chapter 6. Common components 213

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/soaruntimepublicjavadoc/com/ibm/twss/platform/package-summary.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/soaruntimepublicjavadoc/com/ibm/twss/platform/package-summary.html

6.6.2 Invoking IBM WebSphere Telecommunications Web Services Server
Admission Control common components

The Admission Control component Web service is used to control the admission rate of
service operations into individual servers and across clusters. It provides a function to ensure
that the number of requests from Web service implementations that are admitted into the
system (server and cluster level) do not exceed a configured rate for a given time interval.

Immediately upon receipt of a Web service request, the service implementation logic invokes
the Admission Control component Web service to determine whether to accept or reject the
Web service request. If the request is accepted, processing continues as normal. If the
request is rejected, this component returns an error message to the requester.

This component allows service providers to control how much traffic can be accepted by each
service for each member of the cluster and across the cluster. Controlling traffic helps ensure
that in the event of a prohibitively large number of requests, servers do not exceed planned
capacity.

AdmissionControlInterface
The Admission Control component tracks service usage information and smooths the rate of
accepted requests, both at the server and cluster level. Cluster level Admission Control limits
should be enforced across the cluster and proportioned by the implementation scheme.
When admission capacity is exceeded, either at the server level or the cluster level, then the
request will be rejected with a limit exceeded fault.

Weightings for services and operations are calculated according the internal scheme of the
implementation. Any weightings must be taken into account when interpreting the assigned
rate limits.

� Operation name: verifyAdmittable()

� Description: Verifies whether to admit a service operation.

� Input: verifyAdmittableRequest

Verifies admittable operation input parameters. Specifies the service operation for
verification of admittance.

� Output: verifyAdmittableResponse

Verifies admittable operation response result. This response is an empty message and
indicates success. If a limit has been exceeded, a fault will be returned instead.

� Fault

– ServiceAdmissionControlFault

Service Admission Control fault. This indicates that the rate limit for the service has
been exceeded. This fault applies to exceeding both local and cluster limits.

– OperationAdmissionControlFault

Operation Admission Control fault. This indicates that the rate limit for the operation
has been exceeded. This fault applies to exceeding both local and cluster limits.

– NoAdmissionControlDefinedFault

No Admission Control defined fault. This indicates that no Admission Control limits
have been defined for the supplied service and operation. This fault may be returned
for missing local or cluster limits.

Example 6-2 shows a code snippet for Admission Control.

214 IBM WebSphere Telecommunications Web Services Server Programming Guide

Example 6-2 Code snippet for Admission Control

try {
// Create the variables

ServicePlatform svcPlatform = new ServicePlatform();
AdmissionControlInterface adm = svcPlatform.getAdmissionControlClient();
verifyAdmittableRequest AdmReq = new VerifyAdmittableRequest();

// Initialize the input parameters
AdmReq.setGlobalTransactionID(svcPlatform.getGlobalTransactionID());
AdmReq.setService(getService());
AdmReq.setOperation(getOperation());

// Call the verifyAdmittable() operation
verifyAdmittableResponse AdmRes = adm.verifyAdmittable(AdmReq);

} catch (Exception e) {
// Log the exception
// Rethrow the exception

}

6.6.3 Invoking IBM WebSphere Telecommunications Web Services Server
Traffic Shaping common components

The Traffic Shaping component helps control the flow of traffic towards network elements.
Resource specifications that describe network element capacity are used as inputs to
determine how much traffic the network element can handle. Traffic Shaping controls two
kinds of flows of traffic towards the element: burst and rate traffic. The Traffic Shaping
algorithm will use a token-bucket algorithm to shape traffic. The token-bucket algorithm works
as follows: a bucket containing tokens (abstract units of work) with a fixed capacity is used to
represent the capacity of the network element. When the bucket is below maximum capacity,
it regenerates tokens at the rate of allowable traffic. This model allows for burst traffic by
having burst traffic deplete existing tokens within the bucket; a full bucket allows for the
maximum burst size. Once the capacity for burst traffic has been depleted, then traffic
becomes constrained by the rate at which the tokens are regenerated. Traffic Shaping is
always tracked across the cluster. This is because resource capacity definitions describe the
capacity for all traffic directed towards the resource.

Each operation will have a weighting associated that represents how many tokens must be
consumed by the bucket for the given operation. This mechanism provides an interface that
indicates whether or not the request can currently be admitted towards the network element
given the current state of the bucket. If the request is rejected, then the service
implementation has the option of either queuing the request or rejecting it with an appropriate
service level exception. Any queuing decision must take into account that the state of the
bucket only reflects the local view of the cluster member; it is unknown what other allocations
are given to other cluster members. The decision whether or not to queue a request depends
on the quality of service criteria for the particular service implementation.

Requests for capacity can take into account service/operation weightings, as well as the
number of targets for the operation. This information should be calculated by the service
implementation, since it bests understands the context in which to calculate the weighting.
The number of targets for the operation can be retrieved from the operationTargets SOAP
header passed from the front end. This is preferable to counting operation targets.

Chapter 6. Common components 215

TrafficShapingInterface
The Traffic Shaping common component helps control the flow of traffic towards network
elements. Resource specifications that describe network element capacity are used as input
by the implementation to determine how much traffic the network element can handle. Traffic
Shaping controls two kinds of flow of traffic towards the element: burst and rate traffic. The
burst size indicates the maximum number of messages (in abstract tokens) that can be
handled by the network resource in an instantaneously short period. The rate indicates the
rate of sustained traffic that can be handled by the network resource over long periods.

Each operation will have a weighting associated that represents how many tokens must be
consumed against the resource for the given operation. The number of tokens associated
with a given operation is determined in a service implementation specific way, and should
take into account the number of targets against which the operation is being executed.

TrafficShapingInterface_verifyResourceCapacityResponse verifyResourceCapacity
(verifyResourceCapacityRequest parameters) [faults: TrafficExceededFault
NoSuchResourceFault InvalidResourceSpecificationDefinedFault]

This verifies whether a network resource has sufficient processing capacity to accept the
traffic generated by the specified service operation.

� Input: TrafficShapingInterface_verifyResourceCapacityRequest

Verifies network resource capacity input parameters. Specifies the network resource
logical name against which the operation is being executed.

� Output: TrafficShapingInterface_verifyResourceCapacityResponse

Verifies the network resource capacity response result. It indicates that the network
resource has sufficient capacity to accept the additional traffic.

� Fault: TrafficExceededFault

Traffic exceeded fault. This indicates that the specified service operation request would
generate traffic that exceeds the network resource specification's current available
capacity.

� NoSuchResourceFault

No such resource fault. This indicates that the specified resource is not known.

� InvalidResourceSpecificationDefinedFault

Invalid resource specification defined fault. This indicates that the network resource
specification for the logical resource name is invalid or is missing properties required by
this component.

Example 6-3 shows a code snippet for Traffic Shaping.

216 IBM WebSphere Telecommunications Web Services Server Programming Guide

Example 6-3 Code snippet for Traffic Shaping

try {
VerifyResourceCapacityRequest req = new VerifyResourceCapacityRequest();
// The service associated with the operation.
req.setService(ServicePlatform.getCurrentApplicationName());
// The operation being invoked. The operation name corresponds to a WSDL operation
for the service.

req.setOperation(req.getOperation());
// The global transaction ID for the Web service transaction.

req.setGlobalTransactionID(ServicePlatform.getGlobalTransactionID());
// The network resource logical name.

req.setResource("PresenceServer");
// The requested capacity for this operation.
req.setRequestCapacity(0);.VerifyResourceCapacityResponse capacityResponse =

trafficShaping.verifyResourceCapacity(req);
}

Administering the Traffic Shaping component Web service
The following section discusses how to configure the Traffic Shaping component Web service.

Configuration
Network Resources Traffic Shaping limits are configured within the IBM WebSphere
Telecommunications Web Services Server Administration Console under the Network
Resources section. The Network Resources component Web service must be installed in
order for this function to be enabled. A network resource has a logical name that is associated
with a resource specification, or a set of properties. Multiple service implementations may be
configured to refer to the same network resource logical name. The Traffic Shaping
component Web service expects the following network resource specification properties to be
defined:

� Maximum Burst Size: The maximum amount of burst traffic that can be handled by the
network resource. This is measured in number of tokens, where a single service
implementation Traffic Shaping request may consume multiple tokens.

� Maximum Average Sustained Rate: The maximum average sustained rate of work,
measured in tokens per second that can be handled by the resource. This corresponds to
the rate of token regeneration in the token bucket algorithm.

Guidelines for choosing limits
The maximum burst size must be chosen such that when burst size is split evenly among all
members of the cluster, each member's local token bucket has sufficient tokens to
accommodate the largest request weight. Otherwise, there will never be sufficient tokens to
satisfy such a request and this request will always be rejected. In addition, configuring some
additional burst above the maximum request size will provide better adaptability of the
algorithm to different traffic distributions of traffic being generated within the cluster. An
example is a burst configured with a maximum burst of 10 requests, when the maximum
request weighting is 1.

When running at capacity, the algorithm has a few limitations for request distributions that
approach the traffic rates near the specified limit for the network resource. Reservation
requests for rates are made on an as-needed basis when processing incoming requests.
Each request may result in a reservation request for enough rate to replenish the tokens
consumed by that request. Clusters are typically fronted by a round-robin load-balancer and
thus may generate outbound traffic in a similar fashion. When running at capacity, it is
possible that an individual node will get a chunk of rate allocated during a round robin spray

Chapter 6. Common components 217

and the other remaining members be denied. This may not match expectations across the
cluster. For example, consider a cluster with three members, with a rate limit for an operation
of 30 tokens per second across the cluster and each cluster member allocated nine tokens
per second. This leaves three tokens per second worth of rate to reserve. If an additional
spray of requests comes on top of the 27 tokens per second rate across the cluster, then the
first request in the spray will result in the first server getting allocated the three tokens per
second and the remainder being denied additional capacity. This may result in less token
regeneration across the cluster than expected. This behavior typically manifests itself as a
ping-pong effect, where the last little bit of tokens get traded off between members of the
cluster. This can be avoided by running a rate that is less than: (number of cluster members *
maximum token per request size). The algorithm will tolerate running within this threshold, but
some premature rejections may occur in rare traffic patterns.

6.6.4 Invoking IBM WebSphere Telecommunications Web Services Server
Fault and Alarm common components

Exceptions, faults, and alarms can be generated by either the underlying Telecom Web
Services service implementations or by a particular service implementation.

Exceptions are runtime Java exceptions that are raised in the course of service execution. An
exception does not necessarily correspond to a fault (it might lead to a change in execution
flow that results in successful execution).

Faults correspond to error conditions that arise during service execution. Faults typically
correspond to application exceptions within the service implementation code structure. Faults
are standard error conditions during execution flow and alarms are severe, infrequent events
that interfere with service delivery.

Alarms correspond to severe error conditions that are unexpected execution flow conditions
that the administrator should be informed about.

An event should be considered either a benign exception, a fault, or an alarm, but not a
combination of these options.

The following procedures will be used for handling service implementation exceptions:

� The exception will be logged in an informational or warning message to the Parlay X Web
service implementations log. The service implementation can choose to supply either
contents of the exception (such as the stack trace) or simply an informational message
describing the exception situation.

� The service request will recover and continue execution.

The following procedures will be used for handling faults:

� The exception or error condition that caused the fault should be logged as an error
message to the Parlay X Web service implementations log. The log message should
contain stack trace information.

� The service implementation should call the recordFault operation on the Fault and Alarm
component. This will emit a common base event (CBE) through the common event
infrastructure (CEI) and emit a JMX notification through the Fault and Alarm component
MBean.

218 IBM WebSphere Telecommunications Web Services Server Programming Guide

FaultAlarmInterface
The Fault and Alarm component performs appropriate logging and notification generation for
service implementation Faults and Alarms. Services are identified through their service
parameter, which should be uniquely named to avoid conflicts. Implementations of this
component may implement alarm suppression, where similar alarms are suppressed to avoid
emitting the same alarms repeatedly in an alarm condition. Configuration of such behavior is
specific to the implementation of this component.

� Operation Name: recordFault ().

� Description: Records a fault.

� Input: recordFaultRequest.

Records fault operation input parameters. Specifies the fault information to record.

� Output: recordFaultResponse.

Records fault response result.

Example 6-4 shows a code snippet for the Fault and Alarm component.

Example 6-4 Code snippet for fault and alarm

Try {
RecordFaultRequest faultReq = new RecordFaultRequest();
faultReq.setGlobalTransactionID(globalTransId);
faultReq.setService(serviceName);
faultReq.setSource(sourceClass.getName());
faultReq.setCode(messageId);
faultReq.setDetail("Fault Occured. Presence Server not responding");
faultReq.setMessage(msg);
faultReq.setSeverity(SeverityEnumeration.Info);
RecordFaultResponse faultRes = faultAlarmClient.recordFault(faultReq);

} catch (Exception e) {
// Log the exception
// Rethrow the exception

}

The service implementation should create a fault response, which corresponds to a Web
service application-specific fault message whose fault element contains the exception that
caused the fault. This fault response is returned back to the Web service requester.

The following procedures will be used for handling alarms:

� The exception or error condition that caused the fault should be logged as an error
message to the Parlay X Web service implementations log. The log message should
contain stack trace information.

� The service implementation should call the recordAlarm operation on the Fault and Alarm
component only once for the duration of the alarm condition. This will emit a common base
event (CBE) through the common event infrastructure (CEI) and emit a JMX notification.

Administering the Fault And Alarm component Web service
The Fault and Alarm component Web service can be deployed to capture Faults and Alarms
that occur for each deployed Web service implementation, for the Admission Control
component Web service, and for the usage record component Web service. It can write fault
and alarm information to the common event infrastructure (CEI) repository.

Chapter 6. Common components 219

If you plan to use the CEI repository to capture fault and alarm data, you must enable the CEI
service and configure a data source for it.

The CEI service uses the database included with WebSphere Application Server, but it can
be configured to use DB2, Oracle®, or another database supported by WebSphere
Application Server.

When encountering error conditions, service implementations will need to emit fault
information. For severe error conditions, they will need to emit alarms. Both Faults and Alarms
are emitted in common base event (CBE) format using JMX management notifications, and,
optionally, using CEI as well. The CBE format is an extensible XML schema for describing
event information.

The Fault and Alarm component Web service provides extensions to the CBE format to
describe implementation faults. CEI is used as the infrastructure for notifying interested
parties of events and provides a persistent event repository that supports flexible event
queries based on XPath. JMX notifications are useful for enabling third parties to access
WebSphere Application Server and handle notifications, for example, by generating SNMP
alerts. However, because JMX notifications do not include a listener for CEI, the Fault and
Alarm component Web service produces CBE events in addition to JMX notifications.

Although CEI can be used to emit any kind of business event, CEI is limited in this
implementation to generating fault and alarm events. This is done so that you do not need to
set aside a large number of application server instances to process CEI events. The CEI
client API comes embedded with the base WebSphere Application Server product and can be
activated at no charge.

Configuration
Settings for Faults and Alarms are configured within the IBM WebSphere
Telecommunications Web Services Server Administration Console. The Fault and Alarm
component Web service expects the following value to be defined:

� Enable CEI: A Boolean value indicating whether CEI events are emitted when processing
a fault or alarm. If set to false (the default), only JMX notifications are emitted. For details,
refer to the topic “Enabling the Fault and Alarm component Web service to use CEI” at the
IBM WebSphere Telecommunications Web Services Server InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.config.doc/enable_cei_t.html

6.6.5 Invoking IBM WebSphere Telecommunications Web Services Server
Network Resource common components

The Network Resources component Web service provides a way to define specifications for
network resources (elements) with which the service platform will interact. Specifications that
you design using the Network Resources component Web service are used to tailor the way
in which the service platform behaves toward each resource.

For example, the Service Platform can use a network element's message processing capacity
to control the rate at which traffic is generated towards the element. Other specifications can
be used for storing additional properties regarding protocol interactions with the element.

Note: Normally, Network Resources is not called directly by a service implementation
unless it has a special need to do so. It is generally called by Traffic Shaping internally.

220 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.config.doc/enable_cei_t.html

This component provides a Web service interface to access resource specification properties
from other elements. It is used by the Traffic Shaping component Web service to fetch
network resource properties. Resource specifications are intended to be a flexible set of
properties, and thus they can be used by other components and services.

NetworkResourceInterface
The Network Resources component allows other common components and service
implementations to access network resource names. Network resource names are a
collection of properties and values associated with a network resource logical name. These
properties should be definable within the implementation of the Network Resources common
component. This interface makes no assumptions about the properties within the resource
specification, allowing for extensibility of network resource properties.

� Operation Name: retrieveResourceProperties().

� Description: Retrieves the network resource properties response.

� Input: RetrieveResourcePropertiesRequest.

Retrieves all network resource properties requests.

� Output: ResourceProperty[]

Retrieve network resource properties response message. The response contains the
supplied list of network resource properties and their values. The
retrieveResourcePropertiesResponse element in XML instance can be substituted with
other elements.

� Fault:

– InvalidResourcePropertyFault:

Invalid resource specification property fault. This indicates that a network resource
specification property for the logical resource name does not exist.

– NetworkResourceRetrievalFault:

Retrieves a network resource property fault. This indicates that the supplied property
name does not exist within the resource specification.

– NoSuchResourceFault:

No such resource fault. This indicates that the specified resource is not known.

� Operation Name: retrieveAllResourceProperties().

� Description: Retrieves all network resource properties responses.

� Input: RetrieveAllResourcePropertiesRequest.

Retrieve all network resource properties request.

� Output: ResourceProperty[].

� Fault:

– NetworkResourceRetrievalFault

– NoSuchResourceFault

– InvalidResourcePropertyFault

Chapter 6. Common components 221

Example 6-5 shows a code snippet for the Networks Resource common component.

Example 6-5 Code snippet for Network Resource

Try {
// Create the variables

ServicePlatform svcPlatform = new ServicePlatform();
NetworkResourceInterface net = svcPlatform.getNetworkResourceClient();
RetrieveResourcePropertiesRequest netReq = new VerifyAdmittableRequest();

// Initialize the input parameters
netReq.setResourceName(getResourceName());
netReq.setResourcePropertyNames(getResourcePropertyNames());

// Call the retrieveResourceProperties() operation
ResourceProperty[] Res = net.retrieveResourceProperties(netReq);

} catch (Exception e) {
// Log the exception
// Rethrow the exception

}

6.6.6 Invoking IBM WebSphere Telecommunications Web Services Server
Usage Records common components

The IBM WebSphere Telecommunications Web Services Server Usage Record common
component is a write-only component that records billing information.

Service Usage Records describe how a service was used for accounting and billing
purposes. When integrating with a service provider environment, you should create a billing
mediator application to extract Usage Records, process them to generate call detail records,
and purge processed entries from the database. Usage Records are written to a table
definition, which is a primary Usage Records table that contains the master record and
service attributes (See also Appendix C, “Developing a Usage Record Billing Mediator
common component” on page 385.)

Each IBM WebSphere Telecommunications Web Services Server Web service
implementation generates a service usage record that describes how the service was used
for accounting and billing purposes. Service Usage Records are stored in relational table
format. Each service usage record contains common event data that can be used to uniquely
identify the service record, and that references a properties table containing
application-specific attributes. This provides a uniform infrastructure for creating and storing
service Usage Records.

Service Usage Records consist of general service usage information that may be generated
at multiple points during service execution. An event type field is used to differentiate the
different recording points. Each service implementation defines the event types (generation
points), status codes, and service data attributes that are generated for storage in the service
usage table. The Parlay X Call Notification over SIP/IMS creates a service record by calling
the Usage Record component Web service.

� Usage Records for the Parlay X Call Notification over SIP/IMS

Parlay X Call Notification over SIP/IMS uses the service usage record to store network
events, call party information, and called party information. You can find more information
about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/notification_records_c.html

222 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/notification_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/notification_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/notification_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/notification_records_c.html

� Usage Records for Parlay X Presence over SIP/IMS

The Presence service implementation uses the Usage Record component Web service to
record Web service invocation details. Because they exist solely to either service or
generate Parlay X requests, IMS-based network signaling events do not have their own
Usage Records. You can find more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/presence_records_c.html

� Usage Records for Parlay X Terminal Status over SIP/IMS

Parlay X Terminal Status over SIP/IMS uses the Usage Record component Web service to
record Web service invocation details. Because they exist solely to either service or
generate Parlay X requests, IMS-based network signaling events do not have their own
Usage Records. You can find more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/termstat_records_c.html

� Usage Records for the Third-Party Call service implementation

The Parlay X Third-Party Call over SIP/IMS uses the Usage Record component Web
service to record events related to a service request. You can find more information about
this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/tpc_records_c.html

� Usage Records for Parlay X Payment over Usage Records/CEI

The Parlay X Payment over Usage Records/CEI Web service implementation uses Usage
Records to store accounting and billing information. You can find more information about
this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/payment_records_c.html

� Usage Records for Parlay X Address List Manager over XCAP

The Parlay X Address List Manager over XCAP Web service uses the service usage
record to record any event generated during create, read, update and delete group
definition stored within XDMS. You can find more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/addresslist_records_c.html

� Usage Records for WAP Push over SMPP

The WAP Push over SMPP Web service implementation uses the Usage Record
component Web service to record exception details. For the synchronous part of the Web
service request, an error condition maps to an exception, which is returned to the caller.
You can find more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/wappush_records_c.html

� Usage Records for Parlay X SMS over SMPP

Parlay X SMS over SMPP uses the Usage Record component Web service to record
events related to a service request. You can find more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.services.doc/sms_smpp_records_c.html

Chapter 6. Common components 223

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/presence_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/presence_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/termstat_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/tpc_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/payment_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/payment_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/addresslist_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/addresslist_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/wappush_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/wappush_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/sms_smpp_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/sms_smpp_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/presence_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/presence_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/payment_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/payment_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/addresslist_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/addresslist_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/wappush_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/wappush_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/sms_smpp_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.services.doc/sms_smpp_records_c.html

� Usage Records for Parlay X Terminal Location over MLP

The Parlay X Terminal Location over MLP uses the Usage Record component Web
service to record events related to a service request. You can find more information about
this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.ser
vices.doc/termlocationmlp_records_c.html

� Usage Records for Parlay X Multimedia Messaging over MM7

The Parlay X Multimedia Messaging over MM7 Web service implementation uses the
Usage Record component Web service to get, send, and start notification messages. You
can find more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.ser
vices.doc/mmsmm7_records_c.html

� Usage Records for Parlay X Terminal Status over Parlay

Parlay X Terminal Status over Parlay uses the Usage Record component Web service to
record Web service invocation details. You can find more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.ser
vices.doc/termstat_backend_records_c.html

� Usage Records for Parlay X Terminal Location over Parlay

The Parlay X Terminal Location over Parlay Web service implementation, uses the Usage
Record component Web service to record events related to a service request. You can find
more information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.ser
vices.doc/termloc_records_c.html

� Usage Records for Parlay X SMS over Parlay

The Parlay X SMS over Parlay Web service implementation uses the Usage Record
component Web service to record events related to a service request. You can find more
information about this topic at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.ser
vices.doc/sms_parlay_records_c.html

UsageRecordInterface
Service Usage Records consist of general service usage information and a variable number
of attributes for storing custom information about the service delivered. Service Usage
Records may be generated at multiple points during service execution. An event type field
differentiates the different record points. Each service implementation should define the event
types (generation points), status codes, and service data attributes it intends on generating
for storage in the service usage table.

� Operation Name: writeUsageRecord()

� Input: WriteUsageRecordRequest

Writes usage record operation input parameters. Contains information about the usage
record to be written.

� Output: WriteUsageRecordResponse

Writes usage record operation response result. Contains the record ID of the written
usage record. Also indicates that the record was successfully written.

� Fault: WriteUsageRecordFault

Writes usage record fault. Indicates that an error occurred while writing the usage record.

224 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/termlocationmlp_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/mmsmm7_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/mmsmm7_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/termstat_backend_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/termstat_backend_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/termloc_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/sms_parlay_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/sms_parlay_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/mmsmm7_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/mmsmm7_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/termstat_backend_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/termstat_backend_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/sms_parlay_records_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/topic/com.ibm.twss.services.doc/sms_parlay_records_c.html

Example 6-6 shows a code snippet for the Usage Records common component.

Example 6-6 Code Snippet for Usage Records

try {
// Create the variables

ServicePlatform svcPlatform = new ServicePlatform();
UsageRecordInterface usageRecord = svcPlatform.getUsageRecordClient();
WriteUsageRecordRequest usageRequest = new WriteUsageRecordRequest();

// Initialize the input parameters
usageRequest.setService(getServiceName());

usageRequest.setGlobalTransactionID(svcPlatform.getGlobalTransactionID());
usageRequest.setEventType(getEventType());
usageRequest.setRecordTime(getRecordTime());
usageRequest.setCode(getCode().intValue());
usageRequest.setServiceAttributes(getServiceAttributes());
usageRequest.setServiceValues(getServiceValues());

// Call the writeUsageRecord() operation to record the usage record
WriteUsageRecordResponse usageResponse =

usageRecord.writeUsageRecord(usageRequest);
 } catch (Exception e) {

// Log the exception
// Rethrow the exception}

Chapter 6. Common components 225

226 IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 7. Design considerations for the
service implementation

In this chapter, we introduce you to the design aspects of service implementations on the
Service Platform component of IBM WebSphere Telecommunications Web Services Server.
These design principles may be used as a reference by architects and developers working on
custom service implementations.

The purpose of these design guidelines are:

� Serving as a common means of understanding the IBM WebSphere Telecommunications
Web Services Server architecture and Service Platform components for the developer
community

� Adhering to these guidelines helps with faster and more efficient development of reliable
services to be deployed on IBM WebSphere Telecommunications Web Services Server

� Following the packaging and naming guidelines allows multiple service implementations to
coexist in the environment

� Conforming to Logging and Tracing guidelines helps debug problems and minimize the
time spent on bug fixes

� Following these guidelines assists in adherence to IBM Development standards, which
means easier integration and interoperability with out-of-box IBM WebSphere
Telecommunications Web Services Server service implementations.

7

© Copyright IBM Corp. 2008. All rights reserved. 227

7.1 Architecture overview

The IBM WebSphere Telecommunications Web Services Server Service Platform enables
Telecom Service Providers to expose high-level Web services interfaces for underlying
network services. These Web services can be made available to provision rich, value added
services. Services such as these can form core infrastructure, which can be leveraged by
both third-party service providers or external customers. The Web service interfaces provide
technology-agnostic access to service capabilities. Each Web service interface can have
multiple implementations (also referred to as instantiations or flavors) in a given service
provider environment, providing access to IMS services through SIP, PSTN functionality
through a Parlay/OSA gateway, Direct Connect access to network protocols, or custom
integrated services. IBM WebSphere Telecommunications Web Services Server provides a
middleware infrastructure for managing Web service access and provides an environment for
hosting Web service API implementations.

7.2 Telecom Web Services

A Telecom Web Service implementation comprises a Web service implementation exposing
standards based abstraction to underlying network services, for example, Parlay X Presence.
Service implementation participates in the IBM WebSphere Telecommunications Web
Services Server Service Platform environment, allowing a Service Provider to integrate and
expose network interfaces and higher level IT interfaces that enable development of rich,
value added services.

The subsequent sections discuss the design considerations specific to custom service
implementations that could be either Parlay X service implementation or Direct Connect
service implementations. IBM WebSphere Telecommunications Web Services Server
facilitates deployment of service implementations, as described in the following sections.

7.2.1 Parlay X Web Services

IBM WebSphere Telecommunications Web Services Server provides an execution
environment and a common set of components to facilitate Parlay X Web service
implementations in addition to Parlay service implementations. The Parlay X Web service
APIs are the first instantiation of services. Consequently, parts of the design can include
functions that provide specific support for Parlay X Web Services, but the architecture is
general enough to provide infrastructure services for any kind of Web service implementation.
Figure 7-1 on page 229 provides an overview of the IBM WebSphere Telecommunications
Web Services Server architecture.

228 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 7-1 IBM WebSphere Telecommunications Web Services Server Service Platform architecture

All Web service requests and responses pass through and are inspected by Telecom Web
Services Access Gateway before being passed on for processing. Telecom Web Services
Access Gateway acts as an intermediary, consults the policy information from the
Subscription Management system for all communication between client and service
endpoints, and processes both incoming requests to Parlay X Web service implementations
and outgoing requests and responses made by Parlay X Web service implementations.
Parlay X Web service implementations provide a bridge between the Web service API and
core network, typically initiating one or more network-level activities for each request. For
Parlay X Web service implementations capable of issuing outbound requests, either
provisioned through a notification service or through other means, these implementations
must send outbound requests through Telecom Web Services Access Gateway to be
processed in a similar fashion.

Communication between Telecom Web Services Access Gateway and Parlay X Web service
implementations uses SOAP messages over HTTP. The HTTP transport should be used
when tighter latency response times are required. Document literal is the preferred SOAP
message encoding format. It allows maximum interoperability between Web service clients.
Document literal encoding should be used as the encoding format when generating all Web
service proxy stubs. The architectural design focuses primarily on the use of document literal
encoding over HTTP. HTTPS communication is also assumed as an alternative transport to
HTTP where HTTP is mentioned within this document, but requires additional deployment
time configuration.

IBM WebSphere Telecommunications Web Services Server consists of a WebSphere
Application Server environment with support for IMS protocols. The converged HTTP/SIP
Servlet container is used for hosting Web and SIP application logic. SIP Servlets can interact
with the IMS SIP signaling elements according to the 3GPP ISC interface. The IMS
Connector stack provides a client API for accessing diameter services for integration of
security, user profile, and accounting functionality. For direct access to network protocols for
which a stack in base WebSphere Application Server does not exist, the Java Connector
Architecture (JCA) framework provides a means of extending the application server
environment with additional protocol stacks. Finally, the Java Messaging Service (JMS)
provided with base WebSphere Application Server can be used for asynchronous,
latency-insensitive, high throughput communication between application components.

Chapter 7. Design considerations for the service implementation 229

Parlay X Web service implementations are based primarily on the Web container
programming model for Web service implementation bindings and common service
components. JAX-RPC servlets with plain Java beans are the recommended Web service
implementation binding, although Parlay X Web service implementations are free to choose
the method that is most efficient for a given implementation, such as Web services adhering
to J2EE specification JSR 109.

7.3 Design considerations

In this section, you will find the design guidelines for service implementations. These
guidelines are more applicable to Parlay X Web Services implementation than Parlay and
Direct Connect implementations.

7.3.1 Conforming to IBM WebSphere Telecommunications Web Services
Server conventions

IBM WebSphere Telecommunications Web Services Server software utilizes several
significant types of named resources. These resources generally follow a naming convention.
The use of naming conventions is an important aspect of design, as it uniquely identifies an
object’s or service’s role in the system. There are other conventions that should be
considered, such as configuration conventions for new service, policy naming conventions,
trace message codes, and messages.

Service independence
Firstly, service implementations should be designed independently of each other as a single
deployable enterprise archive EAR file. In case one or more service implementations are
required to share common utility classes, the shared code can be packaged as a OSGi
bundle or Java archive and the same can be included in the respective enterprise archives.
Refer to the 8.3.2, “Service Platform Application Template” on page 256 for a detailed
discussion on service logic development and application template.

Policy naming conventions
Policies are configuration information that are defined within the IBM WebSphere
Telecommunications Web Services Server’s Service Policy Manager (SPM) run time and
console. Policies relate to requesters or user identities, service names, and service operation
names of Web services. A policy name is typically scoped for better readability. It is
independent from the position that the policy is defined within the Service Policy Manager.
Here are a list of policy categories defined in SPM along with respective descriptions:

� message: Category for message processing service policies, typically related to Access
Gateway processing.

� message.capacity: Policies for capacity measurements.

� message.intercept: Policies for message intercept.

� message.sla: Policies for SLA measurements.

� message.statistics: Policies for network statistics.

� message.privacy: Policies for privacy.

� requester: Category for requester policies, typically related to requester specific policy
processing.

� requester.operation: Policies to apply to requester use of operations.

230 IBM WebSphere Telecommunications Web Services Server Programming Guide

� requester.trace: Policies related to tracing requests by requester.

� service: Category of service policies, typically related to service specific policy processing.

� service.config: Policies related to service configuration.

� service.custom: Policies defined for service implementations.

� service.standard: Policies defined by Web services specifications.

� customer: Category for values that are customer unique and are not recorded in the
Service usage record.

The Policy naming should follow the pattern <prefix>.<Policy_name>, as shown in
Example 7-1.

Example 7-1 Sample policy names

message.statistics.RecordStatistics
service.config.PresenceServerURI

Telecom Web service implementation naming conventions
A service implementation within the IBM WebSphere Telecommunications Web Services
Server must have a unique identifier name that distinguishes its type of service, and the
back-end network technology that it communicates to. The naming pattern for Parlay X Web
service is PX<version>_<webservicetype>_<backendtype>.

A list of Parlay X Web Services types implemented in IBM WebSphere Telecommunications
Web Services Server follows:

� TS: Terminal Status

� TL: Terminal Location

� TPC: Third Party Call Control

� CN: Call Notification

� CD: Call Direction

� CH: Call Handling

� PRS: Presence

� ALM: Address List Management

� PMT: Payment

� MMS: Multimedia Messaging Service

� SMS: Short Messaging Service

Note: Prefixes should be in lower case. Policy names should start with upper case and use
upper case to delineate compound words.

Note: If necessary, you could extend the naming convention as required. This could be
the case if your organization had multiple implementations of the service with the same
back-end type. For example, TL could interface with the Presence/SIP and a Location
service with a SIP interface to get the presence information.

Chapter 7. Design considerations for the service implementation 231

A list of Parlay X Web services back-end types that identify the network connectivity or
protocol follows:

� IMS: IP Multimedia Subsystem (SIP - Session Initiation Protocol based)

� Parlay: Parlay / OSA based

� SMPP: Short Message Peer to Peer protocol based

� MM7: Multimedia Messaging application interface Version 7 based

� MLP: Mobile Location Protocol

J2EE resources naming conventions
J2EE resources refer to the named objects, such as DataSource Providers, DataSources,
and JMS Queues, which are typically created in the WebSphere Application Server
Administration Console. These resources are used by service implementations. The naming
pattern to be followed for J2EE resource is <service_name>_<resource_type>. The service
name indicates the service that accesses the resource. Some resources may be shared by
multiple services. In such cases, the name of the resource should be generic. The list of
resource types by type of resource follows:

� Provider: Data Source Provider

� Queue: JMS Queue

� Scheduler: WebSphere Application Server Scheduler

� AS: Activation Specification

� Dest: Destination

� Partition: WebSphere Partition

� QCF: Queue Connection Factory

� Alias: A Java Authentication and Authorization Service (JAAS) Alias

� DB: Database

J2EE resources are typically associated with a Java Naming Directory Interface (JNDI) name,
which is the used by services and applications to do lookup using the Application Server Java
Naming Directory. The JNDI names should follow certain conventions. The prefixes of JNDI
names are mentioned below:

� jdbc: DataSource

� ejb: Enterprise Java Bean

� eis: Enterprise Information Service

� sched: Scheduler

� jms: Java Messaging Service

JNDI names are typically of the pattern <jndi_prefix>/<service_name>_<resource_type>.

Database naming conventions
The database instance is named after the system component that uses it. Typical database
names used in IBM WebSphere Telecommunications Web Services Server environment are:

� TWSS63
� SPM62
� PARLAY62

232 IBM WebSphere Telecommunications Web Services Server Programming Guide

Security role naming conventions
Each service implementation should have one or more roles for its interfaces. Since IBM
WebSphere Telecommunications Web Services Server provides user-level authorization,
role-based security is of limited value and might only have value in composite service
scenarios. So, one or two roles for each service should be sufficient. The naming conventions
for role names should follow the pattern <service_type>_<backend_type>_<role_name>. The
role name should indicate the authorizing WebSphere Application Server role, for example:

� Administrator
� Accessor

In some cases, the service type or back-end type is so generic that it is necessary to use
“TWSS” or similar text that adequately describes the scope of use.

Namespace naming conventions
Namespaces are defined in the WSDL of a Web service interface. Since custom Web
services can be defined and implemented in BM WebSphere Telecommunications Web
Services Server, it may be necessary to define a unique and context sensitive namespace.
The namespaces are also used to define the Service Policy Manager service identifier.
Namespaces typically appear like URLs. They should begin with a host name, then the type
of namespace, followed by interface name. The interface name may have multiple naming
components to indicate things like the administration or notification interfaces. A namespace
declaration should end with a version number, followed by the object type. The object types
can be for instance, local, service, fault, interface, and so on. Here is a sample namespace for
reference:

http://www.ibm.com/wsdl/wappush/notification/v1_0/interface

Web root context naming conventions
The root context is the base part of the URL where Web applications of an enterprise
application can be reached. This root context name is defined in the enterprise archive
(EAR). These names should follow a naming convention so that they do not conflict with the
contexts of other services deployed in IBM WebSphere Telecommunications Web Services
Server. The root context definition can be located in the application.xml file of the service
enterprise archive. Service implementations should maintain the pattern
TWSS/<interface><version>/<service>/<interfaces>. The URL should also have a servlet
mapping that defines the URL suffix. It typically defines the type of interface and interface
names. For example, for a Web service interface, it should define ‘services’, and then the
name of the interface, as shown here:

/services/ReserveAmountCharging

J2EE application naming conventions
The J2EE application, comprising of the service implementation logic, should be named in a
way consistent with the service implementation. However, because the file name of enterprise
archive is identified as the enterprise application name, the following pattern should be
followed: PX<version>_<webservicetype>_<backendtype>.ear.

Note: The namespace looks like a Web URL. The URL location does not mean a hosted
site or location. Namespace is used to provide a scoped name for identifying a
functionality.

Chapter 7. Design considerations for the service implementation 233

Package naming conventions
Package names should define the namespace in which the code artifacts exist. The package
names in Java are similar to a reverse of a fully qualified host name; however, a package is
independent of the host name, for example:

com.ibm.twss.<component>.<sub component>

Usage Record naming conventions
Service implementations are expected to generate usage records using the common
component, the Usage Records, for each operation that is invoked, and for notification events.
When creating a Usage Record, there are a set of property names that are defined. During
the design phase, it is important to determine what information needs to be generated into a
Usage Record. This is generally the information from the request context as well as the
parameters of the request. The attributes to be recorded should be named in a way consistent
as those defined for other services, and to the extent possible, use the same property names
for the same data items. Usage Records, or alternatively referred to as Service Records, are
typically named using upper case words with underscores to separate words.

Message identifiers
Service implementations should plan on utilizing the error message codes described below
as part of the low-level design of custom service implementations. The message codes
should eventually be captured in the WebSphere Application Server logs and traces. The
format of the error message numbers are defined by IBM corporate standards for software
products. Following the standards, consistency should be maintained when using log
generation utilities in service implementations. The naming conventions should be of the
pattern <messageprefix><messagenumber><messagetype>. The message prefixes should
define a four letter prefix for an error message. IBM WebSphere Telecommunications Web
Services Server defines the following message prefixes:

� SOAC: Message codes are used by the IBM WebSphere Telecommunications Web
Services Server runtime components to print messages in WebSphere system log and
trace files. These message codes are not to be used by custom service implementations.

� SOAS: Message codes should be used to log messages only if new common components
are implemented.

� SOAX: Message codes are intended for use in service implementations. Custom service
implementations should utilize the “Available” range of message codes to capture
meaningful operational information in WebSphere Application Server system logs and
trace files.

Note:

� For Custom Service implementations, we recommend consulting the IBM WebSphere
Telecommunications Web Services Server InfoCenter Web site to ensure that the range
of SOAX message codes intended to be used do not collide with the message codes of
existing IBM WebSphere Telecommunications Web Services Server components.

� In case of enhancements to Service Implementations, do not re-use or adopt existing
message codes. Instead, create new message codes within the “Available” range.

234 IBM WebSphere Telecommunications Web Services Server Programming Guide

The message number should be at least a four digit message number. The message type can
be one of the following:

� T: Trace
� I: Information
� W: Warning
� E: Fatal Error

The message should utilize the {0} or {1} syntax for specifying a substitution parameter,
where the digit indicates the position of the substitution parameter. When translated, these
message substitution parameters may appear in different orders. Messages should never be
constructed by assuming an order. At times, it could be necessary to append debug
information to an error message. This can be done adequately if the debug information is
surrounded by a identifiable delimiter, thereby having it appear as supplemental information
that is not actually part of the translated error message.

Message numbers should also be allocated within a particular numerical range. These
ranges are reserved for particular IBM WebSphere Telecommunications Web Services
Server components. “IMS” refers to SIP based service implementation or other IMS
component. “Parlay” refers to the Parlay connector component of IBM WebSphere
Telecommunications Web Services Server. “DC” refers to Direct Connect service
implementations. Refer to Table 7-1 for the number ranges used by various components in
BM WebSphere Telecommunications Web Services Server as well as the number ranges that
are available for service implementations.

Table 7-1 Message code ranges of IBM WebSphere Telecommunications Web Services Server

Table 7-2 shows the message code ranges for each of the common components in Service
Platform.

Table 7-2 Message code ranges of Common components

Component Message code range

TWSS Common SOAC0000 to SOAC1999

Service Platform Common SOAC2000 to SOAC3999

ESB Common SOAC4000 to SOAC5999

Available SOAC6000 to SOAC9999

Service Platform common components Message code range

Common SOAS0000 to SOAS0499

Admission Control SOAS0500 to SOAS0999

Traffic Shaping SOAS1000 to SOAS1499

Notification Management SOAS1500 to SOAS1999

PX Notification Delivery SOAS2000 to SOAS2499

Faults and Alarms SOAS2500 to SOAS2999

Usage Records SOAS3000 to SOAS 3499

Privacy SOAS3500 to SOAS3999

Available SOAS4000 to SOAS9999

Chapter 7. Design considerations for the service implementation 235

Table 7-3 through Table 7-16 on page 239 shows the message code ranges for each of the
Service Implementation components.

Table 7-3 Message code range for Common and Third-Party Call service

Table 7-4 Message code range for Call Notification service

Table 7-5 Message code range for Short Messaging service

Table 7-6 Message code range for Multimedia Messaging service

Service logic components Message code range

Common SOAX0000 to SOAX0499

Third Party Call SOAX0500 to SOAX0999

IMS SOAX0500 to SOAX0649

DC SOAX0650 to SOAX0799

Parlay SOAX0800 to SOAX0949

Available SOAX0950 to SOAX0999

Component Message code range

Call Notification SOAX1000 to SOAX1499

IMS SOAX1000 to SOAX1149

DC SOAX1150 to SOAX1299

Parlay SOAX1300 to SOAX1449

Available SOAX1450 to SOAX1499

Component Message code range

Short Messaging SOAX1500 to SOAX1999

IMS SOAX1500 to SOAX1649

DC SOAX1650 to SOAX1799

Parlay SOAX1800 to SOAX1949

Available SOAX1950 to SOAX1999

Component Message code range

Multimedia Messaging SOAX2000 to SOAX2499

IMS SOAX2000 to SOAX2149

DC SOAX2150 to SOAX2299

Parlay SOAX2300 to SOAX2449

Available SOAX2450 to SOAX2499

236 IBM WebSphere Telecommunications Web Services Server Programming Guide

Table 7-7 Message code range for Payment service

Table 7-8 Message code range for Account Management service

Table 7-9 Message code range for Terminal Status service

Table 7-10 Message code range for Terminal Location service

Component Message code range

Payment SOAX2500 to SOAX2999

IMS SOAX2500 to SOAX2649

DC SOAX2650 to SOAX2799

Parlay SOAX2800 to SOAX2949

Available SOAX2950 to SOAX2999

Component Message code range

Account Management SOAX3000 to SOAX3499

IMS SOAX3000 to SOAX3149

DC SOAX3150 to SOAX3299

Parlay SOAX3300 to SOAX3449

Available SOAX3450 to SOAX3499

Component Message code range

Terminal Status SOAX3500 to SOAX3999

IMS SOAX3500 to SOAX3649

DC SOAX3650 to SOAX3799

Parlay SOAX3800 to SOAX3949

Available SOAX3950 to SOAX3999

Component Message code range

Terminal Location SOAX4000 to SOAX4499

IMS SOAX4000 to SOAX4149

DC SOAX4150 to SOAX4299

Parlay SOAX4300 to SOAX4449

Available SOAX4450 to SOAX4499

Chapter 7. Design considerations for the service implementation 237

Table 7-11 Message code range for Call Handling service

Table 7-12 Message code range for Audio Call service

Table 7-13 Message code range for Multimedia Conference service

Table 7-14 Message code range for Address List Management service

Component Message code range

Call Handling SOAX4500 to SOAX4999

IMS SOAX4500 to SOAX4649

DC SOAX4700 to SOAX4799

Parlay SOAX4800 to SOAX4949

Available SOAX4950 to SOAX4999

Component Message code range

Audio Call SOAX5000 to SOAX5499

IMS SOAX5000 to SOAX5149

DC SOAX5150 to SOAX5299

Parlay SOAX5300 to SOAX5449

Available SOAX5450 to SOAX5499

Component Message code range

Multimedia Conference SOAX5500 to SOAX5999

IMS SOAX5500 to SOAX5649

DC SOAX5650 to SOAX5799

Parlay SOAX5800 to SOAX5949

Available SOAX5950 to SOAX5999

Component Message code range

Address List Management SOAX6000 to SOAX6499

IMS SOAX6000 to SOAX6149

DC SOAX6150 to SOAX6299

Parlay SOAX6300 to SOAX6449

Available SOAX6450 to SOAX6499

238 IBM WebSphere Telecommunications Web Services Server Programming Guide

Table 7-15 Message code range for Presence service

Table 7-16 Miscellaneous and Available code ranges

Configuration conventions
The configuration methods to be followed in IBM WebSphere Telecommunications Web
Services Server can be categorized as follows:

� Policies: Creation of Policies is the recommended way to store configuration data that
affects the behavior of service logic. Service logic uses the policy information while
processing requests. Policies can be applied based on the requester, the service, and
service operation that is being requested. Policies can be administered using the Service
Policy Manager administration console. Refer to Chapter 3, “Working with service policies
and the Service Policy Manager” on page 33 for more information about creating policies.

� IBM WebSphere Telecommunications Web Services Server Administration Console
properties: IBM WebSphere Telecommunications Web Services Server Administration
Console can be located at the WebSphere Application Server Integrated Services
Console. The configuration properties offered by IBM WebSphere Telecommunications
Web Services Server Administration console are applicable for deployment of services,
interconnectivity of a service with common components, and connectivity to network
resources.

� Network Resources: In IBM WebSphere Telecommunications Web Services Server, some
of the network resources properties of network elements are captured in a generalized
common component by the name Network Resources. These properties can be defined at
the deployment time of a service that requires connectivity with a network resource. The
Traffic Shaping component limits the request load sent to a specific network resource by
accessing the properties configured in Network Resources. The administrator can define
resource names and corresponding properties for each network resource. The network
resource name should be specified in the configuration section of individual service
implementations that require access to a specific network resource.

� Deployment Descriptors: Deployment descriptors are artifacts that allow you to define
environment variables that can be set during the pre-deployment configuration of a
service. This type of configuration is intended only to be static for a service
implementation and these configurations do not surface in administrator console. These
settings are not dynamic enough for 24/7 operations, since the application should be
redeployed for the configuration settings to come into effect. Such configuration settings
should be used rarely.

Component Message code range

Presence SOAX6500 to SOAX6999

IMS SOAX6500 to SOAX6649

DC SOAX6650 to SOAX6799

Parlay SOAX6800 to SOAX6949

Available SOAX6950 to SOAX6999

Miscellaneous components Message code range

SIP Servlets SOAX7000 to SOAX7499

Available SOAX7500 to SOAX9999

Chapter 7. Design considerations for the service implementation 239

� JNDI String Bindings: JNDI String bindings can be used to set dynamic configuration
values in the WebSphere Application Server Integrated Services Console. JNDI bindings
are reasonably dynamic in nature. These bindings can be changed by an administrator
frequently. These are sometimes necessary to configure software components that are
not contained within any specific enterprise application archive (EAR).

� Java Process Custom properties: Java System properties can be used to set properties
for customizing the operation of specific Java classes in cases when no other option is
possible to affect the behavior of the operation. However, this option is not desirable,
because such a setting requires a restart of the server environment, and at times might be
unsafe for the server run time.

� Properties files: Java applications can store configuration information in .properties files.
However, configuration settings using this approach are not user friendly and dynamic
enough for 24/7 operations.

Internationalization conventions
IBM WebSphere Telecommunications Web Services Server service implementations
frequently need to have certain configurations that rely on the locale in which either the server
is hosted or the request is originated from. The most common use case are text strings that
are typically messages and captions on the administration console that should be localized.
However, there are other internationalization issues, such as date time formats and currency
formats that should be considered.

Translated strings for messages and captions are externalized and stored in a .properties file.
The IBM WebSphere Telecommunications Web Services Server conventions are to store
such strings in US English format, which is the default master copy for all messages and
captions. The .properties file typically has the format of a file name followed by a short code
representing the language and country, for example, ServiceProperties_en_US.properties
holds service properties in American English. During the component build phase, these files
are copied to generic fallback .properties file, such as ServiceProperties.properties. Other
locale specific strings can be constructed and added to the build as required.

The generic .properties file without a locale suffix can have any configuration data or other
types of data in addition to messages and captions, which do not need to be localized, such
as error messages.

The localized captions and similar text are displayed in various service configuration pages
that are part of the IBM WebSphere Telecommunications Web Services Server administration
console. Using the JMX MBean framework, captions and other messages can be made
available to the IBM WebSphere Telecommunications Web Services Server administration
console. Developers should use .properties, depending the localization support requirement,
for the JMX MBean framework. In addition to this functionality, developers should provide a
help page for each Form page or Configuration Page by providing adequate user guidance.
The convention for storing localized .html pages is to have each localized Web page created
in a locale-specific folder. For example, the folder en_US should have a help_page.html that is
in American English. All translatable material should be in UTF-8 encoding format when
stored in the build.

IBM WebSphere Telecommunications Web Services Server components must be translatable
to Group 1 languages by default. The Group 1 languages are:

� English

� Japanese

� Traditional Chinese

� Simplified Chinese

240 IBM WebSphere Telecommunications Web Services Server Programming Guide

� Korean

� French

� German

� Italian

� Spanish

� Brazilian Portuguese

Message bundles
Message bundles are an essential part of a service implementation that allow you to convey
context specific information, typically in operational messages, debug diagnostics, and so on.
By default, debug diagnostics are not translated, but if they are required, this behavior can be
customized. Operational messages can be translated depending on the locale. Follow the
naming conventions for messaging bundles described in “Policy naming conventions” on
page 230.

Additionally, since the messages need to be documented in a user guide, you must also
provide a description of the usage of a particular message, and the actions that are needed to
be taken by the administrator, if any. It is convenient to include the usage and actions along
with the message ID and description in the same message bundle using the aforementioned
conventions.

As an example, each message might appear in this form in the message resource bundle, as
shown in Example 7-2.

Example 7-2 Sample message entry

SOAX4999 = SOAX4999E:{0} {1} the sample error message with a substitution of {2}.
SOAX4999_detail = A detailed description of the message
SOAX4999_action = The action that is recommended for the Administrator

The message itself may have substitution parameters. Typically in IBM WebSphere
Telecommunications Web Services Server, the {0} is replaced with the transaction identifier,
and the {1} is replaced with the component or service identifier. Utility methods are provided
in the IBM WebSphere Telecommunications Web Services Server components to extract the
message information from the message resource bundle.

Trace logging and First Failure Data Capture
Tracing and message logging of operational messages to the WebSphere Application Server
logs is a requirement for IBM WebSphere Telecommunications Web Services Server service
implementations and it is also the primary way problems are debugged. It is important to plan
the implementation of logging and tracing at significant points in the code. Utility methods are
provided in the application template framework to manage logging tasks in a consistent way.
Excessive tracing can inhibit performance, so you should use the isLoggingEnabled() method
before constructing message strings with dynamic information for logging.

Additionally, First Failure Data Capture (FFDC) is a requirement for IBM WebSphere
Telecommunications Web Services Server. Any service implementation code that runs in the
IBM WebSphere Telecommunications Web Services Server framework should also provide
for the FFDC feature. The utility methods for trace related to logging for an exception will also
provide FFDC information automatically. FFDC is very useful when diagnosing a problem in
the IBM WebSphere Telecommunications Web Services Server environment, in the event
trace is turned off, and the size of the SystemOut.log files are overwritten due to limited file
size.

Chapter 7. Design considerations for the service implementation 241

Security
When designing a service implementation that communicates with another system that is
external to IBM WebSphere Telecommunications Web Services Server, it is important to
determine how the service implementation will relate to the security model, and how the
security for the connection to the network elements will be handled. Some of the aspects that
should be clarified are:

� Whether the network element being connected by the service implementation is inside the
IMS trusted network and responds to asserted identity headers for authentication.

� If so, what security mode is the IMS component running in and whether is there a need to
have the IMS Trusted Asserted Identity (TAI) installed in the environment.

� What is the mechanism required to provide appropriate asserted identities on the client
side, and accept the asserted identities on the server side?

� Alternatively, does the service implementation need to provide any other configuration for
security credentials to be passed on to the network element? In general, the network
elements are provided by other companies, and they will define the security capabilities of
those elements. The protocol specifications may or may not provide information about how
security is accomplished.

High availability, scalability, failover, and reliability
High availability is a very important requirement for IBM WebSphere Telecommunications
Web Services Server service implementations. High availability means that the functions of
the service must be available to the application on a continuous operational basis. This is
sometimes referred to as 24/7, which means 24 hours a day, 7 days week, and 365 days a
year, which in theory leaves no scope for scheduled downtime for maintenance or failures that
disrupt operations.

The clustering architecture of WebSphere Application Server enables multiple servers that
process requests, so that there is always a server available to handle incoming requests.
Clustering of application instances is intended to avoid single points of failure. In effect,
clustering enables redundancy for system resources.

High availability also relates to scalability, which is the ability to grow the capacity of the
system dynamically, ensuring that the system always has the capacity to handle incoming
requests and avoid failures due to overload. As the system load increases, additional capacity
should be added to the system so that if a node failure occurs, the remaining capacity is
adequate to continue operations at an acceptable load level. Scalability of the system is
generally handled through clustering, although there are other factors for scalability, such as
performance bottlenecks in the architecture, where the number of requests that can be
realistically processed at once are limited by some constraints.

In IBM WebSphere Telecommunications Web Services Server, there are two basic types of
request flows: A basic Web service request, which in itself could be a request-reply or
one-way request, and a notification event. Typically, a third-party application makes a Web
service request to IBM WebSphere Telecommunications Web Services Server to perform
some operation. This request propagates through the system and typically translates into
another request to a network element. The Web service requests benefit from the
WebSphere HTTP proxy and load balancing behavior to provide high availability and
redundancy within a cluster. The notification event is more complicated in terms of high
availability and depends greatly on the network protocol that is being used.

Notification events are typically asynchronous events sent back to the IBM WebSphere
Telecommunications Web Services Server cluster by network elements. When a network
element needs to send an asynchronous event to IBM WebSphere Telecommunications Web
Services Server cluster, it needs to be able to deliver that event to any of the server instances

242 IBM WebSphere Telecommunications Web Services Server Programming Guide

in the IBM WebSphere Telecommunications Web Services Server cluster. Most protocols are
not easily routable, such as HTTP, and require point-to-point communication (such as Parlay
over CORBA/IIOP or SMPP). During the design phase, it is necessary to determine how the
callback notifications will be handled by the connector logic. Much of the logic depends on the
network protocol and network element behavior. By leveraging WebSphere Application
Server features for high availability and scalability, as well as the messaging resources and
connector infrastructure, high availability and failover can be achieved. Appropriate design
decisions should be taken to handle the events of failure, and an approach to determine how
requests can be re-routed to a functioning server instance should be adopted.

If the protocol is HTTP based, you should send the event back through the HTTP proxy, which
can proxy the request to a working application server. For other protocols, it is usually
necessary for the service implementation to detect which other server instances have been
stopped or failed and notification registrations targeted to the stopped server should be
re-initialized so that they can be targeted to a working server instance. The Parlay Connector
does this automatically for the Parlay service calls. Other protocols generally need to have
designated primary and backup server instances configured so that redundant callback
handling exists.

For Non-HTTP protocols, the failover, recovery, and overall high availability of services
depends on the protocol and the network element. A detailed analysis of the possible failure
scenarios and recovery procedures as well as the corresponding effects on the request
processing should be done during the design phase. In general, additional coding that
leverage WebSphere Application Server components is necessary to have the desired high
availability.

Designing for performance
During the design phase, it is also important to determine what kind of performance the new
service implementation is expected to have. You should determine what processing the
service implementation needs to perform that may inhibit performance.

The typical performance bottleneck is access to a database. It is important to design a
service in such a way as to minimize the number of creates or database table inserts, table
reads, updates, or deletes on table from a database. If a service needs to do a lookup from
the database, a database record index should be provided in the Database Definition
Language (DDL) for every index, which is leveraged when doing a EJB Finder or EJB Select
lookup. Primary key fields have implicit indexes created that allow for faster retrieval of data.
The use of a JDBC™ Prepared Statement is the preferred method to access database
records.

Database indexes are important for another reason. When doing a database SELECT,
multiple rows may be locked during the processing of records, and more rows may be locked
than the records that match the SELECT statement. This can easily cause a database
deadlock in which each of the two threads are waiting for the other to complete. The indexes
will ensure that only records that match the selection are locked, thereby significantly
reducing the chance of a deadlock.

Local EJB implementations should be used for entity beans to improve performance. Local
transactions can also be used for entity beans to improve the performance. When using entity
beans, if the entity bean has more than one field that is being updated, it is desirable to
include the updates in a stateless session bean that defines the transaction boundary, which
will reduce database accesses.

Chapter 7. Design considerations for the service implementation 243

Access intents define how the application will access the data, and whether it is likely if
multiple threads of execution will need to update the same row at the same time. Generally in
service implementations, to avoid locking the database tables, and avoid delays in responding
to calling applications, we recommend using wsOptimisticUpdate for all methods in entity
beans.

Entity bean references, Data Source references, and other J2EE resource references are
JNDI names that can be cached. Accessing JNDI names is particularly slow, so you should
cache the JNDI references in the service implementation logic.

Performance Monitoring Infrastructure
Performance Monitoring Infrastructure (PMI) is another feature of WebSphere Application
Server that provides operational information that can be captured by operational monitoring
applications. The IBM WebSphere Telecommunications Web Services Server platform
provides some basic utility methods for generating performance metrics.

The metrics should be defined during the design phase, and should follow these guidelines:

� Each component should provide a time metric that points to when the service was started
or first used, which provides the ability to calculate service availability.

� Each request should provide a count of the total number of requests received, as well as
the number of successful and failed requests.

� Latency times for access to database and calls to common components or network
elements are also sometimes meaningful.

� Latency times for the time duration between receipt of the request and passing the request
on to back-end network element are also sometimes meaningful.

� Current size counts for service data structure sizes that are in-memory structures like
hashtable objects or session instance objects are also sometimes meaningful.

Usability and accessibility requirements
The IBM WebSphere Telecommunications Web Services Server components have usability
requirements; however, these requirements are not very applicable to the service
implementations themselves, since the actual user interface is rendered by the IBM
WebSphere Telecommunications Web Services Server Administration console or SPM
console. Therefore, from the perspective of service implementations, the goal is to provide
consistency with existing software that relates to the service implementations, such as the
IBM WebSphere Telecommunications Web Services Server Administration console, help
pages for configuration pages, product InfoCenter, and other forms of documentation.

If a custom service implementation requires an administrative or other self-help user
interfaces, particularly one with accessibility to telephone users, such a design should
conform to IBM Usability design procedures. For more information, refer to the following link:

http://www-935.ibm.com/services/us/index.wss/offerfamily/igs/a1023541

Note: You can also use the Java Persistence API as an alternative to using entity beans,
although we do not cover this approach in detail within this scope of this IBM Redbooks
publication.

244 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://www-935.ibm.com/services/us/index.wss/offerfamily/igs/a1023541

User interfaces must also be made accessible for users with special needs. Here are a few
guidelines to avoid problem areas:

� Ensure that all functions are available through the keyboard.

� Associate labels, names, and titles to the data entry fields that they relate to.

� Set the initial focus when the window is loaded.

� Ensure that all fields of the form window can be accessed with a keyboard.

� Avoid sound, multimedia, animation, colors, low-contrast, or blinking as the only means of
conveying information.

� Avoid using timed responses.

� Use system colors and fonts.

Documentation requirements
Service implementations produce a variety of information that should be documented in a
user reference. During the design phase, ensure that these items are fully documented and
described:

� Supported usage scenarios

� Usage Records attributes

� Error messages

� Faults

� Alarms

� Policies used

� Administration console configuration parameters

� Protocol versions and any limitations

� Limitations to any service functions

� Database tables that the service provider is expected to interface with

� Interfaces to any integration points unique to the service

� Failover configuration issues

Test requirements
During the design phase, it is important to consider what testing will be required for the
service implementation and what testing tools may be required. Service implementations are
expected to perform as described in the appropriate standards and specifications. Aside from
functional testing, there are other operational requirements, such as:

� Running in a cluster, and scaling the work load, to test work load distribution

� Stopping and starting server instances while maintaining load, to test failover conditions

� Failover testing for all system nodes

� Recovery from failures to maintain continuous service

� Interoperability tests with devices and network elements of vendors adhering to
appropriate versions of specifications

� Utilizing simulations of network element functions to verify functionality

� Utilizing simulations of network elements to drive stress and soak tests to identify
performance bottlenecks in service implementations.

� Verifying the affects of configuration changes on a running system

Chapter 7. Design considerations for the service implementation 245

� National language support and globalization testing

� Accessibility testing

7.4 Sample Parlay X Web service scenario

In this section, we will take you through the design of a Parlay X Web service implementation,
by using the example of a Parlay X Presence Supplier interface following the Parlay X V2.1
‘ETSI ES 202 391-14 V1.2.1 (2006-12)’ specification. This service is not fully functional and
not intended for use in a production environment, and is primarily used as a reference for
developing custom service implementations.

7.4.1 Presence Supplier detailed design

In this section, we will discuss the design of Parlay X Presence Supplier design details and
the dependencies on the IBM Presence server architecture. IBM Presence Server provides a
robust presence aggregation environment that enables integration with SIP/SIMPLE
standards-based applications, such as instant messaging and presence-enabled address
management tools. IBM Presence Server leverages the capabilities of IBM XML Document
Management Server (XDMS) to provide advanced features, such as access to Watcher
information, Authorization rules, Partial publish, Partial notify, and so on.

Parlay X Presence Supplier service interface
A Presence Supplier application is typically responsible for publishing presence data on
behalf of a presentity to a Presence Server. Each service operation expects that the request
is associated with a presentity or user’s identity. As per the Parlay X Presence Supplier
specification, a presence supplier application can have following functionalities:

� publish() service operation: Called by the presentity to publish the presence data of a
presentity.

� getOpenSubscription() service operation: Called by the presentity to access open or
pending subscriptions and corresponding subscribed attributes from individual watcher
identities interested in its presence information.

� updateSubscriptionAuthorization(): Called by the presentity to authorize open or pending
subscription of a specific watcher. This operation also has the scope to allow or disallow a
watcher’s access to specific presence attributes. Depending on the service
implementation, the presentity may not be required to call this operation. If authorization
policies for the watcher already exist in the Presence Server environment, the Presence
Server might accept the watcher’s subscription request and give access to subscribed
presence data.

� getMyWatchers(): Called by a presentity to access the list of watcher identities or
subscribers who are interested in its presence information.

Note: For more information about Parlay X V2.1 specifications, go to:

http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX21.html

Note: The Presence Supplier code supplied with this book cannot be replicated, and is
provided for reference purposes only.

246 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX21.html

� getSubscribedAttributes(): Called by a presentity to access the list of presence attributes
that an individual watcher is interested in accessing.

� blockSubscription(): Called by a presentity to block a watcher’s subscription to its
presence information. This results in the termination of a watcher’s active or pending
subscription.

Presence Supplier design dependencies and limitations
The Parlay X Presence Supplier specification assumes that a check for the identity of a user
or presentity that is being requested by the client application or device is successfully affirmed
before the Presence Supplier service instance services the request. IBM WebSphere
Telecommunications Web Services Server run time leverages the WebSphere Application
Server security infrastructure to authenticate and assert the identity of the user associated
with an incoming request by using HTTP(S) based authentication.

Apart from ascertaining the identity of the user of an incoming request, the Privacy common
component implementation, when deployed, performs an authorization check on the user
identity. This check protects the IBM WebSphere Telecommunications Web Services Server
environment from unauthorized access to services.

Certain functions from the aforementioned list of functionalities have dependencies on the
IBM Presence Server capabilities and the system architecture of the IMS service plane. One
of the significant limitations is the reactive authorization. The Presence subscription process
of execution might require you to add a step to perform a reactive authorization mechanism
before processing a presence subscribe request. Additionally, the most notable dependencies
on IBM Presence Server are:

� The getOpenSubscriptions() operation is required to have access to the watcher
information, such as identity, state of subscription, duration of subscription, and so on. In
addition, the individual presence attributes that are being subscribed to by the watcher is
also required. IBM Presence Server partially fulfills this requirement by presenting watcher
information. The required level of granularity to allow a subscription for specific presence
attributes, and the ancillary functionality of persistence, filtration, and retrieval of specific
presence attributes by watcher or presentity, is not available in Presence Server V6.2.

� The updateSubscriptionAuthorization() operation is required to update a watcher’s access
to a presentity’s presence data. This requirement is partially fulfilled by Presence Server.
The presence rules functionality of underlying XDMS can be leveraged to update a
watcher’s subscription. An XCAP request can be constructed and submitted to the XDMS
Presence rules server, in order to update a watcher’s subscription information. However,
updates related to specific presence attributes cannot be done. This refers back to the
same point that Presence Server does not provide this functionality.

� The getSubscribedAttributes() operation also depends on Presence Server capabilities to
serve Presence attributes that are being subscribed to by a watcher.

Presence Supplier service components
The Parlay X Presence Supplier service is realized as a Web service. The service logic is
made up of the following components:

� The Web service implementation with Java Bean binding, along with the logic to invoke
common components of IBM WebSphere Telecommunications Web Services Server

� SIP servlets that handle SIP signalling to and from the Presence server

� XCAP request and response handling to and from XDMS Presence rules server

� Java Management Extensions MBean components to manage the service in IBM
WebSphere Telecommunications Web Services Server

Chapter 7. Design considerations for the service implementation 247

� Finally, logging and trace messages at various stages of processing

From the system architecture perspective, the components in Presence Supplier service
function in a converged container. The Web service logic should be able to share session
information with SIP servlets as well as handle asynchronous responses, if any, from the SIP
servlets. The System component view shown in Figure 7-2 gives a better understanding of
the components that make up the service as well as the integration points with other salient
components in the IBM WebSphere Telecommunications Web Services Server and IMS
architecture.

Figure 7-2 Presence Supplier Service in IBM WebSphere Telecommunications Web Services Server
system architecture

Details of publish service operation
The publish service operation of Parlay X Presence Supplier service allows a client
application to publish presence information for a presentity. The client application is a Web
services client and it should carry authentication credentials for the presentity along with the
Presence attributes as described in the specification. For more information about the Parlay X
Presence specification, refer to Parlay X V2.1 ‘ETSI ES 202 391-14 V1.2.1 (2006-12). The
sequence of interactions of Presence Supplier service operations with common components
and SIP servlets that handle the communication issues with Presence are depicted in
Figure 7-3 on page 249.

Service Platform

Converged HTTP/SIP Container

Presence Supplier
Logic

Common
Logic

EJB Container

Client
Application

MBean Config

Diameter
Stack

SIP Stack

HTTP Stack

Access
Gateway

Service
Provider
Network

JMS Providers

JCA Providers

Presence Server

248 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 7-3 Object interaction diagram for publish method

In Figure 7-3, the sequence of interactions between the service logic and common
components are as follows:

1. A publish request is sent by a Presence Supplier client application to the Presence
Supplier Web service URL. The request comprises the Presence Attributes of a specific
presentity. The request should carry a presentity’s credentials as per the HTTP(S)
conventions.

2. The incoming request is initially processed by the converged container, where an
authentication check is performed on the credentials. The credentials are checked against
an underlying user repository, such as an LDAP server. After a successful authentication,
the request headers are extracted by the Service Platform API and the request is handed
over to the Web service implementation. The Web service implementation code should
perform validations on the incoming policies. Depending on the policies, certain policy
values might require values from the service’s JMX MBean attribute values for the
construction of a sane request to a network element.

3. A privacy check should be the first common component invocation. This step applies
authorization rules to the incoming request. Since Privacy Client is not implemented, this
service invocation is just a way station to the next step.

4. The next step in the interaction is the invocation of the Admission Control common
component. The Admission Control component is responsible for protecting the IBM
WebSphere Telecommunications Web Services Server run time from request overload
conditions. In order for the Admission Control component to work, the necessary
configurations should be done as part of installing the service. For more information about
Admission Control specific configurations, refer to 8.6.1, “Admission Control configuration
settings” on page 291.

5. Upon successful execution of the Admission Control service, the service logic should
invoke the Traffic Shaping common component. The Traffic Shaping component consults
the Network Resource component to determine the accumulated maximum number of
requests that can be sent to a registered Network Resource. For more information about

Note: Step 4 is optional only if the Privacy Client common component is configured for
the Service. The relevant configuration can be done in the IBM WebSphere
Telecommunications Web Services Server Administration console.

Presence
Supplier Service

Privacy
Client

Admission
Control

SIP Publish
Servlet Presence ServerClient

publish

Validate Policies

Verify Privacy
Permits

Verity
Admit table

Usage Records

Process and generate PIDF/RPID, send to SIP servlet

SIP PUBLISH

SIP 200 OK

Record usage

Fault
Alarm

Chapter 7. Design considerations for the service implementation 249

the configuration specific to Network Resources, refer to 8.6.2, “Traffic Shaping
configuration settings” on page 292.

6. On successful execution of Traffic Shaping component, the logic to compose a PIDF/RPID
XML document is executed. The Presence attributes received in the request should be
parsed and an RPID or PIDF document must be generated. Presence information should
adhere to PIDF and RPID standards in order for Presence Server to process the
information and persist it for later use. For more information about PIDF and RPID
standards, refer to RFC 4480 and RPID: Rich Presence Extensions to the Presence
Information Data Format (PIDF).

7. The logic to send a SIP message to the Presence Server is executed, which is a SIP
Servlet in the case of the Presence Supplier service. The SIP servlet is responsible for
sending a SIP PUBLISH message to the Presence Server and receiving a SIP 200 OK
message from the Presence Server.

8. Because the publish operation is a one-way type service operation, the service
implementation should invoke the writeUsageRecord operation on the Usage Records
common component after a successful completion of the SIP message publish logic. This
serves the purpose of recording the usage of each request that is being processed by IBM
WebSphere Telecommunications Web Services Server.

7.5 Conclusion

In this chapter, we discussed the IBM WebSphere Telecommunications Web Services Server
design guidelines for developing custom service implementations. In addition, you learned
what components a basic Parlay X Web service implementation is typically comprised of. In
Chapter 8, “Developing the service implementation” on page 251, we will walk you through
the development, building, and deployment of a custom Web service implementation.

Note: In the event that there is any exceptions during the invocation of the common
components, a fault should be recorded in the system. Recording a fault is done by
invoking the Fault and Alarm common component. The Fault and Alarm Web service relies
on CEI resources, so in order to use the Fault and Alarm service, CEI should be enabled in
the Service Platform environment. For more information about enabling CEI, refer to the
Configuration section of the IBM WebSphere Telecommunications Web Services Server
InfoCenter.

250 IBM WebSphere Telecommunications Web Services Server Programming Guide

Chapter 8. Developing the service
implementation

This chapter describes the approach and steps required to develop the custom service
implementation from our common use case, namely the Presence publish operation. This
chapter begins with a review of the development configuration requirements to begin creating
the service implementation and then proceeds into the key steps for developing a Parlay X
Web service. It discusses the core logic of the service implementation code, then discusses
how to unit test and ultimately deploy and test the completed sample.

8

Note: The sample code for this service implementation is available for download. Refer to
Appendix E, “Additional material” on page 399 for detailed instructions on how to download
and work with this sample code.

© Copyright IBM Corp. 2008. All rights reserved. 251

8.1 Introduction

In this chapter, we will discuss the step by step activities for developing a custom service
implementation. In order to successfully develop and deploy a custom service implementation
on IBM WebSphere Telecommunications Web Services Server, it is essential to understand
the architecture and design of the IBM WebSphere Telecommunications Web Services
Server system. Therefore, we strongly suggest you read Chapter 7, “Design considerations
for the service implementation” on page 227 before continuing further.

This chapter focuses on developing implementation logic for the Parlay X Presence Supplier
Web service interface. For more information about the Parlay X Presence specification, refer
to Parlay X V2.1 ‘ETSI ES 202 391-14 V1.2.1 (2006-12).

8.2 Focus of this chapter within the context of the common use
case

This chapter focuses on developing implementation logic for the Parlay X Presence Supplier
Web service interface.

The key topics are as follows:

� “Development environment” on page 254

� “Developing a Sample Parlay X Web service” on page 264

� “Implementing the core logic of the service” on page 287

� “Configurations for a new service” on page 291

� “Management provisions for new service” on page 299

� “Deploy and test” on page 326

Figure 8-1 on page 253 illustrates the primary focus of this chapter within the context of the
common use case.

Note: For more information about Parlay X V2.1 specifications, go to:

http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX21.html

252 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX21.html

Figure 8-1 Focus for this chapter

8.2.1 Dependencies of the IBM WebSphere Telecommunications Web Services
Server environment

IBM WebSphere Telecommunications Web Services Server comprises of three main
components: Access Gateway, Service Policy Manager, and Service Platform. The out-of-box
Parlay X services running in IBM WebSphere Telecommunications Web Services Server
environment take advantage of the common components and common logic provided by the
IBM WebSphere Telecommunications Web Services Server environment, such as:

� Policy-based access based on service level, operation level, and requester level policies.

� Avoiding overload conditions on inbound requests, specifically, imposing a limit on the
number of requests that can be serviced on a per-service, per-operation basis by IBM
WebSphere Telecommunications Web Services Server at any given time.

� Avoiding overload conditions on outbound requests, specifically, imposing a limit on the
number of requests generated for a specific network resource by IBM WebSphere
Telecommunications Web Services Server at any given time.

� Record usage based on the number of requests services by IBM WebSphere
Telecommunications Web Services Server.

Calls

Service Platform

Service Policy Manager
• Default/Generic Policy
• Custom Policy

Example:

Access Gateway

Service Operations
• Publish()

Request Flow

SOAP
Request

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

1
2

4
Mediation
Primitive

Mediation
Primitive

Mediation
Primitive

6

Presence
Supplier

Publish Implementation5

Presence
Server

7

1. SOAP request is submitted.
2. Request proceeds through the Mediation Flow in the Access Gateway.
3. The Policy Retrieval Mediation Primitive calls the Service Policy Manager. All service

policies are retrieved from the Service Policy Manager – including the policy for SIP
addressing conversion.

4. The policies are placed into the SOAP header of the request to be called upon as
necessary.

5. Request calls the Presence Supplier service implementation.
6. Common Components called within the service implementation logic.
7. Service implementation logic calls to the Presence server, then gets a response back.

service.config.enableURItransform

SPM Console

Polic
y In

form
atio

n
3

Comm on
Component

Comm on
Component

Com mon
Component

Com mon
Component

Comm on
Component

Comm on
Component

Com mon
Component

Chapter 8. Developing the service implementation 253

Similar to the out-of-box services, a custom Parlay X service should utilize the rich features of
IBM WebSphere Telecommunications Web Services Server, and conform to the IBM
WebSphere Telecommunications Web Services Server design guidelines. Depending on the
requirements, a custom Parlay X is typically developed for two purposes:

1. To implement the functionality of a Parlay X interface that is not available out-of-box in IBM
WebSphere Telecommunications Web Services Server.

2. To implement alternate or custom functionality to a Parlay X service that is available
out-of-box in IBM WebSphere Telecommunications Web Services Server. This kind of
service is often required in cases where the network elements have a proprietary means
to fulfill the functionality.

As part of the IBM WebSphere Telecommunications Web Services Server services portfolio,
the Parlay X Presence Service is available out-of-box. This service has implementations for
Presence Consumer Interface, Presence Notification Manager, and Presence Supplier
interfaces. However, the Presence Supplier implementation is not implemented.

As a sample scenario, in this chapter, we will discuss developing a custom Parlay X Presence
Supplier service implementation. There are couple of implications that need to be dealt with
when it comes to co-existence with an already available service. In this case, the out-of-box
Parlay X Presence service has a Presence Supplier service, but the Presence Supplier
service has not yet been implemented. We will deal with those problems in 8.6,
“Configurations for a new service” on page 291 and 8.6.3, “Initial service policy settings” on
page 293.

8.3 Development environment

The Rational Application Developer (RAD V7.0) is the recommended development
environment. Rational Application Developer provides an integrated development
environment (IDE) with user-friendly wizards and widgets for developing J2EE applications as
well as Web Services based applications. Before we delve into the development steps, let us
see the various development utilities and corresponding guidelines that are available to us in
the IBM WebSphere Telecommunications Web Services Server installer.

8.3.1 Development utilities

IBM WebSphere Telecommunications Web Services Server provides a set of development
utilities and guidelines in addition to the design guidelines described in Chapter 7, “Design
considerations for the service implementation” on page 227. These utilities and guidelines will
assist in developing custom service implementations. The utilities are part of the IBM
WebSphere Telecommunications Web Services Server installer.

Important: As a general best practice, it is important to note that a new service
implementation should be developed using the application template as a starting point
(platform.ear) which is available beginning with IBM WebSphere Telecommunications Web
Services Server V6.2.0.1. This application template enables a new service to take
advantage of existing utilities and provide consistency with other IBM WebSphere
Telecommunications Web Services Server services.

254 IBM WebSphere Telecommunications Web Services Server Programming Guide

Service platform interfaces
When planning the development of a service implementation, it is important to understand the
programming interfaces that are provided by the IBM WebSphere Telecommunications Web
Services Server Service Platform. The Service Platform provides several useful interfaces,
which are discussed in the following sections.

Parlay X Bindings
A IBM WebSphere Telecommunications Web Services Server service implementation will
typically implement one of the Parlay X V2.1 Web services. Typically, this may involve several
service interfaces, such as request, management, and notification interfaces. The
parlayx21.jar, bundled as part of the Service Platform Application Template discussed in
8.3.2, “Service Platform Application Template” on page 256, has the pre-generated Java
class files for all the supported Parlay X service interfaces and types. For a list of supported
Parlay X services, refer to IBM WebSphere Telecommunications Web Services Server
InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

The Java documentation of the classes for supported Parlay X services are available at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.
twss.javadoc.doc/parlayx21javadoc/overview-summary.html

Parlay X V2.1 WSDL files
The Parlay X V2.1 Web Service Definition Language (WSDL) files are also necessary to build
a Web service implementation. These WSDL files are necessary for building the Web
services deployment descriptors. Rational Application Developer provides wizards and
widgets specifically for JSR 109 standards based Web service bindings code generation.
During the generation of code, it should be noted that the default namespace is used to
generate package names for interfaces and types; an example is shown in Example 8-1.

Example 8-1 Sample Parlay X Service namespace

http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface

The corresponding Java package generated by RAD V7.0 is shown in Example 8-2.

Example 8-2 Sample package name generated by RAD V7.0

org.csapi.www.wsdl.parlayx.presence.supplier.v2_3._interface

From these examples, there is a possibility of class names with package qualification
exceeding RAD’s file name length limit. We recommend defining custom package names
adhering to IBM WebSphere Telecommunications Web Services Server design guidelines.
Refer to 8.4.2, “Generating Web service bindings” on page 270 for more information.

Common component client interfaces
The service platform consists of a set of reusable common components that are embodied in
Web services along with their respective Web Service Definition Language (WSDL) files. The
Service Platform Application Template, which is delivered as part of the IBM WebSphere
Telecommunications Web Services Server installation bundle, provides the admctl-client.jar,
fltalm-client.jar, netres-client.jar, notifymgmt-client.jar, privacy-client.jar, pxnotify-client.jar,
trafficsh-client.jar, and userec-client.jar files. These files comprise the pre-generated web
service client Java classes.

Chapter 8. Developing the service implementation 255

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/parlayx21javadoc/overview-summary.html

Service Platform API
In order to ease the development effort for developing custom services, IBM WebSphere
Telecommunications Web Services Server provides the new Service Platform API as part of
the latest Fix Pack for IBM WebSphere Telecommunications Web Services Server. The
Service Platform API provides utility classes to simplify the development of service
implementations. These interfaces are documented in the IBM WebSphere
Telecommunications Web Services Server Service Platform JavaDoc as part of the IBM
WebSphere Telecommunications Web Services Server InfoCenter. For more information
about this topic, go to:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.
twss.javadoc.doc/intro_c.html

The com.ibm.twss.platform.ServicePlatform class is the primary class that provides access to
the following capabilities:

� Access to the IBM WebSphere Telecommunications Web Services Server Headers SOAP
header information of the incoming request from Access Gateway.

� Access to the Web service client interfaces of all the common components. The
underlying logic implicitly takes care of performance, security, and configuration
integration in IBM WebSphere Telecommunications Web Services Server.

� PMI enablement.

� Trace and FFDC is provided.

� Policy and Configuration property encryption/decryption functionality is provided.

� Message bundle handling, message parameter substitution, and translation for
globalization is provided.

� Administration and Topology information.

Encryption and decryption utilities
Some of the policies and configurations may contain sensitive data, such as security
credentials or passwords. Both policies and configurations pertaining to a service are stored
in a database table per the IBM WebSphere Telecommunications Web Services Server
service design. The Service Policy Manager defines a special data type with the name
“password”. The purpose of this datatype is to handle encrypted data while storing it in the
database. The service implementation should decrypt such encrypted configuration settings
and policies in order to process the request. For this purpose, the ServicePlatform class of
ServicePlatform API provides utility methods to manage the encryption of data in a consistent
way.

8.3.2 Service Platform Application Template

The Service Platform component of IBM WebSphere Telecommunications Web Services
Server provides a service implementation application template with the name platform.ear,
which is distributed in the IBM WebSphere Telecommunications Web Services Server
installer. The platform.ear is a skeleton IBM WebSphere Telecommunications Web Services
Server service implementation that is a J2EE application, which provides all the required
classes and libraries that are required for a service implementation to function in the IBM
WebSphere Telecommunications Web Services Server run time. The functionality provided
by the libraries of platform.ear are broadly covered in “Service Platform API”. The Enterprise
Application platform.ear consists of the following subcomponents:

� Common component client libraries, which have the pattern *-client.jar. These files are
listed in “Common component client interfaces” on page 255.

256 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/intro_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/intro_c.html

� A sample Enterprise Application deployment descriptor, which can be located in the folder
META-INF. It includes the application.xml, admin.xma, and other useful files.

� Libraries that required in the IBM WebSphere Telecommunications Web Services Server
run time for the service implementation to function as desired.

The .jar files or libraries are typically used as the basis for developing additional IBM
WebSphere Telecommunications Web Services Server Service implementations, and
therefore are potentially embedded in the service platform application template.

Since custom service implementations are developed utilizing the service platform application
template as a base, we recommend refreshing the implementation code base to incorporate
the fixes to platform.ear as they are made available through the IBM WebSphere
Telecommunications Web Services Server iFix or Fix Pack mechanism.

8.3.3 Creating a custom service project

Start the Rational Application Developer (RAD V7.0) and choose or create a new workspace.
Import the platform.ear if it is a new service development. In the case of applying fixes to an
existing service implementation, replace the older libraries with new ones and rebuild the
projects.

Note: The Service Platform API will be available in IBM WebSphere Telecommunications
Web Services Server installer beginning with IBM WebSphere Telecommunications Web
Services Server V2.0.1.

Note:

� The Service Platform Application Template, which is the platform.ear, will undergo
defect fix procedures just as any other component in IBM WebSphere
Telecommunications Web Services Server would.

� Software updates to platform.ear with fixes will be made available as part of the IBM
WebSphere Telecommunications Web Services Server iFix or Fix Pack deliverables.

� In the event an updated version of platform.ear is released as part of a IBM WebSphere
Telecommunications Web Services Server iFix or Fix Pack, the custom service
implementations that were developed using earlier versions of platform.ear should at
the least import libraries that come with a new version of platform.ear. Refer to 8.3.4,
“Update procedure for custom service implementations” on page 263 for more
information about this topic.

Chapter 8. Developing the service implementation 257

Follow these steps to create a new service implementation project utilizing the Service
Platform Application Template:

1. Import platform.ear into Rational Application Developer. Select File → Import.... The
Import wizard is displayed, as shown in Figure 8-2.

Figure 8-2 RAD V7.0 Import wizard

258 IBM WebSphere Telecommunications Web Services Server Programming Guide

2. Expand the J2EE folder, select the EAR file option, and click the Next button, as shown in
Figure 8-3.

Figure 8-3 Import an EAR file

Chapter 8. Developing the service implementation 259

3. In the Enterprise Application Import window (Figure 8-4), select the platform.ear file
location first. The EAR project combo box by default displays “platform” as the project
name. This name should reflect the name of a new service implementation. Following the
IBM WebSphere Telecommunications Web Services Server design guidelines for
application naming described in “J2EE resources naming conventions” on page 232,
rename the EAR project as PX21_PRS_SPLR_IMSApp. The name refers to Parlay X 21
Presence Supplier for IMS Application. The reason that you use the suffix App is to have a
unique name for the enterprise application project. This will help in adding child projects,
such as a SIP project to this enterprise application project without needing to rename or
invent project names. Click the Next button.

Figure 8-4 Name the New Service Project

4. The next window should display a list of libraries with check boxes for each library. The .jar
files or libraries are a required part of the EAR project. In an enterprise archive (EAR),
these libraries are stored as utility JARs if left unchecked. Select all the libraries, which will
create utility projects under the enterprise application. Note that mustbeinear.jar should be
unchecked so that it is imported as a JAR only, and not a utility project. The enterprise
application at run time refers to the classes packaged in these utility JARs. The window
should now look like Figure 8-5 on page 261.

260 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-5 Select all Utility JARs

5. Click the Next button. In addition to the utility JARs, which are plain Java archives,
admincons-ejb.jar and admincons-web.war are also packaged in platform.ear. The import
wizard of RAD creates two child projects under the new enterprise application project, one
for each of these archives. This is an optional step, so you can click the Finish button to
complete the import process.

Chapter 8. Developing the service implementation 261

6. After successful completion of the above steps, the Project Explorer should appear as
shown in Figure 8-6.

Figure 8-6 Initial project hierarchy of new IBM WebSphere Telecommunications Web Services Server
service project

7. Expand the project in the Project Explorer. Locate the Deployment Descriptor: Platform file
and open it. In the Display name, enter PX21_PRS_SPLR_IMS. Save the changes made
by selecting File → Save. The window should now look like Figure 8-7 on page 263.

Note: In Step 4, if the checked boxes for the utility libraries are selected, then all the .jar
files show up as Java projects in the project explorer. In addition, the utility JARs are added
to the enterprise application project as utility JARs.

For your reference, the Deployment Descriptor with the name application.xml in the
enterprise application project has a section called “Utility JARs”. All the imported JARs
should be listed there.

262 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-7 Naming the sample service enterprise application

8. Close the Deployment Descriptor by selecting File → Close. This concludes the creation
of a enterprise application project for a custom service implementation by extending IBM
WebSphere Telecommunications Web Services Server Service Platform Application
Template.

9. The JNDI names used in the admincons-ejb.jar project should be changed so that they are
unique. This is typically done by appending the service abbreviations at the end of the
default JNDI name provided in the .jar file.

8.3.4 Update procedure for custom service implementations

As mentioned in 8.4, “Developing a Sample Parlay X Web service” on page 264, it is essential
to apply the updated versions of platform.ear to custom service implementations. We
recommend following the usage guidelines that come with the product

Typically, updates to platform.ear result in changes or additions to Java interfaces and
methods. These changes might lead to updating the Java libraries that are part of
platform.ear. In such cases, make a backup copy of the source of the existing custom service
implementation project using the Rational Application Developer Project Interchange export
mechanism. Import the new platform.ear following the steps detailed in 8.3.3, “Creating a
custom service project” on page 257. Copy the service bindings logic from the backup copy
into the new project. Make changes to the existing code in the Service bindings file as
required to utilize the updated functionality provided by platform.ear. Generate and export the

Chapter 8. Developing the service implementation 263

the new Enterprise Application Archive (EAR). Re-deploy the service into the IBM
WebSphere Telecommunications Web Services Server environment.

8.4 Developing a Sample Parlay X Web service

In 7.4, “Sample Parlay X Web service scenario” on page 246, we cover the introduction to the
Parlay X Web service sample scenario. We now discuss the development activities needed to
create a Parlay X Presence Supplier service implementation. It should be noted that this
service implementation covers only the publish service operation and is provided for
reference purposes only.

8.4.1 Service implementation prerequisites

The Parlay X Web service specification for Presence comes with a set of Web Service
Definition Language (WSDL) files along with referenced schema definition (XSD) files. These
WSDL files are provided by the IBM WebSphere Telecommunications Web Services Server
installer to ease custom service development in the Java archive with name
parlayx21wsdl.jar. The default namespace declarations of these Web services are typically
long and result in longer package names for classes generated by Rational Application
Developer. Because RAD has a file name limitation of 260 characters, the recommended
approach to generate namespace to package mapping during code generation is to use the
WSDLs provided in parlayx21wsdl.jar. The exact step by step instructions to generate
namespace to package mapping is described in 8.4.2, “Generating Web service bindings” on
page 270. Copy the parlayx21wsdl.jar to the development environment and extract the JAR
file in a location accessible to Rational Application Developer.

In general, Web service implementation code is typically generated and packaged in a Web
project. In the case of the Parlay X Presence Supplier Web service, the service operations at
some point should deal with SIP signalling to a Presence Server. As discussed in 7.4,
“Sample Parlay X Web service scenario” on page 246, certain interactions between the
service operations and Presence server, require the service implementation code to be able
to receive SIP messages from the Presence Server. To cater to the requirements of the
Parlay X Presence Supplier interface, one or more SIP servlets are required, and therefore a
SIP project to contain the SIP servlets.

Note: Typically, the development environment is a separate machine with a Windows® or
Linux OS. The WSDL files packaged in parlayx21wsdl.jar should be accessible to the
Rational Application Developer hosted on the development machine.

Note: During the installation of the IBM WebSphere Telecommunications Web Services
Server Service Platform, the parlayx21wsdl.jar file is copied to the WebSphere Application
Server install root, which is /opt/IBM/WebSphere/AppServer. Locate parlayx21wsdl.jar at
{WebSphere Application Server install root}/installableApps/TWSS-Base/wsdl.

264 IBM WebSphere Telecommunications Web Services Server Programming Guide

Follow these steps to associate a SIP project to the existing enterprise application:

1. Select the PX21_PRS_SPLR_IMSApp project in the Project Explorer and select File →
New → Project..., as shown in Figure 8-8.

Figure 8-8 New Project wizard

Chapter 8. Developing the service implementation 265

2. In the New Project wizard, scroll down and expand the SIP, select SIP Project, and click
Next, as shown in Figure 8-9.

Figure 8-9 Select SIP project

3. In the New SIP/HTTP Project window (Figure 8-10 on page 267), enter
PX21_PRS_SPLR_IMS as the name of the SIP project. Leave the other options as their
defaults and click Finish. Note that the wizard allows you to select several Web features in
the subsequent windows that are not required for this project.

Note: We select SIP Project in this step because the Presence service is SIP related.
Not all services will need a SIP project. However, other types of services may need
some kind of notification project to receive an inbound notification from the back-end
element. This will differ based on the back-end type. For example, for Parlay, an EJB
project will be needed. For some HTTP based protocols, a servlet will be need. For
other protocols that use JCA adapters, an EJB or MDB may be needed.

266 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-10 Naming the SIP project

4. Rational Application Developer creates a new SIP project and offers to open an
associated Web perspective. Because this service implementation does not have to deal
with a Web UI, click No in the Open Associated Perspective pop-up menu.

Note: By default, RAD creates a WebDiagram.gph file to enable developers to easily
create Web page flows and so on. This service implementation does not need this feature,
so close the file and continue.

Chapter 8. Developing the service implementation 267

5. This SIP project should have access to most of the libraries that were imported as part of
the J2EE Application PX21_PRS_SPLR_IMSApp. The libraries can be found under the
Utility JARs section of the enterprise application deployment descriptor. In order to point
the SIP project to Utility JARs, select the SIP Project, right-click it, and select Properties.
The SIP Project properties dialog is displayed. Select the J2EE Module Dependencies
from the left pane of the properties dialog. In the right pane, all the Utility libraries have
check boxes, as shown in Figure 8-11.

Figure 8-11 SIP Project properties dialog

6. Select the check boxes of all the JAR files in the list and click OK. This action will set the
SIP project with all the essential IBM WebSphere Telecommunications Web Services
Server libraries required for developing a service implementation.

Import the Parlay X WSDLs
After creating a SIP Project, we will now discuss how to import the required set of Parlay X
Presence WSDL and Schema definition files from the IBM WebSphere Telecommunications
Web Services Server Install location:

1. In the Project Explorer, expand the SIP project PX21_PRS_SPLR_IMS. Expand the
WebContent folder. Select the WEB-INF folder, right-click it, and select New → Folder.
The New Folder wizard is displayed (Figure 8-12 on page 269). Enter wsdl in the Folder
name text box and click Finish.

268 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-12 Create folder with the name wsdl

2. Select the wsdl folder in the Project Explorer, right-click it, and select Import.... The
Import wizard is displayed (Figure 8-13). Expand General and select File System. Click
Next.

Figure 8-13 Select File System in the Import wizard

Chapter 8. Developing the service implementation 269

3. Select the directory in the File system window. The directory is the location where
parlayx21wsdl.jar is extracted. Expand the directories, as shown in Figure 8-14.

Figure 8-14 Traversing to the Parlay X WSDL location

4. Locate and select the following files from the directory and click Finish.

– ParlayX_2_1.properties

– px_cmn_f_2_0.wsdl

– px_cmn_t_2_1.xsd

– px_prs_si_2_3.wsdl

– px_prs_ss_2_3.wsdl

– px_prs_t_2_3.xsd

8.4.2 Generating Web service bindings

The Web service bindings are the entry points to service implementation logic. Using Rational
Application Developer, two types of JAX-RPC bindings can be generated:

� Java Bindings

� EJB Bindings

The preferred binding for IBM WebSphere Telecommunications Web Services Server service
implementations are JAX-RPC Java bean bindings. The subsequent development steps
discuss the generation of the JAX-RPC Java bean bindings. The rationale behind choosing
Java Bindings is:

� JAX-RPC Java beans are comparatively lighter in weight than EJB bindings. EJB bindings
involve transaction manager and other managed processes, which add up to more
processing.

270 IBM WebSphere Telecommunications Web Services Server Programming Guide

� JAX-RPC Java beans have been easier to tune for high performance in practice because
they use servlets.

� JAX-RPC Java beans simplify the construction of converged SIP applications, as the SIP
programming model is also based on Servlets.

� Generated JAX-RPC Java beans can implement the javax.xml.rpc.server.ServiceLifecycle
interface in order to access the ServletContext and gain access to servlet resources.

EJB bindings do have some usage, for example, in services where each Web service call
corresponds to a transaction or where the service is primarily dealing with an Entity bean and
is essentially processing a one-way request.

Having prepared the project environment with the prerequisite files, we will now see how to
generate Web service bindings. The px_prs_ss_2_3.wsdl file is used to generate Web
service binding, and it comprises service, port, and address definitions.

Note: Access to the ServletContext is not thread safe. Synchronization must be used when
writing and reading data from multiple threads. Where possible, a HTTP session should be
used to avoid the impact of synchronization.

Note: As a best practice, run the WSDL validation before attempting to generate wEb
service bindings.

Chapter 8. Developing the service implementation 271

Follow these steps to generate service bindings:

1. Right-click px_prs_ss_2_3.wsdl and select Web Services → Generate Java bean
skeleton. The Web Services wizard is displayed as shown in Figure 8-15.

Figure 8-15 Web Services bindings options

272 IBM WebSphere Telecommunications Web Services Server Programming Guide

2. In the Web Services window, leave the default settings as is and click Next. The Web
Service Skeleton Java Bean Configuration window is displayed (Figure 8-16). Check the
Define custom mapping for namespace to package check box and leave the other
settings as is. Click Next.

Figure 8-16 Web Service options window

Chapter 8. Developing the service implementation 273

3. The Web Service Skeleton namespace to package mapping window is displayed
(Figure 8-17). In accordance with IBM WebSphere Telecommunications Web Services
Server design and development guidelines, we will make a few changes to the package
names here. Click Import.... The Browse Files dialog box is displayed. Select the
PX21_PRS_SPLR_IMS SIP project. Expand the folders to the wsdl folder. Select the
ParlayX_2_1.properties file. Click OK.

Figure 8-17 Web service Namespace to Package mapping selection

4. The Web service Skeleton namespace to package mapping window displays the package
name mappings for all the Parlay X namespaces (Figure 8-18 on page 275). Click Next. At
this point, RAD takes a few minutes to generate the Java files for the service and the
schema definitions following the JSR 109 specification (also known as Web Services for
J2EE 1.0). After generating the code, the wizard prompts you to start the embedded
WebSphere Application Server V6.1 instance. Do not click the Start server button; click
the Cancel button instead.

274 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-18 Web service generation wizard prompting you to start the server

Note: The code generators of Rational Application Developer fail to generate certain
variable names in the Java classes for Schema definitions. As a result, you would find
errors reported in the SIP project. These errors are because of the usage of enum as a
variable name in certain Java classes. Since enum is a reserved word in JDK™ V1.5, the
compiler reports errors for all the occurrences in the .java files.

For now, the above problem can be resolved by renaming the occurrences of enum to
enumerator. Follow the steps below to rectify the problem.

Chapter 8. Developing the service implementation 275

5. Expand the SIP project, expand to Java Resources: src, and then expand the
com.ibm.soa.parlayx21.presence package. The files ActivityValue.java,
CommunicationMeansType.java, PlaceValue.java, PresenceAttributeType.java,
PrivacyValue.java, and SphereValue.java report code errors (Figure 8-19).

Figure 8-19 Code generation errors during the creation of Web Services bindings

6. As mentioned earlier, the reason for these errors is using enum as a variable name in
some of the .java files. Open each .java file that reports these errors and replace the
variable name enum with enumerator.

7. Check the bindings code generated by RAD. This should comprise all the service
operation method signatures. Expand the package com.ibm.soa.parlayx21.presence
and locate the file PresenceSupplierBindingImpl.java. Double-click the file to open it.
Notice that all the methods have empty bodies.

Note: Rational Application Developer has the auto compilation feature. Soon after you
replace the occurrences of enum with enumerator in all the .java files, you should not see
any errors in the IDE.

276 IBM WebSphere Telecommunications Web Services Server Programming Guide

This concludes the Web Services bindings generation process.

8.4.3 Guidelines for IBM WebSphere Telecommunications Web Services
Server service implementations

In this section, we will discuss the IBM WebSphere Telecommunications Web Services
Server coding guidelines that should be followed for a service implementation. Wherever
possible, we will demonstrate the implementation by taking the Parlay X Presence Supplier
implementation as a reference.

Developing the basic utilities
Before delving into the actual service implementation code for each service operation, let us
discuss the basic utilities required by a service implementation. Following the IBM
WebSphere Telecommunications Web Services Server design guidelines, the utilities, such
as logging and tracing and message bundles, can be created first. Here are some of the
salient coding practices for custom service implementation.

Logging and tracing utilities
� We recommend using java.util.logging.Logger as the basis for logging and tracing

operational messages in the service implementations. The run time of IBM WebSphere
Telecommunications Web Services Server uses utility classes that leverage this Java
logging mechanism. We recommend that any service implementation that is intended to
be deployed in the IBM WebSphere Telecommunications Web Services Server
environment adheres to the Java logging, as this will help debug the code in a consistent
manner.

� Typically, utility classes are created to handle logging and tracing to WebSphere
Application Server First Failure Data Capture (FFDC). A sample of the class can be found
in the sample code provided with this book. Refer to the
com.ibm.twss.parlayx21.presence.supplier.utils.TraceLogger Java class (refer to
Appendix E, “Additional material” on page 399 to discover how to access this file).

� Much of the content that is logged requires appropriate messages and message codes
that provide contextual information in the logs and traces. Following the IBM WebSphere
Telecommunications Web Services Server design guidelines for message codes and
message bundle conventions, create .properties files for the default locale, which is
en_US, as well as the base .properties file. The message codes should start and end in
the Available range as per the design guidelines in “Message identifiers” on page 234.

Data access utilities
Many Parlay X Web service implementations require persistence of state as part of the
regular service operation for failover purposes. A caveat is that Parlay X Web service
implementations should always try to maintain as much state in-memory as possible in order
to improve performance. Parlay X services can choose to use JDBC for SQL access to data
sources or entity beans to access database records. To enhance performance, Parlay X Web
Services implementations should always attempt to prepare statements prior to execution,
thus allowing query caching for optimized data retrieval. If an application uses many different
types of queries, increasing the WebSphere Application Server statement cache can yield a
significant performance improvement.

For performance reasons, only local interface access to entity beans should be used. In
addition, in most cases, the scope of the EJB transaction is only database write; by default,
WebSphere Application Server assumes that a thread of execution participates in a global
transaction, which might interfere with invocations to Telecom Web service implementations

Chapter 8. Developing the service implementation 277

that execute on the same thread. The solution is to modify the EJB deployment descriptors to
use the local transaction feature of WebSphere Application Server.

For information about the exact configuration steps, refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.web
sphere.nd.doc/info/ae/ae/cjta_loctran.html

Customizing the Web service bindings
Customizing a default binding implementation generated by RAD is required in the case of
the Parlay X Presence Supplier service. In this section, we will make couple of changes to the
generated code.

� Move the Presence supplier service binding to a new package named
com.ibm.twss.parlayx21.presence.supplier.impl. This is an optional modification.

� Since the service operations should send and receive SIP messages, the binding should
be able to communicate and share session information with SIP servlets. To enable this
functionality, the binding implementation generated by RAD needs to be modified. As
described in the 8.4.2, “Generating Web service bindings” on page 270, the Binding
should implement the javax.xml.rpc.server.ServiceLifecycle interface. This change allows
the binding code to access the underlying ServletContext object at run time.

Figure 8-20 shows the source code of PresenceSupplierBindingImpl after making these
changes. The two methods init and destroy should be overridden by the binding class. The init
method gives access to the ServletContext object of this binding’s underlying servlet.

Figure 8-20 Web service binding implements ServiceLifecycle

Accessing the ServicePlatform API
As mentioned in 8.3.2, “Service Platform Application Template” on page 256, we discuss how
to use the ServicePlatform API. The underpinnings of the ServicePlatform API are a set of
utility classes and a JAX-RPC handler that wrap object references to various useful
components of IBM WebSphere Telecommunications Web Services Server. So in order to
use the ServicePlatform API, the JAX-RPC handler with the name
com.ibm.twss.platform.ServicePlatformHandler must be registered in the Web Services

Note: Refer to the PresenceSupplierBindingImpl.java code that has been made available
along with this IBM Redbooks publication.

278 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/cjta_loctran.html

deployment descriptor, which is named webservices.xml. The exact steps to make this
configuration are given in Figure 8-21 on page 279.

1. Expand the SIP project. Then expand the WebContent → WEB-INF folder. Locate the
webservices.xml. Double-click it to open it.

Figure 8-21 webservice.xml location in Project Explorer

Chapter 8. Developing the service implementation 279

2. In the Web Services Editor, locate and click the Handlers tab at the bottom of the Web
services editor pane. Go to the Handlers section (Figure 8-22).

Figure 8-22 Web service handlers section in webservices.xml

280 IBM WebSphere Telecommunications Web Services Server Programming Guide

3. In the Handlers section, click Add. This action opens up the Class Browser. Type the class
name com.ibm.twss.platform.ServicePlatformHandler into the text box provided. If the
CLASSPATH is configured properly, as per the directions in the J2EE Dependency
Modules setup (illustrated in 8.3.3, “Creating a custom service project” on page 257), you
should be able to find the class name and Java package in the Matching Types list. Select
the ServicePlatformHandler from the list and click OK.

Figure 8-23 ServicePlatformHandler selection

4. Save the changes to Web Services Editor. Select File → Save. If the package and the
Handler class name is not displayed in the Handlers section, then close the editor and
re-open it.

Chapter 8. Developing the service implementation 281

5. Go to Handlers section (Figure 8-24). Select
com.ibm.twss.platform.ServicePlatformHandler, and in the right side of the window,
optionally enter a display name for the handler; we enter ServicePlatformHandler. Save
the changes to Web Services Editor by selecting File → Save.

Figure 8-24 Configuration of ServicePlatformHandler

6. By configuring the ServicePlatformHandler, the service implementation can now have
access to the following request context information:

– Transaction Identifier

– Requester Identifier

– Service Identifier

– Service Operation Identifier

– Exceptions encountered during processing of ServicePlatformHandler

– Policies that are attached to the request as a result of processing in the Access
Gateway Flow and mediations

– Requester’s Locale information

– Resolved Group members, if any

– The request URL

The Service Platform API methods for accessing the request context information can only
access this information during the processing of an incoming request from Access
Gateway. If an asynchronous thread is executing, either as a result of a message driven
bean or due to a response received from a network element, the information from the
original request is not available. If the service knows that this request information is

282 IBM WebSphere Telecommunications Web Services Server Programming Guide

desired during later execution, it should retrieve the information while it has access to it,
and store or cache it in the appropriate data structures as necessary for later access.

7. Utilizing the features of ServicePlatform API, we will see how to access the client
interfaces of the IBM WebSphere Telecommunications Web Services Server common
component services. Open the PresenceSupplierBindingImpl.java in the SIP project. Go
the method “publish” and add the code to access the common component client
interfaces, as shown in Figure 8-25.

Figure 8-25 Using ServicePlatform API to access common component client interfaces

So far, we have seen the basic configuration required to set up the development environment
and the utilities given by IBM WebSphere Telecommunications Web Services Server for
custom service implementation development. In the next section, we will discuss the
invocation sequence of common components from the service implementation code.

8.4.4 IBM WebSphere Telecommunications Web Services Server common
component invocations

The ServicePlatform API provides access to the client interfaces of all common components
of IBM WebSphere Telecommunications Web Services Server. The usage of each individual
common component depends on the type of service being implemented. Certain common
components are only used depending on the nature of request processing required in the
service implementation, such as PXNotify and Notification Management common
components. For more information about common components, refer to Chapter 6, “Common
components” on page 203. In our sample Parlay X Presence Supplier service

Chapter 8. Developing the service implementation 283

implementation, we will implement the common component invocation sequence shown in
the following sections.

Admission Control Client
The Admission Control client will be the first common component to be called in the service
operation logic of the service binding. Refer to 6.2.1, “Admission Control component Web
service” on page 205 for more information about available admission control client operations,
the request, the response, and faults. The code snippet shown in Example 6-2 on page 215 is
provided for your reference.

Privacy Client
Typically, the next common component that is invoked in the sequence is the Privacy Client.
Privacy integration is required to check requester’s authorization to access the information of
a named party that is already registered or accessible in the network. In most cases, the
identifier of a party in the IMS network is typically a SIP or TEL URI, such as
sip:user1@example.com or sip:11122233344@example.com or tel:11122233344. Privacy
service implementation is not provided out-of-box with IBM WebSphere Telecommunications
Web Services Server. Therefore, Privacy Client invocation can be treated as optional
functionality. However, if a privacy implementation is provided, we want the Parlay X Presence
Supplier service to make a call to Privacy service and perform an authorization check. A code
snippet of Privacy Client invocation is provided in Example 8-3.

Example 8-3 Privacy Client code sample

// Create Request object
VerifyPrivacyPermitsRequest privacyRequest = new

VerifyPrivacyPermitsRequest();
// Set Current Application Name
privacyRequest.setService(publishReq.getApplicationName());
// Set Current Operation Name
privacyRequest.setOperation(publishReq.getOperation());
// Set Transaction identifier
privacyRequest.setGlobalTransactionID(publishReq

.getGlobalTransactionId());
// Set Requester identifier
privacyRequest.setRequester(publishReq.getRequesterId());
// Set Role identifier
privacyRequest.setActingOnBehalfOf(publishReq.getRequesterId());
// Get Target Parties from Request
String[] requestTargets = publishReq.getTargets();
// Set the targets / party addresses
privacyRequest.setTargets(requestTargets);
// Privacy service call
boolean privacyResults[] = privacyClient

.verifyPrivacyPermits(privacyRequest);

Traffic Shaping Client
After Admission Control Client invocation, the Traffic Shaping Client should be invoked. The
Traffic Shaping service depends on another common component, the Network Resources.

Note: In order for the Service implementation to access and leverage the features of
Common components such as Admission Control and Traffic Shaping, certain
configurations are mandatory. For more information about the mandatory configuration
settings for services, refer to 8.6, “Configurations for a new service” on page 291.

284 IBM WebSphere Telecommunications Web Services Server Programming Guide

Typically, the service implementations eventually communicate with at least one network
element. The Network Resources common component allows you to define a network
resource mapping or alias for a specific network element and the set of attributes that affect
the network element’s processing capabilities. In the case of Parlay X Presence Supplier, the
Traffic Shaping service essentially should control the outflow of requests to a particular
network resource, so that the total number of requests do not exceed a predefined limit at any
given point of time. The limits designated for a specific network resource can be configured in
the IBM WebSphere Telecommunications Web Services Server Administration Console.
Refer to 8.6.1, “Admission Control configuration settings” on page 291 for more details.

The Traffic Shaping service operation that should be invoked is verifyResourceCapacity. In
Example 8-4, you will find the corresponding Request and Response objects. The two
significant method calls on VerifyResourceCapacityRequest are:

� setResource(): This method takes the Network Resource Name that is intended to be
used by this service. Typically, the network resource name or the alias for a network
element with which the service interacts is defined as part of the Service’s Java
Management Extensions (JMX) MBean attribute. This technique allows for the
configuration of a network resource name from the IBM WebSphere Telecommunications
Web Services Server Administration Console.

� setRequestCapacity(): This method takes an int type as its argument. The total number of
atomic or indivisible interactions between a service and a network element for a given
service operation should be specified here. In the case of the Parlay X Presence Supplier
service, for the publish operation, the interaction with presence server is a single SIP
PUBLISH. Since the publish is a one-way service operation, the requested capacity for a
single service operation invocation is 1.

For your reference, a code snippet of the Traffic Shaping client is provided in Example 8-4.

Example 8-4 Traffic Shaping client code sample

PublishPresenceServiceRequest publishReq =
(PublishPresenceServiceRequest) req;

// Create Request Object
VerifyResourceCapacityRequest capacityRequest = new

VerifyResourceCapacityRequest();
// Set Current Application name
capacityRequest.setService(publishReq.getApplicationName());
// Set Current Operation name
capacityRequest.setOperation(publishReq.getOperation());
// Set Transaction identifier

capacityRequest.setGlobalTransactionID(publishReq.getGlobalTransactionId());
// Get the Presence Resource Name from MBean Attributes
capacityRequest

.setResource(PresenceSupplierAttributes.PRESENCE_SERVER_RESOURCE_NAME
.getName());// Only 1 SIP PUBLISH is sent to Presence

Server
capacityRequest.setRequestCapacity(1);
com.ibm.soa.sp.trafficsh.VerifyResourceCapacityResponse

capacityResponse = trafficShapingClient
.verifyResourceCapacity(capacityRequest);

Chapter 8. Developing the service implementation 285

Usage Record Client
The Usage Record common component stores the usage information for all the IBM
WebSphere Telecommunications Web Services Server services that are available for external
applications to invoke. The usage information is recorded specifically for each invocation of
the service operation by a client application. A usage record is primarily recorded after
successful execution of the core service logic. Also, your design may require recording usage
in the event of failures as well, since the service and infrastructure spent time and resources
in servicing the request.

Therefore, during the development phase, it is important to invoke the Usage Records client
at significant points in the code based on the design decisions of the service. The status code
of a usage record identifies one of the three possible outcomes that can be recorded after the
execution of the core service logic. The status codes are:

� 0: The core service logic execution is successful.

� 1: A general failure is encountered anywhere in the service operation logic. These failures
might include failures from common component invocations also.

� 2: A failure is encountered during the privacy component invocation.

As a reference, a code snippet of the Usage Record client is provided in Example 8-5.

Example 8-5 Usage Record client code sample

// Create Request Object
WriteUsageRecordRequest usageRecordReq = new

WriteUsageRecordRequest();
// Set Current Application name
usageRecordReq.setService(publishReq.getApplicationName());
// Set Current Operation name
usageRecordReq.setEventType(publishReq.getOperation());
// Set Transaction identifier
usageRecordReq.setGlobalTransactionID(publishReq

.getGlobalTransactionId());
// Set Current time
usageRecordReq.setRecordTime(System.currentTimeMillis());
// Set Status code
usageRecordReq.setCode(statusCode);
// Set Policy Names
usageRecordReq.setServiceAttributes(namesArray);
// Set Policy Values
usageRecordReq.setServiceValues(valuesArray);
WriteUsageRecordResponse usageRecordRes = usageRecordClient

Note: Typically, in any service implementation, the core logic of the service operation is
executed after invoking the Traffic Shaping client for each service operation. Refer to the
core logic implementation for Parlay X Presence Supplier sample in 8.5, “Implementing the
core logic of the service” on page 287.

Note: The Java Management Extensions (JMX) MBean is an essential component of a
service implementation. The design guidelines of IBM WebSphere Telecommunications
Web Services Server recommends the usage of JMX for managing the service
implementation configurations. For more information, refer to 8.7.1, “Developing the JMX
MBean for service” on page 300.

286 IBM WebSphere Telecommunications Web Services Server Programming Guide

.writeUsageRecord(usageRecordReq);

Fault and Alarm Client
As part of the service logic, the Fault Alarm common component must invoked to record
erroneous situations that might occur during the execution of service logic. The Fault and
Alarm component emits a JMX event by default. Additionally, the Fault and Alarm component
can be enabled to emit a Common Base Event (CBE) by utilizing the Common Event
Infrastructure (CEI). For more information about design related guidelines as well as coding
guidelines, refer to 6.6.4, “Invoking IBM WebSphere Telecommunications Web Services
Server Fault and Alarm common components” on page 218.

In this section, we discuss the common component client invocations that are required for
Parlay X Presence Supplier sample service. In the next section, we discuss the core service
logic that communicates with Presence Server to accomplish the publish service operation
functionality.

8.5 Implementing the core logic of the service

The core of service logic has a dependency on the network protocol and infrastructure that
the service interacts with. Typically, service logic comprises at least four activities:

� Construction of a request in a protocol that is specific to a back-end network element.

� Transmission of the request to the network element.

� Reception of responses, if any, from the network element.

� Maintaining the appropriate state data in a database (if necessary) for the service to
support all operations. Not all services have state data that needs to be shared on a
cluster, or between threads.

Response handling
As with any Web service implementations, most of the service operations in Parlay X service
interfaces follow four patterns.

Request - reply pattern
The most common pattern followed by most of the operations of Parlay X Service Interfaces.
The service operation execution is synchronous in nature. Typically, for every request sent by
the service operation logic, the network element responds within a finite amount of time. If
there is an exception, depending on the protocol, the appropriate error information is sent by
the network element.

Request - only pattern
Few Parlay X service operations demonstrate this pattern. The service operations that
service requests do not guarantee a successful execution completion. A request is sent by
the service operation logic to a network element on a best effort basis. From a client
application perspective, the service invocation does not yield for any response, for example,
the Parlay X Presence Supplier publish operation. Some operations return “void”, but they
return exceptions that are a valid response.

Chapter 8. Developing the service implementation 287

Response - only pattern
Few Parlay X service operations exhibit this pattern. Typically, in this kind of scenario, the
required request context information to query a network element is already available to the
service run time, or could be constructed through other standard mechanisms, such as, for
example, the identity assertion mechanism, by which a party’s credentials are obtained. The
request context information thus established is used as the basis for sending a request
message to network element. From a client perspective, the service invocation results in a
response.

Request with asynchronous responses pattern
Some of the Parlay X service interfaces are comprised of service operations that follow this
pattern. Asynchronous responses are delivered in Parlay X as callback requests that are
synchronous requests. The service operation is responsible for constructing the request and
transmitting to a network element. As part of the operation, the network element may send
one or more responses that stretch over a period of time. The core service logic should
basically be able to handle asynchronous events as well as handle synchronization of threads
in some cases. “Synchronizing threads and handling asynchronous events” discusses the
design aspects needed to meet this requirement. Finally, note that the semantics of a Parlay
X API may different from the request semantics of the back-end network protocol, and in
some cases some adaptation of protocols call sequences are necessary.

Synchronizing threads and handling asynchronous events
From the above patterns, we understood that few Parlay X service operations are defined to
be synchronous. This means that the service operations execute the logic and return a result
object. Few services are asynchronous and return only an identifier that allows a subsequent
request to check on the status of the request submitted earlier or expect a callback when the
task is completed.

There are cases where the service operation is synchronous in nature, but the interaction
between the service core logic and the back-end network element may be asynchronous.
This behavior is typical with services that involve protocols such as Parlay and SMPP. In
these circumstances, the service should map a synchronous method operation onto an
asynchronous thread, which is complicated within an application server environment like
WebSphere Application Server.

This coordination of synchronous and asynchronous activities will require the synchronization
of multiple threads of execution, and in order to avoid scalability problems or deadlock
problems, it will be necessary to limit the time that one thread waits on the other incoming
thread to a minimal duration. Additionally, sometimes the response from the network element
might arrive even before the requester is ready to receive it, or perhaps even the response did
not return at all. These boundary conditions must be considered when designing the service
logic.

To coordinate the request and asynchronous responses, a unique request identifier will be
required. The call flow for coordination between threads would require the operation to have
logic similar to this chain:

1. Thread A will identify the appropriate request identifier, such as an assignmentId.
Sometimes this identifier may not be available until the response is received with a unique
correlation identifier.

2. Thread A will look up or create an instance of a result object indexed by the request
identifier as soon as possible.

3. Thread A will make the asynchronous request to the back-end network element using the
request identifier or somehow associate the request identifier to the request that is being
sent to backend.

288 IBM WebSphere Telecommunications Web Services Server Programming Guide

4. Thread A will wait for a finite period of time for the asynchronous response to arrive and
retrieve the result data and release the result object.

5. If a timeout occurs, Thread A will return the appropriate non-response error to the client
application.

6. If a result is returned, Thread A will return the appropriate results to the application, and
remove the result object.

7. Thread B will be used to process any incoming responses to the asynchronous request
sent earlier.

8. Thread B will retrieve the request identifier from the response data.

9. Thread B will look up or create the result object indexed by the request identifier.

10.If the result object is created, either Thread A has not yet created the result object, or has
already timed out and consequently the result object is removed by Thread A. The result
object created by Thread B should also be removed or be scheduled to be removed in
such case.

11.If the result object is found, Thread B will set the result and notify the waiting Thread A with
the accumulated result.

12.Thread B returns. Essentially, the client application gets callback notification from IBM
WebSphere Telecommunications Web Services Server run time.

13.Thread C will periodically check for older result objects and remove them.

Presence Supplier publish operation
The core service logic of the publish service operation in the Parlay X Presence Supplier
interface should send a SIP PUBLISH request to a Presence Server. As the publish is a
one-way operation, a successful submission of SIP PUBLISH to the Presence server is
considered the completion of the operation’s execution. In 8.4.4, “IBM WebSphere
Telecommunications Web Services Server common component invocations” on page 283,
the service binding code for the publish method invokes the prerequisite common
components prior to executing the SIP code.

Note: The request identifier that is embedded in the request to the back-end network
element is typically returned in the response. This serves as a correlation identifier for the
service logic to continue with response processing.

Note:

� Although this approach works well for handling asynchronous events, planning for the
appropriate capacity and sizing of the infrastructure to handle asynchronous events
while handling synchronous requests is a must.

� Since the Web container request thread that is waiting for the asynchronous results
negatively impact the scalability of the application server run time, for example, in cases
where the number of requests that require asynchronous responses reach the number
of Web container threads, it is necessary to increase the Web container thread pool
size to a larger number to account for the scalability issue.

Chapter 8. Developing the service implementation 289

The code snippet in Example 8-6 shows how the SIP servlet is being called to create a SIP
PUBLISH request.

Example 8-6 Sample code to call a SIP Servlet from Service Binding

// Invoke the core logic of service operation
// call SIP Servlet
PublishServlet pubServlet = PublishServlet

.getInstance(endpointContext.getServletContext());
PresencePublish presencePublish = new PresencePublish(req,

sipFactory);
SipServletRequest sipRequest = pubServlet.createInitialPublish(

presencePublish, getSipApplicationSession());
sipRequest.send();

The publish method in Service bindings code uses the Servlet Context object reference to
access a specific SIP servlet that handles SIP PUBLISH logic. We recommend creating the
required data structures to capture the request context that is made available through the
Service Platform API and use the data structures for downstream processing. For reference,
follow the sample in Example 8-7.

Example 8-7 Sample code for the SIP PUBLISH request

// Create From URI & To URI
SipURI fromURI = validateSipURI((SipURI) publishable.getPresentityURI(),

publishable);
SipURI toURI = validateSipURI((SipURI) publishable.getPresentityURI(),

publishable);
// Create SIP PUBLISH request
sipRequest = sipFactory.createRequest(sas, "PUBLISH", fromURI,

toURI);
// Request URI is the Presence Server SIP URI
SipURI reqURI = (SipURI) sipFactory.createURI(presenceServerURI);
reqURI.setTransportParam("TCP");
sipRequest.setRequestURI(reqURI);
// Add 'presence' Event Header
sipRequest = setEventHeader(publishable, sipRequest);
// Add 'P-Asserted-Identity'
sipRequest = addPAssertedIdentity(publishable, sipRequest);
// Set SIP PUBLISH request Expiration
sipRequest.setExpires(publishable.getPresenceTimeout());
// Add content to SIP Request
String content = publishable.getContent();
xLogger.info("createInitialPublish", "PIDF Content: \n"+content);
if (content != null) {

int contentLength = content.length();
sipRequest.setContentLength(contentLength);
sipRequest.setContent(content, "application/pidf+xml");

}

The publish method should invoke the Usage Records common component client after
executing the SIP request handling logic. Typically, the Usage Records client is invoked in the
case of a successful execution of the service logic as well as in some failure cases. However,
the usage information recorded should be qualified by the appropriate status codes. Refer to
“Usage Record Client” on page 286 for more information.

290 IBM WebSphere Telecommunications Web Services Server Programming Guide

In this section, we discussed the service logic specific details as well as the invocation of
various common components. In 8.6, “Configurations for a new service” on page 291, we will
discuss the configuration requirements for the scenario sample, Parlay X Presence Supplier
service.

8.6 Configurations for a new service

In IBM WebSphere Telecommunications Web Services Server, configuration settings play a
significant role for any service that is deployed in order to realize a fully functional service.
The functionality of common components, namely Admission Control, Traffic Shaping, and
Network Resources, depend on the configuration settings created for a specific service. The
following sections discuss these configurations in detail.

8.6.1 Admission Control configuration settings

Admission Control configuration specific to a service should have four properties defined at
the service level as well as at the operation level. The properties are the Description, Service
Weight, ServiceLocalRateLimit, and ServiceClusterRateLimit. The Admission Control
component decides about allowing or disallowing a service operation call made by the client
application based on the values configured for these four properties. For more information
about the algorithm implemented by the Admission Control component, refer to the section
“Administering the Admission Control Component Web service” in the IBM WebSphere
Telecommunications Web Services Server InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

The configuration settings are persisted in a IBM WebSphere Telecommunications Web
Services Server database in a table with the name CONFIGPROPERTIES. For the out-of-box
services, IBM WebSphere Telecommunications Web Services Server provides Database
Definition Language (DDL) files, which should be executed during the deployment process of
each individual service. Following the same procedure, the DDL shown in Example 8-8 is
created for Parlay X Presence Supplier service.

Example 8-8 Admission Control component configuration settings for Parlay X Presence Supplier
service

INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.Description','IMS-based
Parlay X Presence Supplier Web service');
INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.ServiceWeight','1');
INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.ServiceLocalRateLimit','1
000');
INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.ServiceClusterRateLimit',
'5000');

Chapter 8. Developing the service implementation 291

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

The settings shown in Example 8-9 are for the publish service operation of the Parlay X
Presence Supplier service.

Example 8-9 Admission Control component configuration settings for publish operation

INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.Operations.publish.Descri
ption','Publish a presentity''s rich presence information');
INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.Operations.publish.Operat
ionWeight','1');
INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.Operations.publish.Operat
ionLocalRateLimit','1000');
INSERT INTO CONFIGPROPERTIES
VALUES('template.AdmissionControlMBean.PX21_PRS_SPLR_IMS.Operations.publish.Operat
ionClusterRateLimit','5000');

For the sample scenario, the functionality implemented is limited to publish service operation
only. Depending on the number of operations that will be supported in a service, a similar set
of configuration settings should be created for each service operation starting with the
service-specific settings.

The configuration values set using the DDL files can be modified using the IBM WebSphere
Telecommunications Web Services Server Administration console. After implementing the
JMX MBeans for the Parlay X Presence Supplier service, we will discuss the configuration
modifications in detail. Refer to 8.7, “Management provisions for new service” on page 299.

8.6.2 Traffic Shaping configuration settings

Traffic Shaping configuration settings are dependent on Network Resources common
component configuration settings. The required set of properties for the Network Resources
common component are Name, MaxAverageSustainedRate, and MaxBurstSize. Prior to the
execution of a service operation call, the Traffic Shaping common component invokes the
Network Resources Web service and employs an algorithm to decide if the calls to the
network element are allowed or not. For more information about the processing and algorithm
employed by Traffic Shaping common component, refer to the section “Administering the
Traffic Shaping component Web service” in the IBM WebSphere Telecommunications Web
Services Server InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

The configuration settings for the Traffic Shaping component specific to a service are
persisted in a Database table with the name CONFIGPROPERTIES. The Database Definition
Language (DDL) file for creating the configuration settings is shown in Example 8-10.

Example 8-10 Traffic Shaping component configuration settings for Parlay X Presence Supplier service

INSERT INTO CONFIGPROPERTIES VALUES
('template.NetworkResource.PX21_PRS_SPLR_IMS.Name','A SIP SIMPLE presence
server.');
INSERT INTO CONFIGPROPERTIES VALUES
('template.NetworkResource.PX21_PRS_SPLR_IMS.MaxAverageSustainedRate','1000');
INSERT INTO CONFIGPROPERTIES VALUES
('template.NetworkResource.PX21_PRS_SPLR_IMS.MaxBurstSize','1000');

292 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

The configuration values set using the DDL files can be modified using IBM WebSphere
Telecommunications Web Services Server Administration console.

8.6.3 Initial service policy settings

Similar to the configuration settings for a IBM WebSphere Telecommunications Web Services
Server service, the initial service policy settings enable the utilization of a service. Hence,
creation of the initial service policies is an important activity during the deployment phase of a
IBM WebSphere Telecommunications Web Services Server service. References about the
initial service policy creation can be found in the sections “Initializing Policies” and
“Reference: default Policies for the Access Gateway and Web service implementations” in the
IBM WebSphere Telecommunications Web Services Server InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

Service policies and IBM WebSphere Telecommunications Web Services
Server admin console
The Policy attributes of a IBM WebSphere Telecommunications Web Services Server service
are persisted in the IBM WebSphere Telecommunications Web Services Server subscription
management database tables. Similar to the out-of-box services, the Parlay X Presence
Supplier service should have an associated initial set of policies. The standard way to create
these initial policies are to compose Jython scripts and execute the script using the
WebSphere Application Server command-line administration tool wsadmin.sh. In the
following sections, we will walk you through the required set Jython scripts with relevant
explanations.

Creating the initial policies for Parlay X Services
The base policies of IBM WebSphere Telecommunications Web Services Server are similar
to meta-data, based on which service implementations are registered during the deployment
phase, accessed by the subscription management at run time during request processing, and
accessed by the IBM WebSphere Telecommunications Web Services Server administration
console to enable management of services. These policies are defined for the service
interface name, and the set of operations that belong to each service.

The base set of policies typically define the following entities pertaining to a service:

� The Type entity denotes the kind of service supported by IBM WebSphere
Telecommunications Web Services Server. Typically it is Parlay X only.

� The Service Identifier entity is a short descriptive string to identify a particular service
interface.

� The Parent entity basically allows a self referential parent-child relationship with the
Service Identifier.

� The Enabled entity is a flag that denotes whether a service is active or inactive.

Note: For more information about Parlay X V2.1 specifications, go to:

http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX21.html

Chapter 8. Developing the service implementation 293

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp
http://portal.etsi.org/docbox/TISPAN/Open/OSA/ParlayX21.html

As a reference, let us look at the Parlay X Presence Consumer service base policies. The
Jython script for creating these policies is provided in Example 8-11.

Example 8-11 Initial policies of Parlay X Presence Consumer service definition

import sys.argv
import getopt

from pytwss.mbean import spm_mbean
from pytwss.utils import _, log
from pytwss.mbean.spm_mbean import SERVICE, SERVICE_GROUP

def main(**kwargs):
svc_admin = spm_mbean.ServiceAdministration()

Initialize Presence
spm_mbean.createService(svc_admin, 'Presence',

 'Parlay X', 1, 'Parlay X Presence', SERVICE_GROUP)
spm_mbean.createService(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/consumer/v2_3/interface',
 'Presence', 1, 'Parlay X Presence Consumer Service', SERVICE)

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/consumer/v2_3/interface',
 'subscribePresence', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/consumer/v2_3/interface',
 'getUserPresence', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/consumer/v2_3/interface',
 'startPresenceNotification', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/consumer/v2_3/interface',
 'endPresenceNotification', 1, '')

spm_mbean.createService(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface',
 'Presence', 1, 'Parlay X Presence Supplier Service', SERVICE)

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface',
 'publish', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface',
 'getOpenSubscriptions', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface',
 'updateSubscriptionAuthorization', 1, '')

spm_mbean.createOperation(svc_admin,

294 IBM WebSphere Telecommunications Web Services Server Programming Guide

'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface',
 'getMyWatchers', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface',
 'getSubscribedAttributes', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface',
 'blockSubscription', 1, '')

spm_mbean.createService(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/notification/v2_3/interface',
 'Presence', 1, 'Parlay X Presence Notification Service', SERVICE)

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/notification/v2_3/interface',
 'statusChanged', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/notification/v2_3/interface',
 'statusEnd', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/notification/v2_3/interface',
 'notifySubscription', 1, '')

spm_mbean.createOperation(svc_admin,

'http://www.csapi.org/wsdl/parlayx/presence/notification/v2_3/interface',
 'subscriptionEnded', 1, '')

The following points can be noted:

� The first statement in the script registers a Service Group type, which is identified by the
name Presence. A service group is a collection of service interfaces.

� The service group identifier Presence is of type Parlay X.

� The Presence service group is flagged as enabled or active.

� Along with the above information, a meaningful description of the service group is also
provided.

� The parent entity in this case is the word SERVICE_GROUP.

Let us look at the statements that create policies for a service:

� The second statement in the script registers a Service type, which is identified by the
name Presence. A service is distinguished by the service XML namespace.

� The http://www.csapi.org/wsdl/parlayx/presence/consumer/v2_3/interface object is the
namespace for the Parlay X Presence consumer service interface.

Chapter 8. Developing the service implementation 295

� The Presence service is flagged as enabled or active.

� The parent entity in this case is the namespace mentioned above.

After creating policies for a service, let us look at the creation of policies for service
operations:

� The third statement in the script registers a service operation with the name
subscribePresence.

� The operation is flagged as enabled or active.

� There is no description provided in this case.

The rest of the statements in the script are for creating policies for the Presence Supplier and
Presence Notifications service interfaces and their respective service operations.

Creating policies for service implementation
In IBM WebSphere Telecommunications Web Services Server, policies are created for
out-of-box Parlay X service implementations during the deployment phase of their respective
services. In the case of a custom Parlay X service implementation, a set of initial policies
associated with it should also be created. The standard way to create service policies is to
compose a Jython script and execute the scrip using the wsadmin.sh command line
administration tool. As a reference, let us look at the sample script shown in Example 8-12.

Example 8-12 Sample script for creating service policies

import sys.argv
import getopt
from com.ibm.twss.spm.admin.common import ScopedPolicy
from com.ibm.twss.spm.admin.common import PolicyValue

from pytwss.mbean import spm_mbean, mbean_utils
from pytwss.utils import _, log

SI_SERVICE = 'http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface'
SVC_GROUP = 'PresenceSupplier'
SERVICE_IMPL = 'PX21_PRS_SPLR_IMS'
SI_IMPL = 'PX21_PRS_SPLR_IMS_SI'

def main(**kwargs):
 req_scope = 'ALL'
 if kwargs.has_key('req_scope'):
 req_scope = kwargs['req_scope']
 #svc_scope = SVC_GROUP
 svc_scope = SI_IMPL
 if kwargs.has_key('svc_scope'):
 svc_scope = kwargs['svc_scope']
 op_scope = 'ALL'
 if kwargs.has_key('op_scope'):

Note: It is possible to have multiple Service Implementations for a single Service Interface.
At run time, the Web service requests from client applications comprise the service
namespace. This namespace declaration in the request is used by IBM WebSphere
Telecommunications Web Services Server to route the request to a specific service
implementation. A detailed discussion about this topic is provided in “Creating policies for
service implementation”.

296 IBM WebSphere Telecommunications Web Services Server Programming Guide

 op_scope = kwargs['op_scope']

 log(_("SOAC7550I") %{ 'impl' : SERVICE_IMPL })

 svc_admin = spm_mbean.ServiceAdministration()
 policy_admin = spm_mbean.PolicyAdministration()

 spm_mbean.registerServiceImplementation(
 svc_admin, SI_SERVICE, SI_IMPL, 1,
 'Parlay X V2.1 Presence Supplier IMS Service')

 policies = [
 ScopedPolicy(
 requesterIdentifier=req_scope,
 serviceIdentifier=svc_scope,
 operation=op_scope,
 name='service.config.ServiceImplementationName',
 value=PolicyValue(
 value='PX21_PRS_SPLR_IMS',
 type='String'
)
),
 ScopedPolicy(
 requesterIdentifier=req_scope,
 serviceIdentifier=svc_scope,
 operation=op_scope,
 name='service.config.presence.supplier.PresenceServerURI',
 value=PolicyValue(
 value='',
 type='String'
)
),
 ScopedPolicy(
 requesterIdentifier=req_scope,
 serviceIdentifier=svc_scope,
 operation=op_scope,
 name='service.Endpoint',
 value=PolicyValue(

value='http://9.3.4.188:9080/PX21_PRS_SPLR_IMS/services/PresenceSupplier',
 type='String'
)
),
 ScopedPolicy(
 requesterIdentifier=req_scope,
 serviceIdentifier=svc_scope,
 operation=op_scope,
 name='service.config.presence.supplier.PresenceServerResourceName',
 value=PolicyValue(
 value='PX21_PRS_SPLR_IMS',
 type='String'
)
),
 ScopedPolicy(
 requesterIdentifier=req_scope,

Chapter 8. Developing the service implementation 297

 serviceIdentifier=svc_scope,
 operation=op_scope,
 name='service.config.presence.supplier.PublishPresenceTimeout',
 value=PolicyValue(
 value='',
 type='String'
)
),
 ScopedPolicy(
 requesterIdentifier=req_scope,
 serviceIdentifier=svc_scope,
 operation=op_scope,
 name='service.config.presence.supplier.SubscribePresenceWinfoTimeout',
 value=PolicyValue(
 value='',
 type='String'
)
)
]
 spm_mbean.createPolicies(policy_admin, policies)
 log(_("SOAC7551I") %{ 'impl' : SERVICE_IMPL })

From the above script, the following points can be noted:

� After the variable definitions, the applicability scopes are defined. The applicability of
these policies are for a service implementation with the name PX21_PRS_SPLR_IMS.
This identifier is the name of Enterprise Application comprised of the Parlay X Presence
Supplier service implementation. The scopes defined here enable the subscription
management function of IBM WebSphere Telecommunications Web Services Server to
route an incoming request to a specific service implementation. The scopes are:

– Requester

– Service Identifier

– Operation

� In the next significant statement, the JMX MBean references of Service Administration
and Policy Administration, which are an integral part of Service Policy Manager, are
obtained.

� The method call to register the service implementation creates a subscription entry in the
Service Policy Manager database table.

� After registering the service implementation name, a set of service policies are created
with the scope Requester as ALL, Service Identifier as PX21_PRS_SPLR_IMS_SI, and
the Operation scope as ALL.

Note: The Service Policy Manager console, which is an essential tool provided in IBM
WebSphere Telecommunications Web Services Server, is used to manage policies. It
should be possible to create the above mentioned policies using the SPM console. Due to
a limitation in the SPM console in IBM WebSphere Telecommunications Web Services
Server V6.2, creation of policies specific to a service implementation should be done at the
service definition level, not at the service implementation level. However, in a future
release, this functionality will be made available in the Service Policy Manager Console.

298 IBM WebSphere Telecommunications Web Services Server Programming Guide

In this section, we discussed the creation of the initial service settings and service policies for
Parlay X Presence Supplier service. In the next section, we will walk you through the steps to
create JMX MBeans and related artifacts to allow management of the service.

8.7 Management provisions for new service

The IBM WebSphere Telecommunications Web Services Server administration console is
integrated with the WebSphere Application Server administration console. The IBM
WebSphere Telecommunications Web Services Server administration console allows
administrators to manage the JMX MBean attributes of all services available in IBM
WebSphere Telecommunications Web Services Server. A custom service implementation
should also provide adequate support to manage the service and its attributes. By design,
IBM WebSphere Telecommunications Web Services Server requires MBeans to be created
specific to a service. During the processing of a request, if the policies are not found as SOAP
headers in the request, the service implementation logic is obligated to use MBean attribute
values of the service and process the request.

IBM WebSphere Telecommunications Web Services Server provides several libraries and a
suggested packaging structure for registration and automatic rendering of the administration
Web pages in the IBM WebSphere Telecommunications Web Services Server administration
console. The IBM WebSphere Telecommunications Web Services Server administration
console plug-in automatically handles navigation and rendering of Web content. The
guidelines below describe how to construct and register a service implementation MBean. By
registering the MBean of a service implementation, the MBean service specific attributes
appear in the appropriate locations on the IBM WebSphere Telecommunications Web
Services Server administration pages within the administration console.

In order to provide management features to a new service implementation, the following
integration activities should be performed:

� An implementation of the com.ibm.soa.common.mbean.ServiceComponent interface
class should be coded. The service specific implementation of the above interface will
coordinate with MBean instances of the IBM WebSphere Telecommunications Web
Services Server administration console and the service implementation MBean instance.

� An MBean implementation specific to the service implementation. IBM WebSphere
Telecommunications Web Services Server Administration console provides three types of
interfaces that extend the JMX javax.management.DynamicMBean interface. One of these
provided interfaces should be extended for each MBean implementation of a specific
service implementation. While it is it is true that it must inherit from DynamicMBean, it
generally needs to conform to one of the IBM WebSphere Telecommunications Web
Services Server MBean interfaces as well.

Note: The sample scripts discussed in this section are available for download. Refer to
Appendix E, “Additional material” on page 399 for detailed instructions on how to download
and work with this sample code.

Chapter 8. Developing the service implementation 299

8.7.1 Developing the JMX MBean for service

The JMX MBeans and any supporting classes should be bundled along with the enterprise
application that contains the service implementation. Refer to 8.3.2, “Service Platform
Application Template” on page 256 for details about creating a custom service application
based on a Service Platform Application Template. The platform.ear comprises several
libraries and a deployment descriptor to enable integration of service specific MBean
implementations with the IBM WebSphere Telecommunications Web Services Server
administration console. These libraries contain components that initialize and register service
specific MBean implementations during the startup process of the service enterprise
application.

Prerequisites for Service Management provisions
The com.ibm.soa.common.mbean.ServiceComponent interface provides the entry point for
the IBM WebSphere Telecommunications Web Services Server administration console
sub-system to initialize and register service implementation specific MBeans. The
implementing class is registered with the IBM WebSphere Telecommunications Web Services
Server administration console sub-system.

A Java archive (JAR) file comprising the Service component implementation described
above, the MBean implementation, and any supporting helper classes should be created.
This JAR file name should be specified in an additional deployment descriptor with the name
admin.xma. The admin.xma should be bundled in the META-INF folder of the enterprise
application archive (EAR) that comprises a service implementation. The admin.xma uses a
simple comma-delimited format to initialize a service implementation specific service
component class. The service component class then initializes and registers MBean
implementations of the service implementation.

In the admin.xma, multiple lines can be used to register multiple service components. The
meanings of these fields are described below:

� Category Name: The possible category names are:

– Service: This category is intended for all service implementations. Based on this
category, the service specific MBean attributes are rendered in a separate Web page
in the IBM WebSphere Telecommunications Web Services Server administration
console.

– SupportService: This category is intended for support service implementations such as
the Service Platform common components or other application components that
provide utilities commonly consumed by all services in the Service Platform.

Note: The startup process of an application on WebSphere Application Server happens
because of:

� Post deployment of an application to the application server, if the application is required
to be active and service requests. The administrator can start the application using
WebSphere Administration Console.

� During the startup process of an application server instance, all the deployed
applications are also started.

Note: The admin.xma deployment descriptor uses the following format:

<Category Name>,<Order>,<Component Name>,<Service Component class>,<J2EE
Utility JAR name>

300 IBM WebSphere Telecommunications Web Services Server Programming Guide

– NetworkResources: The Network Resources category is intended for configuring
information related to network element resources that are shared between services.

– Global: The purpose of this category is to render other configuration settings that might
be shared between service implementations. These settings can define the HTML
table tag heading text. On the IBM WebSphere Telecommunications Web Services
Server administration console, the first page displays the name of the service
implementation as well as a description in a HTML table for each service.

� Order: The order in which this component will appear in the category when rendered on
the IBM WebSphere Telecommunications Web Services Server administration console.

� Component Name: A unique component name that identifies the MBean of the service
implementation. This name is passed to the ServiceComponent implementation to
initialize the MBean implementation.

� J2EE Utility JAR name: The utility Java archive (JAR) that is part of the enterprise
application archive (EAR). The ServiceComponent class, the MBean implementation, and
any supporting classes should be packaged as a JAR file. This JAR file should be added
as a utility module in the enterprise application archive that comprises the service
implementation.

In addition to the deployment descriptor admin.xma, the service component must have Java
resource bundles associated with it that contain translatable text for the IBM WebSphere
Telecommunications Web Services Server administration console to render in a
locale-specific manner. The label elements on the IBM WebSphere Telecommunications Web
Services Server administration console Web pages for each service and service attribute
should be captured in the resource bundle as key names. During the render phase, the IBM
WebSphere Telecommunications Web Services Server libraries read the resource bundle key
names and their respective values to dynamically generate the labels on the Web pages. A
sample set of resource bundle entries are shown in Example 8-13.

Example 8-13 Sample entries in a resource bundle supporting a MBean implementation

soa.MyMBean.title=My MBean title
soa.MyMBean.help=This page allows for changing My MBean settings
soa.MyMBean.breadcrumb=MBean Settings
soa.MyMBean.tab=Runtime
soa.MyMBean.attribute.name.MyAttribute1=My Custom Attribute #1
soa.MyMBean.attribute.description.MyAttribute1=Description of My Custom Attribute
#1

From the above sample, the key names from this Java resource bundle are fetched by the
IBM WebSphere Telecommunications Web Services Server administration console
sub-system for rendering Web content in the Web pages. As the HTML elements, such as
labels and text, are generated dynamically during navigation, the IBM WebSphere
Telecommunications Web Services Server administration console sub-system will call the
ServiceComponent class’s method getString(String componentName, String key, Locale
locale) or the MBean implementation’s method getString(String key, Locale locale) to
resolve the translatable key value text.

Chapter 8. Developing the service implementation 301

If a special non-translatable key must be defined in order to classify service components
within the IBM WebSphere Telecommunications Web Services Server administration console,
then define the entries shown in Example 8-14 in the resource bundle.

Example 8-14 Entries to be defined in the resource bundle

Non-translatable classification such as for Web service implementations
soa.SOAConsoleSettings.type_name=SOAConsoleWebServices

The cases where non-translatable key names are applicable are definitions of EAR names
that appear in the IBM WebSphere Telecommunications Web Services Server administration
console under the Services, Support Services, or Network Resources listed in the left
navigation panel of the IBM WebSphere Telecommunications Web Services Server
administration console.

Implementing an MBean for service implementations
In order to implement MBean for a service implementation, three MBean interfaces are
provided with the IBM WebSphere Telecommunications Web Services Server administration
console. The IBM WebSphere Telecommunications Web Services Server InfoCenter provides
Java Documentation with descriptions at the following link:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

The interfaces extend the JMX DynamicMBean interface and provide additional methods for
rendering and interacting with MBean from the IBM WebSphere Telecommunications Web
Services Server administration console. These interfaces are:

� com.ibm.soa.common.mbean.GeneralProperties: This interface provides a Web page
comprising MBean attributes that are a simple list of attribute/value pairs.

� com.ibm.soa.common.mbean.ComponentProperties: This interface provides a simple list
of attribute/value pairs and a set of additional properties that link to other MBeans. This
allows for the organization of information in the IBM WebSphere Telecommunications Web
Services Server administration console in a meaningful way.

� com.ibm.soa.common.mbean.CustomProperties: This interface provides a list of
attributes/value pairs that can be defined and modified by the administrator, enabling the
administrator to Create, Retrieve, Update, and Delete the values of these properties.

� com.ibm.soa.common.mbean.ActionList: A list of objects that can have an action applied
to them.

In order for the IBM WebSphere Telecommunications Web Services Server administration
console to correctly interact with the MBean, the object name of the MBean must include the
following attribute properties:

� Cell: The name of the WebSphere Application Server cell

� Node: The name of the WebSphere Application Server node

� Process: The name of the WebSphere Application Server instance

� Name: The name of the MBean

� Type: The type name of the MBean

Note: The possible values for the above resource bundle key are:

� SOAConsoleWebServices
� SOAConsoleServicePlatform
� SOAConsoleNetworkResources

302 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

� Interface: The name of the Administrator console interface used (that is,
GeneralProperties, ComponentProperties, CustomProperties, or ActionList). These
names are provided with package qualification (without a package name).

� ApplicationName: The name of the Enterprise application that is running the resource.

8.7.2 MBean implementation for sample scenario

In this section, we will walk you through the sample scenario, that is, the Parlay X Presence
Supplier service implementation specific to MBean implementation and the Service
Component class. Along with the required helper classes, we will also look at a sample
deployment descriptor and packaging the MBean implementation code in the service
enterprise application.

The MBean implementation class for Parlay X Presence Supplier service is
com.ibm.twss.parlayx21.presence.supplier.mbean.PresenceSupplierMBean.

The Service Component implementation class is
com.ibm.twss.parlayx21.presence.supplier.mbean.PresenceSupplierServiceComponent.

The MBean class for our sample scenario must encapsulate a set of configurable attribute
value pairs. These attribute value pairs are displayed on the IBM WebSphere
Telecommunications Web Services Server administration console. An administrator can edit
the value of each attribute depending on the attribute type. Since the MBean attributes are
rendered by the IBM WebSphere Telecommunications Web Services Server administration
console sub-system on to Web pages, the MBean attributes for Parlay X Presence Supplier
should have certain characteristics:

� Each MBean attribute should have a ‘name’ attribute and corresponding accessor method.

� Each MBean attribute should have a ‘type’ attribute and corresponding accessor method.
The MBean attributes should be either READONLY or allow for the Create, Retrieve,
Update, and Delete operations. For simplicity, these two types can be represented as
constants by the names READONLY and STRING respectively.

� The value of each MBean attribute is a java.lang.String type. In order to format the String
to represent a number or date, the appropriate formatting logic can be implemented.

� Each MBean attribute should have a default value defined.

� To provide an extension mechanism in cases where an MBean attribute is required to
have one out of a finite set of values, you can optionally make a provision for an allowed
set of values. As this feature requires additional functionality to render the HTML options
tag, this feature can be treated as optional.

� Each MBean attribute should have the appropriate validation mechanism depending on
the type of the attribute value.

The sample code shown in Example 8-15 demonstrates the behavior expected out of a
MBean helper class. This helper class holds the state of an MBean attribute.

Example 8-15 Sample code snippet from MBeanAttributeHelper.java; constructor and accessor
methods

public MBeanAttributeHelper(String name, Class clazz,
AttrType attributeType, Object defaultValue,
String possibleValues[], MBeanAttributeValidator validator,
String resourceBundleName, String resourceBundleKey) {

if (name == null)
throw new NullPointerException("name == null");

Chapter 8. Developing the service implementation 303

if ("".equals(name.trim()))
throw new IllegalArgumentException(

"name must contain non-whitespace");
this.name = name;
if (clazz == null)

throw new NullPointerException("clazz == null");
this.clazz = clazz;
if (attributeType == null)

throw new NullPointerException("attributeType == null");
this.attributeType = attributeType;
if (defaultValue == null)

throw new NullPointerException("defaultValue == null");
this.defaultValue = defaultValue;
if (resourceBundleName == null)

throw new NullPointerException("resourceBundleName == null");
if (resourceBundleKey == null)

throw new NullPointerException("resourceBundleKey == null");
String resourceBundleMessage = null;
try {

ResourceBundle resourceBundle = ResourceBundle.getBundle(
resourceBundleName, Locale.getDefault());

resourceBundleMessage = resourceBundle.getString(resourceBundleKey);
} catch (RuntimeException re) {

resourceBundleMessage = null;
if (LogHelper.isExceptionEnabled(logger)) {

LogHelper.caughtTrace(logger, "<init>", re);
}

}
if (resourceBundleMessage == null

|| resourceBundleMessage.trim().length() == 0)
description = "";

else
description = resourceBundleMessage;

if (possibleValues == null)
throw new NullPointerException("possibleValues == null");

this.possibleValues = possibleValues;
if (validator == null)

throw new NullPointerException("validator == null");
this.validator = validator;
info = new MBeanAttributeInfo(this.name, this.clazz.getName(),

description, true, !this.attributeType
.equals(AttrType.READONLY), false);

}

public String getName() {
String retval = name;
return retval;

}

public String getAttributeType() {
String retval = String.valueOf(attributeType);
return retval;

}

304 IBM WebSphere Telecommunications Web Services Server Programming Guide

public Object getDefaultValue() {
Object retval = defaultValue;
return retval;

}

public String[] getAttributePossibleValues() {
String retval[] = possibleValues.length != 0 ? possibleValues : null;
return retval;

}

public MBeanAttributeValidator getValidator() {
MBeanAttributeValidator retval = validator;
return retval;

}

public MBeanAttributeInfo getMBeanAttributeInfo() {
MBeanAttributeInfo retval = info;
return retval;

}

Now that we know how to create MBean attributes, let us look at the specifics of creating a
MBean for a Parlay X Presence Supplier implementation. One of the vital features that an
MBean implementation should provide is persistence of the MBean attribute state. By design,
we recommend that custom service implementations should provide persistence of the
MBean state. For the sample scenario, we have implemented a simple data access object
that performs the following functions:

� Retrieve a persisted Attribute Value for an Attribute Name. The method that implements
this logic is public String readFromStore(String key).

� Retrieve all persisted Attribute Name Value pairs. The method that implements this logic is
public Hashtable readAllFromStore().

� Insert an Attribute Name Value pair.

� Update the Attribute Value for an Attribute Name.

The following methods in javax.management.DynamicMBean are overridden by the MBean
implementation of the Parlay X Presence Supplier service. The MBean implementation
invokes various methods of the data access object. The MBean methods and corresponding
method calls on the data access object are listed here:

� The public Object getAttribute(String name) method of an MBean implementation invokes
the public String readFromStore(String key) method of a data access object.

� The public AttributeList getAttributes(String[] attributes) method of an MBean
implementation invokes the public Hashtable readAllFromStore() method of a data access
object.

� The public void setAttribute(Attribute attribute) method of an MBean implementation
invokes the public void writeToStore(String key, String value) method of a data access
object.

Note: The sample code for the Parlay X Presence Supplier MBean implementation and the
supporting classes are available for download. Refer to Appendix E, “Additional material”
on page 399 for detailed instructions on how to download and work with this sample code

Chapter 8. Developing the service implementation 305

� The public AttributeList setAttributes(AttributeList attributes) method of MBean
implementation invokes the public void writeToStore(String key, String value) method of
data access object in a loop for all the attributes.

Apart from the methods that get access in order to persist and retrieve attribute name value
pairs, the other significant method calls are described here:

� The public void registerMBean() method comprises logic that obtains a reference to the
com.ibm.websphere.management.AdminService class and registers the
PresenceSupplierMBean instance in the JMX server of WebSphere Application Server.

� The public void unregisterMBean() method comprises logic that obtains a reference to the
com.ibm.websphere.management.AdminService class and un-registers the
PresenceSupplierMBean instance in the JMX server.

� The public Object invoke(String actionName, Object[] params, String[] signatures) method
comprises logic that uses the Java reflection mechanism and calls on various methods of
the PresenceSupplierMBean instance. This method is used extensively by the IBM
WebSphere Telecommunications Web Services Server administration console
sub-system for accessing the MBean state.

The complete listing of the MyMBean code is provided in Example 8-16.

Example 8-16 Code from MyMBean.java

//IBM Sample Source Materials
//
//Sample source materials are supplied As-Is.
//No warranty is expressed or implied.
//
//Product(s): 5724-O05
//
//(C)Copyright IBM Corp. 2000, 2006
//
//The source code for this program supplied under the terms of the
//End User License Agreement (EULA) that accompanied this product.
//***
package com.ibm.sample.mbean;
import java.lang.reflect.*;
import java.util.*;
import java.io.*;
import javax.management.*;
import com.ibm.websphere.management.*;
import com.ibm.soa.common.mbean.GeneralProperties;
/**
* The class for administered settings on MyService.
*/
public class MyMBean implements GeneralProperties, DynamicMBean {
/**
* instance.
*/
private static MyMBean instance = null;

Note: We recommend designing an abstract class to implement the
com.ibm.soa.common.mbean.GeneralProperties and javax.management.DynamicMBean
interfaces provided in Example 8-16.

306 IBM WebSphere Telecommunications Web Services Server Programming Guide

/**
* The MBean ObjectName.
*/
private ObjectName objectName = null;

/**
* The MBeanInfo for this MBean.
*/
private MBeanInfo info = null;

/**
* The display Name.
*/
private String displayName = null;

/**
* The constructor
*/
public MyMBean() {

instance = this;

}

/**
* Get the settings instance
* @return the bean
*/
public static MyMBean getInstance() {

if (instance == null) {
new MyMBean();

}
return instance;

}

/**
* Register this mbean
*/
public void registerMBean() {

// Register MBean with a properly formated ObjectName with the
// AdminService

// The applicationName is the name of the EAR file this code is
running

// in.
String applicationName = ServicePlatform.getCurrentApplicationName();
String beanName = “MyMBean”;

try {
// Get the Administration Service and attributes
AdminService as = AdminServiceFactory.getAdminService();
ObjectName server = as.getLocalServer();
String serverName = server.getKeyProperty("name");
String cell = server.getKeyProperty("cell");
String node = server.getKeyProperty("node");

Chapter 8. Developing the service implementation 307

String process = server.getKeyProperty("process");

Properties props = new Properties();
props.put("type", beanName);
props.put("name", beanName);
props.put("cell", cell);
props.put("node", node);
props.put("process", process);
props.put("interface", "GeneralProperties");
props.put("ApplicationName", applicationName);
props.put("resource", "soa");
objectName = new ObjectName("WebSphere", props);

// If not already registered then register it.
if (!as.isRegistered(objectName)) {

as.registerMBean(this, objectName);
} else {

unregisterMBean(objectName);
as.registerMBean(this, objectName);

}
} catch (Exception e) {

e.printStackTrace();
}
}

/**
* Unregister the MBean
*/
public void unregisterMBean() {

// Un register this MBean instance with the AdminService
try {

// Get the Administration Service and attributes
AdminService as = AdminServiceFactory.getAdminService();

Class types[] = new Class[1];
types[0] = javax.management.ObjectName.class;
Object parms[] = new Object[1];
parms[0] = objectName;
Class cls = as.getClass();
Method m = cls.getMethod("unregisterMBean", types);
m.invoke(as, parms);

objectName = null;
} catch (Exception e) {

e.printStackTrace();
}

}

/**
* Unregister the MBean.
* @param name
* the ObjectName
*/
public static void unregisterMBean(ObjectName name) {

try {

308 IBM WebSphere Telecommunications Web Services Server Programming Guide

// Get the Administration Service and attributes
AdminService as = AdminServiceFactory.getAdminService();

Class types[] = new Class[1];
types[0] = javax.management.ObjectName.class;
Object parms[] = new Object[1];
parms[0] = name;
Class cls = as.getClass();
Method m = cls.getMethod("unregisterMBean", types);
m.invoke(as, parms);

} catch (Exception e) {
e.printStackTrace();

}
}

/* ** */
/* **** General Properties Implementation ***** */
/* ** */
/**
* Get the type of named attribute.
*
* @param name the name of the attribute
* @return "CHOICE", "STRING", "READONLY", "TRANSCHOICE"
*/
public String getAttributeType(String name) {

if (name.equals("ConnectionTimeout")) {
return "STRING";

}
else if (name.equals("EndPoint")) {

return "STRING";
}
return "READONLY";

}

/**
* Get the list of possible values for the attribute that is of type
* "CHOICE" or TRANSCHOICE. A choice defiles a choice of possible values.
 * A TRANSCHOICE defines a set of keys to translated values.
*
* @param name the name of the attribute
* @return the array of possible values, return null if the name is a
text
* field item
*/
public String[] getAttributePossibleValues(String name) {

return null;
}

/**
* Get the ObjectName String for the named attribute’s link.
* @param name the name of an attribute
* @return the ObjectName string that links to another MBean
*/
public String getAttributeProperties(String name) {

Chapter 8. Developing the service implementation 309

return null;
}

/**
* Get the current attribute context. This is a string that is used to scope
the data when storing
 * in a data store.
* @param name the attribute name
* @return the context string
*/
public String getAttributeContext(String name) {

return "";
}

/**
* Gets the navigation context for an MBean. The navigation context
* is a name qualified with dots (for example, ’attrib1.attrib2’) that
* references the linking context between bean objects. A sub-class
* can use this method to
* determine the navigation context when manipulating attribute keys.
* @return A qualified context string. May be an empty string.
*/
public String getContext() {

return "";
}

/**
* Sets the navigation context for an MBean. The navigation context
* is a name qualified with dots (for example, ’attrib1.attrib2’) that
references the
* linking context between bean objects. This method is called by the
JSP as
* it propagates the context during navigation.
* @param context A qualified context string. May be an empty string.
*/
public void setContext(String context) {

// not used for simple general properties
}

/**
* Get the Application Name (EAR Name).
* @return the application name
*/
public String getApplicationName() {

return objectName.getKeyProperty("ApplicationName");
}

/**
* Get the Object name of this MBean.
* @return the ObjectName String
*/
public String getObjectName() {

return objectName.toString();
}

310 IBM WebSphere Telecommunications Web Services Server Programming Guide

/**
* Get the raw ObjectName of this MBean.
* @return the raw Objectname
*/
public ObjectName getRawObjectName() {

return objectName;
}

/**
* Get the typename that this bean WebSphere ApplicationServerregistered
under.
* @return the type name
*/
public String getTypeName() {

return objectName.getKeyProperty("type");
}

/**
* Get the MBean name.
* @return the name
*/
public String getBeanName() {

return objectName.getKeyProperty("name");
}

/**
* Get the interfaces names that this MBean supports forJSP rendering.
* @return the
 */
public String getInterfaceName() {

return objectName.getKeyProperty("interface");
}

/**
* If the Title or Breadcrumb for an MBean (defined in the resource
bundle)
* contains the placeholder string ${name} then the JSP will call this
* method on the MBean for the display name to substitute for the
* placeholder.
* @return "", or the string to substitue for the placeholder.
*/
public String getDisplayName() {

return displayName;
}

/**
* If the Title or Breadcrumb for an MBean (defined in the resource
bundle)
* contains the placeholder string ${name} then the JSP will call this
* method on the MBean for the display name to substitute for the
* placeholder.
* @param locale the locale
* @return "", or the string to substitue for the placeholder.
*/
public String getDisplayName(Locale locale) {

Chapter 8. Developing the service implementation 311

return displayName;
}

/**
* Set the display Name.
* @param name the name
*/
public void setDisplayName(String name) {

this.displayName = name;
}

/**
* Get an attribute
* @param name the name of the attribute
* @return the attribute value
* @throws AttributeNotFoundException
* @throws MBeanException
* @throws ReflectionException
*/
public Object getAttribute(String name) throws AttributeNotFoundException,

MBeanException, ReflectionException {
String keyBase = getBeanName();
String attr = name;
if (attr.equals("ConnectionTimeouit") || attr.equals("EndPoint")) {

String value = getProperty(keyBase + "." + attr);
return value;

}
return null;

}

/**
* Set the attribute
*
* @param attribute the attribute to set
* @throws AttributeNotFoundException
* @throws InvalidAttributeValueException
* @throws MBeanException
* @throws ReflectionException
*/
public void setAttribute(Attribute attribute)
throws AttributeNotFoundException, InvalidAttributeValueException,
MBeanException, ReflectionException {

String keyBase = getBeanName();
String attr = attribute.getName();
String value = (String)attribute.getValue();

if (attr.equals("ConnectionTimeout")) {
setProperty(keyBase + "." + attribute.getName(), value);
return;

}
else if (attr.equals("EndPoint")) {

setProperty(keyBase + "." + attribute.getName(), value);
return;

}

312 IBM WebSphere Telecommunications Web Services Server Programming Guide

}

/**
* Set a set of attributes.
* @param attributelist the list of attributes to set
* @return the result attribute
*/
public AttributeList setAttributes(AttributeList attributelist) {

// No attributes are supported
if (attributelist == null) {

return null;
}

String[] attributes = new String[attributelist.size()];
for (int i = 0; i < attributelist.size(); i++) {

try {
Attribute attribute = (Attribute)attributelist.get(i);
attributes[i] = attribute.getName();
setAttribute(attribute);

}
catch (ReflectionException re) {

re.printStackTrace();
}
catch (AttributeNotFoundException anfe) {

anfe.printStackTrace();
}
catch (InvalidAttributeValueException iave){

iave.printStackTrace();
}
catch (MBeanException mbe) {

mbe.printStackTrace();
}

}
return getAttributes(attributes);

}

/**
* Validate the attribute
*
* @param attribute the attribute to validate
* @throws AttributeNotFoundException
* on invalid attribute
* @throws InvalidAttributeValueException
* on an validation error
* @throws MBeanException
* on bean error
* @throws ReflectionException
* on dynamic invocation error
*/
public void validateAttribute(Attribute attribute)

throws AttributeNotFoundException, InvalidAttributeValueException,
MBeanException, ReflectionException {

String name = attribute.getName();
String value = (String)attribute.getValue();

Chapter 8. Developing the service implementation 313

// validate individual attribute values

if (name.equals("ConnectionTimeout")) {
if (!IsValidInteger(value)) {

throw new InvalidAttributeValueException("Invalid value "
+ name);

}
}
else if (name.equals("EndPoint")) {

if (!IsValidEndPoint(value)) {
throw new InvalidAttributeValueException("Invalid value "

+ name);
}

}
}

/**
* Get the attribute names.
* @param as the array of attribute names
* @return the result list
*/
public AttributeList getAttributes(String as[]) {

AttributeList list = new AttributeList();
// no attributes are supported by the base class
if (as != null) {

// Helper to get a specific list of attributes
for (int i = 0; i < as.length; i++) {

try {
String name = as[i];
Object value = getAttribute(name);
list.add(new Attribute(name, value));

}
catch (ReflectionException re) {

// ignore
}
catch (AttributeNotFoundException anfe) {

// ignore
}
catch (MBeanException mbe) {

// ignore
}

}
}
else {

// get the list from the attribute info
MBeanAttributeInfo attrs[] = makeMBeanAttributeInfo();
as = new String[attrs.length];
for (int i = 0; i < attrs.length; i++) {

as[i] = attrs[i].getName();
}

}
// if the parameter is null, then build the AttributeList,and

return,
// so subclasses can

314 IBM WebSphere Telecommunications Web Services Server Programming Guide

// add in their names.
return list;

}

/**
* Get the MBeanInfo which describes the operations, attributes and
* notifications of the MBean.
* @return the MBeanInfo
*/
public MBeanInfo getMBeanInfo() {

if (info == null) {
// Set the MBeanInfo
info = makeMBeanInfo();

}
return info;

}

/**
* Make the MBeanInfo object.
* @return the MBeanInfo
*/
private MBeanInfo makeMBeanInfo() {

MBeanOperationInfo ops[] = new MBeanOperationInfo[0];
MBeanAttributeInfo attrs[] = makeMBeanAttributeInfo();
MBeanConstructorInfo cons[] = new MBeanConstructorInfo[0];
MBeanNotificationInfo nots[] = new MBeanNotificationInfo[0];

MBeanInfo info = new MBeanInfo(this.getClass().getName(),
getBeanName(), attrs, // MBeanAttributesInfo[]
cons, // MBeanContructorInfo[]
ops, // MBeanOperationInfo[]
nots // MBeanNotificationInfo[]

);

return info;

}

/**
* Make the attribute info
*
* @return the info array
*/
protected MBeanAttributeInfo[] makeMBeanAttributeInfo() {

MBeanAttributeInfo attrs[] = new MBeanAttributeInfo[] {
new MBeanAttributeInfo("ConnectionTimeout", "java.lang.String",

"Connection timeout in milliseconds", true, true, false),
new MBeanAttributeInfo("EndPoint", "java.lang.String",

"Network Element Endpoint", true, true, false) };

return attrs;
}

/**

Chapter 8. Developing the service implementation 315

* Get a string from a resource if possible, otherwise return null, and the
console
 * will continue looking for the resource and possibly provide a default value.
*
* @param key the key
* @param locale the locale
* @return the result, or null if not found.
*/
public String getString(String key, Locale locale) {

String bundleClass = "com.ibm.sample.mbean.resources.MyMBean";
String value = null;
try {

ResourceBundle bundle = ResourceBundle.getBundle(bundleClass, locale);
value = bundle.getString(key);
return value;

} catch (Exception e) {
}
return null;

}

/**
* Get the help page.
*
* @param name the name of the file
* @param locale the locale
* @return the page content
*/
public String getHelpPage(String name, Locale locale) {

String bundleClass = "com/ibm/sample/mbean/resources/" +
locale.toString() + "/" + name;

ClassLoader ldr = this.getClass().getClassLoader();
String result = getResourceAsString(ldr, bundleClass);
return result;

}

/**
* Get the resource as a String.
* @param ldrClass the class loader.
* @param resourceName the resourceName.
* @return the string, or returns the name of the resourcethatismissing.
*/
protected String getResourceAsString(ClassLoader ldrClass,

String resourceName) {
try {

final ClassLoader ldr = ldrClass;
final String res = resourceName;

InputStream is = (InputStream)java.security.AccessController
.doPrivileged(new java.security.PrivilegedAction() {

public Object run() {
// We’re assuming that the requested locale is of
// the specific form (XX_XX)
// If it is not, we’ll try what they give us, then
// just fail....
int iIndexOfBar = res.lastIndexOf("_");

316 IBM WebSphere Telecommunications Web Services Server Programming Guide

String resourceName_specific = res;
InputStream is2 = null;
// Attempt the provided locale (which is generally a
// specific locale (ie zh_TW) but can be general
// (ie zh)
is2 = ldr

.getResourceAsStream(resourceName_specific);
if (is2 != null || iIndexOfBar < 0) {

return is2;
}

// If we can’t find it, look for a more general
// locale.
String resourceName_general = res;
int i = resourceName_general.lastIndexOf("_");
if (i >= 0 && i < resourceName_general.length() - 3) {

// remove the _XX from the string, and try again
resourceName_general = resourceName_general

.substring(0, i)
+ resourceName_general.substring(i + 3);

}

// Attempt the general locale (ie zh)
is2 = ldr.getResourceAsStream(resourceName_general);
if (is2 != null || iIndexOfBar < 0) {

return is2;
}

// Didn’t find a specific or general locale, so try
// en_US.
String resourceName_default = res;
i = resourceName_default.lastIndexOf("_");
if (i >= 0 && i >= 3

&& i < resourceName_default.length() - 3) {
resourceName_default = resourceName_default

.substring(0, i - 2)
+ "en_US"
+ resourceName_default.substring(i + 3);

}

// Attempt the default ("en_US")
is2 = ldr.getResourceAsStream(resourceName_default);
return is2;

}
});

Stringvalue =null;

int size = is.available();
byte buf[] = new byte[size];
int len = is.read(buf, 0, size);
is.close();
value = new String(buf, 0, len);
return value;

} catch (Exception e) {

Chapter 8. Developing the service implementation 317

//e.printStackTrace();
return "name: " + resourceName;

}
}

/**
* Refresh the dynamic content.
*/
public void refreshDynamicContent() {

// update any dynamic information
}

/**
* Invoke an operation on this mbean.
 * @param s the operation name
* @param aobj the parameters
* @param as the parameter types
* @return the result
* @throws MBeanException
* on mbean error
* @throws ReflectionException
* on dynamic invocation error
*/
public Object invoke(String s, Object aobj[], String as[])

throws MBeanException, ReflectionException {
// Now do the action
try {

Class cls = this.getClass();
Class types[] = new Class[(as != null ? as.length : 0)];
for (int j = 0; j < types.length; j++) {

types[j] = Class.forName(as[j], true,
this.getClass().getClassLoader());

}
Method m = cls.getMethod(s, types);
Object result = (Object)m.invoke(this, aobj);
return result;

}
catch (java.lang.reflect.InvocationTargetException ite) {

Throwable targetException = ite.getTargetException();
if (targetException instanceof MBeanException) {

throw (MBeanException)targetException;
}
else {

throw new MBeanException((Exception)targetException,
targetException.getMessage());

}
}
catch (Exception e) {

throw new ReflectionException(e, "Error accessing the method("+s +
")");

}
}

/**
* Get a property from the data store * @param key the key

318 IBM WebSphere Telecommunications Web Services Server Programming Guide

* @return the value
* @throws MBeanException
* on error
*/
protected String getProperty(String key) throws MBeanException {

// read from a persistent location
return "a value";

}

/**
* Set a property in the data store * @param key the key
* @param value the value
* @throws InvalidAttributeValueException
* on length error
* @throws MBeanException
* on error
*/
protected void setProperty(String key, String value)

throws InvalidAttributeValueException, MBeanException {
// write to a persistent location

}

/**
* Is this string a valid integer.
* @param s the string
* @return true for a valid integer
*/
private boolean IsValidInteger(String s) {

return true;
}

/**
* Is this string a valid endpoint
* @param s the string
* @return true for a valid endpoint
*/
 private boolean IsValidEndPoint(String s) {
 return true;
 }
}

The Service Component implementation class coordinates with the IBM WebSphere
Telecommunications Web Services Server administration console sub-system and executes
various methods on the instance of the MBean implementation.

Chapter 8. Developing the service implementation 319

The listing of the all the methods in the
com.ibm.twss.parlayx21.presence.supplier.mbean.PresenceSupplierServiceComponent
class are shown in Example 8-17.

Example 8-17 Sample code snippet from ServiceComponent implementation class

public String getBeanName(String string) throws RemoteException {
if (LogHelper.isEntryEnabled(logger)) {

LogHelper.entry(logger, "getBeanName", new Object[] { string });
}
return PresenceSupplierMBean.getInstance().getBeanName();

}

public String getObjectName(String string) throws RemoteException {
if (LogHelper.isEntryEnabled(logger)) {

LogHelper.entry(logger, "getObjectName", new Object[] { string });
}
return PresenceSupplierMBean.getInstance().getObjectName();

}

public String getString(String string, String key, Locale locale)
throws RemoteException {

if (LogHelper.isEntryEnabled(logger)) {
LogHelper.entry(logger, "getString", new Object[] { string });

}
return PresenceSupplierMBean.getInstance().getString(key, locale);

}

public void initialize(String string1, String string2)
throws RemoteException {

if (LogHelper.isEntryEnabled(logger)) {
LogHelper.entry(logger, "initialize", new Object[] { string1,

string2 });
}
PresenceSupplierMBean.getInstance().initialize();

}

public void registerMBean(String string) throws RemoteException {
PresenceSupplierMBean.getInstance().registerMBean();

}

public void unregisterMBean(String string) throws RemoteException {
PresenceSupplierMBean.getInstance().unregisterMBean();

}

The MBean implementation classes, along with the supporting classes and libraries (if any)
pertaining to a custom service, should be packaged in a Java archive (JAR) as described in
“Prerequisites for Service Management provisions” on page 300. Let us look at the following
steps for packaging the MBean implementation code of the Parlay X Presence Supplier
service:

1. The creation and packaging of MBean implementation and supporting classes should
start with the creation of a Java project. In Rational Application Developer (RAD), the
MBean Java project should be made part of the Parlay X Presence Supplier service
enterprise application project. Figure 8-26 on page 321 illustrates the creation of a MBean
Java project. In the Project Explorer of Rational Application Developer, right-click the

320 IBM WebSphere Telecommunications Web Services Server Programming Guide

Enterprise Application project PX21_PRS_SPLR_IMSApp, select New, and then select
Project.... In the New Project dialog, expand Java and select Java Project.

Figure 8-26 Creation of a Java project for MBean implementation

2. Click the Next button. In the Project name field, enter PX21_PRS_SPLR_IMSMBean.
Click the Next button at the bottom, leaving the default settings. In the Java Settings
window (Figure 8-27 on page 322), select the Libraries tab and add the following JAR
files:

– ‘com.ibm.ws.runtime_6.1.0.jar’ is located in the folder WAS_ROOT/plugins.

– admincons.jar can be added by selecting it from the PX21_PRS_SPLR_IMSApp
project. Use the Add JARs... button to select the JAR file.

– soaruntime.jar can be added by selecting it from the PX21_PRS_SPLR_IMSApp
project. Use the Add JARs... button to select the JAR file.

Chapter 8. Developing the service implementation 321

Figure 8-27 Setting up the required Java libraries in the MBean Java project

3. Click the Finish button. This action will create the Java project. Create the required set of
classes by following the instructions detailed in 8.7.2, “MBean implementation for sample
scenario” on page 303.

Note: The sample code for MBean implementations is available for downloads. Refer to
Appendix E, “Additional material” on page 399 for guidance on downloading the sample
code.

322 IBM WebSphere Telecommunications Web Services Server Programming Guide

4. After completing the development of MBean implementation, add the MBean Java project
as a Utility JAR in the PX21_PRS_SPLR_IMSApp enterprise application project. In the
Project Explorer, expand the PX21_PRS_SPLR_IMSApp project. Open the Deployment
Descriptor: PX21_PRS_SPLR_IMS file. In the deployment descriptor window, select the
Module tab. The window should look like Figure 8-28.

Figure 8-28 Module configuration in Enterprise Application Deployment Descriptor

Chapter 8. Developing the service implementation 323

5. In the Project Utility JARs section, click the Add... button. The Add Utility JAR dialog is
displayed. Select the project entry PX21_PRS_SPLR_IMSMBean in the dialog and click
Finish. Save the changes to the deployment descriptor. The window should look like
Figure 8-29.

Figure 8-29 MBean Java project added to Project Utility JARs of service enterprise application

6. In the Project Explorer, expand the META-INF folder in the PX21_PRS_SPLR_IMSApp
project. Select admin.xma and open it. This is a special deployment descriptor that is
used by the IBM WebSphere Telecommunications Web Services Server administration
console sub-system to render service MBeans. For more information, refer to 8.7.1,
“Developing the JMX MBean for service” on page 300. The admin.xma should look like
Figure 8-30 on page 325.

324 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-30 Deployment Descriptor for MBean implementation

7. At this point, the details of the new MBean ServiceComponent implementation created for
the Parlay X Presence Supplier service should be entered in admin.xma along with the
Service Category, Service name, and JAR file name of the MBean implementation.
Additionally, the admin.xma file should be edited to reflect all the referenced common
component service specific ServiceComponent implementations as the SupportService
category. The entry should look like the text below:

Service,7,PresenceSupplierIms,com.ibm.twss.parlayx21.presence.supplier.mbean.Prese
nceSupplierServiceComponent,PX21_PRS_SPLR_IMSMBean.jar

8. The ‘admin.xma’ file should look like Figure 8-31 on page 326.

Note: Note that the entries specific to common components, that is,
NotifyAdministrationClient and PxNotifyClient, are removed from admin.xma. As the
implementation of the Parlay X Presence Supplier service has limited functionality, the
common components are not required. We recommend following this approach for any
custom IBM WebSphere Telecommunications Web Services Server service
implementation.

Entries of unutilized or unreferenced common components should not be included in
admin.xma.

Chapter 8. Developing the service implementation 325

Figure 8-31 ServiceComponent class of Parlay X Presence Supplier service added to admin.xma

This concludes the development steps for creating and bundling MBean and
ServiceComponent implementations and the other required classes for the Parlay X
Presence Supplier service.

8.8 Deploy and test

In the previous sections, we discussed the procedure to create a service implementation and
MBean implementation for a service. In this section, we discuss the deployment procedure of
a custom service implementation.

8.8.1 Deployment procedure

A custom service implementation is packaged as an enterprise application archive (EAR).
The deployment of a service project is typically done using the WebSphere Application
Server administration console. Follow these steps to deploy a service implementation to the
IBM WebSphere Telecommunications Web Services Server run time:

1. Export the Enterprise Application project that we created for the Parlay X Presence
Supplier service implementation. Select the PX21_PRS_SPLR_IMSApp project.
Right-click and select the Export’ menu item in the pop-up menu. Select the EAR file
menu item. This action opens the Export dialog (Figure 8-32 on page 327). Enter a valid

326 IBM WebSphere Telecommunications Web Services Server Programming Guide

folder followed by the file name. The file name should be the same as the application
name and the file extension should be .ear.

Figure 8-32 Export the service implementation enterprise application archive (EAR)

Chapter 8. Developing the service implementation 327

2. The first step to deploy a service implementation enterprise application archive (EAR) is to
access the Web administration console of WebSphere Application Server, commonly
known as the Integrated Solutions Console. Log in to the administration console of the
WebSphere Application Server instance or deployment manager (in the case of a
clustered environment), where the Service Platform components are installed. Expand the
Applications menu on the left panel and select Install New Application (Figure 8-33).

Figure 8-33 Accessing the Installation wizard of Integrated Solutions Console

328 IBM WebSphere Telecommunications Web Services Server Programming Guide

3. Click the Browse button in the right panel of the administration console. This action opens
a file selection dialog. Select the PX21_PRS_SPLR_IMSApp.ear file from the file system.
Click the Next button. The Installation Options Page is displayed. Leave the default
settings and click the Next button (Figure 8-34).

Figure 8-34 Installation Options page for service enterprise application

Chapter 8. Developing the service implementation 329

4. Click the Next button in the Map Modules to servers page. Click the Next button. In the
Summary page, click the Finish button. The installation confirmation page is displayed
(Figure 8-35). Click the Save link on this page. The installation of the enterprise
application is completed.

Figure 8-35 Installation confirmation page for service enterprise application

5. After installation, the service enterprise application should be started. Expand
Applications and then click the Enterprise Applications menu on the left panel of the
administration console. On the right panel, the enterprise applications hosted by the
application server instance are displayed with check boxes for each application entry.
Locate the PX21_PRS_SPLR_IMS application. Select the check box and click the Start
button to start the application.

330 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-36 Parlay X Presence Supplier service application started

At this time, the service enterprise application should start without any errors.

8.8.2 Service administration

In the previous section, we discussed the deployment procedure. After a successful
deployment, we will now see the administrative procedures pertaining to IBM WebSphere
Telecommunications Web Services Server services. The relevant guidelines are listed in the
sections below.

Chapter 8. Developing the service implementation 331

Configuring the common components
1. The first administrative step is to configure the endpoints of all common component

services for the Parlay X Presence Supplier service. On the WebSphere Administration
Console, locate the TWSS Administration Console menu item on the left panel and
expand it. Click the Web Services link. The right side panel displays a list of IBM
WebSphere Telecommunications Web Services Server services (Figure 8-37).

Figure 8-37 Available list of IBM WebSphere Telecommunications Web Services Server services

332 IBM WebSphere Telecommunications Web Services Server Programming Guide

2. Locate the PX21_PRS_SPLR_IMS link and click it. The details page comprising the main
service, the IMS Presence Supplier Web service link, and a list of supported services or
the common component services are displayed in the page (Figure 8-38).

Figure 8-38 Page with Presence Supplier service and common component service links

Chapter 8. Developing the service implementation 333

3. Click the Admission Control Client link. This action should display the General
Properties section that comprise admission control component attributes (Figure 8-39).

Figure 8-39 Admission Control Client properties setting for Parlay X Presence Supplier service

4. Locate the ‘End Point URI field value and validate that the Web service URL is valid. The
easiest way to validate a Web service URL is to direct a Web browser to the URL. If the
Web service URL is valid, you should see the window shown in Figure 8-40 on page 335.

334 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-40 Simple step to validate a Web service URL

5. If the URL is not valid, typically the virtual host and port number have to be verified. Fix the
the virtual host or host name and port values in the configuration settings.

6. Follow steps 3 through step 5 for each of the common component service URLs and make
sure that the individual web service URLs are valid.

Note: If a specific common component invocation is not required, you must leave the End
Point URI field value of the specific common component empty.

Chapter 8. Developing the service implementation 335

Scenario MBean implementation
In this section, we will walk through the configuration settings specific to our sample scenario,
the Parlay X Presence Supplier service:

1. Authenticate to the WebSphere Application Server administration console where the
Service Platform components are installed. On the left panel, locate and click the TWSS
Administration Console link. The window should resemble Figure 8-41.

Figure 8-41 TWSS Administration Console link on WebSphere Application Server ISC

336 IBM WebSphere Telecommunications Web Services Server Programming Guide

2. Click the Web Services link. In the right panel, a list of links representing the installed
services are displayed. Locate and click the link PX21_PRS_SPLR_IMS. This action
opens the main configuration Web page for the sample scenario, the Parlay X Presence
Supplier service (Figure 8-42).

Figure 8-42 The services page in IBM WebSphere Telecommunications Web Services Server
administration console

Chapter 8. Developing the service implementation 337

3. In the main page, locate the IMS Presence Supplier Web service link and click it. This
action opens the configuration page for our sample scenario (Figure 8-43).

Figure 8-43 The Presence Supplier service administration page

4. Notice the text fields displayed in this configuration page. The text fields correspond with
the MBean attributes created during the MBean implementation. The user-friendly labels
are retrieved from the ConsoleResources.properties resource bundle. The window should
look like Figure 8-44 on page 339.

338 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-44 The Presence Supplier service configuration settings page

5. Optionally, change the default configuration values depending on your requirement. Click
the OK or Apply button to save the changes. This action invokes the IBM WebSphere
Telecommunications Web Services Server Administration console sub-system to call the
service MBean implementation code and eventually persist the modifications to the data
store.

This concludes the deployment and configuration settings for the Parlay X Presence Supplier
service implementation. In the next section, we will discuss the test client sample application
and the test execution details.

8.8.3 Test client

In this section, we will discuss how to code a client application for our sample scenario. The
development environment used is Rational Application Developer V7.0. The sample client
application comprises a Web UI based on the Java Server Faces (JSF) framework and the
Web service client based on the JAX-RPC proxy implementation. The following sections
discuss in detail the essential programming steps required to create a Web service client and
test it in a Rational Application Developer environment.

Chapter 8. Developing the service implementation 339

Test environment setup
Open the Rational Application Developer IDE with a new workspace. For the sample Web
service client, we create a Web project. In our sample, we will start with the creation of a
Enterprise Application Project. Follow these steps:

1. Select File → New → Project.... The New Project wizard is displayed. In the wizard,
locate and expand J2EE. Select Enterprise Application Project.

Figure 8-45 New Enterprise Application Project for sample client

Note: The following sections only discuss the Web service client generation. A few screen
captures of a Web based application are provided in order to make understanding the test
execution easier. The Web UI code is available as part of the sample code (refer to
Appendix E, “Additional material” on page 399).

Note that the client applications accessing IBM WebSphere Telecommunications Web
Services Server need not be Web based and need not necessarily follow the JSF
programming model.

340 IBM WebSphere Telecommunications Web Services Server Programming Guide

2. Click the Next button. In the EAR Application Project window, type
PresenceSupplierClientApp for the Project name field. Click the Finish button. At this
stage, we do not require any other wizard options. The Project Explorer should resemble
Figure 8-46.

Figure 8-46 Initial view of the client Enterprise application project

Chapter 8. Developing the service implementation 341

3. Now we will create a Web Project that will house the Web service client application code.
Right-click the PresenceSupplierClientApp project, select New from the pop-up menu,
and select the Dynamic Web Project menu item. In the Dynamic Web Project wizard,
enter PresenceSupplierClient for the field Project name. Leave the rest of the values at
their defaults and click the Next button, as shown in Figure 8-47.

Figure 8-47 New Web Project for sample client application

342 IBM WebSphere Telecommunications Web Services Server Programming Guide

4. In the Project Facets window, various features are enabled for this Web project. The
sample client application comprises a JSF based Web UI. To enable the JSF features, the
Base Faces Support and JSTL 1.1 project facets should be selected. The window should
resemble Figure 8-48

Figure 8-48 Web Project Facets selection for sample client application

Chapter 8. Developing the service implementation 343

5. Click the Finish button. Click the No button on the Open Web perspective pop-up dialog.
Close the WebDiagram.gph as well. The Project Explorer should resemble Figure 8-49.

Figure 8-49 Sample client Web project

6. In the Project Explorer, expand the Web project PresenceSupplierClient, locate the Web
Content folder, and expand it. Locate the WEB-INF folder, right-click it and select New in
the pop-up menu, and then select the Folder menu item. The New Folder wizard is
displayed. Enter wsdl for the Folder name field. The window should look like Figure 8-50
on page 345.

344 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-50 Creation of ‘wsdl’ folder in sample client Web project

7. In the Project Explorer, right-click the newly created wsdl folder and select Import....
Follow the steps described in 8.4, “Developing a Sample Parlay X Web service” on
page 264 section to import the WSDL files and dependent XSD files.

Note: The sample client application should have at least the following WSDL and XSD files
in the wsdl folder:

� px_cmn_f_2_0.wsdl
� px_cmn_t_2_1.xsd
� px_prs_si_2_3.wsdl
� px_prs_ss_2_3.wsdl
� px_prs_t_2_3.xsd

Chapter 8. Developing the service implementation 345

The Project Explorer should look like Figure 8-51.

Figure 8-51 Parlay X Presence Supplier interface: WSDL and XSD files

8. Using the px_prs_ss_2_3.wsdl file, we will be able to create the Web Services Client code.
Right-click px_prs_ss_2_3.wsdl, select Web Services, and click Generate Client. The
Web Services Client wizard is displayed. Leave the default values in the first window. Click
the Next button. Optionally, select Define custom mapping for namespace to package.

Note: If the package structure must conform to IBM WebSphere Telecommunications Web
Services Server package conventions, select the Define custom mapping for
namespace to package check box. This is considered an optional step for the client
application.

Depending on the length of workspace folder structure, decide whether to use the IBM
WebSphere Telecommunications Web Services Server package structure. For more
information, refer to “Package naming conventions” on page 234. Follow the directions in
8.4.2, “Generating Web service bindings” on page 270.

346 IBM WebSphere Telecommunications Web Services Server Programming Guide

Click the Finish button on the wizard. This action will start the client code generation in RAD.
After completing the code generation, the expanded Java Resources folder in the Project
Explorer should look like Figure 8-52.

Figure 8-52 Web service client code package structure

Chapter 8. Developing the service implementation 347

9. Expand the package org.csapi.www.wsdl.parlayx.presence.supplier.v2_3._interface.
Check if the class PresenceSupplierProxy.java exists. This class should have methods
similar to that of the service operations in the Parlay X Presence Supplier interface. This
class can be instantiated in the client logic to invoke the Parlay X Presence Supplier
service operations. Select the class PresenceSupplierProxy.java, right-click it, and click
Open. In the editor, scroll down and locate all the methods of the Presence Supplier
Interface. The class should look like Figure 8-53.

Figure 8-53 The auto generated PresenceSupplierProxy class

Code customization
In the previous section, we saw the client code generated by Rational Application Developer.
Typically, the client logic invokes the publish method of PresenceSupplierProxy along with the
required Java object parameters. In order to successfully execute the operation, the code
should be customized to include at least the following functionality:

The Service Endpoint should be set before the method invocation. Typically, the Service URL
or Endpoint specified WSDL files usually refer to localhost as the host name. In the sample
client application, the Service Endpoint is stored as a context parameter in the Web
deployment descriptor. The code to set the Service Endpoint on the PresenceSupplierProxy
class is shown in Example 8-18 on page 349.

348 IBM WebSphere Telecommunications Web Services Server Programming Guide

Example 8-18 Sample showing code snippet to set the Service Endpoint

// Instantiate the PresenceSupplierProxy
PresenceSupplierProxy proxy = new PresenceSupplierProxy();
// Override service endpoint
String svcEndpoint = (String)

getFacesContext().getExternalContext().getInitParameter("TWSS_SERVICE_ENDPOINT");
proxy.setEndpoint(svcEndpoint);

Follow these steps to configure the context parameter TWSS_SERVICE_ENDPOINT in the
Web Deployment descriptor:

1. Open the Web deployment descriptor. In the Overview tab, scroll down and locate the
Context Parameters section, as shown in Figure 8-54.

Figure 8-54 Context Parameters section in Overview tab of web.xml

Chapter 8. Developing the service implementation 349

2. Click the Details button on the right. The Variables tab is displayed. Click the Add...
button. The Add Parameter dialog is displayed, as shown in Figure 8-55.

Figure 8-55 Context Parameter details in the Variables tab of web.xml

350 IBM WebSphere Telecommunications Web Services Server Programming Guide

3. Enter TWSS_SERVICE_ENDPOINT in the Parameter name and
http://127.0.0.1:80/PresenceService/services/PresenceSupplier in the Parameter value
field. Click the Finish button (Figure 8-56).

Figure 8-56 Add the TWSS_SERVICE_ENDPOINT context parameter

Chapter 8. Developing the service implementation 351

The context parameter can be found in the Web Deployment Descriptor or web.xml.
Figure 8-57 shows the web.xml where TWSS_SERVICE_ENDPOINT is defined.

Figure 8-57 Context parameters in the Client application web.xml

� The value of the TWSS_SERVICE_ENDPOINT context parameter should be a valid Web
Service Endpoint of the Parlay X Presence Supplier service implementation. The value in
our case is http://9.3.4.180:9080/PresenceService/services/PresenceSupplier.

� In our sample scenario, user credentials must be passed along with a SOAP request for
the publish service operation. Since the Access Gateway instance is secured, service
invocation is required to have valid user credentials. To facilitate this requirement, we will
customize the PresenceSupplierProxy class. Example 8-19 on page 353 shows the
modifications to include the username and password member variables and the
corresponding getter and setter methods.

Note: In 8.8.5, “Test execution” on page 362, we discuss the TCP/IP monitor
configuration. As part of the monitor configuration, we discuss how to modify the TWSS
_SERVICE_ENDPOINT context parameter value.

352 IBM WebSphere Telecommunications Web Services Server Programming Guide

Example 8-19 Sample code snippet showing the addition of username and password member
variables

public class PresenceSupplierProxy
implements

org.csapi.www.wsdl.parlayx.presence.supplier.v2_3._interface.PresenceSupplier {
private boolean _useJNDI = true;

private String _endpoint = null;
// User Name
private String _userName = null;
// Password
private String _password = null;
public String get_password() {

return _password;
}

public void set_password(String _password) {
this._password = _password;

}

public String get_userName() {
return _userName;

}

public void set_userName(String name) {
_userName = name;

}

In addition to the above mentioned modifications to PresenceSupplierProxy, we require
another method, _myInitPresenceSupplierProxy(). This method is called by all the service
methods before making the remote call to a Web service. Example 8-20 shows the method in
detail.

Example 8-20 Sample code snippet to set the username and password in the SOAP request

/**
 * _myInitPresenceSupplierProxy
 *
 * This method sets the 'username' and 'password' values to
 * javax.xml.rpc.Stub.USERNAME_PROPERTY and
 * javax.xml.rpc.Stub.PASSWORD_PROPERTY respectively.
 */
private void _myInitPresenceSupplierProxy() {

if (__presenceSupplier != null) {
if (_endpoint != null)

((javax.xml.rpc.Stub) __presenceSupplier)._setProperty(
"javax.xml.rpc.service.endpoint.address", _endpoint);

else
_endpoint = (String) ((javax.xml.rpc.Stub) __presenceSupplier)

._getProperty("javax.xml.rpc.service.endpoint.address");
if (_userName != null) {

System.out.println("User Name: " + _userName);
((javax.xml.rpc.Stub) __presenceSupplier)._setProperty(

Chapter 8. Developing the service implementation 353

javax.xml.rpc.Stub.USERNAME_PROPERTY, _userName);
}
if (_password != null) {

System.out.println("Password: " + _password);
((javax.xml.rpc.Stub) __presenceSupplier)._setProperty(

javax.xml.rpc.Stub.PASSWORD_PROPERTY, _password);
}

}
}

This concludes the generation and customization of Web Service Client code for the sample
scenario Parlay X Presence Supplier service. Additionally, the Web Service Client code has
the logic to generate the Parlay X Presence PresenceAttribute type and its sub-types, and the
logic to render the Web pages.

In the next section, we discuss the test execution and results.

8.8.4 Test environment configuration

In this section, we demonstrate the test execution as well as the usage of TCP/IP monitor to
monitor the SOAP requests and responses. The TCP monitor tool is available in Rational
Application Developer.

Note: The complete sample code for this service client is available for download. Refer to
Appendix E, “Additional material” on page 399 for detailed instructions on how to download
and work with this sample code.

The sample code also comprises the PresenceSupplierClient project interchange zip,
which can be imported into a RAD workspace.

354 IBM WebSphere Telecommunications Web Services Server Programming Guide

Do the following steps:

1. Switch to the J2EE perspective in RAD. In the tabbed panel at the bottom of the IDE,
locate the Servers tab. Typically, WebSphere Application Server V6.1 is configured in RAD
V7.0 by default. Select the configured server, right-click it, and select Start. The IDE
should look like Figure 8-58 upon successful start of the server.

Figure 8-58 Test environment server being started

Chapter 8. Developing the service implementation 355

2. Once the server is started, we can deploy the client application to this server instance.
Right-click the configured server and select Add and Remove Projects... in the pop-up
menu. The Add and Remove Projects wizard is displayed. From the Available Projects list
on the left, select PresenceSupplierClientApp and click Add in the center of the window.
Click the Finish button (Figure 8-59).

Figure 8-59 Deployment of sample client application

3. Upon successful deployment, the PresenceSupplierClientApp application should be
displayed under the configured server in the Servers tab. The IDE should look as shown in
Figure 8-60 on page 357.

356 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-60 Sample client application deployed

This concludes the deployment of the sample client enterprise application.

Chapter 8. Developing the service implementation 357

Enabling SOAP message monitoring
The SOAP messages sent by the client application to Access Gateway and the responses
received can be monitored using TCP/IP Monitor tool in Rational Application Developer. To
enable this tool, follow these steps:

1. Select the Window menu, select Show View, and select Other.... The Show View wizard
is displayed. Locate the Debug element in the tree and expand it. Select TCP/IP Monitor
and click the OK button. The TCP/IP Monitor tab is added to the tabbed pane at the
bottom of the IDE (Figure 8-61).

Figure 8-61 The TCP/IP Monitor view in RAD

358 IBM WebSphere Telecommunications Web Services Server Programming Guide

2. To configure the TCP/IP monitor, right-click the text area in the TCP/IP Monitor tab. Select
Properties. This action opens the Preferences wizard for the TCP/IP monitor. Check the
Show the TCP/IP Monitor view when there is activity check box. Click the Add button
on the right side of the wizard. This action opens up the New Monitor dialog box
(Figure 8-62).

Figure 8-62 Configure new TCP/IP monitor

Chapter 8. Developing the service implementation 359

3. If port 80 is not in use on the system, leave the Local monitoring port as 80; otherwise,
enter an unused port. In the Monitor section, enter the host name or IP address of Access
Gateway in the Host name field. In the Port field, enter the HTTP port where the Web
service is accessible.

Figure 8-63 Configuration of Access Gateway host and port in the TCP/IP Monitor

Note: The above configuration primarily enables the TCP/IP monitor to:

� Inspect the TCP/IP messages that are either sent or received on localhost and port 80.

� The inspected messages are sent to access gateway 9.3.4.180 and port 9080.

Additionally, the above configuration requires us to change the
TWSS_SERVICE_ENDPOINT context parameter value to
http://127.0.0.1:80/PresenceService/services/PresenceSupplier.

360 IBM WebSphere Telecommunications Web Services Server Programming Guide

4. Open the Web deployment descriptor. In the Overview tab, scroll down to the Context
Parameters section. Click the Details button. The Variables tab is displayed. In the list of
context parameters, select TWSS_SERVICE_ENDPOINT and click the Remove button.

Figure 8-64 Change the host and port of the TWSS_SERVICE_ENDPOINT context parameter

Chapter 8. Developing the service implementation 361

5. Start the monitor and have it listen on port 80 of localhost for any TCP/IP traffic. Right-click
the text area in the top portion of the TCP/IP Monitor tab and select Properties. In the
TCP/IP Monitors table, select the monitor entry specific to the Access Gateway host and
port created earlier. Click the Start button on the right side. The monitor status should
resemble Figure 8-65.

Figure 8-65 TCP/IP Monitor proxying AG Host and Port started

This concludes the configuration settings for TCP/IP monitor as well as the client application
deployment.

8.8.5 Test execution

In this section, we will walk through the test execution for the sample scenario that comprises
the invocation of the publish service operation. The client application is a Web Service Client
and Web UI. The client application makes a Web service call to the Parlay X Presence
Supplier Service interface hosted on Access Gateway. The Access Gateway executes the
mediation flow associated with the service interface. The mediation flow is responsible for
integrating with the service policy manager and enforce policies on the in-flight request. As a
result, the request is enriched and finally handed over to the service platform. The service
implementation logic is invoked, which eventually initiates SIP signaling with the back-end SIP
Presence Server.

362 IBM WebSphere Telecommunications Web Services Server Programming Guide

We will demonstrate this end-to-end execution of the scenario using screen captures and log
entries of the trace.log files of Access Gateway and Service Platform instances. The
Presence Monitor Web UI will be used to demonstrate that the presentity’s presence
information is in fact published to the Presence Server.

Do the following steps:

1. Prepare the SOAP request message. Figure 8-66 shows a sample publish SOAP
Request.

Figure 8-66 Prepare Presence Attributes for PUBLISH request

Chapter 8. Developing the service implementation 363

2. The request XML created by the information in Figure 8-66 on page 363 is shown in
Example 8-21.

Example 8-21 The generated request XML that will form the payload in the publish SOAP request

<?xml version="1.0" encoding="UTF-8"?>
<loc:publish
xmlns:loc="http://www.csapi.org/schema/parlayx/presence/supplier/v2_3/local">
 <presence>
 <lastChange>2008-05-06T17:02:57:593+0530</lastChange>
 <note>I'm sleeping</note>
 <typeAndValue>
 <UnionElement/>
 <Activity>
 <DoNotDisturb/>
 </Activity>
 <Place>
 <Home/>
 </Place>
 <Privacy>
 <PrivacyPrivate/>
 </Privacy>
 <Sphere>
 <SphereHome/>
 </Sphere>
 <Communication>
 <priority>0.5</priority>
 <contact>user2@example.com</contact>
 <type>
 <Email/>
 </type>
 </Communication>
 <Other>
 <name/>
 <value/>
 </Other>
 </typeAndValue>
 </presence>
</loc:publish>

After generating the request XML, the Web service call is made by the client. At this stage,
the TCP/IP monitor configured earlier in “Enabling SOAP message monitoring” on page 358
can be used to check the SOAP message. Figure 8-67 on page 365 shows the SOAP
message.

364 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-67 The publish SOAP Message as inspected by the TCP/IP monitor

3. The above step confirms that the SOAP message has been received by localhost and port
80. The monitor behaves like a proxy to Access Gateway and passes on the SOAP
message to the Access Gateway host and port. In this step, we will check the trace entries
in the Access Gateway trace.log file, specifically the processing of
ServiceInvocationMediation mediation primitive (Example 8-22). This step confirms that
the mediation flow for Parlay X Presence Supplier in the Access Gateway instance
successfully executed all the mediation primitives and is ready to hand over the SOAP
request to the service implementation hosted in Service Platform.

Example 8-22 Extract from Access Gateway trace.log showing the SMO entering and exiting
ServiceInvocationMediation mediation primitive

[4/21/08 5:45:16:505 EDT] 00000073 ServiceInvoca 3
com.ibm.twss.ag.mediation.logic.ServiceInvocationMediation mediate Entered method
[4/21/08 5:45:16:507 EDT] 00000073 ServiceInvoca 3
com.ibm.twss.ag.mediation.logic.ServiceInvocationMediation mediate Input message:
<?xml version="1.0" encoding="UTF-8"?>
<ServiceMessageObject:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ServiceMessageObject="http://www.ibm.com/websphere/sibx/smo/v6.0.1"
xmlns:_local="http://www.csapi.org/schema/parlayx/presence/supplier/v2_3/local"
xmlns:_pX2="http://PX21_PRS_FLOW" xmlns:_v10="http://www.ibm.com/schema/twss/v1_0"

Chapter 8. Developing the service implementation 365

xmlns:interface="http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interfac
e">
 <context>
 <transient xsi:type="_pX2:ExceptionType"/>
 </context>
 <headers>
 <SMOHeader>
 <MessageUUID>705F7C8E-0119-4000-E000-6202C0A80166</MessageUUID>
 <Version>
 <Version>6</Version>
 <Release>0</Release>
 <Modification>2</Modification>
 </Version>
 <MessageType>Request</MessageType>
 </SMOHeader>
 <SOAPHeader>
 <nameSpace>http://www.ibm.com/schema/twss/v1_0</nameSpace>
 <name>twssHeaders</name>
 <prefix>twss</prefix>
 <value xsi:type="_v10:twssHeaders">

<globalTransactionID>705F7C8E-0119-4000-E000-6202C0A80166</globalTransactionID>
 <requesterID>sip:user2@example.com</requesterID>
 <policies>
 <policy attribute="service.config.ServiceImplementationName"
value="PX21_PRS_SPLR_IMS"/>
 <policy attribute="message.sla.LocalRequesterRate" value="0"/>
 <policy attribute="message.sla.ClusterOperationRate" value="0"/>
 <policy
attribute="service.config.presence.supplier.PresenceServerResourceName"
value="PX21_PRS_SPLR_IMS"/>
 <policy attribute="message.sla.LocalServiceRate" value="0"/>
 <policy attribute="message.sla.LocalWeight" value="0"/>
 <policy attribute="message.transaction.RecordTransaction"
value="false"/>
 <policy attribute="message.groups.MaxGroupSize" value="100"/>
 <policy attribute="service.config.presence.supplier.PresenceServerURI"
value=""/>
 <policy attribute="message.sla.LocalOperationRate" value="0"/>
 <policy attribute="service.standard.MaximumNotificationFrequency"
value="1"/>
 <policy attribute="requester.anonymousAccessAllowed" value="true"/>
 <policy attribute="service.standard.MaximumNotificationDuration"
value="9223372036854775807"/>
 <policy attribute="service.config.AdditionalGroupURISchemes"
value="glmgroup"/>
 <policy attribute="service.standard.UnlimitedCountAllowed"
value="true"/>
 <policy
attribute="service.config.service.config.presence.PresenceFetchTimeoutInMillis"
value="1000"/>
 <policy attribute="service.config.enableURItransformation"
value="true"/>
 <policy attribute="message.sla.ClusterEnabled" value="false"/>
 <policy attribute="message.sla.ClusterRequesterRate" value="0"/>

366 IBM WebSphere Telecommunications Web Services Server Programming Guide

 <policy
attribute="service.config.service.config.presence.SubscribePresenceTimeout"
value="86400000"/>
 <policy
attribute="service.config.service.config.presence.SubscribePresenceWinfoTimeout"
value="86400000"/>
 <policy attribute="service.Endpoint"
value="http://9.3.4.188:9082/PX21_PRS_SPLR_IMS/services/PresenceSupplier"/>
 <policy attribute="service.config.DefaultNotificationDuration"
value="86400000"/>
 <policy attribute="message.transaction.RecordStatistics" value="false"/>
 <policy attribute="message.LoggingEnabled" value="true"/>
 <policy attribute="message.sla.ClusterServiceRate" value="0"/>
 <policy attribute="service.standard.MaximumCount" value="2147483647"/>
 <policy attribute="message.sla.ClusterWeight" value="0"/>
<policy attribute="message.sla.LocalEnabled" value="false"/>
 <policy attribute="service.config.requestIDorig" value="user2"/>
 </policies>

<serviceID>http://www.csapi.org/wsdl/parlayx/presence/supplier/v2_3/interface</ser
viceID>
 </value>
 </SOAPHeader>
 </headers>
 <body xsi:type="interface:PresenceSupplier_publishRequest">
 <publish>
 <_local:presence>
 <lastChange>2008-05-06T11:32:58.109Z</lastChange>
 <note>I'm sleeping</note>
 <typeAndValue>
 <UnionElement>Activity</UnionElement>
 <Activity>DoNotDisturb</Activity>
 <Place>Home</Place>
 <Privacy>PrivacyPrivate</Privacy>
 <Sphere>SphereHome</Sphere>
 <Communication>
 <means>
 <priority>0.5</priority>
 <contact>mailto:user2@example.com</contact>
 <type>Email</type>
 </means>
 </Communication>
 </typeAndValue>
 </_local:presence>
 </publish>
 </body>
</ServiceMessageObject:smo>
[4/21/08 5:45:16:510 EDT] 00000073 ServiceInvoca 3
com.ibm.twss.ag.mediation.logic.ServiceInvocationMediation mediate Exiting method

Chapter 8. Developing the service implementation 367

4. In this step, we will check the trace.log of the Service Platform instance. The logic to
handle the SOAP request and initiate SIP signaling with Presence Server confirms that
the request is processed by the Parlay X Presence Supplier service implementation.

Example 8-23 Extract from Service Platform trace.log showing the generation of RPID content from
SOAP request payload as well as submission of a request to Presence Server

[4/22/08 19:58:03:256 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.sip.PresencePublish <init> Presentity
URI: sip:user2@example.com
[4/22/08 19:58:03:259 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.sip.PresencePublish <init> Presence
Server URI: sip:9.3.4.203:5060
[4/22/08 19:58:03:262 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.sip.PresencePublish <init> Presence
Timeout: 60
[4/22/08 19:58:03:265 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.sip.PresencePublish <init> Event Package
Name: presence
[4/22/08 19:58:03:278 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.sip.PublishServlet createInitialPublish
Presence Server URI: sip:9.3.4.203:5060
[4/22/08 19:58:03:284 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.sip.PublishServlet createInitialPublish
PIDF Content:
<?xml version="1.0" encoding="UTF-16"?><presence
xmlns="urn:ietf:params:xml:ns:pidf" entity="sip:user2@example.com"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:lt="urn:ietf:params:xml:ns:location-type"
xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"><tuple
id="610764352"><status><basic>open</basic></status></tuple><dm:person
id="372730457"><rpid:activities><DoNotDisturb/></rpid:activities><rpid:privacy><Pr
ivacyPrivate/></rpid:privacy><rpid:place><Home/></rpid:place><rpid:sphere><SphereH
ome/></rpid:sphere></dm:person><dm:device
id="1495965739">urn:device:000</dm:device><rpid:class>Email</rpid:class><rpid:cont
act priority="0.5">mailto:user2@example.com</rpid:contact></presence>
[4/22/08 19:58:03:297 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.impl.PresenceSupplierBindingImpl publish
SIP PUBLISH with PRESENCE Information sent.
[4/22/08 19:58:03:384 CDT] 0000003d I
com.ibm.twss.parlayx21.presence.supplier.impl.PresenceSupplierBindingImpl
invokeUsageRecords Usage Record Response: 78C986ED-0119-4000-E000-355DC0A80165
[4/22/08 19:58:03:415 CDT] 00000045 SystemOut O SIP-Tag:
1210076798_WPS.server.1A.1207679587255.0_43_41_1
[4/22/08 19:58:03:416 CDT] 00000045 SystemOut O Expiry duration: 60

5. In the final step, we will check the Presence Server Monitor Web UI. The Presence
Monitor application helps visualize the Presence Information stored in the Presence
Server and XDMS servers. Figure 8-68 on page 369 shows the Published Presence
Information that is the end result of the Web service call in step 1 on page 363.

368 IBM WebSphere Telecommunications Web Services Server Programming Guide

Figure 8-68 User2’s Presence Information as displayed in the Presence Monitor Web UI

This concludes the end to end testing of the sample scenario.

Chapter 8. Developing the service implementation 369

370 IBM WebSphere Telecommunications Web Services Server Programming Guide

Appendix A. Developing custom common
components

You can develop your own common components for the IBM WebSphere
Telecommunications Web Services Server. The common components are defined by a Web
service WSDL interface. This appendix provides a brief example of how to do this task.

A

© Copyright IBM Corp. 2008. All rights reserved. 371

Creating a IBM WebSphere Telecommunications Web Services
Server service implementation project

You can substitute IBM WebSphere Telecommunications Web Services Server with custom
implementations to meet a service provider’s specific needs.

The process of implementing a IBM WebSphere Telecommunications Web Services Server
implementation is similar to creating a service implementation, with a few differences:

� IBM WebSphere Telecommunications Web Services Servers service implementations do
not have access to policy information or SOAP headers. IBM WebSphere
Telecommunications Web Services Server service implementations only see data
described within the IBM WebSphere Telecommunications Web Services Server service
implementations Web Services Description Language (WSDL) interface.

� Multiple Parlay X Web service implementations can make use of IBM WebSphere
Telecommunications Web Services Server service implementations.

You can deploy custom IBM WebSphere Telecommunications Web Services Server service
implementations alongside IBM WebSphere Telecommunications Web Services Server
service implementations. You can configure Parlay X Web service implementations within the
IBM WebSphere Telecommunications Web Services Server service implementations to use
the appropriate component implementation.

To create a IBM WebSphere Telecommunications Web Services Server service
implementations project, follow the same procedure as for service implementation projects
described in creating a custom binding implementation.

Integrating with IBM WebSphere Telecommunications Web
Services Server administration console

The following change must be made in order to correctly classify the custom common
component within IBM WebSphere Telecommunications Web Services Server administration
console.

IBM WebSphere Telecommunications Web Services Server service implementations can
follow the same procedures as for the integration of custom service implementations.
However, for a common component implementation, these should be classified as Support
Services when displayed in the administration console. This is defined in the admin.xma file,
and provides better usability for the Administrator.

Additionally, the soa.SOAConsoleSettings.type_name=SOAConsoleServicePlatform property
should be set, so the settings are displayed in the appropriate category in the administration
console.

Other resources for learning more about custom common
components

Refer to the IBM WebSphere Telecommunications Web Services Server Information Center,
specifically to the WSDL documentation for WebSphere IBM WebSphere
Telecommunications Web Services Server, for more information about WSDL or where it can

372 IBM WebSphere Telecommunications Web Services Server Programming Guide

be located when installing the IBM WebSphere Telecommunications Web Services Server
Base installer. This InfoCenter can be found at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r1/index.jsp?topic=/com.ibm.tw
ss.javadoc.doc/wsdl_c.html

The WSDL for the IBM WebSphere Telecommunications Web Services Server common
components is provided. Custom implementations can be developed by providing an
alternate implementation to the same interface, or by creating a new interface from which you
call custom Web service implementations.

Appendix A. Developing custom common components 373

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r1/index.jsp?topic=/com.ibm.twss.javadoc.doc/wsdl_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r1/index.jsp?topic=/com.ibm.twss.javadoc.doc/wsdl_c.html

374 IBM WebSphere Telecommunications Web Services Server Programming Guide

Appendix B. Developing service provider
integrations

This appendix describes how to address the issue of integrating group resolution within IBM
WebSphere Telecommunications Web Services Server.

B

© Copyright IBM Corp. 2008. All rights reserved. 375

Integrating group resolution

The group resolution mediation primitive provided with IBM WebSphere Telecommunications
Web Services Server Access Gateway acts as a Parlay X V2.1 Address List Management
Web service client to resolve group URIs into member URIs.

Group resolution is performed only for specific Parlay X operations that reference groups
URIs within an invocation. The group resolution mediation primitive makes use of the Group
interface's queryMembers() operation to resolve groups. This operation is always called with
the resolution of sub-groups set to true; Parlay X Web service implementations only operate
on flattened lists of group members.

The IBM WebSphere Telecommunications Web Services Server Address List Management
service provides an implementation for this interface. The IBM WebSphere XML Document
Management Server Component provides an out-of-the-box implementation compatible with
the IBM WebSphere Telecommunications Web Services Server Address List Management
service. The endpoint to invoke the group resolution component can be configuring during the
deployment of IBM WebSphere Telecommunications Web Services Server Access Gateway.

Custom integrations of a Service Provider's group management system can be done by
providing an implementation of the queryMembers() method, and configuring the Access
Gateway to invoke that implementation.

This interface is reproduced here for convenience:

� Operation: queryMembers.

� Get the list of members contained within a group.

If nested groups are supported, then the member list can contain group URIs as members.
Therefore, two manners are supported for retrieving the list of members: with members
resolved and without.

� If ResolveGroups is 'true', then the exclusive union of all the members contained within the
group, and any nested subgroups, is the result (exclusive union means that after retrieving
all members, duplicate members are removed).

� If ResolveGroup is 'false', then the group members are returned including group URIs as
members of the group. If members within nested groups are required, subsequent calls to
this operation with those groups can be used to retrieve those members.

� If nested groups are not supported, the value of ResolveGroups is ignored.

Table B-1 shows the input message for queryMembersRequest.

Table B-1 Input message: queryMembersRequest

Part name Part type Optional Description

Group xsd:anyURI No URI of group

ResolveGroups xsd:Boolean No If true, return a set of
members after
resolving groups
(including subgroups).
If false, return
members including
group references.

Members xsd:anyURI[0..unboun
ded]

Yes Members of group.

376 IBM WebSphere Telecommunications Web Services Server Programming Guide

Referenced faults

ServiceException from 3GPP TS 29.199-1 [6]:

� SVC0001: Service error

� SVC0002: Invalid input value

� POL0001: Policy error

Integrating Service Policy Management

There are several ways to integrate with the Service Policy Manager.

Replacing the implementation

The policy/subscription mediation primitive acts as a Web service client requester to a policy
access interface defined by Service Policy Manager.

This interface defines a getServicePolicies() operation that allows for retrieval of policies for a
given (requester, service, or operation) tuple. This operation returns a list of policy
attribute/value pairs used as a runtime configuration for service delivery.

Service Policy Manager provides an out-of-the-box implementation of the
getServicePolicies() operation, as well as additional interfaces for administering requester
subscriptions and service policies. The endpoint to invoke the SPM component can be
configured during deployment of the access gateway. This interface needs only to be
substituted when integrating it with an earlier policy management system.

The IBM WebSphere Telecommunications Web Services Server Information Center contains
the Web Services Description Language (WSDL) ServicePolicyAccessService interface that
defines the getServicePolicies() operation.

Finally, in addition to the WSDL interfaces for the service policy manager, there are MBeans
that are hosted there, and interfaces used during the install and configuration process to
configure the initial system. If a completely alternate implementation is used, some
architecture/design will be needed to migrate the default policies from the policy tables
initialized by IBM WebSphere Telecommunications Web Services Server into the alternate
repository.

Accessing from the SPM Administrative MBeans and Web Services

The Service Policy Manager also now provides MBean interfaces as well as Web service
interfaces to the administrative interface of the Service Policy Manager. This allows
opportunities for integration with the Service Provider.

In a solution deployment, the service provider may need to coordinate some policy
information between IBM WebSphere Telecommunications Web Services Server and other
components in the solution. The Administrative Interface, by using the MBeans or Web
Services, can be used to push data into the Service Policy Manager.

The InfoCenter describes the WSDL Interface to the Web Services and the Java interface of
data objects used when accessing the MBeans. The WebSphere WSADMIN AdminControl
functions can be used from a script or Java software to communicate with these MBeans.

Appendix B. Developing service provider integrations 377

Integrating privacy management

Parlay X Web service implementations provided with IBM WebSphere Telecommunications
Web Services Server support integration with a privacy management system by acting as a
Web service client to a privacy management interface defined by IBM WebSphere
Telecommunications Web Services Server.

IBM WebSphere Telecommunications Web Services Server does not include a privacy
implementation; this interface is intended for integration with an existing privacy management
system in the service provider environment. By default, Parlay X Web service
implementations contain an invalid endpoint for calling a privacy implementation. If no
integration will be provided, then the privacy function can be disabled by setting the privacy
common component endpoint to a blank endpoint.

The privacy interface allows for verification of the right to execute a service operation against
a specific target. The result of a privacy check is to either allow or deny the execution of the
operation against the target. A privacy check will be made for each target within an operation;
this can be made in a single call or in multiple calls to the privacy interface.

The IBM WebSphere Telecommunications Web Services Server Information Center contains
the Web Services Description Language (WSDL) PrivacyInterfaceService interface that
defines the verifyPrivacyPermits() operation.

Integrating with database tables

The IBM WebSphere Telecommunications Web Services Server Information Center defines a
number of database tables that contain audit information for billing and operations. The
service provider is expected to capture the data from these database tables, and convert it to
a form appropriate for their billing or operational support systems. This process is called
mediation.

The tables that fit this category are:

� TRANSACTIONS

� NETWORKSTATISTICS

� CEI

� MSGLOG

� USAGERECORDS

After the transient auditing data has been captured, these tables need to be pruned. The IBM
WebSphere Telecommunications Web Services Server software does not provide any
automatic cleanup for these tables, and these tables will grow until cleared by the service
provider.

Additionally, when doing capacity planning for a deployment, the service provider will need to
determine the growth rate and the cleanup period for these tables based on the deployed
services and the expected transaction rates, in order to determine the required database size.

378 IBM WebSphere Telecommunications Web Services Server Programming Guide

Integrating with the IBM WebSphere Telecommunications Web
Services Server Administration MBeans

The Administration MBeans described above are used to integrate with the IBM WebSphere
Telecommunications Web Services Server Administration Console and provide a visualization
of the configuration parameters; however, these same MBeans can be interacted with through
WSADMIN Jython scripting to provide configuration information programmatically.

A convenient way to identify which MBean instance you are interested in is to navigate to that
location in the IBM WebSphere Telecommunications Web Services Server Administration
Console with a browser, and by viewing the properties of the page, you can see the real URL
that references that page. Embedded in that URL is the ObjectName of the MBean instance
that is manipulated by the page.

The ObjectName information, particularly the type= or name= parameter, can be used with
the AdminService queryNames() JMX method or $AdminControl Jython object to resolve the
MBean:

$./wsadmin.sh -lang jython

mbean_list = AdminControl.queryMBeans("type=MyMBean,*")
length = mbean_list.size()
if length > 0:
 inst = mbean_list[0] # Just use the first one returned
 obj_name = str(inst.getObjectName())
 # Print out all attributes
 print AdminControl.getAttributes(obj_name, None)

Developing a JMX Event Listener

The IBM WebSphere Telecommunications Web Services Server Service Platform FaultAlarm
component and the Access Gateway JMXEventMediator emit JMX notifications for alarm
events. This information can be captured by a service provider's system software and
appropriately handled.

Example B-1 shows an example of how this can be done. The service provider can provide a
separate EAR that contains a servlet that initializes upon server start and listens for
notifications from the NotificationService.

Example: B-1 JMX Event Listener code

import javax.management.Notification;
import javax.management.NotificationFilterSupport;
import javax.management.NotificationListener;
import javax.management.ObjectName;
import javax.servlet.http.HttpServlet;

import com.ibm.websphere.management.AdminService;
import com.ibm.websphere.management.AdminServiceFactory;
import com.ibm.websphere.management.NotificationConstants;
/**
 * Servlet that listens for JMX events for a server and prints them out.
 */
public class JMXListenerServlet extends HttpServlet {

Appendix B. Developing service provider integrations 379

 /**
 * Object name.
 */
 static ObjectName srvObjectName = null;

 /**
 * A listener.
 */
 static NotificationListener srvListener = null;

 /**
 * ObjectName of the mbean.
 */
 static ObjectName loggingObjectName = null;

 /**
 * A listener.
 */
 static NotificationListener loggingListener = null;

 /**
 * Called by the servlet container. Indicates to a servlet that the
 * servlet is being placed into service.
 *
 * @throws javax.servlet.ServletException if an exception occurs that
 * interrupts the servlet's normal operation
 */
 public void init() throws javax.servlet.ServletException {

 // Attach a listener to the server
 try {
 AdminService as = AdminServiceFactory.getAdminService();
 srvObjectName = as.getLocalServer();

 srvListener = new LoggingListener("Server");
 loggingListener = new LoggingListener("Logging");

 as.addNotificationListener(srvObjectName, srvListener, null, this);

 loggingObjectName = getLoggingServiceObjectName();
 if (loggingObjectName != null) {

 NotificationFilterSupport filter = new
NotificationFilterSupport();
 filter.enableType(NotificationConstants.TYPE_RAS_FATAL);
 filter.enableType(NotificationConstants.TYPE_RAS_ERROR);
 filter.enableType(NotificationConstants.TYPE_RAS_WARNING);
 filter.enableType(NotificationConstants.TYPE_RAS_INFO);
 filter.enableType(NotificationConstants.TYPE_RAS_AUDIT);
 filter.enableType(NotificationConstants.TYPE_RAS_SERVICE);

 as.addNotificationListener (loggingObjectName, loggingListener,
null, this);
 }

380 IBM WebSphere Telecommunications Web Services Server Programming Guide

 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 /**
 * Get ObjectName of the logging service.
 *
http://www-128.ibm.com/developerworks/websphere/techjournal/0304_lauzon/lauzon.htm
l
 *
 * @return the ObjectName
 */
 public static ObjectName getLoggingServiceObjectName() {
 ObjectName appMBean = null;

 try {

 AdminService as = AdminServiceFactory.getAdminService();

 // Get the current server name
 ObjectName server = as.getLocalServer();

 // Get WAS key properties
 String cell = server.getKeyProperty("cell");
 String node = server.getKeyProperty("node");
 String process = server.getKeyProperty("process");
 String serverName = server.getKeyProperty("name");

 // Find the notification mbean
 ObjectName queryMBean =
 new ObjectName(
 "WebSphere:type=NotificationService"
 + ",process="
 + process
 + ",*");
 Iterator appMBeanList =
 (Iterator) as.queryNames(queryMBean, null).iterator();
 if (appMBeanList != null && appMBeanList.hasNext()) {
 appMBean = (ObjectName) appMBeanList.next();
 loggingObjectName = appMBean;
 } else {
 loggingObjectName = null;
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 return appMBean;
 }

Appendix B. Developing service provider integrations 381

 /**
 * The server console listener waits for a stop request on the application
server.
 * @version %I%
 */
 class LoggingListener implements NotificationListener {

 private String type;

 /**
 * The constructor of this listener.
 *
 * @param type type
 */
 public LoggingListener(String type) {
 this.type = type;
 }

 /**
 * Handle the notification.
 *
 * @param not the server notification
 * @param obj the instance object passed in
 */
 public void handleNotification(Notification not, Object obj) {

 //System.err.println("JMXListenerServlet " + not.getType() + " " + not
+ " " + " obj: " + obj);
 if (not.getType().equals("j2ee.state.stopping")) {
 try {
 // remove notifications
 AdminService as = AdminServiceFactory.getAdminService();
 if (srvListener != null) {

as.removeNotificationListener(as.getLocalServer(),srvListener);
 srvListener = null;
 }

 if (loggingListener != null) {
 as.removeNotificationListener(loggingObjectName,
loggingListener);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 } else {

 // Event from the RasLoggingService
 try {

 Object srcObject = not.getSource();
 String srcName = srcObject.toString();
 if (srcObject instanceof ObjectName) {
 ObjectName srcObjectName = (ObjectName) srcObject;
 srcName = srcObjectName.getKeyProperty("name");

382 IBM WebSphere Telecommunications Web Services Server Programming Guide

 }

 int i = not.getType().lastIndexOf(".");
 String eventType = not.getType().substring(i+1);

 long sequence = not.getSequenceNumber();

 String result = "ALARM: " + eventType + " " + sequence + " " +
srcName;

 if (not.getTimeStamp() != 0) {
 Date dt = new Date(not.getTimeStamp());
 result += " [" + dt.toString() + "]";
 }

 // If there is a message provided, format it
 if (not.getMessage() != null) {
 result += " " + not.getMessage();
 }

 // If there is more user info, format it into the message
 if (not.getUserData() instanceof com.ibm.ejs.ras.MessageEvent)
{
 result += " " +
 ((com.ibm.ejs.ras.MessageEvent)
not.getUserData()).
 getLocalizedMessage(Locale.getDefault());
 }

 System.err.println(result);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Developing a CEI Event Listener

WebSphere includes the Common Event Infrastructure components. IBM WebSphere
Telecommunications Web Services Server FaultAlarm and Access Gateway CEIEmitter
mediation primitives generate CEI events. Service Provider applications can be developed to
subscribe or listen for these events. For developer guidance on how to subscribe to a CEI
event, refer to the following Web link:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/autonomic/books/cbepractice/
index.pdf

Simple Network Management Protocol (SNMP) is frequently mentioned when integrating IBM
WebSphere Telecommunications Web Services Server or WebSphere with other systems in
the Service Provider's IT network environment. IBM WebSphere Telecommunications Web
Services Server does not specifically provide support for SNMP, but there are a number of

Appendix B. Developing service provider integrations 383

http://download.boulder.ibm.com/ibmdl/pub/software/dw/autonomic/books/cbepractice/index.pdf

other vendors and products that can integrate Java Management Extensions (JMX) with
SNMP, particularly for SNMP traps that are events that are analogous to alarms.

HP Openview, IBM Tivoli NetView®, and AdventNet are popular platforms for monitoring JMX
and SNMP events, and may be already in use in the Service Provider environment:

http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=solutions/adventnet&
S_TACT=&S_CMP=campaign
http://www.adventnet.com/products/snmpadaptor/index.html
http://www-304.ibm.com/jct03001c/software/tivoli/products/netview/

IMS Client Toolkit

The WebSphere IP Multimedia Subsystem (IMS) Client Toolkit provides some additional
information about how to integrate with IMS components in addition to IBM WebSphere
Telecommunications Web Services Server.

The IMS components in IMS V6.2 are the Presence Server, the XML Document Management
Server, the IMS Connector, and the IBM WebSphere Telecommunications Web Services
Server.

The Presence Server provides status information and notifications about user presence. The
XML Document Management Server provides a data store for service provider, user, and
group operational information. The IMS Connector provide authentication, authorization, and
auditing support for an IMS deployment. The IBM WebSphere Telecommunications Web
Services Server provides a manageable platform for hosting Web Services that exposes
service provider functions to third-party applications.

More information about the IMS Client Toolkit can be found at:

https://review.boulder.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-ws
teltkt

384 IBM WebSphere Telecommunications Web Services Server Programming Guide

http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=solutions/adventnet&S_TACT=&S_CMP=campaign
http://www.adventnet.com/products/snmpadaptor/index.html
http://www-304.ibm.com/jct03001c/software/tivoli/products/netview/
https://review.boulder.ibm.com/webapp/iwm/web/preLogin.do?lang=en_US&source=swg-wsteltkt
http://www-304.ibm.com/jct03001c/software/tivoli/products/netview/

Appendix C. Developing a Usage Record
Billing Mediator common
component

The IBM WebSphere Telecommunications Web Services Server Usage Record common
component is a write-only component that records billing information. When integrating with a
service provider environment, you should create a billing mediator application to extract
Usage Records, process them to generate call detail records, and purge processed entries
from the database. Usage Records are written to a table definition, a primary Usage Records
table that contains the master record and service attributes.

C

© Copyright IBM Corp. 2008. All rights reserved. 385

Table definitions for the Usage Records Billing Mediator

Table C-1 describes the table definitions for the Usage Records Billing Mediator.

Table C-1 USAGERECORDS table definitions for the Usage Records Billing Mediator

Field Key Data Type Contents

RECORDID PK CHAR(36) Unique record
identifier.

SEGMENT PK SMALLINT Segment number.

GLOBALID VARCHAR(127) Unique transaction
identifier.

SERVICE VARCHAR(127) Service
implementation name.

HOST VARCHAR(255) The host name of the
machine emitting the
record.

EVENTTYPE VARCHAR(127) Type of service
implementation
service usage record.

RECORDTIME TIMESTAMP Usage record
recording time.

STATUSCODE INTEGER Status code regarding
the service
implementation state.
Service specific.

SERVICEDATA VARCHAR(7000) Data contents for the
usage record packed
into a single string
value. Packing is used
to store data in a single
field in order to reduce
database space
impact. The decision to
pack all fields into a
single data column
was made after
determining that the
ratio of database and
foreign key impact
required to separate
usage properties into a
separate table was too
great.

Contents will be
packed into the data
field using the
following scheme:

key=value;key=value

386 IBM WebSphere Telecommunications Web Services Server Programming Guide

A usage record may be split into segments, where each segment has a sequential segment
number.

Other tables in IBM WebSphere Telecommunications Web Services Server also require
similar mediation by the service provider:

� TRANSACTIONS

� NETWORKSTATISTICS

� MSGLOG

Note: The table definitions for each of these other tables can be looked up in the .DDL
used to create them, and may differ slightly between types of databases.

Appendix C. Developing a Usage Record Billing Mediator common component 387

388 IBM WebSphere Telecommunications Web Services Server Programming Guide

Appendix D. Sample Usage Record cleanup
program

This sample program demonstrates a method of removing Usage Records and other
transient data records from a running system.

D

© Copyright IBM Corp. 2008. All rights reserved. 389

Sample code

Example D-1 illustrates the sample code for removing Usage Records and other transient
data records from a running system.

Example: D-1 Sample code for removing Usage Records

//IBM Sample Source Materials
//
//Sample source materials are supplied As-Is.
//No warranty is expressed or implied.
//
//Product(s): 5724-O05
//
//(C)Copyright IBM Corp. 2000, 2006 , 2007
//
//The source code for this program supplied under the terms of the
//End User License Agreement (EULA) that accompanied this product.
//**

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.text.NumberFormat;
import java.util.Date;
import java.util.Properties;

/**
* The IBM WebSphere Telecommunications Web Services Server Usage Records common component is a
write-only common which produces Usage Records for
* each IBM WebSphere Telecommunications Web Services Server service used. These Usage Records
are used for recording billing information.
* Once a usage record has been processed, the processed entry should be deleted from the
database.
*
* This Sample Usage Record pruning class removes usages records from a database based on the
records
* age. A SQL DELETE query is made of all the Usage Records older than the user provided input
date and time.
* This query limits each delete request to 100 deletes, to provide user feedback, and also
improve performance by
* issuing frequent database commits.
*
* Running the sample class CleanUpDbTable:
*
* Program assumptions:
*
* - Run program on a IBM WebSphere Telecommunications Web Services Server server running
environment.
* - Run program inside a database command-line environment
* - Suggested JVM version java 1.41

390 IBM WebSphere Telecommunications Web Services Server Programming Guide

*
* Running the Sample:
*
* set CLASSPATH=.;%CLASSPATH%
* java CleanUpDbTable DB2 TWSSDB62 localhost 50000 userid password 2007-09-14 11:00:00
TableName TimeFieldName PrimaryKeyName
*
* or
*
* java -cp .;%CLASSPATH% CleanUpDbTable.class DB2 TWSSDB62 localhost 50000 userid password
2007-09-14 11:00:00 TableName FieldName PrimaryKeyName
*
*
* Typical runtime problems:
*
* Error: ClassNotFoundException
* Action: Ensure WAS Server and database is running or Program can't find JDBC driver in
classpath.
*
* Error: Incorrect Userid or Password
* Action: Ensure correct information , recheck commmand line positions.
*
* Error: SQLException errors
* Action: Check proper date or time command line input.
*
*/
public class CleanUpDbTable {

/**
 * Error messages
 */
static final String ILLEGAL_ACCESS = "IllegalAccessException during driver resolution: " ;
static final String INSTANTIATION_EXCEPTION = "InstantiationException during driver

resolution: ";
static final String CLASS_NOT_FOUND = "ClassNotFoundException during driver resolution: ";
static final String SQL_DRIVER = "SQLException during driver getConnection: ";
static final String SQL_COUNT = "SQLException during UseageRecord count query: ";
static final String SQL_EXECUTE = "SQLException during query executeUpdate: ";
static final String SQL_DELETE = "SQLException during query delete processing: " ;
static final String SQL_CLOSE = "Error closing connection: " ;

/**
 * Informational messages
 */
static final String USAGE1 = "Usage: database-alias server-hostname portNumber userId

password date(ex:2007-08-01) time(ex:11:00:00) TableName FieldName PrimaryKeyName\n"+
 "Example parameters: [DB2|ORACLE] WPS_AL dbserverhostname 50000 username <password>

2007-09-01 11:00:00 USAGERECORDS RECORDTIME RECORDID";
static final String MSG1 = "Starting query count of Usage Records to delete...";
static final String MSG2 = "SQL Query = \n";
static final String MSG3 = "Usage Records = " ;
static final String MSG4 = "Committed delete UsageRecords row(s): ";
static final String MSG5 = "Current elasped time is: ";
static final String MSG6 = "Averaging delete time: " ;
static final String MSG7 = "Total UsageRecord cleanup time: ";

Appendix D. Sample Usage Record cleanup program 391

static final String MSG8 = "UsageRecord total delete count query time: " ;
static final String MSG9 = "UsageRecord count query matching row(s) count: ";
static final String MSG10 = "Starting Delete usage query...";
static final String MSG11 = "Preparing jdbc URL: ";
static final String MSG12 = "Preparing jdbc driver class: ";
static final String MSG13 = "No UsageRecords found matching query criteria. ";

/**
 * Remember database type
 */
static boolean isDB2 = false;
static boolean isOracle = false;

/**
 * URL property file inputs
 */
static final String USERID = "user";
static final String PW = "password";

/**
 * CommandLine parameter inputs
 */
static final int _DB = 0 ;
static final int _ALIAS = 1 ;
static final int _SERVER = 2 ;
static final int _PORTNUM = 3 ;
static final int _USERID = 4 ;
static final int _PW = 5 ;
static final int _TIME = 6 ;
static final int _DATE = 7 ;

 static final int _TABLE = 8 ;
 static final int _TIMEFIELD = 9 ;
 static final int _PRIMARYKEY = 10 ;

static final int MAX_PARM = 11;

/**
 * Java Main Application entry point
 *
 * @param args
 */
public static void main(String[] args) {

CleanUpDbTable example = new CleanUpDbTable();

// check for parameters
if (args.length > MAX_PARM || args.length < MAX_PARM) {

example.myexit (-1 , USAGE1);
}

example.processCmd(args);

String alias = args[_ALIAS] ;
String server = args[_SERVER];
int portNumber = Integer.valueOf(args[_PORTNUM]).intValue();

392 IBM WebSphere Telecommunications Web Services Server Programming Guide

String userId = args[_USERID];
String password = args[_PW];

 String tableName = args[_TABLE];
 String timeFieldName = args[_TIMEFIELD];
 String primaryKeyName = args[_PRIMARYKEY];

// for collecting some simple satistics
Date startTime = new Date();
int count = 0;
int records = 0;
Connection connection = null;
String url = null;
String driver = null;
if (isDB2) {

url = "jdbc:db2://" + server + ":" + portNumber + "/" + alias;
driver = "com.ibm.db2.jcc.DB2Driver";

} else {
url = "jdbc:oracle:thin:@" + server + ":" + portNumber + ":" + alias;
driver = "oracle.jdbc.driver.OracleDriver";

}

// MSG11 = "Preparing jdbc URL: ";
// MSG12 = "Preparing jdbc driver class: ";
example.tracemsg (MSG11 + url);
example.tracemsg (MSG12 + driver);

try {
Class.forName(driver).newInstance();

} catch (IllegalAccessException e) {
 e.printStackTrace();

example.myexit(-2,ILLEGAL_ACCESS + e);
} catch (InstantiationException e) {

 e.printStackTrace();
example.myexit(-2,INSTANTIATION_EXCEPTION + e);

} catch (ClassNotFoundException e) {
 e.printStackTrace();

example.myexit(-2,CLASS_NOT_FOUND + e);
}

Properties props = new Properties();
props.setProperty(USERID, userId);
props.setProperty(PW, password);

try {
connection = DriverManager.getConnection(url, props);
connection.setAutoCommit(false);

} catch (SQLException e) {
 e.printStackTrace();

example.myexit(-3,SQL_DRIVER + e);
}

if (connection != null) {

try {

Appendix D. Sample Usage Record cleanup program 393

// msg1: "Starting count of Usage Records to delete...";
example.tracemsg (MSG1);
//---
// Query the DB for a total all records older
// than the time/date provided
//--
Statement statement = connection.createStatement();

String query = "SELECT COUNT(" + timeFieldName + ") AS TOTAL FROM " + tableName +
" WHERE (" + timeFieldName + " < TIMESTAMP('"

+ args[_TIME] + " "
+ args[_DATE].trim() + "'))";

// msg2:"Using query: ";
example.tracemsg (MSG2+ query);

//--------------------------------
// Perform Usage Record Count
//--------------------------------
ResultSet rs = statement.executeQuery(query);
rs.next();
records = new Integer(rs.getInt("TOTAL")).intValue() ;

// records = Integer.parseInt(recordCountString);
// msg3:"Usage Records = " + records
example.tracemsg (MSG3+ records);
rs.close();
statement.close();

} catch (SQLException e) {
 e.printStackTrace();

example.myexit(-4,SQL_COUNT + e);
}

Date finshTime = new Date();
// MSG8 = "UsageRecord total delete count query time: " ;
// MSG9 = "UsageRecord count query matching row(s) count:";
example.tracemsg (MSG8+ example.timeInSeconds(finshTime.getTime() -

startTime.getTime()));
example.tracemsg (MSG9+records) ;

// Check if any delete matching criteria
if (records != 0) {

// Prepare to delete and commit 100 Usage Records per loop
count = 0;
startTime = new Date();

//msg10 = "Starting Delete usage query...";
example.tracemsg (MSG10) ;

 String query = "DELETE FROM " + tableName + " WHERE " + primaryKeyName + " in
(SELECT " + primaryKeyName + " FROM " + tableName + " WHERE " + timeFieldName + " < TIMESTAMP('"

 + args[_TIME] + " "

394 IBM WebSphere Telecommunications Web Services Server Programming Guide

 + args[_DATE].trim() + "') ORDER BY " + primaryKeyName + " FETCH FIRST 100 ROWS
ONLY)";

example.tracemsg (MSG2+ query);

try {
PreparedStatement statement = connection.prepareStatement(query);
Date runningTime = new Date();

int delcnt = 0 ;
while (records > 0) {

try {

delcnt = 0;
//--------------------------------
// Perform Usage Record Delete
//--------------------------------
delcnt= statement.executeUpdate();

} catch (SQLException e) {
 e.printStackTrace();

example.myexit(-4,SQL_EXECUTE + e);
}
count+= delcnt;
records -= delcnt;

//--
// To prevent accessive locks commit often and
// improves preformance
//--
connection.commit();

finshTime = new Date();
long intermediateTime = finshTime.getTime() - runningTime.getTime();

// msg4: "Committed delete UsageRecords row(s): " +delcnt
// msg5: "Current elasped time is: "+

example.timeInSeconds((finshTime.getTime() - startTime.getTime()))
// msg6: "Averaging delete time in seconds: " +

example.timeInSeconds(intermediateTime / 100));
example.tracemsg (MSG4+ delcnt);
example.tracemsg (MSG5+ example.timeInSeconds((finshTime.getTime() -

startTime.getTime())));
example.tracemsg (MSG6+ example.timeInSeconds(intermediateTime / 100));

runningTime = new Date();
}

statement.close();

} catch (SQLException e) {
 e.printStackTrace();

example.myexit(-4,SQL_DELETE + e);

Appendix D. Sample Usage Record cleanup program 395

}

finshTime = new Date();
// msg7 "Total UsageRecord cleanup time: ";
example.tracemsg (MSG7+ example.timeInSeconds(finshTime.getTime() -

startTime.getTime())) ;

} else { // if count
// MSG13 = "No UsageRecords found matching query criteria. ";
example.tracemsg (MSG13) ;

}
} // if connection
if (connection != null) {

// Disconnecting ...
try {

connection.commit();
connection.close();

} catch (SQLException e) {
 e.printStackTrace();

example.myexit(-4,SQL_CLOSE + e);

}
}

example.myexit(0,"");

}

/** A number formatter*/
private NumberFormat nf = NumberFormat.getInstance();

/**
 * Convert time in milliseconds to a String in seconds
 * @param time
 * @return
 */
private String timeInSeconds(float time) {

return nf.format(time/1000F) + " seconds";
}

/**
 * processCmd: Check input parms.
 * @param args Program input parms.
 */

private void processCmd (String[] args){

// Did the user request help?
if ((args[_DB].indexOf("?")> -1) || (args[_DB].trim().toLowerCase().indexOf("help")> -1)

) {
myexit (-1 , USAGE1);

// Check for DB2

396 IBM WebSphere Telecommunications Web Services Server Programming Guide

} else if ((args[_DB].trim().toUpperCase().indexOf("DB2") > -1)) {
isDB2 = true;
// Check for Oracle

} else if ((args[_DB].trim().toUpperCase().indexOf("ORACLE") > -1)) {

} else {
myexit (-1 , "");

}

}

/**
 * tracemsg: Output messages
 * @param message display message
 */

private void tracemsg (String message){

System.out.println(String.valueOf(message));
}

/**
 * Exit: System exit
 * @param retc return error code
 * @param errmsg display message
 */

private void myexit(int retc , String errmsg){

tracemsg(String.valueOf(errmsg));
System.exit(retc);

}

}

Appendix D. Sample Usage Record cleanup program 397

398 IBM WebSphere Telecommunications Web Services Server Programming Guide

Appendix E. Additional material

This book refers to additional material that can be downloaded from the Internet, as described
below.

Locating the Web material

The Web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247589

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the IBM
Redbooks form number, SG247589.

Using the Web material

The additional Web material that accompanies this book includes the files listed in Table E-1.

Table E-1 Files available for download

E

File name Description

CH52 Sample.zip Project interchange file. Contains the
PresenceSupplier publish Mediation Module,
including the custom primitive, as described in
5.2, “Customize a default mediation flow” on
page 128.

© Copyright IBM Corp. 2008. All rights reserved. 399

ftp://www.redbooks.ibm.com/redbooks/SG247589
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
ftp://www.redbooks.ibm.com/redbooks/SG247589

CH53 Sample plugin.zip Project interchange file. Contains both projects
that are required to create the WebSphere
Integration Developer plug-in, as described in
5.3, “Extending the WebSphere Integration
Developer Tooling Environment” on page 153.

CH53 Sample flow.zip Project interchange file. Contains the
PresenceSupplier publish Mediation Module,
including the custom mediation primitive, as
described in 5.3.6, “Using the plug-in to
customize a flow” on page 168.

CH53 Sample java.zip ZIP archive. Contains the source code of the
AdressTransformation.java class, which is
required in 5.3.3, “Develop the mediation
business logic” on page 162.

CH54 Samplw.zip Project interchange file. Contains the
CONFERENCING Mediation Module, as
described in 5.4, “Develop a custom mediation
flow” on page 173.

PX21_PRS_SPLR_IMSApp.ear Sample service implementation of the Presence
supplier service.

ParlayXPresenceSupplier_JavaDoc.zip Java Documentation.

PresenceSupplierClient.zip Simple Testing Client for Presence Supplier.

PresenceSupplierClientApp.ear Simple Testing Client for Presence Supplier.

File name Description

400 IBM WebSphere Telecommunications Web Services Server Programming Guide

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 401.
Note that some of the documents referenced here may be available in softcopy only.

� Developing SIP and IP Multimedia Subsystem (IMS) Applications, SG24-7255, found at:

http://www.redbooks.ibm.com/abstracts/sg247255.html?Open

Online resources

These Web sites are also relevant as further information sources:

� IBM WebSphere Telecommunications Web Services Server Information Center

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp

� Javadoc for IBM WebSphere Telecommunications Web Services Server

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.javadoc.doc/intro_c.html

� WSDL documentation for common components

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.i
bm.twss.javadoc.doc/wsdl_c.html

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

© Copyright IBM Corp. 2008. All rights reserved. 401

http://www.redbooks.ibm.com/abstracts/sg247255.html?Open
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/intro_c.html
http://publib.boulder.ibm.com/infocenter/wtelecom/v6r2m0/index.jsp?topic=/com.ibm.twss.javadoc.doc/wsdl_c.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

402 IBM WebSphere Telecommunications Web Services Server Programming Guide

Index

A
Access Gateway

base policy scripts 51
default mediation flow 67
default message processing flow 67
default Policies 293
default policies 53
following customizations 127
incoming request 282
mediation flow 128
trace entries 365

Access Gateway - Providing Secure, Policy Driven Third
Party Access 4
Access Gateway (AG) 1, 9, 25, 33, 67, 127, 206, 253
Accessing ServicePlatform API 278
Add a new policy 139
Added SOAP headers 76, 78, 80, 83, 85
Adding the New Mediation Primitive to the Mediation Flow
145
Address List Management

project interchange file 98
Address List Management (ALM) 80, 231
Administering the Fault and Alarm component Web ser-
vice 219
Administering the Traffic Shaping component Web ser-
vice 217
Admission Control 205, 235, 284
Admission Control client 284
Admission Control Component API 208
Admission Control Component Web service 205
Admission Control Configuration settings 291
AdmissionControlInterface 214
Analysis of sequence and actions in the Default Flow 73
Application name 112, 284
application naming

IBM WebSphere Telecommunications Web Services
Server design guidelines 260

application server 4, 13, 81, 145, 203, 264
Architectural overview 15
Architecture overview 228
Architecture, components and tooling 9
Assemble the EAR 149, 200

B
Begin using the default mediation flow in WID 99
Build the fault flow 197
Build the request flow 192
Build the response flow 200
Building the default Mediation Flow within the context of a
project 104
business logic 17, 129
Business Value and positioning 3

© Copyright IBM Corp. 2008. All rights reserved.
C
call handling (CH) 12, 231
Call Notification (CN) 231
CBE format 207
CDT 368
CEI Event 74, 141, 207

Emitter 174
Emitter mediation 87
Emitter Mediation Primitive 87

CEI Event Emitter
mediation 87
Mediation Primitive 87

CEI Event Emitter Mediation Primitives 87
client application 18, 29, 31, 174, 247–248, 286, 289

optional step 346
service operation 287
Web service requests 296

Code customization 348
code snippet 132, 217, 284
Common & Third Party Call

Message code range 236
common base event (CBE) 74, 207, 287
Common Component Client interfaces 255
Common Component Web service Client MBeans 210
Common Components 22, 203–204
common event infrastructure (CEI) 71, 174, 207, 287
Components which make up IBM WebSphere Telecom-
munications Web Services Server 13
conceptual overview 5
Conclusion 250
CONFIGPROPERTIES Value 291
Configuration 217, 220
Configuration Conventions 239
Configuration for the common components 211
configuration setting 211, 239, 256, 291

port values 335
similar set 292

Configurations for a new Service 291
Configuring the Common Components 332
Conforming to IBM WebSphere Telecommunications
Web Services Server conventions 230
Construct the Mediation Flow 190
container managed persistence (CMP) 113
Create a New Mediation Module 177
Create a plug-in 155
Create Default Policy 53
Create New Requester 58
Create New Subscription 60
Create required folders in the plug-in project 159
Create the Assembly 183
Create the ExceptionType Business Object 180
Create the plug-in project 155
createOperation 294
Creating a Custom Service Project 257
Creating a New Policy 53
 403

Creating Initial Policies for Parlay X Services 293
Creating Policies for Service Implementation 296
Creating the Custom Policy 58
custom flow 30, 65, 149, 169
custom mediation 1, 87–88, 127, 400
custom mediation primitives 87
custom policy 1, 16, 34, 170, 173
custom WSDL 132
customizable behavior 132
Customize a Default Mediation Flow 128
Customizing the Web service Bindings 278

D
Data Access Utilities 277
Data Type 15, 36, 77, 180, 256, 386

Business Integration perspective right click 182
Database Naming Conventions 232
DataSource Provider 232
Default Access Gateway flow 72
default flow 7, 67, 71, 129
Default value 42, 78, 80, 139, 173, 303, 316
Dependencies on IBM WebSphere Telecommunications
Web Services Server Environment 253
Deploy and Test 326
Deploy the EAR to the runtime environment 152, 201
Deploy the plug-in to the tool environment 166
Deploy the primitives to runtime 168
deployed service implementation

application server 204
Deploying the default mediation flow 105
Deploying the Service Policy Manager components 37
Deploying the Service Policy Manager console 44
Deploying the Service Policy Manager runtime compo-
nent 37
deployment descriptor 111, 149, 239, 257
Deployment procedure 326
deployment target 110
Description 291
Description of Common Components provided with IBM
WebSphere Telecommunications Web Services Server
204
Design considerations 228, 230
Design considerations for Access Gateway Flows - Base
Mediation Flows and the Mediation Primitives 67
Design considerations for the service implementation
227
Design Guidelines 227, 254
Design Guidelines for Custom Mediation Primitive 129
Design Guidelines for New Mediation Flows 173
Designing for Performance 243
Details of ‘publish’ service operation 248
Develop a Custom Mediation Flow 173
Develop the mediation business logic 162
Develop the Mediation Primitive Logic 147
Developing a Sample Parlay X Web service 264
Developing and Customizing a Custom Access Gateway
Flow 127
Developing the Basic Utilities 277
Developing the JMX MBean for service 300
Developing the Service Implementation 251

Development Environment 254
Development Utilities 254
Direct Connect Services 24
Documentation Requirements 245

E
e.printStackTrace 308, 393
EAR file 38, 105, 150, 259

META-INF/ibm-application-ext.xmi) file 112
Edit plugin.xml 156
Edit the propertygroup file 160
Enabling a New Requestor for IBM WebSphere Telecom-
munications Web Services Server 58
Enabling SOAP message monitoring 358
Encryption and Decryption Utilities 256
End License (EULA) 306
End Point

URI 334
URI field value 335

End User License Agreement (EULA) 390
endpoint 18
English format 240
enterprise application 2, 233, 256

deployment descriptor 268
name 233
resource 149, 201, 254
settings page 110

enterprise application resource (EAR) 111, 149, 152
Enterprise Service Bus (ESB) 4, 16
Error Handling within the flow 74
Error message 205, 234, 391
example.timeInSeconds 394
example.tracemsg 393
Exception e 215
exported EAR file

destination directory 201
Extending the WID Tooling Environment 153
Extensibility 25

F
Fault Alarm Client 287
Fault and Alarms Component API 210
fault flow 140, 180
fault handling 140
fault terminal 74, 140, 200
FaultAlarmInterface 219
Faults and Alarms 77
Faults and alarms 76, 78–79, 81, 87
Faults and Alarms Component Web service 207
First Failure Data Capture (FFDC) 241, 256
Flow of information - from client operation request to in-
voking the appropriate service implementation 18
Focus of this chapter within context of the common use
case 34, 128, 252
Functional component description 3

G
Generate the mediation meta-data 161

404 IBM WebSphere Telecommunications Web Services Server Programming Guide

Generating Web service Bindings 270
given service operation

network element 285
global transaction

ID 82, 174, 217
Graphical Modeling Framework (GMF) 29
Guidelines for choosing limits 217
Guidelines for IBM WebSphere Telecommunications Web
Services Server Service Implementations 277

H
Handle Terminals 140
High availability, scalability, failover and reliability 242

I
IBM Redbooks publication 1, 3, 131
IBM WebSphere Telecommunications Web Services
Server 1, 4, 9–10, 36, 68, 128, 203, 227–228, 252,
371–372

connector component 235
custom service implementation 252
rich features 254
Service implementation 231
Service Platform 204
Service Platform component 256
Service Policy Manager 6
underlying application server environment 24

IBM WebSphere Telecommunications Web Services
Server Administration 212, 239, 285, 299, 372

custom common component 372
empty value 213
entry point 300
label elements 301
left navigation panel 302
MBean instances 299
network resource name 285
service specific MBean implementations 300
services page 337
translatable text 301

IBM WebSphere Telecommunications Web Services
Server Common Component Invocations 283
IBM WebSphere Telecommunications Web Services
Server convention 230, 240
IBM WebSphere Telecommunications Web Services
Server environment 241, 253

Dependencies 253
IBM WebSphere Telecommunications Web Services
Server framework 241
IBM WebSphere Telecommunications Web Services
Server header 31, 73, 132, 136

basic structure 134
element 137
policy element 132
requesterID element 137
value element 134

IBM WebSphere Telecommunications Web Services
Server InfoCenter 208, 291
IBM WebSphere Telecommunications Web Services
Server service 254, 390

Available list 332
configuration settings 293
usage information 286

IBM WebSphere Telecommunications Web Services
Server System architecture overview 10
IBM WebSphere Telecommunications Web Services
Server WID Plug-in installation 88
Implementing an MBean for service implementations 302
Implementing the core logic of the Service 287
Import IBM WebSphere Telecommunications Web Ser-
vices Server SOAP header data types 182
Import the Parlay X WSDLs 268
Import WSDLs 179
incoming request 18, 53, 134, 143, 217, 229, 247, 256

relevant policies 31
information.It check 207
Initial service policy settings 293
Initialize the additional policies for specified Web service
implementations 52
Initialize the basic policies 51
Initializing policies 51
Initiation Protocol (IP) 232
Innovative third-party services 3
input terminal 70, 146
int i 137
integrated development environment (IDE) 29, 161, 254
Internationalization conventions 240
Introduction 252
Introduction to Access Gateway and Mediation Flows 68
Introduction to IBM WebSphere Telecommunications
Web Services Server 1
Introduction to the sample scenario described in this IBM
Redbooks publication 5
Invoking IBM WebSphere Telecommunications Web Ser-
vices Server Admission Control Common Components
214
Invoking IBM WebSphere Telecommunications Web Ser-
vices Server Common Components 211
Invoking IBM WebSphere Telecommunications Web Ser-
vices Server Fault And Alarm Common Components 218
Invoking IBM WebSphere Telecommunications Web Ser-
vices Server Network Resource Common Components
220
Invoking IBM WebSphere Telecommunications Web Ser-
vices Server Traffic Shaping Common Components 215
Invoking IBM WebSphere Telecommunications Web Ser-
vices Server Usage Records Common Components 222
IP Address 37, 107, 360
IP-Multimedia Subsystem (IMS) 12

J
J2EE application 29, 233, 254
J2EE application naming conventions 233
J2EE resource

is 232
reference 244

J2EE resources naming conventions 232
JAR file 255, 301
Java Authentication and Authorization Service (JAAS)
232

 Index 405

Java Connector Architecture (JCA) 22, 229
Java Message Service (JMS) 30, 132
Java Messaging Service (JMS) 22, 117, 229
Java Naming Directory Interface (JNDI) 232
Java project 161–162, 320
JMS queue 23, 232
JMX MBean 240, 298

framework 240
JMX Notification 74, 141, 207

originating class 84
JMX Notification mediation primitive 84
JNDI name 117, 232, 263
JSF Widget Library (JWL) 29

K
Key custom primitive functions 131
Key features of the SPM and architectural overview 15

L
Load the default flow 145
Logging and tracing utilities 277

M
Management provisions for new Service 299
Mandatory Mediation Primitives 71
MBean 285

MBeanInfo 307
Object name 302

MBean attribute 299
MBean implementation 299

Deployment Descriptor 325
JAR file name 325
Java Project 321
sample code 322

MBean implementation for Sample Scenario 303
Mediation Flow

full development life cycle 173
Output terminal 151

mediation flow 1, 7, 17, 30, 33, 67, 127, 190, 362
Mediation Module 19, 130, 399
Mediation primitive

specific customizations 72
upstream assumptions 129

mediation primitive 4, 16, 19, 61, 67, 129, 365
mediation components 30
SOAP headers 18

Mediation primitive properties 83, 85
Mediation primitives 69
Mediation primitives used by the Access Gateway 71
menu item 326
Message bundles 241
message code 230, 277

IBM WebSphere Telecommunications Web Services
Server design guidelines 277

Message code range 235
Message Element Removal Mediation Primitive 76
message filter 141

default Output terminal 196

Input terminal 196
toLogger Output terminal 196

Message handling 83, 85
Message Identifiers 234
Message Logger 174

Output terminal 196
message.groups.MaxGroupSize 135, 366
message-driven bean 117

activation specification JNDI name 117
listener bindings 117

Mobile Location Protocol (MLP) 24, 232
Multimedia Messaging

Service 231, 236
Multimedia Messaging Service 231

N
namespace naming conventions 233
network element 11, 205, 239, 254, 282

functional relationships 12
IBM WebSphere Telecommunications Web Services
Server cluster 242
message processing capacity 206

network resource 205, 239, 253
Code Snippet 222
corresponding properties 239

Network Resources Component API 210
Network Resources Component Web service 206
Network Statistics Mediation Primitive 78
NetworkResourceInterface 221
New Mediation

Flow 173, 175
Module 177
Module wizard 178

Notification Administration component Web service 209
notification interface 233, 255
Notification Management

common component 283
Notification Management Component

API 209
Web service 206

Notification Management Component API 209
Notification Management Component Web service 206

O
operating system (OS) 90
Optional plug-ins used by the default Access Gateway
flow 71
output terminal 26, 70, 140

Message Filter 194
Overview of IBM WebSphere Telecommunications Web
Services Server 2
Overview of policies 35
Overview of the Service Policy Manager 36

P
Package naming conventions 234
Parlay Services 24
Parlay X 11, 52, 68, 251

406 IBM WebSphere Telecommunications Web Services Server Programming Guide

Parlay X Bindings 255
Parlay X Group Resolution Mediation Primitive 80
Parlay X Presence Supplier service

application 331
implementation 264, 298

Parlay X Presence Supplier Service Interface 246
Parlay X V2.1 WSDL Files 255
Parlay X Web service

APIs 20, 228
implementation 14, 18, 77, 80, 211, 228–229, 277,
372
Implementations Architecture 20, 23
Implementations Extensibility 27
sample scenario 264
specification 264

Parlay X Web service Implementations Architecture 20
Parlay X Web service Implementations Extensibility 27
Parlay X Web Services 228
Performance Monitoring 244
Performance Monitoring Infrastructure (PMI) 244
plug-in project 155

additional folders 159
AddressTransformation.mednode 164
required folders 159

plug-ins 96, 149
Policy configuration 83, 85
policy information 13, 18, 53, 77, 229, 239, 372

populates SOAP headers 16
Policy interface 78
policy name 57, 134, 140, 230, 286
Policy naming conventions 230
Policy Subscription Mediation Primitive 77
policy-driven act 75
pop-up menu 268

menu item 348
menu option 268

Prerequisites for Service Management provisions 300
Presence Information Data Format (PIDF) 250
Presence Monitor

application 368
Web UI 369

Presence Server 11, 219, 246, 264
environment 246
Monitor Web UI 368
SIP 200 OK message 250
SIP messages 264
SIP URI 290
URI 368
V6.2 247

Presence Supplier
Design Dependency 247
Detailed Design 246
implementation 254
interface 1, 254
service administration page 338
service component 247
service configuration settings page 339
service function 248

Presence Supplier ‘publish’ operation 289
Presence Supplier Design Dependencies and Limitations

247
Presence Supplier Detailed Design 246
Presence Supplier Service components 247
presentity 246, 292

Presence Attributes 249
Privacy Client 284
Privacy Component API 210
Privacy Component Web service 207
private void

myexit 397
processCmd 396
tracemsg 397

Project Explorer 262, 320
Java projects 262
webservice.xml Location 279

PRS 231
public class

CleanUpDbTable 391
public Object

getAttribute 305
getDefaultValue 305

public String
get_password 353
get_userName 353
getAttributeType 304
getBeanName 320
getName 304
getObjectName 320
getString 320
readFromStore 305

public void
registerMBean 306
set_password 353
set_userName 353
setAttribute 305
unregisterMBean 306
writeToStore 305

PX Notification Component API 208
PX Notification delivery

component 206
component decouple 207

PX Notification Delivery Component Web service (Parlay
X-specific) 206

Q
Queue Connection Factory (QCF) 232

R
RAD V7.0 254
Rational Application Developer

code generators 275
TCP/IP Monitor tool 358

Rational Application Developer (RAD) 28, 112, 254
Read and update a IBM WebSphere Telecommunications
Web Services Server header element 137
Read IBM WebSphere Telecommunications Web Servic-
es Server policies 138
Read SMO headers 136
Redbooks Web site 401

 Index 407

Contact us xiv
Request - only pattern 287
Request - reply pattern 287
request flow 74, 144–145, 192, 242

final node 191
Request with Asynchronous Responses pattern 288
Requester 14
Required Imports 135
Response - only pattern 288
Response Handling 287
result object 288
return retval 304
Revenue Generating Services 3
Roadmap to the chapters in this IBM Redbooks publica-
tion 6
Role of Mediation Primitives 19
Role of the Access Gateway 18

S
sample client

application 339, 342
enterprise application 357

sample code 127, 203, 251, 277, 390
snippet 141, 303

Sample for Service Policy Manager - SIP addressing con-
version 61
Sample Parlay X Web service scenario 246
sample scenario 5, 98, 203, 254

main configuration Web page 337
test execution 362
Web service client code 354

SCA export 19, 131
SCA import 19, 183
Scenario MBean implementation 336
Security 242
Security Role Naming Conventions 233
Service 15
Service Administration 331
Service Authorization Mediation Primitive 79
Service Data Object (SDO) 132, 162
service endpoint 21, 348
Service Implementation

essential component 286
IBM WebSphere Telecommunications Web Services
Server runtime 257
MBean implementations 300
sample code 251

service implementation 3–4, 10, 18, 28, 53, 61, 75,
131–132, 203, 215, 227, 251, 372

core logic 212
design guidelines 230
essential part 241
log generation utilities 234
performance bottlenecks 245
service criteria 215

service implementation prerequisites 264
Service Independence 230
Service Invocation

input terminal 146, 169
output terminal 197

service invocation 146, 249, 287, 352
service invocation mediation primitives 86
service logic 22, 24, 142, 230, 239, 286

correlation identifier 289
successful execution 290

Service Mediation Object (SMO) 26
Service Message Object (SMO) 70, 131, 365

access gateway processing faults 84
individual sections 162
SOAP headers 182

Service Message Object (SMO) Structure 132
service operation 73, 212, 230, 246, 264, 292

actual service implementation code 277
admission rate 214
certain interactions 264
core logic 286

Service Platform 6, 9, 19, 76, 203, 206, 227, 253
common components 235
specific focus 20

Service Platform and the Web service Implementations
19
Service Platform API 256
Service Platform Application Template 256
Service Platform Interfaces 255
Service Platform package 213
service policy 6, 9, 14–15, 33, 73, 78, 130, 230, 293, 296
Service Policy Manager 14
service provider 1, 10, 19, 67, 205, 214, 228, 385

common control point 2
internal and external customers 10
organization requirements 25
similar mediation 387

service request 12, 68, 205, 212, 287
service.config.enab leURItransformation 62, 135, 366
service.config.myPolicy 138
ServicePlatform API 256, 278
ServicePlatform Class 213
ServicePlatformHandler Class 213
ServicePlatformLogger Class 213
Session Initiation Protocol (SIP) 1, 11, 232
Short Messaging Service (SMS) 231
Simple Object Access Protocol (SOAP) 30, 70
SIP project 260, 264, 268
SIP servlets 229, 290

share session information 248, 278
SIP URI 143
SLA Enforcement Mediation Primitives 81
SMO headers 84
SOAP header 16, 70, 76, 129, 145, 212, 299, 372

additional information 26
element 73
IBM WebSphere Telecommunications Web Services
Server headers 136, 194

SOAP message 18, 62, 71, 141, 229, 358
specified Web service implementation

additional policies 52
SPM console 36
SPM Runtime component 36
Start the Service Policy Manager Applications 50
String name 303

408 IBM WebSphere Telecommunications Web Services Server Programming Guide

Subscription 15
Synchronizing Threads and Handling Asynchronous
Events 288
System.out.println 147, 353, 397

T
TCP/IP Monitor 352
telecom function 14, 68
Telecom Service

Provider 3, 228
Provider environment 11

Telecom Web Services 228
implementation 4, 228, 277
server 24, 234, 254
Server implementation 372
server InfoCenter 302

Telecom Web Services Access Gateway 10, 16, 68, 229
architecture 17
component 19, 26
Extensibility 25
flow 173
Mediation primitives 27
outbound requests 18

Telecom Web Services Access Gateway architecture 17
Telecom Web Services Access Gateway Extensibility 25
Telecom Web Services implementation naming conven-
tions 231
Telecom Web Services service implementation 211
Terminal Location (TL) 231
terminal status (TS) 12
Test case 1- Custom policy defined (false) 170
Test case 2- Custom policy defined (true) 172
Test case 3 - no custom policy defined 173
Test Client 339
Test Environment

setup 340
Test Environment configuration 354
Test Environment setup 340
Test Execution 362
Test Requirements 245
Test the sample 64
Test your custom flow and primitive 169
The Output terminal 83, 146
The role of Direct Connect and Parlay connector based
services 11
The role of IBM WebSphere Telecommunications Web
Services Server in IMS architecture 12
Third-Party Call (TPC) 231
Tooling 28
Tooling / WID Plug-in 88
Tooling for develop Mediation Flows 30
Tooling for Developing Client Applications 31
Tooling for developing Service Implementations 28
Trace Logging and FFDC 241
Traffic Shaping Client 284
Traffic Shaping Component API 208
Traffic Shaping Component Web service 205
Traffic Shaping Configuration settings 292
TrafficShapingInterface 216
Transaction Identifier 71, 174, 241, 282, 386

b 289
mediation 71, 174

Transaction Identifier Mediation Primitive 82
Transaction Recorder Mediation Primitive 76
Trusted Asserted Identity (TAI) 242

U
Underlying Service Policy Manager definitions in the con-
text of IBM WebSphere Telecommunications Web Servic-
es Server 14
Update procedure for Custom Service implementations
263
Upstream SOAP headers 83, 85
Usability and Accessibility Requirements 244
Usage Record 207, 231, 234, 286, 385, 389

Client 286
client code sample 286
code snippet 225
component Web service 219, 222
Count 394
Data contents 386
query count 391

Usage Record Client 286
Usage Record Naming Conventions 234
Usage Records Component API 210
Usage Records Component Web service 207
UsageRecordInterface 224
use case 1, 34, 128, 240, 251

description 61, 175
use case description for new policy to be created 61
use case description for the customization 142
use case description for the new mediation flow 175
use case realization 62
Used SOAP headers 78, 82, 86
Using the plug-in to customize a flow 168
utility class 230, 256
Utility JAR 260

V
Verifying the installation of the WID Plug-in 96

W
Web page 267

Web content 301
Web Root Context Naming Conventions 233
Web service 1, 11, 19, 35–36, 113, 151, 187, 204, 228,
253

abstraction 23
access 10, 228
API 19–20, 228
API application client code 10
API implementation 10
application-specific fault message 219
client 21, 74, 206, 229, 255, 339
client code package structure 347
client requester 86
client-side portion 208
default namespace declarations 264

 Index 409

definition language 255
endpoint URL 37
implementation binding 22, 230
implementations set 53
interface 1, 10, 23, 175, 184, 206, 213, 228
interface abstraction 20
invocation detail 223
notification 75, 206
notification support 211
proxy stub 21, 229
request 4, 14, 17, 61, 73–74, 174, 205, 229, 242, 296
requester 219
response 74, 200
select Import 187
SOAP request 26
URL 334

Web service implementation 51, 58, 213–214
Web service implementations based on the Parlay X 2.1
Web services standards 4
Web services xi, 1, 9, 35, 68, 149, 203, 227, 252, 375,
385
WebSphere Application Server 19, 82, 211, 229, 277

Administration 50, 232, 299
class path 153
clustering architecture 242
command-line administration tool 293
component 243
environment 22, 229
facility 22
feature 243
instance 22, 328
Integrated Services 239
ISC 336
JMX server 306
local transaction feature 278
log 234
protocol 24
system log 234
V6.1 29, 355
Version 6 115
Version 6.1 19
wsadmin tool 36

WebSphere Application Server cell 302
WebSphere Application Server instance 20, 302
WebSphere Application Server node 302
WebSphere Enterprise Service Bus (WESB) 4, 30, 67
WebSphere ESB 17, 68, 130

message processing logic 18
WebSphere Integration Developer (WID) 17, 67, 129
WID tool 149
WID tooling

assembly diagram screen 153
visual programming primitives 19

Working with policies and the Service Policy Manager 33
Working with Telecom Web Services Access Gateway
mediation primitives 75
wrapped with Services Description Language (WSDL)
132
written Usage Record

record ID 224

WSDL documentation 203, 372
WSDL Documentation available for the Common Compo-
nents 208
WSDL file 176, 180, 255

X
XML Document Management Server (XDMS) 11, 246
XPath expression 138
XSL Transformation 174

Input terminal 198
input terminal 200
Output terminal 197

410 IBM WebSphere Telecommunications Web Services Server Programming Guide

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 W

ebSphere Telecom
m

unications W
eb Services Server Program

m
ing Guide

IBM
 W

ebSphere Telecom
m

unications
W

eb Services Server Program
m

ing

IBM
 W

ebSphere
Telecom

m
unications W

eb Services
Server Program

m
ing Guide

IBM
 W

ebSphere Telecom
m

unications W
eb Services Server Program

m
ing Guide

IBM
 W

ebSphere
Telecom

m
unications W

eb Services
Server Program

m
ing Guide

IBM
 W

ebSphere
Telecom

m
unications W

eb Services
Server Program

m
ing Guide

®

SG24-7589-00 ISBN 0738431427

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM WebSphere
Telecommunications Web
Services Server
Programming Guide
Architecture and
component overview

Design
considerations and
best practices

Creating a custom
service
implementation

This IBM Redbooks publication is a programming guide that provides
developers with the information they need to create new Web service
implementations for IBM WebSphere Telecommunications Web Services
Server.

IBM WebSphere Telecommunications Web Services Server allows you to
expose high-level Web service interfaces to network services for third parties.

Third parties are typically external service providers, customers, or
organizational divisions that want to develop new services that integrate with
the service provider network infrastructure. Web service interfaces provide
access to service capabilities in a programming language and technology
independent way. Each Web service interface can have multiple back-end
implementations for connecting with a service provider's environment. For
example, a Web service interface may connect to a service provider's network
through the Session Initiation Protocol (SIP), using a Parlay Connector through
a Parlay Gateway, through native service provider protocols, or using custom
integrated services.

In this IBM Redbooks publication, we provide specific references, best
practices, guidance, and implementation examples for programming IBM
WebSphere Telecommunications Web Services Server components and
customize it for your organization’s particular needs. More specifically, we
discuss the following items within the context of a common example scenario:

� Working with the Service Policy Manager and creating a custom policy
� Working with the Access Gateway to make modifications to a default

mediation flow, create a custom mediation primitive, or create a
completely new mediation flow from scratch

� Creating a custom Parlay X Service Implementation, which is based on
creating the Publish () operation within a Presence Supplier interface.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Co-authors of foundation material for this IBM Redbooks publication
	Special acknowledgement to the following people for their contributions:
	Become a published author
	Comments welcome

	Chapter 1. Introduction to the IBM WebSphere Telecommunications Web Services Server
	1.1 Overview of IBM WebSphere Telecommunications Web Services Server
	1.2 Business value and positioning
	1.2.1 Revenue generating services
	1.2.2 Innovative third-party services

	1.3 Functional component description
	1.3.1 Access gateway - providing secure, policy-driven, and third-party access
	1.3.2 Web service implementations based on Parlay X V2.1 Web Services standards

	1.4 Introduction to the sample scenario described in this IBM Redbooks publication
	1.5 Roadmap to the chapters in this IBM Redbooks publication

	Chapter 2. Architecture, components, and tooling
	2.1 IBM WebSphere Telecommunications Web Services Server System architecture overview
	2.1.1 The role of Direct Connect and Parlay connector based services
	2.1.2 The role of IBM WebSphere Telecommunications Web Services Server in IMS architecture
	2.1.3 Components that make up the IBM WebSphere Telecommunications Web Services Server

	2.2 Service Policy Manager
	2.2.1 Underlying Service Policy Manager definitions in the context of IBM WebSphere Telecommunications Web Services Server
	2.2.2 Key features of the SPM and architectural overview

	2.3 Telecom Web Services Access Gateway
	2.3.1 Telecom Web Services Access Gateway architecture

	2.4 Service Platform and the Web service implementations
	2.4.1 Parlay X Web service implementations architecture
	2.4.2 Parlay services
	2.4.3 Direct Connect services

	2.5 Extensibility
	2.5.1 Telecom Web Services Access Gateway extensibility
	2.5.2 Parlay X Web service implementations extensibility

	2.6 Tooling
	2.6.1 Tooling for developing Service Implementations
	2.6.2 Tooling for developing mediation flows
	2.6.3 Tooling for developing client applications

	Chapter 3. Working with service policies and the Service Policy Manager
	3.1 Focus of this chapter within the context of the common use case
	3.2 Overview of policies
	3.3 Overview of the Service Policy Manager
	3.3.1 SPM runtime component
	3.3.2 SPM console

	3.4 Deploying the Service Policy Manager components
	3.4.1 Deploying the Service Policy Manager runtime component
	3.4.2 Deploying the Service Policy Manager console
	3.4.3 Start the Service Policy Manager applications

	3.5 Initializing policies
	3.5.1 Initialize the basic policies
	3.5.2 Initialize the additional policies for specified Web service implementations

	3.6 Creating a new policy
	3.6.1 Create default policy
	3.6.2 Enabling a new requestor for IBM WebSphere Telecommunications Web Services Server
	3.6.3 Creating the custom policy

	3.7 Sample for Service Policy Manager - SIP addressing conversion
	3.7.1 Use case description for new policy to be created
	3.7.2 Use case realization
	3.7.3 Test the sample

	Chapter 4. Design considerations for Access Gateway flows - base mediation flows and the mediation primitives
	4.1 Introduction to Access Gateway and mediation flows
	4.2 Mediation primitives
	4.2.1 Mediation primitives used by the Access Gateway

	4.3 Default Access Gateway flow
	4.4 Working with Telecom Web Services Access Gateway mediation primitives
	4.4.1 Message Element Removal mediation primitive
	4.4.2 Transaction Recorder mediation primitive
	4.4.3 Policy Subscription mediation primitive
	4.4.4 Network Statistics mediation primitive
	4.4.5 Service Authorization mediation primitive
	4.4.6 Parlay X Group Resolution mediation primitive
	4.4.7 SLA Enforcement mediation primitives
	4.4.8 Transaction Identifier mediation primitive
	4.4.9 JMX Notification mediation primitive
	4.4.10 Service Invocation mediation primitives
	4.4.11 CEI Event Emitter mediation primitives
	4.4.12 Custom mediation primitives

	4.5 Tooling / WebSphere Integration Developer Plug-in
	4.5.1 IBM WebSphere Telecommunications Web Services Server WebSphere Integration Developer Plug-in installation

	4.6 Using the default mediation flow in WebSphere Integration Developer
	4.6.1 Deploying the default mediation flow

	Chapter 5. Developing and customizing a custom Access Gateway flow
	5.1 The focus of this chapter within the context of the common use case
	5.2 Customize a default mediation flow
	5.2.1 Design guidelines for custom mediation primitive
	5.2.2 Key custom primitive functions
	5.2.3 Use case description for the customization
	5.2.4 Load the default flow
	5.2.5 Adding the new mediation primitive to the mediation flow
	5.2.6 Develop the mediation primitive logic
	5.2.7 Assemble the EAR
	5.2.8 Deploy the EAR to the runtime environment

	5.3 Extending the WebSphere Integration Developer Tooling Environment
	5.3.1 Create a plug-in
	5.3.2 Generate the mediation meta-data
	5.3.3 Develop the mediation business logic
	5.3.4 Deploy the plug-in to the tool environment
	5.3.5 Deploy the primitives to run time
	5.3.6 Using the plug-in to customize a flow
	5.3.7 Test your custom flow and primitive

	5.4 Develop a custom mediation flow
	5.4.1 Design guidelines for new mediation flows
	5.4.2 Use case description for the new mediation flow
	5.4.3 Create a new mediation module
	5.4.4 Import WSDLs
	5.4.5 Create the ExceptionType business object
	5.4.6 Import IBM WebSphere Telecommunications Web Services Server SOAP header data types
	5.4.7 Create the assembly
	5.4.8 Construct the mediation flow
	5.4.9 Assemble the EAR
	5.4.10 Deploy the EAR to the runtime environment

	Chapter 6. Common components
	6.1 Common components
	6.2 Description of common components provided with IBM WebSphere Telecommunications Web Services Server
	6.2.1 Admission Control component Web service
	6.2.2 Traffic Shaping component Web service
	6.2.3 Network Resources component Web service
	6.2.4 Notification Management component Web service
	6.2.5 PX Notification Delivery Component Web service (Parlay X-specific)
	6.2.6 Faults and Alarms component Web service
	6.2.7 Usage Records component Web service
	6.2.8 Privacy component Web service

	6.3 WSDL documentation available for the common components
	6.3.1 Admission Control component API
	6.3.2 Traffic Shaping component API
	6.3.3 PX Notification component API
	6.3.4 Notification Management component API: Notification Administration component Web service
	6.3.5 Network Resources component API
	6.3.6 Fault and Alarms component API
	6.3.7 Usage Records component API
	6.3.8 Privacy component API

	6.4 Common component Web service client MBeans
	6.5 Configuration for the common components
	6.6 Invoking IBM WebSphere Telecommunications Web Services Server common components
	6.6.1 Service Platform package
	6.6.2 Invoking IBM WebSphere Telecommunications Web Services Server Admission Control common components
	6.6.3 Invoking IBM WebSphere Telecommunications Web Services Server Traffic Shaping common components
	6.6.4 Invoking IBM WebSphere Telecommunications Web Services Server Fault and Alarm common components
	6.6.5 Invoking IBM WebSphere Telecommunications Web Services Server Network Resource common components
	6.6.6 Invoking IBM WebSphere Telecommunications Web Services Server Usage Records common components

	Chapter 7. Design considerations for the service implementation
	7.1 Architecture overview
	7.2 Telecom Web Services
	7.2.1 Parlay X Web Services

	7.3 Design considerations
	7.3.1 Conforming to IBM WebSphere Telecommunications Web Services Server conventions

	7.4 Sample Parlay X Web service scenario
	7.4.1 Presence Supplier detailed design

	7.5 Conclusion

	Chapter 8. Developing the service implementation
	8.1 Introduction
	8.2 Focus of this chapter within the context of the common use case
	8.2.1 Dependencies of the IBM WebSphere Telecommunications Web Services Server environment

	8.3 Development environment
	8.3.1 Development utilities
	8.3.2 Service Platform Application Template
	8.3.3 Creating a custom service project
	8.3.4 Update procedure for custom service implementations

	8.4 Developing a Sample Parlay X Web service
	8.4.1 Service implementation prerequisites
	8.4.2 Generating Web service bindings
	8.4.3 Guidelines for IBM WebSphere Telecommunications Web Services Server service implementations
	8.4.4 IBM WebSphere Telecommunications Web Services Server common component invocations

	8.5 Implementing the core logic of the service
	8.6 Configurations for a new service
	8.6.1 Admission Control configuration settings
	8.6.2 Traffic Shaping configuration settings
	8.6.3 Initial service policy settings

	8.7 Management provisions for new service
	8.7.1 Developing the JMX MBean for service
	8.7.2 MBean implementation for sample scenario

	8.8 Deploy and test
	8.8.1 Deployment procedure
	8.8.2 Service administration
	8.8.3 Test client
	8.8.4 Test environment configuration
	8.8.5 Test execution

	Appendix A. Developing custom common components
	Creating a IBM WebSphere Telecommunications Web Services Server service implementation project
	Integrating with IBM WebSphere Telecommunications Web Services Server administration console
	Other resources for learning more about custom common components

	Appendix B. Developing service provider integrations
	Integrating group resolution
	Referenced faults
	Integrating Service Policy Management
	Replacing the implementation
	Accessing from the SPM Administrative MBeans and Web Services

	Integrating privacy management
	Integrating with database tables
	Integrating with the IBM WebSphere Telecommunications Web Services Server Administration MBeans
	Developing a JMX Event Listener
	Developing a CEI Event Listener
	IMS Client Toolkit

	Appendix C. Developing a Usage Record Billing Mediator common component
	Table definitions for the Usage Records Billing Mediator

	Appendix D. Sample Usage Record cleanup program
	Sample code

	Appendix E. Additional material
	Locating the Web material
	Using the Web material

	Related publications
	IBM Redbooks
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

