

ibm.com/redbooks

WebSphere MQ V7.0
Features and
Enhancements

Saida Davies
Glenn Baddeley
Martin Cernicky

Brian Cuttell
Ruchir P Jha

Bulent Sapolyo
Akhila Shivaprasad

Vicente Suarez
Lohitashwa Thyagaraj

Integrated Publish/Subscribe engine
and new MQI functions

Improved JMS MQ integration
and MQ Client enhancements

Scenario with sample
code

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere MQ V7.0 Features and Enhancements

January 2009

International Technical Support Organization

SG24-7583-00

© Copyright International Business Machines Corporation 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2009)

This edition applies to:

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxi.

Version Release Modification Product name

7 0 0 WebSphere MQ

6 0 2.2 WebSphere MQ Client (SupportPac MQC6)

6 1 0 WebSphere Application Server

1 6 0_03 Java JRE (Sun™ Java™ SE Runtime Environment)

6 0 2 Microsoft Internet Explorer

Microsoft Windows XP Service Pack 2

10 3 (i586) openSUSE

2 0 0.6 Mozilla Firefox

Contents

Figures . xiii

Tables . xvii

Examples. xix

Notices . xxi
Trademarks . xxii

Preface . xxiii
The team that wrote this book . xxiv
Become a published author . xxix
Comments welcome. xxx

Part 1. Introduction . 1

Chapter 1. Overview . 3
1.1 Executive summary . 4
1.2 The scope of this book . 4
1.3 Intended audience. 4
1.4 What is covered in this book . 5
1.5 What is not covered in this book . 6
1.6 Assumptions . 6

Chapter 2. Concepts of messaging . 7
2.1 Enterprise messaging . 8
2.2 Introducing Publish/Subscribe. 8

2.2.1 Publish/Subscribe . 9
2.2.2 Message selection . 10
2.2.3 Advantages . 13

2.3 Java Message Service . 13
2.3.1 Java Messaging . 13
2.3.2 Point-To-Point model . 15
2.3.3 Publish/Subscribe model. 15
2.3.4 Advantages of JMS . 16

© Copyright IBM Corp. 2009. All rights reserved. iii

2.4 Position messaging in service-oriented architecture 16

Chapter 3. Introduction to
WebSphere MQ . 19

3.1 Messaging with WebSphere MQ. 20
3.1.1 Core concept of WebSphere MQ . 21
3.1.2 WebSphere MQ messaging styles . 25
3.1.3 WebSphere MQ distributed messaging . 25
3.1.4 SSL support . 27
3.1.5 Diverse platforms . 27

3.2 What is new in WebSphere MQ V7.0 . 28
3.2.1 Publish/Subscribe integration . 28
3.2.2 WebSphere MQ Client enhancements . 30
3.2.3 MQI extensions . 31
3.2.4 WebSphere MQ JMS provider implementation. 33
3.2.5 Administration enhancements. 34
3.2.6 Managing Publish/Subscribe. 36
3.2.7 WebSphere MQ Bridge for HTTP . 36
3.2.8 z/OS enhancements . 37

3.3 Positioning in WebSphere product family . 38
3.3.1 Foundation for SOA . 38
3.3.2 Enhanced Enterprise Service Bus . 39

Part 2. WebSphere MQ V7.0 enhancements and changes . 41

Chapter 4. Publish/Subscribe integration . 43
4.1 Publishing and subscribing in WebSphere MQ . 44
4.2 WebSphere MQ Publish Subscribe in V7.0. 44

4.2.1 Topics in WebSphere MQ V7.0. 45
4.2.2 Topic strings and topic objects . 45
4.2.3 Topic alias . 47
4.2.4 Topic security . 49

4.3 Selectors . 49
4.4 Distributed Publish/Subscribe . 55

4.4.1 Pub/Sub Cluster topology . 56
4.4.2 Pub/Sub hierarchical topology . 57
4.4.3 Loop detection. 58
4.4.4 Scope of publications and subscriptions in Distributed Pub/Sub . . . 58

Chapter 5. WebSphere MQ Client enhancements 59
5.1 Overview of enhancements. 61
5.2 Full duplex channels, heartbeat, and quiesce . 62
5.3 Conversation sharing . 64

5.3.1 SHARECNV parameter and management of channel definitions . . . 65

iv WebSphere MQ V7.0 Features and Enhancements

5.3.2 MQCONNX options for conversation sharing 66
5.3.3 Displaying channel status . 67
5.3.4 Channel exits . 68

5.4 Read ahead. 68
5.4.1 MQOPEN options to specify read ahead . 69
5.4.2 MQGET considerations. 70
5.4.3 MQCLOSE options to process unread messages 70
5.4.4 Displaying connection status of read ahead 71

5.5 Asynchronous put . 71
5.5.1 MQPUT and MQPUT1 options for asynchronous put 73
5.5.2 MQSTAT to obtain status of asynchronous puts. 74

5.6 Instance limits on SVRCONN channels . 76
5.6.1 MAXINST . 77
5.6.2 MAXINSTC . 77
5.6.3 Dynamic changes . 78
5.6.4 Examples of setting the new parameters . 78

5.7 Weighted selection on CLNTCONN channels. 78
5.7.1 CLNTWGHT parameter . 79
5.7.2 AFFINITY . 80

5.8 Reconnecting via a previously used channel . 80
5.9 Max message length increased on MQSERVER environment variable . . 82
5.10 Security exit details in WebSphere MQ Explorer 82
5.11 Using MQ Explorer without a CAF license on z/OS 83
5.12 Compatibility . 83

Chapter 6. Message Queue Interface extensions. 85
6.1 Variable-length strings. 86

6.1.1 MQCHARV data structure. 86
6.1.2 MQCHARV using pointer . 87
6.1.3 MQCHARV with offset. 87
6.1.4 Null terminated strings . 89
6.1.5 Coded character set identifier . 89

6.2 Message properties. 89
6.2.1 Message handles . 90
6.2.2 Set, inquire, and delete message properties. 90
6.2.3 MQCRTMH create message handle . 90
6.2.4 MQDLTMH delete message handle . 92
6.2.5 MQSETMP set a message property . 93
6.2.6 MQINQMP inquire message property . 96
6.2.7 MQDLTMP delete message property . 99
6.2.8 MQBUFMH converts buffer into message handle. 100
6.2.9 MQMHBUF converts a message handle into a buffer. 102

 Contents v

6.3 Message browsing . 105
6.3.1 Message tokens . 105
6.3.2 Browse and mark . 106
6.3.3 Cooperative dispatchers . 106
6.3.4 New MQOPEN option . 106
6.3.5 New MQGET options . 107
6.3.6 New Queue manager attribute . 107
6.3.7 Examples . 107

6.4 Callback for asynchronous consumers . 108
6.4.1 Threading modes . 109
6.4.2 Message consumers and event handlers . 109
6.4.3 MQCB manage callback . 110
6.4.4 MQCBD Callback Descriptor. 112
6.4.5 MQCTL control callbacks . 113
6.4.6 Callback function. 118

6.5 Publish/Subscribe . 121
6.5.1 Topics . 122
6.5.2 Publishers . 122
6.5.3 Subscribers . 123
6.5.4 MQOD Object Descriptor . 124
6.5.5 MQSD Subscription Descriptor . 125
6.5.6 MQPMO put message options . 126
6.5.7 MQMD message description. 127
6.5.8 MQSUB manage subscription. 128
6.5.9 MQSUBRQ subscription request . 129
6.5.10 MQCLOSE close object . 130

6.6 Put action indicators . 133
6.7 Message selectors . 134
6.8 Other MQI considerations . 135

Chapter 7. WebSphere MQ Java Message Service enhancements 137
7.1 Read ahead. 138
7.2 Asynchronous put . 140
7.3 Asynchronous consume . 143
7.4 Conversation sharing sessions . 144
7.5 Selectors and mapping of MQ and JMS messages 146
7.6 Properties of WebSphere MQ classes for Java Message Service 148
7.7 Tracing programs . 150

Chapter 8. Administration enhancements . 153
8.1 WebSphere MQ Explorer . 154

8.1.1 General GUI enhancements . 154
8.1.2 Browsing messages . 159

vi WebSphere MQ V7.0 Features and Enhancements

8.1.3 Mapping between MQ objects and JMS objects 161
8.1.4 Remote queue managers administration . 165
8.1.5 Security . 167
8.1.6 Queue manager sets. 172
8.1.7 SupportPac MS0Q integration . 178

8.2 Object properties and parameters. 179
8.2.1 Queue manager parameters . 179
8.2.2 Queue object parameters . 180
8.2.3 New channel and client connection properties 183
8.2.4 Connection status and queue status enhancements 189

8.3 Java and JMS-related administration enhancements 192
8.3.1 Embedded PCF support for Java . 193
8.3.2 WebSphere MQ classes for JMS . 193

8.4 Control commands . 194
8.4.1 Create queue manager (crtmqm) . 194
8.4.2 Start queue manager (strmqm) . 195
8.4.3 WebSphere MQ CL commands on i5/OS . 195

8.5 Journals on i5/OS . 196

Chapter 9. Publish/Subscribe management . 197
9.1 Managing topics . 198

9.1.1 Creating topics using MQ Explorer . 198
9.1.2 Creating topics using MQSC. 202
9.1.3 Altering topics using MQ Explorer. 204
9.1.4 Altering topics using MQSC . 205
9.1.5 Displaying topic status using MQ Explorer 206
9.1.6 Displaying topic status using MQSC . 207
9.1.7 Creating JMS topics using MQ Explorer . 208
9.1.8 Setting up topic security using MQ Explorer 213
9.1.9 Setting up topic security using setmqaut. 215
9.1.10 Mapping queue aliases to a topic object . 215

9.2 Managing subscriptions. 216
9.2.1 Using MQ Explorer . 216
9.2.2 Using MQSC . 219

9.3 Displaying Publish/Subscribe status . 221
9.3.1 Display Pub/Sub status . 221
9.3.2 Display subscriber status . 223

 Contents vii

Chapter 10. WebSphere MQ Bridge for HTTP . 225
10.1 Overview . 226
10.2 Prerequisites . 227
10.3 Supported verbs . 228
10.4 HTTP request and response . 229

10.4.1 URI FORMAT . 230
10.4.2 HTTP POST . 230
10.4.3 HTTP GET . 231
10.4.4 HTTP DELETE . 232

Chapter 11. z/OS enhancements . 235
11.1 Publish/Subscribe for z/OS . 236
11.2 RACF mixed case classes and profiles. 236

11.2.1 New queue manager parameter SCYCASE 236
11.2.2 New RACF classes . 237
11.2.3 Using mixed case profiles . 237
11.2.4 Refreshing mixed-case profiles. 238
11.2.5 Migrating to mixed-case security. 238

11.3 Using WebSphere MQ Explorer without CAF . 238
11.4 WebSphere MQ for z/OS listener . 240
11.5 CICS OTE . 240

Chapter 12. Installation and migration . 243
12.1 Hardware and software prerequisites . 245
12.2 Installation of WebSphere MQ V7.0 . 245
12.3 Co-existence with previous versions . 246
12.4 Migration . 246

12.4.1 General migration considerations . 247
12.4.2 Queue manager migration . 248
12.4.3 Migration steps . 248
12.4.4 Fallback considerations. 249
12.4.5 Publish/Subscribe engine . 250
12.4.6 Java application migration considerations 251
12.4.7 General application migration considerations 251
12.4.8 WebSphere MQ clients . 251

Part 3. Scenario . 253

Chapter 13. Scenario overview . 255
13.1 Business environment . 256

13.1.1 Business flow . 256
13.1.2 Choosing WebSphere MQ . 258
13.1.3 Simplifying the scenario . 258

viii WebSphere MQ V7.0 Features and Enhancements

13.2 Scenario implementation. 259
13.2.1 Application flow . 260
13.2.2 Infrastructure . 260

13.3 Components . 262
13.3.1 Supplier pricing . 262
13.3.2 Store ordering . 263
13.3.3 News . 265
13.3.4 Web ordering. 265
13.3.5 Warehousing . 266

Chapter 14. Scenario preparation . 269
14.1 Environment setup . 270

14.1.1 The logical topology of the scenario environment. 271
14.1.2 The physical topology of the scenario environment 272
14.1.3 Machine configuration and software installation 274

14.2 WebSphere MQ objects setup . 278
14.2.1 Creating the queue managers. 279
14.2.2 Creating the queue managers objects . 279
14.2.3 Setting object authority . 285

Chapter 15. Scenario: Supplier pricing using Pub/Sub 287
15.1 Design overview . 288
15.2 Deploying the supplier pricing component . 289

15.2.1 HQ send request for quote program . 290
15.2.2 HQ process supplier quotes program . 291
15.2.3 Supplier process quotes program . 293
15.2.4 Required MQ objects . 294
15.2.5 Installation of supplier pricing component 295

15.3 Running the supplier pricing component . 295
15.3.1 HQ send request for quote program . 296
15.3.2 HQ process supplier quotes program . 297
15.3.3 Supplier process quotes program . 299

 Contents ix

15.4 Verifying the supplier pricing component . 300
15.5 Summary . 301

Chapter 16. Scenario: Store ordering with JMS . 303
16.1 Design overview . 304
16.2 Deploying the headquarters application . 305
16.3 Running the headquarters application. 308
16.4 Deploying the store application . 308
16.5 Invoking the store application . 311
16.6 Running the store application . 312
16.7 Summary . 323

Chapter 17. Scenario: News using client . 325
17.1 Design overview . 326
17.2 Deploying the news component . 327

17.2.1 Copying files . 327
17.2.2 Public Web browser . 328
17.2.3 Compiling the Windows executable programs 328
17.2.4 MQ Objects . 329
17.2.5 RSS data directory . 330

17.3 Running the News component . 331
17.3.1 Starting the news display program at the stores 331
17.3.2 Starting the news RSS generation program at headquarters 332
17.3.3 Starting the public news RSS reader . 332
17.3.4 Running the news generation program at headquarters. 332
17.3.5 Running the news command-line program at headquarters 333

17.4 Verifying the news component . 334
17.4.1 News is generated at headquarters and displayed by stores 334
17.4.2 News is generated and displayed by a RSS reader 338

17.5 Summary . 341

Chapter 18. Scenario: Web ordering over HTTP. 343
18.1 Design overview . 344
18.2 Prerequisites . 345

18.2.1 WebSphere Application Server on headquarters machine 346
18.2.2 Retail order application on headquarters machine 347
18.2.3 Web browser on client machine . 347

18.3 Deploying the Web ordering component . 347
18.3.1 Start WebSphere Application Server administrative console 347
18.3.2 Creating a WebSphere MQ connection factory. 348
18.3.3 Installing the Web ordering servlet . 350

18.4 Running the Web ordering component . 353
18.4.1 Starting the headquarters retail order application 354
18.4.2 Invoking the Web ordering application from the Web page 355

x WebSphere MQ V7.0 Features and Enhancements

18.4.3 Component verification . 356
18.5 Summary . 359

Chapter 19. Scenario: Warehousing using call back 361
19.1 Design overview . 362
19.2 Deploying the warehousing component . 363

19.2.1 Required MQ objects . 364
19.2.2 Installation of warehousing component. 365

19.3 Running the warehousing component. 368
19.4 Verifying the warehousing component . 369
19.5 Summary . 372

Appendix A. Scenario preparation scripts . 373
QMHQobjects.txt . 374
QMWHobjects.txt . 376
QMHQsetaut.bat . 377

Appendix B. Additional material . 379
Locating the Web material . 379
Using the Web material . 380

How to use the Web material . 380

Glossary . 381

Abbreviations and acronyms . 387

Related publications . 389
IBM Redbooks publications . 389
Other publications . 389
Online resources . 390
How to get Redbooks publications . 392
Help from IBM . 392

Index . 393

 Contents xi

xii WebSphere MQ V7.0 Features and Enhancements

Figures

2-1 Topic-based selection . 11
2-2 Content-based selection . 12
2-3 Point-To-Point model . 15
2-4 IBM SOA model . 16
2-5 WebSphere MQ in relation to reference architecture 18
4-1 Topic tree . 46
4-2 Delegation of topic security attributes . 49
4-3 Publish/Subscribe clusters . 56
4-4 Hierarchical distributed queue managers . 57
5-1 Half duplex client channel operation in WebSphere MQ. 63
5-2 Full duplex client channel operation in WebSphere MQ V7.0. 64
5-3 Multi-thread conversation sharing in WebSphere MQ V7.0 65
5-4 Client putting messages without asynchronous put 72
5-5 Client putting messages with asynchronous put . 73
6-1 MQCHARV . 88
7-1 JMS application getting message from WMQ V6.0 queue manager . . . 139
7-2 JMS application getting messages from WMQ V7.0 queue manager using

read ahead feature . 139
7-3 JMS sending messages in client mode in WMQ 6.0. 142
7-4 JMS sending messages in client mode with asynchronous put 143
7-5 JMS multi-threaded clients using WMQ V6.0 . 145
7-6 JMS multi-threaded clients using WMQ V7.0 . 146
7-7 Representation of a MQ message . 147
8-1 MQ Explorer welcome page . 155
8-2 Export and import settings in MQ Explorer V7.0 157
8-3 Export settings window . 157
8-4 Import settings window . 158
8-5 Message browsing preferences . 160
8-6 Browsing message properties. 160
8-7 Create an MQ object simultaneously . 162
8-8 Create a JMS object simultaneously. 164
8-9 The Remote Administration window . 166
8-10 Default Client Connections settings . 169
8-11 Default User Identification settings . 170
8-12 Default password settings . 171
8-13 Context menu sets . 174
8-14 Queue manager selection for manual set . 175
8-15 Filters selection for automatic set . 176

© Copyright IBM Corp. 2009. All rights reserved. xiii

8-16 Custom filter definition. 177
8-17 Queue manager set actions . 178
8-18 Client connection load balancing . 188
9-1 Create a Topic. 198
9-2 Topic creation: Change properties . 199
9-3 Configuring durable subscriptions. 200
9-4 Configuring default priority . 200
9-5 Configuring default persistence. 201
9-6 Configuring the model durable queue . 201
9-7 Configuring the model non-durable queue . 201
9-8 Configuring default-put response type . 201
9-9 Topic menu . 204
9-10 Changing topic properties . 205
9-11 Displaying topic status . 206
9-12 Displaying subscriber status . 207
9-13 Creating a JMS Topic using MQ Explorer. 209
9-14 Creating a JMS Topic like a preexisting JMS Topic 210
9-15 Change properties of the JMS Topic. 211
9-16 Managing specific profiles. 213
9-17 Creating GROUP Authority FINANCE . 214
9-18 Setting new authorities for group FINANCE . 214
9-19 Subscriptions: Right-click menu . 216
9-20 Create subscription . 217
9-21 Subscription context menu . 218
9-22 Changing subscription properties . 219
10-1 WebSphere Bridge for HTTP . 226
10-2 Sample HTTP flow: POST . 231
10-3 Sample HTTP flow: GET. 232
13-1 Matt’s Deli high-level data flow . 257
13-2 Matt’s Deli application flows . 260
13-3 Sample fragment of retail catalog . 264
14-1 Logical topology of scenario environment. 271
14-2 Physical topology of scenario environment. 272
14-3 WebSphere MQ server installation . 276
14-4 WebSphere MQ client installation . 277
15-1 Supplier pricing component. 289
16-1 Store ordering component. 305
16-2 Store order application . 312
16-3 Display product catalog. 313
16-4 Product categories . 314
16-5 Select categories. 315
16-6 Product types . 316
16-7 Select product types . 317

xiv WebSphere MQ V7.0 Features and Enhancements

16-8 Submit order . 318
16-9 Order response . 319
16-10 Place a new order . 320
16-11 Select Check Response . 321
16-12 Order status . 322
16-13 Exit . 323
17-1 Programs and data flows in the news component 326
18-1 Web ordering component . 345
18-2 Create WebSphere MQ connection factory . 349
18-3 Installing servlet . 351
18-4 Installing and saving the servlet to master configuration 352
18-5 Starting the application after installation and deployment. 353
18-6 Starting the headquarters application . 354
18-7 Web ordering application invocation . 355
18-8 Placing a Web order . 356
18-9 Headquarters application having processed the order 357
18-10 Web order response . 358
19-1 Warehousing scenario component . 363

 Figures xv

xvi WebSphere MQ V7.0 Features and Enhancements

Tables

4-1 Selector string examples. 53
6-1 MQCHARV data structure. 86
6-2 MQCRTMH parameters . 91
6-3 MQDLTMH parameters. 92
6-4 MQSETMP parameters. 94
6-5 MQINQMP parameters . 97
6-6 MQDLTMP parameters . 99
6-7 MQBUFMH parameters . 101
6-8 MQMHBUF parameters . 103
6-9 New MQOPEN option for cooperative browsing 106
6-10 New MQGET options . 107
6-11 MQCB parameters . 111
6-12 MQCBD Callback Descriptor. 112
6-13 MQCTL parameters . 114
6-14 Callback function input parameters. 119
6-15 MQCBC callback context . 119
6-16 MQOD Version 4 new fields . 124
6-17 MQSD Subscription Descriptor fields . 125
6-18 MQPMO Version 3 field changes . 126
6-19 MQMD changes . 127
6-20 MQSUB parameters . 129
6-21 MQSUBRQ parameters . 130
6-22 MQCLOSE parameters . 131
7-1 New properties and their corresponding object types 149
7-2 Properties to configure the trace facility. 151
9-1 MQ Explorer topic creation properties corresponding to MQSC DEFINE

TOPIC parameters . 203
10-1 WebSphere MQ Bridge for HTTP verbs . 228
10-2 WebSphere MQ HTTP verbs . 229
11-1 New RACF classes . 237
13-1 Topic objects and topic strings . 261
13-2 Queue objects . 261
14-1 Required queue managers and their connections 272
14-2 SAM725HQ: Windows machine for headquarters 273
14-3 SAM725SP: Windows machine for suppliers . 273
14-4 SAM725ST: Windows machine for store B . 273
14-5 SAM725WH: z/OS machine for warehouse . 273
14-6 PC: Windows machine for Web client . 274

© Copyright IBM Corp. 2009. All rights reserved. xvii

14-7 PC: Linux machine for Web client . 274
14-8 List of group IDs . 275
14-9 List of user IDs . 275
14-10 List of queue managers. 279
14-11 List of listeners . 280
14-12 List of channels . 281
14-13 List of queues . 282
14-14 List of topics . 283
14-15 List of subscriptions. 283
14-16 List of authorities . 285
17-1 News component fil . 327
17-2 Files used to compile the news component . 329
17-3 News categories for store display program. 331
17-4 News categories for headquarters send program 334

xviii WebSphere MQ V7.0 Features and Enhancements

Examples

4-1 Topic string examples . 45
5-1 C code to set a conversation sharing option for MQCONNX 67
5-2 C code: Retrieve status information using MQSTAT after calls to MQPUT75
5-3 C code to save the channel name after successful MQCONNX. 81
5-4 C code to use a specific channel name for MQCONNX 81
6-1 MQCRTMH C language example . 91
6-2 MQDLTMH C language example . 93
6-3 MQSETMP C language example . 94
6-4 MQINQMP C language example. 98
6-5 MQDLTMQ C language example . 99
6-6 MQBUFMH C language example . 101
6-7 MQMHBUF C language example . 104
6-8 MQCB and MQCTL C language example. 114
6-9 Callback function example . 120
6-10 Simple publisher program . 131
6-11 Simple subscriber program . 132
8-1 Example of AMQ9489 error message. 185
8-2 Example of AMQ9490 error message. 186
9-1 Displaying topic status using TPSTATUS command 207
9-2 Using setmqaut . 215
9-3 Usage of the DEFINE SUB command . 220
9-4 Usage of the DISPLAY SUB command . 220
9-5 Usage of the ALTER SUB command . 221
9-6 Usage of the DELETE SUB command . 221
9-7 Usage of the DISPLAY PUBSUB command . 221
9-8 Usage of DISPLAY SBSTATUS command. 223
10-1 URI format in WebSphere MQ Bridge for HTTP 230
11-1 The following MQSC command specifies a limit of five users. 239
15-1 Supplier pricing topic and queue objects . 294
16-1 Set classpath variable . 306
16-2 Set WMQv7_HOME value . 306
16-3 Queue manager . 307
16-4 Port . 307
16-5 Host name. 307
16-6 Run HQSetup.bat . 307
16-7 Execute HQRun.bat . 308
16-8 Include WebSphere MQ V7 jar files . 309
16-9 Set WMQ_HOME value . 309

© Copyright IBM Corp. 2009. All rights reserved. xix

16-10 Queue manager . 310
16-11 Port . 310
16-12 Host name. 310
16-13 Execute SORun.bat . 311
17-1 MQSC commands for the news component . 330
17-2 OAM commands for the news component . 330
17-3 Contents of file testgendata1.txt . 333
17-4 Initial output of news display program at store 335
17-5 Output of news generation program at headquarters 335
17-6 Updated output of news display program at store. 336
17-7 Output of news send program at headquarters. 336
17-8 Updated output of news display program at store. 337
17-9 Contents of runrssgenxml.bat . 338
17-10 Initial output of news RSS generation program. 339
17-11 Initial output of news generation program at headquarters. 340
17-12 Final output of news generation program at headquarters 341
18-1 Profile for ‘server1’ . 346
18-2 Starting WebSphere Application Server . 346
18-3 Connection factory properties . 348
18-4 Restarting WebSphere Application Server . 350
19-1 Warehousing topics and queues for the headquarters queue manager 364
19-2 Warehousing queue for the z/OS queue manager 365
A-1 The script QMHQobjects.txt . 374
A-2 The script QMWHobjects.txt . 376
A-3 The script QMHQsetaut.bat . 377

xx WebSphere MQ V7.0 Features and Enhancements

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2009. All rights reserved. xxi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
DataPower®
DB2®
developerWorks®
FFST™
First Failure Support

Technology™

i5/OS®
IBM®
iSeries®
MQSeries®
Parallel Sysplex®
pSeries®
RAA®
RACF®

Rational®
Redbooks®
Redbooks (logo) ®
System i®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Adobe FrameMaker, Adobe, and Portable Document Format (PDF) are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

J2EE, Java, Java runtime environment, JavaScript, JRE, Sun, Sun Java, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Internet Explorer, Microsoft, Visual C++, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xxii WebSphere MQ V7.0 Features and Enhancements

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication is divided into three parts:

� Part 1, “Introduction” on page 1, provides an introduction to
message-oriented middleware and the WebSphere® MQ product. We
discuss the concept of messaging, explaining what is new in WebSphere MQ
V7.0 and how it is implemented. An overview is provided on how it fits within
the service-oriented architecture (SOA) framework.

� Part 2, “WebSphere MQ V7.0 enhancements and changes” on page 41,
explains the new WebSphere MQ V7.0 features and enhancements in detail
and includes compatibility and the migration considerations from the previous
supported versions. The new features and enhancements covered are listed
below.

Introducing new WebSphere MQ V7.0 features:

– Both MQI and JMS APIs
– RAS features within JMS

Exploring the new features:

– Publish/Subscribe
• Consolidating pub/sub domain
• Distributed pub/sub
• Available on z/OS®

– MQI enhancements
• Message selectors
• Message properties
• Callback allows asynchronous consumption

– Client enhancements
• Asynchronous put
• Full duplex
• Conversation sharing
• Read ahead
• Channel instance limits

– Interaction between JMS and MQI Applications
– MQ Explorer enhancements including JMS administration
– MQ HTTP bridge
– z/OS enhancements
– Migration considerations

� Part 3, “Scenario” on page 253, contains a scenario that demonstrates how
the new features and enhancements work and how to use them. The sample

© Copyright IBM Corp. 2009. All rights reserved. xxiii

programs and scripts used for this scenario are available for download by
following the instructions in Appendix B, “Additional material” on page 379.

The information included in this book complements, but does not replace,
product documentation.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Hursley Center.

Figure 1 The team (from left): Akhila, Saida, Vicente, Lohitashwa, Ruchir, Bulent, Martin, Glenn, Brian

Saida Davies is a Project Leader for the International Technical Support
Organization (ITSO) and has extensive experience in information technology.
She has published several Redbooks publications and Redpapers publications
on WebSphere Business Integration, Web services, and WebSphere Service
Oriented Middleware using multiple platforms. Saida has experience in the
architecture and design of WebSphere MQ solutions, extensive knowledge of the
z/OS operating system, and a detailed working knowledge of both IBM and
independent software vendor operating system software. As a Senior IT
Specialist, her responsibilities included the development of services for
WebSphere MQ within the z/OS and Windows® platform. This covered the
architecture, scope, design, project management, and implementation of the

xxiv WebSphere MQ V7.0 Features and Enhancements

software on stand-alone systems or on systems in a Parallel Sysplex®
environment. She has received Bravo Awards for her project contributions. Saida
has a degree in computer studies and her background includes z/OS systems
programming. Saida supports Women in Technology activities and contributes to
and participates in their meetings.

Glenn Baddeley is a Specialist in WebSphere MQ and has been with IBM
Global Technology Services Australia for 10 years. He leads the support of
WebSphere MQ on several large outsourcing contracts in the Asia/Pacific region.
Glenn performs architecture design and consulting, and strategic planning. He
also sets standards and writes specialized documentation. He does tools
programming, product installation, and complex problem solving for many critical
business applications that use WebSphere MQ on a wide variety of platforms.
This has given him a deep understanding of the product and a great appreciation
of its practical use. Glenn is a member of the IBM MQ Technical Leadership
Team for the region and also contributes as a Subject Matter Expert at the global
level. Prior to 1997, he worked for a large telecommunications corporation for 14
years as a systems programmer, designing, developing, and supporting
customized middleware solutions and ISV Operating System security extensions.
Glenn has a bachelor’s degree in computer science from Deakin University,
Australia. He is the author of IBM SupportPac MA0K and presented a session on
WebSphere MQ Client Security at the IBM Interaction 2000 conference in
Australia.

Martin Cernicky is a certified IT Specialist from IBM Software Services in the
Czech Republic. He has 17 years of experience within the IT sector and has
been working with IBM since 1995. Martin is currently working in the pSeries®
support team and has excellent knowledge of AIX/pSeries systems and
solutions. Additional responsibilities over the last five years have included
supporting WebSphere MQ middleware messaging and WebSphere Message
Broker. He has designed and implemented solutions using the WebSphere MQ
family products and has substantial experience implementing messaging and
broker solutions. Martin is a co-author of IBM Redbooks publications Migrating to
WebSphere Message Broker Version 6.0, SG24-7198, and Managing
WebSphere Message Broker Resources in a Production Environment,
SG24-7283. Martin holds a degree in Automated Technology Systems at The
Czech Institute of Technology.

Brian Cuttell is a Program Manager working with IBM Betaworks organization in
the UK. He has 25 years of experience in the IT sector with IBM and other
companies. In his career with IBM Hursley Labs, Brian was part of the CICS®
development team in the early 1990s and was one of the original members of the
MQ development team on MVS. Since then, he has worked on various
assignments including IBM UK's graduate program. Brian has more recently
specialized in managing beta programs for a variety of software products. He is

 Preface xxv

currently managing the customer beta program for WebSphere MQ V7.0. Brian
holds a degrees in mathematics from the University of Oxford and operational
research from the University of Lancaster.

Ruchir P Jha is a System Software Engineer working in the Application
Integration Middleware team for IBM India Software Labs in Bangalore, India. He
is responsible for designing scenarios that test the interoperability of WebSphere
MQ with other products of the WebSphere Business Integration Suite. These
scenarios enable Ruchir to discover and resolve defects, which helps customers
avoid similar situations in the future. He creates strategies that help customers
who are trying to deploy SOA solutions that have WebSphere MQ as a
messaging backbone. Ruchir has presented papers at prominent international
conferences, and possesses an engineering degree in computer science from
Nirma Institute of Technology, India.

Bulent Sapolyo is the IBM Asia Pacific Product and Technical Leader for
WebSphere MQ within Global Technology Services (GTS). He has over 25 years
of experience within the IT sector and has been working with IBM since 1994.
Bulent has vast experience in various financial sectors prior to joining IBM as a
Senior Systems Programmer. Since joining IBM, he has held many positions
within the company as an architect, consultant, and technical leader with IBM
Asia Pacific for DBDC products on z/OS and WebSphere MQ, and on Midrange,
Intel®, and Mainframe z/OS platforms. In addition to having experience with
various operating systems, Bulent possesses detailed working knowledge of
both IBM and independent software vendor (ISV) operating system software. As
a Product and Technical Leader within IBM Global Technology Services, his role
includes setting software direction and migration paths for outsourced customers
and implementing WebSphere MQ. Bulent also designed the architecture and
scope of and implemented the WebSphere MQ on stand-alone systems in a
Parallel Sysplex environment and with high-availability solutions on Midrange
and z/OS platforms.

Akhila Shivaprasad works as an Information Management Software Engineer
for IBM India Software Labs, Bangalore. She joined IBM over three years ago.
She is part of the WebSphere MQ PreGA and PostGA teams and is responsible
for testing WebSphere MQ fix packs (MDVs) on distributed platforms, especially
AS400. She has worked for over 30 LifeCyleRequests (LCRs) and has six PRBs
to her credit. Akhila holds a degree in Electronics and Communication
Engineering from Vishveshwaraiah Technological University. As a University
Relationship Manager and Subject Matter Expert, she works alongside IBM
University Relationship and IBM Academia. She was the originator of the IBM
Messaging Blog and ensures its continuity. Akhila supports IBM India Software
Labs-Shakti for various Women in Technology activities.

xxvi WebSphere MQ V7.0 Features and Enhancements

Vicente Suarez is a Senior IT Specialist working for IBM Hursley in the UK, with
eight years of experience as a Specialist in WebSphere MQ and WebSphere
Message Broker. Vincent has been with IBM since 1988, where he started off
working with the IBM Travel and Transportation Industry Team in IBM Colombia.
Vincente is co-author of the Redbooks publication WebSphere BI for FN for z/OS
V1.1.0 Installation and Operation, SG24-6090, and various Redpaper
publications such as WebSphere MQ V6, WebSphere Message Broker V6, and
SSL, REDP-4140. In addition, Vincente has developed and published support
packs for WebSphere Message Broker and articles in IBM developerWorks®. In
his current role as an IBM Software Services for WebSphere Consultant, he
promotes the use of the practises that best maximize the software performance
and facilitate the use, maintenance, and operation of WebSphere products for
IBM customers world-wide.

Lohitashwa Thyagaraj is an Advisory Software Engineer working for IBM India
Software Labs in Bangalore for the past three years. He has eight years of
experience in the IT industry with expertise in the banking, Enterprise Application
Integration, and WebSphere Service Oriented Middleware. Lohitashwa is the
Technical Lead for the WebSphere Application Server and WebSphere MQ
Java/Java™ Message Service Level-3 service team, where his key responsibility
is to provide technical support for IBM customers worldwide using these
products. He also chairs a technical forum called Messaging Technology
Council-Bangalore (MTC-B) that is dedicated in nurturing emerging technologies
within the message-oriented middleware. Lohitashwa was appointed as one of
the Top Talent employees for the year 2007 within the India Software Labs. He
holds a degree in computer science from Bangalore University.

The ITSO would like to express its special thanks to IBM BetaWorks, Hursley, for
hosting this project.

Sincere thanks to:

Brian Cuttell
WebSphere Business Integration Early Programs Test Environment Specialist,
IBM Sales and Distribution, Software Sales, IBM Hursley, for his support in
facilitating the residency in Hursley.

Bruce Coughtrie
Manager SWG BetaWorks, IM, WebSphere and Rational®, IBM Sales and
Distribution, Software Sales, IBM Hursley, for his support in facilitating the
residency in Hursley.

Tasnim Kapasi
Gap year student completing her Industry experience with IBM. Her contribution
was to set up specific variables and build the glossary and the index incorporated
in this book. She reviewed and edited the material required for this book and

 Preface xxvii

created the preface using Adobe® FrameMaker. Tasnim also used Paint Shop
Pro to upload and edit photographs into text documents. Tasnim has achieved
excellent A-levels in English literature, economics, and art. She is currently
studying IT and English at London University.

Andrew Wheal
Betaworks System Support (Hardware), IBM Sales and Distribution, Software
Sales, IBM Hursley, UK.

The team would like to thank the following people for their assistance and
contributions to this project:

Ben Mann
IBM Software Group, WebSphere MQ product manager, Application and
Integration Middleware Software, IBM Hursley, UK

Matthew White
WebSphere MQ JMS Development, Software Group, Application and Integration
Middleware Software, IBM Hursley, UK

Morag Hughson
WebSphere MQ Base Architect, Software Group, Application and Integration
Middleware Software, IBM Hursley, UK

Paul Clarke
WebSphere MQ Development, Software Group, Application and Integration
Middleware Software, IBM Hursley, UK

Mark A Butcher
WebSphere MQ Development Project lead, Software Group, Application and
Integration Middleware, IBM Hursley, UK Software

Keith Watson
WebSphere MQ Base and Clients Development Manager, Software Group,
Application and Integration Middleware Software, IBM Hursley, UK

Gavin Beardall
WebSphere MQ Software Developer, Software Group, Application and
Integration Middleware Software, IBM Hursley UK

Matthew Whitehead
Senior Inventor, WebSphere MQ Bridge for HTTP, Software Group, Application
and Integration Middleware Software, IBM Hursley UK

xxviii WebSphere MQ V7.0 Features and Enhancements

Luke Saker
IBM Software Group, WebSphere MQ JMS development, Java Software
Developer, Application and Integration Middleware Software, IBM Hursley, UK

Adrian Dick
Software Developer, Software Group, WebSphere MQ and Enterprise Service
Bus Development, Application and Integration Middleware Software, IBM Hursley
UK

Barry Spiers
WebSphere MQ Base Distributed Development and Performance Manager,
Software Group, Application and Integration Middleware Software, IBM Hursley
UK

Jonathan Rumsey
Lead System i® Developer WebSphere MQ Software Developer, Software
Group, Application and Integration Middleware Software, IBM Hursley UK

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

 Preface xxix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xxx WebSphere MQ V7.0 Features and Enhancements

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction

This part begins with an introduction to message-oriented middleware and the
WebSphere MQ product. The concept of messaging is covered, explaining what
is new in WebSphere MQ V7.0 and how it is implemented. An overview is
provided on how it fits within the service-oriented architecture (SOA).

This part consists of:

� Chapter 1, “Overview” on page 3
� Chapter 2, “Concepts of messaging” on page 7
� Chapter 3, “Introduction to WebSphere MQ” on page 19

Part 1

© Copyright IBM Corp. 2009. All rights reserved. 1

2 WebSphere MQ V7.0 Features and Enhancements

Chapter 1. Overview

This chapter provides an overview of this entire IBM Redbooks publication. It
covers the scope of material, the intended audience, and assumptions made
concerning the reader. This chapter contains the following sections:

� 1.1, “Executive summary” on page 4
� 1.2, “The scope of this book” on page 4
� 1.3, “Intended audience” on page 4
� 1.4, “What is covered in this book” on page 5
� 1.5, “What is not covered in this book” on page 6
� 1.6, “Assumptions” on page 6

1

© Copyright IBM Corp. 2009. All rights reserved. 3

1.1 Executive summary

The power of WebSphere MQ is its flexibility combined with reliability, scalability,
and security. This flexibility provides a large number of design and
implementation choices. Making informed decisions from this range can simplify
the development of applications and the administration of a WebSphere MQ
messaging infrastructure.

Applications that access a WebSphere MQ infrastructure can be developed
using a wide range of programming paradigms and languages. These
applications can execute within a substantial array of software and hardware
environments. Customers can use WebSphere MQ to integrate and extend the
capabilities of existing and varied infrastructures in the information technology
(IT) system of a business.

1.2 The scope of this book

This publication covers the core enhancements made in WebSphere MQ V7.0
and the concepts that must be understood when developing applications that use
the new features.

A broad understanding of the product features is key to making informed design
and implementation choices for both the infrastructure and the applications that
access it.

Details of new areas of function for WebSphere MQ V7.0 are introduced
throughout this book, such as the WebSphere MQ Explorer, Publish/Subscribe
integration, MQ Java Message Service providers, Message Queue Interface
extensions, administration enhancements, MQ Client, and changes for the z/OS
platform. Some installation and migration considerations when moving to
WebSphere MQ V7.0 from prior releases are also discussed.

1.3 Intended audience

This book provides details about IBM WebSphere MQ V7.0 product features and
enhancements required for individuals and organizations to make informed
application and design decisions prior to implementing a WebSphere MQ
infrastructure or begin development of a WebSphere MQ application. This
publication is intended to be of use to a wide-range audience.

4 WebSphere MQ V7.0 Features and Enhancements

1.4 What is covered in this book

The three distinct parts of this book provide an sample environment in which to
gain an understanding of WebSphere MQ concepts, with a focus on the
Publish/Subscribe integration with Java Message Service and the Message
Queue Interface provided in Version 7.0 of the product. The three parts of this
book are:

� Part 1, “Introduction” on page 1:

– Chapter 1, “Overview” on page 3

– Chapter 2, “Concepts of messaging” on page 7

– Chapter 3, “Introduction to WebSphere MQ” on page 19

These chapters provide an overview of this book and introduce the concepts
of messaging. The basic features of WebSphere MQ are presented and the
new features of WebSphere MQ V7.0 are summarized and positioned in
contemporary IT architectures.

� Part 2, “WebSphere MQ V7.0 enhancements and changes” on page 41:

– Chapter 4, “Publish/Subscribe integration” on page 43

– Chapter 5, “WebSphere MQ Client enhancements” on page 59

– Chapter 6, “Message Queue Interface extensions” on page 85

– Chapter 7, “WebSphere MQ Java Message Service enhancements” on
page 137

– Chapter 8, “Administration enhancements” on page 153

– Chapter 9, “Publish/Subscribe management” on page 197

– Chapter 10, “WebSphere MQ Bridge for HTTP” on page 225

– Chapter 11, “z/OS enhancements” on page 235

– Chapter 12, “Installation and migration” on page 243

These chapters discuss the new features and enhancements in WebSphere
MQ V7.0, which provide the full native function support for Publish/Subscribe.
administration, the MQ client, and relevant changes to other components of
WebSphere MQ are also covered.

� Part 3, “Scenario” on page 253:

– Chapter 13, “Scenario overview” on page 255

– Chapter 14, “Scenario preparation” on page 269

– Chapter 15, “Scenario: Supplier pricing using Pub/Sub” on page 287

– Chapter 16, “Scenario: Store ordering with JMS” on page 303

 Chapter 1. Overview 5

– Chapter 17, “Scenario: News using client” on page 325

– Chapter 18, “Scenario: Web ordering over HTTP” on page 343

– Chapter 19, “Scenario: Warehousing using call back” on page 361

These chapters present a scenario that illustrates how to use the new
features described in Part 2, “WebSphere MQ V7.0 enhancements and
changes” on page 41.

1.5 What is not covered in this book

This publication does not focus on interacting with WebSphere MQ using a
particular programming language.

This book does not distinguish between the role of WebSphere MQ architects,
programmers, and administrators.

1.6 Assumptions

Part 1, “Introduction” on page 1, of this publication gives the reader a basic
understanding of messaging middleware technologies and the relationship to
IBM products, which requires no previous technical knowledge.

Part 2, “WebSphere MQ V7.0 enhancements and changes” on page 41, and
Part 3, “Scenario” on page 253, concentrate on all the new features and
enhancements in WebSphere MQ V7.0 in technical detail and illustrate most of
them in a multi-faceted scenario. This assumes a good knowledge of many of the
basic features that were introduced in previous versions of WebSphere MQ.
Refer to the Redbooks publication WebSphere MQ V6 WebSphere MQ V6
Fundamentals, SG24-7128, for a comprehensive introduction to the foundation
features of WebSphere MQ. This is available on the IBM Web site at:

http://www.redbooks.ibm.com/abstracts/sg247128.html

6 WebSphere MQ V7.0 Features and Enhancements

http://www.redbooks.ibm.com/abstracts/sg247128.html

Chapter 2. Concepts of messaging

This chapter discusses the main concepts of messaging, the two different
messaging paradigms supported by Java Message Service (JMS), and the
positioning of messaging in service-oriented architecture (SOA).

It contains the following sections:

� 2.1, “Enterprise messaging” on page 8
� 2.2, “Introducing Publish/Subscribe” on page 8
� 2.3, “Java Message Service” on page 13
� 2.4, “Position messaging in service-oriented architecture” on page 16

2

© Copyright IBM Corp. 2009. All rights reserved. 7

2.1 Enterprise messaging

Enterprise messaging is a general term to describe the orchestrated exchange of
business data between disparate applications in complex environments. The
main features of enterprise messaging are that it provides application
decoupling, hides operating system specifics, and relieves applications from
dealing with communications protocols. The common building block of
exchanging data is the message, which can be records, files, events, Web
services, requests, and responses, to name a few possibilities.

Enterprise messaging is emerging as a powerful, robust, high-capacity
integration methodology, alongside established techniques such as Remote
Procedure Call (RPC), Common Object Request Broker Architecture (CORBA),
and other distributed application and client-server architectures. Many of these
use synchronous operations, meaning that the receiving application must be
available at the time that the requesting application passes the data. Enterprise
messaging provides an environment to send and receive message
asynchronously.

A means to enable asynchronous messaging is to provide a queuing facility that
will store and forward messages from a sending application to be delivered to a
receiving application that may not be in operation at the same time.

Message-oriented middleware (MOM)
A software product that provides enterprise messaging services is usually called
message-oriented middleware.

There are many MOM software products available. WebSphere MQ is the IBM
implementation. Chapter 3, “Introduction to WebSphere MQ” on page 19,
provides an introduction to WebSphere MQ.

As the number of applications participating in the messaging infrastructure
increases, the need for standardized methods of exchanging messages is
necessary so that two or more applications can cooperate in their exchange of
messages. This is where Java Message Service (JMS) is often utilized. An
introduction to JMS is provided 2.3, “Java Message Service” on page 13.

2.2 Introducing Publish/Subscribe

Publish/Subscribe (Pub/Sub) is a messaging paradigm to send and receive
messages asynchronously without the applications needing to know who or
where their partner applications are or how they process data.

8 WebSphere MQ V7.0 Features and Enhancements

2.2.1 Publish/Subscribe

Pub/Sub is primarily intended for situations where a single message may need to
be distributed to multiple applications. The main advantage over other message
distribution methods is that it keeps the publisher separated from the
subscribers. This means that the publisher application does not need to have any
knowledge of either the subscriber application’s existence or how they use the
published information. Likewise, the subscriber applications do not need to know
anything about the publisher applications. They have no dependencies on each
other. This decoupling of publishers and subscribers allows for greater scalability
and a dynamic processing topology.

Pub/Sub is a sibling of the message queue paradigm and is typically one part of
a larger message-oriented middleware solution. Most messaging systems
support Pub/Sub in their application programming interface (API). For example,
Java Message Service supports both the Publish/Subscribe and the message
queue models. An example of a distributed execution model that can be applied
to Pub/Sub design is data replication for sharing of information among various
applications running on multiple machines.

The following example describes how the Publish/Subscribe model can be
utilized.

A sports Web site that is dedicated to providing information about various games
(cricket, football, hockey, rugby, and so on) provides hourly and daily updates on
the events happening at sports fields across the world. There may be many
users registered with this Web site who are interested in receiving regular
updates on the sports of their choice. Some users can choose to subscribe and
receive information for only a specific topic such as cricket, while another user
may be interested in both cricket and football, and another user may be
interested in all the topics.

The Web site providing the hourly or daily updates of the sports event is the
publisher and the users subscribed to this Web site and consuming the
messages are the subscribers. If there are multiple subscribers registered, it
would be very difficult for the publisher to manage the sending of individual
messages to all the subscribers registered on various topics. Also, since the
publisher publishes messages randomly during the day, the subscribers cannot
be active all the time to receive them. The publisher and the subscribers would
like to send and receive the messages asynchronously.

The Pub/Sub model is a classic notion for addressing such combinations. In the
Pub/Sub model, the publisher can publish all the messages related to a sports
category to a specific topic, such as cricket, without having to know how many
subscribers are subscribed or whether the subscribers are active. In this case,

 Chapter 2. Concepts of messaging 9

the publisher must publish only one message to the topic for every update
irrespective of how many subscribers are subscribed.

When the subscriber logs into the Web site, all the messages subsequently
published to the topic for which the subscriber has subscribed are received
instantly. The same subscriber can subscribe to more than one topic of interest
and still get all the messages published for those topics, without any dependency
on the publisher application.

2.2.2 Message selection

In a typical Pub/Sub implementation, publishers publish messages to topics and
there are one or more subscribers subscribed to topics to receive the messages.
Subscribers may need to process a subset of the total messages published.
Subscribers can filter messages in two ways, either by topic-based or by
content-based selection.

Topic based
In this model the publishers publish messages to various topics and subscribers
subscribe to the particular topics of their interest to receive messages. All the
subscribers to each topic receive identical copies of the published messages on
that topic.

10 WebSphere MQ V7.0 Features and Enhancements

For example, Figure 2-1 shows two publishers publishing the message Welcome
to world of colors to the topic Color and all the subscribers that are subscribed
to the topic receive both published messages. In this case, the subscribers do
not discriminate between the publishers.

Figure 2-1 Topic-based selection

Content based
In this model the publishers publish messages to a particular topic and the
subscribers that are subscribed to this topic filter the messages that they want
based on the contents of the message. The subscriber can specify constraints
for the kind of messages that they want to receive.

Topic = Color

Message Published:

Welcome to the
world of colors

Publisher 1

Message Received:

Welcome to the
world of colors

Subscriber 1

Message Received:

Welcome to the
world of colors

Subscriber 2

Message Received:

Welcome to the
world of colors

Subscriber 3

 Chapter 2. Concepts of messaging 11

For example, in Figure 2-2, the first publisher publishes a message called
Welcome to the world of colors and also sets a property on the message as
Color=RED. The second publisher also publishes the same message but sets the
property on the message as Color=BLUE. Even though all the subscribers are
subscribed to the Topic Color, subscribers receive only those messages that
match their constraints. If no constraints are specified then that subscriber
receive all messages published to that topic.

Figure 2-2 Content-based selection

Some systems support a hybrid of the two. Publishers publish messages to
topics while subscribers register content-based subscriptions to one or more
topics.

Messages Received:

Welcome to the
world of colors
Color=RED

Welcome to the
world of colors
Color = BLUE

Subscriber 3

Message Received:

Welcome to the
world of colors
Color = BLUE

Subscriber 2
Filter:
Color=Blue

Message Received:

Welcome to the
world of colors
Color = RED

Subscriber 1
Filter:
Color=RED

Topic = Color

Message Published:

Welcome to the
world of colors
Color = RED

Publisher 1

Message Published:

Welcome to the
world of colors
Color = BLUE

Publisher 2

12 WebSphere MQ V7.0 Features and Enhancements

2.2.3 Advantages

In this section we discuss the advantages.

Loosely coupled
Pub/Sub applications are loosely coupled, that is, the publisher and subscriber
applications need not know the existence of each other. With the topic being the
only common focus, publisher and subscriber applications operate independently
and messages are passed asynchronously across the messaging system.

Compared with tightly coupled client-server architectures, there is less
dependence between applications. They do not need to be running at the same
time or in a specific location.

Pub/Sub also overcomes the single destination limitation of point-to-point
messaging by providing a dynamic architecture where many applications can
subscribe to receive the same messages.

Scalable
Pub/Sub provides the opportunity for improved scalability over other
asynchronous messaging methodologies through parallel operation of producers
and consumers of messages, topic-based routing, control over durability of
subscriptions, and control over retention of published messages.

2.3 Java Message Service

This section discusses Java Message Service concepts and positions it within
the enterprise messaging system.

2.3.1 Java Messaging

Java Message Service is a set of interfaces and associated semantics that define
how a JMS client application accesses the facilities of an underlying enterprise
messaging product. Messaging is recognized as an essential tool for building
enterprise applications and e-commerce systems, and JMS provides a common
methodology for Java programs to create, send, receive, and read enterprise
messages.

Rather than allowing the applications to communicate directly with each other,
applications send messages to a message server, which in turn delivers the
messages to recipient applications. This might seem like an extra, unnecessary
layer of software, but the advantages of using a message service provider often

 Chapter 2. Concepts of messaging 13

outweigh the disadvantages. The message service model is much like the model
behind the postal service. We can directly deliver our own mail to our friends and
relatives, but letting someone else do it for us greatly simplifies our life. The
addition of the messaging service adds another layer to the application but it
greatly simplifies the design of both the clients and the servers, as they are no
longer responsible for handling communication issues. It also greatly enhances
scalability.

JMS defines several interfaces for message services but no particular
implementation. This gives great flexibility for vendors to implement message
services the way that they want but still allows programmers to develop JMS
applications that are largely independent from specific JMS messaging
providers. This way the programmers do not have to rewrite their entire
application when changing the underlying messaging system.

JMS offers two different messaging paradigms:

� Point-To-Point
� Publish/Subscribe

14 WebSphere MQ V7.0 Features and Enhancements

2.3.2 Point-To-Point model

The Point-To-Point model is built around the concept of message queues that
have the capability of storing and forwarding messages for communication
between coupled applications. An application sends messages to a queue and a
partner application then receives the messages. Figure 2-3 depicts how a simple
Point-To-Point model works.

Figure 2-3 Point-To-Point model

2.3.3 Publish/Subscribe model

The Pub/Sub model is built around the concept of topics. A publisher application
sends messages to a topic. A subscriber application receives messages from
one or more topics. Messages are not generally stored on a topic. They are
delivered to one or more subscriber applications if they are running. See 2.2,
“Introducing Publish/Subscribe” on page 8, for more information.

Sender

JMS
Client 1

Queue Sender Queue Receiver

JMS
Client 2

JMS
Client 3

Queue Sender

Queue Sender

Receiver

JMS
Client 1

JMS
Client 2

JMS
Client 3

Messaging
Provider (Queue)

Queue Receiver

Queue Receiver

 Chapter 2. Concepts of messaging 15

2.3.4 Advantages of JMS

The advantages of JMS are:

� JMS allows programmers to write messaging applications that are
independent of the underlying message provider implementation.

� Message provider independence allows the IT infrastructure to be upgraded,
reorganized, and scaled without requiring changes to the JMS programs.

� Since JMS is purely a Java component, the platform in which the application
runs is irrelevant, and it may operate and be moved between multiple
platforms in the enterprise.

2.4 Position messaging in service-oriented architecture

Service-oriented architecture is a business-centric IT architectural approach that
supports business integration as linked, repeatable business tasks or services.
SOA helps users build composite applications, which are applications that draw
upon functionality from multiple sources within and beyond the enterprise to
support horizontal business processes, as shown in Figure 2-4. SOA is an
architectural style that makes this possible. For more information about SOA
refer to the following link:

http://www.ibm.com/soa

Figure 2-4 IBM SOA model

The most important characteristic of SOA is the flexibility to treat elements of

… a service?

A repeatable business
task – e.g., check

customer credit, open
new account

… service oriented
architecture (SOA)?

An IT architectural style
that supports

service orientation

… a composite
application?

A set of related and
integrated services that

support a business
process built on an SOA

… service orientation?

A way of integrating
your business as
linked services

16 WebSphere MQ V7.0 Features and Enhancements

http://www.ibm.com/soa

business processes and the underlying information technology infrastructure as
secure, standardized components (services) that can be reused and combined to
address changing business priorities. The key feature of SOA is the ability for
various applications to interact with each other.

In April 2006, IBM defined the following key SOA entry points based on real
customer experiences and customer engagements and allowed the customer the
flexibility to choose any entry point based on their necessity and still achieve
SOA:

� People
� Process
� Information
� Reuse
� Connectivity

Prior to SOA, connectivity implied a link between two or more applications or
systems. The concept of connectivity is now a service-centric entry point to SOA
that is designed to help simplify the IT environment. It provides a more secure,
reliable, and scalable way to connect within and beyond the business. SOA links
people, processes, and information with a seamless flow of messages and
information from virtually anywhere, at anytime, and using anything. It brings new
levels of flexibility to such linkages and delivers real business value on its own.
Connectivity is also a core building block for future SOA initiatives.

As more and more applications participate in the SOA environment, the need to
exchange data and messages also arises, thereby requiring a more robust and
reliable way for exchanging messages. Hence, the messaging backbone is the
foundation for SOA connectivity.

 Chapter 2. Concepts of messaging 17

Figure 2-4 on page 16 above shows the IBM representation of Enterprise
Service Bus in relation to the reference architecture and shows in Figure 2-5
where WebSphere MQ fits into that architecture as a core component, providing
reliable communication between applications. While service orientation gives a
new focus to thinking about reuse of software components, this is not a new thing
because WebSphere MQ has been providing fast, reliable messaging between
applications for many years. The concept of Enterprise Service Bus allows
integration of new and existing services using proven technology.

Figure 2-5 WebSphere MQ in relation to reference architecture

As connectivity was identified to be one of the key entry points for SOA, more sub
points were added to strengthen the connectivity infrastructure. The seven main
points identified for connectivity are:

� Reliable
� Secure
� Time flexible and resilient
� Transactional
� Incremental
� Ubiquitous
� Basis for Enterprise Service Bus

In summary, any messaging component fitting in the connectivity infrastructure must
satisfy and support all the above-mentioned sub points. Messaging has become a
backbone and is one of the key components of service-oriented architecture and the
Enterprise Service Bus. It is responsible for delivering the messages between
various applications in a robust, reliable, timely, and secure way.

bSphere MMQFacilitates communication ESB

18 WebSphere MQ V7.0 Features and Enhancements

Chapter 3. Introduction to
WebSphere MQ

This chapter introduces WebSphere MQ, how messaging is implemented by
WebSphere MQ, what is new in WebSphere MQ V7.0, and how it fits in the
WebSphere product family.

This chapter contains three sections:

� 3.1, “Messaging with WebSphere MQ” on page 20
� 3.2, “What is new in WebSphere MQ V7.0” on page 28
� 3.3, “Positioning in WebSphere product family” on page 38

3

© Copyright IBM Corp. 2009. All rights reserved. 19

3.1 Messaging with WebSphere MQ

WebSphere MQ is the market-leading messaging integration middleware
product. Over more than 15 years WebSphere MQ (or MQSeries® as it was
known in earlier versions) has grown to provide flexible and reliable solutions that
address the wide range of requirements introduced in the previous chapter.

A message queuing infrastructure built on WebSphere MQ technology provides
an available, reliable, scalable, secure, and maintainable transport for messages
with guaranteed once-only delivery.

Many enhancements have been added to WebSphere MQ during its evolution in
the marketplace, including:

� WebSphere MQ Clients: Enables an application to connect remotely or locally
to a WebSphere MQ queue manager.

� Publish/Subscribe: Increases messaging capability from point-to-point
messaging to a less coupled style of messaging.

� MQ Clusters: Allow multiple instances of the same service to be hosted
through multiple queue managers, to enable load-balancing and fail-over and
simplify administration.

� Secure Sockets Layer support: SSL protocol can be used to secure
communication between queue managers or MQ Client.

� Diverse platforms: WebSphere MQ supports a wide range of operating
system platforms.

Note: To discover and learn about the essential features and capabilities of
WebSphere MQ, refer to the IBM Redbooks publication WebSphere
MQWebSphere MQ V6 Fundamentals, SG24-7128, available at:

http://www.redbooks.ibm.com/abstracts/sg247128.html?Open

20 WebSphere MQ V7.0 Features and Enhancements

http://www.redbooks.ibm.com/abstracts/sg247128.html?Open

3.1.1 Core concept of WebSphere MQ

Data is transferred between applications in messages. A message is a container
consisting of two parts:

� MQ Message Descriptor: Identifies the message and contains additional
control information such as the type of message and the priority assigned to
the message by the sending application.

� Message data: Contains the application data. The structure of the data is
defined by the application programs that use it, and MQ is largely
unconcerned with its format or content.

The nodes within a WebSphere MQ message queuing infrastructure are called
queue managers. The queue manager is responsible for accepting and
delivering messages. Multiple queue managers can run on a single physical
server or on a wide network of servers across a large variety of different
hardware and operating system platforms.

Each queue manager provides facilities for reliable messaging using both
point-to-point and Publish/Subscribe styles.

The queue manager maintains queues of all messages that are waiting to be
processed or routed. Queue managers are tolerant of failures and maintain the
integrity of business-critical data flowing through the message queuing
infrastructure.

The queue managers within the infrastructure are connected via logical channels
over a communications network. Messages automatically flow across these
channels from the initial producer of a message to the eventual consumer of that
message based on the configuration of the queue managers in the infrastructure.
Changes can be made to the configuration of queues and channels, and this is
transparent to the applications.

Asynchronous messaging
Two applications that must communicate, whether hosted on the same machine
or separate machines, may have originally been designed to do so directly and
synchronously. This was a common messaging technique used prior to the
introduction of WebSphere MQ.

In this case the two applications exchange information by waiting for the partner
application to become available and then sending the information. If the partner
application is unavailable for any reason, including if it is busy performing
communication with other applications, the information cannot be sent.

 Chapter 3. Introduction to WebSphere MQ 21

All intercommunication failures that can occur between the two applications must
be considered individually by the applications, whether they are on the same
machine or on different machines connected by a network. This requires a
protocol for sending the information, confirming receipt of the information, and
sending any subsequent reply.

Placing a WebSphere MQ infrastructure between the two applications allows this
communication to become asynchronous. One application places information for
the partner in a message on a WebSphere MQ queue, and the partner
application processes this information when it is available to do so. If required, It
can then send a reply message back to the originator. The applications do not
need to be concerned with intercommunication failures or recovery.

WebSphere MQ Clients
WebSphere MQ Client is a light-weight component of WebSphere MQ that does
not require the queue manager run-time code to reside on the client system. It
enables an application running on the same machine as the client to connect to a
queue manager that is running on another machine and perform messaging
operations with that queue manager. Such an application is called a client and
the queue manager is referred to as a server.

Using MQ Clients is an effective way of implementing WebSphere MQ
messaging and queuing. The benefits of doing this are:

� There is no need for a licensed WebSphere MQ server installation on the
client machine.

� Hardware requirements on the client system are reduced.

� System administration requirements on the client system are reduced.

� An application using MQ Client can connect to multiple queue managers on
different machines.

Application programming interfaces (APIs)
Applications can use WebSphere MQ via several programming interfaces.

Important: Because there must be a synchronous communication protocol
between the client and the queue manager, MQ Client requires a reliable and
stable network.

22 WebSphere MQ V7.0 Features and Enhancements

Message Queue Interface
The native interface is the Message Queue Interface (MQI). The MQI consists of
the following:

� Calls through which programs can access the queue manager and its
facilities

� Structures that programs use to pass data to, and get data from, the queue
manager

� Elementary data types for passing data to, and getting data from, the queue
manager

� Classes in object-oriented languages for accessing data, the queue manager,
and its facilities

Many programming languages and styles are supported depending on the
software and hardware platform, for example, C, Java, and most other popular
languages.

Standardized APIs
Utilizing a standardized API can add additional flexibility when accessing
services through a message queuing infrastructure. This book uses the term
standardized API to represent APIs that are not proprietary to an individual
product, such as WebSphere MQ.

Examples of standardized APIs that can be used to access services provided
through a WebSphere MQ infrastructure are:

� Java Message Service (JMS)
� IBM Message Service Client (XMS)

Wide adoption of these, APIs can occur across multiple products. For example,
the JMS API is an industry standardized API for messaging within the Java
Enterprise Edition (Java EE) specification.

Reliability and data integrity
The intercommunication performed across channels between queue managers
is tolerant of network communication failures and WebSphere MQ assures
once-only delivery of messages.

Persistent and non-persistent messages
Messages containing critical business data, such as receipt of payment for an
order, should be reliably maintained and must not be lost in the event of a failure.

Note: For information about JMS refer to 2.3, “Java Message Service” on
page 13.

 Chapter 3. Introduction to WebSphere MQ 23

On the other hand, some messages may only contain query data, where the loss
of the data is not crucial because the query can be repeated. In this case,
performance may be considered more important than data integrity.

To maintain these opposite requirements WebSphere MQ uses two type of
messages, persistent and non-persistent:

� Persistent messages: WebSphere MQ does not lose a persistent message
through network failures, delivery failures, or restart of the queue manager.

Each queue manager keeps a failure-tolerant recovery log of all actions
performed upon persistent messages. This is sometimes referred to as a
journal.

� Non-persistent messages: WebSphere MQ optimizes the actions performed
upon non-persistent messages for performance.

Non-persistent message storage is based in system memory, so it is possible
they can be lost in situations such as network errors, operating system errors,
hardware failure, queue manager restart, and internal software failure.

Units of work
Many transactions performed by an application cannot be considered in isolation.
An application may need to send and receive multiple messages as part of one
overall action. Only if all of these messages are successfully sent or received
should any messages be sent or received.

An application that processes messages may need to perform coordinated work
against other resources as well as the WebSphere MQ infrastructure. For
example, it may perform updates to information in a database based upon the
contents of each message. The actions of retrieving the message, sending any
subsequent reply, and updating the information in the database must only
complete if all actions are successful.

These actions are considered to be a unit of work (UOW). Units of work
performed by applications accessing a WebSphere MQ infrastructure can
include sending and receiving messages as well as updates to databases.
WebSphere MQ can coordinate all resources to ensure that a unit of work is only
completed if all actions within that unit of work complete successfully.

Note: WebSphere MQ can also participate in global units of work that are
coordinated by other products. For example, actions against a WebSphere
MQ infrastructure can be included in global units of work that are coordinated
by WebSphere Application Server and DB2®.

24 WebSphere MQ V7.0 Features and Enhancements

3.1.2 WebSphere MQ messaging styles

There are two basic types of messaging style, point-to-point and
Publish/Subscribe.

Point-to-point
The point-to-point style is built around the concept of message queues.
Messages are stored on a queue by a source application, and a destination
application retrieves the messages. This provides the capability of storing and
forwarding messages to the destination application in an asynchronous or
decoupled manner. Synchronous Request/Reply messaging interfaces can also
be implemented using point-to-point.

The source application needs to know the destination of the message. The
queue name is usually enough when alias queues, remote queues, or clustered
queue objects are used, but some designs may require the source application to
know the name of the remote queue manager.

Publish/Subscribe
WebSphere MQ Publish/Subscribe (Pub/Sub) allows the provider of information
to be decoupled from the consumers of that information.

Before a point-to-point application can send information to another application, it
needs to know something about that application. For example, it needs to know
the name of the queue to which to send the information, and it might also need a
queue manager name that is associated with the destination application.
Pub/Sub removes the need for the source application to know anything about the
destination application. All it has to do is send information that it wants to share to
a known destination topic that is managed and distributed by WebSphere MQ.
Similarly, a destination application does not need to know anything about the
source of the information that it receives. It only needs to know the topics in
which it is interested.

3.1.3 WebSphere MQ distributed messaging

A topology consisting of a single queue manager running on the same machine
as its applications has limitations of scale and flexibility. MQ Client can allow
applications to run on remote machines, but connections between the
applications and the queue manager require a reliable and stable network, which
is not usually available for long distances.

Note: For information about Pub/Sub refer to 2.2, “Introducing
Publish/Subscribe” on page 8.

 Chapter 3. Introduction to WebSphere MQ 25

The limitations of this topology can be eliminated without alteration to the
applications by using distributed messaging. Applications accessing a service
can use a queue manager hosted on the same machine as the application,
providing a fast connection to the infrastructure. MQ channels extend the
connectivity by providing transparent asynchronous messaging with applications
hosted by other queue managers on remote machines via a communications
network.

There are two common types of distributed messaging:

� Hub and Spoke
� MQ Clustering

Hub and Spoke
Applications accessing a service connect to their local queue manager. This is
usually via a direct connection to a queue manager that runs on the same
machine. A client connection can also be used to a queue manager on the same
machine or to a queue manager on a different machine over a fast, reliable
network. For instance, an application in a branch office needs to access a service
at headquarters. Asynchronous communication occurs through a local queue
manager that acts as a spoke to the service application hosted on a hub queue
manager.

The machine that hosts a hub queue manager can host all the applications
providing the central services, for instance, headquarters applications and
databases.

This type of architecture is developed by manually defining the routes from the
spoke queue managers to the hub queue manager or to many hub queue
managers. Multiple services provided by the infrastructure may be hosted on
different hub queue managers or through multiple queues on the same hub
queue manager.

MQ Cluster
A more flexible approach is to join many queue managers together in a dynamic
logical network called a queue manager cluster. This allows multiple instances of
the same service to be hosted through multiple queue managers.

Applications requesting a particular service can connect to any queue manager
within the queue manager cluster. When applications make requests for the
service, the queue manager to which they are connected automatically workload
balances these requests across all available queue managers that host an
instance of that service.

26 WebSphere MQ V7.0 Features and Enhancements

This allows a pool of machines to exist within the queue manager cluster, each
hosting a queue manager and the applications required to provide the service.
This is especially useful in a distributed environment, where capacity is scaled to
accommodate the current load through multiple servers rather than one
high-capacity server. A server can fail or be shut down for maintenance and
service is not lost.

Using MQ Cluster technology can also simplify administration tasks because
most of the message channels for application data transport are maintained by
the cluster and do not have to be explicitly created.

3.1.4 SSL support

The Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are industry
standardized technologies that provide assurance of identity and data privacy for
MQ client applications that connect to queue managers via a communications
network infrastructure, and also queue manager to queue manager distributed
queuing and clustering via a network.

SSL and TLS provide similar capabilities and build upon similar principles for
establishing identity. TLS is often considered the successor of SSL, as it provides
some enhanced security features. SSL or TLS can be utilized for all
communication performed over a network within a WebSphere MQ infrastructure.

Using these technologies, WebSphere MQ can verify the identity of applications
connecting to a queue manager and can also verify the identity of other queue
managers within the infrastructure with which it exchanges messages.

Any communication over a network within a WebSphere MQ infrastructure for
which identity has been verified using SSL or TLS can then be encrypted using a
variety of algorithms within the SSL and TLS standards. This ensures the privacy
of that communication.

3.1.5 Diverse platforms

WebSphere MQ provides simplified communication between applications
running on different hardware platforms and operating systems and implemented
using different programming languages. This enables a business to choose the
most appropriate infrastructure components for implementing or accessing
services within their system. The messaging infrastructure understands
differences between the underlying hardware and software on which individual
nodes are running.

 Chapter 3. Introduction to WebSphere MQ 27

Some conversion of character and numeric data might be required in order for
the data to be readable across different hardware and software platforms. The
messaging infrastructure can be configured to perform this conversion
transparently so that each message is valid when it is retrieved at the destination.

A consistent WebSphere MQ implementation exists across a range of more than
80 supported operating environments, provided both by IBM and business
partners. To learn about supported platforms for WebSphere MQ refer to the
following IBM Web pages:

� WebSphere MQ Product Information, available at:

http://www.ibm.com/support/docview.wss?uid=swg27007431

� WebSphere MQ System Requirements, available at:

http://www.ibm.com/software/integration/wmq/requirements

3.2 What is new in WebSphere MQ V7.0

This section briefly describes the new features and enhancements in WebSphere
MQ V7.0. Detailed information about the following topics is provided in Part 2,
“WebSphere MQ V7.0 enhancements and changes” on page 41.

3.2.1 Publish/Subscribe integration

WebSphere MQ V7.0 now has tightly integrated Publish/Subscribe messaging to
simplify its configuration, development, and deployment. This makes it easier
than ever to use Publish/Subscribe to increase the flexibility of messaging
solutions. Pub/Sub management is now fully incorporated into the graphical
WebSphere MQ Explorer tooling, making it easier to use and configure.

WebSphere MQ Publish/Subscribe in V7.0
In previous versions of WebSphere MQ a separate broker component managed
the Publish/Subscribe functionality. It was external to the queue manager and
needed to be started separately. One broker would be created for each queue
manager and used the same name as the queue manager. This broker utilized
WebSphere MQ facilities to manage interactions between publishing and
subscribing applications. It was provided as a SupportPac for WebSphere MQ
V5.3 and supplied in the base product for WebSphere MQ V6.0.

WebSphere MQ V7.0 provides a new Pub/Sub engine that is fully integrated into
the queue manager and is automatically enabled. The queue manager receives
messages from publishers and subscription requests from subscribers for an

28 WebSphere MQ V7.0 Features and Enhancements

http://www.ibm.com/support/docview.wss?uid=swg27007431
http://www.ibm.com/software/integration/wmq/requirements

arbitrary range of topics. It is then solely responsible for routing the published
messages to the target subscribers.

Topics in WebSphere MQ V7.0
A topic refers to the subject for which publishers provide information. Subscribers
interested in information about this topic can either subscribe to a topic object or
a topic string to receive these publications. With WebSphere MQ V7.0 you can
now publish directly to topics.

The topic string is the central concept in WebSphere MQ V7.0 Pub/Sub because
it associates publishers and subscribers. Publishers can publish messages to a
topic string and subscribers can subscribe to published messages using a topic
string. The topic string can be up to 10,240 characters long. A new data type
called the variable-length string has been introduced in WebSphere MQ in order
to support this requirement. The structure and semantics of the topic string is
controlled by the slash (/) to build the topic hierarchy.

Topic security
Topics inherit security attributes from the nearest administration node using a
delegation model. Administration nodes have an associated WebSphere MQ
Topic object that defines the security levels of access to topics.

Message selectors
Message selectors can also be used in Pub/Sub messaging. They enable a
Pub/Sub application to specify the messages that it is interested in by specifying
criteria on message properties.

Distributed Publish/Subscribe
Distributed Pub/Sub enables applications connected to separate queue
managers to use Pub/Sub messaging. There are two topologies for distributed
Pub/Sub:

� Cluster
� Hierarchical

A Pub/Sub Cluster uses MQ Cluster technology that connects queue managers
via cluster channels. A MQ Cluster becomes a Pub/Sub Cluster by the definition
of at least one clustered topic within the cluster. Although the clustered topic is
created on one queue manager, the definition is pushed out to all queue
managers in the cluster using the same advertising method as ordinary clustered
queues. All publications that are made to the clustered topic are sent to all queue
managers in the cluster that have active subscriber applications connected.

 Chapter 3. Introduction to WebSphere MQ 29

A Hierarchical Pub/Sub topology is built on queue managers connected via
standard distributed message channels or cluster channels. A parent and child
relationship is defined to build the hierarchy. The hierarchical topology uses a
proxy subscription routing mechanism to deliver messages to subscribers. It can
take some time for subscriptions to propagate around all queue managers in the
network, and thus publications may not all be received until the proxy
subscription has been fully propagated.

3.2.2 WebSphere MQ Client enhancements

WebSphere MQ V7.0 introduces a new quality of service to improve WebSphere
MQ client applications and to provide better control of server-connection channel
resources.

Full duplex client channels
The TCP/IP transport protocol for MQ Client and JMS MQ Provider is now full
duplex. Network failures are detected earlier by allowing independent heartbeats
to be performed in each direction on channels. Channel stop requests from the
queue manager can now be processed immediately.

Conversation sharing
MQ Client and JMS MQ Provider now have the capability for threads and
sessions to share a TCP/IP socket. This effectively reduces the number of
running TCP/IP sockets, making more efficient use of resources.

Read ahead
MQ Client and JMS MQ Provider can now read ahead non-persistent messages
into local memory prior to them being requested by the program. This reduces
the number of interactions with the queue manager and improves throughput in
some circumstances.

Asynchronous put
MQ programs can now put messages to queues without waiting for a response
from the queue manager. The status response can be obtained after a set of
messages has been put. When used with the MQ Client or JMS MQ Provider,
this reduces the number of interactions with the queue manager and improves
throughput in some circumstances.

Instance limits on SVRCONN channels
The SVRCONN type channel has been enhanced to add parameters that limit
the number of concurrently running instances of the client channel for all
connections and connections from each system. This can prevent client

30 WebSphere MQ V7.0 Features and Enhancements

programs from running the maximum number of channel instances available on a
queue manager and possibly denying other types of channels from starting.

Weighted selection on CLNTCONN channels
New parameters have been added to the CLNTCONN type channel to allow
connection to wild-carded queue managers based on a random selection with
relative weightings. This provides a simple workload balancing feature across
multiple queue managers.

3.2.3 MQI extensions

WebSphere MQ V7.0 has improved and extended the Message Queue Interface
(MQI), particularly to support Publish/Subscribe and to offer similar features to
those found in the Java Message Service (JMS) application programming
interface.

Variable-length strings
The MQI now supports variable-length strings, and some of the new data
structures use them. There is a new data type called MQCHARV that is used to
represent variable-length strings such as topic strings, object names, subscriber
user data, selection strings, and other new data elements.

Message properties and message handles
Message properties are now supported in the MQI, providing access to name
and value pairs that are associated with MQ messages. It is possible to set,
inquire, and delete the message properties of MQ messages. Message
properties can be used to filter messages that are retrieved from a queue or a
subscription using message selectors. Message properties require a message
handle to refer to them as part of a message. An application can use new MQI
function calls to create and delete message handles (MQCRTMH and
MQDLTMH) and to set, inquire, or delete message properties (MQSETMP,
MQINQMP, and MQDLTMP).

Message browsing
Message browsing has been enhanced in WebSphere MQ V7.0. New options in
MQOPEN and MQGET introduce increased flexibility when browsing messages
on queues.

Message tokens are now available to distributed queue managers. Message
tokens uniquely identify a message on a queue. A token is returned in the Get
Message Option (MQGMO) data structure after a MQGET-with-browse call.

 Chapter 3. Introduction to WebSphere MQ 31

Browse and mark is one of the new MQGET options that enables the queue
manager to keep track of which messages have been browsed and by who.

Cooperative dispatchers is a new concept for groups of applications that browse
the same queue and that are not interested in messages that have been
previously browsed by another cooperative dispatcher.

Callback for asynchronous consumers
Callback is a new set of MQI function calls that enable consumption of messages
from queues or subscriptions without using a MQGET-with-wait call. Callback
allows implementation of a programming style for message-driven processing.
Programs using callback functions are called asynchronous consumers.

Asynchronous consumer applications must register functions that are called back
by the queue manager when messages are available and they match the
selection criteria. The new MQI calls are MQCB and MQCTL to register and
control callback functions.

Publish/Subscribe
Publisher applications can use MQOPEN and MQPUT, or MQPUT1, to publish
messages to topics.

Subscriber applications can create subscriptions to topics using the new MQSUB
call or they can request services from a subscription using the new MQSUBRQ
call, such as retrieving retained publications on demand. MQGET or callback can
be used to retrieve messages from a subscription.

MQSUB has options to create durable or non-durable subscriptions and to
specify whether the subscriptions are managed or non-managed.

Put action indicators
In WebSphere MQ V7.0 it is now possible to indicate to the queue manager the
type of MQPUT or MQPUT1 action that is performed and the relationship of a
new message and a possible original message that has been previously
received.

The types of put actions are:

� New
� Forward
� Reply
� Report

These indicators enable the queue manager to validate and set message
properties according to the action.

32 WebSphere MQ V7.0 Features and Enhancements

Message selectors
Message selectors allow an application to specify that it is only interested in
receiving particular messages from queues or subscriptions. Only messages
whose headers match the filter criteria in the selector are delivered to the
application.

Message selectors act on the message properties and headers in a message.
The message selector string syntax is based on a subset of SQL92 conditional
expressions.

Message selectors exist in JMS and they now are supported by MQOPEN and
MQSUB calls.

3.2.4 WebSphere MQ JMS provider implementation

WebSphere MQ V7.0 has extended the Java Message Service provider
implementation to support new features and to be able to offer functionality
similar to the MQI.

Read ahead
The read ahead feature in WebSphere MQ V7.0 allows messages from
destinations to be sent to the JMS client ahead of the application actually
requesting the messages. This saves the client from having to send a separate
request to the WebSphere MQ server for each message it consumes and allows
the client to receive messages in a continuous stream.

Asynchronous put
A JMS client application (for example, responsible for capturing information about
climatic changes in humidity, temperature, and air pollution) sends sequences of
messages in rapid succession to the destination. The client application does not
require any immediate acknowledgement of success or reply back for every
message sent. After the sequence of messages has been sent the client can
confirm that they were all accepted by WebSphere MQ.

Asynchronous consume
WebSphere MQ V7.0 supports both synchronous and asynchronous message
consumption. When a JMS application needs to consume a message
asynchronously it can register a callback function for a destination. When a
suitable message is sent to the destination, the function is called and it is passed
the message as a parameter. The function can then process the message
asynchronously.

 Chapter 3. Introduction to WebSphere MQ 33

Asynchronous consumption of messages by JMS applications was already
present in previous releases of WebSphere MQ when JMS applications
implemented a JMS MessageListener. However, with WebSphere MQ V7.0, the
MQ implementation for JMS has been enhanced to take advantage of the
callback mechanism available in WebSphere MQ.

Conversation sharing
Conversation sharing is a new feature in WebSphere MQ V7.0. It allows a single
TCP/IP socket to multiplex or share multiple connections or sessions, provided
that the two ends of the connection belong to the same process. By default, all
JMS applications use conversation sharing without any client code modifications.

Mapping of WebSphere MQ and JMS messages
A JMS client application can use message selectors to filter for suitable
messages from the destination. The application receives only those messages
containing properties matching the specified selector string. The selection is
performed by the queue manager.

In WebSphere MQ V6.0 the queue manager did not support message selection
natively. The JMS MQ client had to browse the queue sequentially and perform
the selection of messages itself. This was very inefficient across a
communications network and induced high CPU usage on both the client and the
server side when there was a significant number of messages on the destination.

Properties of WebSphere MQ classes for JMS
All objects in WebSphere MQ classes for JMS have properties. Different
properties apply to different object types. Different properties have different
allowable values, and symbolic property values differ between the administration
tool and the program code.

WebSphere MQ classes for JMS provides facilities to set and query the
properties of objects using the WebSphere MQ JMS administration tool,
WebSphere MQ Explorer, or in an application. Many of the properties are
relevant only to a specific subset of the object types.

3.2.5 Administration enhancements

The MQ Explorer was enhanced in many ways to simplify and provide more
secure WebSphere MQ administration.

Other significant changes were made to commands to support new MQ object
types, properties, and parameters and to greatly enhance JMS administration.

34 WebSphere MQ V7.0 Features and Enhancements

WebSphere MQ Explorer
The Eclipse-based graphical administration tooling, MQ Explorer, introduced in
WebSphere MQ V6.0, is further updated in WebSphere MQ V7.0. MQ Explorer
enables remote configuration of WebSphere MQ from Linux® x86 and Windows
machines. It does not require a local server or client and can be installed on
machines without a license.

The main MQ Explorer enhancements are related to:

� General GUI enhancements
� Browsing messages
� Mapping between MQ objects and JMS objects
� Remote queue managers administration
� Security
� Queue manager sets

Several enhancements are fully compatible with WebSphere MQ V6.0 so MQ
administrators can benefit from the enhancements to administer V6.0 queue
managers.

Working with new properties and parameters
The WebSphere MQ Explorer, MQSC, PCF, and control commands have been
enhanced to support new MQ object properties and parameters. The changes
are mainly related to queue managers, queues, topics, subscriptions, channels,
and client connections.

Java and JMS-related administration enhancements
WebSphere MQ integrates JMS configuration into its graphical tooling, the
Eclipse-based MQ Explorer, making it easier to design and deploy JMS
solutions. JMS objects like connection factories and destinations now appear in
the MQ Explorer alongside queues. Since MQ Explorer can remotely configure
the entire WebSphere MQ network, it easier to explore and configure JMS
messaging across the network.

WebSphere MQ V7.0 offers these new administration capabilities for application
developers:

� Embedded PCF support for Java.

� WebSphere MQ classes for JMS has been enhanced to provide a higher level
of serviceability.

 Chapter 3. Introduction to WebSphere MQ 35

3.2.6 Managing Publish/Subscribe

Publish/Subscribe is now fully integrated into the MQ Explorer graphical tooling.
Topics can now be administered directly like other MQ Explorer objects, such as
queues and channels, simplifying administration and security management.
Topics can be created using graphical wizards that can also generate
corresponding Java Message Service topics. Testing Pub/Sub is now even
easier, with built-in tools to send test publications and receive test subscriptions.

MQSC commands can also be used to manipulate topic objects and
subscriptions. The control command setmqaut is used to administer topic object
authority settings.

Managing topics
Topics can be managed using MQ Explorer or with MQSC commands. It is
possible to create, alter, display, display status, or delete topic objects. JMS
topics can also be created and managed using MQ Explorer.

The queue alias type that refers to a topic can be created and managed using
MQ Explorer or with MQSC commands.

Appropriate authority settings for topic objects can be set using MQ Explorer or
with the setmqaut control command.

On i5/OS®, topics can be managed using the new CL commands.

Managing subscriptions
Subscriptions can be managed using MQ Explorer or with MQSC commands. It
is possible to create, alter, display, clear, display status, or delete subscriptions.

On i5/OS, subscriptions can be managed using the new CL commands.

3.2.7 WebSphere MQ Bridge for HTTP

This feature allows client applications to perform WebSphere MQ messaging
using the HTTP protocol. The HTTP bridge feature that was available as
SupportPac MA0Y in the previous version has now been incorporated into
WebSphere MQ V7.0.

An important aspect of WebSphere MQ is its ubiquity. It is available on a wide
range of platforms and operating systems. This feature enables any application
with HTTP capability to exchange messages with WebSphere MQ from any
platform or language, without the need for a local WebSphere MQ client
installation or libraries.

36 WebSphere MQ V7.0 Features and Enhancements

3.2.8 z/OS enhancements

The most important enhancement in WebSphere MQ for z/OS is
Publish/Subscribe support, which is totally new on this platform. There are also
other new features, as described in this section.

New Publish/Subscribe for z/OS
Pub/Sub was introduced in WebSphere MQ in V5.3 for distributed platforms.
WebSphere MQ V7.0 provides a fully functioning native Publish/Subscribe
feature for both z/OS and distributed platforms. It was previously only available in
WebSphere Message Broker.

Mixed case profile management
In WebSphere MQ V7.0 there are new RACF® classes to provide support for
mixed case security profiles and topic object security. To enable this feature a
new queue manager parameter called SCYCASE (Security Profile Case) has
been introduced. There are changes to the “REFRESH SECURITY” MQSC
command to allow profiles in the new MQ RACF classes to be refreshed.

Using WebSphere MQ Explorer without Client Attach Facility
MQ Explorer can be used to remotely administer and monitor MQ objects,
including topics and other Pub/Sub facilities, on z/OS queue managers.

WebSphere MQ V7.0 for z/OS introduces a limited capability to allow MQ
Explorer to administer z/OS queue managers at this version without purchasing a
license for the Client Attach Facility (CAF). A license still must be purchased to
allow any other type of WebSphere MQ Client application to connect to the
queue manager.

This makes available the great benefits of using the features and graphical user
interface of MQ Explorer to administer z/OS queue managers that did not
previously have this license.

WebSphere MQ for z/OS listener
MQ Explorer now supports the starting and stopping of the TCP/IP listener in the
channel initiator on WebSphere MQ V7.0 for z/OS. This was not possible in prior
versions of MQ Explorer and WebSphere MQ for z/OS.

 Chapter 3. Introduction to WebSphere MQ 37

CICS OTE
The CICS Open Transaction Environment (OTE) allows transactions to run under
their own TCBs rather than all running on the Quasi-Reentrant (QR) TCB that is
normally used. The benefits are:

� No external change for applications.

� Exits (data conversion, API crossing) must be thread safe. If not declared
thread safe, WebSphere MQ reverts to its previous behavior.

� More efficient use of TCBs, especially when mixing calls to WebSphere MQ
and DB2.

3.3 Positioning in WebSphere product family

The WebSphere MQ family of products delivers the universal messaging
backbone for service-oriented architecture connectivity. WebSphere MQ
provides a flexible and highly scalable transport layer to underpin an Enterprise
Service Bus with guaranteed reliable messaging and a choice of qualities of
service. The SOA messaging backbone can be enhanced with other IBM
products such as WebSphere MQ File Transfer Edition, WebSphere Message
Broker, WebSphere Enterprise Service Bus, and WebSphere DataPower® to
provide managed data transfer, mediation, transformation, and routing services.

WebSphere MQ integrates virtually any IT system with support for more than 80
platform configurations. It uses standardized interfaces in many programming
languages, including support for industry standard JMS, AJAX, Java EE, .NET,
CICS, IMS, DB2, and integration with packaged applications. It provides simple
access from Web 2.0 user applications to core enterprise back-end applications.

WebSphere MQ can help organizations get more from their IT investments by
providing an integration backbone for exchanging messages between
applications and Web services. Platform-specific capabilities are exploited to
improve service and performance. WebSphere MQ can be extended to provide
data protection, enhanced security, and to meet very high volume, low latency
requirements.

3.3.1 Foundation for SOA

In a service-oriented architecture, an integration layer, often referred to as an
Enterprise Service Bus, enables and optimizes information distribution between
an organization’s service components. Underpinning the Enterprise Service Bus
layer is a SOA messaging backbone that provides the transport to move data
around the organization. As a key member of the WebSphere software portfolio,

38 WebSphere MQ V7.0 Features and Enhancements

WebSphere MQ delivers the SOA messaging backbone that can help
organizations take the first step to SOA.

WebSphere MQ enables Simple Object Access Protocol (SOAP) interactions to
flow over the Enterprise Service Bus between Web service requesters and
providers. Legacy and batch applications that are Web services-enabled can
also benefit from using WebSphere MQ in its asynchronous mode, providing a
queuing mechanism to regulate the flow of requests made to these systems. It
makes an ideal transport for adding reliability and traceability to services
connecting to the Enterprise Service Bus in support of SOA.

3.3.2 Enhanced Enterprise Service Bus

An Enterprise Service Bus enables applications running on different platforms,
written in different programming languages, and using different messaging
models to communicate with each other, without requiring expensive,
time-consuming reengineering. WebSphere MQ provides an ideal basis for
implementing an Enterprise Service Bus by delivering a core connectivity layer.

Other members of the WebSphere product family can use a WebSphere
MQ-based backbone as the transport layer for application data and
inter-operability logic. For example, WebSphere Application Server can benefit
from WebSphere MQ capabilities or Enterprise Service Bus implementation.

WebSphere MQ and WebSphere Application Server
Java Enterprise Edition (Java EE) compliant application servers, such as
WebSphere Application Server, provide a framework in which applications can
be developed and hosted.

WebSphere Application Server V6 is supplied with an embedded provider for
JMS functionality called WebSphere Platform Messaging. WebSphere Platform
Messaging is a separate technology from WebSphere MQ and provides
point-to-point and Publish/Subscribe message queuing functionality.

Note: To learn more about how SOA can integrate the diverse components of
complex business environments, refer to the following IBM Web page:

http://www.ibm.com/soa

Note: To learn more about how WebSphere family products can build a solid
Enterprise Service Bus backbone, refer to the following IBM Web page:

http://www.ibm.com/software/integration/esb

 Chapter 3. Introduction to WebSphere MQ 39

http://www.ibm.com/software/integration/esb
http://www.ibm.com/soa

WebSphere MQ can be configured as a JMS provider for WebSphere Application
Server V6. WebSphere Platform Messaging infrastructures can also be
interconnected with WebSphere MQ infrastructures.

WebSphere MQ incorporated in a network with WebSphere Message Broker and
WebSphere Platform Messaging is also called WebSphere Enhanced ESB.

WebSphere MQ File Transfer Edition V7.0
The newest member of the WebSphere MQ family adds file-specific features to
the proven WebSphere MQ transport. WebSphere MQ File Transfer Edition
provides a SOA-ready managed file transfer solution that enables the reliable
movement of files of any size between IT systems, including to and from ESBs,
without requiring any programming. It eliminates the need to depend on File
Transfer Protocol (FTP) to provide cross-platform application integration.

WebSphere MQ File Transfer Edition V7.0 delivers support for transfers to and
from systems running WebSphere MQ V7.0 and V6.0. At least one WebSphere
MQ V7.0 queue manager (supplied with the product) must be deployed within a
WebSphere MQ File Transfer Edition network. This queue manager acts as a
coordination center for logging audit data and uses WebSphere MQ V7.0
Publish/Subscribe capability to broadcast audit and file transfer status
information.

An audit log of file movements enables organizations to demonstrate that
business data in files is transferred with integrity from the source to the target file
system. Graphical configuration tooling, integrated with WebSphere MQ
Explorer, enables quick and easy definition and management of automated and
manuals transfers. Transfers may also be scripted or performed
programmatically. For further information, refer to the following IBM Web site:

http://www.ibm.com/software/integration/wmq/filetransfer

40 WebSphere MQ V7.0 Features and Enhancements

http://www.ibm.com/software/integration/wmq/filetransfer

Part 2 WebSphere MQ V7.0
enhancements and
changes

This part describes the new features, enhancements, and changes in
WebSphere MQ V7.0 and provides information about installation tasks and the
migration path from previous supported versions. The main new features and
enhancements covered are:

� Integrated Publish/Subscribe engine

� WebSphere MQ Client enhancements including read ahead, conversation
sharing, and asynchronous put

� New MQI functions providing Pub/Sub, Callback, Selectors, and message
property capabilities

� Improved JMS MQ integration

� Administration enhancements including new MQSC commands and MQ
Explorer views

Part 2

© Copyright IBM Corp. 2009. All rights reserved. 41

� z/OS enhancements including Publish/Subscribe capability and security

This part consists of:

� Chapter 4, “Publish/Subscribe integration” on page 43

� Chapter 5, “WebSphere MQ Client enhancements” on page 59

� Chapter 6, “Message Queue Interface extensions” on page 85

� Chapter 7, “WebSphere MQ Java Message Service enhancements” on
page 137

� Chapter 8, “Administration enhancements” on page 153

� Chapter 9, “Publish/Subscribe management” on page 197

� Chapter 10, “WebSphere MQ Bridge for HTTP” on page 225

� Chapter 11, “z/OS enhancements” on page 235

� Chapter 12, “Installation and migration” on page 243

42 WebSphere MQ V7.0 Features and Enhancements

Chapter 4. Publish/Subscribe
integration

In WebSphere MQ V7.0, the Publish/Subscribe functionality is integrated into the
queue manager. This chapter starts with a brief introduction to the concepts of
WebSphere MQ Publish/Subscribe and then gives a conceptual overview of the
Publish/Subscribe engine in V7.0.

This chapter contains the following sections:

� 4.1, “Publishing and subscribing in WebSphere MQ” on page 44
� 4.2, “WebSphere MQ Publish Subscribe in V7.0” on page 44
� 4.2.2, “Topic strings and topic objects” on page 45
� 4.2.3, “Topic alias” on page 47
� 4.2.4, “Topic security” on page 49
� 4.3, “Selectors” on page 49
� 4.4, “Distributed Publish/Subscribe” on page 55

4

© Copyright IBM Corp. 2009. All rights reserved. 43

4.1 Publishing and subscribing in WebSphere MQ

Applications that produce information about a particular subject are referred to as
publishers. Applications that consume this information are referred to as
subscribers. The information and subjects are managed by WebSphere MQ
Publish/Subscribe (Pub/Sub). The subject is referred to as a topic. The
information equates to WebSphere MQ messages.

Subscribing applications register their intention to receive information from
particular topics with WebSphere MQ Pub/Sub. Publishing applications then
send information about topics to WebSphere MQ Pub/Sub. The management
and distribution of the information to registered subscribers is the responsibility of
WebSphere MQ Pub/Sub. This decoupling of publisher and subscriber
applications allows for greater scalability and a more dynamic network topology.

4.2 WebSphere MQ Publish Subscribe in V7.0

In WebSphere MQ V6, a broker that was external to the WebSphere MQ queue
manager managed the Publish/Subscribe functionality. One broker would be
created for each queue manager, and it used the same name as the queue
manager. This broker used WebSphere MQ facilities to manage interactions
between publishing and subscribing applications.

WebSphere MQ V7.0 provides a new Publish/Subscribe engine that is integrated
into the queue manager. This is a major enhancement because the queue
manager now internally manages all the Publish/Subscribe functionality. The
queue manager receives messages from publishers and subscription requests
from subscribers for a range of topics, which is responsible for queuing and
routing these messages to the target subscribers. Section 12.4.5,
“Publish/Subscribe engine” on page 250, provides general information about
making the WebSphere MQ V7.0 and V6 Publish/Subscribe engines interoperate
and provides an overview of the migration path to the new native engine.
Upcoming sections of this chapter describe the major Publish/Subscribe
enhancements in WebSphere MQ V7.0 in greater detail.

The fact that Publish/Subscribe functionality is now integrated into the queue
manager simplifies application programming a great deal. In previous versions of
WebSphere MQ, Publish/Subscribe was not a native part of the MQI.
Applications were required to communicate via a queued interface to a broker
process running outside the queue manager. New MQI API calls have been
introduced in WebSphere MQ V7.0 to support the native Publish/Subscribe
feature. Chapter 6, “Message Queue Interface extensions” on page 85, provides

44 WebSphere MQ V7.0 Features and Enhancements

details of these new API calls and further details on the types of publications and
subscriptions available in WebSphere MQ V7.0. The WebSphere MQ V7.0
Information Center provides a new manual, Publish/Subscribe User’s Guide,
which expands on the information in this book. It is available at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

4.2.1 Topics in WebSphere MQ V7.0

A topic refers to the subject on which publishers provide information. Subscribers
interested in information about this topic can either subscribe to a topic object or
a topic string to receive these publications.

4.2.2 Topic strings and topic objects

The topic string is the central concept in WebSphere MQ Publish/Subscribe
because it provides the logical association between publishers and subscribers.
Publishers can publish to a topic string and subscribers can subscribe to the
publications using the topic string. A topic string can be up to 10,240 characters
long and is case sensitive. A new data-type called the variable-length string
(MQCHARV) has been introduced in WebSphere MQ in order to support the long
string requirement.

The structure and semantics of the topic string are controlled by the slash (/). For
example, there can be a high-level topic called deli to represent a delicatessen,
which might be divided into separate sub-topics relating to different categories of
products that the deli sells, and further layers of sub-topics beneath that to
further qualify the product. Example 4-1 shows some typical topic strings.

Example 4-1 Topic string examples

deli/fresh
deli/fresh/fruit
deli/tinned/nuts
deli/tinned/meat

 Chapter 4. Publish/Subscribe integration 45

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Topic strings imply a sense of hierarchy in the topic structure. The hierarchy is
represented as the topic tree, as depicted in Figure 4-1. The topic tree has a root
node that corresponds to the topic object SYSTEM.BASE.TOPIC.

Figure 4-1 Topic tree

Topic strings support wildcard characters. Subscribers can use two wildcards,
hash (#) and plus (+), to subscribe to a range of topics. Both provide methods of
topic-level substitution. The hash can substitute for multiple levels in the topic
hierarchy, whereas the plus can substitute for a single level in the topic hierarchy.
We recommend not using these characters in topic strings when publishing.
Chapter 9, “Publish/Subscribe management” on page 197, provides further
details on how to achieve this.

Topic objects are administrative objects that are defined in WebSphere MQ.
Administrative topic objects allow attributes to be defined for certain portions of
the topic tree. For example, authority checking may be set up on a topic object to
control whether that portion of the tree can be published or subscribed, and by
who. The predefined base topic called SYSTEM.BASE.TOPIC represents the
root of the topic tree. It is not necessary to define any other topic objects if

Note: For compatibility with previous versions, an alternative wildcard scheme
is available. The wildcards question mark (?) and asterisk (*) can be used in
place of hash (#) and plus (+).

Note: A subscription made to the topic string '#' would normally send
publications from all topics in the topic tree to the subscriber. Should the
administrator wish to partition the tree such that a wild card subscription does
not match part of the tree, then he can define the topic object with the attribute
WILDCARD (BLOCK). This prevents a wildcard from processing that part of
the tree.

. . .

. . .

deli

deli/fresh

deli/fresh/fruit

46 WebSphere MQ V7.0 Features and Enhancements

security and topic attributes are the same for the entire topic tree, since these
settings are inherited from the parent topic object that exists higher up the tree.
Thus, it is possible to get a Publish/Subscribe application up and running without
defining any topic objects at all.

Topic strings are used to match information from a publisher to subscribers who
are interested in that information. Topic strings do not have to be predefined.
They come into existence dynamically when subscribing and publishing
applications use them. Consider a publisher application publishing to a topic
string called deli/fresh/fruit and no administrative topic objects have been defined
at this time. The nodes on the corresponding tree, as shown in Figure 4-1 on
page 46, are referred to as non-administrative topics. It is possible to define an
administrative topic object for any node on this sub-tree (for example, /fresh/fruit)
only if there is a need to associate specific attributes’ settings with that particular
node that are not the same settings as inherited from the parent node.

Furthermore, defining an administrative object on /fresh/fruit may not be
necessary if there is an administrative object defined for deli/fresh that already
has these specific non-default attributes defined. In this case, the node
/fresh/fruit inherits these attributes. Also, there is no one-to-one mapping
between the administrative topic objects and the nodes in the topic tree.

Although subscribers can use topic strings to subscribe to topics, they can also
choose to use a topic object name for subscribing to that topic.

WebSphere MQ Publish Subscribe also allows administrators to shield or
demarcate portions of the topic tree by defining an administrative topic at the
highest point in the topic tree up to which an application needs to know, and then
create non-administrative nodes below that point by using topic strings. For
example, if there is an administrative topic object called DELI.FRESH defined for
the topic string deli/fresh, then publishers and subscribers can use this object
name in conjunction with the name of the sub-topic type that they are interested
in as the topic string, for example, fruit. This has the same effect as publishing or
subscribing to deli/fresh/fruit. Chapter 9, “Publish/Subscribe management” on
page 197, provides further details on how to achieve this.

4.2.3 Topic alias

An alias queue is a WebSphere MQ object that provides a level of indirection or
reference to another queue object. The queue object name resulting from the
resolution of an alias can be a local queue, the local definition of a remote queue,
or a shared queue (a type of local queue only available on WebSphere
for z/OS).

 Chapter 4. Publish/Subscribe integration 47

WebSphere MQ V7.0 introduces an extension to the alias queue object that
allows it to be resolved to the new topic object. This is useful for migrating
point-to-point messaging applications to the Publish/Subscribe model. A
traditional point-to-point application that puts messages into WebSphere MQ can
operate as a publisher without any code changes by utilizing an alias queue that
resolves to a topic object. This is implemented administratively by defining a topic
object that maps to an appropriate topic string on which the messages are to be
published. The original local queue is deleted and replaced by an alias queue of
the same name that resolves to the topic object.

Also note that a point-to-point application that gets messages from WebSphere
MQ can operate as a subscriber without any code changes by defining an
administrative subscription to a topic. This procedure is described in 9.2,
“Managing subscriptions” on page 216. Each point-to-point application requires a
local queue to be defined for it to get the published messages. If this local queue
is on the same queue manager as a partner point-to-point application that has
been converted to be a publisher by using a topic alias, the local queue must
have a different name from the alias queue object used by the publisher.

The introduction of the topic alias and administrative subscription allows
point-to-point applications to enjoy the versatility of the Publish/Subscribe
topology. For example, from an administration perspective, consider a queue to
which statistics messages are written. The point-to-point paradigm allows for a
single message producer to put messages to the queue that are then retrieved
by a single message consumer. By using the approach just described, it is
possible for multiple point-to-point applications to generate statistics, and for
multiple point-to-point applications interested in processing the statistics
messages to subscribe to the topic and consume the messages.

Administration of the queue alias object for topics is described in 8.2.2, “Queue
object parameters” on page 180.

48 WebSphere MQ V7.0 Features and Enhancements

4.2.4 Topic security

Nodes in the topic hierarchy that have a topic object associated with them are
known as administration nodes. The delegation model of inheriting attributes
from the nearest administration node in the topic hierarchy, as discussed in
previous sections, holds true for security as well. Nodes that are automatically
generated inherit the properties of the nearest parent administration node in the
topic hierarchy. Once an application is permitted to publish or subscribe at a
parent-level administration node, it cannot be denied publishing or subscribing
authorities on a child-level administration node.

Figure 4-2 Delegation of topic security attributes

For example, if an application wants to subscribe to the topic string
/deli/fresh/fruit, and /deli allows this application to subscribe, access would be
granted to this application to subscribe to /deli/fresh/fruit. Publish/Subscribe
security can be managed in WebSphere MQ V7.0 using MQSC commands as
well as the MQ explorer. Chapter 9, “Publish/Subscribe management” on
page 197, provides further details on how to achieve this.

4.3 Selectors

Message selectors allow an application to specify the messages that it is
interested in by using message properties. Only messages whose properties
match the selector are delivered to the application. Selection may only be
performed on the properties associated with a message, not on the message
payload itself. Even if a message contains no message properties (other than
header properties) it may still be eligible for selection.

. . . /deli

/deli/fresh

/deli/fresh/fruit

. . .

. . .

/ Root
Admin node
Non-admin node

X

 Chapter 4. Publish/Subscribe integration 49

Furthermore, WebSphere MQ V7.0 now provides native support for message
properties and allows applications to set and get properties in a message with
arbitrary names and values, whether using JMS or the MQI. Details on using
message properties in MQ can be found under Message Properties and Handles
in 6.2, “Message properties” on page 89.

The JMS implementation in WebSphere MQ V6 performed message selection on
the client side. Messages were browsed sequentially from a queue until the client
finds one that matches the selection criteria, at which point a destructive get is
performed on that message. The WebSphere MQ V7.0 implementation makes
message selection much more efficient by introducing selection processing on
the queue manager (server side). This means that the queue manager uses a
selector to find messages that match the selection criteria specified by the client.
These messages are then sent to the client. In essence, the selection
functionality is now moved from the client to the server. Message selection is now
also supported for MQ API applications.

Syntax for WebSphere MQ V7.0 selector strings
A MQ message selector is a variable-length string and its syntax is based on a
subset of the SQL92 conditional expression syntax. The order in which a
message selector is evaluated is from left to right within a precedence level.
Parentheses can be used to change this order.

Literals
String literals in a selector string are specified using a single quotation mark, for
example, ‘MQ’ or ‘WebSphere MQ’. Byte literals, which are one or more pairs of
hex characters, must be specified in double quotation marks, for example,
“0XD43A”. Boolean literals can take values TRUE and FALSE. All types of
numeric literals, including decimal, hexadecimal, and octal numbers, do not need
to be specified in quotation marks.

Identifiers
An identifier is a variable-length character sequence that must begin with a valid
identifier start character followed by zero or more valid identifier part characters.
Identifiers are either header field references or property references and are
case-sensitive. For example, in the selector string COLOR IS RED, COLOR is an
identifier and RED is a literal.

50 WebSphere MQ V7.0 Features and Enhancements

Operators
There are three kinds of operators that can be used in a selector string:

� Arithmetic operators
� Logical operators
� Comparison operators

Valid arithmetic operators include:

� + (both unary and binary plus)
� - (both unary and binary plus)
� * (multiplication)
� / (division)

The precedence order followed for these operators is:

1. +
2. -
3. *
4. /

Valid comparison operators include:

� = (equal to)
� > (greater than)
� >= (greater or equal to)
� < (less than)
� <= (less than or equal to)
� <> (not equal)

String and Boolean comparison is restricted to = and <>. Two strings are equal
only if they contain the same sequence of characters. Valid logical operators
include AND, NOT, and OR. The precedence order for logical operators is:

1. NOT
2. AND
3. OR

There are two other operators:

� LIKE, which is used for pattern matching
� BETWEEN, which is used in arithmetic comparisons

Traditional type conversion rules do not hold true for selectors. For example, if a
message had a message property as a string value and a selector is used to
query it as a numeric value, the expression returns FALSE. The only exception to
this rule is that it is valid to compare exact numeric values and approximate
numeric values. In general, if there is an attempt to compare different types, the
selector is always FALSE.

 Chapter 4. Publish/Subscribe integration 51

Managing JMS header references
JMS field and property names that map to property names or MQMD field names
may be used as valid identifiers in a selection string. WebSphere MQ maps the
recognized JMS field and property names to the appropriate message property.
For instance, the selection string "JMSPriority >= 0" selects on the priority
property found in the jms folder of the current message. JMS Message header
field references in selectors are restricted to:

� JMSDeliveryMode
� JMSPriority
� JMSMessageID
� JMSTimestamp
� JMSCorrelationID
� JMSType
� JMSMessageID
� JMSTimestamp
� JMSCorrelationID
� JMSType

Values can be empty, and if so, are treated as a NULLvalue.

Any name beginning with JMSX or JMS_ is a JMS-defined property name and is
mapped to the appropriate MQMD field or property according to the rules used
by the WebSphere MQ JMS implementation. Rules governing this mapping are
discussed in the section “Mapping JMS messages onto WebSphere MQ
messages” of the Using Java manual, which is available in the WebSphere MQ
V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Any name that does not begin with JMS is an application-specific property name.
If there is a reference to a property that does not exist in a message, its value is
NULL. If it does exist, its value is the corresponding property value. Any JMS
property names not matching the recognized set of header fields or JMSX and
JMS_ property names are assumed to be user property names requiring no
mapping. When used in a message selector JMSDeliveryMode is treated as
having the values PERSISTENT and NON_PERSISTENT. This means, for
example, that the selection string JMSDeliveryMode = PERSISTENT is valid,

Note: If an identifier references a message property that does not exist, the
property is assumed to have the value of NULL or Unknown. Such a message
may still satisfy a selection string like COLOR IS NULL, where Color does not
exist as a message property in the message.

52 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

whereas JMSDeliveryMode = 1 is not. Table 4-1 provides examples of the
evaluation of selectors.

Table 4-1 Selector string examples

Type Selector Evaluates to Governing rules

Selectors using
Byte Literals.

Assume myBytes =
0AFC23 is the
message property.

myBytes =
“0x0AFC23”

TRUE � Matching a selector byte string to
a message property of type
MQTYPE_BYTE_STRING is
performed without any special
action taken on leading/trailing
nulls, that is, they are treated as
just another character.

� The byte order is not affected by
a Big Endian or Small Endian
machine architecture.

� The length of both selector and
message property byte strings
should therefore be equal and
the sequence of bytes should be
exactly the same.

myBytes =
“0xAFC23”

MQRC_SELECTO
R_SYNTAX_ERR
OR

Reason: The
numbers of bytes
are not a multiple of
two.

myBytes =
“0x0AFC2300”

FALSE

Reason: The
message property
is of type
MQTYPE_BYTE_
STRING, the
trailing null
character in the
selector is treated
like a normal
character, and thus
matching evaluates
to FALSE.

myBytes =
“0x23FC0A”

FALSE

Reason: Big
Endean or Small
Endean does not
matter.

 Chapter 4. Publish/Subscribe integration 53

Selectors using
Exact and
Approximate
Numeric Literals.

NoItemsInStock >
20

Assume
NoItemsInStock
=22.

TRUE � An exact numeric literal is a
numeric value without a decimal
point, such as 57, -957, +62.
Numbers in the range
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 are
supported and are internally
stored as signed long integers.

� Hex numbers begin with a zero
followed by an upper/lowercase
'x'. The remainder of the literal
should contain n valid hex
characters, where n > 1 (for
example, 0xA, 0xAF, 0x2020,
0XE).

� Octal numbers begin with a
leading zero that is followed by n
digits in the range 0–7, where n
>= 1 (for example, 0177, 0173).
Note that a leading zero that is
followed by one or more digits is
always interpreted as being the
start of an octal number,
meaning that it is not possible to
represent a zero-prefixed
decimal number in this way. For
example, '09' would return a
syntax error because 9 is not a
valid octal digit.

� Exact numeric literals may
contain a trailing
upper/lowercase 'L' character.
This does not affect how the
number is stored or interpreted,
but is accepted, as it is a valid
addition to a numeric literal.

(Temperature >
-10L) AND
(Temperature < 50)

Assume
Temperature =-12.

FALSE

AnOctal +
AnOtherOctal <>
0188

Assume the total
comes to a number
other than 136,
which is the
decimal
representation of
0188.

TRUE

Inches * +2.54e-2 >
1.0+2.54e-2
evaluates to
0.0254.

Assume Inches to
be 1.0.

TRUE

Type Selector Evaluates to Governing rules

54 WebSphere MQ V7.0 Features and Enhancements

4.4 Distributed Publish/Subscribe

Distributed Pub/Sub allows applications connected to separate queue managers
to communicate via publish and subscribe. This can be achieved by two
topologies:

� Clusters
� Hierarchical

Selectors using
logical operators
and pattern
matching.

Country NOT IN
('UK', 'US',
'France').

Is FALSE for 'UK'
and TRUE for
'Peru'.

� Comparison or arithmetic with an
unknown value always yields an
unknown value.

� If the identifier of an IN or NOT IN
operation is NULL, the value of
the operation is unknown.

� The IS NULL and IS NOT NULL
operators convert an unknown
value into the respective TRUE
and FALSE values.

� If the identifier of a LIKE or NOT
LIKE operation is NULL, the
value of the operation is
unknown.

� '_' Stands for any single
character and '%' stands for any
sequence of characters
(including the empty sequence).

JMSType = 'car'
AND color = 'blue'
OR weight > 2500

Demonstrates the
use of a JMS
header reference.

Because AND is
higher in
precedence than
OR, the result of
JMSType='car'
AND color='blue' is
then ORed with the
result of weight >
2500.

PHONE LIKE
'12%3'

TRUE for 123 and
12993 and FALSE
for 1234.

GAMEDECISION
LIKE 'L_SE'

TRUE for LOSE
FALSE and false
for LOOSE.

Type Selector Evaluates to Governing rules

 Chapter 4. Publish/Subscribe integration 55

4.4.1 Pub/Sub Cluster topology

A Pub/Sub Cluster uses MQ Cluster technology that connects queue managers
together via cluster channels. A MQ Cluster becomes a Pub/Sub Cluster by the
definition of at least one clustered topic within the cluster. Although the clustered
topic is created on one queue manager, the definition is pushed out to all queue
managers in the cluster using the same advertising method as ordinary clustered
queues. All publications that are made to the clustered topic are sent to all queue
managers in the cluster that have active subscriber applications connected, as
illustrated in Figure 4-3.

Figure 4-3 Publish/Subscribe clusters

Subscribing to clustered topics
When an application subscribes to a topic that resolves to a clustered topic,
WebSphere MQ creates a proxy subscription and sends it from the application’s
connected queue manager to all other queue managers in the MQ Cluster on
which the clustered topic object is defined. If a queue manager on which the
clustered topic object is defined becomes unavailable, the subscription will
remain in place for up to 30 days, so that normal Pub/Sub activity is restored
when the queue manager becomes available.

Publishing to clustered topics
Publications in a Publish/Subscribe cluster are sent to those queue managers for
which proxy subscriptions have been received.

Pub QM QM

QM

QM

Sub

Sub

Sub

56 WebSphere MQ V7.0 Features and Enhancements

4.4.2 Pub/Sub hierarchical topology

A Pub/Sub hierarchical topology is built on queue managers connected via
standard distributed message channels or cluster channels. A parent and child
relationship is defined to build the hierarchy, as illustrated in Figure 4-4. The
hierarchical topology uses a proxy subscription routing mechanism to deliver
messages to subscribers. It can take some time for subscriptions to propagate
around all queue managers in the network, and thus publications may not all be
received until the proxy subscription has been fully propagated.

Figure 4-4 Hierarchical distributed queue managers

Note: A single queue manager can be a member of more than one Pub/Sub
Cluster. This would be done to create a gateway between two clusters so that
messages originating in one Pub/Sub Cluster can be routed to another
Pub/Sub Cluster. Although a queue manager can be a member of more than
one Pub/Sub Cluster, publications are not passed from one cluster to another
by means of overlapping clusters. The scope of proxy subscriptions is limited
to the single cluster in which the clustered topic is defined. In order to connect
two Pub/Sub Clusters, a hierarchical topology must be used.

Note: If one queue manager is attached by a hierarchical connection or as
part of a Pub/Sub Cluster to more than one queue manager with the same
queue manager name, this can result in publications failing to reach one or all
of the identically named remote queue managers. As with point-to-point
messaging, we strongly recommend that queue managers have unique
names, especially if they are directly or indirectly connected in a WebSphere
MQ network.

Pub SubQM QM QM QM

QM

QM QM

 Chapter 4. Publish/Subscribe integration 57

4.4.3 Loop detection

In a distributed Publish/Subscribe network, it is important that publications and
proxy subscriptions cannot loop, as looping would result in a flooded network
with connected subscribers receiving multiple copies of the same original
publication.

As publications move around a Publish/Subscribe topology each queue manager
adds a unique fingerprint to the message header. Whenever a Publish/Subscribe
queue manager receives a publication from another Publish/Subscribe queue
manager, the fingerprints held in the message header are checked. If the queue
manager's own fingerprint is already present it means that the publication has
completely circulated around a loop, so the queue manager discards the
message and reports it on the error log.

4.4.4 Scope of publications and subscriptions in Distributed Pub/Sub

The scope of a publication or a subscription in a Distributed Pub/Sub
environment is defined as the queue managers in a WebSphere MQ network to
which the publication or subscription is delivered or propagated.

The scope of publications can be controlled administratively using the
PUBSCOPE parameter on a topic object. The parameter can be set to one of the
following values:

� QMGR: The publication is only delivered to local subscribers.

� ALL: The publication is delivered to local subscribers and remote subscribers
via directly connected queue managers.

Similarly, the scope of subscriptions can be controlled administratively using the
SUBSCOPE parameter on a topic object. The parameter can be set to one of the
following values:

� QMGR: The subscription is not propagated to directly connected queue
managers, and only receives publications from local publishers.

� ALL: The subscription is propagated directly to connected queue managers,
and receives publications from local publishers and remote publishers via
directly connected queue managers.

Note: In the case of a Pub/Sub Cluster, on defining the PUBSCOPE or
SUBSCOPE with the QMGR attribute, the scope of publications/subscriptions
based on that topic becomes local. However, the definition of the clustered
topic object is still shared with other queue managers in the cluster.

58 WebSphere MQ V7.0 Features and Enhancements

Chapter 5. WebSphere MQ Client
enhancements

This chapter describes the new features and enhancements in WebSphere MQ
V7.0 that apply to the WebSphere MQ Client. It also covers relevant changes to
other components of MQ that use the client.

MQ Client is a set of libraries or classes that have a light-weight software
footprint yet provide full programmatic access to all the Message Queue Interface
(MQI) calls. It does not require a queue manager to reside on the same system
as the program. By utilizing a communications protocol, such as Transmission
Control Protocol/Internet Protocol (TCP/IP), the client libraries communicate with
a queue manager via a MQI Channel. MQ Client is available for Windows and
UNIX® platforms, and it can connect to any platform that can run a WebSphere
MQ queue manager.

Refer to the manual WebSphere MQ Clients for further details on platform
requirements, installation, configuration, administration, and programming using
the client. This manual is available in the WebSphere MQ V7.0 Information
Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

5

© Copyright IBM Corp. 2009. All rights reserved. 59

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

This chapter contains the following sections:

� 5.1, “Overview of enhancements” on page 61

� 5.2, “Full duplex channels, heartbeat, and quiesce” on page 62

� 5.3, “Conversation sharing” on page 64

� 5.4, “Read ahead” on page 68

� 5.5, “Asynchronous put” on page 71

� 5.6, “Instance limits on SVRCONN channels” on page 76

� 5.7, “Weighted selection on CLNTCONN channels” on page 78

� 5.8, “Reconnecting via a previously used channel” on page 80

� 5.9, “Max message length increased on MQSERVER environment variable”
on page 82

� 5.10, “Security exit details in WebSphere MQ Explorer” on page 82

� 5.11, “Using MQ Explorer without a CAF license on z/OS” on page 83

� 5.12, “Compatibility” on page 83

60 WebSphere MQ V7.0 Features and Enhancements

5.1 Overview of enhancements

Many of the enhancements to WebSphere MQ Client reflect the underlying
behavior of the redesigned JMS WebSphere MQ integration layer. Three primary
changes have been made:

� The protocol that MQ uses over the TCP/IP channel between a client and a
queue manager has been converted from half duplex to full duplex. Network
failures are detected earlier by allowing independent heartbeats to be
performed in each direction on the channel. Channel stop requests from the
queue manager can now be processed immediately.

� Multiple connections established by threads of a client program can share
one instance of a TCP/IP client channel rather than running their own
instances. This effectively reduces the number of running channels on the
queue manager and therefore makes more efficient use of resources.

� The read ahead and asynchronous put features provide an increase in
throughput for getting and putting messages under specific circumstances
where lower quality of service (QoS) can be tolerated on TCP/IP client
channels.

Other new features improve the operational management, programming, and
administration aspects of the client:

� New channel attributes allow limits to be imposed at two levels on the number
of instances of running client channels. This prevents a client program from
running the maximum number of channel instances available on a queue
manager and hence denying other client programs from connecting and all
other types of MQ channels from starting.

� A client program can request connection to a queue manager name that is
prefixed by an asterisk (*). This directs MQ to attempt connection using an
alphabetic list of CLNTCONN type channels defined in a Client Channel
Definition Table (CCDT) file. New parameters have been added to the
CLNTCONN channel definition to allow random selection based on a relative
weighting and availability of queue managers.

� A client program can now obtain the name of the channel that was selected
by a successful call to MQCONNX. The channel name can also be passed to
MQCONNX to override the normal algorithm that is used to select a channel
in a CCDT file. This allows programs to connect to a previously used channel
and queue manager without knowing the exact name.

� On a CLNTCONN channel defined using the MQSERVER environment
variable, the maximum message length has increased from 4 MB to 100 MB.

 Chapter 5. WebSphere MQ Client enhancements 61

There are changes to other components of WebSphere MQ V7.0 related to the
client:

� Security exits can now be directly enabled and configured in MQ Explorer for
Client channel connections to remote queue managers. Previously, this could
only be done using a Client Channel Definition Table file.

� MQ Explorer can now be used to administer z/OS queue managers without
purchasing a license for the Client Attach Facility (CAF).

The client also supports other new features of WebSphere MQ V7.0 that have
been incorporated into the general MQI. They are described in detail in
Chapter 6, “Message Queue Interface extensions” on page 85:

� Publish/Subscribe (The principles are explained in Chapter 4,
“Publish/Subscribe integration” on page 43.)

� Getting and setting message properties using Message Handles=.

� Message selectors.

� Cooperative browsing using Message Tokens.

� Asynchronous Consume and Event notification using Callback.

The following sections contain detailed descriptions of enhancements that are
targeted specifically at WebSphere MQ Client. There is discussion of how they
can best be used to improve your existing environment or design a new
application to use the WebSphere MQ V7.0 client features efficiently. This
includes figures and short programming examples in C where appropriate.

Refer to Chapter 17, “Scenario: News using client” on page 325, for examples of
WebSphere MQ Client programs that make appropriate use of read ahead and
asynchronous put. Other components of the scenario also use the client but do
not necessarily take advantage of the enhancements in WebSphere MQ V7.0.

5.2 Full duplex channels, heartbeat, and quiesce

The communications session between a WebSphere MQ Client program and the
queue manager is defined using a CLNTCONN type channel on the client and a
SVRCONN type channel on the queue manager. They have identical names.

WebSphere MQ V7.0 uses a full duplex protocol when the transport type is
specified on both types of channel as TCP/IP and the conversation sharing
parameter SHARECNV is greater than zero on both channels. Conversation
sharing is a new feature and is described in the next section.

62 WebSphere MQ V7.0 Features and Enhancements

Full duplex means that information can be sent from either end of the session at
any time. Heartbeats are short flows of information that are sent at a regular
interval. Their only purpose is to confirm that the session is still active.
Heartbeats can now be performed from both the client end and the queue
manager end at a negotiated rate that is based on the HBINT parameter of both
channels. This leads to earlier detection of communications network failures and
other channel problems. The client program and the queue manager can now
carry out recovery and reconnecting functions in a more timely manner, resulting
in an overall improvement to the quality of service.

Previous versions of MQ use a half duplex protocol, where a heartbeat could only
be performed from the queue manager end during a MQGET operation with a
WaitInterval specified. This limited its usefulness for detecting problems. Refer to
the description of the HBINT parameters in the manual WebSphere MQ
Intercommunication for further details of this feature. This manual is available in
the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Figure 5-1 and Figure 5-2 on page 64 show the difference between half duplex
and full duplex operation of a WebSphere MQ Client channel.

Figure 5-1 Half duplex client channel operation in WebSphere MQ

MQI Client
Message
Channel
Agent

Queue Manager
Message
Channel
Agent

TCP/IP
Network

1

2

3

4

5

6

Strictly coordinated
sequence of flows

over timeProgram
Thread

MQI
Calls

 Chapter 5. WebSphere MQ Client enhancements 63

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Figure 5-2 Full duplex client channel operation in WebSphere MQ V7.0

The full duplex protocol also enables the issuing of a STOP
CHANNEL(ChannelName) MODE(QUIESCE) command to be immediately
communicated to the client. This results in the program being returned the
appropriate Reason Code on its current or next MQI call, and the communication
session on the channel shuts down cleanly in a more timely manner.

5.3 Conversation sharing

WebSphere MQ V7.0 introduces the ability for many threads in one client
program to connect to the same queue manager and share a running instance of
a client channel. The client protocol conversations for the MQI calls made by
each thread are transparently multiplexed over a single TCP/IP socket session.
There is also only one pair of heartbeat flows and one flow to stop the socket.

Multi-threaded client programs running on previous versions of WebSphere MQ
client or server use a separate channel instance for each thread. For a
WebSphere MQ V7.0 client connected to a WebSphere MQ V7.0 queue
manager, the conversation sharing feature reduces the number of running
TCP/IP sockets on the queue manager, resulting in more efficient use of
resources.

TCP/IP
Network

Free flow
of information

at any time
Program
Thread

MQI
Calls

MQI Client
Message
Channel

Agent

Queue Manager
Message
Channel
Agent

64 WebSphere MQ V7.0 Features and Enhancements

Figures 5-3 depicts many threads within a client program that share a single
channel instance to communicate with the queue manager. The JMS MQ
provider uses the same methodology.

Figure 5-3 Multi-thread conversation sharing in WebSphere MQ V7.0

As all threads are sharing the same communications, link there is contention for
its use. For example, an MQOPEN call in one thread may take longer than
expected to execute because many other threads are calling MQPUT and
MQGET to process messages.

5.3.1 SHARECNV parameter and management of channel definitions

Conversation sharing is controlled by value of the SHARECNV parameter on
both SVRCONN-type channels and CLNTCONN-type channels. If it is set to 0 in
the channel definition on either end of a running pair of channels the client
reverts to the behavior of previous versions of WebSphere MQ, where
conversation sharing is not available and every thread of the client program that
is connected to MQ has its own running instance of a client channel.

A value of SHARECNV in the range 1 to 999999999 specifies a limit on the
maximum number of connected threads in a single client program that can share
a single running channel instance. A program can have more threads than the

MQI Client
Message
Channel
Agent

Queue Manager
Message
Channel
Agent

TCP/IP
Network

Full duplex
Information flow
over 1 channel

session
Program
Thread

Program
Thread

Program
Thread

Program
Thread

MQI
Calls

 Chapter 5. WebSphere MQ Client enhancements 65

limit connected to MQ. This results in additional channel instances being started
and each runs up to the limit. If there are multiple programs using the same
channel name they each have their own limit on the number of connected
threads that can share a single instance.

If the SHARECNV parameter is not set to the same value on either end it uses
the lower value.

When a queue manager is migrated to WebSphere MQ V7.0, it automatically
updates all SVRCONN-type channel definitions to define all the new parameters.
SHARECNV is set to the default value of 10. This default is also used for new
channels, but it may have changed if the SHARECNV parameter on the
SYSTEM.DEF.SVRCONN channel has been altered since the queue manager
was migrated or created.

CLNTCONN-type channels can be defined using a Client Channel Definition
Table (CCDT) file, the MQSERVER environment variable, the MQCONNX API
call, and the Java/JMS classes. When a CLNTCONN channel is used with
WebSphere MQ V7.0 client libraries the SHARECNV parameter takes the default
value of 10.

On the MQCONNX call, the default can be changed by setting the
SharingConversations field of the MQCD data type. In Java, the default can be
changed by setting the sharingConversations field of the MQEnvironment and
MQChannelDefinition classes.

To change the default on a Client Channel Definition Table file that was created
prior to WebSphere MQ V7.0, the CLNTCONN channels defined in the file need
to be manually altered using a WebSphere MQ V7.0 queue manager to set the
SHARECNV parameter. Refer to the sections on environment variable
MQCHLTAB and the Client Channel Definition Table in the manual WebSphere
MQ Clients for further details. This manual is available in the WebSphere MQ
V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

5.3.2 MQCONNX options for conversation sharing

The MQCONNX API call can be used by a client program to connect to a queue
manager. Its function is similar to the MQCONN API call but it contains an
additional argument to specify options for the client channel, SSL, and security.

66 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

In WebSphere MQ V7.0 there are two new options related to conversation
sharing:

� MQCNO_ALL_CONVS_SHARE is the default. It specifies that the client
channel is to use the normal processing for sharing conversations within the
client program.

� MQCNO_NO_CONV_SHARING specifies that this thread is to have its own
instance of the client channel and that there is no conversation sharing with
any other thread of the client program.

Example 5-1 contains code in the C language that sets a conversation sharing
option on a call to MQCONNX.

Example 5-1 C code to set a conversation sharing option for MQCONNX

#include <cmqc.h>
#include <cmqxc.h> /* For MQCD structure */
...
MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQCNO ConnOpts = MQCNO_DEFAULT;
MQLONG CompCode, ReasCode;
...

ConnOpts.Options = MQCNO_NO_CONV_SHARING; /* Disable sharing */
MQCONNX(“MYQMGR”, ConnOpts, &hConn, &CompCode, &ReasCode);
if(CompCode == MQCC_OK)

...

5.3.3 Displaying channel status

The MQ Explorer and MQSC commands have been enhanced to display channel
status information related to conversation sharing for active instances of
SVRCONN type channels. The relevant status values are:

� CURSHCNV is a new field that reports the number of conversations that are
currently connected to the queue manager on the channel instance.

� MAXSHCNV is a new field that reports the maximum number of
conversations that can be shared on the channel instance. This is the lowest
value of the SHARECNV parameter on the associated CLNTCONN and
SVRCONN channels.

� A value of 0 for CURSHCNV and MAXSHCNV indicates that the channel is
running in the mode of operation that was used prior to WebSphere MQ V7.0,
where conversation sharing is not supported.

� MCAUSER is the effective userID of the channel instance, as normally
negotiated by MQ for a client program. If there are multiple program threads

 Chapter 5. WebSphere MQ Client enhancements 67

sharing the channel instance and they all have the same userID, it is reported.
If any threads have a different userID, the MCAUSER is reported as an
asterisk (*).

� MSGS represents the total number of MQI calls made by all client program
threads that are sharing the channel instance.

� LSTMSGDA and LSTMSGTI represent the date and time of the most recent
MQI call made by any thread that is sharing the channel instance.

Refer to Chapter 8, “Administration enhancements” on page 153, for an example
of MQ Explorer being used to display channel status.

5.3.4 Channel exits

There are additional considerations when using channel exits on client channels
that have conversation sharing enabled. An exit sees the information flows for
many independent client threads and may need to serialize access to the MQCD
data type. Existing exits on CLNTCONN and SVRCONN type channels should
be reviewed for possible impact to their correct operation. The issues are
discussed in the section “Implications of sharing conversations” in the manual
WebSphere MQ Intercommunication. This manual is available in the WebSphere
MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

5.4 Read ahead

A new feature of the WebSphere MQ V7.0 client can provide an increase in
throughput for client programs that get a sequence of non-persistent messages.
A good example is an enquiry business function that results in a back-end
application generating a number of reply messages on a queue that must then be
retrieved by the client program.

While the client program is requesting the messages by making repeated calls to
MQGET, the MQ client libraries read ahead on the queue and store additional
non-persistent messages in memory on the client system. If the requested
message is in memory, it is immediately returned to the MQGET.

Read ahead reduces the overall number of interactions on the client channel and
the latency for each MQGET call to communicate with the queue manager and
wait for the response to come back.

The messages that are streamed into memory on the client system have been
destructively removed from the queue manager. They are then lost if the client

68 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

program terminates or the client system fails before the program gets all the
messages. Therefore the read ahead feature is a compromise between
increased throughput and a lower quality of service (QoS), where assured
delivery is not provided. This is quite acceptable in many circumstances.

If the read ahead function encounters a persistent message it stops reading
messages into the client memory until the persistent message has been received
by the client program. The amount of memory allocated by read ahead and how it
is utilized for storing messages is managed intelligently by MQ Client.

Read ahead is enabled by specifying an option when a queue is opened or by a
default parameter on the queue definition. There are some considerations for
getting messages and closing queues. These are discussed in the following
sections.

Read ahead is also supported by the new MQI verbs MQCB and MQCTL, which
provide an asynchronous consumption feature using Callback. Refer to
Chapter 6, “Message Queue Interface extensions” on page 85, for details. The
JMS MQ client and the new Subscribe feature also support read ahead.

5.4.1 MQOPEN options to specify read ahead

There are three new options on the MQOPEN verb that control the read ahead
feature:

� MQOO_READ_AHEAD_AS_Q_DEF specifies that read ahead is determined
by the setting of the new parameter DEFREADA on the local queue, model
queue, or alias queue that is being opened. This is the default if none of the
options is specified.

The DEFREADA parameter may have the following values:

– NO indicates that read ahead is not to be enabled. This is equivalent to the
behavior in versions prior to WebSphere MQ V7.0 where messages are
transported from the queue manager at the time that they are requested.

– YES indicates that read ahead is enabled.

– DISABLED indicates that read ahead is not to be enabled, even if the
MQOO_READ_AHEAD option is specified by a program that opens
the queue.

� MQOO_NO_READ_AHEAD specifies that read ahead is not to be enabled.
This is equivalent to the behavior in versions prior to WebSphere MQ V7.0.

� MQOO_READ_AHEAD specifies that read ahead is to be enabled, unless
overridden by the DEFREADA parameter of the queue being set to
DISABLED.

 Chapter 5. WebSphere MQ Client enhancements 69

Only one of these three parameters can be specified as an option on an
MQOPEN. The same options are available on the new MQSUB verb, but they
have a prefix of “MQSO_”. Refer to Chapter 6, “Message Queue Interface
extensions” on page 85, for details.

5.4.2 MQGET considerations

Messages can be requested by the client program with matching Message Id or
Correlation Id, but this may result in inefficient use of read ahead. The client
streams the messages into memory on the client system but they may not be
messages that are requested by the program.

The first request to get a message from a queue determines whether messages
are being browsed or got destructively from the queue manager by the read
ahead feature. It cannot be changed after that without reopening the queue.

Many of the options for getting messages result in read ahead being disabled on
the queue:

� MQGMO_SET_SIGNAL
� MQGMO_SYNCPOINT
� MQGMO_MARK_SKIP_BACKOUT
� MQGMO_MSG_UNDER_CURSOR
� MQGMO_LOCK
� MQGMO_UNLOCK
� MQGMO_LOGICAL_ORDER
� MQGMO_COMPLETE_MSG
� MQGMO_ALL_MSGS_AVAILABLE
� MQGMO_ALL_SEGMENTS_AVAILABLE

5.4.3 MQCLOSE options to process unread messages

At the time a program requests closure of a queue that has read ahead enabled
there may be non-persistent messages that have been destructively removed
from the queue manager but are still held in memory on the client system.

Two new options on the MQCLOSE verb allow the program to determine what is
done with these messages:

� MQCO_IMMEDIATE specifies that the messages are to be discarded. This is
the default behavior if no options are specified.

� MQCO_QUIESCE specifies that if there are any messages in memory the
MQCLOSE returns a Completion Code of MQCC_WARNING and a Reason
Code of MQRC_READ_AHEAD_MSGS. The program can test for these and
issue calls to get the messages until there are none left in memory. MQ does

70 WebSphere MQ V7.0 Features and Enhancements

not attempt to read ahead any more messages from the queue manager. The
object handle to the open queue remains valid until MQCLOSE has been
called again to close the queue.

5.4.4 Displaying connection status of read ahead

The MQ Explorer and MQSC command DISPLAY CONN TYPE(HANDLE) have
been enhanced to show the status of read ahead on connected programs.

The READA field may display the following values:

� YES indicates that read ahead is enabled on a open queue and is being used
efficiently.

� NO indicates that read ahead is not enabled on any open queues.

� INHIBITED indicates that read ahead was requested by the program but has
been inhibited because of incompatible options specified on the first call to
MQGET.

� BACKLOG indicates that read ahead is enabled but is not being used
efficiently. Non-persistent messages have been streamed into memory on the
client system but the client program is not requesting them. For example, the
program may have started using MQGET for specific Correlation Ids.

Refer to Chapter 8, “Administration enhancements” on page 153, for an example
of MQ Explorer being used to display connection status.

5.5 Asynchronous put

This new feature of WebSphere MQ V7.0 is available in all programming
environments, but it is of most benefit to MQ Client and Java/JMS programs that
require interaction with the queue manager over a communications link. It allows
messages to be put to a queue without waiting for a status response from the
queue manager containing the Completion Code and Reason Code. The status
response can be obtained after the messages have all been put.

When sync pointing is not being used this provides a lower quality of service
(QoS) because the program cannot be sure that all messages were put
successfully if the connection fails before the status response has been checked.
If the connection fails during a sync point unit of work (UOW) the messages are
backed out and nothing is put to the queue.

Non-persistent and persistent messages are supported. Persistent messages
must be put with sync point to take advantage of asynchronous put, as persistent

 Chapter 5. WebSphere MQ Client enhancements 71

messages that are put without sync point require a confirmation response from
the queue manager before the program can continue.

This elimination of the synchronous interaction between client and queue
manager for each message provides a significant improvement in throughput in
the correct circumstances. Figures 5-4 and 5-5 show the interactions required
without asynchronous put and then with it.

Figure 5-4 Client putting messages without asynchronous put

An example of using this feature is a client program that needs to load a large
number of transaction messages on to a queue and then display a confirmation
to the program user as quickly as possible.

The program issues a sequence of calls to MQPUT or MQPUT1. After it has put
the messages, it issues a call to MQSTAT to obtain the status information.

If a unit of work was in progress and persistent messages were put with sync
point, a call to MQCMIT that is made prior to MQSTAT succeeds if all of the
asynchronous put operations succeeded.

After a message has been put asynchronously some of the output fields in the
MQ Message Descriptor (MQMD) and output fields in the put options are not
updated in the client program memory. This is because they are part of the
response from the queue manager, which has not yet been received. The

TCP/IP
Network

Program

MQI
Calls

MQI Client
Message
Channel
Agent

Queue Manager
Message
Channel
Agent

MQPUT

MQPUT

MQPUT

MQPUT

72 WebSphere MQ V7.0 Features and Enhancements

MessageId field is updated in the MQMD because the unique value is assigned
by the client.

Figure 5-5 Client putting messages with asynchronous put

Asychronous put does not affect the relationship or sequencing between putting
and getting messages when compared with previous versions of WebSphere
MQ. For example, a call to get a message with a specific Correlation ID does not
return to the program until all prior asynchronous puts on that queue have been
fully actioned by the queue manager.

5.5.1 MQPUT and MQPUT1 options for asynchronous put

There are four options on the MQPUT and MQPUT1 verbs that control the
asynchronous put feature on normal queue objects:

� MQPMO_RESPONSE_AS_QDEF is the default if none of the options are
specified.

On the MQPUT verb MQPMO_RESPONSE_AS_QDEF specifies that the
behavior for putting the message is determined by the setting of the new
parameter DEFPRESP on the queue at the time it was opened.

TCP/IP
Network

Program

MQI
Calls

MQI Client
Message
Channel

Agent

Queue Manager
Message
Channel
Agent

MQPUT

MQPUT

MQPUT

MQPUT

MQSTAT

 Chapter 5. WebSphere MQ Client enhancements 73

The DEFPRESP parameter may have the following values:

– SYNC indicates that the message is to be put synchronously. See the
description of MQPMO_SYNC_RESPONSE below for details.

– ASYNC indicates that the message is to be put asynchronously. See the
description of MQPMO_ASYNC_RESPONSE below for details.

On the MQPUT1 verb the sync point options select whether asynchronous
put or synchronous put is used. MQPMO_SYNCPOINT implies
MQPMO_ASYNC_RESPONSE and MQPMO_NO_SYNCPOINT implies
MQPMO_SYNC_RESPONSE.

� MQPMO_SYNC_RESPONSE specifies that the message is to be put
synchronously. The call returns the correct Completion Code and Reason
Code response. This is equivalent to the behavior in versions prior to
WebSphere MQ V7.0.

� MQPMO_ASYNC_RESPONSE specifies that message is to be put
asynchronously. The call returns a successful Completion Code and Reason
Code response, unless there is an error that is detected prior to passing the
message to the queue manager. The program may later call MQSTAT to
obtain the actual status response. If a persistent message was put in sync
point, the status response from a later call to MQCMIT is sufficient to indicate
whether all the messages in the unit of work were successfully put.

� There is a fourth option that only applies to a topic object that has been
opened to put published messages. MQPMO_RESPONSE_AS_TOPIC_DEF
is equivalent to MQPMO_RESPONSE_AS_Q_DEF.

Only one of these parameters can be specified as an option to MQPUT or
MQPUT1.

If the client program is connected to a queue manager that is prior to Version 7.0,
the message is always put synchronously, regardless of the option settings.

5.5.2 MQSTAT to obtain status of asynchronous puts

The new MQSTAT verb returns information about the status of all asynchronous
puts that have been made since the connection was established or the most
recent call to MQSTAT. The format of the call and details of the new MQSTS data
type are fully described in Chapter 6, “Message Queue Interface extensions” on
page 85.

74 WebSphere MQ V7.0 Features and Enhancements

Example 5-2 contains code in the C language that puts some messages
asynchronously and then uses MQSTAT to retrieve the status information.

Example 5-2 C code: Retrieve status information using MQSTAT after calls to MQPUT

int MsgIdx, NumMsgs;
MQBYTE *MyMsgDataPtr[MYMAXMSGS];
MQLONG MyMsgDataLen[MYMAXMSGS];
HCONN hConn;
HOBJ hObj;
MQMD MsgDesc;
MQLONG PutMsgOpts;
MQLONG CompCode, ReasCode, StatType = MQSTAT_TYPE_ASYNC_ERROR;
MQSTS StatInfo = {MQSTS_DEFAULT};
...

printf(“Putting %d messages.\n”, NumMsgs);
for(MsgIdx = 0 ; MsgIdx < NumMsgs ; MsgIdx++)
{

MQPUT(hConn, hObj, &MsgDesc, &PutMsgOpts, MyMsgDataLen[MsgIdx],
MyMsgDataPtr[MsgIdx], &CompCode, &ReasCode);

if(CompCode != MQCC_OK)
{
printf(“Failed to put message %d, Completion Code %d, ”

“Reason Code %d.\n”, CompCode, ReasCode);
... (take appropriate action)
}

}

MQSTAT(hConn, StatType, &StatInfo, &CompCode, &ReasCode);
if(CompCode != MQCC_OK)

{
printf(“Failed to obtain status, Completion Code %d, ”

“Reason Code %d.\n”, CompCode, ReasCode);
... (take appropriate action)
}

else
{
printf(“%d puts succeeded, %d had warnings, %d failed.\n”,

StatInfo.PutSuccessCount, StatInfo.PutWarningCount,
StatInfo.PutFailureCount);

if(StatInfo.CompCode != MQCC_OK)
{
printf(“The first error was Completion Code %d, ”

“Reason Code %d.\n”, StatInfo.CompCode, StatInfo.Reason);
... (take appropriate action)

 Chapter 5. WebSphere MQ Client enhancements 75

}
else

printf(“No errors.\n”);
}

...

5.6 Instance limits on SVRCONN channels

The SVRCONN type channel has been enhanced in WebSphere MQ V7.0 to add
two new parameters that limit the number of concurrently running instances of
each channel.

The main reason for providing this limit is to prevent client programs from running
the maximum number of channel instances available on a queue manager or to
prevent programs from using more running channel instances that would
reasonably be expected in normal operation. An excessive number of running
channels is usually due to a design flaw, a programming bug, or a deliberate
attempt to deny service on the queue manager.

Each queue manager has a parameter that set the maximum number of running
instances across all types of channels. During the period that this maximum
number of channels is running on the queue manager it is not possible to start
new instances of any type of channel. This could have a severe impact on
business functions that use the queue manager. Therefore it is very useful to be
able to limit the distribution of maximum running channels on individual
SVRCONN channels, leaving capacity for other types of channels to start when
they need to.

Refer to the manual WebSphere MQ System Administration for further details on
the MaxChannels, MaxActiveChannels, MAXCHL, and MAXTCP parameters that
set the absolute maximums for the queue manager. This manual is available in
the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

If the maximum was not specified when the queue manager was created, or if it
was changed afterwards, it defaults to 100 on distributed platforms and 200 on
the z/OS platform. This maximum needs to be increased if there are a larger total
number of client channels and other types of channel that must run
simultaneously.

The two new parameters on the SVRCONN type channel are described in the
following sections.

76 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

5.6.1 MAXINST

The value of this parameter is the maximum number of instances that can be run
by all client programs connecting to the queue manager via the channel. A client
program that uses multiple threads with the new conversation sharing feature
does not increase the number of running channels, as its threads all share a
single running channel instance.

A value of 0 indicates that none can run.

A value of 99999999 indicates that an unlimited number can run. This is the
default for new channels or channels that have been migrated from a previous
version to WebSphere MQ V7.0. The default for new channels may have
changed if the MAXINST parameter on the SYSTEM.DEF.SVRCONN channel
has been altered since the queue manager was created.

Careful consideration should be made before setting this parameter to an
intermediate value. The normal number of running channel instances should be
observed during peak periods and a future projection made using capacity
planning information. A first approximation is to double the number of running
instances observed in peak periods. This should be observed on a regular basis
so that growth is foreseen and the parameter value adjusted before it is reached
unintentionally during normal operations.

5.6.2 MAXINSTC

The value of this parameter is the maximum number of instances that can be run
by all client programs connecting to the queue manager via the channel from a
unique network address. A client program that uses multiple threads with the new
conversation sharing feature does not increase the number of running channels,
as its threads all share a single running channel instance.

A value of 0 indicates that none can run.

A value of 99999999 indicates that an unlimited number can run from a unique
network address. This is the default for new channels or channels that have been
migrated from a previous version to WebSphere MQ V7.0. The default for new
channels may have changed if the MAXINSTC parameter on the
SYSTEM.DEF.SVRCONN channel has been altered since the queue manager
was created.

The same planning considerations should be made as per the MAXINST
parameter before setting the MAXINSTC parameter to an intermediate value. It
should be set above the peak number of connections made by a unique client
system, which could be quite a low value.

 Chapter 5. WebSphere MQ Client enhancements 77

5.6.3 Dynamic changes

If a channel is altered to reduce the value of the MAXINST or MAXINSTC
parameters to less than the current number of running instances of the channel,
it does not affect the client programs that are currently connected. However, new
instances are not able to run until the total number of running instances has
reduced below the new values.

5.6.4 Examples of setting the new parameters

The following MQSC command would be used to set the instance limits on the
APP1.CLIENT channel, where there are known to be five systems on which
client programs run and use this channel, and up to 20 instances of the program
would normally run on each system:

ALTER CHANNEL(APP1.CLIENT) CHLTYPE(SVRCONN) MAXINST(100) MAXINSTC(20)

The following MQSC command would be used to set the instance limits on the
APP2.CLIENT channel, where there are known to be 2,000 systems on which a
client program can run and use this channel, and only one instance of the
program is allowed to run on each system:

ALTER CHANNEL(APP2.CLIENT) CHLTYPE(SVRCONN) MAXINST(2000) MAXINSTC(1)

Refer to Chapter 8, “Administration enhancements” on page 153, for an example
of MQ Explorer being used to set these parameters on a SVRCONN channel.

5.7 Weighted selection on CLNTCONN channels

In recent versions of WebSphere MQ a client program can request connection to
a queue manager name that is prefixed by an asterisk (*):

MQCONN(“*SALES”, &hConn, &CompCode, &ReasCode);

This feature is demonstrated in the section “Examples of using MQCONN calls”
of the manual WebSphere MQ Clients, which is available in the WebSphere MQ
V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The asterisk instructs MQ to attempt connection using a set of channel names
that are defined in a Client Channel Definition Table. The algorithm builds an
alphabetic list of channel names that match the queue manager name. It then
attempts to connect using the first channel in the list. If this does not succeed it
tries the next one, and so on.

78 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The typical application of this simple algorithm is to provide a secondary backup
queue manager that is used when the primary queue manager is not available.

New parameters have been added to the CLNTCONN-type channel in
WebSphere MQ V7.0 to allow more intelligent selection based on a relative
weighting and availability of queue managers. Simple selection by alphabetic
precedence and random selection based on a numeric weighting factor are both
provided. This extends the algorithm to cater for workload balancing across
multiple queue managers.

5.7.1 CLNTWGHT parameter

The first new parameter on the CLNTCONN-type channel is CLNTWGHT (Client
Weight). A value of 0 indicates that the channel has no weighting. A value in the
range 1 to 99 indicates a weighting that is relative to other channels that have a
non-zero weighting and also match the queue manager name.

The new algorithm first considers the matching channels that have no weighting.
Using the same logic as the old algorithm, MQ attempts connection via the
channels in alphabetic order. It then considers the other matching channels that
have a non-zero weighting. MQ initially populates a list by randomly selecting all
of these channels. The probability of selecting a channel is its CLNTWGHT value
divided by the sum of this value across all matching channels.

If a connection attempt fails via the first channel in the list, it is moved to the end
of the list, and the next one in the list is tried, and so on.

The following example contains MQSC commands to define three client
channels. It demonstrates an equal probability of connection among three queue
managers if the queue manager name is specified as “*SALES” in the connection
request:

DEFINE CHANNEL(QMA.CLIENT) CHLTYPE(CLNTCONN) TRPTYPE(TCP)
CONNAME(‘sysa.rb.com’) QMNAME(SALES) CLNTWGHT(50)

DEFINE CHANNEL(QMB.CLIENT) CHLTYPE(CLNTCONN) TRPTYPE(TCP)
CONNAME(‘sysb.rb.com’) QMNAME(SALES) CLNTWGHT(50)

DEFINE CHANNEL(QMC.CLIENT) CHLTYPE(CLNTCONN) TRPTYPE(TCP)
CONNAME(‘sysc.rb.com’) QMNAME(SALES) CLNTWGHT(50)

The real names of the queue managers on these systems do not need to be
“SALES”. That is merely used to identify a set of queue managers in a CCDT.
The name is not checked against the actual queue manager when the
connection is being established.

 Chapter 5. WebSphere MQ Client enhancements 79

5.7.2 AFFINITY

The second new parameter on the CLNTCONN channel is AFFINITY and its
value may be PREFERRED or NONE. This parameter determines the channel
selection criteria that is used for multiple connection requests made by a single
process. The default value is PREFERRED, although this may be changed by
altering the SYSTEM.DEF.CLNTCONN channel after MQ has been installed.

PREFERRED uses the new algorithm for the first connection request, as
explained above. Subsequent connection requests by the process reuse the list
of channels generated by the first request. This means that the same preferred
channel and queue manager are used, provided that the connection can be
successfully made. If a connection attempt fails the list is re-ordered as per the
algorithm and the updated list is reused by subsequent connection requests.

NONE uses the new algorithm and regenerates the list of channels for each
connection request. This means that weighted channels are selected randomly
each time and are not related to the channels that are used by other active
connections in the process.

5.8 Reconnecting via a previously used channel

A client program can make a connection request to a queue manager name that
is blank, prefixed by an asterisk (*). MQ may then establish the connection by
one of several possible channels in the Client Channel Definition Table. The
actual channel name and connected queue manager name are not under direct
control of the client program.

In a particular application design, it may be necessary for a client program to
reconnect to the same queue manager via the same channel that was used
previously.

A new feature in WebSphere MQ V7.0 allows a successful call to MQCONNX to
return the channel name in a channel definition data type.

The channel name can then be saved and later set in a channel definition data
type and passed to a subsequent call to MQCONNX. This enforces a connection
via a specific channel and hence to a specific queue manager. It bypasses the
normal selection algorithm that is used to process CCDT files.

In WebSphere MQ V7.0 there are two new options related to reconnection:

� MQCNO_CD_FOR_OUTPUT_ONLY
� MQCNO_USE_CD_SELECTION

80 WebSphere MQ V7.0 Features and Enhancements

Example 5-3 contains code in the C language that saves the channel name from
the channel definition after a successful call to MQCONNX.

Example 5-3 C code to save the channel name after successful MQCONNX

#include <cmqc.h>
#include <cmqxc.h> /* For MQCD structure */
...
MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQCNO ConnOpts = MQCNO_DEFAULT;
MQLONG CompCode, ReasCode;
MQCD ChlDef = {MQCD_DEFAULT};
MQCHAR MyChlName[MQ_CHANNEL_NAME_LENGTH];
...

ConnOpts.Version = MQCNO_VERSION_2; /* The default version 1 does
 not support ClientConnOffset and ClientConnPtr fields */
ConnOpts.Options = MQCNO_CD_FOR_OUTPUT_ONLY;
ConnOpts.ClientConnOffset = 0;
ConnOpts.ClientConnPtr = &ChlDef;
MQCONNX(“*SALES”, ConnOpts, &hConn, &CompCode, &ReasCode);
if(CompCode == MQCC_OK)
 { /* ChlDef contains a valid ChannelName, save it */

memcpy(MyChlName, ChlDef.ChannelName, MQ_CHANNEL_NAME_LENGTH);
...

A program can set the channel name and use it to establish a connection to a
predictable queue manager. The code given in Example 5-4 demonstrates this
as a continuation of the code in Example 5-2 on page 75.

Example 5-4 C code to use a specific channel name for MQCONNX

...
ConnOpts.Version = MQCNO_VERSION_2; /* The default version 1 does
 not support ClientConnOffset and ClientConnPtr fields */
ConnOpts.Options = MQCNO_USE_CD_SELECTION;
ConnOpts.ClientConnOffset = 0;
ConnOpts.ClientConnPtr = &ChlDef;
memcpy(ChlDef.ChannelName, MyChlName, MQ_CHANNEL_NAME_LENGTH);
MQCONNX(“*SALES”, ConnOpts, &hConn, &CompCode, &ReasCode);
if(CompCode == MQCC_OK)

...

If the MQSERVER environment variable has been set and it matches the channel
name, the channel configuration details from the value of this variable are used

 Chapter 5. WebSphere MQ Client enhancements 81

(transport type, host name, port number). Otherwise, the configuration details
from the CCDT are used.

5.9 Max message length increased on MQSERVER
environment variable

The MQSERVER environment variable can be used to define a minimal
CLNTCONN type channel to allow a MQ Client program to connect to a queue
manager. This is an alternative to using a Client Channel Definition Table or a
programmatic method such as MQCONNX in the MQI to define the channel.

Only the channel name, transport protocol, and connection name (host name
and port number) can be specified in the value of this variable, so the
configuration parameters are very limited.

In WebSphere MQ V7.0 a channel defined using MQSERVER has a maximum
message length (MAXMSGL) of 100 MB (104,857,600 bytes). This has been
increased from the 4 MB (4,194,304 bytes) maximum message length in
previous versions of MQ.

To take advantage of the increased maximum length the identically named
SVRCONN type channel must also have its MAXMSGL altered to an appropriate
value on the queue manager. The default value taken for MAXMSGL when a
SVRCONN channel is defined is 4 MB, although this may have changed on the
SYSTEM.DEF.SVRCONN channel object after MQ was installed.

5.10 Security exit details in WebSphere MQ Explorer

Security exits can now be directly enabled and configured in MQ Explorer for
each of the client channel connections to remote queue managers.

The exit code must be in a Dynamic Link Library (DLL) and written in C, or in a
Java Archive (JAR) file and written in Java. Data for the security exit can also
be configured.

Previously in WebSphere MQ V6.0 a security exit and its data could only be
specified for use with MQ Explorer by defining the CLNTCONN channel in a
Client Channel Definition Table file. This method continues to be supported
in V7.0.

82 WebSphere MQ V7.0 Features and Enhancements

The procedure for configuring security exits and other security-related features is
described in Chapter 8, “Administration enhancements” on page 153.

5.11 Using MQ Explorer without a CAF license on z/OS

A limited capacity is provided for MQ Explorer and other MQ administration
programs to administer z/OS queue managers without the need to purchase a
Client Attach Facility (CAF) license for WebSphere MQ V7.0 on z/OS. Up to five
instances of these programs can connect to each z/OS queue manager at
Version 7.0 via the client channel “SYSTEM.ADMIN.SVRCONN” without this
license.

Refer to Chapter 9, “Publish/Subscribe management” on page 197, for further
details on enabling this capability.

5.12 Compatibility

Version 6.0 and 7.0 WebSphere MQ Clients can connect to Versions 6.0 and 7.0
WebSphere MQ queue managers. The base features of WebSphere MQ Client
Version 6.0 are available in all four combinations, but most of the new features of
Version 7.0 are only available when a Version 7.0 client connects to a Version 7.0
queue manager.

The new features that are available for a Version 7.0 client connected to a
Version 6.0 queue manager are:

� Weighted selection on CLNTCONN channels
� Reconnecting via a previously used channel
� Maximum message length increased on MQSERVER environment variable

The new feature that is available for a Version 6.0 client connected to a version
7.0 queue manager is instance limits on SVRCONN channels.

CLNTCONN channel definitions in a Client Channel Definition Table file that has
been created or altered using WebSphere MQ V7.0 cannot be used with
previous versions of WebSphere MQ. This is because the channel definition
information in the file has been extended due to enhancements in Version 7.0
and this is not understood by previous versions.

CCDT files required for use with previous versions of WebSphere MQ Clients can
be maintained using a matching version of WebSphere MQ queue manager. As
an alternative to keeping earlier versions of queue managers just for this

 Chapter 5. WebSphere MQ Client enhancements 83

purpose, IBM SupportPac MO72 MQSC Client for WebSphere MQ allows earlier
version CCDT files to be maintained on any system without requiring an earlier
version queue manager. The SupportPac is available for download at:

http://www.ibm.com/support/docview.wss?uid=swg24007769

84 WebSphere MQ V7.0 Features and Enhancements

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24007769&loc=en_US&cs=utf-8&lang=en

Chapter 6. Message Queue Interface
extensions

This chapter describes the Message Queue Interface (MQI) extensions that are
introduced in WebSphere MQ V7.0.

The description of the function calls and data structures in this chapter is at a
level that facilitates the understanding of the new capabilities. For detailed
descriptions of the functions, parameters, and data structures, refer to
Application Programming Reference, which is available in the WebSphere MQ
V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

This chapter covers the following new functionality in WebSphere MQ V7.0 and
includes the following sections:

� 6.1, “Variable-length strings” on page 86
� 6.2, “Message properties” on page 89
� 6.6, “Put action indicators” on page 133
� 6.3, “Message browsing” on page 105
� 6.4, “Callback for asynchronous consumers” on page 108
� 6.5, “Publish/Subscribe” on page 121
� 6.7, “Message selectors” on page 134
� 6.8, “Other MQI considerations” on page 135

6

© Copyright IBM Corp. 2009. All rights reserved. 85

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

6.1 Variable-length strings

Variable-length strings are used for some of the new features in WebSphere MQ
V7.0. These are represented as a new data type called MQCHARV. Topic strings,
subscriber user data, and selection strings are some of the items represented
as MQCHARV.

MQCHARV is used to pass or to receive variable-length strings as parameters to
or from a WebSphere MQ V7.0 queue manager. MQCHARV is a data structure
that describes the location, length, and coded character set of a variable-length
string.

There are two methods to specify the location of a variable-length string, using a
pointer or using an offset. The offset method is required for some programming
languages like COBOL in some environments that do not support the use
of pointers.

There are also two methods to specify the length of the string, as the actual
string length in a MQLONG variable, or to specify that the string is null
terminated.

Applications must allocate a buffer to receive or to send variable-length strings to
or from a WebSphere MQ V7.0 queue manager. If a buffer is not specified, or is
too small to receive a variable-length string, it is not returned to the application
after the execution of Message Queue Interface function call.

6.1.1 MQCHARV data structure

Table 6-1 shows the fields of the MQCHARV data structure.

Table 6-1 MQCHARV data structure

Field name Type Default value Description

VSPtr MQPTR Null Pointer to string buffer. This is null
when VSOffset is used.

VSOffset MQLONG 0 Offset to string buffer. This is zero
when VSPtr is used.

VSBufSize MQLONG MQVS_USE_VSLENGTH Buffer size.

VSLength MQLONG 0 String length or
MQVS_NULL_TERMINATED.

VSCCSID MQLONG MQCCSI_APPL CCSID used to encode the string.

86 WebSphere MQ V7.0 Features and Enhancements

6.1.2 MQCHARV using pointer

To define a MQCHARV data structure with a pointer to the variable string:

1. Allocate a buffer for the variable string and set the buffer size in VSBufSize.

2. Set VSPtr to the location of the string buffer.

3. Set VSOffset to zero.

4. If the call is providing a string as input to a Message Queue Interface call:

– Place the string in the buffer and store the length in VSLength.

OR

– Place the null terminated string in the buffer and set VSLength to
MQVS_NULL_TERMINATED.

– The coded character set ID of the string may be stored in VSCCSID. The
default is MQCCSI_APPL.

5. If the call is returning a string to the application program from a Message
Queue Interface call:

– The string will be placed in the buffer. No null termination character is put
in the buffer.

– The actual string length will be placed in VSLength.

– The desired coded character set ID of the string may be stored in
VSCCSID. The default is MQCCSI_APPL. The queue manager tries to
convert the string to the required CCSID, but if it is not possible it returns
the actual CCSID of the returned string in VSCCSI.

6.1.3 MQCHARV with offset

To define a MQCHARV data structure with an offset to the string buffer:

1. Allocate a buffer for the variable string and set the buffer size in VSBufSize.

2. Set VSPtr to null to indicate that offset is used instead of a pointer.

3. Calculate the offset to the beginning of the string buffer. The offset can be a
positive or negative value.

Note: The offset is calculated from the beginning of the structure that is
being used as the parameter to the Message Queue Interface call. For
example, when used in an MQOD to describe a SelectionString the offset
is from the beginning of the MQOD structure and not from the
SelectionString MQCHARV.

 Chapter 6. Message Queue Interface extensions 87

4. If the call is providing a string as input to a Message Queue Interface call do
one of the following steps:

– Place the string in the buffer and store the length in VSLength.

– Place the null terminated string in the buffer and set VSLength to
MQVS_NULL_TERMINATED. The coded character set ID of the string
may be stored in VSCCSID. The default is MQCCSI_APPL.

5. If the call is returning a string to the application program from a Message
Queue Interface call:

– The string will be placed in the buffer. No null termination character is put
in the buffer.

– The actual string length will be placed in VSLength.

– The desired coded character set ID of the string may be stored in
VSCCSID. The default is MQCCSI_APPL. The queue manager tries to
convert the string to the required CCSIDl, but if it is not possible it returns
the actual CCSID of the returned string in VSCCSI.

Figure 6-1 shows the relationships between VSPtr, VSOffset, VSBufSize, and
VSLength in a MQCHARV data structure.

Figure 6-1 MQCHARV

VSPtr

Variable string

VSLength

VSBufSize

VSLength

Ø

VSBufSize

VSCCSID

MQCHARV using pointer

MQOD

88 WebSphere MQ V7.0 Features and Enhancements

6.1.4 Null terminated strings

If the call is providing a string as input to a Message Queue Interface call then a
null terminated string may be used. The string (together with the null character) is
placed in the buffer and the value MQVS_NULL_TERMINATED is placed in
VSLength.

If the call is returning a string to the application program from a Message Queue
Interface call then a null terminated string is never used. The actual length is
placed in VSLength.

6.1.5 Coded character set identifier

Each variable-length string requires the specification of the coded character set
identifier (CCSID) that encoded the string. This enables applications to send and
receive variable-length strings on expected character sets. The CCSID is
specified in VSCCSID. The default value MQCCSI_APPL indicates that the
strings are encoded in the default CCSID of the queue manager for server
binding connections or of the MQ Client system for client binding connections.

If the application is running with a different character set from the queue manager
or from the MQ Client then the application must override the value of the constant
MQCCSI_APPL with the CCSID required. This initializes all the MQCHARV
structures with the correct CCSID value.

6.2 Message properties

Message properties are a new feature of WebSphere MQ V7.0. They are
name-value pairs that are carried alongside the message body. Java Message
Service (JMS) introduced the concept of message properties, and now they are
supported directly in WebSphere MQ V7.0 as part of the MQI.

Message properties are used by message selectors to filter subscriptions to
topics or to selectively get messages from queues. Message properties can be
used to include business data or state information without having to store it in the
message data. They also give MQI Applications direct access to message
properties set by a JMS application.

From WebSphere MQ V7.0 onward applications do not have to access data in
the MQ Message Descriptor (MQMD) or RFH headers because fields in these
data structures can be accessed as message properties using the Message
Queue Interface function calls described in this section.

 Chapter 6. Message Queue Interface extensions 89

6.2.1 Message handles

Message handles are new in WebSphere MQ V7.0. They are references to a
message and are used to access and set message properties.

There are new Message Queue Interface functions to create and delete
message handles (MQCRTMH and MQDTLMH). The message handle is used
on the MQPUT and MQPUT1 calls to associate message properties to the
message being put. Similarly, a message handle in the MQGET function gives
access to all the message properties when the MQGET is complete.

The scope of message handles is between the MQCRTMH function call and the
MQDLTMH function call.

6.2.2 Set, inquire, and delete message properties

There are new Message Queue Interface function calls used to set, inquire, and
delete message properties (MQCRTMP, MQINQMP, and MQDLTMP). These
function calls require a message handle as one of the parameters.

6.2.3 MQCRTMH create message handle

This function call creates a new message handle that can be used to create or to
inquire message properties. This message handle will be associated with the
connection handle (Hconn) used in the call. Any resources used in the message
handle will be freed when the application disconnects.

Syntax
The MQCRTMH function syntax is:

MQCRTMH (Hconn, CrtMsgHOpts, Hmsg, CompCode, Reason)

90 WebSphere MQ V7.0 Features and Enhancements

Parameters
Table 6-2 lists the parameters that are used by MQCRTMH.

Table 6-2 MQCRTMH parameters

Example
Table 6-3 on page 92 shows how to create a message handle for a connection.

Example 6-1 MQCRTMH C language example

/* Define data structures and initialize with default values. */

MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQLONG CompCode = MQCC_OK;
MQLONG Reason = MQRC_NONE;
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG hMsg = MQHM_UNUSABLE_HMSG;

/* Connect to the queue manager */
 MQCONN(“QM”, &hConn, &CompCode, &Reason);

/* Create a new message handle associated with a specific connection. */

MQCRTMH(hConn, &CrtMsgHOpts, &hMsg, &CompCode, &Reason);

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager

CrtMsgHOpts MQCMHO Input Options to control how message handles are
created

Hmsg MQHMSG Output Created message handle

CompCode MQLONG Output Completion code

Reason MQLONG Output Reason code

Note: Message handles created by using the
MQHC_UNASSOCIATED_HCONN as a connection handle are not
associated with a specific connection. Such message handles can be used on
MQGET/MQPUT function calls for any connection. However, the resources
used must be explicitly freed with a MQ DLTMH call, as they are not released
when the application disconnects.

 Chapter 6. Message Queue Interface extensions 91

6.2.4 MQDLTMH delete message handle

This function call deletes a message handle and releases any associated
resources.

Syntax
The MQDLTMH function syntax is:

MQDLTMH (Hconn, Hmsg, DltMsgHOpts, CompCode, Reason)

Parameters
Table 6-3 lists the MQDLTMH parameters.

Table 6-3 MQDLTMH parameters

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager. It must be the same
connection used when the handle was
created. If the handle was un-associated to a
connection then this must be
MQHC_UNASSOCIATED_HCONN.

Hmsg MQHMSG Input/Output Handle to be deleted. On successful
completion the handle is set to
MQHM_UNUSABLE_HMSG.

DltMsgHOpts MQDMHO Input Options to control how the handle is deleted.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

92 WebSphere MQ V7.0 Features and Enhancements

Example
Example 6-2 shows how to create and delete a message handle.

Example 6-2 MQDLTMH C language example

/* Define data structures and initialize with default values. */

MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQLONG CompCode = MQCC_OK;
MQLONG Reason = MQRC_NONE;
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG hMsg = MQHM_UNUSABLE_HMSG;
MQDMHO DltMsgHOpts = {MQDMHO_DEFAULT};

/* Connect to the queue manager */

MQCONN(“QM”, &hConn, &CompCode, &Reason);

/* Create a new message handle */

MQCRTMH(hConn, &CrtMsgHOpts, &hMsg, &CompCode, &Reason);

/* Delete the message handle just created */

MQDLTMH(hConn, &hMsg, &DltMsgHOpts, &CompCode, &Reason);

6.2.5 MQSETMP set a message property

This function call sets or modifies a message property that is referenced by a
message handle.

Syntax
The MQSETMP function syntax is:

MQSETMP (Hconn, Hmsg, SetPropOpts, Name, PropDesc, Type, ValueLength,
Value, CompCode, Reason)

 Chapter 6. Message Queue Interface extensions 93

Parameters
Table 6-4 lists the MQSETMP parameters.

Table 6-4 MQSETMP parameters

Example
Example 6-3 shows how to set message properties of various types.

Example 6-3 MQSETMP C language example

/* Define data structures and initialize with default values. */

MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQLONG CompCode = MQCC_OK;
MQLONG Reason = MQRC_NONE;
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG hMsg = MQHM_UNUSABLE_HMSG;
MQPD PropDesc = {MQPD_DEFAULT};
MQSMPO SetPropOpts = {MQSMPO_DEFAULT};

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Hmsg MQHMSG Input Message handle to which the new message
property is added.

SetPropOpts MQSMPO Input Options to control how the message property
is added.

Name MQCHARV Input Name of the property. Names must follow rules
described in the product documentation.

PropDesc MQPD Input/Output Used to define attributes of a property. This
parameter is intended for advanced uses of
message properties.

Type MQLONG Input Data type of the property, such as boolean,
integer, float, string, and null.

ValueLength MQLONG Input Length in bytes of the property value. The
constant MQVL_NULL_TERMINATED can be
used for null terminated strings.

Value MQBYTEx Input Buffer containing the value of the property.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

94 WebSphere MQ V7.0 Features and Enhancements

MQCHARV Name = {MQCHARV_DEFAULT};
MQINT32 IntValue = 5;

/* Connect to the queue manager */

MQCONN(“QM”, &hConn, &CompCode, &Reason);

/* Create a new message handle */

MQCRTMH(hConn, &CrtMsgHOpts, &hMsg, &CompCode, &Reason);

Name.VSPtr = “Sport”;
Name.VSLength = MQVS_NULL_TERMINATED;

/* Set a null-terminated string property value */

MQSETMP(hConn, hMsg, &SetPropOpts, &Name, &PropDesc, MQTYPE_STRING,
MQVL_NULL_TERMINATED, “football”, &CompCode, &Reason);

Name.VSPtr = “Goals”;

/* Set an integer property value */

MQSETMP(hConn, hMsg, &SetPropOpts, &Name, &PropDesc, MQTYPE_INT32,
4, &IntValue, &CompCode, &Reason);

Name.VSPtr = “Money”;

/* Set a null property value */

MQSETMP(hConn, hMsg, &SetPropOpts, &Name, &PropDesc, MQTYPE_NULL,
0, NULL, &CompCode, &Reason);

/* Set an empty property value */

MQSETMP(hConn, hMsg, &SetPropOpts, &Name, &PropDesc, MQTYPE_STRING,
0, NULL, &CompCode, &Reason);

/**/
/* Note that after the four calls to MQSETMP */
/* the message handle has only three properties in it:*/
/* “Sport” with the value “football”, */

 Chapter 6. Message Queue Interface extensions 95

/* “Goals” with the value “5”, and */
/* “Money” with the value “”. */
/**/

6.2.6 MQINQMP inquire message property

This function call returns the value of a property referenced by a message
handle.

The wildcard character “%” may be used at the end of property names to inquire
for multiple properties. The MQINQMP returns one value at a time. Therefore,
Inquire Property Options (InqPropOpts) are used to inquire for the first
(MQIMPO_INQ_FIRST) and subsequent property values
(MQIMPO_INQ_NEXT). Multiple MQINQMP calls are required to inquire all the
properties that match a wildcard. Reason code
MQRC_PROPERTY_NOT_AVAILABLE is returned when no more matching
properties are available.

If ValueLength is less than the length of the property value a Reason Code
MQRC_PROPERTY_VALUE_TOO_BIG is returned. The actual length is
returned in the DataLength parameter and the MQINQMP call can be reissued
with the correct ValueLength. It is also possible to inquire the property length
using the MQIMPO_QUERY_LENGTH option. This returns the length without
error.

The CCSID and data encoding of the property value is returned in the
InqPropOpts parameter in the fields ReturnedCCSID and ReturnedEncoding.

Syntax
The MQINQMP function syntax is:

MQINQMP(Hconn, Hmsg, InqPropOpts, Name, PropDesc, Type, ValueLength,
Value, DataLength, CompCode, Reason)

96 WebSphere MQ V7.0 Features and Enhancements

Parameters
Table 6-5 lists the MQINQMP parameters.

Table 6-5 MQINQMP parameters

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Hmsg MQHMSG Input Message handle to which the new message
property is added.

InqPropOpts MQIMPO Input Options to control how the message properties
are inquired.

Name MQCHARV Input Name of the property to inquire. The property
name may end with the wildcard character “%”
to inquire multiple properties.

PropDesc MQPD Output Used to define attributes of a property. This
parameter is intended for advanced uses of
message properties. Most applications will not
need to set these attributes.

Type MQLONG Input/Output Data type of the property, such as boolean,
integer, float, string, and null.

ValueLength MQLONG Input Length in bytes of the value area. If zero is
specified then no value is returned.

Value MQBYTEx Output Area to contain the returned value of the
property.

DataLength MQLONG Output The actual length in bytes of the property
value. If ValueLength is smaller than
DataLength then MQINQMP can be reissued
with the correct ValueLength to return the
entire value.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

 Chapter 6. Message Queue Interface extensions 97

Example
Example 6-4 shows how to create a message handle, set a message property,
and inquire the message property.

Example 6-4 MQINQMP C language example

/* Define data structures and initialize with default values. */

MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQLONG CompCode = MQCC_OK;
MQLONG Reason = MQRC_NONE;
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG hMsg = MQHM_UNUSABLE_HMSG;
MQPD PropDesc = {MQPD_DEFAULT};
MQSMPO SetPropOpts = {MQSMPO_DEFAULT};
MQCHARV Name = {MQCHARV_DEFAULT};
MQIMPO InqPropOpts = {MQIMPO_DEFAULT};
MQBYTE Value[256];
MQLONG Type = MQTYPE_AS_SET;
MQLONG DataLength;

/* Connect to the queue manager */

MQCONN(“QM”, &hConn, &CompCode, &Reason);

/* Create a new message handle */

MQCRTMH(hConn, &CrtMsgHOpts, &hMsg, &CompCode, &Reason);

Name.VSPtr = “Sport”;
Name.VSLength = MQVS_NULL_TERMINATED;

/* Set a null-terminated property value */

MQSETMP(hConn, hMsg, &SetPropOpts, &Name, &PropDesc, MQTYPE_STRING,
MQVL_NULL_TERMINATED, “Football”, &CompCode, &Reason);

/* Inquire the property value */

MQINQMP(hConn, hMsg, &InqPropOpts, &Name, &PropDesc, &Type, sizeof(Value),
Value, &DataLength, &CompCode, &Reason);

98 WebSphere MQ V7.0 Features and Enhancements

6.2.7 MQDLTMP delete message property

This function call deletes a message property from a message handle.

Syntax
The MQDLTMP function syntax is:

MQDLTMP (Hconn, Hmsg, DltPropOpts, Names, CompCode, Reason)

Parameters
Table 6-6 lists the MQDLTMP parameters.

Table 6-6 MQDLTMP parameters

Example
Example 6-5 shows how to set and delete a message property.

Example 6-5 MQDLTMQ C language example

/* Define data structures and initialize with default values. */

MQLONG CompCode = MQCC_OK;
MQLONG Reason = MQRC_NONE;
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG hMsg = MQHM_UNUSABLE_HMSG;
MQPD PropDesc = {MQPD_DEFAULT};
MQSMPO SetPropOpts = {MQSMPO_DEFAULT};
MQDMPO DltPropOpts = {MQDMPO_DEFAULT};
MQCHARV Name = {MQCHARV_DEFAULT};

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Hmsg MQHMSG Input Message handle from which the message
property is deleted.

DltPropOpts MQDMPO Input Options to control how the message property
is deleted.

Name MQCHARV Input Name of the property to delete. Wildcard
characters are not allowed.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

 Chapter 6. Message Queue Interface extensions 99

/* Connect to the queue manager */

MQCONN(“QM”, &hConn, &CompCode, &Reason);

/* Create a new message handle */

MQCRTMH(hConn, &CrtMsgHOpts, &hMsg, &CompCode, &Reason);

Name.VSPtr = “my.sport”;
Name.VSLength = MQVS_NULL_TERMINATED;

/* Set a null-terminated property value */

MQSETMP(hConn, hMsg, &SetPropOpts, &Name, &PropDesc, MQTYPE_STRING,
MQVL_NULL_TERMINATED, “football”, &CompCode, &Reason);

/* Delete the property just set */

MQDLTMP(hConn, hMsg, &DltPropOpts, &Name, &CompCode, &Reason);

6.2.8 MQBUFMH converts buffer into message handle

This function call converts a WebSphere MQ V7.0 message into a message
handle. The inverse function call is MQMHBUF. This is an advanced Message
Queue Interface call. Therefore, it is not used by most application programmers.

This function call causes parsing of MQMD and MQRFH2 headers in the
message and converts them to properties. The MQRFH2 properties are removed
from the header and the message format is adjusted to represent the message in
the buffer.

Syntax
The MQBUFMH function syntax is:

MQBUFMH (Hconn, Hmsg, BufMsgHOpts, MsgDesc, BufferLength, Buffer,
DataLength, CompCode, Reason)

100 WebSphere MQ V7.0 Features and Enhancements

Parameters
Table 6-7 lists the MQBUFMH parameters.

Table 6-7 MQBUFMH parameters

Example
Example 6-6 shows how to convert a message buffer into a message handle.

Example 6-6 MQBUFMH C language example

/* Define data structures and initialize with default values. */

MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQLONG CompCode = MQCC_OK;
MQLONG Reason = MQRC_NONE;
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG hMsg = MQHM_UNUSABLE_HMSG;
MQBMHO BufMsgHOpts = {MQBMHO_DEFAULT};
MQBYTE Buffer[4096];
MQMD MsgDesc = {MQMD_DEFAULT};

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Hmsg MQHMSG Input Message handle for which the buffer is
required.

BufMsgHOpts MQBMHO Input Options to control how the message is
converted.

MsgDesc MQMD Input/Output On input, it describes the message on the
buffer. The CCSID and encoding values must
describe the data in the buffer. On output, it
describes the message with the MQRFH2
properties removed.

BufferLength MQLONG Input Length in bytes of the buffer.

Buffer MQBYTESx Input/Output On input this is the message to be converted
to message handle. On output this is the
message with the properties removed.

DataLength MQLONG Output Length in bytes of the buffer with the properties
removed.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

 Chapter 6. Message Queue Interface extensions 101

MQOD ObjDesc = {MQOD_DEFAULT};
MQHOBJ hObj = MQHO_UNUSABLE_HOBJ;
MQGMO GetMsgOpts = {MQGMO_DEFAULT};
MQLONG DataLength;
MQLONG OutputBufferLength;

/* Connect to the queue manager */

MQCONN(“QM”, &hConn, &CompCode, &Reason);

/* Open a queue */

memcpy(ObjDesc.ObjectName, “Q”, MQ_Q_NAME_LENGTH);
MQOPEN(hConn, &ObjDesc, MQOO_INPUT_SHARED, &hObj, &CompCode, &Reason);

/* Get a message from the queue */

MQGET(hConn, hObj, &MsgDesc, &GetMsgOpts, sizeof(Buffer), Buffer,
&DataLength, &CompCode, &Reason);

/* Create a new message handle */

MQCRTMH(hConn, &CrtMsgHOpts, &hMsg, &CompCode, &Reason);

/* Convert the buffer to a message handle */

MQBUFMH(hConn, hMsg, &BufMsgHOpts, &MsgDesc, DataLength, Buffer,
&OutputBufferLength, &CompCode, &Reason);

6.2.9 MQMHBUF converts a message handle into a buffer

This function call converts a message handle into a buffer. MQBUFMH is the
inverse function. This is an advanced Message Queue Interface call that can be
used, for example, by MQGET API exits when the exits want to access certain
properties using message property APIs, but they want to pass a buffer back to
the application that is designed to cope with MQRFH2 headers rather than
message handles.

102 WebSphere MQ V7.0 Features and Enhancements

Syntax
The MQMHBUF function syntax is:

MQMHBUF (Hconn, Hmsg, MsgHBufOpts, Name, MsgDesc, BufferLength, Buffer,
DataLength, CompCode, Reason)

Parameters
Table 6-8 lists the MQMHBUF parameters.

Table 6-8 MQMHBUF parameters

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Hmsg MQHMSG Input Message handle to be converted to buffer.

MsgHBufOpts MQMBHO Input Options to control how the message handle is
converted.

Name MQCHARV Input Name of the properties to put in the buffer.
Wildcard character “%” may be used at the
end of the property name to put many
properties in the buffer.

MsgDesc MQMD Input/Output On input it describes the contents of the buffer
area. On output the encoding, CCSID, and
format reflect the data returned in the buffer.

BufferLength MQLONG Input Length in bytes of the buffer.

Buffer MQBYTESx Output Area to contain the message with the
message properties in the MQRFH2.

DataLength MQLONG Output Length of the message returned in buffer
including the properties.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

 Chapter 6. Message Queue Interface extensions 103

Example
Example 6-7 lists how to convert a message handle into a message buffer.

Example 6-7 MQMHBUF C language example

/* Define data structures and initialize with default values. */

MQHCONN hConn = MQHC_UNUSABLE_HCONN;
MQLONG CompCode = MQCC_OK;
MQLONG Reason = MQRC_NONE;
MQCMHO CrtMsgHOpts = {MQCMHO_DEFAULT};
MQHMSG hMsg = MQHM_UNUSABLE_HMSG;
MQPD PropDesc = {MQPD_DEFAULT};
MQSMPO SetPropOpts = {MQSMPO_DEFAULT};
MQCHARV Name = {MQCHARV_DEFAULT};
MQMHBO MsgHBufOpts = {MQMHBO_DEFAULT};
MQMD MsgDesc = {MQMD_DEFAULT};
MQBYTE Buffer[4096];
MQLONG DataLength;

/* Connect to the queue manager */

MQCONN(“QM”, &hConn, &CompCode, &Reason);

/* Create a new message handle */

MQCRTMH(hConn, &CrtMsgHOpts, &hMsg, &CompCode, &Reason);

Name.VSPtr = “Sport”;
Name.VSLength = MQVS_NULL_TERMINATED;

/* Set a null-terminated property value */

MQSETMP(hConn, hMsg, &SetPropOpts, &Name, &PropDesc, MQTYPE_STRING,
MQVL_NULL_TERMINATED, “football”, &CompCode, &Reason);

/* Convert the message handle to a buffer */

MQMHBUF(hConn, hMsg, &MsgHBufOpts, &MQPROP_INQUIRE_ALL , &MsgDesc,
sizeof(Buffer), Buffer, &DataLength, &CompCode, &Reason);

104 WebSphere MQ V7.0 Features and Enhancements

6.3 Message browsing

Message browsing has been enhanced in WebSphere MQ V7.0. New options in
the MQOPEN options and MQGET options resolve some issues and enable new
possibilities when browsing queues.

Message browsing is commonly used by dispatcher programs. A dispatcher is a
program that browses a queue continuously to monitor for different types of
messages arriving to the queue and passing the messages to different
consumers according to the message type. Examples of these dispatcher
applications are trigger monitors, CICS bridge dispatcher, and message-driven
beans (MDB).

Before WebSphere MQ V7.0 there were some issues when browsing messages:

� Skipping messages on the queue as a result of priority or uncommitted
messages or rolled back messages.

� Multiple dispatchers stealing messages from each other.

The above issues were caused by the use of the browsing cursor that always
moves forward without considering the arrival (or commit) of new high-priority
messages. Therefore, messages are not retrieved during the browse loop. The
cursor is associated with connection handles. Therefore, two dispatchers
browsing the same queue browse the same messages.

WebSphere MQ V7.0 introduces the following features in message browsing:

� Support of browsing with mark to allow browsing of only messages that have
not yet been marked by this application.

� Support of browsing with cooperative mark to allow multiple applications to
browse the same queue and see only messages that no other application has
yet cooperatively marked.

� Support of message tokens for distributed queue managers as well as z/OS
queue managers. These message tokens provide an efficient mechanism for
a dispatching application to pass a reference to a particular message to
another application.

6.3.1 Message tokens

The message token is a unique identification that remains with a message until it
is permanently removed from the queue or the queue manager is restarted. The
16-byte identifier is generated by the queue manager and returned after MQPUT
or MQGET function calls.

 Chapter 6. Message Queue Interface extensions 105

This new feature allows applications to do efficient selective MQGETs using the
match option MQMO_MATCH_MSG_TOKEN.

6.3.2 Browse and mark

Browse and mark are new options in the MQGET function call that enable the
queue manager to keep track of which messages have been browsed and who
has browsed the messages.

Browse and mark resolves the issue of skipping messages during a browse loop
when high-priority messages arrive and the browse cursor is on a lower priority
message. The queue manager returns high-priority messages as soon as they
arrive to the queue because they can be identified as not been marked.

6.3.3 Cooperative dispatchers

Cooperative dispatchers are programs browsing the same queue and performing
the same dispatching service in parallel. Therefore, they are not interested in
messages that have been browsed by other cooperative dispatchers on the
same queue.

There is a new MQOPEN option MQOO_CO_OP that indicate that the program
is a cooperative browser for the queue that is being opened. There is also a new
MQGET option to browse and mark messages for cooperative dispatchers.

6.3.4 New MQOPEN option

Table 6-9 lists a new option available for the MQOPEN function call.

Table 6-9 New MQOPEN option for cooperative browsing

MQOO_option Description

MQOO_CO_OP Used normally with MQOO_BROWSE to indicate
that cooperative browsing is used for this queue.

106 WebSphere MQ V7.0 Features and Enhancements

6.3.5 New MQGET options

These new message browsing options are used in combination with the following
existing options:

� MQGMO_BROWSE_FIRST
� MQGMO_BROWSE_NEXT

Table 6-10 New MQGET options

6.3.6 New Queue manager attribute

Queue manager attribute MARKINT indicates the mark time interval. When the
time interval is expired the mark of the browsed messages is removed and the
messages are eligible to be browsed again. This is to prevent messages from
remaining unconsumed after they have been browsed and marked, for example,
after a cooperative dispatcher fails after marking a message.

6.3.7 Examples

In this section we provide a description of a simple browser using browse and
mark and of a cooperative dispatcher.

Simple browser
A program wishes to browse all messages on the queue without skipping any
messages, and when the return code MQRC_NO_MSG_AVAILABLE is received

MQGMO_option Description

MQGMO_UNMARKED_BROWSE_MSG To browse returning only unmarked
messages.

MQGMO_MARK_BROWSE_HANDLE To mark a message as browsed within
the scope of this object handle.

MQGMO_UNMARK_BROWSE_HANDLE To unmark a previously browsed
message. This option is used in
combination with
MQMO_MATCH_MSG_TOKEN.

MQGMO_MARK_BROWSE_CO_OP To mark a message as browsed within
the scope of all cooperative applications.

MQGMO_UNMARK_BROWSE_CO_OP To unmark a previously browsed
message for all cooperative applications.

 Chapter 6. Message Queue Interface extensions 107

there are no messages on the queue that have not been browsed. Such a
browser program would use the following MQGMO options:

MQGMO_BROWSE_FIRST + /*Always browse first to avoid skipping msgs*/
MQGMO_UNMARKED_BROWSE_MSG + /*Browse unmarked messages */
MQGMO_MARK_BROWSE_HANDLE + /*Mark message as browsed */
MQGMO_WAIT /*Wait until messages arrive on the queue */

These options can be read as giving you the first (if any) message that you have
not seen yet, then marking it so that you do not see it again.

If the browser application decides to consume the message or pass it to another
application for processing, it can use the message token returned to identify the
particular message for a later MQGET message with the following MQGMO
option:

MQMO_MATCH_MSG_TOKEN

Cooperative dispatcher
A dispatcher program wishes to browse a queue and initiate a consumer based
on the content of each message. There may be more that one instance of the
dispatcher on the same queue for distribution of the message workload.

Each cooperative dispatcher calls MQOPEN to open the queue with the
MQOO_CO_OP option and would browse the queue making repeated MQGET
calls with the following MQGMO options:

MQGMO_BROWSE_FIRST + /*Always browse first to avoid skipping msgs*/
MQGMO_UNMARKED_BROWSE_MSG + /*Browse unmarked messages */
MQGMO_MARK_BROWSE_CO_OP + /*Mark message as browsed */
MQGMO_WAIT /*Wait until messages arrive on the queue */

These options can be read as giving you the first (if any) message not seen by
any dispatcher, then marking it so that no dispatcher sees it again.

The dispatcher would start a consumer program, passing the message token
returned by the MQGET function call when the message is browsed and marked.
The consumer program would destructively MQGET the message that matches
the message token received.

6.4 Callback for asynchronous consumers

Callback is a new set of Message Queue Interface function calls that enable
consuming messages from multiple queues or topics. This facilitates the
implementation of a message-driven processing model (other than using

108 WebSphere MQ V7.0 Features and Enhancements

message triggering or message dispatchers based on MQGET with wait) or to
have programs that are unaware of the message size that is received.

There is a new programming style that could simplify the design and
implementation of new programs. The new programming style is based on
registering functions (MQCB function call) that are called back by the queue
manager when there are messages available that match the selection criteria.
The control function (MQCTL) indicates to the queue manager when to start
dispatching the callback functions passing messages to them. The callback
functions receive and process messages in asynchronous mode.

This programming style may be used instead of the MQGET function call to
receive messages.

6.4.1 Threading modes

Two threading modes can be used depending on the programming language and
environment in which the program is running.

The first threading mode is that the queue manager steals the application
program thread to do the callback dispatching and the application program waits
(MQCTL with MQOP_START_WAIT) until all the callback functions are
deregistered and terminated.

The second threading mode keeps the application program thread after the
control function (MQCTL with MQOP_START) is executed and the queue
manager allocates new threads to do the callback processing. The application
program can continue doing other work while messages are received and
processed.

There is an option to control the thread affinity of the callback consumer
functions. The MQCTLO_THREAD_AFFINITY option in MQCTL specifies that all
invocations of the consumer functions for the same connection will occur on the
same thread. This requirement depends on the design of synchronous
application event processing in a multi-threaded program.

6.4.2 Message consumers and event handlers

Callback can be used to register two types of functions:

� Message consumers
� Event handlers

 Chapter 6. Message Queue Interface extensions 109

Message consumers
This type of function is called when there is a message available on a queue or a
topic and it meets the selection criteria specified.

The following callback sequence describes the life cycle of the consumer:

1. The consumer function is registered by MQCB with the MQOP_REGISTER
option.

2. The consumer is started by MQCTL with the MQOP_START option.

3. The consumer receives and processes messages.

4. Consumer is suspended and resumed by MQCTL with the
MQOP_SUSPEND and MQOP_RESUME options or by MQCB with the
MQOP_ SUSPEND and MQOP_RESUME options.

5. The consumer is stopped by MQCTL with MQOP_STOP option.

6. The consumer is deregistered, either explicitly by MQCB with
MQOP_DEREGISTER or implicitly by a MQCLOSE function call.

Event handler
This type of function is called when an asynchronous event is detected by the
queue manager that affects the entire callback environment for the connection,
such as queue manager quiescing or connection stopping.

The following is a callback sequence describing the life cycle of the event
handler:

1. The event handler function is registered by MQCB with the
MQOP_REGISTER option.

2. The event handler receives and processes events.

3. The event handler cannot be suspended, resumed, stopped, or deregistered.
It ceases operation when the connection terminates.

6.4.3 MQCB manage callback

The MQCB function call registers a callback function for a specified object handle
(queue or topic). A callback function is a piece of code (specified as a function
that can be dynamically linked or as a function pointer) that is called by the queue
manager when a message is available or an event has occurred, depending on
the type of consumer.

110 WebSphere MQ V7.0 Features and Enhancements

Syntax
The MQCB function syntax is:

MQCB (Hconn, Operation, CallbackDesc, Hobj, MsgDesc, GetMsgOpts,
CompCode, Reason)

Parameters
Table 6-11 lists the MQCB parameters.

Table 6-11 MQCB parameters

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Operation MQLONG Input Describes the operation being processed by
MQCB. The supported operations are:
� MQOP_REGISTER
� MQOP_DEREGISTER
� MQOP_SUSPEND
� MQOP_RESUME

CallbackDesc MQCBD Input Describes the callback function that is
registered. This is only required for
MQOP_REGISTER.

Hobj MQHOBJ Input Object handle from which messages are
consumed (queue or topic). Not required for
event handlers.

MsgDesc MQMD Input Defines the attributes of the messages for the
message consumer. Not required for event
handler.

GetMsgOpts MQGMO Input Options to control how messages are obtained
for the message consumer. Not required for
event handlers.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

 Chapter 6. Message Queue Interface extensions 111

6.4.4 MQCBD Callback Descriptor

This data structure identifies the callback function that is being registered and the
options used during the registration. See Table 6-12.

Table 6-12 MQCBD Callback Descriptor

Parameter name Data type Input/output Description

StrucID MQCHAR4 Input Structure identifier.

Version MQLONG Input Current version is 1.

CallbackType MQLONG Input Callback function types. There are two types:
� MQCBCT_MESSAGE_CONSUMER
� MQCBCT_EVENT_HANDLER

Options MQLONG Input Options to indicate whether callback function
is called to indicate the following message
consumer state changes:
� MQCBDO_FAIL_IF_QUIESCING
� MQCBDO_REGISTER_CALL
� MQCBDO_START_CALL
� MQCBDO_STOP_CALL
� MQCBDO_DEREGISTER_CALL

MaxMsgLength MQLONG Input Length in bytes of the longest message that
can be read from the object handle and given
to the callback routine. There is a value to
indicate that messages should be delivered
without truncation:
MQCBD_FULL_MSG_LENGTH

CallbackFunction MQCB_FUNC
TION

Input Pointer to the callback function. You must
specify either CallbackFunction or
CallbackName but not both.

CallbackName MQCHAR128 Input Name of the function that is invoked as a
dynamically linked program, specified as
either CallbackFunction or CallbackName.

Reserved Reserved field for future use.

CallbackArea MQPTR Input/Output Optional field. It can be a pointer to a memory
area that can be used by the call function to
store state that has affinity to the object
handle.

112 WebSphere MQ V7.0 Features and Enhancements

6.4.5 MQCTL control callbacks

This function performs controlling actions on the callback functions. It executes
the operations START, STOP, SUSPEND, and RESUME for message
consumers.

There is also an operation called START with WAIT that suspends the calling
application program until all the callback functions have been suspended,
deregistered, or stopped. The callback functions run on same thread as the
caller.

Syntax
The MQCTL function syntax is:

MQCTL (Hconn, Operation, ControlOpts, CompCode, Reason)

 Chapter 6. Message Queue Interface extensions 113

Parameters
Table 6-13 lists the MQCTL function parameters.

Table 6-13 MQCTL parameters

Example
The sample code in Example 6-8 shows how to register a message consumer
callback function to process messages from a queue. This program starts the
callback processing and then waits for input from the keyboard to stop callback
processing and close the object and connection handles.

Example 6-8 MQCB and MQCTL C language example

/* Declare MQI structures needed, use defaults where possible */
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */
 MQCBD cbd = {MQCBD_DEFAULT}; /* Callback Descriptor */
 MQCTLO ctlo= {MQCTLO_DEFAULT}; /* Control Options */

 MQHCONN Hcon = MQHC_UNUSABLE_HCONN; /* connection handle */
 MQHOBJ Hobj = MQHO_UNUSABLE_HOBJ; /* object handle */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Operation MQLONG Input Describes the operation being processed by
MQCB. The supported operations for
message consumers are:
� MQOP_START
� MQOP_START_WAIT
� MQOP_STOP
� MQOP_SUSPEND
� MQOP_RESUME

ControlOpts MQCTLO Input/Output Options that control the action of MQCTLO.
The values that can be specified in the Options
field are:
� MQCTLO_FAIL_IF_QUIESCING
� MQCTLO_THREAD_AFFINITY

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

114 WebSphere MQ V7.0 Features and Enhancements

 MQLONG CompCode; /* completion code */
 MQLONG OpenCode; /* MQOPEN completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code for MQCONN */
 char QMName[50]; /* queue manager name */

 printf("Sample start\n");
 if (argc < 2)
 {
 printf("Required parameter missing - queue name\n");
 printf("Usage: SAMPLE queuename <qmgrname> <getoptions>\n");
 exit(999);

}

 /* Create object descriptor for subject queue */
strncpy(od.ObjectName, argv[1], MQ_Q_NAME_LENGTH);

 QMName[0] = ‘\0’; /* default */
 if (argc > 2)
 strncpy(QMName, argv[2], MQ_Q_MGR_NAME_LENGTH);

/* Connect to queue manager */
MQCONN(QMName, /* queue manager */

 &Hcon, /* connection handle */
 &CompCode, /* completion code */
 &CReason); /* reason code */

if (CompCode == MQCC_FAILED)
 {
 printf("MQCONN ended with reason code %d\n", CReason);
 exit((int)CReason);
 }

 /* Open the named message queue for input; exclusive or shared */
 /* use of the queue is controlled by the queue definition here */

if (argc > 3)
 {
 O_options = atoi(argv[3]);
 printf("open options are %d\n", O_options);
 }
 else

O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */
| MQOO_FAIL_IF_QUIESCING /* but not if MQ stopping */

 ; /* = 0x2001 = 8193 decimal */
MQOPEN(Hcon, /* connection handle */

 &od, /* object descriptor for queue */
 O_options, /* open options */

 Chapter 6. Message Queue Interface extensions 115

 &Hobj, /* object handle */
 &OpenCode, /* completion code */
 &Reason); /* reason code */

if (OpenCode == MQCC_FAILED)
 {
 printf("MQOPEN ended with reason code %d\n", Reason);
 goto MOD_EXIT;
 }

 /* Register a callback function to be a message consumer */

cbd.CallbackFunction = MessageConsumer;
MQCB(Hcon,

 MQOP_REGISTER,
 &cbd,
 Hobj,
 &md,
 &gmo,
 &CompCode,
 &Reason);
 if (CompCode == MQCC_FAILED)
 {
 printf("MQCB ended with reason code %d\n", Reason);
 goto MOD_EXIT;
 }

 /* Start consumption of messages */

MQCTL(Hcon,
 MQOP_START,
 &ctlo,
 &CompCode,
 &Reason);
 if (CompCode == MQCC_FAILED)
 {
 printf("MQCTL ended with reason code %d\n", Reason);
 goto MOD_EXIT;
 }

 /* Wait for the user to press enter */
{

 char Buffer[10];
 printf("Press enter to end\n");
 fgets(Buffer,sizeof(Buffer),stdin);
 }

 /* Stop consumption of messages */

116 WebSphere MQ V7.0 Features and Enhancements

MQCTL(Hcon,
 MQOP_STOP,
 &ctlo,
 &CompCode,
 &Reason);
 if (CompCode == MQCC_FAILED)
 {
 printf("MQCTL ended with reason code %d\n", Reason);
 goto MOD_EXIT;
 }

MOD_EXIT:

 /* Close the source queue (if it was opened) */
if (Hobj != MQHO_UNUSABLE_HOBJ)

 {
 if (argc > 4)
 {
 C_options = atoi(argv[4]);
 printf("close options are %d\n", C_options);
 }
 else

C_options = MQCO_NONE; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

if (Reason != MQRC_NONE)
printf("MQCLOSE ended with reason code %d\n", Reason);

}

 /* Disconnect from MQ (if connected) */
if (Hcon != MQHC_UNUSABLE_HCONN)

 {
 if (CReason != MQRC_ALREADY_CONNECTED)
 {
 MQDISC(&Hcon, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */

if (Reason != MQRC_NONE)
printf("MQDISC ended with reason code %d\n", Reason);

}
 }

 Chapter 6. Message Queue Interface extensions 117

printf("Sample end\n");
 return((int)Reason);

6.4.6 Callback function

This is the function that is registered and called when messages are available on
the associated object handle or events have been detected.

A message consumer function is free to execute any Message Queue Interface
calls with the exception of MQCTL with operation MQOP_START_WAIT and
MQDISC.

Only one callback function is allowed to be registered per object handle using the
same queue manager connection handle. If a second callback function is
registered for the same object handle it replaces the previous registration.

Messages from the same object handle and same connection handle (Hconn)
are processed one at a time, preserving the order specified (priority or first in first
out) in the MQGMO options in the MQCB function call.

If multiple registrations are created to consume messages from multiple object
handles (queues or topics) and they share the same queue manager connection
handle the messages are processed one at a time. A queue manager connection
handle cannot have more than one Message Queue Interface call active at the
same time.

It is possible to register multiple callback functions for the same queue using
different queue manager connection handles. In this case messages from the
queue are processed in parallel and the sequence cannot be guaranteed.

Syntax
The callback function signature is:

MQLONG MyCBFunction (Hconn, MsgDesc, GetMsgOpts, Buffer, Context)

118 WebSphere MQ V7.0 Features and Enhancements

Parameters
Table 6-14 shows the parameters received by the callback function.

Table 6-14 Callback function input parameters

MQCBC callback context
This data structure is passed to callback functions as the context information.
See Table 6-15.

Table 6-15 MQCBC callback context

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

MsgDesc MQMD Input Defines the attributes of the messages for the
message consumer. Not required for event
handler.

GetMsgOpts MQGMO Input Options to control how messages are obtained
for the message consumer. Not required for
event handlers.

Buffer MQBYTEx Input Area containing the message.

Context MQCBC Input/Output Data structure with context information for
Callback functions.

Field name Data type Input/output Description

StrucID MQCHAR4 Input Structure identifier.

Version MQLONG Input Current version is 1.

CallType MQLONG Input Information about why this function was called.
There are seven call types:
� MQCBCT_REGISTER_CALL
� MQCBCT_START_CALL
� MQCBCT_STOP_CALL
� MQCBCT_DEREGISTER_CALL
� MQCBCT_MSG_REMOVED
� MQCBCT_MSG_NOT_REMOVED
� MQCBCT_EVENT_CALL

Hobj MQHOBJ Input Object handle from which messages are
consumed.

CompCode MQLONG Input Completion code. It indicates if there were
problems retrieving the message.

 Chapter 6. Message Queue Interface extensions 119

Example
This callback function prints a message for each type of callback received. Refer
to Example 6-9.

Example 6-9 Callback function example

/***/
/* FUNCTION: MessageConsumer */
/* PURPOSE : Callback function called when messages arrive */
/***/
 MQLONG MessageConsumer(MQHCONN hConn,
 MQMD * pMsgDesc,
 MQGMO * pGetMsgOpts,
 MQBYTE * Buffer,

Reason MQLONG Input Reason code.

State MQLONG Input Indication of the state of the current consumer.
This field is of most value when a non-zero
Reason Code is passed.

DataLength MQLONG Input Length in bytes of the message.

BufferLength MQLONG Input Length in bytes of the buffer used to store the
message.

Flags MQLONG Output Flags containing information about this
consumer.
The MQCBCF_BUFF_EMPTY flag may be
returned when there has been an error during
the read ahead process.

CallbackArea MQPTR Input/output Field available for the callback function to use.
This area is saved and returned unchanged by
the queue manager. It can be used by the
callback to store state information that is
preserved across invocations of the function.
This area is shared by callback function
invocations with this object handle.

ConnectionArea MQPTR Input/output Field available for the callback function to use.
This area is saved and returned unchanged by
the queue manager. It can be used by the
callback to store state information that is
preserved across invocations of the function.
This area is shared for all callback functions
that have the same connection handle.

Field name Data type Input/output Description

120 WebSphere MQ V7.0 Features and Enhancements

 MQCBC * pContext)
 {
 MQLONG i,max;

 switch(pContext->CallType)
 {
 case MQCBCT_REGISTER_CALL:
 case MQCBCT_START_CALL:
 case MQCBCT_STOP_CALL:
 case MQCBCT_DEREGISTER_CALL:

printf("CallType = %d\n",pContext->CallType);
break;

 case MQCBCT_MSG_REMOVED:
 case MQCBCT_MSG_NOT_REMOVED:

printf("Message Call : CallType = %d\n",pContext->CallType);
printf("Message received\n");
... (process the message)
break;

 case MQCBCT_EVENT_CALL:
printf("Event Call : Reason = %d\n",pContext->Reason);
break;

 default:
printf("CallType = %d\n",pContext->CallType);
break;

 }
 return 0;
 }

6.5 Publish/Subscribe

The Message Queue Interface has been extended to support Publish/Subscribe
in WebSphere MQ V7.0.

In Pub/Sub there are two roles that use different Message Queue Interface
function calls and data structures. The roles are the publisher and the subscriber.

Topics are the strings that define the destination of the messages produced by
publishers and the source of the messages consumed by the subscribers.

 Chapter 6. Message Queue Interface extensions 121

6.5.1 Topics

The Object Descriptor (MQOD) data structure has been extended to support the
use of topics when the MQOPEN or MQPUT1 function calls are used by
publisher programs.

There is a new data structure Subscription Descriptor (MQSD) that is used to
specify the topic and the subscription attributes. A subscriber application uses
the MQSUB function call with reference to a MQSD structure to register a
subscription to receive publication messages.

The topic can be resolved in three ways:

� Using a topic object that is created using queue manager administration
commands. This object has a 48-character topic object name and a
variable-length topic string as an attribute. The topic object name may be
used in the MQOD or MQSD data structures as a short name reference to a
topic.

� Using a topic string in the MQOD or the MQSD data structures. Topic strings
are variable-length strings (MQCHARV) of up to 10,240 characters.

� Using a concatenation of the topic string defined in a topic object and the
topic string defined in the MQOD or MQSD data structures. The
concatenation is performed when the topic object name and the topic string
are both specified in the MQOD or MQSD.

6.5.2 Publishers

Publisher applications are programs that put messages to topic destinations. In
earlier versions of WebSphere MQ, publishers have to put messages on queues
and these messages had to be formatted with special headers that were required
by the Pub/Sub brokers.

Publisher applications have the option to suppress any reply information that
might be present in the MQMD of the message. Pub/Sub does not normally
expect that subscribers reply to publication messages.

Publisher applications can publish messages as retained publications. Retained
publications are kept by the queue manager and delivered to new subscribers
when they subscribe to the topic and request to receive retained publications.
Only one retained publication per topic is kept. A new retained publication
replaces the previous one.

An application program needs the MQOPEN, MQPUT, and MQCLOSE or
MQPUT1 function calls to publish messages. Changes have been made to

122 WebSphere MQ V7.0 Features and Enhancements

MQMD, MQOD, and MQPMO data structures to support the publication to topics.
See Example 6-10 on page 131.

6.5.3 Subscribers

Subscriber applications are programs that receive messages previously sent to
topic destinations. A subscriber application needs to do two things:

� Create one or more subscriptions, each of which identifies topic strings of
interest and identifies a queue to place those messages on.

� Consume the messages delivered as a result of the subscriptions.

To support subscriber applications, WebSphere MQ V7.0 has two new Message
Queue Interface function calls (MQSUB and MQSUBRQ), two new data
structures (MQSD and MQSRO), and changes to an existing data structure
(MQMD).

There are two types of subscriptions:

� Durable: These subscriptions remain active after the subscriber program
closes the connection to the queue manager. All publications for the
subscribed topic are stored in the queue manager while the subscription is
suspended. The subscriber is expected to reconnect and resume the
subscription to receive all publications.

� Non durable: These subscriptions are terminated when the subscriber
program terminates or closes the connection to the queue manager.

There are two methods to identify where published messages are to be stored for
delivery to a subscriber:

� Managed: These are destinations created by the queue manager and a
handle is returned to the subscriber application. We recommend this for
non-durable subscriptions, where messages may only be queued when the
subscriber program is running.

� Non managed: These are destinations that the subscriber application
supplies. They must be local queues that have already been opened. The
handle is supplied to the subscription request. In this case, it is a
responsibility of the subscriber program to consume or clear all messages
from the queue.

Subscribers can request to receive retained publications when the subscription is
registered. The MQSUBRQ function call enables a subscriber to request retained
publications on demand.

 Chapter 6. Message Queue Interface extensions 123

Subscribers receive publications using MQGET or MQCB function calls. If the
subscription is non-managed then the subscriber can open the destination queue
and use MQGET to retrieve the publications without making a reference to a
topic. This is useful when non-managed subscriptions have been created using
administration commands and non-Pub/Sub applications can receive
publications. Refer to Example 6-11 on page 132.

6.5.4 MQOD Object Descriptor

Table 6-16 lists the new fields added to Version 4 of the MQOD Object
Descriptor.

Table 6-16 MQOD Version 4 new fields

Field name Data type Input/output Description

...version 3 fields... Version 3 fields precede the following new
fields in the Version 4 MQOD.

ObjectString MQCHARV Input Optional. Topic string to be used for
publications. If the ObjectName field is
specified then the topic is a concatenation of
the topic string in the topic object and the
string specified here.

SelectionString MQCHARV Input Optional. Used to specify a selection string to
be used by MQGET calls.

ResObjectString MQCHARV Output Contains the topic string from the topic object
specified in ObjectName and the ObjectString
is not specified or the result of the
concatenation of the topic string in the topic
object and the ObjectString.

ResolvedType MQLONG Output If ObjectName specified a queue alias then
this field has the alias object type (queue or
topic).

124 WebSphere MQ V7.0 Features and Enhancements

6.5.5 MQSD Subscription Descriptor

Table 6-17 lists the new Subscription Descriptor data structure used by the
MQSUB function call.

Table 6-17 MQSD Subscription Descriptor fields

Field name Data type Input/output Description

StrucId MQCHAR4 Input Structure Identifier.

Version MQLONG Input Current version is 1.

Options MQLONG Input At least one the following options:
� MQSO_ALTER
� MQSO_CREATE
� MQSO_RESUME
� MQSO_CREATE + MQSO_RESUME
� MQSO_CREATE + MQSO_ALTER

ObjectName MQCHAR48 Input Topic object name as defined in the queue
manager (optional). It can be used instead
of or in combination with ObjectString.

AlternateUserId MQCHAR12 Input Alternate user ID to check authorization for
this subscription.

AlternateSecurityID MQBYTE40 Input Security identifier passed with the
AlternateUserid.

SubExpiry MQLONG Input/output Time specified in tenths of a second after
which the subscription expires. On return
of a MQSO_RESUME this is the original
expiry time of the subscription and not the
remaining expiry time.

ObjectString MQCHARV Input Topic string. It can be used instead of or in
combination with ObjectName.

SubName MQCHARV Input Unique subscription name required when a
durable subscription is used.

SubUserData MQCHARV Input User data that is included with every
publication received with this subscription.
The user data is included as
MQSubUserData message property.

SubCorrelId MQBYTE24 Input/output Correlation ID set in the MQMD of all
messages matching this subscription.

PubPriority MQLONG Input/output Priority in the MQMD of all messages
matching this subscription.

 Chapter 6. Message Queue Interface extensions 125

6.5.6 MQPMO put message options

Table 6-18 shows the fields that have new uses or new fields that have been
added in WebSphere MQ V7.0.

Table 6-18 MQPMO Version 3 field changes

PubAccountingToken MQBYTE32 Input/output Accounting token the MQMD of all
messages matching this subscription.

PubApplIdentityData MQCHAR32 Input/output Application identity data in the MQMD of all
messages matching this subscription.

SelectionString MQCHARV Input/output Selection string used to select publications
matching this topic. On return of a MQSUB
call with MQSO_RESUME this field has
the original selection string if a buffer long
enough has been provided.

SubLevel MQLONG Input/output Subscription level to be used for this
subscription. This field is used by
intercepting subscribers and not by
common Pub/Sub applications.

ResObjectString MQCHARV Output Topic string from the topic object specified
in ObjectName and if ObjectString is not
specified, or the result of the concatenation
of the topic string in the topic object and the
ObjectString.

Field name Data type Input/output Description

Field name Data type Input/output Description

StrucId MQCHAR4 Input Structure Identifier.

Version MQLONG Input Current version is 3.

Options MQLONG Input New options for publication:
� MQPMO_SUPPRESS_REPLYTO
� MQPMO_RETAIN

... other fields ... Other existing fields precede the following.

ResolvedQName MQCHAR48 Output Returned with an undefined value for
topics.

ResolvedQMgrName MQCHAR48 Output Returned with an undefined value for
topics.

126 WebSphere MQ V7.0 Features and Enhancements

6.5.7 MQMD message description

Table 6-19 lists the changes to the MQ Message Descriptor (MQMD).

Table 6-19 MQMD changes

--- Other fields ... Other fields that precede the following
fields added in Version 3 of MQPMO.

OriginalMsgHandle MQHMSG Input Original message handle received by this
program and this field is used with Action
MQACTP_REPLY or
MQACTP_FORWARD.

NewMsgHandle MQHMSG Input/output New message handle with message
properties that overrides the original
message handle.

Action MQLONG Input Field to specify the type of put being
performed and the relationship with a
previous message received (original
message). The action values are:
� MQACTP_NEW
� MQACTP_FORWARD
� MQACTP_REPLY
� MQACTP_REPORT

PubLevel MQLONG Input Level of subscription targeted by this
publication. This field is used by
intercepting subscribers and not by
common Pub/Sub applications.

Field name Data type Input/output Description

Field name Data type Input/output Description

StrucId MQCHAR4 Input Structure Identifier.

Version MQLONG Input Current version is 2.

Report MQLONG Input If reports are requested by a publisher then
this application should expect zero, one, or
many report messages back, depending
on how many subscribers received the
publication.

... other fields ... Other existing fields precede the following.

Priority MQLONG Input/output New value that can be specified is
MQPRI_PRIORITY_AS_TOPIC_DEF.

 Chapter 6. Message Queue Interface extensions 127

6.5.8 MQSUB manage subscription

This is a new function call to register, alter, or deregister a subscription to a topic.
The topic can be specified by a topic object or a topic string or a concatenation of
the topic object and the topic string. See Example 6-11 on page 132.

Syntax
The MQSUB function syntax is:

MQSUB (Hconn, SubDesc, Hobj, Hsub, CompCode, Reason)

... other fields ... Other existing fields precede the following.

MsgId MQBYTE24 Input On MQPUT/MQPUT1 for a retained
publication this field has the MsgId used for
the retained publication.

CorrelId MQBYTE24 Input/output On MQPUT or MQPUT1 this can be the
CorrelId for retained publications and it can
be propagated to all the subscriptions that
do not specify a CorrelId in the
subscription.

... other fields ... Other existing fields precede the following.

UserIdentifier MQCHAR12 Used for retained publications but not used
for other types of publications.

AccountingToken MQBYTE32 Used for retained publications but not used
for other types of publications.

ApplIdentityData MQCHAR32 Used for retained publications but not used
for other types of publications.

PutAppType MQLONG This value can be overridden by the value
specified in the subscription.

PutAppName MQCHAR28 This value can be overridden by the value
specified in the subscription.

PutDate MQCHAR8 This value can be overridden by the value
specified in the subscription.

PutTime MQCHAR8 This value can be overridden by the value
specified in the subscription.

ApplOriginData MQCHAR4 This value can be overridden by the value
specified in the subscription.

Field name Data type Input/output Description

128 WebSphere MQ V7.0 Features and Enhancements

Parameters
Table 6-20 lists the MQSUB parameters.

Table 6-20 MQSUB parameters

6.5.9 MQSUBRQ subscription request

This function call requests copies of the current retained publications for the
topic. If the subscription is made to a topic with wildcards then this request can
generate multiple messages returned to the subscriber.

Syntax
The MQSUBRQ function syntax is:

MQSUBRQ (Hconn, Hsub, Action, SubRqOpts, CompCode, Reason)

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

SubDesc MQSD Input/output Subscription Descriptor that represents the
subscription that is registered.

Hobj MQHOBJ Input/output On input, for non-managed subscriptions this
is the handle that represents the queue to
receive the publications. On output, for
managed subscriptions this represents the
queue object assigned by the queue manager
to receive publications.

Hsub MQHSUB Output Subscription handle that represents the
subscription that has been created. Hsub can
be used for two further operations: MQSUBRQ
to request retained publications or MQCLOSE
to remove the subscription.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

 Chapter 6. Message Queue Interface extensions 129

Parameters
Table 6-21 lists the MQSUBRQ parameters.

Table 6-21 MQSUBRQ parameters

6.5.10 MQCLOSE close object

This function call is used to release control of a queue, topic, or subscription. The
MQCLOSE options may specify whether durable subscriptions are kept or
removed.

When an object handle of a managed subscription is closed the queue manager
removes all publications that have not been retrieved.

When closing non-managed subscriptions publications are not removed. We
recommend that subscriber applications process all the messages from the
subscription queue after the subscription is closed.

Syntax
The MQCLOSE function syntax is:

MQCLOSE (Hconn, Hobj, Options, CompCode, Reason)

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Hsub MQHSUB Input Handle that represents the subscription.

Action MQLONG Input Controls the action required with the
subscription:
MQSR_ACTION_PUBLICATION.
This requests a copy of the retained
publications.

SubRqOpts MQSRO Input/output Options to control the action of MQSUBRQ.
There is a field NumPubs that indicates the
number of publication messages returned.

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

130 WebSphere MQ V7.0 Features and Enhancements

Parameters
Table 6-22 lists the MQCLOSE parameters.

Table 6-22 MQCLOSE parameters

Examples
Example 6-10 and Example 6-11 on page 132 are samples of a simple publisher
and a simple subscriber programs.

Example 6-10 Simple publisher program

/* Define data structures */

MQHCONN hConn;
MQOD ObjDesc = {MQOD_DEFAULT};
MQHOBJ hObj;
MQLONG CompCode, Reason;
MQLONG OpenOpts = 0;
MQPMO pmo;
MQMD MsgDesc;
char pBuffer[] = “x”;

/* Open a topic to publish to */

ObjDesc.ObjectType = MQOT_TOPIC;
ObjDesc.Version = MQOD_VERSION_4;

Parameter name Data type Input/output Description

Hconn MQHCONN Input Handle that represents a valid connection to
the queue manager.

Hobj MQHOBJ Input/output Handle that represents the object to be closed.
Objects can be queues, topics, or
subscriptions. If it is a subscription the Hsub
handle returned from MQSUB is used instead
of Hobj. On output, an unusable handle is
returned.

Options MQLONG Input These new options control how subscriptions
are closed:
� MQCO_REMOVE_SUB
� MQCO_KEEP_SUB (for durable

subscriptions only)

CompCode MQLONG Output Completion code.

Reason MQLONG Output Reason Code.

 Chapter 6. Message Queue Interface extensions 131

ObjDesc.ObjectString.VSPtr = argv[1]; /* Topic string */
ObjDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;

OpenOpts = MQOO_OUTPUT
 | MQOO_FAIL_IF_QUIESCING;

MQOPEN(hConn, &ObjDesc, OpenOpts, &hObj, &CompCode, &Reason);

/* Publish to the specified topic string */

MQPUT(hConn, hObj, &MsgDesc, &pmo, strlen(pBuffer), pBuffer, &CompCode, &Reason);

Example 6-11 is the simple subscriber program.

Example 6-11 Simple subscriber program

/* Define data structures */

MQSD SubDesc = {MQSD_DEFAULT};
MQHOBJ Hobj = MQHO_UNUSABLE_HOBJ;
MQHOBJ Hsub = MQHO_UNUSABLE_HOBJ;
MQHCONN hConn;
MQOD ObjDesc = {MQOD_DEFAULT};
MQLONG CompCode, Reason;
MQGMO gmo;
MQMD MsgDesc;
MQLONG DataLength;
char pBuffer[] = “x”;

/* Subscribe for publications from a topic */

 SubDesc.ObjectString.VSPtr = argv[1]; /* Topic string */
 SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;
 SubDesc.SubName.VSPtr = argv[2]; /* Subscription name */
 SubDesc.SubName.VSLength = MQVS_NULL_TERMINATED;
 SubDesc.Options = MQSO_CREATE
 | MQSO_MANAGED
 | MQSO_NON_DURABLE
 | MQSO_FAIL_IF_QUIESCING;

 MQSUB(hConn, &SubDesc, &Hobj, &Hsub, &CompCode, &Reason);

/* Consume messages published to the topic */

132 WebSphere MQ V7.0 Features and Enhancements

MQGET(hConn, Hobj, &MsgDesc, &gmo, strlen(pBuffer), pBuffer, &DataLength,
 &CompCode, &Reason);

/* Unsubscribe */

if (Hsub != MQHO_UNUSABLE_HOBJ)
{
 MQCLOSE(hConn, &Hsub, MQCO_REMOVE_SUB, &CompCode, &Reason);
}

/* And close the object handle. */

if (Hobj != MQHO_UNUSABLE_HOBJ)
{
 MQCLOSE(hConn, &Hobj, MQCO_NONE, &CompCode, &Reason);
}

6.6 Put action indicators

In WebSphere MQ V7.0 it is now possible to indicate to the queue manager the
type of put action that is performed and the relationship between the new
message and a possible original message that may have been received before.

The queue manager uses the action indicators to validate and copy message
properties and MQMD values from the original message to the new message
handle according to the action performed.

The original message is represented by a message handle stored in MQPMO in
the OriginalMsgHandle field and the new message is represented by a message
handle stored in the NewMsgHandle field.

 Chapter 6. Message Queue Interface extensions 133

The type of actions that can be specified in the new Action field in the MQPMO
put options in the MQPUT or MQPUT1 function calls are:

� MQACTP_NEW: A new message that is unrelated to any previous message
is put to the queue.

� MQACTP_FORWARD: This is a previously retrieved message that may have
been modified is put on the queue for forward processing.

� MQACTP_REPLY: The new message is a reply to a previously retrieved
message.

� MQACTP_REPORT: A report message has been generated as result of
receiving a message.

6.7 Message selectors

A message selector is a criteria to filter messages during MQGET or MQCB
function calls. The selection criteria is specified during the MQOPEN or MQSUB
function calls. To change the selection criteria the object or subscription must be
closed and opened again.

Message selectors existed in Java Message Service (JMS) prior to WebSphere
MQ V7.0. Now any application program that uses Message Queue Interface
functions calls can use message selectors.

Message selectors act on message properties defined in a message. Fields in
the MQMD data structure can be considered as message properties in message
selectors.

A message selector is a variable-length string (MQCHARV) field in MQOD or
MQSD data structures. The syntax of the message selector string is based on a
subset of the SQL92 conditional expressions.

When message selectors are used with point-to-point messaging applications
the selection string is specified in the field SelectionString in the MQOD that is a
parameter of the MQOPEN function call. Any subsequent MQGET function calls
for the object handle returned in the MQOPEN filters the messages based on the
selection criteria described in the selection string.

When message selectors are used with Pub/Sub applications the selection string
is specified in the field SelectionString in the MQSD that is a parameter of the
MQSUB function call. Any subsequent MQGET function calls for the object
handle returned in the MQSUB filter the publications based on the selection
criteria described in the selection string.

134 WebSphere MQ V7.0 Features and Enhancements

A key requirement for message selection to work is that message producer
applications (point-to-point or publishers) set the message properties required by
the message selectors.

For further details and examples message selectors refer to 4.3, “Selectors” on
page 49.

6.8 Other MQI considerations

Also consider the following information:

� MQINQ and MQSET function calls have been updated to inquire and set the
new MQ objects and new attributes on existing or new objects.

� API exits support some of the new Message Queue Interface function calls in
WebSphere MQ V7.0. Some function calls are not supported because it does
not make any sense to have API exits for those calls.

� The equivalent object-oriented version of Publish/Subscribe APIs for
WebSphere MQ V7.0 (C++, Base Java, and .NET) are out of the scope of this
book. Refer to the WebSphere MQ V7.0 manuals Using C++, Using Java, and
Using .NET for detailed information. These are available in the WebSphere
MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

 Chapter 6. Message Queue Interface extensions 135

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

136 WebSphere MQ V7.0 Features and Enhancements

Chapter 7. WebSphere MQ Java
Message Service
enhancements

This chapter discusses enrichments made to the WebSphere MQ classes for
Java Message Service (JMS). These enhancements enable WebSphere MQ to
be a more natural fit to the features of JMS.

The following sections describe the enhancements:

� 7.1, “Read ahead” on page 138

� 7.2, “Asynchronous put” on page 140

� 7.3, “Asynchronous consume” on page 143

� 7.4, “Conversation sharing sessions” on page 144

� 7.5, “Selectors and mapping of MQ and JMS messages” on page 146

� 7.6, “Properties of WebSphere MQ classes for Java Message Service” on
page 148

� 7.7, “Tracing programs” on page 150

7

© Copyright IBM Corp. 2009. All rights reserved. 137

7.1 Read ahead

The read ahead feature in WebSphere MQ V7.0 allows messages from a
destination to be streamed to the WebSphere MQ classes for JMS ahead of the
JMS application requesting the messages. This saves the classes from having to
send a separate request to the WebSphere MQ queue manager for each
message that the JMS application consumes and allows the messages to be
consumed with improved performance.

A JMS application uses a MessageConsumer to receive messages from the
destination. It can use one of the receive methods from the MessageConsumer
to fetch messages synchronously from the destination. It can also register an
object that implements the MessageListener interface to fetch messages
asynchronously.

A JMS application consumes both persistent and non-persistent messages from
the destination either synchronously or asynchronously. When a JMS application
needs to consume non-persistent messages, the destination can be configured
such that the WebSphere MQ classes for JMS make use of an internal buffer in
memory to read ahead and store the messages of interest before delivering them
to the application.

The read ahead feature is only applicable for non-persistent messages. If
persistent messages were read into a buffer, the queue manager would no longer
be able to recover the messages in the event of failure. Hence, this capability is
not supported.

An application that consumes messages from a destination with a mixture of
persistent and non-persistent messages can still use read ahead. The order of
the messages is preserved, but the performance benefits of read ahead apply
only to the non-persistent messages. Read ahead is particularly effective for
destinations with a large number of messages that must be consumed rapidly in
the order they are queued.

Note: MessageConsumer, MessageListener, and receive methods are JMS
concepts. For more information about these topics refer to the JMS
Specification, available at:

http://java.sun.com/products/jms/docs.html

138 WebSphere MQ V7.0 Features and Enhancements

http://java.sun.com/products/jms/docs.html

Figure 7-1 shows a JMS application receiving messages from a WebSphere MQ
V6.0 queue manager. The JMS application must issue a receive for every
message that it must consume from the queue.

Figure 7-1 JMS application getting message from WMQ V6.0 queue manager

Compare this with Figure 7-2, which shows a JMS application retrieving
messages from a WebSphere MQ V7.0 queue manager using the read ahead
feature.

Figure 7-2 JMS application getting messages from WMQ V7.0 queue manager using
read ahead feature

• Every message
request flows
over the network
to the queue
manager.

• The messages a
then passed on
the application.

W
eb

S
ph

er
e

M
Q

 c
la

ss
es

 fo
r J

M
SJMS ApplicationJMS Application

W
M

Q
 Q

ue
ue

 M
an

ag
er

MessageConsumer receive(. . .)

MessageConsumer receive(. . .)

MessageConsumer receive(. . .)

MessageConsumer receive(. . .)

• The classes
read
multiple
messages
from the queue
manager.

• The messages
are stored in a
memory buffer
for further
delivery to the
application.

W
eb

Sp
he

re
M

Q
 c

la
ss

es
 fo

r J
M

SJMS ApplicationJMS Application

W
M

Q
 Q

ue
ue

 M
an

ag
er

MessageConsumer receive(. . .)

MessageConsumer receive(. . .)

MessageConsumer receive(. . .)

MessageConsumer receive(. . .)

 Chapter 7. WebSphere MQ Java Message Service enhancements 139

The key considerations for using the read ahead feature in application designs
are:

� If the JMS application using read ahead terminates abruptly before it
consumes all the messages from the internal buffer, then any non-persistent
messages currently stored in the buffer are discarded and the messages
are lost.

� The read ahead feature is only applicable to non-persistent messages.

� Any existing JMS application can make use of the read ahead feature without
any code modifications.

� If all the following conditions are true, messages sent to a queue in a session
might not be received in the order in which they were sent:

– An application uses two or more message consumers in the same session
to consume the messages from the queue.

– Each message consumer uses a different destination object for the
WebSphere MQ queue.

– Any or both of the destination objects are configured for read ahead.

7.2 Asynchronous put

Consider a Java Message Service (JMS) application that is responsible for
collating and distributing weather samples at frequent intervals, for example,
measurements of humidity, temperature, wind, rain, or snow. This application
sends sequences of messages in rapid succession to the destination and does
not require acknowledgement for every message sent.

Prior to WebSphere MQ V7.0, a JMS application connecting to a destination in
client mode did not have very good performance when publishing messages in
rapid succession. The WebSphere MQ classes for JMS had to wait for a
response back from the queue manager for every message sent by the JMS
application. Only after receiving the response from the queue manager would the
WebSphere MQ classes for JMS return control back to the JMS application. The
JMS application was then able to send the next message in the weather sample.

Using the enhanced asynchronous put feature in WebSphere MQ V7.0, the JMS
application can now send messages in rapid succession with improved
performance. The WebSphere MQ classes for JMS forwards each message to

Note: The attribute READAHEADALLOWED must be set on the destination
for the JMS application to make use of the read ahead feature in WebSphere
MQ V7.0. Refer to 5.4, “Read ahead” on page 68.

140 WebSphere MQ V7.0 Features and Enhancements

the queue manager and does not wait for a response. Control is immediately
returned back to the JMS application and the application can proceed to send the
next message.

Existing JMS applications can make use of the WebSphere MQ V7.0
asynchronous put feature without any modifications to the code. For any JMS
application to use this feature, the destination on the WebSphere MQ queue
manager can be configured independently. For more information about
configuring the destination for asynchronous put refer to 5.5, “Asynchronous put”
on page 71.

WebSphere MQ classes for JMS function this way for persistent as well as
non-persistent messages sent during a transacted session.

For messages sent in a transacted session, the JMS application determines
whether the queue manager received the messages safely or otherwise, by
committing the transaction.

For the non-persistent messages sent in a non-transacted session, the
SENDCHECKCOUNT property of the ConnectionFactory object determines the
number of messages to be sent, before WebSphere MQ classes for JMS checks
the queue manager for acknowledged messages.

Note: JMS applications can make use of the asynchronous put feature only
when connecting to WebSphere MQ V7.0 in client mode. This feature is not
applicable to binding mode.

In client mode, the application establishes connection with a WebSphere MQ
queue manager using sockets over Transmission Control Protocol/Internet
Protocol (TCP/IP).

In binding mode, the application establishes a connection with a WebSphere
MQ queue manager using shared memory. Both the JMS application and the
WebSphere MQ queue manager must be running on the same machine.

Note: According to JMS specifications the term transacted session refers to
the case where a session’s commit and rollback methods are used to
demarcate a transaction that is local to the session. In cases where a
session’s work is coordinated by an external transaction manager, the commit
and rollback methods are not used. The result of such a closed session’s
transactions is later determined by the transaction manager.

 Chapter 7. WebSphere MQ Java Message Service enhancements 141

A JMS application may encounter exceptions when sending messages in rapid
succession. In such conditions, it is necessary for the JMS application to register
an ExceptionListener with the connection object. In the event of failure, that is,
when the WebSphere MQ server determines failure in message delivery, the
WebSphere MQ classes for JMS triggers the onException method of the
ExceptionListener to pass the JMS exception to the application. The JMS
application can be designed to capture the JMS exception and process it
accordingly.

Asynchronous put provides considerable performance benefits to JMS
applications that transmit a sequence of messages in rapid succession but do
not require immediate acknowledgement from the queue manager for every sent
message.

Figure 7-3 shows the workflow of a JMS application sending messages in client
mode to a WebSphere MQ V6.0 queue manager.

Figure 7-3 JMS sending messages in client mode in WMQ 6.0

Note: For ConnectionFactory object attributes refer to 7.6, “Properties of
WebSphere MQ classes for Java Message Service” on page 148.

Note: ExceptionListener is JMS terminology. For more information about
ExceptionListener refer to the JMS specification available at:

http://java.sun.com/products/jms/docs.html

W
eb

S
ph

er
e

M
Q

 c
la

ss
es

 fo
r J

M
S

Messages are passed
to the queue manager
over the network and
stored.

CompletionCode and
ReasonCode are
returned, and an
exception thrown in
case of error.

JMS ApplicationJMS Application
W

M
Q

 Q
ue

ue
 M

an
ag

erMessageProducer send(. . .)

MessageProducer send(. . .)

MessageProducer send(. . .)

142 WebSphere MQ V7.0 Features and Enhancements

http://java.sun.com/products/jms/docs.html

Compare this with Figure 7-4, which shows the workflow of a JMS application
sending messages in client mode to a WebSphere MQ V7.0 queue manager
using asynchronous put.

Figure 7-4 JMS sending messages in client mode with asynchronous put

7.3 Asynchronous consume

Prior to WebSphere MQ V7.0, asynchronous message consumption was not
natively supported. To perform asynchronous message consumption, the
WebSphere MQ classes for JMS periodically polled the destination for suitable
messages to arrive.

Both synchronous and asynchronous message consumption are now supported
as native features in WebSphere MQ V7.0. An application that needs to consume
a message asynchronously registers a callback function for a destination. When
a suitable message is available at the destination, WebSphere MQ calls the
function and passes the message as a parameter. The function can then process
the message asynchronously.

From the JMS application design or programming perspective there are no
changes for asynchronous message consumption. As previously, the JMS
application registers an object implementing the JMS MessageListener interface
to consume messages asynchronously.

The implementation of JMS message listeners is now a natural fit with
WebSphere MQ. In previous versions of WebSphere MQ, the WebSphere MQ
classes for JMS polled the destination at a regular interval to check whether any
suitable messages were available at the destination. Polling created additional
workload at the application side because the WebSphere MQ classes for JMS

W
eb

S
ph

er
e

M
Q

 c
la

ss
es

 fo
r J

M
S

W
M

Q
 Q

ue
ue

 M
an

ag
er

Client code returns
CC and RC “OK”
and sends the
message across the
network.

MQSTAT call gets
the status information.

JMS ApplicationJMS Application

MessageProducer send(. . .)

MessageProducer send(. . .)

MessageProducer send(. . .) OK

 Chapter 7. WebSphere MQ Java Message Service enhancements 143

had to send polling requests to the queue manager over the TCP/IP network and
wait for a response. In the usual case where the destination was empty this
resulted in inefficient usage of network resources and increased CPU usage on
both the JMS application machine and the queue manager machine.

In WebSphere MQ V7.0, the WebSphere MQ classes for JMS no longer polls a
destination to check the availability of a message. As soon as a suitable
message arrives at the destination the WebSphere MQ classes for JMS pass the
message to the MessageListener callback function.

The advantages of using WebSphere MQ native asynchronous consume are
summarized as follows:

� Improved performance of JMS message listeners, particularly when an
application uses multiple message listeners in a session to monitor multiple
destinations.

� Reduced CPU usage at both the JMS application and the WebSphere MQ
queue manager.

� Fewer requests over TCP/IP and a reduction in network traffic between the
classes and the queue manager.

� Message throughput is increased and the time taken to deliver a message to
a message listener is reduced.

Similar enrichments are seen when message-driven beans (MDBs) are used to
retrieve messages asynchronously. Instead of the MDBs polling for messages,
WebSphere MQ directly passes the messages to be consumed by the MDB. In
some situations there can be multiple MDBs contending for messages from the
same destination. The contention for messages results in higher CPU utilization.
With the introduction of asynchronous consumption in WebSphere MQ V7.0,
multiple MDBs that are consuming messages from the same destination now
experience reduced message contention. This results in higher message
processing performance.

7.4 Conversation sharing sessions

Conversation sharing is a new feature in WebSphere MQ V7.0. It allows a single
TCP/IP socket to multiplex multiple connections, provided that the two ends of
the connection belong to the same process. All Java Message Service
applications by default use multiplexing of sessions without any code
modifications.

In previous versions of WebSphere MQ, each instance of the JMS session
created by the same parent JMS connection would use a different socket

144 WebSphere MQ V7.0 Features and Enhancements

connection to connect to a queue manager. No two JMS sessions shared a
socket connection. JMS applications using multiple threads tend to create
several JMS session objects from a single connection object for parallel
processing of messages. This resulted in a new TCP/IP socket connection being
established for every JMS session and more I/O resource utilization on both the
application machine and the queue manager machine. This is depicted in
Figure 7-5.

Figure 7-5 JMS multi-threaded clients using WMQ V6.0

With the introduction of conversation sharing in WebSphere MQ V7.0, multiple
JMS sessions created from the same connection can be multiplexed across a
single TCP/IP socket, as depicted in Figure 7-6 on page 146. This means that a
JMS application creating multiple JMS sessions from a single connection object
may now use a single TCP/IP socket. A consequence is that both ends of the
socket now have threads that are always receiving data on the socket. This
allows heartbeats to travel down the socket from both the ends. In the event of an
I/O failure, the WebSphere MQ JMS classes can immediately identify the
connection breaking. The JMS application can be more responsive in identifying
the failure at all times and not just when an MQGET is outstanding. Conversation
sharing thereby reduces the dependency of KEEPALIVE on TCP/IP to detect
failures.

W
M

Q
 Q

ue
ue

 M
an

ag
er

W
eb

Sp
he

re
M

Q
 c

la
ss

es
 fo

r J
M

SJMS ApplicationJMS Application

Session Four

Session Three

Session Two

Session One

Individual socket connection
for each session

 Chapter 7. WebSphere MQ Java Message Service enhancements 145

Figure 7-6 JMS multi-threaded clients using WMQ V7.0

For more information about conversation sharing refer to 5.3, “Conversation
sharing” on page 64.

7.5 Selectors and mapping of MQ and JMS messages

Java Message Service applications can use message selectors for filtering
messages from the destination. An application would thus receive those
messages containing properties that match the selector string, as specified by
the application. In WebSphere MQ V6.0, the queue manager did not natively
support the message selection mechanism. The JMS application had to browse
the queue and perform the message selection by examining each message. This
resulted in high CPU usage on both the application machine and the queue
manager machine.

Note: JMS connection and JMS session are JMS terms. For more information
about these topics refer to the JMS Specification available at:

http://java.sun.com/products/jms/docs.html

KEEPALIVE is a TCP/IP property that specifies the duration for which the
connection should be maintained if there is no activity on the socket.

W
M

Q
 Q

ue
ue

 M
an

ag
er

W
eb

Sp
he

re
M

Q
 c

la
ss

es
 fo

r J
M

SJMS ApplicationJMS Application

Session Four

Session Three

Session Two

Session One

Sharing a single socket connection for
each session

146 WebSphere MQ V7.0 Features and Enhancements

http://java.sun.com/products/jms/docs.html

A JMS message consists of a header that is made up of message properties and
a body that contains the application data. As a minimum, a WebSphere MQ
message consists of a MQ Message Descriptor and the message data, as shown
in Figure 7-7.

Figure 7-7 Representation of a MQ message

A JMS application can now read and write the full WebSphere MQ message
including the MQ Message Descriptor. JMS applications can now provide:

� A custom message ID for a message
� A custom user ID for a message
� A custom application name that puts the message
� Finer control over other MQ Message Descriptor fields

A mechanism has been introduced to receive WebSphere MQ messages within
JMS applications as the body of a JMS BytesMessage.

Other MQ API applications can now access the JMS user properties by using
new MQI calls for handling message properties. They will now be able to:

� Read and write MQ Message Descriptor fields and JMS message properties
that were set by JMS applications.

� Access the application data in messages produced by JMS without needing
to parse the message property header.

WebSphere MQ V7.0 provides native support for message selectors. The
selection of messages is performed by the queue manager. When a JMS
application attempts to retrieve a message from the destination, the queue
manager filters the messages that match the selector and delivers them to the
application. Message properties also enable message selection by applications
that use the Message Queue Interface (MQI).

Previously, problems could be encountered when inter-operating messages
between JMS applications and MQI Applications. The JMS applications could not
access the message properties in the MQ Message Descriptor (MQMD). The
MQ API application could not read the JMS header message properties.

Message Descriptor
(MQMD)

Message Data

MQRFH2 Application Data

PersistenceMessage
ID

JMS
Properties

 Chapter 7. WebSphere MQ Java Message Service enhancements 147

Message properties in WebSphere MQ V7.0 allow customers to set and get a
user property in a message while using JMS or MQ API with the same property
name. For more information about message selectors, refer to 4.3, “Selectors” on
page 49.

When a JMS application sends a message, the WebSphere MQ classes for JMS
map the JMS message into a WebSphere MQ message. Some of the JMS
header fields and properties are mapped into fields in the MQ Message
Descriptor and others are mapped into fields in an additional WebSphere MQ
header called an MQRFH2. On receipt of a JMS message by the JMS
application, WebSphere MQ classes for JMS performs the reverse mapping. An
application that is using the MQ API to receive messages from a JMS application
must therefore be able to handle MQRFH2. If the application cannot handle
MQRFH2, the TARGCLIENT property of the destination object can be set to tell
WebSphere MQ classes for JMS not to include MQRFH2 in the WebSphere MQ
messages. However, by excluding the MQRFH2, the information held in some of
the JMS header fields and properties will be lost.

Similarly, an application that is using the MQ API to send messages to a JMS
application must include an MQRFH2 in each message. If an MQRFH2 is not
included, WebSphere MQ classes for JMS can set only those JMS header fields
and properties that can be derived from the fields in a MQ Message Descriptor.

For more information about message properties refer to 6.2, “Message
properties” on page 89.

7.6 Properties of WebSphere MQ classes for Java
Message Service

All objects in WebSphere MQ classes for JMS have properties. Different
properties apply to different object types and have different allowable values.
Symbolic property values differ between the administration tool and program
code.

WebSphere MQ support for JMS provides facilities to set and query the
properties of objects using MQ Explorer (the WebSphere MQ JMS administration
tool) or in an application. Many of the properties are relevant only to a specific
subset of the object types.

148 WebSphere MQ V7.0 Features and Enhancements

Table 7-1 lists some of the new properties introduced in WebSphere MQ V7.0.

Table 7-1 New properties and their corresponding object types

Property Short
name

Description CF/
XACF

QCF/
XAQCF

TCF/
XATCF

Q T

ASYNEXCEPTION AEX Determines whether
WebSphere MQ classes for
JMS informs an
ExceptionListener only when
a connection is broken or
when any exception occurs
asynchronously to a JMS
API call. This applies to all
connections created from
this ConnectionFactory that
have an ExceptionListener
registered.

Y Y Y

PROVIDERVERSION PVER The version, release,
modification level, and fix
pack of the queue manager
to which the application
intends to connect.

Y Y Y

PUTASYNCALLOWED PAA Whether message
producers are allowed to use
asynchronous puts to send
messages to this
destination.

Y Y

READAHEADALLOWED RAA® Whether message
consumers and queue
browsers are allowed to use
read ahead to get
non-persistent messages
from this destination into an
internal buffer before
receiving them.

Y Y

SENDCHECKCOUNT SCC The number of send calls to
allow between checking for
asynchronous put errors
within a single
non-transacted JMS
session.

Y Y Y

 Chapter 7. WebSphere MQ Java Message Service enhancements 149

Besides these properties, WebSphere MQ V7.0 introduces new attributes that
can be used with the JMS administrative objects. For a complete reference of the
properties and their detailed description see to the section “WebSphere MQ
classes for JMS → Properties of objects” in the Using Java manual, available in
the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

7.7 Tracing programs

The WebSphere MQ classes for JMS trace facility has been greatly enhanced in
WebSphere MQ V7.0 to improve the ability of IBM to diagnose customer
problems. Various properties are provided to control tracing. Trace is turned OFF
by default.

Tracing is turned on by setting com.ibm.msg.client.commonservices.trace.status
to ON. To turn tracing off, set this property to OFF.

SHARECONVALLOWED SCA Whether a client mode
connection can share its
socket with other top-level
JMS connections from the
same process to the same
queue manager if the
channel definitions match.

Y Y Y

WILDCARDFORMAT WCF
MT

The version of wildcard
syntax to be used.

Y Y Y

Property Short
name

Description CF/
XACF

QCF/
XAQCF

TCF/
XATCF

Q T

150 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Table 7-2 contains details of all the trace properties.

Table 7-2 Properties to configure the trace facility.

For a complete reference of the properties and their detailed descriptions refer to
the section “WebSphere MQ classes for JMS → Using WebSphere MQ classes
for JMS → Solving problems” in the Using Java manual, available in the
WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Trace property Function

com.ibm.msg.client.commonservices.trace.outputName The directory and file name to which trace
output will be sent.

com.ibm.msg.client.commonservices.trace.include A semicolon (;) separated list of packages and
classes that will be traced, or the special
values ALL or NONE.

com.ibm.msg.client.commonservices.trace.exclude A semicolon-separated list of packages and
classes that will not be traced, or the special
values ALL or NONE.

com.ibm.msg.client.commonservices.trace.maxBytes The maximum number of bytes that will be
traced from any byte arrays.

com.ibm.msg.client.commonservices.trace.limit The maximum number of bytes to be written to
a trace output file.

com.ibm.msg.client.commonservices.trace.count The number of trace output files to cycle
through.

com.ibm.msg.client.commonservices.trace.parameter Whether method parameters and return
values are included in the trace.

com.ibm.msg.client.commonservices.trace.startup Whether to trace the initialization phase of
WebSphere MQ classes for JMS during which
resources are allocated, including the
initialization of the main trace facility.

com.ibm.msg.client.commonservices.trace.compress Whether trace output is compressed.

com.ibm.msg.client.commonservices.trace.level A filtering level for the trace.

Note: The trace parameters used by versions of WebSphere MQ classes for
JMS earlier than Version 7.0 are still supported. However, these should be
considered deprecated for new applications.

 Chapter 7. WebSphere MQ Java Message Service enhancements 151

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Note: When trace is activated, it creates a file named mqjms.trc.lck. If the
version of Java is earlier than Java 5, this file is not removed when the trace
ends.

152 WebSphere MQ V7.0 Features and Enhancements

Chapter 8. Administration
enhancements

This chapter describes all the enhancements and changes to WebSphere MQ
V7.0 for administration functions. It discusses WebSphere MQ Explorer, control
commands, and MQSC administration interfaces.

This chapter contains the following sections:

� 8.1, “WebSphere MQ Explorer” on page 154
� 8.2, “Object properties and parameters” on page 179
� 8.3, “Java and JMS-related administration enhancements” on page 192
� 8.4, “Control commands” on page 194
� 8.5, “Journals on i5/OS” on page 196

Publish/Subscribe administration is not covered in this chapter due to the
complexity of this new feature. Refer to Chapter 9, “Publish/Subscribe
management” on page 197, for details of Pub/Sub administration tasks.

8

© Copyright IBM Corp. 2009. All rights reserved. 153

8.1 WebSphere MQ Explorer

The Eclipse-based graphical tooling, MQ Explorer, introduced in the previous
release, has been extensively enhanced in WebSphere MQ V7.0. MQ Explorer
enables remote configuration of WebSphere MQ from Linux x86 and Windows
machines. It does not require a local server and can be installed on machines
without charge.

This section describes what is new in MQ Explorer. The main enhancements are:

� General GUI enhancements: MQ Explorer has a new welcome page and
many linked pages to assist inexperienced users. It is now possible to export
and import MQ Explorer settings.

� Browsing messages: The window has been enhanced to display message
properties. Message properties are a new extension to messages in
WebSphere MQ V7.0.

� Mapping between MQ objects and JMS objects: New JMS-administered
objects can be created based on existing MQ objects, or new MQ objects can
be created based on existing JMS objects.

� Remote administration of local queue managers: A new window has been
added that can check and enable the prerequisites to allow for remote
administration of local queue managers.

� Security: Improved capabilities to secure administration connections to queue
managers.

� Queue manager sets: Queue managers can be grouped into the sets to
perform administration tasks instead of performing the task on queue
managers one by one.

� SupportPac MS0Q integration: The functionality of this SupportPac is now
integrated into MQ Explorer to manage topics for V6 queue managers.

Several enhancements are fully compatible with V6 queue managers, so MQ
administrators can profit from these MQ Explorer enhancements to support their
V6 environments.

8.1.1 General GUI enhancements

There are two general enhancements to MQ Explorer GUI. The welcome page
brings a better start point for using MQ Explorer by new or less experienced

Tip: These enhancements can also be used for V6 queue managers.

154 WebSphere MQ V7.0 Features and Enhancements

users. The ability to export and import MQ Explorer settings is useful for product
reinstallation or to transfer settings to other instances of MQ Explorer.

Welcome page
This page automatically displays when MQ Explorer is launched for the first time.

Figure 8-1 shows the new MQ Explorer welcome page.

Figure 8-1 MQ Explorer welcome page

The Administer WebSphere MQ view allows navigation of the WebSphere MQ
configuration to display and administer queue managers, clusters, and JMS

Tip: To display the welcome page at any time, select Help → Welcome from
the menu bar.

 Chapter 8. Administration enhancements 155

objects. This is the main view of MQ Explorer for experienced users and
administrators.

There are also four icons on the welcome page. From left to right they are:

� Get Started: This view contains links to learn about the basic features of the
WebSphere MQ product, set up a default configuration for the demonstration
applications, run the Postcard application, run the API exerciser application,
and install the product documentation on to the local system. The
documentation is also available on the Internet as PDF files in the
WebSphere MQ Library at:

http://www.ibm.com/software/integration/wmq/library/

The documentation is also available as an interactive tree view in the IBM
Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

� Tutorials: This view provides links to tutorials to learn how to perform basic
tasks with WebSphere MQ such as creating a queue manager, creating a
queue, creating a channel, putting a message onto a queue, and getting a
message from a queue.

� Returning Users: This view is for users who are familiar with WebSphere MQ
and wish to discover the new features in WebSphere MQ V7.0 and learn how
to upgrade to the new version.

� Web Resources: This view contains links to various resources on the Internet
about the WebSphere MQ product family, including education, technical
resources and best practices, product extensions, IBM business partners,
WebSphere MQ performance, related products, getting involved, and support.

Export and import settings
Settings can be exported from MQ Explorer to a file or imported from a file into
MQ Explorer. This can be useful for backup purposes, product reinstallation, to
transfer settings to another instance of MQ Explorer, or to cater for multiple
installations of MQ Explorer.

The following types of settings can be exported or imported:

� MQ Explorer preferences
� Filters and column schemes
� Connection information (for remote queue managers)
� Queue manager sets information (memberships, set definitions, and filters)

156 WebSphere MQ V7.0 Features and Enhancements

http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

To access the export and import capabilities for MQ Explorer, right-click IBM
WebSphere MQ in the Navigator view, as illustrated in Figure 8-2.

Figure 8-2 Export and import settings in MQ Explorer V7.0

Exporting settings
To export settings, click Export MQ Explorer Settings and then select the
settings to be exported and the location of the file to contain the settings. See
Figure 8-3.

Figure 8-3 Export settings window

The exported settings are stored as XML in compressed ZIP file format.

 Chapter 8. Administration enhancements 157

Importing settings
To import settings, click Import MQ Explorer Settings and then select the file for
import and the settings to be imported. See Figure 8-4.

Figure 8-4 Import settings window

Importing schemes and filters from MQ Explorer V6
Schemes and filters can be imported from the previous version of MQ Explorer.
The schemes can be imported for queues, channels, listeners, and also schemes
for status tables in the status windows, for example, queue status and topic
status.

Note: When exporting the manually created queue manager set (the set that
was created from queue manager names) a list of the queue manager names
and their QMIDs is exported.

Note: For detailed information about how import works if the ZIP file contains
manually created queue manager sets and filters, refer to the topic
Configuring WebSphere MQ Explorer → Exporting and importing settings in
the MQ Explorer Help menu.

158 WebSphere MQ V7.0 Features and Enhancements

8.1.2 Browsing messages

MQ Explorer can now display message properties. Message properties are a
new extension to the structure of a WebSphere MQ message. There are also
new preferences related to message browsing and the display of message
properties.

New MQ Explorer preferences

It is now possible to specify how many message can be browsed and what size
of the message data is displayed:

� Max messages browsed: Maximum number of messages displayed in the
Message browser window. The default value is 500.

� Max data bytes displayed: The number of bytes from the beginning of the
message that are displayed. The default value is 1000.

The presentation format for displaying message properties of browsed messages
can also be specified:

� Do not show message properties.

� Show message properties as defined by the queue being browsed, as per the
property control (PROPCTL) attribute.

� Show message properties as name properties with values that are separate
from the display of message data.

� Show message properties as name properties with values, and also show the
MQRFH2 structure containing the properties in the display of message data.

� Only show message properties as name properties with values and show the
MQRFH2 structure based on the message content.

Note: For detailed information about V6 import restrictions, refer to the topic
Configuring WebSphere MQ Explorer → Exporting and importing settings in
the MQ Explorer Help menu.

Tip: This enhancement can also be used for V6 queue managers.

 Chapter 8. Administration enhancements 159

To set these preferences go to the main menu and select Window →
Preferences. In the left pane of the window displayed, select WebSphere MQ
Explorer → Messages. See Figure 8-5.

Figure 8-5 Message browsing preferences

Browsing message properties
The new option named properties has been added to the message browsing
window, as illustrated in Figure 8-6.

Figure 8-6 Browsing message properties

160 WebSphere MQ V7.0 Features and Enhancements

This example shows a property in a Publish/Subscribe message. The property
name top has the value /order.

8.1.3 Mapping between MQ objects and JMS objects

These new MQ Explorer functions can be used to simplify administration tasks
when creating MQ objects and JMS objects.

Creating a MQ object from a JMS object
New MQ queues and topics can be created based on existing JMS queues and
topics. The values of relevant properties of the JMS object are copied to the new
MQ object.

To create a new MQ object from an existing JMS object:

1. Expand the JMS Administered Objects tree in the Navigator view and select
a source JMS object, queue, or topic from the Destinations folder.

2. Right-click the object and select Create MQ Queue or Create MQ Topic. The
wizard opens as appropriate.

3. Work through the wizard to define the new MQ object, then click Finish.

4. The new MQ object is created and displayed under the appropriate queue
manager in MQ Explorer.

Creating a JMS object and an MQ object simultaneously
When creating a new JMS object (queue or topic) in MQ Explorer and it has
completed successfully, an appropriate MQ object can be created immediately.

Tip: These enhancements can also be used for V6 queue managers.

Important: If changes are made to a JMS object after the creation of the MQ
object has been done, the changes are not reflected in the MQ object.

Note: If the JMS object used to create a MQ object specifies a queue
manager name in its properties, then the MQ object can only be created on
the queue manager with the same name.

 Chapter 8. Administration enhancements 161

To create a new JMS object and MQ object simultaneously:

1. Create the new JMS object as usual.

2. Select the Start wizard to create a matching MQ object check box, as
illustrated in Figure 8-7, for the queue.

Figure 8-7 Create an MQ object simultaneously

3. The Creating MQ object wizard launches immediately after creating the new
JMS object is complete.

Note: Details on creating a JMS object from a MQ object are discussed in the
following two topics in the MQ Explorer Help menu:

� Configuring JMS administered objects → Creating a JMS object from a
WebSphere MQ object

� Configuring JMS administered objects → Creating a JMS object and an
MQ object simultaneously

162 WebSphere MQ V7.0 Features and Enhancements

Creating a JMS object from a MQ object
New JMS queues and topics can be created based on existing MQ queues and
topics. The values of relevant properties of the MQ object are copied to the new
JMS object.

To create new JMS object from an existing MQ object:

1. Expand the queue manager objects tree in the Navigator view and select
source MQ object, queue, or topic in the Content view.

2. Right-click the object and select Create JMS Queue or Create JMS Topic.
The wizard opens as appropriate.

3. Work through the wizard to define the new JMS object, then click Finish.

4. The new JMS object is created and displayed under the Destination folder in
the JMS Administered Objects tree.

Creating an MQ object and a JMS object simultaneously
When creating a new MQ object (queue or topic) in MQ Explorer and it has
completed successfully, an appropriate JMS object can be created immediately.

Important: If changes are made to a MQ object after the creation of the JMS
object has been done, the changes are not reflected in the JMS object.

 Chapter 8. Administration enhancements 163

To create a new MQ object and JMS object simultaneously:

1. Create a new MQ object as usual.

2. Select the Start wizard to create a matching JMS object check box, as
illustrated Figure 8-8, in for the queue.

Figure 8-8 Create a JMS object simultaneously

3. The Creating JMS object wizard launches immediately after creating the new
MQ object has finished.

Note: Details on creating a JMS object from a MQ object are covered in the
following two topics in the MQ Explorer Help menu:

� Configuring JMS administered objects → Creating a JMS object from a
WebSphere MQ object

� Configuring JMS administered objects → Creating a JMS object and an
MQ object simultaneously

164 WebSphere MQ V7.0 Features and Enhancements

8.1.4 Remote queue managers administration

This new MQ Explorer feature can easily check and enable three of the
prerequisites to allow remote instances of MQ Explorer to administer local queue
managers.

Remote administration prerequisites window
This window simplifies the administration tasks for configuring remote
administration.

The following objects and settings are required for remote queue manager
administration to be possible:

� The MQ command server must be running.
� A TCP/IP MQ listener must be running.
� The server-connection “SYSTEM.ADMIN.SVRCONN” must exist.
� The model queue “SYSTEM.MQEXPLORER.REPLY.MODEL” must exist.

The new Remote Administration window is available for local queue managers to
check and create the following prerequisites:

� The server-connection channel named “SYSTEM.ADMIN.SVRCONN’ exists.
� A TCP/IP listener named “LISTENER.TCP” exists.
� The listener named “LISTENER.TCP” is started.

 Chapter 8. Administration enhancements 165

To use the feature, select the appropriate local queue manager, right-click it, then
select Remote Administration. The Remote Administration window is
displayed, as shown in Figure 8-9.

Figure 8-9 The Remote Administration window

This window can be used to create and delete the SYSTEM.ADMIN.SVRCONN
channel and TCP/IP Listener by clicking the appropriate radio buttons. All actions
are simple one-click operations, except Create for TCP/IP Listener, which
requires input information about the TCP/IP port number. The window shows a
warning if the port is already used by another queue manager.

Notes: The Remote Administration option is only available if a queue manager
is running.

The Remote Administration window does not included the MQ command
server and the SYSTEM.MQEXPLORER.REPLY.MODEL model queue
because these object are created by default when a queue manager is
created.

Note: For detailed information refer to the topic Configuring WebSphere
MQ → Administering remote queue managers → Enabling remote
administration of queue managers in the MQ Explorer Help menu.

166 WebSphere MQ V7.0 Features and Enhancements

There are also security-related enhancements for remote queue managers
administration that are covered in 8.1.5, “Security” on page 167.

Showing and hiding a remote queue manager

There are some changes when working with remote queue managers:

� A remote queue manager can be directly added for administration instead of
opening the Show/Hide Queue Managers window and going through its
windows.

To add a remote queue manager, right-click the Queue Managers folder in
the Navigator view, then select Add Remote Queue Manager.

� A remote queue manager can be hidden without going through the
Show/Hide Queue Managers window.

To hide a remote queue manager, right-click the relevant queue manager
name folder in the Navigator view, then select Hide.

It is still possible to add or hide queue managers using the Show/Hide Queue
Managers window.

8.1.5 Security

This section describes security-related enhancements for WebSphere MQ
Explorer V7.0 that enable the use of more secure administration connections to
queue managers.

The new enhancements help facilitate secure administration connection to a
queue manager with a user ID and password, and to allow different security exits
to be specified for each queue manager.

Tip: This enhancement can also be used for V6 queue managers.

Tip: These enhancements can also be used for V6 queue managers.

Note: It was only possible to set up only one common security exit for all
managed queue managers in the previous versions of WebSphere MQ
Explorer.

 Chapter 8. Administration enhancements 167

The new security-related parameters can be set in the following two places in MQ
Explorer:

� In MQ Explorer preferences, under Client Connections, to be used as the
default for new remote queue manager connections.

� For each remote queue manager connection.

The details about security exits for queue manager client connection are
provided in 5.10, “Security exit details in WebSphere MQ Explorer” on page 82.

This section only describes how security exits can be set up in MQ Explorer for
remote queue manager administration purposes.

Default security preferences
New options in MQ Explorer preferences have been added to support new
security features:

� Client connections
� Passwords

Client connections
The default security exit and default user ID and password parameters for all the
administered queue managers can be set and changed here. The parameters
can be overridden by defining new security options when adding a new remote
queue manager.

Note: The user ID and password are only authenticated by the remote queue
manager if a suitable security exit is enabled in the server-connection channel
on the remote queue manager.

168 WebSphere MQ V7.0 Features and Enhancements

To set default preferences for client connections, go to the main menu and then
select Window → Preferences. The Preferences window is displayed. In the left
pane select WebSphere MQ Explorer → Client Connections to see the
window shown in Figure 8-10.

Figure 8-10 Default Client Connections settings

There are four sub-options under the Client Connections option:

� Security Exit: To set a default security exit name, path, and security exit data.

� SSL Key Repositories: To set a default SSL trusted certificate store and
personal certificate store.

� SSL Options: To set a default cipher specification, SSL reset count, and
peer name.

� User Identification: To set up default user ID and password for client
connections.

 Chapter 8. Administration enhancements 169

User identification is another new capability in MQ Explorer v7.0. It is now
possible to secure administration connections to a queue manager with a user ID
and password. This window is shown in Figure 8-11.

Figure 8-11 Default User Identification settings

It is possible to only enter the user ID. This forces a password window to be
displayed each time a connection is made. Alternatively, the password can be
entered and saved. The password is stored in password store in a secure way. In
this case, the parameters for password store must be set. This is described in the
next section.

Note: For detailed information refer to the topic Configuring WebSphere MQ >
Managing security and authorities → Configuring a default security exit >
Default security preferences in the MQ Explorer Help menu.

170 WebSphere MQ V7.0 Features and Enhancements

Passwords
Passwords are used by the MQ Explorer to connect to resources, for example,
opening SSL stores or connecting to queue managers. These passwords are
securely stored in a file.

To set default preferences for passwords, go to the main menu and then select
Window → Preferences. The Preferences window is displayed. In the left pane,
select WebSphere MQ Explorer → Passwords to see the window shown in
Figure 8-12.

Figure 8-12 Default password settings

Enable or disable the password saving feature using the radio buttons. To save
passwords to a file, choose the file to be used. To check whether the password
store file exists and has appropriate permissions, click Verify.

With the Use default key option the password store opens automatically when it
is needed. The the User defined key option means accesses to the password
store require a specific password. In this case the password window is always

 Chapter 8. Administration enhancements 171

open when the password store needs to be open for the first time after MQ
Explorer has launched.

Security settings for remote queue manager connection
The Add Remote Queue Manager wizard has four new windows to define
specific connection security details for each queue manager.

The first two windows are the same as for the previous version of MQ Explorer,
which allowed basic connection parameters to be defined, such as queue
manager name, TCP/IP address and port, and refresh interval. The wizard then
navigates through the following new windows for the queue manager:

� Specify security exit details: To set default security exit name, path, and
security exit data.

� Specify user identification details: To set the default user ID and password for
client connections.

� Specify SSL certificate key repository details: To set default SSL trusted
certificate store and personal certificate store.

� Specify SSL option details: To set default cipher specification, SSL reset
count, and peer name.

8.1.6 Queue manager sets

MQ Explorer now supports grouping of queue managers for the purpose of
common administration. A group of queue managers is called a set. An action
can be performed on a set of queue managers instead of performing the action
on each queue manager one by one.

Membership of queue managers in a set can be based on many criteria, for
example, the environment (test, production, and so on), the version of

Note: For detailed information refer to the topic Configuring WebSphere MQ >
Managing security and authorities → Configuring a default security exit >
Passwords preferences in the MQ Explorer Help menu.

Note: For detailed information refer to the section Creating a new
security-enabled connection in the topic Configuring WebSphere MQ →
Showing or hiding a queue manager > Showing a remote queue manager in
the MQ Explorer Help menu.

Tip: This enhancement can be also used for V6 queue managers.

172 WebSphere MQ V7.0 Features and Enhancements

WebSphere MQ (Version 6, Version 7), departments of the company, on the
operating system, or a combination of specific values of many attributes. Queue
managers may be members of none, one, or many sets.

The following actions can be performed on a set:

� Show/Hide all queue managers: Only displayed if there is at least one
hidden/visible queue manager in the set.

� Connect/Disconnect all queue managers: Only displayed if there is at least
one disconnected/connected queue manager in the set.

� Start/Stop all local queue managers: Only displayed if there is at least one
stopped/started local queue manager in the set.

� Run Default/Custom tests.

� Edit connection details.

� Add new local or remote queue manager: The new queue manager
automatically becomes a member of this set.

Grouping can be done manually simply by selecting the queue managers to be
added to the set or automatically by filtering on:

� Command level
� Platform
� Any other queue manager attribute via a custom-made filter

Sets may not contain other sets. There is a default set called all that cannot be
edited or deleted.

Working with the queue manager sets
The display of sets in MQ Explorer must be enabled. Although queue manager
sets still exist when display is disabled, they cannot be managed.

Enable and disable displaying sets
To display sets:

1. Right-click the Queue Managers folder in the Navigator view.

2. Select Sets → Show Sets.

3. The command displays a default set called all that contains all queue
managers.

 Chapter 8. Administration enhancements 173

To hide all sets:

1. Right-click the Queue Managers folder in the Navigator view.

2. Select Sets → Hide Sets.

3. The command hides all the defined sets, including the all set, from the
Navigator view. The sets are not deleted, they are just hidden from view.

The Sets option in the Queue Managers folder context menu contains all
possible actions for set management, as shown in Figure 8-13.

Figure 8-13 Context menu sets

From this menu, it is possible to create a new set, manage existing sets, or
show/hide all sets.

Creating a new set
To add a new set:

1. Select the New Set option from the Sets context menu.

2. In the first window enter a name for the new set. Click the appropriate radio
button to select whether queue managers are to be added or removed from
the set by manual actions or whether queue managers are to be automatically
added or removed based on filter conditions. Once manual or automatic has
been selected and the set has been created, this option cannot be changed.

174 WebSphere MQ V7.0 Features and Enhancements

3. In the next window, select queue managers (for a manual set) or filters (for an
automatic set), as shown in Figure 8-14 and Figure 8-15 on page 176.

Figure 8-14 Queue manager selection for manual set

 Chapter 8. Administration enhancements 175

Figure 8-15 Filters selection for automatic set

4. In the case of a manual set, click Finish.

176 WebSphere MQ V7.0 Features and Enhancements

5. In case of automatic set, it is possible to define a custom filter. Click Manage
Filters → Add to define the rules. To display a window that allows a custom
filter to be based on queue manager attributes click the ... (three dots) button,
as shown in Figure 8-16.

Figure 8-16 Custom filter definition

6. Make a filter, then go back to the New Set wizard window and click Finish.

 Chapter 8. Administration enhancements 177

Using sets
The defined sets can be used for common administration tasks. Right-click the
queue manager set name in the Navigator view and then select the desired
action, as shown in Figure 8-17.

Figure 8-17 Queue manager set actions

8.1.7 SupportPac MS0Q integration

The functionality of SupportPac MS0Q: WebSphere MQ Explorer
Publish/Subscribe plug-in is now integrated into MQ Explorer V7.0.

This functionality extends the MQ Explorer to provide a topics-based view of the
Publish/Subscribe broker at V6 queue manager. The topics are displayed under
the Topics folder as well as for V7 queue managers.

Note: For further information about queue manager sets, refer to the topic
Configuring WebSphere MQ Explorer → Creating and configuring a queue
manager set in the MQ Explorer Help menu.

Tip: This enhancement is only related to V6 queue managers.

178 WebSphere MQ V7.0 Features and Enhancements

8.2 Object properties and parameters

This section describes how to work with the new MQ object properties and
parameters in WebSphere MQ V7.0. It discusses the WebSphere MQ Explorer
and MQSC commands.

8.2.1 Queue manager parameters

The queue manager parameters discussed in this section have been added.

Time interval for browsing message
The queue manager can automatically unmark messages that have been
marked as browsed by a cooperating set of handles. If a marked message is not
processed within the defined time interval, it is marked as not browsed.

Note: For details about SupportPac MS0Q, refer to the IBM Web page at:

http://www.ibm.com/support/docview.wss?uid=swg24013508

Note: In the context of this section, properties refer to fields that can be set on
the MQ Explorer windows, not to properties of WebSphere MQ messages.

Note: On platforms other than z/OS, a parameter string that is specified as
containing no characters (that is, two single quotation marks with no space in
between) is interpreted as a quoted blank space. In other words, ('') is
interpreted in the same way as (' ').

There are four parameters that are exceptions to this:

� TOPICSTR
� SUB
� USERDATA
� SELECTOR

For these parameters, two single quotation marks with no space are
interpreted as a zero-length string. On z/OS, the regular quoted blank space
(' ') is needed. A string containing no characters ('') is the same as entering (),
which is not valid.

 Chapter 8. Administration enhancements 179

http://www.ibm.com/support/docview.wss?uid=swg24013508
http://www.ibm.com/support/docview.wss?uid=swg24013508

To set this parameter:

� In MQ Explorer: Use the property called Message mark browse interval when
changing or displaying queue manager properties.

� With MQSC: Issue commands ALTER QMGR or DISPLAY QMGR with
parameter MARKINT.

The parameter value is in milliseconds, as an integer in the range 0 through 999
999 999. The default is 5000. There is a special value NOLIMIT that means that
messages are not automatically unmarked.

Maximum size for message properties
This parameter specifies the maximum total length of properties data that can be
associated with one WebSphere MQ message. To set this parameter:

� In MQ Explorer: Use the property called Max properties length in the
Extended page when changing or displaying queue manager properties.

� With MQSC: Issue commands ALTER QMGR or DISPLAY QMGR with
parameter MAXPROPL.

The parameter value is in bytes, as an integer in the range 0 through 104 857
600 bytes (100 MB). There is a special value NOLIMIT that means that there is
no restriction on the size of message properties. The default is NOLIMIT.

Log defaults changes
Two changes have been made to logging parameters that can be set up for
queue managers by control command crtmqm or in the qm.ini and mqs.ini files:

� The LogFilesPages default is now 4096. It was 1024 in the previous version of
WebSphere MQ.

� The LogBufferPages default is now 512. It was 128 in the previous version of
WebSphere MQ.

8.2.2 Queue object parameters

The parameters discussed in this section have been added to queue objects.

Queue alias
WebSphere MQ V7.0 introduces an extension to the queue alias object that
allows an alias to be mapped to a topic object, as well as its previous usage of
mapping to a Queue object. There are two new parameters on the queue alias
object to support alias of a topic object or a Queue object.

180 WebSphere MQ V7.0 Features and Enhancements

A detailed description of using aliases to topics is provided in 4.2.3, “Topic alias”
on page 47.

To set the new parameters:

� In MQ Explorer: The new property called base type can be assigned the value
queue or topic to specify the type of the destination object. The new property
called base object provides the name of the destination object (queue or
topic). Base object replaces the base queue property that was used in MQ
Explorer for WebSphere MQ V6.0.

Both the base type and base object properties are in the General window
when defining, changing, or displaying queue alias properties.

� With MQSC: Issue commands DEFINE QALIAS, ALTER QALIAS, and
DISPLAY QUEUE with the new parameters TARGTYPE and TARGET.

The destination (or target) object type is specified by TARGTYPE, and the
value can be QUEUE or TOPIC. The destination (or target) object name is
specified by TARGET. This replaces the TARGQ parameter used in previous
versions of WebSphere MQ, although TARGQ has been retained in MQSC for
WebSphere MQ V7.0 to provide backward compatibility for an alias to a
Queue object.

Message properties
A message properties control parameter has been added in WebSphere MQ
V7.0. This parameter determines how message properties are delivered to
getting applications. It is applicable to local, alias, and model queue object types.

For details about message properties, refer to 6.2, “Message properties” on
page 89.

To set this parameter:

� In MQ Explorer: Use the property called property control in the Extended
window when defining, changing, or displaying queue properties.

� With MQSC: Issue commands DEFINE queues, ALTER queues, or DISPLAY
queues with the parameter PROPCTL.

The parameter value can be:

� COMPAT (Compatibility in MQ Explorer)

All message properties prefixed by mcd., jms., usr., or mqext. are delivered in
MQRFH2. All other message properties are discarded. This is the default.

� ALL (All in MQ Explorer)

All message properties are included in one or more MQRFH2 headers.

 Chapter 8. Administration enhancements 181

� FORCE (Force MQRFH2 in MQ Explorer)

Message properties are always returned in a MQRFH2 header, regardless of
whether the application specifies a message handle. Properties are not
accessible by message handle.

� NONE (None in MQ Explorer)

All message properties are removed from the message.

Read ahead
A new parameter in WebSphere MQ V7.0 specifies the default read ahead
behavior for non-persistent messages delivered to a client. Enabling read ahead
can improve the performance of some client applications that consume
non-persistent messages. This parameter is applicable to local, alias, and model
queues.

MQ Explorer V7.0 can take advantage of this for remote queue managers
administration, as read ahead is set for the
SYSTEM.MQEXPLORER.REPLY.MODEL queue.

The read ahead feature is covered in detail in 5.4, “Read ahead” on page 68.

To set this parameter:

� In MQ Explorer: Use the property called Default read ahead in the Extended
window when defining, changing, or displaying queue object properties.

� Using MQSC: Issue commands DEFINE queues, ALTER queues, or DISPLAY
queues with parameter DEFREADA.

The parameter value can be:

� NO (No in MQ Explorer)

Non-persistent messages are not read ahead unless the client requests it in
the MQOPEN call. This is the default.

� YES (Yes in MQ Explorer)

Non-persistent messages are sent to the client before the application
requests them.

� DISABLED (Disabled in MQ Explorer)

Messages are not sent ahead, regardless of any request by the
client application.

Asynchronous put
A new parameter in WebSphere MQ V7.0 specifies the behavior to be used when
an application specifies the put message options (MQPMO options) to include

182 WebSphere MQ V7.0 Features and Enhancements

MQPMO_RESPONSE_AS_Q_DEF. This parameter is applicable to local, alias,
model, and remote queues.

The asynchronous put feature is described in 5.5, “Asynchronous put” on
page 71.

To set this parameter:

� In MQ Explorer: Use the property called Default put response type in the
Extended window when defining, changing, or displaying queue properties.

� Using MQSC: Issue commands DEFINE queues, ALTER queues, or DISPLAY
queues with parameter DEFPRESP.

The parameter value can be:

� SYNC (Sync in MQ Explorer)

This ensures that the put operations to the queue are issued in synchronous
mode, as though the MQPMO_SYNC_RESPONSE option had been
specified by the application. This is the default.

� ASYNC (Async in MQ Explorer)

This ensures that the put operations to the queue are issued in synchronous
mode, as though the MQPMO_ASYNC_RESPONSE option had been
specified by the application.

8.2.3 New channel and client connection properties

The channel and client connection parameters discussed in this section have
been added in WebSphere MQ V7.0.

Message properties
The message properties control attribute has been added. This parameter
determines how the messages are sent to pre-V7 queue managers. This
parameter is applicable to sender, server, cluster sender, and cluster receiver
channels.

Message properties are described in 6.2, “Message properties” on page 89.

To set this parameter:

� In MQ Explorer: Use the property called Property control in the Extended
window when defining, changing, or displaying channel properties.

� Using MQSC: Issue commands DEFINE CHANNEL, ALTER CHANNEL, or
DISPLAY CHANNEL with parameter PROPCTL.

 Chapter 8. Administration enhancements 183

The parameter value can be:

� COMPAT (Compatibility in MQ Explorer)

If the message contains a property with a prefix of mcd., jms., usr., or mqext.,
all message properties are delivered to the application in an MQRFH2
header. Otherwise, all properties of the message, except those contained in
the Message Descriptor (or extension), are discarded and are no longer
accessible to the application. This is the default value.

� ALL (All in MQ Explorer)

All properties of the message are included with the message when it is sent to
the remote queue manager.

� NONE (None in MQ Explorer)

All properties of the message, except those in the Message Descriptor (or
extension), are removed from the message before the message is sent to the
remote queue manager.

Server-connections resources control
It is now possible to control server-connection channel resources to limit the
number of simultaneous running channels. This can prevent a single client
application from monopolizing all channel resources on a queue manager. The
situation could arise because:

� A program bug results in excessive connections to the queue manager
� A denial of service (DoS) program
� An unplanned roll-out of a client application to a large number of users

Details about server-connection resource control are discussed in 5.6, “Instance
limits on SVRCONN channels” on page 76.

Maximum number of instances of server-connection channel
A new parameter sets the maximum number of simultaneous instances of an
individual server-connection channel that can be started. To set this parameter:

� In MQ Explorer: Use the property called Max instances in the Extended
windows when defining, changing, or displaying server-connection channel
properties.

� Using MQSC: Issue commands DEFINE CHANNEL, ALTER CHANNEL, or
DISPLAY CHANNEL with parameters CHLTYPE(SVRCONN) and MAXINST.

The parameter value is an integer in the range 0 to 999 999 999. The default is
999 999 999. The value 0 prevents all client access on the server-connections
channel.

184 WebSphere MQ V7.0 Features and Enhancements

Maximum number of instances from a single client
A new parameter sets the maximum number of simultaneous server-connection
channels that can be started from a single client (detected by IP address). To set
this parameter:

� In MQ Explorer: Use the property called Max instance per client in the
Extended window when defining, changing, or displaying server-connection
channel properties.

� Using MQSC command: Issue commands DEFINE CHANNEL, ALTER
CHANNEL, or DISPLAY CHANNEL with parameters CHLTYPE(SVRCONN)
and MAXINSTC.

The parameter value is an integer in the range 0 to 999 999 999. The default is
999 999 999. The value 0 prevents all client access on the server-connection
channel.

New error messages
When client connections reach the limits provided by the server-connection
channel resource parameters the following error messages are written to the MQ
error log:

� AMQ9489: The maximum number of instances was reached, as shown in
Example 8-1.

Example 8-1 Example of AMQ9489 error message

12/5/2007 15:09:06 - Process(128.54) User(stora) Program(amqrmppa.exe)
AMQ9489: The maximum number of instances, 3, of channel 'QMHQ_STORES'
was reached.
EXPLANATION:
The server-connection channel 'QMHQ_STORES' is configured so that the
maximum number of instances that can run at the same time is 3. This
limit was reached.
ACTION:
Try the operation again when a new instance can be started.
If the limit has been reached because there are too many connections
from one or more of your client applications, consider changing the
applications to make fewer connections.
If you are not making use of sharing conversations, consider switching
to this mode of operation because several client connections can then
share one channel instance.

 Chapter 8. Administration enhancements 185

� AMQ9490: The maximum number of instances was reached for an individual
client, as shown in Example 8-2.

Example 8-2 Example of AMQ9490 error message

12/5/2007 15:10:53 - Process(128.56) User(stora) Program(amqrmppa.exe)
AMQ9490: The maximum number of instances, 3, of channel 'QMHQ_STORES'
was reached for an individual client.
EXPLANATION:
The server-connection channel 'QMHQ_STORES' is configured so that the
maximum number of instances that can run at the same time for any
individual client is 3. This limit was reached for the client with
remote network address '192.168.16.76'.
ACTION:
Try the operation again when a new instance can be started for this
client.
If the limit has been reached because there are too many connections
from the relevant client application, consider changing the application
to make fewer connections.
If you are not making use of sharing conversations, consider switching
to this mode of operation because several client connections can then
share one channel instance.

Conversation sharing
WebSphere MQ V7.0 now supports conversation sharing for client connections.
A separate TCP/IP socket had to be used for each connection in the previous
version of WebSphere MQ. Now it is possible to allow a number of connections to
be shared on each TCP/IP channel instance, via one TCP/IP socket. This
parameter is applicable to server-connection channel and client-connection
channel definitions.

Details about conversations sharing are discussed in 5.3, “Conversation sharing”
on page 64.

Note: The error message AMQ9492 is also written to indicate that there is a
TCP/IP responder program error. Associated messages AMQ9489 and
AMQ9489 describe the real reason for the error.

Note: On the Windows platform these messages are also written to the
Windows Event log.

186 WebSphere MQ V7.0 Features and Enhancements

Setting the conversation sharing limit
To set this parameter:

� In MQ Explorer: Use the property called Sharing Conversations in the
Extended windows when defining, changing, or displaying server-connection
channels or client connection channels.

� Using MQSC: Issue commands DEFINE CHANNEL, ALTER CHANNEL, or
DISPLAY CHANNEL with parameters CHLTYPE(SVRCONN) or
(CLNTCONN) and SHARECNV.

The parameter value is an integer in the range 0 to 999 999 999. The default is
10. There are two special values:

� 1

Sharing of conversations is disabled. The channel runs in V7 mode and the
read ahead and asynchronous put features are still available.

� 0

Sharing of conversations is disabled. The channel runs in pre-V7 mode and
the read ahead and asynchronous put features are not available.

Displaying the conversation sharing parameters
To display these parameters:

� In MQ Explorer: Right-click a server-connection channel, select Status →
Channel Status, and refer to the properties max conversations and current
conversations. These are the last two columns in the list.

� Using MQSC: Issue the command DISPLAY CHSTATUS with parameters
MAXSHCNV and CURSHCNV.

A zero (0) displayed value for these parameters indicates that the channel is
running in pre-V7 mode.

 Chapter 8. Administration enhancements 187

Client connection load balancing
WebSphere MQ V7.0 now supports client connection load balancing. There are
two new parameters related to this feature. In MQ Explorer, both parameters can
be set from the new Load balancing window when working with the client
connections wizard, as shown in Figure 8-18.

Figure 8-18 Client connection load balancing

See 5.7, “Weighted selection on CLNTCONN channels” on page 78, for a
description of client-connection channel load balancing using the weight and
affinity parameters.

Client connection affinity
The affinity attribute is used to control how client applications select a channel to
connect to a queue manager. This parameter is only applicable when multiple
channel definitions are available. To set this parameter:

� In MQ Explorer: Use the property called affinity in the Load balancing window
when defining, changing, or displaying client-connection channel properties.

� Using MQSC: Issue command DEFINE CHANNEL, ALTER CHANNEL, or
DISPLAY CHANNEL with parameters CHLTYPE(CLNTCONN) and
AFFINITY.

188 WebSphere MQ V7.0 Features and Enhancements

The parameter value can be:

� PREFERRED (Preferred in MQ Explorer)

The first connection in a process reading a CCDT creates a list of applicable
definitions based on the weighting with any applicable CLNTWGHT(0)
definitions first and in alphabetical order. Each connection in the process
attempts to connect using the first definition in the list. If a connection is
unsuccessful, the next definition is used. Unsuccessful non CLNTWGHT(0)
definitions are moved to the end of the list. CLNTWGHT(0) definitions remain
at the start of the list and are selected first for each connection. For C, C++,
and .NET (including fully managed .NET) clients the list is updated if the
CCDT has been modified since the list was created. Each client process with
the same host name creates the same list. This is the default option.

� NONE (None in MQ Explorer)

The first connection in a process reading a CCDT creates a list of applicable
definitions. All connections in a process select an applicable definition based
on the weighting with any applicable CLNTWGHT(0) definitions selected first
in alphabetical order. For C, C++, and .NET (including fully managed .NET)
clients the list is updated if the CCDT has been modified since the list was
created.

Client connection weight
The weighting attribute is used so that client channel definitions can be selected
at random based on their weighting when more than one suitable definition is
available. To set this parameter:

� In MQ Explorer: Use the property called weight in the Load balancing window
when defining, changing, or displaying client-connection channel properties.

� Using MQSC: Issue command DEFINE CHANNEL, ALTER CHANNEL, or
DISPLAY CHANNEL with parameters CHLTYPE(CLNTCONN) and
CLNTWGHT.

The parameter value is an integer in the range of 0 to 99. The default is 0. The
value 0 indicates that no random load balancing is performed and applicable
definitions are selected in alphabetical order.

8.2.4 Connection status and queue status enhancements

It is now possible to display additional information about applications connected
to the queue manager and the queues that they are using.

The connection status parameters discussed in this section have been added.

 Chapter 8. Administration enhancements 189

Display connection status for read ahead
This shows the state of read ahead on a connection handle. Details about read
ahead are discussed in 5.4, “Read ahead” on page 68.

To display connection status:

� In MQ Explorer: Right-click a queue manager and select Application
Connections. Then in the status window refer to the value read ahead in the
lower section of this window.

� Using MQSC: Issue the command DISPLAY CONN with parameter READA.

The displayed value can be:

� NO (No in MQ Explorer)

Read ahead of non-persistent messages is not enabled for this connection.

� YES (Yes in MQ Explorer)

Read ahead of non-persistent messages is enabled for this connection and is
being used efficiently.

� INHIBITED (Inhibited in MQ Explorer)

Read ahead was requested by the application but has been inhibited because
of incompatible options specified on the first MQGET call.

� BACKLOG (Backlog in MQ Explorer)

Read ahead of non-persistent messages is enabled for this connection. Read
ahead is not being used efficiently because the client has been sent a large
number of messages that have not been consumed.

Display connection status for asynchronous consume
This shows the state of asynchronous consumption on connection handles.
Asynchronous consumption (callback) is described in 6.4, “Callback for
asynchronous consumers” on page 108.

To display connection status:

� In MQ Explorer: Right-click a queue manager and select Application
Connections. Then in the status window refer to the value asynchronous
state in the lower section of this window.

� Using MQSC: Issue the command DISPLAY CONN with parameter ASTATE.

190 WebSphere MQ V7.0 Features and Enhancements

The displayed value can be:

� SUSPENDED (Suspended in MQ Explorer)

The asynchronous message consumption is temporarily suspended on this
connection. A call to MQCTL with MQOP_SUSPEND has been issued
against the connection handle.

� STARTED (Started in MQ Explorer)

The asynchronous message consumption can proceed on this connection. A
call to MQCTL with MQOP_START has been issued against the connection
handle.

� STARTWAIT (Startwait in MQ Explorer)

The asynchronous message consumption can proceed on this connection. A
call to MQCTL call with MQOP_START_WAIT has been issued against the
connection handle.

� STOPPED (Stopped in MQ Explorer)

The asynchronous message consumption cannot currently proceed on this
connection. A call to MQCTL with MQOP_STOP has been issued against the
connection handle.

� NONE (None in MQ Explorer)

The asynchronous message consumption cannot currently proceed on this
connection. No call to MQCTL has been issued against the connection
handle.

Display queue status for asynchronous consume
This shows the state of asynchronous consumption on queue objects.

To display queue status:

� In MQ Explorer: Right-click a queue and select Status. Then in the status
window refer to the value asynchronous state in the lower section of this
window.

� Using MQSC: Issue the command DISPLAY QSTATUS with parameter
ASTATE.

 Chapter 8. Administration enhancements 191

The displayed value can be:

� ACTIVE (Active in MQ Explorer)

Asynchronous message consumption is running on this object handle. A call
to MQCB has set up a callback function to process messages
asynchronously.

� INACTIVE (Inactive in MQ Explorer)

The connection handle has not yet been started, or has been stopped or
suspended. A call to MQCB has set up a callback function to process
messages asynchronously.

� SUSPENDED (Suspended in MQ Explorer)

The asynchronous message consumption is suspended on this object handle.
This can be either because a MQCTL call with MQOP_SUSPEND has been
issued by the application, or because it has been suspended by WebSphere MQ.

� SUSPTEMP (Susptemp in MQ Explorer)

Asynchronous message consumption is temporarily suspended by
WebSphere MQ.

� NONE (None in MQ Explorer)

Asynchronous message consumption cannot currently proceed on this
connection. No call to MQCTL has been issued against the connection
handle.

8.3 Java and JMS-related administration enhancements

WebSphere MQ V7.0 offers new administration capabilities for application
developers:

Important: Only a short explanation of properties and parameters for MQ
Explorer and MQSC commands has been provided in this section. For
complete details about properties and parameters, refer to the topic
Reference → Properties in the MQ Explorer Help menu and the manual Script
(MQSC) Command Reference available in the WebSphere MQ V7.0
Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

To use PCF commands, refer to the manual Programmable Command
Formats and Administration Interface in the WebSphere MQ V7.0 Information
Center.

192 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

� Embedded PCF support for Java.

� WebSphere MQ classes for JMS has been enhanced to provide a higher level
of service.

8.3.1 Embedded PCF support for Java

Support for creating WebSphere MQ message headers and messages
containing PCF commands is now contained in the file com.ibm.mq.headers.jar
that is part of the standard WebSphere MQ V7.0 product installation.

This capability is available for previous versions of WebSphere MQ with
SupportPac MS0B: WebSphere MQ Java classes for PCF. For details about this
SupportPac refer to the IBM Web page at:

http://www.ibm.com/support/docview.wss?uid=swg24000668

8.3.2 WebSphere MQ classes for JMS

WebSphere MQ classes for JMS has been enhanced to provide a higher level of
serviceability:

� Tracing: An application can start and stop tracing, specify the required level of
detail in a trace, and customize trace output in various ways.

� Logging: WebSphere MQ classes for JMS maintains a log file that contains
plain text messages about errors that must be corrected. A JMS application
can specify the location of the log file and its maximum size.

� First Failure Support Technology™ (FFST™): Support of the FFST technique
is now available for JMS applications. The FFST report contains information
that assists IBM Service to diagnose problems.

� Version information: An application can query the version of WebSphere MQ
classes for JMS.

Note: Programmable Command Format (PCF) allows administration tasks to
be written into an application program by sending special messages to the
WebSphere MQ Command Server. PCF commands cover the same range of
functions provided by MQSC commands.

For detailed information refer to the manual Programmable Command
Formats and Administration Interface in the WebSphere MQ V7.0 Information
Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

 Chapter 8. Administration enhancements 193

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/support/docview.wss?uid=swg24000668

� Exception messages: Exception messages have been enhanced to provide
more information about the causes of errors and the actions required to
correct errors.

� Application servers: The integration of the serviceability features of
WebSphere MQ classes for JMS with WebSphere Application Server has
been improved.

Refer to Chapter 7, “WebSphere MQ Java Message Service enhancements” on
page 137, for further details.

8.4 Control commands

This section describes new control commands in WebSphere MQ V7.0 and
existing control commands that have new parameters.

8.4.1 Create queue manager (crtmqm)

The crtmqm command has three new options, available on WebSphere MQ for
Windows only:

� -sa: Automatic queue manager startup

The queue manager is configured to start automatically when the machine
starts up and it runs as a service. This is the default option when a queue
manager is created from MQ Explorer.

� -si: Interactive (manual) queue manager startup

The queue manager is configured to start only when the strmqm command is
issued manual. It then runs under the logged on (interactive) user and ends
when the user who started it logs off.

� -ss: Service (manual) queue manager startup

The queue manager is configured to start only when the strmqm command is
issued manually. It then runs as a service and continues to run even after the
interactive user has logged off. This is the default option when a queue
manager is created by the crtmqm command.

Important: Only a only short explanation of the parameters for WebSphere
MQ control commands is provided here. For complete details refer to the
System Administration Guide and i5/OS System Administration Guide,
available in the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

194 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The command syntax for the new parameters can be:

� crtmqm -sa queue_manager_name
� crtmqm -si queue_manager_name
� crtmqm -ss queue_manager_name

8.4.2 Start queue manager (strmqm)

The strmqm command has two new options, available on WebSphere MQ for
Windows only:

� -si: Interactive (manual) queue manager startup

The queue manager runs under the logged on (interactive) user and ends
when the user who started it logs off.

� -ss: Service (manual) queue manager startup

The queue manager runs as a service and continues to run even after the
interactive user has logged off.

These parameters override any startup type set previously by the crtmqm
command, the amqmdain command, or the MQ Explorer. If the new options are
not specified the startup type is as set previously by one of these methods.

The command syntax for the new parameters can be:

� strmqm -si queue_manager_name
� strmqm -ss queue_manager_name

8.4.3 WebSphere MQ CL commands on i5/OS

The following CL commands are new for WebSphere MQ V7.0 on the i5/OS
(iSeries®) platform to administer topics and subscriptions:

� CHGMQMTOP
� CLRMQMTOP
� CPYMQMTOP
� CRTMQMTOP
� DLTMQMSUB
� DSPMQMSUB
� WRKMQMSUB

The following CL commands have been enhanced for new parameters:

� CRTMQM to accommodate JRNBUFSIZ

� CRTMQMQ, CHGMQMQ, and CPYMQMQ to accommodate MSGREADAHD,
DFTPUTRESP, PROPCTL, and TARGTYPE

 Chapter 8. Administration enhancements 195

� GRTMQMAUT and RVKMQMAUT to accommodate OBJTYPE(*TOPIC)

� RCDMQMIMG and RCRMQMOBJ to accommodate OBJTYPE(*TOPIC)

8.5 Journals on i5/OS

WebSphere MQ V7.0 for the i5/OS (iSeries) platform uses a time-stamping
technique that is different from earlier versions of WebSphere MQ for i5/OS. This
solves the issue of duplicate time stamps in journals at the end of Daylight
Saving Time (DST). The administrator need not intervene to change the clock
during DST. The queue manager can run uninterrupted through a DST time
change. The journal buffer size can also now be larger than the default 32kb on
this platform.

196 WebSphere MQ V7.0 Features and Enhancements

Chapter 9. Publish/Subscribe
management

The WebSphere MQ v7.0 Publish/Subscribe environment can be managed using
MQ Explorer or MQSC. This chapter shows how to use these administration tools
to set up a Publish/Subscribe environment, manage it, and display its status. This
chapter contains the following sections:

� 9.1.1, “Creating topics using MQ Explorer” on page 198, and 9.1.2, “Creating
topics using MQSC” on page 202

� 9.1.3, “Altering topics using MQ Explorer” on page 204, and 9.1.4, “Altering
topics using MQSC” on page 205

� 9.1.5, “Displaying topic status using MQ Explorer” on page 206, and 9.1.6,
“Displaying topic status using MQSC” on page 207

� 9.1.7, “Creating JMS topics using MQ Explorer” on page 208

� 9.1.8, “Setting up topic security using MQ Explorer” on page 213, and 9.1.9,
“Setting up topic security using setmqaut” on page 215

� 9.1.10, “Mapping queue aliases to a topic object” on page 215

� 9.2, “Managing subscriptions” on page 216, and 9.3, “Displaying
Publish/Subscribe status” on page 221

9

© Copyright IBM Corp. 2009. All rights reserved. 197

9.1 Managing topics

This section illustrates the usage of MQ Explorer and MQSC commands for
managing topics in a Publish/Subscribe environment.

9.1.1 Creating topics using MQ Explorer

The following procedure uses MQ Explorer on the Windows platform to create a
topic object on a local or remote queue manager:

1. Navigate to the Topics folder in a queue manager.

2. Right-click the Topics folder and select New - Topic from the context menu.
The Create a Topic window appears (Figure 9-1).

Figure 9-1 Create a Topic

3. Enter the name for the topic object that must be created and click Next.

198 WebSphere MQ V7.0 Features and Enhancements

4. The Change Properties window appears (Figure 9-2). A topic string must be
entered in the Topic String text field. This topic string signifies the topic
hierarchy. The Description text field is optional.

The publish property can take on three values:

– Allowed: Suitably authorized applications can publish to this topic.

– As Parent: Whether messages can be published to the topic is based on
the setting of the closest parent administrative topic object in the topic tree.
This is the default supplied with WebSphere MQ. However, the default may
have been changed since installation.

– Inhibited: Messages cannot be published to this topic.

The Subscribe property can also take on three values: Allowed, As Parent,
and Inhibited. These values have the same meaning as in the publish
property, except they are for the context of subscription.

Figure 9-2 Topic creation: Change properties

 Chapter 9. Publish/Subscribe management 199

The Durable Subscriptions property can take on three values:

– As Parent: Whether durable subscriptions can be made on this topic is
based on the setting of the closest parent administrative topic object in the
topic tree. This is the default supplied with WebSphere MQ. However, this
may have been changed since installation.

– Allowed: Durable subscriptions can be made on this topic.

– Inhibited: Durable subscriptions cannot be made on this topic.

Refer to Figure 9-3.

Figure 9-3 Configuring durable subscriptions

Figure 9-4 Configuring default priority

The default priority property can be set to assign a default priority on
messages published to that topic. Refer to Figure 9-4. The value must be in
the range zero (the lowest priority) through to the MAXPRTY queue manager
parameter (MAXPRTY is 9). If the default priority is set to the special value as
parent, the default priority is based on the setting of the closest parent
administrative topic object in the topic tree. This is the default supplied with
WebSphere MQ. However, this may have been changed since installation.

The default persistence property specifies the persistence of published
messages if the publisher application does not specify it as persistent or
non-persistent:

– As Parent: The default persistence is based on the setting of the closest
parent administrative topic object in the topic tree. This is the default
supplied with WebSphere MQ. However, this may have changed since
installation.

– Not Persistent: Messages are lost during a restart of the queue manager.

– Persistent: Messages survive a queue manager restart.

200 WebSphere MQ V7.0 Features and Enhancements

Refer to Figure 9-5.

Figure 9-5 Configuring default persistence

Figure 9-6 Configuring the model durable queue

The model durable queue property can be used to specify the name of a
queue model object for durable subscriptions that request the queue manager
to manage the destination of its publications. The maximum length of this
property is 48 characters. If this property is blank, it operates in the same way
as as parent values on other properties. The name of the model queue to be
used is based on the closest parent administrative topic object in the topic
tree with a value set for this property. Refer to Figure 9-6.

Figure 9-7 Configuring the model non-durable queue

The model non-durable queue property can be used to specify the name of a
queue model object for non-durable subscriptions that request that the queue
manager manage the destination of its publications. The maximum length of
this property is 48 characters. If this property is blank, it operates in the same
way as as parent values on other properties. The name of the model queue to
be used is based on the closest parent administrative topic object in the topic
tree with a value set for this property. Refer to Figure 9-7.

Figure 9-8 Configuring default-put response type

The default put response type property is a means of administratively
configuring the topic object to support synchronous/asynchronous methods
for responding to message puts (MQPUT) from WebSphere MQ Clients.
WebSphere MQ v6.0 supports the synchronous put response type. This
means that every MQPUT call is synchronously responded to with a
Completion Code. WebSphere MQ v7.0 introduces the asynchronous put
response type by selecting Async. Further details on concepts involved and
using this feature in WebSphere MQ v7.0 are discussed in Chapter 6,
“Message Queue Interface extensions” on page 85. As parent is the default

 Chapter 9. Publish/Subscribe management 201

value for this property and has the same meaning that it has on all other
properties. Refer to Figure 9-8 on page 201.

Having configured all these properties, out of which only the topic name and
the topic string are required, the creation of the topic object can be completed
by clicking OK.

9.1.2 Creating topics using MQSC

The following commands provide simple examples of using the MQSC
administration interface to create topic objects.

1. Start the MQSC interface by entering the command:

runmqsc queue_manager_name

2. Enter:

DEFINE TOPIC(DELI) TOPICSTR(‘deli’)

This creates a topic object with the name “DELI”, which is an administrative
node in the topic hierarchy for the topic string “deli”.

3. Enter:

DEFINE TOPIC(DELI.FRESH) TOPICSTR('deli/fresh')

This creates a topic object “DELI.FRESH” that is a child administration node
of the topic object “DELI” created previously, by virtue of the hierarchy
specified in the topic string “deli/fresh”. By default it inherits all attributes from
the immediate parent topic object.

4. Enter:

DEFINE TOPIC(MATTS) TOPICSTR('deli')

This results in the error:

A WebSphere MQ Topic using the supplied topic string already exists.

This is because this attempted topic definition conflicts with the topic object
“DELI”. Two administrative topic objects cannot be created at the same node
in the topic string hierarchy.

The new parameter options available for the DEFINE TOPIC command in MQSC
are the same as those discussed on the Change Properties window of MQ
Explorer described in the previous sub-section.

202 WebSphere MQ V7.0 Features and Enhancements

The MQSC parameters have different names for the properties on the MQ
Explorer windows. A mapping between the MQSC attributes and the
corresponding MQ Explorer Properties is listed in Table 9-1.

Table 9-1 MQ Explorer topic creation properties corresponding to MQSC DEFINE TOPIC
parameters

There are other parameters that can be used with the DEFINE TOPIC command
in MQSC. For more information about to this command refer to the manual Script
(MQSC) Command Reference available in the WebSphere MQ V7.0 Information
Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

MQ Explorer property MQSC attribute

Name Possible values

Publish PUB ASPARENT
ENABLED
DISABLED

Subscribe SUB ASPARENT
ENABLED
DISABLED

Durable Subscriptions DURSUBS ASPARENT
YES
NO

Default Priority DEFPRTY Integer in range 0 to 9

Default Persistence DEFPSIST ASPARENT
YES
NO

Model Durable Queue MDURMDL Model Object name

Model Non Durable Queue MNDURMDL Model Object name

 Chapter 9. Publish/Subscribe management 203

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

9.1.3 Altering topics using MQ Explorer

The following procedure uses MQ Explorer on the Windows platform to alter a
topic object on a local or remote queue manager:

1. Click the Topics folder of a queue manager to display the list of topic object
names that exist on the queue manager.

2. Right-click a topic object. This displays the context menu shown in Figure 9-9.
Select Properties from the context menu. This displays the Topic Properties
window, as shown in Figure 9-10 on page 205.

Figure 9-9 Topic menu

204 WebSphere MQ V7.0 Features and Enhancements

3. The properties listed here are the same as those listed on the Change
Properties window, which is discussed in 9.1.1, “Creating topics using MQ
Explorer” on page 198. Alter the properties as desired and then click Apply
for the changes to take effect immediately and leave the window open, or click
OK for the changes to take effect and close the window.

Figure 9-10 Changing topic properties

9.1.4 Altering topics using MQSC

To alter topic objects, WebSphere MQ v7.0 provides the MQSC command
ALTER TOPIC. The parameters are the same as used with the DEFINE TOPIC
command. Refer to 9.1.2, “Creating topics using MQSC” on page 202, for details.

 Chapter 9. Publish/Subscribe management 205

9.1.5 Displaying topic status using MQ Explorer

The following procedure uses MQ Explorer on the Windows platform to display
the status of a topic on a local or remote queue manager:

1. Click the Topics folder of a queue manager to display the list of topic object
names that exist on the queue manager.

2. Right-click a topic object. This displays the context menu shown in Figure 9-9
on page 204. Select Status from the context menu, as highlighted by a 1 in
Figure 9-9 on page 204. This displays the Topic Status window, as shown in
Figure 9-11. This reports the current values for all properties of the topic.

3. If only a given subset of the properties must be displayed, MQ Explorer
provides an option to create a scheme. Right-click Scheme Panel and then
click Manage Schemes. It is then possible to define a named scheme that
only consists of the properties that must be viewed.

Figure 9-11 Displaying topic status

206 WebSphere MQ V7.0 Features and Enhancements

4. Right-click a topic name in MQ Explorer and then click Topic Status -
Publishers and Topic Status - Subscribers, marked as 3 in Figure 9-9 on
page 204. This opens windows that displays the status of publications and
subscriptions, respectively. Figure 9-12 shows an example of displaying the
status of subscribers.

Figure 9-12 Displaying subscriber status

9.1.6 Displaying topic status using MQSC

The MQSC command DISPLAY TPSTATUS is used to display the status of one
or more topic nodes in a topic tree as determined by the supplied parameters.
The syntax and three examples are provided in Example 9-1.

Example 9-1 Displaying topic status using TPSTATUS command

DISPLAY TPSTATUS(topic_string) WHERE(filter_condition)
TYPE(TOPIC|PUB|SUB) ALL

DISPLAY TPSTATUS(‘deli/fresh/fruit’) TYPE(TOPIC) ALL
DIS TPS(‘deli/fresh/#’) TYPE(PUB) ALL
DIS TPS(‘deli/+’) WHERE(PUBCNT GT 0)TYPE(TOPIC) ALL

 Chapter 9. Publish/Subscribe management 207

The DISPLAY TPSTATUS command requires a topic string to determine which
topic nodes are displayed. The WHERE keyword specifies a filter condition to
display only those administrative topic definitions that satisfy the selection
criterion of the filter condition. A list all other parameters that can be used and
displayed is found in the manual Script (MQSC) Command Reference, available
in the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The parameter ALL can be used to display the values of all properties of a topic.
The topic status display can also be wildcarded, for example, DISPLAY
TPSTATUS ('#'). The hash (#) matches any topic string and therefore the
command displays values of properties of all topic objects corresponding to each
topic string currently defined in the system.

9.1.7 Creating JMS topics using MQ Explorer

The following procedure uses MQ Explorer on the Windows platform to display
the status of a topic on a local or remote queue manager:

1. The JMS Context is a prerequisite for creating JMS Topics. The JMS Context
can be created by right-clicking JMS Administered Objects in the Navigator
view of MQ Explorer and selecting Add Initial Context from the context
menu. Valid JNDI name space, security options, and connection details must
be entered. Click Finish to complete the creation of the JMS Context.

2. Click the Topics folder of a queue manager to display the list of topic object
names that exist on the queue manager.

208 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

3. Right-click a topic name and then select Create a JMS Topic from the context
menu, marked as 4 in Figure 9-9 on page 204. This displays a window for
creating a JMS Topic that is the JMS equivalent of the selected MQ Topic, as
shown in Figure 9-13.

Figure 9-13 Creating a JMS Topic using MQ Explorer

 Chapter 9. Publish/Subscribe management 209

4. Figure 9-14 shows that it is possible to create a JMS destination with
attributes like an existing destination. Click Finish to complete the creation of
the JMS Topic or click Next to go to the Change Properties window, as shown
in Figure 9-15 on page 211.

Figure 9-14 Creating a JMS Topic like a preexisting JMS Topic

210 WebSphere MQ V7.0 Features and Enhancements

Figure 9-15 Change properties of the JMS Topic

5. On the left side of the windows there are categories of properties that can be
changed on the JMS Topic:

– The Message Handling category has properties such as Expiry,
Persistence, and Priority that relate to how messages are handled by MQ.
Expiry can have the value Application, which means that it can be set
inside the JMS Application, or Unlimited, which means that messages
have no expiry, or a user-specified value.

Persistence can have value Application, meaning that it can be set inside
the JMS Application, or High, meaning that irrespective of messages
being persistent or non-persistent they survive a queue manager restart. If
the NPMCLASS value for that particular queue is set to High, both
Persistent and Non Persistent would mean the same as they do in the
WebSphere MQ V6.0 queue default, meaning that default persistence
level is set for the queue that holds the messages. Priority means the
same thing as does in WebSphere MQ V6.0.

– The Broker category has properties such as Broker Durable Subscription
Queue, which specifies the queue that holds messages for durable

 Chapter 9. Publish/Subscribe management 211

subscriptions for JMS-based clients. The Broker CC Durable Subscription
Manager Queue serves the same function as the Broker Durable
Subscription Queue except that it caters for JMS 1.1 based clients. The
publication stream refers to the stream name. Streams provide a means of
separating the flow of information for different topics. A stream is
implemented as a set of queues, one at each broker that supports the
stream. Each queue has the same name, which is the name of the stream.
The default stream set up between all the brokers in a network is called
SYSTEM.BROKER.DEFAULT.STREAM.

The Broker Publication queue manager maps to the queue manager on
which the underlying MQ Topic is defined. There is a one-to-one mapping
between JMS Topic properties and MQ Topic properties. However, the
JMS Topic properties are not subject to change when the corresponding
MQ Topic properties change.

– The producer category has the asynchronous puts property that can have
values As Destination, which means that the value of this property
depends on the settings for asynchronous puts on the destination queue
being used, or Enabled or Disabled, which mean that asynchronous puts
are administratively disabled or enabled.

– The consumers category has the allow read ahead property that can have
values As Destination, Enabled, or Disabled. These have the same
meanings as for asynchronous puts in the producer category.

Note: The use of streams is deprecated in WebSphere MQ Version 7.0.
In order to be backward compatible, WebSphere MQ Version 7.0
produces topic objects and topic strings by combining WebSphere MQ
Version 6.0 StreamName and topic parameters. For example, if the
WebSphere MQ Version 6.0 StreamName is MATT.RETAIL.CAT and
the topic string is Deli/Fresh/Fruit, the WebSphere MQ Version 7.0
Publish/Subscribe engine creates a topic called
/MATT/RETAIL/CAT/Deli/Fresh/Fruit.

212 WebSphere MQ V7.0 Features and Enhancements

9.1.8 Setting up topic security using MQ Explorer

The following procedure uses MQ Explorer on the Windows platform to set up
security for a topic object on a local or remote queue manager:

1. Click the Topics folder of a queue manager to display the list of topic object
names that exist on the queue manager.

2. Right-click a topic name and then select Object Authorities - Manage
Authority Records from the context menu, as shown in Figure 9-9 on
page 204.

This opens the Manage Authority Records window, as shown in Figure 9-16.
An authority record is the set of authorities that have been granted to a
particular user or group of users (entities) on a named object.

Figure 9-16 Managing specific profiles

This window shows which groups have access to the topic. A specific profile
applies only to the object of that name and type. To grant or revoke an
authority on a single object, select the relevant specific profile and create or
edit the authority records for that profile. A generic profile matches one or
more objects using wildcard characters.

Although this interface looks similar to that in WebSphere MQ v6.0, there are
three new authorities that have been added to support security for
Publish/Subscribe in WebSphere MQ v7.0. These three new authorities are:

– Publish: Enabling this authority means that users in the group can publish
to the topic using the MQPUT call.

– Subscribe: Enabling this authority means that users in the group can
create, alter, or resume a subscription to a topic using the MQSUB call.

– Resume: Enabling this authority means that users in this group can
resume a subscription using the MQSUB call.

 Chapter 9. Publish/Subscribe management 213

It is possible to create a group authority or user authority, as illustrated in
Figure 9-17.

Figure 9-17 Creating GROUP Authority FINANCE

3. Right-click the specific profile MONEY and then click New - Group Authority.
This opens the New Authorities window, as shown in Figure 9-18.

Figure 9-18 Setting new authorities for group FINANCE

A range of authorities can be enabled for the new group. Clicking OK creates
a new group authority with the selected authorities.

214 WebSphere MQ V7.0 Features and Enhancements

9.1.9 Setting up topic security using setmqaut

The setmqaut control command is used to change the authorizations to a profile,
object, or class of objects. Authorizations can be granted to, or revoked from, any
number of principals or groups. The principals or groups to which the
authorizations apply must be specified, along with the queue manager, object
type, and the profile name that identifies the objects. Example 9-2 demonstrates
the use of setmqaut with the topic type. It also shows usage of the three new
kinds of authorities:

� Pub
� Sub
� Resume

Example 9-2 Using setmqaut

To let the users in the group “editors” subscribe to topic “DELI” on
Queue Manager WMQ7:
setmqaut -m WMQ7 -n DELI -t topic -g editors +sub +resume

And to allow users in the group “journalists” to publish to the topic:
setmqaut -m WMQ7 -n DELI -t topic -g journalists +pub

For a complete description of the options that can be used with the setmqaut
command refer to the manual System Administration Guide, available in the
WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

9.1.10 Mapping queue aliases to a topic object

The queue alias object has been extended in WebSphere MQ V7.0 to allow
aliases to be created for the new topic object. Refer to 4.2.3, “Topic alias” on
page 47, for a complete description of this enhancement and its usage.

The administration procedure for MQ Explorer and MQSC is given in 8.2.2,
“Queue object parameters” on page 180.

Note: -pub and -sub clear the authority to publish and subscribe on the topic.
If a group has a +sub for a parent administration topic node and -sub for the
child of this node, the -sub is ineffective. This holds true because the security
attributes are delegated from the parent to the child administration nodes.

 Chapter 9. Publish/Subscribe management 215

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

9.2 Managing subscriptions

WebSphere MQ v7.0 provides for management of administrative subscriptions
through MQ Explorer and MQSC. This allows point-to-point applications to act as
subscribers without any code changes to the applications, as described in 4.2.3,
“Topic alias” on page 47.

9.2.1 Using MQ Explorer

Using MQ Explorer

1. Expand the Queue Manager folder in the Navigator view in WebSphere MQ
v7.0 explorer, and then right-click Subscriptions.

There are two options on the context menu, New - Subscription and Status,
as shown in Figure 9-19.

Figure 9-19 Subscriptions: Right-click menu

216 WebSphere MQ V7.0 Features and Enhancements

2. Click Subscription and the New Subscription window will be displayed, as
shown in Figure 9-20. Enter a name for the subscription and then click Next.

Figure 9-20 Create subscription

The topic name and the topic string properties refer to the topic object name
and the corresponding string in the topic hierarchy, such as
MATT.RETAIL.CAT and matt/retail/cat.

Wildcard characters can be used in the topic string to subscribe to multiple
topics. Refer to 4.2.2, “Topic strings and topic objects” on page 45, for further
details.

Scope refers to the subscription scope (SUBSCOPE), which can be set to
either Queue Manager (the subscription forwards messages published on the
topic only within the local queue manager) or ALL (the subscription is

 Chapter 9. Publish/Subscribe management 217

forwarded to all queue managers directly connected through a
Publish/Subscribe collective or hierarchy).

Destination class can be set to managed (the queue manager internally
manages the queuing of messages for the subscription) or provided (a
non-managed subscription where the queue for this subscription is provided
by the subscription definition). The destination queue name is entered in the
destination property and the destination queue manager is entered in the
destination queue manager property.

3. Right-click a subscription to display a context menu, as shown in Figure 9-21.

Figure 9-21 Subscription context menu

218 WebSphere MQ V7.0 Features and Enhancements

4. Clicking Compare With helps to compare this subscription with other
subscriptions. Clicking Status displays the status of the subscription. Clicking
Properties displays a window that allows the subscription properties to be
changed, as shown in Figure 9-22.

Figure 9-22 Changing subscription properties

9.2.2 Using MQSC

WebSphere MQ v7.0 introduces new MQSC commands for managing
subscriptions. The commands accept a variety of parameters that are described
in the manual Script (MQSC) Command Reference, available in the WebSphere
MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

 Chapter 9. Publish/Subscribe management 219

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Define subscription
The DEFINE SUB command defines a new administrative subscription. The
subscribed topic is referred to by topic object (using the TOPICOBJ parameter)
or topic string (using the TOPICSTR parameter).

The DESTCLAS parameter can be set to two values:

� MANAGED: This is a managed subscription. The queue manager internally
manages the queuing of messages for the subscription.

� PROVIDED: This is a non-managed subscription where the queue for this
subscription is provided by the subscription definition. The name of the queue
and queue manager is specified by the DEST and DESTQMGR parameters,
respectively. DESTCLAS defaults to PROVIDED if the parameter is not
specified. DESTQMGR defaults to blank (the local queue manager) if it is not
specified.

The subscription can participate in a distributed Publish/Subscribe environment
by using the SUBSCOPE parameter. It can be assigned the following values:

� ALL: The subscription is forwarded to all queue managers directly connected
through a Publish/Subscribe collective or hierarchy. This is the default if the
SUBSCOPE parameter is not specified.

� QMGR: The subscription forwards messages published on the topic only
within the local queue manager.

Example usage of this command is given in Example 9-3.

Example 9-3 Usage of the DEFINE SUB command

DEFINE SUB(SUB.RETAIL.CAT) TOPICOBJ(MATT.RETAIL.CAT) DESTCLAS(MANAGED)
DEFINE SUB(SUB.MATTRETCAT) TOPICSTR(‘matt/retail/cat’)

DESTCLAS(MANAGED)
DEFINE SUB(SUB.PROVCAT) TOPICSTR(‘matt/retail/cat’)

DEST(SUB.PROVCAT.DESTQ)

Display subscription
Details of existing administrative subscriptions can be displayed using the
DISPLAY SUB command. The values of all parameters can be displayed or only
those that have been specified. The display can also be limited by filter
conditions, durability, and subscription type. See Example 9-4.

Example 9-4 Usage of the DISPLAY SUB command

DISPLAY SUB(SUB.PROVCAT) ALL
DIS SUB(*) DESTCLAS DEST DESTQMGR

220 WebSphere MQ V7.0 Features and Enhancements

Alter subscription
Existing subscriptions can be altered using the ALTER SUB command. See
Example 9-5.

Example 9-5 Usage of the ALTER SUB command

ALTER SUB(SUB.PROVCAT) DEST(SUB.PROVCAT.DQ1) DESTCORL(1)

Delete subscription
Existing subscriptions can be deleted using the DELETE SUB command. This
requires the unique hexadecimal subscription ID (SUBID) that was assigned by
the queue manager when the subscription was created. The SUBID is displayed
by the DISPLAY SUB command. See Example 9-6.

Example 9-6 Usage of the DELETE SUB command

DELETE SUB(SUB.MATTRETCAT)
SUBID(414D51204D51474254312020202020206D3F734820002503)

9.3 Displaying Publish/Subscribe status

The status of the Publish/Subscribe environment can be displayed using MQSC
commands. Additional parameters for the commands are described in the
manual Script (MQSC) Command Reference, available in the WebSphere MQ
V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

9.3.1 Display Pub/Sub status

The DISPLAY PUBSUB command can be used to display the Publish/Subscribe
status information about a queue manager. The general form of the command
and an example are given in Example 9-7.

Example 9-7 Usage of the DISPLAY PUBSUB command

DISPLAY PUBSUB TYPE(type) ALL|QMNAME|STATUS
DIS PUBSUB TYPE(ALL) ALL

 Chapter 9. Publish/Subscribe management 221

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The TYPE parameter allows a preference to be specified for the type of
information to be displayed for a distributed Publish/Subscribe environment. It
can take the following values:

� ALL: Displays the pub/sub status for this queue manager and for parent and
child hierarchical connections

� CHILD: Displays the pub/sub status for child connections

� LOCAL: Displays the pub/sub status for this queue manager

� PARENT: Displays the pub/sub status for the parent connection

The displayed information includes the STATUS parameter, which may have the
following values, depending on the type of information requested.

� If the TYPE entered was LOCAL, the following values can be returned:

– ACTIVE: The pub/sub engine and the queued pub/sub interface are
running. It is therefore possible to publish or subscribe using the APIs and
to the queues that are monitored by the queued pub/sub interface.

– COMPAT: The pub/sub engine is running. It is therefore possible to publish
or subscribe using the APIs. The queued pub/sub interface is not running.
Therefore, any message that is put to the queues that are monitored by
the queued pub/sub interface is not acted upon by WebSphere MQ v7.0.

– ERROR: The pub/sub engine has failed. Check your error logs to
determine the reason for the failure.

– INACTIVE: The pub/sub engine and the queued pub/sub interface are not
running. It is therefore not possible to publish or subscribe using the APIs.
Any pub/sub messages that are put to the queues that are monitored by
the queued pub/sub interface are not acted upon by WebSphere MQ V7.0.

– STARTING: The pub/sub engine is initializing and is not yet operational.

– STOPPING: The pub/sub engine is stopping.

� If the TYPE entered was CHILD, the following values can be returned:

– ACTIVE: The connection with the child queue manager is active.

– ERROR: This queue manager is unable to initialize a connection with the
child queue manager because of a configuration error. Possible causes
include:

• Transmit queue is not defined.
• Transmit queue put is disabled.

– STARTING: Another queue manager is attempting to request that this
queue manager become its parent.

– STOPPING: The queue manager is disconnecting.

222 WebSphere MQ V7.0 Features and Enhancements

� If the TYPE entered was PARENT, the following values can be returned:

– ACTIVE: The connection with the parent queue manager is active.

– ERROR: This queue manager is unable to initialize a connection with the
parent queue manager because of a configuration error.

– REFUSED: The connection has been refused by the parent queue
manager.

– STARTING: The queue manager is attempting to request that another
queue manager becomes its parent.

– STOPPING: The queue manager is disconnecting from its parent.

9.3.2 Display subscriber status

The DISPLAY SBSTATUS command can be used to display the status of a given
subscription. The display can also be limited by filter conditions, durability, and
subscription type. The general form of the command and two examples are given
in Example 9-8.

Example 9-8 Usage of DISPLAY SBSTATUS command

DISPLAY SBSTATUS(subscription_name) SUBTYPE(USER|PROXY|ADMIN|API|ALL)
DURABLE(ALL|NO|YES) ALL|status_attributes

DISPLAY SBSTATUS SUBID(subscription_id) ...

DIS SBSTATUS(*) ALL
DIS SBSTATUS(MATT*) DURABLE(YES) LMSGDATE LMSGTIME

 Chapter 9. Publish/Subscribe management 223

224 WebSphere MQ V7.0 Features and Enhancements

Chapter 10. WebSphere MQ Bridge for
HTTP

This chapter describes the WebSphere MQ Bridge for HTTP that enables client
applications to exchange messages with WebSphere MQ from any platform or
language with HTTP capability.

This chapter contains the following sections:

� 10.1, “Overview” on page 226
� 10.2, “Prerequisites” on page 227
� 10.3, “Supported verbs” on page 228
� 10.4, “HTTP request and response” on page 229

10

© Copyright IBM Corp. 2009. All rights reserved. 225

10.1 Overview

WebSphere MQ Bridge for HTTP is a feature of WebSphere MQ V7.0 that allows
client applications to interact with a queue manager using the HTTP protocol.
Clients can perform several messaging functions with WebSphere MQ from any
platform or language that has HTTP capability, without the need for WebSphere
MQ client libraries on the platform.

A key feature of WebSphere MQ is its ubiquity. It is available on a wide range of
platforms and operating systems. This feature adds to the fold any platform
capable of issuing HTTP requests. Clients with zero footprint (without any
WebSphere MQ libraries and software installed on the client side) can use this
feature to perform messaging using WebSphere MQ.

Figure 10-1 shows that the WebSphere MQ Bridge for HTTP is hosted by an
application server as a servlet application. It receives HTTP requests from one or
more clients, interacts with WebSphere MQ on their behalf, and returns HTTP
responses back to the clients.

Figure 10-1 WebSphere Bridge for HTTP

Features of WebSphere MQ Bridge for HTTP
The features are:

� Because of the low quality of service inherent in HTTP, the WebSphere MQ
Bridge for HTTP is not suitable for use with messages where guaranteed
delivery is required.

� HTTP supports both point-to-point and Publish/Subscribe messaging
paradigms. The interface is subset of the full Publish/Subscribe functionality
offered by WebSphere MQ.

� Using the HTTPS functionality of a supported application server, the bridge
can used both HTTP and HTTPS protocols.

HTTP protocol
POST,GET,DELETE

WMQ - Either Client or
Binding protocol

J2EE 1.4
Application Server

WebSphere
MQ Bridge
for HTTP

HTTP
Client

WebSphere
MQ

226 WebSphere MQ V7.0 Features and Enhancements

� It uses an application server to provide the HTTP server-side stack.

� The WebSphere MQ Bridge for HTTP consists of a servlet that is connected
to a JCA resource adapter to WebSphere MQ in either client or binding mode.

For further information about the WebSphere MQ Bridge for HTTP, refer to:

http://www.ibm.com/software/integration/wmq/httpbridge/

10.2 Prerequisites

The following prerequisites apply to the WebSphere MQ Bridge for HTTP:

� WebSphere Application Server Version 6.0.2.1 and later or WebSphere
Application Server Community Edition Version 1.1 or later. The WebSphere
MQ Bridge for HTTP may be used with other J2EE™ 1.4 compliant
application servers, but it is not supported by IBM.

� A WebSphere MQ JMS provider within the application server.

� To use WebSphere Application Serve Version 6 or earlier, WebSphere
Application Serve Message Listener Port (MLP) is required to integrate
WebSphere MQ as the JMS provider.

� With an application server other than WebSphere Application Server, use the
WebSphere MQ resource adapter. This is included in WebSphere MQ V7.0.

� The WebSphere MQ Bridge for HTTP is supplied as a .war file. It must be
deployed to the application server as a servlet application.

Note: The WebSphere MQ Bridge for HTTP is also available for WebSphere
MQ V6.0 as SupportPac MA0Y. For information about this SupportPac refer
to:

http://www.ibm.com/support/docview.wss?uid=swg24016142

Note: There is an alternative method of accessing WebSphere MQ from a
HTTP client. SupportPac MA94 provides a stand-alone native HTTP listener
that does not require an application server. It serves HTML pages and
supports both point-to-point and Publish/Subscribe messaging. However, it
may not provide the same functions as SupportPac MA0Y or the WebSphere
MQ V7.0 Bridge for HTTP. For further information refer to:

http://www.ibm.com/support/docview.wss?uid=swg24017593

 Chapter 10. WebSphere MQ Bridge for HTTP 227

http://www.ibm.com/support/docview.wss?uid=swg24016142
http://www.ibm.com/support/docview.wss?uid=swg24017593
http://www.ibm.com/software/integration/wmq/httpbridge/

10.3 Supported verbs

The bridge is capable of handling three types of HTTP request:

� POST
� GET
� DELETE

The WebSphere MQ function of each HTTP verb is listed in Table 10-1.

Table 10-1 WebSphere MQ Bridge for HTTP verbs

The bridge runs as a servlet on the application server. It is limited by the
restrictions of HTTP protocol, so the quality of service is 0 (in other words,
fire-and-forget with no guarantee of delivery).

The client issues an HTTP request to the application server hosting the
WebSphere MQ/HTTP bridge. The URL and payload of this request determines
the message data, the destination, and other options. The WebSphere MQ
queue manager sees the bridge as an ordinary remote client application or local
binding application.

A typical flow to put a message on a queue is:

1. The client makes a HTTP POST request to a URL on the application server.

2. The bridge interprets the request and presents it as a JMS operation to the
WebSphere MQ queue manager, which then performs the messaging
request.

3. The bridge receives the status code and associated data back from JMS,
such as the message ID of the message put by the queue manager.

4. The bridge code returns an HTTP response to the client indicating the
success or failure of the operation. The response can contain headers with
the requested message properties.

HTTP
request

WebSphere MQ
function

POST Puts a message on a queue or topic.

GET Browses the first message on a queue. In line with the HTTP protocol,
this does not delete the message from the queue. This verb cannot be
used with Publish/Subscribe messaging.

DELETE Browses and deletes a message from a queue or topic.

228 WebSphere MQ V7.0 Features and Enhancements

The bridge uses the representational state transfer (REST) programming model,
so no record is maintained of messages delivered to the client. Subsequent
requests to the same topic may result in duplicate messages being received by
an HTTP client. Multiple retained messages on sub-topics cannot be consumed.
For example, if topic “weather/NewYork” contains a retained message and topic
“weather/London” contains a retained message, a request to topic “/weather/#”
will return the first message to the client, not both.

10.4 HTTP request and response

The purpose of the WebSphere MQ bridge for HTTP is to receive HTTP requests
from clients, interact with WebSphere MQ, and return HTTP responses to the
client. This section deals with the format of messages, constructing HTTP
requests and handling HTTP responses.

Table 10-2 shows the mapping of POST, GET, and DELETE verbs to WebSphere
MQ API calls for messages and Publish/Subscribe topics.

Table 10-2 WebSphere MQ HTTP verbs

To put a message to a queue, the client creates an HTTP request. This can be
done using a HTTP programming method, such as AJAX or Java HTTP libraries.

All Message Descriptor fields are conveyed in HTTP headers prefixed with
'x-msg-'. The message body is passed in the HTTP entity body, and message
type in the HTTP content type.

The following sub-sections provide more information about the URI format and
HTTP verbs.

Note: The client can be anything that can invoke an HTTP request and handle
an HTTP response (for example, Web browser, perl, python, ruby).

HTTP verb mapping

Resource Sample URIs GET POST PUT DELETE

Messages http://host/msg/queue/qname/ MQGET MQPUT - MQGET

Topic http://host/msg/topic/tname/ - MQPUT - MQGET

 Chapter 10. WebSphere MQ Bridge for HTTP 229

10.4.1 URI FORMAT

The URI format supported by WebSphere MQ Bridge for HTTP is shown in
Example 10-1.

Example 10-1 URI format in WebSphere MQ Bridge for HTTP

Wmq-http-iri = "http:" "//" connection-name "/" wmq-dest
 connection-name = [tcp-connection-name]
 tcp-connection-name = ihost [":" port]
 wmq-dest = queue-dest | topic-dest
 queue-dest = "msg/queue/" wmq-resource ["@" wmq-qmgr] "/"
 topic-dest = "msg/topic/" wmq-resource "/"

The context root is defined in the deployment plan when the bridge servlet is
deployed into the application server. The bridge is configured such that all
requests to URIs for message queues and message topics are handled by the
bridge.

10.4.2 HTTP POST

HTTP POST can be used to put a message onto a WebSphere MQ queue or
topic. The WebSphere MQ Bridge for HTTP will put messages to queues and
topics as either WebSphere MQ messages (without a MQRFH2 header) or JMS
messages (with a MQRFH2 header). This is dependent on the content-type of
the request, and the value of the x-msg-class header in the request.

Use HTTP headers in the HTTP POST request to set the properties of the
message that is put to WebSphere MQ. The require-headers header is used to
specify the information about the WebSphere MQ message to be received as
headers in the response message.

If the HTTP POST request is successful, the entity of the response message will
be empty and the content-length of the response will be set to zero. The status
code of the HTTP response will be '200 OK'.

In the case of an unsuccessful request, the entity of the response will contain a
WebSphere MQ Bridge for HTTP error message and the status code.

The status code of the HTTP response will be set to one of the values listed in
the section WebSphere MQ Bridge for HTTP → HTTP Return codes of the Web
Services manual, available in the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

230 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Figure 10-2 details a sample HTTP POST flow.

Figure 10-2 Sample HTTP flow: POST

10.4.3 HTTP GET

HTTP GET can be used to browse a message from a WebSphere MQ queue.
HTTP GET is not supported for use with topics. The entity of the response
message that is sent back to the client contains the data from the WebSphere
MQ message. The WebSphere MQ message remains on the queue.

HTTP headers can be used in a HTTP GET request as follows:

1. The x-msg header specifies the information about the WebSphere MQ
message to be received as headers in the response message.

2. The correlID header or msgID header, or both, select the message to be
browsed from the queue.

3. The wait header determines how long to wait for a message to arrive on the
queue.

If the HTTP GET request is successful, the entity of the response message will
contain the message retrieved from the WebSphere MQ queue and the HTTP

POST /mq/msg/queue/HTTP.TEST.QUEUE
HTTP/1.1

Host: localhost:8081

x-msg-require-headers: ALL

Content-Length: 12

Hello World!

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Location: /msg/queue/HTTP.TEST.QUEUE?targetClient=1

server: WMQ-HTTP/1.1.0.0

server: JEE-Bridge/7.0.0.0

x-msg-expiry: UNLIMITED

x-msg-replyTo:

x-msg-timestamp: Thu, 22 May 2008 10:39:46 GMT

x-msg-correlId:

x-msg-msgId:
0x:414d5120485454502e514d2020202020784c354820001c04

x-msg-format: NONE

x-msg-priority: MEDIUM

x-msg-usr:

x-msg-persistence: NON_PERSISTENT

x-msg-encoding: INTEGER_NORMAL, DECIMAL_NORMAL,
FLOAT_IEEE_NORMAL

Content-Length: 0

Date: Thu, 22 May 2008 10:39:46 GMT

Request Response

 Chapter 10. WebSphere MQ Bridge for HTTP 231

content-length headers will be set to the number of bytes in the entity body. The
status code of the HTTP response will be '200 OK'.

In the case of an unsuccessful request, the response will contain a WebSphere
MQ Bridge for HTTP error message and the status code.

The status code of the HTTP response will be set to one of the values listed in
the section WebSphere MQ Bridge for HTTP → HTTP Return codes of the Web
Services manual, available in the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

Figure 10-3 details a sample HTTP GET flow.

Figure 10-3 Sample HTTP flow: GET

10.4.4 HTTP DELETE

The HTTP DELETE operation can be used to get a message from a WebSphere
MQ queue or topic. The message will be destructively removed from the queue

GET /mq/msg/queue/HTTP.TEST.QUEUE HTTP/1.1

Host: localhost:8081

x-msg-require-headers: ALL

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Cache-Control: no-cache

server: WMQ-HTTP/1.1.0.0

server: JEE-Bridge/7.0.0.0

x-msg-expiry: UNLIMITED

x-msg-replyTo:

x-msg-timestamp: Thu, 22 May 2008 10:39:53 GMT

x-msg-correlId:
0x:00

x-msg-msgId:
0x:414d5120485454502e514d2020202020784c354820001c04

x-msg-format:

x-msg-priority: MEDIUM

x-msg-usr:

x-msg-persistence: NON_PERSISTENT

x-msg-encoding: INTEGER_NORMAL, DECIMAL_NORMAL,
FLOAT_IEEE_NORMAL

x-msg-class: BYTES

Content-Type: Application/octet-stream

Date: Thu, 22 May 2008 10:39:53 GMT

Hello World!

Request Response

232 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

or topic. A response message will be sent back to the client, including information
about the message.

HTTP headers can be used in a HTTP DELETE request as follows:

1. The x-msg header specifies the information about the WebSphere MQ
message to be received as headers in the response message.

2. The correlID header or msgID header, or both, determine the message to be
got from the queue or topic.

3. The wait header determines how long to wait for a message to arrive on the
queue or topic.

If the HTTP DELETE request is successful, the entity of the response message
will contain the data of the message retrieved from the WebSphere MQ queue or
topic and the HTTP content-length headers will be set to the number of bytes in
the entity body.

In case of an unsuccessful request, the response will contain a WebSphere MQ
Bridge for HTTP error message and the status code.

The status code of the HTTP response will be set to one of the values listed in
the section WebSphere MQ Bridge for HTTP → HTTP Return codes of the Web
Services manual, available in the WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

 Chapter 10. WebSphere MQ Bridge for HTTP 233

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

234 WebSphere MQ V7.0 Features and Enhancements

Chapter 11. z/OS enhancements

This chapter describes the enhancements to WebSphere MQ V7.0 for the z/OS
operating system. They should be considered before installing or migrating to
WebSphere MQ V7.0 on z/OS.

This chapter contains the following sections, which discuss each of the
enhancements:

� 11.1, “Publish/Subscribe for z/OS” on page 236
� 11.2, “RACF mixed case classes and profiles” on page 236
� 11.3, “Using WebSphere MQ Explorer without CAF” on page 238
� 11.4, “WebSphere MQ for z/OS listener” on page 240
� 11.5, “CICS OTE” on page 240

For additional information refer to the following WebSphere MQ manuals:

� WebSphere MQ System Administration Guide V7.0
� WebSphere MQ z/OS Concepts and Planning Guide V7.0
� WebSphere MQ z/OS Systems Setup Guide V7.0
� WebSphere MQ Publish/Subscribe Users Guide V7.0
� WebSphere MQ Security V7.0

These manuals are available in the IBM Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

11

© Copyright IBM Corp. 2009. All rights reserved. 235

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

11.1 Publish/Subscribe for z/OS

WebSphere MQ V7.0 for z/OS now provides a native Publish/Subscribe
(Pub/Sub) feature, exactly as implemented on the distributed platforms in this
version.

The Pub/Sub feature was first introduced to WebSphere MQ in V5.3 for
distributed platforms. It was previously only available on the z/OS platform in
WebSphere Message Broker.

For detailed information about Pub/Sub in V7.0 refer to Chapter 4,
“Publish/Subscribe integration” on page 43.

11.2 RACF mixed case classes and profiles

WebSphere MQ V7.0 supports the use of mixed case RACF profiles. Five new
RACF classes have been added and a new queue manager parameter
introduced.

11.2.1 New queue manager parameter SCYCASE

The new queue manager parameter SCYCASE (security case) can take the
value UPPER or MIXED to determine which RACF profiles are used by the
queue manager to provide security:

� UPPER: Only uppercase profiles are used, as per the behavior of WebSphere
MQ V6.0.

� MIXED: Only mixed-case profiles are used.

Changes to this parameter are only effective after a successful REFRESH
SECURITY(*) TYPE(CLASSES) command or after the queue manager has been
recycled. This parameter is only valid on z/OS.

The MQSC command DISPLAY QMGR SCYCASE displays the current setting of
the SCYCASE parameter for the queue manager. This parameter is only valid on
z/OS.

MQ Explorer displays the current setting of the SCYCASE parameter for z/OS
queue managers as Security profile case in the Extended section of the Queue
Manager Properties window.

236 WebSphere MQ V7.0 Features and Enhancements

11.2.2 New RACF classes

Five new RACF classes are added in WebSphere MQ V7.0. They allow profiles
to be defined to protect mixed-case object names and administration functions.
Four of these new classes replace equivalent classes that allowed
uppercase-only profiles.

Table 11-1 New RACF classes

The new MXTOPIC class does not have an equivalent uppercase class.

Previously, mixed-case object names could only be protected by using generic
uppercase profiles in the appropriate uppercase RACF class. Mixed-case objects
can now be protected by using mixed-case profiles (generic or specific) in the
appropriate mixed-case RACF class.

11.2.3 Using mixed case profiles

With only uppercase RACF profiles available, the only way to protect resources
with mixed-case names is to use generic profiles. For example, the following
RACF command would define a profile applying to all queue names that began
QMHQ.PAYROLL., including those with mixed-case names:

RDEFINE MQQUEUE QMHQ.PAYROLL.**

Therefore, QMHQ.PAYROLL.inqueue and QMHQ.PAYROLL.outqueue would be
protected by the same profile.

The mixed-case class MXQUEUE can be used to define profiles to provide
explicit protection for queues with mixed-case names, for example:

RDEFINE MXQUEUE QMHQ.PAYROLL.inqueue
RDEFINE MXQUEUE QMHQ.PAYROLL.outqueue

Different access restrictions can now be granted to these queues.

New (mixed case)
RACF class name

Previous (upper case only)
RACF class name

Use

MXADMIN MQADMIN Administration

MXQUEUE MQQUEUE Queues

MXPROC MQPROC Processes

MXNLIST MQNLIST Name lists

MXTOPIC None Publish/Subscribe topics

 Chapter 11. z/OS enhancements 237

11.2.4 Refreshing mixed-case profiles

The REFRESH SECURITY command has been updated to allow the new RACF
classes to be refreshed in a queue manager. For example, the following
command deletes all the profiles in the MXQUEUE class that are held in storage
by the queue manager:

REFRESH SECURITY(MXQUEUE)

Profiles are then loaded into queue manager storage from RACF as they are
needed to perform security validations.

11.2.5 Migrating to mixed-case security

To use mixed-case security profile support:

1. Ensure that the new WebSphere MQ RACF classes are installed and active.

2. Copy all your existing profiles and access levels from the uppercase classes
to the equivalent mixed case class:

a. MQADMIN to MXADMIN
b. MQPROC to MXPROC
c. MXLIST to MXNLIST
d. MQQUEUE to MXQUEUE

3. Start the queue manager subsystem with the queue manager SCYCASE
attribute set to UPPER.

4. Change the value of the SCYCASE attribute to MIXED by issuing the
following command:

ALTER QMGR SCYCASE(MIXED)

5. Activate the security profiles by issuing the following command:

REFRESH SECURITY(*) TYPE(CLASSES)

6. Test that security profiles are working correctly.

11.3 Using WebSphere MQ Explorer without CAF

MQ Explorer can be used to remotely administer and monitor MQ objects,
including topics and other Publish/Subscribe facilities.

WebSphere MQ V7.0 for z/OS introduces a limited capability to allow MQ
Explorer and other programs such as SupportPac M071 to administer z/OS
queue managers at this version without purchasing a license for the Client Attach

238 WebSphere MQ V7.0 Features and Enhancements

Facility (CAF). A license still needs to be purchased to allow any other type of
WebSphere MQ Client application to connect to the queue manager.

This makes available the great benefits of using the features and graphical user
interface of MQ Explorer to administer z/OS queue managers that did not
previously have this license.

Up to five client programs can connect to each z/OS queue manager via the
SYSTEM.ADMIN.SVRCONN channel. There is a sample definition of this
SVRCONN-type channel in the CSQ4INSG member. This must be copied to a
member that is concatenated to CSQINP2 DD of the MSTR address space. The
new MAXINST parameter must be added to the definition with a numeric
argument in the range of 1 to 5 to limit the maximum number of concurrently
running channel instances from MQ Explorer users.

Example 11-1 The following MQSC command specifies a limit of five users

DEFINE CHANNEL('SYSTEM.ADMIN.SVRCONN') +
CHLTYPE(SVRCONN) +
QSGDISP(QMGR) +
* Server-connection channel attributes
DESCR('System-command client channel') +
TRPTYPE(TCP) +
MCAUSER(' ') +
SCYEXIT(' ') SCYDATA(' ') +
MSGEXIT(' ') MSGDATA(' ') +
SENDEXIT(' ') SENDDATA(' ') +
RCVEXIT(' ') RCVDATA(' ') +
PUTAUT(DEF) +
DISCINT(0) KAINT(AUTO) +
COMPHDR(NONE) COMPMSG(NONE) +
MONCHL(QMGR) +
SSLCIPH(' ') +
SSLPEER(' ') +
SSLCAUTH(REQUIRED) +
MAXMSGL(4194304) +
MAXINST(5)

We recommend that security should be imposed on the
SYSTEM.ADMIN.SVRCONN channel by using Secure Sockets Layer (SSL) or a
security exit to restrict access to authorized administrators. Security
enhancements for remote administration using MQ Explorer are covered in 8.1.5,
“Security” on page 167. This contains all the steps required to set up security on
the Explorer side.

 Chapter 11. z/OS enhancements 239

11.4 WebSphere MQ for z/OS listener

In WebSphere MQ for z/OS, listening for connections on TCP/IP and LU6.2
protocols is performed within the channel initiator (CHIN) address space of a
queue manager. The CHIN also runs all message channel agents (MCAs) for the
queue manager, whether they are a distributed message channel, cluster
message channel, or client connection channel.

A listener is usually started and stopped on a z/OS queue manager using a
command interface on the z/OS system.

WebSphere MQ Explorer V7.0 now supports the remote starting and stopping of
the z/OS listener. This feature was not provided in prior versions of the MQ
Explorer.

It is now also possible to define new listeners on z/OS queue managers using
MQ Explorer. The procedure is as follows:

1. Right-click the Listeners folder for the z/OS queue manager that is to contain
the new listener, then click New and select the type of listener to be defined
(TCP or LU6.2). The New Listener dialog then opens.

2. Make all the necessary changes to the attributes now, because z/OS listener
attributes are configurable only when they are initiated and cannot be altered
later.

3. Click Finish to start the new listener.

4. The new listener is started and displayed in the Content view.

11.5 CICS OTE

The CICS Open Transaction Environment (OTE) allows transactions to run under
their own Task Control Blocks (TCBs) rather than all running on the
Quasi-Reentrant (QR) TCB that is normally used.

To run an Open TCB, code must be thread-safe. This means that it is not
dependant on the serialization that the QR TCB provides, but uses proper
serialization techniques when updating shared resources.

CICS automatically provides the necessary TCB switches when jumping
between thread-safe and non-thread-safe code. The MQ Task Related User Exit
(CSQCTRUE) used by all MQ API calls is not currently thread-safe, so all
WebSphere MQ calls from an Open TCB switch to the QR TCB, and then from

240 WebSphere MQ V7.0 Features and Enhancements

CSQCTRUE to one of the eight RMI TCBs to actually perform the real work.
Return from RMI TCB is also via the QR TCBs.

Making CSQCTRUE thread-safe eliminates the TCB switches to and from the
QR TCB, and also the TCB switches to and from the RMI TCBs.

The queue manager CTHREAD parameter is ignored by CICS OTE since it does
not provide a useful function in controlling resource usage by the feature. The
benefits are:

� No external change for applications.

� Exits (data conversion, API crossing) must be thread-safe.

� If not declared thread-safe, WebSphere MQ reverts to previous behavior.

� More efficient use of TCBs, especially when mixing calls to WebSphere MQ
and IBM DB2.

 Chapter 11. z/OS enhancements 241

242 WebSphere MQ V7.0 Features and Enhancements

Chapter 12. Installation and migration

This chapter provides guidance on some of the considerations that should be
made prior to installing WebSphere MQ V7.0 or performing a migration from
previous versions. It is not possible to cover all migration issues in the scope of
this book due to the many complex factors related to platform environments and
how applications use WebSphere MQ.

It is also not possible to fully address migration of Publish/Subscribe from the
queued interface provided in WebSphere MQ V6.0 or from WebSphere Message
Broker. The appropriate safe migration path depends on how these facilities are
being used and the complexity of the environment. Migration will almost certainly
involve application code changes and environment configuration changes. A
deep understanding of the migration issues is required and detailed planning
must be carried out to ensure a successful migration. WebSphere MQ
Publish/Subscribe migration is therefore beyond the scope of this book.

There are no significant changes to the installation process for WebSphere MQ
V7.0 when compared with previous versions. However, hardware and software
prerequisites have changed and supported operating system versions have
moved forward.

Many references are made in this chapter to WebSphere MQ manuals that
provide more information. These are available in the WebSphere MQ V7.0
Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

12

© Copyright IBM Corp. 2009. All rights reserved. 243

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

This chapter contains the following sections:

� 12.1, “Hardware and software prerequisites” on page 245
� 12.2, “Installation of WebSphere MQ V7.0” on page 245
� 12.3, “Co-existence with previous versions” on page 246
� 12.4, “Migration” on page 246

244 WebSphere MQ V7.0 Features and Enhancements

12.1 Hardware and software prerequisites

The hardware and software prerequisites for WebSphere MQ V7.0 are described
in the relevant WebSphere MQ Quick Beginnings manual for the distributed
platforms, and in the WebSphere MQ for z/OS System Setup Guide and
WebSphere MQ for z/OS Program Directory for the z/OS platform.

Detailed migration information is found in WebSphere MQ V7.0 Migration
Information. We strongly recommend reading this manual.

National Language Support on AIX
WebSphere MQ V7.0 requires an AIX® operating system at level 5.3 or later.
From this level of operating system onwards the IBM-850 code pages are no
longer supported.

If any of the IBM-850 code pages are installed these must be removed manually
before installing WebSphere MQ V7.0 and before upgrading to the AIX 5.3
operating system.

Microsoft Vista support with WebSphere MQ
WebSphere MQ V7.0 introduces support for the Microsoft® Vista operating
system.

If migrating from previous operating systems, such as Microsoft Windows XP, the
existing WebSphere MQ must first be upgraded to WebSphere MQ V7.0 before
upgrading the operating system. Prior versions of WebSphere MQ do not provide
support for the Microsoft Vista operating system.

12.2 Installation of WebSphere MQ V7.0

There are no changes to the installation process in WebSphere MQ V7.0. The
recommendation is to review the standard installation documentation specific to
the platform on which WebSphere MQ V7.0 is being installed.

The installation of WebSphere MQ and the configuration of new queue managers
is described in the relevant WebSphere MQ Quick Beginnings manual for the
distributed platforms, and for z/OS in the WebSphere MQ for z/OS System Setup
Guide, WebSphere MQ for z/OS Concepts and Planning Guide, and the
WebSphere MQ for z/OS Program Directory.

 Chapter 12. Installation and migration 245

https://wmqi-id.hursley.ibm.com/wmq/help/topic/com.ibm.mq.flat.doc/mq50020_.htm

12.3 Co-existence with previous versions

On distributed platforms it is not possible to install and run WebSphere MQ V7.0
to coexist with an earlier version of WebSphere MQ on the same server.
Installing WebSphere MQ V7.0 always upgrades any earlier version of
WebSphere MQ that has been previously installed on the server.

Coexistence is only supported on the z/OS platform, where each queue manager
subsystem can have its own set of product datasets running at different versions
of WebSphere MQ.

For z/OS, ensure that the WebSphere MQ V7.0 early code is installed and the
coexistence PTFs are applied to the existing queue managers before performing
the upgrade. Do this activity well ahead of the upgrade and ensure that the
current environment is stable with the PTFs before proceeding to the upgrade.

WebSphere MQ V7.0 for z/OS does not support queue-sharing groups (QSGs)
shared with subsystems (queue managers) running at previous versions of
WebSphere MQ. All subsystems within a queue-sharing group must be migrated
to V7.0 at the same time, or the feature must be disabled until all subsystems are
running at that version.

WebSphere MQ V7.0 interoperates within a network of existing queue managers
running on all supported platforms with previous versions of WebSphere MQ,
using clients, distributed queuing, and MQ Clusters.

For managing coexistence of message properties between MQ V7.0 and other
versions, refer to the PROPCTL attribute on channels and queues, as described
in the relevant WebSphere MQ Quick Beginnings manual for distributed
platforms.

12.4 Migration

The migration of every possible combination of a WebSphere MQ version,
supported platform, infrastructure software, and associated applications is not
within the scope of this book. This section highlights the main areas of impact
when migrating to WebSphere MQ V7.0 from previous releases and gives some
general guidance on actions that can be taken to ensure a smooth migration.

Prior to the installation or migration of any software we recommend that a full
system backup is performed to ensure that the system can be reverted to its
original working environment in the event that unresolved problems are
encountered during the migration.

246 WebSphere MQ V7.0 Features and Enhancements

12.4.1 General migration considerations

General issues to consider when planning a migration are:

� Detailed migration information is provided in the manual WebSphere MQ V7.0
Migration Information.

� Consult the WebSphere MQ Quick Beginnings Guide for specific distributed
platforms and the WebSphere MQ z/OS System Setup Guide.

� Review the latest readme files that are shipped with the product. They may
contain information that is not included in the manuals.

� Develop a backup plan to capture all current data of WebSphere MQ. Queue
manager attributes, object definitions, and messages are saved while the
queue manager is running and without any active applications or channels.
The WebSphere MQ file systems are saved while the queue manager is not
running to ensure that the backup has a consistent state.

� This is also a good time to check through all existing queue managers to see
whether there are queues and other objects that are no longer needed, and
whether there are any queue managers that are no longer required. Some
queue managers may need to be kept at an earlier version due to application
dependencies and a lack of prerequisite software. They can be still be
administered from a migrated system.

� Document and review details about the existing system topology, including the
names of the queue managers and their queues, channels, and how they
relate to applications and other queue managers.

� If inetd (UNIX network daemon) or a manually started runmqlsr is being used
as the MQ TCP/IP port listener, the migration is a good opportunity to change
to using a LISTENER object in the queue manager.

� Conduct thorough functionality testing after migrating a development or test
environment before migrating a production environment.

� If it is not possible to shut down a queue manager to be migrated due to
availability requirements, a different migration approach may need to be
considered. The migration can be performed using the following general
steps:

a. Copy all resources from the server connected to another server.

b. Perform a migration on the duplicate server.

c. Switch over the workload to the queue manager on the duplicate server at
a convenient quiet time when there are no application messages queued.
This may involve altering channels or domain name system (DNS) entries.

 Chapter 12. Installation and migration 247

12.4.2 Queue manager migration

Before migrating to WebSphere MQ V7.0, ensure that all prerequisites are
satisfied and that the current environment is backed up.

Ensure that applications are thoroughly tested against the product before
deploying into production. We recommend that the migration be completed in two
phases:

� Perform the migration without introducing any application changes or to start
using any of the new features of WebSphere MQ V7.0.

� Once there is satisfaction that the product is functioning as expected within
the existing business environment and applications, introduce the new and
enhanced features provided in this release, and test the applications
thoroughly.

12.4.3 Migration steps

The following is an example of steps that could be used to migrate a queue
manager to WebSphere MQ V7.0 from a previous version:

1. Stop all channels. Ensure that all channels are also stopped on remote queue
managers that connect to this queue manager.

2. Stop the listeners.

3. Stop all applications that can connect to the queue manager.

4. Stop system management products such as monitors and automation tools
that can connect to the queue manager.

5. Save or unload all messages currently queued to a file.

6. Save all queue manager attributes and object definitions.

7. Save all the security profile settings. These are held in OAM on distributed
platforms and RACF or ACF2 on z/OS.

8. Shut down the WebSphere MQ queue managers and associated services,
such as dead letter queue handlers and trigger monitors.

9. Back up the current environment, ensuring that there are two copies on
separately located media. If time and resources are available, it can be worth
while to ensure the integrity of the product backup by testing restoration on a
separate server.

10.Uninstall the existing version of WebSphere MQ. For z/OS, ensure that the
pagesets and logs remain, but remove or rename the product libraries.

11.Perform the installation steps as described in the WebSphere MQ V7.0
product documentation for the specific platform type.

248 WebSphere MQ V7.0 Features and Enhancements

12.Start the WebSphere MQ queue managers and wait for them to complete the
automatic migration of the MQ file system structure to the format used by the
new version.

13.If the LISTENER object is not being used to start the MQ TCP/IP port listener,
start the listener process runmqlsr or enable the port in inetd.

14.Start channels that were stopped before the upgrade.

Details of tools and commands to perform these procedures on various platforms
are beyond the scope of this book.

12.4.4 Fallback considerations

In the event that the migration must be backed out to the previous version, we
recommend the following steps. These apply to distributed platforms only. For
z/OS, consult the specific product documentation for more details.

1. Stop all channels. Ensure that all channels are also stopped on remote queue
managers that connect to this queue manager.

2. Stop the listeners.

3. Stop all applications that can connect to the queue manager.

4. Stop system management products.

5. Save or unload all messages currently queued to a file.

6. Save all queue manager attributes and object definitions.

7. Shut down the WebSphere MQ queue managers and associated services,
such as dead letter queue handlers and trigger monitors.

8. Uninstall the WebSphere MQ V7.0 product.

9. Using the backup taken prior to the upgrade, restore the previous version of
the WebSphere MQ product.

Note: Saved messages may not be usable in previous versions of
WebSphere MQ due to differences in header formats and properties.

Note: Any changes to queue manager and object definitions introduced in
WebSphere MQ V7.0 are not available.

 Chapter 12. Installation and migration 249

10.Start the queue manager, ensuring that all channels and listeners are
stopped.

11.Remove any existing messages from the queues.

12.Load messages from the file generated in step 5.

13.Perform verification tests.

14.Start the listener and channels and so on.

15.Continue to monitor the system health to ensure that the prior version of
WebSphere MQ is functioning correctly.

12.4.5 Publish/Subscribe engine

WebSphere MQ V7.0 provides a new Pub/Sub engine that is integrated into the
queue manager. Pub/Sub was previously available with WebSphere MQ V6.0
(and WebSphere MQ V5.3 with at least fix pack 8) on distributed platforms using
a separate broker process that was associated with each queue manager. This
Pub/Sub broker is now deprecated. However, applications written for it can work
with WebSphere MQ V7.0 without modification.

To allow compatibility with the older Pub/Sub broker a queued Pub/Sub interface
is provided in WebSphere MQ V7.0. The operation of this interface is controlled
via a new queue manager attribute called PSMODE. The older MQ Pub/Sub
applications can continue running without modification until such time that the
PSMODE is set to permanently disable the queued Pub/Sub interface. There are
also control commands to manage the migration of the old broker and its
associated state.

Refer to the section “Migration to distributed Publish/Subscribe” in the
WebSphere MQ V7.0 Migration Information manual and the section “Migrating to
Version 7.0 Publish/Subscribe” in the WebSphere MQ V7.0 Publish/Subscribe
User’s Guide for further details.

Note: In the event of a fallback on z/OS the product libraries would be
renamed. Do not remove or delete the existing logs, archives, and
pagesets.

Note: Not all messages saved from WebSphere MQ V7.0 can be safely
loaded into a previous version of WebSphere MQ due to differences in
header formats and properties. This particularly applies to messages on
SYSTEM queues, messages that use properties, and messages for
Publish/Subscribe.

250 WebSphere MQ V7.0 Features and Enhancements

IBM encourages customers to migrate WebSphere MQ V6.0 Pub/Sub
applications, objects, and configurations to use the new WebSphere MQ V7.0
Pub/Sub engine as soon as practical.

12.4.6 Java application migration considerations

There are considerations for the WebSphere MQ messaging provider in
applications that use the WebSphere MQ classes for Java or Java Message
Service. The WebSphere MQ messaging provider has two modes of operation:

� Normal mode is optimized to use the new features of WebSphere MQ V7.0.

� Migration mode is based on WebSphere MQ V6.0 function, and only those
features that were available at this level can be used.

For further details refer to the section “Introduction to WebSphere MQ classes for
JMS → What is new in WebSphere MQ Version 7.0? → WebSphere MQ
Messaging Provider” in the Using Java manual.

12.4.7 General application migration considerations

For applications that do not use Publish/Subscribe, there are no migration
processes or changes required for migration or installation of WebSphere MQ
V7.0. Existing applications continue to function in their current state.

12.4.8 WebSphere MQ clients

Client channel definitions that are written to a Client Channel Definition Table
(CCDT) file contain an inherent structure version for each channel. The version
of the structure dictates which versions of WebSphere MQ can read the
definition. It is not possible to define a client channel in a CCDT using
WebSphere MQ V7.0 and have it read by a WebSphere MQ V6.0 client or an
earlier version client.

Client Channel Definition Table files are not migrated when upgrading to
WebSphere MQ V7.0. Nor is the entire file updated when updating just one
channel within the CCDT.

Client channels in CCDT files should be defined and maintained on a queue
manager that is at the same version or earlier than the versions of all the clients
that use the file.

As an alternative, IBM SupportPac MO72 MQSC Client for WebSphere MQ
allows earlier version CCDT files to be maintained on any system without

 Chapter 12. Installation and migration 251

requiring an earlier version queue manager. The SupportPac is available for
download at:

http://www.ibm.com/support/docview.wss?uid=swg24007769

252 WebSphere MQ V7.0 Features and Enhancements

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24007769&loc=en_US&cs=utf-8&lang=en

Part 3 Scenario

This part contains a complete scenario that demonstrates how the new features
and enhancements work and how to use them. The sample programs and scripts
used for the scenario are available as text in Appendix A, “Scenario preparation
scripts” on page 373, and for download by following the instructions in
Appendix B, “Additional material” on page 379. This part consists of:

� Chapter 13, “Scenario overview” on page 255
� Chapter 14, “Scenario preparation” on page 269
� Chapter 15, “Scenario: Supplier pricing using Pub/Sub” on page 287
� Chapter 16, “Scenario: Store ordering with JMS” on page 303
� Chapter 17, “Scenario: News using client” on page 325
� Chapter 18, “Scenario: Web ordering over HTTP” on page 343
� Chapter 19, “Scenario: Warehousing using call back” on page 361
� Appendix A, “Scenario preparation scripts” on page 373
� Appendix B, “Additional material” on page 379

Part 3

© Copyright IBM Corp. 2009. All rights reserved. 253

254 WebSphere MQ V7.0 Features and Enhancements

Chapter 13. Scenario overview

Matt’s Deli is a chain of grocery stores. It is only a few stores right now, but
growing fast and planning to become a major brand. In the scenario that follows
the new features of WebSphere MQ V7.0 are showcased while staying within the
framework of a realistic business situation. The scenario only covers part of
Matt’s Deli business operations and the application programs are deliberately
simplified. The intention is to illustrate usage of the new features, rather than be a
guide to their best usage or to implement complete business logic.

This chapter contains the following sections:

� 13.1, “Business environment” on page 256
� 13.2, “Scenario implementation” on page 259
� 13.3, “Components” on page 262

13

© Copyright IBM Corp. 2009. All rights reserved. 255

13.1 Business environment

Each Matt’s Deli store manager has the freedom to stock products of their choice
from the Matt’s Deli range of products. Stores place their orders with
feadquarters and they are delivered daily from the warehouse.

The newest venture is a Web deli where customers can order products directly
on the Internet for home delivery. Headquarters negotiates prices from suppliers
and arranges delivery of stock to the warehouse. The warehouse takes orders
from headquarters and performs fulfillment of product orders to stores and Web
deli customers.

Matt’s Deli has an ambitious growth plan and wants to ensure that its information
technology systems can grow with the company. Currently, all stores are in the
United Kingdom (UK), but local expansion and movement into other countries is
planned. In the same way, Web ordering is limited to UK delivery, but there is a
plan to grow volume and geographic reach. Currently, a single warehouse is in
operation, but additional warehouses may be needed to cope with growth and
geographic spread.

13.1.1 Business flow

The business flow is illustrated in Figure 13-1 on page 257. There are five groups
of participants or actors in the business flow. Starting in the bottom left-hand
corner of the figure, they are:

� Stores: Each Matt’s Deli store places orders with headquarters for items in the
Matt’s Deli catalog. Additionally, the stores receive news from headquarters
about promotions and other business matters.

� Internet customers: A Web browser is used to place direct orders via the Web
deli for products that are delivered from the warehouse. Internet customers
can also receive news via an RSS feed about special offers and other items of
interest from Matt’s Deli.

� Warehouse: Orders are received from stores and from Internet customers.
The delivery fulfillment flow is not included in this scenario.

� Suppliers: Each of the suppliers to Matt’s Deli must send quotes to
headquarters for their best price on products that they wish to supply. Small
suppliers may quote for only one or two items in the catalog, while large
suppliers for many or all of them. These quotes are used by headquarters to
choose the best suppliers of that item. The ordering process from Matt’s Deli
to the suppliers is not included in this scenario. In the future Matt’s Deli may
use the news system to send relevant news to suppliers.

256 WebSphere MQ V7.0 Features and Enhancements

� Headquarters: This is the hub of business activity for communication between
Matt’s Deli systems. Orders are received from stores and from the Internet.
After processing they are sent to the warehouse for fulfillment. Requests for
quotes may be published to suppliers, showing items for which Matt’s Deli
wishes to receive quotes. Quotes from suppliers are received and processed.
This consists of checking whether the new quote is cheaper than the existing
best quote. If it is, a new retail price is published to the stores and the Internet
customers. News is also generated from headquarters for viewing by
interested parties at the stores and by Internet customers.

Figure 13-1 Matt’s Deli high-level data flow

Internet Customers

Stores Suppliers

Warehouse

Headquarters

Retail Orders
News

Retail Orders
News

Warehouse
Orders

Quotes

 Chapter 13. Scenario overview 257

13.1.2 Choosing WebSphere MQ

In order to satisfy the business requirements described above, Matt’s Deli has
decided to do an implementation based on WebSphere MQ. The
Publish/Subscribe paradigm was chosen because Matt’s Deli needs the flexibility
to grow rapidly. In particular, they must be able to:

� Communicate with a wide range of suppliers, over which Matt’s Deli has no
control of their systems or hardware.

� Communicate asynchronously with suppliers and stores that may have
patterns of availability that differ from the headquarters.

� Allow for rapid growth by adding stores, suppliers, and warehouses without
disruption to systems.

The existing point-to-point messaging features of WebSphere MQ satisfy the first
two requirements easily and the integrated Publish/Subscribe capability in
WebSphere MQ V7.0 is very suited to the third requirement.

13.1.3 Simplifying the scenario

In this scenario all WebSphere MQ messages have a very simple payload. This
is so that small application programs can illustrate the WebSphere MQ
functionality without being complicated by extensive message parsing. The
chosen payload format for all types of message is comma-separated values
(CSV), where each field is separated from the next by a comma. All fields in all
messages are simple text fields, allowing easy creation of test data.

One important field that is used in a number of messages is the CatalogId, which
represents a product in the Matt’s Deli catalog. This CatalogId is simply a string
representing the place in the Matt’s Deli product hierarchy of that product. So red
apples might have a CatalogId of cat/fresh/fruit/apple/red. Using this as the
product key makes it very simple to construct topic strings for
Publish/Subscribe-based applications.

A more realistic situation might have been to use Extensible Markup Language
(XML) for the messages and to have an arbitrary product key that was used to
search a database for the product hierarchy information. This would have led to
more complex code and required the installation of a database as part of the
illustrative scenario.

Other measures to keep the scenario code simple are not to validate message
formats and field contents. It is assumed that numeric fields only contain digits
and that alphanumeric fields do not contain embedded commas.

258 WebSphere MQ V7.0 Features and Enhancements

Other IT business functions of Matt’s Deli are not implemented in the scenario,
such as customer billing and fulfilment of orders by the warehouse.

13.2 Scenario implementation

Many of the new features in WebSphere MQ V7.0 are illustrated in this scenario.
The intention is to show how the features might be used in a realistic situation,
not to build an optimal solution to a complete set of business requirements.

The stated requirements for Matt’s Deli are satisfied in the following ways:

� Communicate with a wide range of suppliers, over which Matt’s Deli has no
control of their systems or hardware.

Supplier applications are written in Java using JMS and also in C using the
MQI.

� Communicate asynchronously with suppliers and stores that may have
patterns of availability that differs from the headquarters.

All applications use queued interfaces for communication, requiring only the
queue manager to be available. Cooperating applications may be temporarily
unavailable.

� Allow for rapid growth by adding stores, suppliers, and warehouses easily and
without disruption to systems.

Publish/Subscribe is used for supplier pricing, catalogs, and news systems,
allowing for simple addition of suppliers, stores, and warehouses.

The scenario also illustrates other features of WebSphere MQ V7.0:

� The WebSphere MQ Bridge for HTTP is used for Web ordering, showing how
messages may send and receive by a zero-footprint client (Web browser),
which has no WebSphere MQ code installed.

� The news applications show how the new asynchronous put and read ahead
features might be used.

� The warehouse application shows how the new callback feature might be
used. It also uses an administrative subscription to a remote queue.

� The retail price catalog illustrates use of retained publications.

 Chapter 13. Scenario overview 259

13.2.1 Application flow

The scenario application flow is illustrated in Figure 13-2, where the five actors of
the business flow are shown with more detail. The arrows indicate the flow of
messages through queues and topic trees.

Figure 13-2 Matt’s Deli application flows

13.2.2 Infrastructure

The scenario uses the following topic objects and queue objects that are defined
on the headquarters queue manager.

Stores

Headquarters
WebSphere MQ V7.0

Queue ManagerInternet

Web Ordering
Internet Browser

Javascript

matt/warehouse/cat/…Web News
Internet Browser

RSS plug-in MATT.RETAIL.WH.ORDERS

QREMOTE
MATT.WH.ORDERSSUBSCRIPTION

MATT.SUB.WH.ORDERS

Process Order
JMS

Send Warehouse Orders
C MQI

MATT.RETAIL..ORDERS

MATT.RETAIL.RESPONSES

matt/retail/cat/… Process Quote
C MQI

matt/supplierquote/cat/…

matt/requestquote/cat/…

News Generate &
News Send
C MQ Client

matt/news/…Stores

Store Ordering
JMS MQ V7

News Display
C MQ Client V7

Warehouse
WebSphere MQ V7.0

Queue Manager

Receive Orders
C MQI &

COBOL MQI

MATT.WH.ORDERS

StoresSuppliers

Supplier Pricing
Send Quote
JMS MQ V7 &

C MQI V7

Send Request for Quote
C MQI

260 WebSphere MQ V7.0 Features and Enhancements

Table 13-1 describes the topic object and strings used in this scenario.

Table 13-1 Topic objects and topic strings

Table 13-2 describes the queue objects used in the scenario.

Table 13-2 Queue objects

Topic object name Topic string Usage

MATT.TOPIC.REQUEST.QUOTE matt/requestquote/cat/… Matt’s Deli uses this topic tree to
publish requests for quotes from
suppliers.

MATT.TOPIC.SUPPLIERQUOTE matt/supplierquote/cat/... Suppliers publish their best price
for products to this topic tree.

MATT.TOPIC.RETAIL matt/retail/cat/... Matt’s Deli publishes retail prices to
this topic tree. These prices are
retained publications, so only one
price can exist for each product.

MATT.TOPIC.WAREHOUSE matt/warehouse/cat/... Matt’s Deli headquarters publishes
orders for warehouse fulfilment to
this topic tree.

MATT.TOPIC.NEWS.INTERNAL matt/news/internal/... Matt’s Deli publishes news of
relevance to Matt’s Deli stores and
employees to this topic tree.

MATT.TOPIC.NEWS.EXTERNAL matt/news/external/... Matt’s Deli publishes news of
relevance to customers, suppliers,
and other external interested
parties to this topic tree.

Queue name Usage

MATT.RETAIL.ORDERS Orders from stores and Web customers are placed on this queue.

MATT.RETAIL.RESPONSES Confirmations for received orders are sent as replies to this
queue.

MATT.RETAIL.WH.ORDERS Orders received from stores or Web customers are placed on this
queue for further processing before being sent on for fulfilment by
a warehouse.

MATT.WH.ORDERS Orders for fulfilment by a warehouse are placed on this queue. In
the scenario this is a QREMOTE definition on the headquarters
system to a QLOCAL on a warehouse queue manager.

 Chapter 13. Scenario overview 261

13.3 Components

This scenario is divided into a number of distinct components that are covered in
the forthcoming chapters. Most components can be set up and run
independently or they can all be combined together into the complete scenario.

Complete source code, executable programs, and scripts are supplied in
compressed files that are downloadable from the Internet. Refer to Appendix B,
“Additional material” on page 379, and the scenario chapters for details on
obtaining and using these files.

The remainder of this chapter provides a short overview of the purpose and flow
of each component of our scenario.

13.3.1 Supplier pricing

This component uses retained publications and the different types of
subscriptions supported by the Publish/Subscribe engine. This usage is
illustrated by programs written in C and using the MQI.

Full details of the design and the operation of this component can be found in
Chapter 15, “Scenario: Supplier pricing using Pub/Sub” on page 287.

The relationship with the suppliers is managed centrally at headquarters. When a
supplier is selected to be a provider of goods for Matt’s Deli, they are given
access to the supplier pricing system based on a WebSphere MQ V7.0 queue
manager located at Matt’s Deli headquarters.

When Matt’s Deli needs to buy more of a particular product, a request for quote
message is published to the appropriate point in the topic tree that has its root at
matt/requestquote/cat. All suppliers who are subscribing to part of the tree at this
point or above will receive a copy of the message.

Suppliers who wish to supply this product should publish a similar price quote
message to the equivalent place in the topic tree that has its root at
matt/requestquote/cat.

Note: The programs have been written to demonstrate the new and enhanced
features of WebSphere MQ V7.0. The source code should not be relied on to
use best practices for general programming or application design with
WebSphere MQ. Therefore, the code should not be used as a model for
developing real applications without a good understanding of the design
methods used and their impact on performance and efficiency.

262 WebSphere MQ V7.0 Features and Enhancements

An illustrative flow for this component is as follows.

Matt’s Deli headquarters has a durable subscription to matt/supplierquote/cat# to
ensure that it receives all quotes from suppliers.

Fred’s Fruit Farm is a supplier that supplies only fruit to Matt’s Deli and
subscribes to the topic string matt/requestquote/cat/fresh/fruit/#.

Sam’s Super Supplier is a supplier that might be able to supply any product to
Matt’s Deli and subscribes to the topic string matt/requestquote/cat/#.

Mike’s Meat Market is a supplier that supplies only meat to Matt’s Deli and
subscribes to matt/requestquote/cat/fresh/meat/#.

1. Matt’s Deli needs a price for red apples and so publishes a request quote
message to matt/requestquote/cat/fresh/fruit/apple/red.

2. The message is made available to Fred’s Fruit Farm and Sam’s Super
Supplier but not to Mike’s Meat market.

3. Sam’s Super Supplier chooses to provide a quote and sends a price quote
message for a price of ten pounds to
matt/supplierquote/cat/fresh/fruit/apple/red.

4. Matt’s Deli receives the message. As it is cheaper than our current price,
Sam’s Super Supplier becomes our preferred supplier and we publish a
modified retail price.

5. Fred’s Fruit Farm chooses to quote for red apples, too, and sends a quote
message priced at nine pounds.

6. Matt’s Deli receives the message. As it is cheaper than our current price,
Fred’s Fruit Farm becomes our preferred supplier and we publish a modified
retail price.

13.3.2 Store ordering

This component uses Java Message Service (JMS) to send and receive the
messages and illustrates the retained message feature and the use of the plus
sign (+) as a wildcard. This application uses both Publish/Subscribe and
point-to-point features.

 Chapter 13. Scenario overview 263

Full details of the design and the operation of this component can be found in
Chapter 16, “Scenario: Store ordering with JMS” on page 303.

Figure 13-3 Sample fragment of retail catalog

The product catalog required for the stores to place the orders is held as a topic
tree with its root at matt/retail/cat. Each point in the tree has a retained
publication message that contains pricing information. The store ordering
application navigates up and down the tree by using the plus sign (+) (single
topic level) wildcard. Having navigated to a product that is to be ordered, a
point-to-point order message is sent to the MATT.RETAIL.ORDERS queue.

An illustrative flow for this component is as follows, making use of the sample
retail catalog in Figure 13-3:

1. Store A of Matt’s Deli must order more red apples so that they start the store
ordering application.

2. The application subscribes to matt/retail/cat/+ and receives just those
retained publications for topic strings exactly one level below exactly one level
below matt/retail/cat/+.

3. In this case fresh and tinned are returned. The data in the messages
identifies these as categories not products, and so they are displayed as
hierarchy choices.

4. Selecting fresh causes the application to subscribe to topic string
matt/retail/cat/fresh/+, this time returning fruit and veg.

...

matt

retail

cat

fruit veg

tinned

apple orange

red green

fresh

264 WebSphere MQ V7.0 Features and Enhancements

5. Selecting fruit causes the application to subscribe to topic string
matt/retail/cat/fresh/fruit/+, this time returning apple and orange.

6. Selecting apple causes the application to subscribe to topic string
matt/retail/cat/fresh/fruit/apple+, this time returning red and green. Because
these messages are identified as products the program displays prices and
descriptions.

7. Selecting red allows a quantity to be entered for an order. The application
sends a retail order message to the MATT.RETAIL.ORDERS queue for
processing at headquarters. It waits for a response message on the
MATT.RETAIL.RESPONSES queue and displays the status of the order.

13.3.3 News

This component uses Publish/Subscribe to publish news items to multiple topics
and demonstrates subscription to specific points in the topic tree. It uses security
via topic objects to limit who can subscribe to the various news topics, as some
of them may contain internal business information.

The programs use WebSphere MQ Client and WebSphere MQ classes for JMS
to take advantage of two features, asynchronous put and read ahead, to provide
improved performance when processing bulk distribution of news items.

Full details of the design and the operation of this component can be found in
Chapter 17, “Scenario: News using client” on page 325.

An illustrative flow for this component is:

1. Matt’s Deli headquarters publishes news items to various topics under
matt/news to ensure that the stores and public customers can receive relevant
and up-to-date information about products and the operation of stores. There
is also a JMS program that runs at headquarters that subscribes to public
news topics and generates a RSS XML file.

2. Matt’s Deli stores subscribe to relevant news items during business hours and
displays them on an overhead monitor for viewing by staff.

3. The public can subscribe to general news by running a WebSphere MQ Client
program that displays all the news items as they are published. They can also
view the most recent general news using a Web browser with an RSS plug-in
or using a RSS reader program.

13.3.4 Web ordering

This component uses the WebSphere MQ Bridge for HTTP Bridge to illustrate
how a Web browser client with no MQ code installed can access MQ. The Web

 Chapter 13. Scenario overview 265

page and the bridge are hosted by WebSphere Application Server. The bridge
connects to a local WebSphere MQ queue manager via JMS to access the store
ordering back-end application that is running at headquarters.

A JavaScript™ Web browser application uses a simple point-to-point interface to
send a product order message to headquarters by performing an HTTP POST
request. It then receives the order confirmation message by performing a HTTP
DELETE request. It uses the same retail product order message protocol and
queues as the store ordering component described in 13.3.2, “Store ordering” on
page 263.

Full details of the design and the operation of this component can be found in
Chapter 18, “Scenario: Web ordering over HTTP” on page 343.

An illustrative flow for this component is:

1. A customer opens the Matt’s Deli Web page using a Web browser.

2. On the displayed page, they complete the fields for product ID, quantity, and
customer ID, and click a button to submit the order.

3. The Web page refreshes to show the status of the order. Another order can
then be entered.

13.3.5 Warehousing

This component uses the MQI to illustrate the new callback feature for
asynchronous consumption of messages. In the scenario the warehouse is
connected to a queue manager running on z/OS and the warehouse code is
provided in both C and COBOL languages. The warehouse application has been
in place for some time and uses only point-to-point messaging. The scenario
shows how an administrative subscription, created using MQ Explorer, can be
used to subscribe on behalf of the warehouse and direct messages to an
appropriate queue.

Full details of the design and the operation of this component can be found in
Chapter 19, “Scenario: Warehousing using call back” on page 361.

An illustrative flow for this component is:

1. Store A has placed an order for red apples. This order is processed by
headquarters and placed on the queue MATT.RETAIL.WH.ORDERS for
fulfillment.

2. Periodically (perhaps daily or hourly) a program at headquarters runs to
publish all these orders to a topic tree with its root at matt/warehouse/cat. The
red apple order is published here.

266 WebSphere MQ V7.0 Features and Enhancements

3. For each warehouse (there is only one at the moment but Matt’s Deli is
planning to grow) an administrative subscription automatically places
messages on the relevant queue for the warehouse (when expanded to
multiple warehouses, these subscriptions become more complex). The red
apple order is put on the warehouse queue by the administrative subscription.
The MATT.WH.ORDERS queue is defined on the headquarters queue
manager as a QREMOTE.

4. The red apple message is now transmitted to the warehouse systems queue
manager.

5. On the warehouse system the warehousing fulfilment application is waiting on
an asynchronous message consume. As soon as the red apple message
arrives the message consumer (call back) code is invoked to process the red
apple order message. In this simplified scenario the message is just displayed
by the application rather than performing any business logic.

 Chapter 13. Scenario overview 267

268 WebSphere MQ V7.0 Features and Enhancements

Chapter 14. Scenario preparation

This chapter describes the common scenario preparation that must be performed
before running any particular scenario components from the scenario chapters in
the rest of Part 3, “Scenario” on page 253.

This chapter contains the following sections:

� 14.1, “Environment setup” on page 270
� 14.2, “WebSphere MQ objects setup” on page 278

Any other setup and configuration tasks that are specific to a particular scenario
component are described in the scenario component chapters.

14

© Copyright IBM Corp. 2009. All rights reserved. 269

14.1 Environment setup

This section describes the overall environment used for the scenario. It has been
implemented on real machines and tested exactly as presented. The complete
environment and scenario can be successfully set up and run using the
information and materials supplied with this book.

The models presented for the logical topology and physical topology can be
adapted to suit available hardware, software, and the scenario components that
will be run, but it may require additional knowledge that is not covered by this
book.

The following topics are discussed:

� The logical topology of the scenario environment
� The physical topology of the scenario environment
� Machines configuration and software installation

270 WebSphere MQ V7.0 Features and Enhancements

14.1.1 The logical topology of the scenario environment

Figure 14-1 shows the logical WebSphere MQ topology of the scenario
environment.

Figure 14-1 Logical topology of scenario environment

Logical topology of scenario environment

Queue Manager
QMHQ

MQ Listener on Port 1414
HTTP Listener on Port 80

Matt's Headquarter

Queue Manager
QMWH

MQ Listener on Port 1420

Warehouse A

MQ Client

Store A

MQ Client

Store B

Web Browser

Web B

Web Browser

Web A

WebSphere MQ Message Channels
WebSphere MQ MQI Channels
HTTP Connections

MQ Client

Supplier A

MQ Client

Supplier B

 Chapter 14. Scenario preparation 271

The environment consists of two MQ queue managers, four MQ Clients, and two
systems that have a Web browser. All required queue managers and their
connections are listed in Table 14-1.

Table 14-1 Required queue managers and their connections

14.1.2 The physical topology of the scenario environment

Figure 14-2 shows the physical topology of our scenario’s environment.

Figure 14-2 Physical topology of scenario environment

Queue manager Listener Channel type Channel usage

QMHQ 1414 � Sender
� Receiver
� Server-connection

� To QMWH
� From QMWH
� Application connections

QMWH 1420 � Sender
� Receiver

� To QMHQ
� From QMHQ

Physical topology of scenario environment

SAM725SP - Windows

Supplier Pricing
Application

JMS

Supplier A Supplier B

WebSphere MQ V7 Client
Sun Java JRE V6

Supplier Pricing
Application
C (MQI)

SAM725WH - z/OS

Queue
Manager
QMWH

Warehouse A

WebSphere MQ V7

Warehousing
Application

C (MQI)

Warehousing
Application

 COBOL (MQI)

PC - Linux

Web Browser

Web B

Firefox V2

PC - Windows

Web Browser

Web A

MS IE V6

SAM725ST - Windows

Store B

Store Ordering
Application

JMS

News Reading
Application

C (MQI)

MQ Client

WebSphere MQ V6 Client
Sun Java JRE V6

SAM725HQ - Windows

Queue
Manager
QMHQ

Matt's Headquarter

Supplier Pricing
Application
C (MQI)

Web Ordering and
News Application
 HTTP, RSS

Warehousing
Application

C (MQI)

Retail Ordering
Application

C (MQI)

MQ Client

News Reading
Application

C (MQI)

Store A

WebSphere MQ V7
Sun Java JRE V6

Store Ordering
Application

JMS

News Sending
Application

C (MQI)

MQ Client MQ Client

272 WebSphere MQ V7.0 Features and Enhancements

The physical environment consists of four machines that run Windows and two
client PCs that run Windows and Linux operating systems. All software products
used, and their versions, are listed in Table 14-2 through Table 14-7 on page 274.

Table 14-2 SAM725HQ: Windows machine for headquarters

Table 14-3 SAM725SP: Windows machine for suppliers

Table 14-4 SAM725ST: Windows machine for store B

Table 14-5 SAM725WH: z/OS machine for warehouse

Software Installed level

Operating system Microsoft Windows XP Service Pack 2

WebSphere MQ V7.0

Java JRE™ Sun™ Java™ SE Runtime Environment 1.6.0_03

Application Server for running
WebSphere MQ HTTP Bridge

WebSphere Application Server V6.1.0.0

Software Installed level

Operating system Microsoft Windows XP Service Pack 2

WebSphere MQ V7.0 (Client only)

Java JRE Sun Java SE Runtime Environment 1.6.0_03

Software Installed level

Operating system Microsoft Windows XP Service Pack 2

WebSphere MQ Client V6.0.2.2 (SupportPac MQC6)

Java JRE Sun Java SE Runtime Environment 1.6.0_03

Software Installed level

Operating system z/OS V1.9

WebSphere MQ V7.0

 Chapter 14. Scenario preparation 273

Table 14-6 PC: Windows machine for Web client

Table 14-7 PC: Linux machine for Web client

14.1.3 Machine configuration and software installation

This section describes machine configuration and installation of required
software.

The installation of operating systems is not covered in this chapter. Appropriate
machines with supported operating systems are a prerequisite for this scenario.

Basic machine setup
The following tasks must be done as prerequisites for the next steps:

� Check the user permissions: Administrator permissions are needed for
machine configuration and software installations.

� Set up TCP/IP address and host name: TCP/IP access is required among
scenario machines for the MQ listener ports, as described in Table 14-1 on
page 272 and Figure 14-2 on page 272.

Software Installed level

Operating system Microsoft Windows XP Service Pack 2

Web browser Microsoft Internet Explorer® 6.0.2

Software Installed level

Operating system openSUSE 10.3 (i586)

Web browser Mozilla Firefox 2.0.0.6

Tip: All the machines listed above are not required to run the entire scenario.
For example, it is possible to use only one machine and install all required
components on it.

Scenario programs may be need to be recompiled to run on other platforms.

Note: For information about supported platforms for WebSphere MQ V7.0,
refer to the WebSphere MQ System Requirements, at the IBM Web page:

http://www.ibm.com/software/integration/wmq/requirements/index.html

274 WebSphere MQ V7.0 Features and Enhancements

http://www.ibm.com/software/integration/wmq/requirements/index.html
http://www.ibm.com/software/integration/wmq/requirements/index.html

Creating groups and user IDs
The groups required for our scenario must be created on the machines as
described in Table 14-8.

Table 14-8 List of group IDs

Then the user’s (Table 14-9) must be created on the machines and put into
appropriate groups.

Table 14-9 List of user IDs

None of the users are a member of the mqm group, to satisfy proper security
policy.

Machine Group ID Use for

SAM725HQ hq
st
sp
matt

Headquarters applications
Store applications and news
Supplier access
Public news

SAM725SP sp
matt

Supplier applications
Public news

SAM725ST st
matt

Store applications and news
Public news

SAM725WH wh Warehouse application

Machine User ID Group ID Use for

SAM725HQ hquser
stora
storb
suppa
suppb

hq
matt, st
matt, st
matt, sp
matt, sp

Headquarters applications
Stores A applications and access
Store B access
Supplier A access
Supplier B access

SAM725SP suppa
suppb

matt, sp
matt, sp

Supplier A applications
Supplier B applications

SAM725ST storb matt, st Store B applications

SAM725WH whuser wh Warehouse application

Tip: The scenario will operate without any demonstration of security by
running all of the components from the mqm user or a user that is in the mqm
group.

 Chapter 14. Scenario preparation 275

WebSphere MQ V7.0 product installation
Perform the WebSphere MQ V7.0 product installation in accordance with the
product installation guides, available in the WebSphere MQ V7.0 Information
Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The product is installed on three machines, as described in the following
sections.

WebSphere MQ server installation on headquarters machine
Perform WebSphere MQ server installation on the headquarters machine,
SAM725HQ. Select the Custom installation and choose Server, MQ Explorer,
Windows Client, and Java Messaging and SOAP Transport components, as
depicted in Figure 14-3.

Figure 14-3 WebSphere MQ server installation

Use defaults for any other parameters or settings during the installation dialog.

276 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

WebSphere MQ client installation on suppliers machine
Perform WebSphere MQ client installation on supplier machine SAM725SP.
Select the Custom installation and choose MQ Explorer, Windows Client, and
Java Messaging and SOAP Transport components, as depicted in Figure 14-4.

Figure 14-4 WebSphere MQ client installation

Use defaults for any other parameters or settings during the installation dialog.

WebSphere MQ server installation on warehouse machine
Perform WebSphere MQ server installation on the z/OS warehouse machine,
SAM725WH. The server component installation is performed via the standard
SMP/E installer.

WebSphere MQ V6.0 client installation on store B machine
Download and install WebSphere MQ SupportPac MQC6 WebSphere MQ V6.0
Clients on the store B machine, SAM725ST, which is available at:

http://www.ibm.com/support/docview.wss?uid=swg24009961

Select Typical installation and use the defaults for any other parameters or
settings during the installation dialogs.

 Chapter 14. Scenario preparation 277

http://www.ibm.com/support/docview.wss?uid=swg24009961

Java runtime environment installation
Download and install the latest Java runtime code (Version 1.6.0_03 at the time
of writing), available at the Sun Java Web site:

http://www.java.com

The Java JRE is used on all Windows machines, headquarters SAM725HQ,
suppliers SAM725SP, and store B SAM725ST.

WebSphere Application Server installation
To run the WebSphere MQ HTTP Bridge component of the scenario, install
WebSphere Application Server V6.1 on the headquarters machine. It is possible
to use the WebSphere MQ HTTP Bridge in an existing installation and setup of
WebSphere Application Server or WebSphere Application Server Community
Edition. Details of installation and setup of WebSphere Application Server and
WebSphere Application Serve Community Edition are beyond the scope of this
book.

Refer to Chapter 18, “Scenario: Web ordering over HTTP” on page 343, for
instructions for deploying the bridge in WebSphere Application Server.

14.2 WebSphere MQ objects setup

This section contains lists of MQ objects required for our scenario:

� Queue managers
� Queue manager objects

– Listeners
– Channels
– Queues
– Topics and subscriptions

� Object Authority Manager (OAM)

Tip: All the queue managers listed below are not required to run the entire
scenario. It is possible to use only one queue manager and create all required
objects on it.

The scripts that are supplied for our scenario must be modified to create the
required objects on only one queue manager.

278 WebSphere MQ V7.0 Features and Enhancements

http://www.java.com
http://www.java.com

14.2.1 Creating the queue managers

Two queue managers must be created using the appropriate operating system
control commands, as listed in Table 14-10.

Table 14-10 List of queue managers

14.2.2 Creating the queue managers objects

The queue manager objects at headquarters and the warehouse must be
created by running two MQSC command scripts. These scripts use the
REPLACE parameter so they can be run repeatedly. Refer to Appendix A,
“Scenario preparation scripts” on page 373, for printed copies.

To set up the scripts on the headquarters system:

1. Appendix B, “Additional material” on page 379, contains instructions to
download the compressed file Chapter14_ScenarioPrep.zip.

2. Create the folder C:\Scenario on the headquarters system. This is used to
contain data and programs for all of the scenario chapters.

3. Extract Chapter14_ScenarioPrep.zip into the C:\Scenario folder.

Machine QM name Dead letter queue

SAM725HQ QMHQ SYSTEM.DEAD.LETTER.QUEUE

SAM725WH QMWH SYSTEM.DEAD.LETTER.QUEUE

Note: The default dead letter queue setup for queue managers is covered in
the MQSC scripts QMHQobjects.txt and QMWHobjects.txt, which are
described in the next section.

Tip: The compressed files for other scenario chapters that are going to be
used should be downloaded at this stage. If all the chapters will used the
compressed file, All.zip should be downloaded and extracted, as this file
contains the sub-folders for all scenario chapters.

 Chapter 14. Scenario preparation 279

This creates a sub-folder called Chapter14_ScenarioPrep containing the
following two MQSC command script files:

� QMHQobjects.txt: Object definition MQSC commands for the headquarters
queue manager. Issue the following command in a Windows command
prompt window to run this script:

runmqsc QMHQ < QMHQobjects.txt

� QMWHobjects.txt: Object definition MQSC commands for the warehouse
queue manager. FTP this file to the z/OS mainframe system used by the
warehouse and use the batch utility CSQUTIL to run the commands. If a
different type of platform is being used for the warehouse, the command script
can be executed using the runmqsc QMWH < QMWHobjects.txt command.

The listeners
Listeners required for the entire scenario are listed in Table 14-11.

Table 14-11 List of listeners

The listeners are related to the following scenario chapters:

� The MQ listener QMHQ.TCP is related to all components of the scenario
except the news scenario described in Chapter 17, “Scenario: News using
client” on page 325.

� The MQ listener QMWH.TCP is related to the warehousing scenario
described in Chapter 19, “Scenario: Warehousing using call back” on
page 361.

Tip: It is possible to verify commands in the script without performing them
by specifying the -v parameter:

runmqsc -v QMHQ < QMHQobjects.txt

Tip: WebSphere MQ Explorer can be used instead of MQSC commands.
Create all objects from the tables below using the appropriate MQ Explorer
tasks.

QM name Listener name Port number Controlled by

QMHQ QMHQ.TCP 1414 Queue manager

QMWH QMWH.TCP 1420 Queue manager

Tip: Only the one MQ listener with port number 1414 is used if only one queue
manager is used for the entire scenario.

280 WebSphere MQ V7.0 Features and Enhancements

The channels
Channels required for the entire scenario are listed in Table 14-12.

Table 14-12 List of channels

The channels are related to the following scenario chapters:

� The all sender and receiver channels are related to the warehousing scenario
described in Chapter 19, “Scenario: Warehousing using call back” on
page 361.

� The server-connection channels QMHQ_SUPP_A and QMHQ_SUPP_B are
related to the supplier pricing scenario described in Chapter 15, “Scenario:
Supplier pricing using Pub/Sub” on page 287.

� The server-connection channel QMHQ_STORES is related to the store
ordering scenario described in Chapter 16, “Scenario: Store ordering with
JMS” on page 303, and to the news scenario described in Chapter 17,
“Scenario: News using client” on page 325.

� The server-connection channel QMHQ_NEWS is related to the news
scenario described in Chapter 17, “Scenario: News using client” on page 325.

QM name Channel name Channel type Conn name Xmit Q

QMHQ QMHQ_TO_QMWH
QMWH_TO_QMHQ
QMHQ_SUPP_A
QMHQ_SUPP_B
QMHQ_STORES
QMHQ_NEWS

Sender
Receiver
Server-conn
Server-conn
Server-conn
Server-conn

sam725wh(1420) QMWH

QMWH QMWH_TO_QMHQ
QMHQ_TO_QMWH

Sender
Receiver

sam725hq(1414) QMHQ

Tip: The sender and receiver channels are not needed if only one queue
manager is used for the entire scenario.

 Chapter 14. Scenario preparation 281

The queues
Queues required for the entire scenario are listed in Table 14-13.

Table 14-13 List of queues

The queues are related to the following scenario chapters:

� The transmission usage queues QMWH and QMHQ are related to the
warehousing scenario described in Chapter 19, “Scenario: Warehousing
using call back” on page 361.

� The local queues MATT.RETAIL.ORDERS and MATT.RETAIL.RESPONSES
are related to the store ordering scenario described in Chapter 16, “Scenario:
Store ordering with JMS” on page 303, and to the Web ordering scenario
described in Chapter 18, “Scenario: Web ordering over HTTP” on page 343.

� The local queue MATT.RETAIL.WH.ORDERS is related to:

– The store ordering scenario described in Chapter 16, “Scenario: Store
ordering with JMS” on page 303

– The Web ordering scenario described in Chapter 18, “Scenario: Web
ordering over HTTP” on page 343

– The warehousing scenario described in Chapter 19, “Scenario:
Warehousing using call back” on page 361

� The local queue MATT.RETAIL.WH.ORDERS is related to the supplier pricing
scenario described in Chapter 15, “Scenario: Supplier pricing using Pub/Sub”
on page 287.

� The remote and local queues MATT.WH.ORDERS are related to the
warehousing scenario described in Chapter 19, “Scenario: Warehousing
using call back” on page 361.

QM name Queue name Queue type Parameters

QMHQ QMWH
MATT.RETAIL.ORDERS
MATT.RETAIL.RESPONSES
MATT.RETAIL.WH.ORDERS
MATT.SUPPLIER.QUOTES

MATT.WH.ORDERS

Local
Local
Local
Local
Local

Remote

USAGE: Transmission

PROPCTL: None
DEFPSIST: Yes
DEFSOPT: Shared
RNAME: MATT.WH.ORDERS

RQMNAME: QMWH

QMWH QMHQ
MATT.WH.ORDERS

Local
Local

Usage: Transmission

282 WebSphere MQ V7.0 Features and Enhancements

The topics and subscriptions
Topics and subscriptions required for the entire scenario are listed in Table 14-14
and Table 14-15.

Table 14-14 List of topics

Table 14-15 List of subscriptions

The topics and subscriptions are related to the following scenario chapters:

� The topics MATT.TOPIC.REQUESTQUOTE and
MATT.TOPIC.SUPPLIERQUOTE are related to the supplier pricing scenario
described in Chapter 15, “Scenario: Supplier pricing using Pub/Sub” on
page 287.

� The topic MATT.TOPIC.WAREHOUSE is related to the warehousing scenario
described in Chapter 19, “Scenario: Warehousing using call back” on
page 361.

Tip: The transmission queues and the MATT.WH.ORDERS remote queue are
not needed if only one queue manager is used for the entire scenario.

QM name Topic name Topic string Parameters

QMHQ MATT.TOPIC.REQUESTQUOTE
MATT.TOPIC.SUPPLIERQUOTE
MATT.TOPIC.WAREHOUSE
MATT.TOPIC.RETAIL
MATT.TOPIC.NEWS.INTERNAL
MATT.TOPIC.NEWS.PUBLIC

matt/requestquote
matt/supplierquote
matt/warehouse
matt/retail
matt/news/internal
matt/news/public

DEFPSIST: Yes

QMWH N/A N/A

QM name Subscription name Topic object Parameters

QMHQ MATT.SUB.WH.ORDERS MATT.TOPIC.
WAREHOUSE

Topic string: #
DEST: MATT.WH.ORDERS

DESTCLAS: PROVIDED

QMWH N/A N/A

 Chapter 14. Scenario preparation 283

� The topic MATT.TOPIC.RETAIL is related to:

– The supplier pricing scenario described in Chapter 15, “Scenario: Supplier
pricing using Pub/Sub” on page 287

– The store ordering scenario described in Chapter 16, “Scenario: Store
ordering with JMS” on page 303

– The Web ordering scenario described in Chapter 18, “Scenario: Web
ordering over HTTP” on page 343

� The topics MATT.TOPIC.NEWS.INTERNAL and MATT.TOPIC.NEWS.PUBLIC
are related to the news scenario described in Chapter 17, “Scenario: News
using client” on page 325.

� The subscription MATT.SUB.WH.ORDERS is related to the supplier pricing
scenario described in Chapter 15, “Scenario: Supplier pricing using Pub/Sub”
on page 287.

Note: There are no topic objects or subscriptions on the QMWH queue
manager so there is no additional action required for using only one queue
manager for the entire scenario.

284 WebSphere MQ V7.0 Features and Enhancements

14.2.3 Setting object authority

The appropriate MQ authorities for headquarters queue manager objects must
be setup in OAM using the control command setmqaut. The Windows batch
command file QMHQsetaut.bat contains the setmqaut commands to set the
authorities, as listed in Table 14-16. The batch command file removes all
authorities at first and can be run repeatedly.

Table 14-16 List of authorities

QMHQsetaut.bat is supplied in Chapter14_ScenarioPrep.zip, which was setup in
14.2.2, “Creating the queue managers objects” on page 279.

To run the command file:

1. On the headquarters Windows system, open a command prompt window.

2. Issue the command:

C:\Scenario\Chapter14_ScenarioPrep\QMHQsetaut

QM name GID Object name Object type Authority

QMHQ hq

st

sp

matt

QMHQ
MATT.RETAIL.ORDERS
MATT.RETAIL.RESPONSES
MATT.RETAIL.WH.ORDERS
MATT.WH.ORDERS
MATT.TOPIC.REQUESTQUOTE
MATT.TOPIC.SUPPLIERQUOTE
MATT.TOPIC.WAREHOUSE
MATT.TOPIC.RETAIL
MATT.TOPIC.NEWS.*

QMHQ
MATT.RETAIL.ORDERS
MATT.RETAIL.RESPONSES
MATT.TOPIC.RETAIL
MATT.TOPIC.NEWS.INTERNAL

QMHQ
MATT.TOPIC.REQUESTQUOTE
MATT.TOPIC.SUPPLIERQUOTE

MATT.TOPIC.NEWS.PUBLIC

Queue manager
Queue
Queue
Queue
Queue
Topic
Topic
Topic
Topic
Topic

Queue manager
Queue
Queue
Topic
Topic

Queue manager
Topic
Topic

Topic

Connect
Get
Put
Get, Put
Put
Pub
Sub
Pub, Sub
Pub, Sub
Pub

Connect
Put
Get
Sub
Sub

Connect
Sub
Pub

Sub

QMWH wh QMWH
MATT.WH.ORDERS

Queue manager
Queue

Connect
Get

 Chapter 14. Scenario preparation 285

3. Check the displayed output to ensure that all the setmqaut commands
executed successfully.

The appropriate authorities for warehouse queue manager objects must be set in
RACF on z/OS. The RACF commands are not provided with this book.

Tip: The authority settings for warehouse queue manager QMWH are not
needed if only one queue manager is used for the entire scenario.

286 WebSphere MQ V7.0 Features and Enhancements

Chapter 15. Scenario: Supplier pricing
using Pub/Sub

This component of the scenario illustrates the use of retained publications and
the different types of subscriptions supported by the Publish/Subscribe engine in
WebSphere MQ V7.0.

Durable and non-durable subscriptions are used with managed and
non-managed destinations.

Retained publications are used to store the current retail prices of all the
products offered by Matt’s Deli. The topic hierarchy is used to classify the
products for the price catalog.

This chapter contains the following sections:

� 15.1, “Design overview” on page 288
� 15.2, “Deploying the supplier pricing component” on page 289
� 15.3, “Running the supplier pricing component” on page 295
� 15.4, “Verifying the supplier pricing component” on page 300
� 15.5, “Summary” on page 301

15

© Copyright IBM Corp. 2009. All rights reserved. 287

15.1 Design overview

Matt’s Deli headquarters keeps a retail price catalog that is used by all the deli
stores to order new stock. The relationship with the suppliers is managed
centrally at headquarters. When a supplier is selected to be a provider of goods
for Matt’s Deli, they are given access to the supplier pricing system. When Matt’s
Deli needs to purchase stocks of products, this system broadcasts requests to all
suppliers for price quotes. Suppliers may reply with a price quote for the products
that they can supply. Matt’s Deli receives and processes all the price quotes from
all suppliers. It selects and records the cheapest quote. Headquarters would then
send a purchase order to the selected supplier and receive stock at the
warehouse, but this is out of the scope of this scenario.

The supplier pricing system is based on a WebSphere MQ V7.0 queue manager
located at Matt’s Deli headquarters. The supplier pricing component uses the
Publish/Subscribe engine to publish request for quote messages that are
broadcasted to all suppliers that have MQ Client applications subscribed to the
topic “matt/requestquote/cat/#”.

Suppliers receive the catalog ID and the description of the product required.
Suppliers have the option to ignore the request or they can reply by publishing a
price quote message to the topic “matt/supplierquote/CatalogId”. The catalog ID
is a topic string that is concatenated to “matt/supplierquote/”.

Matt’s Deli has an application program that subscribes to the topic
“matt/supplierquote/cat/#” to receive quotes from all suppliers. This application
receives the supplier quote messages. It checks whether the price is cheaper
than a previous quote received from another supplier. It calculates a retail price
(a Matt’s Deli business rule says that retail price is twice the cheapest supplier
price) and it then publishes a retained publication to topic “matt/retail/CatalogId”.
This topic represents the retail price catalog. If the previous quote is from the
same supplier for the same product the new quote is accepted as a new price
and published in the retail price catalog.

If the supplier quote is more expensive than the existing quote from a different
supplier then the quote is discarded.

The retail price catalog is used by the stores to display products and prices
before making purchase orders.

288 WebSphere MQ V7.0 Features and Enhancements

Figure 15-1 describes the programs and the interaction between headquarters
and the suppliers.

Figure 15-1 Supplier pricing component

15.2 Deploying the supplier pricing component

The supplier pricing component is made up of three application programs. Two of
the programs run locally on the headquarters computer system and the third is a
remote client program that runs on the supplier’s computer system. Each
supplier may run a copy of the client program provided by Matt’s Deli or a copy of
a client application that has been developed by the supplier.

Supplier Pricing

Headquarters

Supplier A

Supplier Process Quote App
Program name: SPsuppprocquote

HQ Receive Quote App
Program name: SPhqprocquote

matt/requestquote/cat/…/…

Request For Quote Message

HQ Send Request Quote App
Program name: SPhqrequestquote

matt/supplierquote/cat/…/…

matt/retail/cat/…/…
Supplier Quote Message

Retail Catalog
Message

Store Ordering
Web Ordering

WMQ V7.0 Client

WMQ V7.0 Server

Supplier B

Supplier Process Quote App
Program name: SPsuppprocquote

WMQ V7.0 Client

 Chapter 15. Scenario: Supplier pricing using Pub/Sub 289

The following programs implement the supplier pricing component:

� HQ send request for quote (SPhqrequestquote): This program is used by the
headquarters staff to send request for quote messages to all the suppliers.

� HQ process supplier quotes (SPhqprocquote): This program runs on the
headquarters system to receive supplier quotes, to decide whether the price
quoted is acceptable, and to publish a new retail price.

� Supplier process quotes (SPsuppprocquote): This program is used by the
suppliers to receive and respond to request for quote messages from Matt’s
Deli headquarters.

A WebSphere MQ V7.0 queue manager runs on the headquarters to provide the
Publish/Subscribe services for the supplier pricing component. The headquarters
application programs run on the same server as the queue manager and they
connect to the queue manager using server bindings. The supplier programs are
MQ Client applications and they connect to the queue manager using client
bindings over a communications network.

15.2.1 HQ send request for quote program

This C language program runs on the same server as the queue manager and it
interacts with Matt’s Deli staff to send price quote requests to the suppliers. The
main functions of the program are:

� It connects to the queue manager. The queue manager name can be
specified as first the command-line argument to the program. If the queue
manager name is not specified the program tries to connect to the default
queue manager.

� It asks the HQ user to enter the catalog ID and the product description from
the standard input (the keyboard). The catalog ID is the topic string that is
concatenated to the topic string specified in the topic object
MATT.TOPIC.REQUESTQUOTE to form the topic for the publication.

� It builds a request for quote message. This message has two
comma-separated fields in the message body:

– Catalog Id
– Product Description

� It calls MQPUT1 to publish the request for quote to the topic.

� It repeats asking for a new request for quote until the user requests to
terminate the program.

This program demonstrates how to make a publication to a topic by
concatenating the topic string specified in the topic object with the topic string
received from the keyboard. It uses the MQPUT1 MQI call to publish to a topic.

290 WebSphere MQ V7.0 Features and Enhancements

15.2.2 HQ process supplier quotes program

This C language program runs on the same server as the queue manager. The
main functions of this program are:

� It receives two optional command arguments. The first is the subscription
queue name and the second is the queue manager name. If the queue name
is not specified it assumes the name MATT.SUPPLIER.QUOTES. If the queue
manager name is not specified then the program connects to the default
queue manager.

� It connects to the queue manager.

� It opens the subscription queue.

� It creates or resumes a non-managed durable subscription with the name
MATT.SUB.SUPPLIERQUOTE. The topic is made of the concatenation of the
topic string defined in the topic object MATT.TOPIC.SUPPLIERQUOTE and
the topic string “cat/#”. The subscription is created the first time that this
program is executed and it remains active until it is removed by the
administrator using MQ Explorer or a MQSC command. If this program is not
active the publications are stored in the subscription queue.

� It loops, calling MQGET to receive supplier quote messages from the topic.
MQGET waits for two minutes and if no messages are received it asks the
user if it should continue or terminate the program.

� For every message that is received the function ProcessAQuote is called to
do the following processing:

a. It creates a managed non-durable subscription to the retail price catalog
with the topic string made of the catalog ID of the product received in the
supplier quote. The subscription allows the receiving of retained
publications.

b. It receives a retained publication using MQGET. Matt’s Deli does not allow
non-retained publications on the retail price catalog. Therefore, no other
type of publication is expected.

c. If a retained publication is not received then this is a new product.
Therefore, a PublishRetailCatalogItem function is called to create and
publish a retail price catalog message. For new products, retained
publications are published for each level of the topic string. The retail price
catalog has a four-level topic string
“cat/ProductCategory/ProductType/ProductName”. Therefore, one
message is published for cat, another for product category, and another for
product type. These additional retained publications enable Matt’s Deli
stores to navigate and discover the contents of the retail price catalog.

 Chapter 15. Scenario: Supplier pricing using Pub/Sub 291

d. If a retained publication is received then this is the existing catalog entry
with the current retail price, supplier price, and supplier name for this
product. The current supplier price is compared with the price quoted in
the supplier’s message.

e. If the quote is from the same supplier as the current supplier, this is
considered a price change and it is published to the retail price catalog by
calling the function PublishRetailCatalogItem.

f. If the current supplier price is higher than the quoted price then this is a
cheaper quote and it is published to the retail price catalog calling the
function PublishRetailCatalogItem.

g. If the current price is lower than or equal to the price quoted then the
supplier quote is discarded and the retail price catalog is not updated.

� For every retail price catalog update the function PublishRetailCatalogItem is
called:

a. It opens a topic object with a topic string that represents the catalog ID of
the product.

b. It prepares a retail price publication. This message is comma-separated
text with five fields:

• Catalog ID
• Product description
• Retail price
• Supplier price
• Supplier name

c. It publishes the retail price message as a retained publication by calling
MQPUT1.

This program demonstrates how to create and resume non-managed durable
subscriptions. Supplier quotes are received even when this program is not active.
It shows how to subscribe using managed non-durable subscriptions to get
retained publications and also how to publish retained publications when it is
accessing and updating the retail price catalog.

292 WebSphere MQ V7.0 Features and Enhancements

15.2.3 Supplier process quotes program

This is a C language program that runs as a MQ Client application in the
supplier’s computer system. This program interacts with the supplier’s staff to
receive and respond to the Matt’s Deli request for quotes. The main functions of
this program are:

� It receives a queue manager name as the command argument passed to the
program. If the queue manager name is not provided then a connection to the
default queue manager is made.

� It asks the supplier user for the supplier identification.

� It connects to the queue manager. The environment variable
MQSERVER=SvrconnChannelName/TCP/Host(Port) must be defined before
running this program.

� It creates a subscription using a topic object called
MATT.TOPIC.REQUESTQUOTE and an object string “cat/#”. The resolved
topic string is the concatenation of the topic string defined in the topic object
and the string “cat/#”.

� It gets request for quote publications from the created subscription. If the
MQGET call waits for more than 2 minutes without receiving a message then
it asks the user whether it should continue or terminate the program.

� It calls the function ProcessARequestQuote for each message received. This
function does the following processing:

a. It parses the received message to get the catalog ID and the production
description.

b. It displays to the user the request for the quote received.

c. It asks the user for a price to quote, or to enter 0 (zero) if the request is to
be ignored.

d. If zeros is entered the function returns without doing any further process to
the request for quote.

e. If a price is entered then a supplier quote message is prepared.

f. It opens a topic object called MATT.TOPIC.SUPPLIERQUOTE and an
object string that is the catalog ID received in the request for quote.

g. It publishes a supplier quote to the topic using MQPUT1.

� It loops to get next request for quote message from suppliers.

 Chapter 15. Scenario: Supplier pricing using Pub/Sub 293

15.2.4 Required MQ objects

The supplier pricing component requires the following objects to be defined by
the queue manager administrator:

� MATT.TOPIC.REQUESTQUOTE: This topic object relates to the topic
“matt/requestquote”. The purpose of this object is to define access control
such that Matt’s Deli headquarters can publish and subscribe to the topic but
suppliers can only subscribe.

� MATT.TOPIC.SUPPLIERQUOTE: This topic object relates to the topic
“matt/supplierquote” and defines that publications to this topic should be
persistent by default. The access control allows suppliers to publish but not to
subscribe to this topic. Headquarters should be able to subscribe and publish.

� MATT.SUPPLIER.QUOTES: This is the subscriber local queue for the
non-managed durable subscription created by the HQ process supplier
quotes program. Supplier quote publications are queued while the program is
busy or not active.

Example 15-1 contains the MQSC commands to define these objects.

Example 15-1 Supplier pricing topic and queue objects

DEFINE TOPIC(MATT.TOPIC.SUPPLIERQUOTE) +
TOPICSTR('matt/supplierquote') +
REPLACE +
DEFPSIST(YES) +
PUB(ENABLED) +
SUB(ENABLED)

DEFINE TOPIC(MATT.TOPIC.SUPPLIERQUOTE) +
TOPICSTR('matt/requestquote') +
REPLACE +
PUB(ENABLED) +
SUB(ENABLED)

DEFINE QLOCAL(MATT.SUPPLIER.QUOTES) +
LIKE(SYSTEM.DEFAULT.LOCAL.QUEUE) +
REPLACE +
DEFPSIST(YES) +
DEFSOPT(SHARED)

294 WebSphere MQ V7.0 Features and Enhancements

15.2.5 Installation of supplier pricing component

The supplier pricing component programs are packaged in a file called
Chapter15_SupplierPricing.zip available for download in Appendix B, “Additional
material” on page 379.

To install the executable code:

1. Extract the compressed file into the C:\Scenario directory on the
headquarters machine.

2. The following directories are created to contain each program:

– C:\Scenario\Chapter15_SupplierPricing\SPhqprocquote
– C:\Scenario\Chapter15_SupplierPricing\SPhqrequestquote
– C:\Scenario\Chapter15_SupplierPricing\SPsuppprocquote

There are two additional directories with other programs that can be used to
test this component:

– C:\Scenario\Chapter15_SupplierPricing\loader
– C:\Scenario\Chapter15_SupplierPricing\SPsuppsendquote

Each directory contains the following files:

– SPrunProgramName.bat: This is a Windows command file that executes
the program.

– ProgramName.c: This is the program source code.

– ProgramName.exe: This is the executable code linked with the MQ server
bindings library.

– ProgramNamec.exe: This is the executable code linked with the MQ client
bindings library.

– make.bat: This batch command file executes nmake to compile and link
the program. Execute this command if it necessary to recreate the
executable code.

– makefile.txt: This is the nmake parameter file.

These programs are compiled with a C language compiler such as Microsoft
Visual C++® Express Edition for Windows.

15.3 Running the supplier pricing component

To run the supplier pricing component programs, execute each program in its
own command prompt window.

 Chapter 15. Scenario: Supplier pricing using Pub/Sub 295

15.3.1 HQ send request for quote program

To run the SPhqrequestquote program:

1. Open a Windows command prompt and execute the following command:

C:\> runas /user:hquser cmd.exe

2. Select the command prompt window started by the runas command.

3. Check that the queue manager is running:

C:\> dspmq
QMNAME(QMHQ) STATUS(Running)

4. Change the directory to the location of the executable code:

C:\> cd C:\Scenario\Chapter15_SupplierPricing\SPhqrequestquote

5. Execute the program (or execute the command file
SPrunhqrequestquote.bat):

C:\Scenario\Chapter15_SupplierPricing\SPhqrequestquote>
SPhqrequestquote.exe

* Welcome to MATTS DELI - Prepare and send request for quote **

Enter the catalogID to request a quote for:
.. cat/<fresh|tinned|dry|glass>/<product type>/<product>
.. Example: 'cat/fresh/fruit/apple'
.. or press ENTER to end

--> CatalogId :

6. Enter the catalog ID for the product to request the quote:

--> CatalogId : cat/fresh/fruit/oranges

Enter product description:
.. (note no commas)

--> Description :

7. Enter the product description:

Enter product description:
.. (note no commas)

--> Description : Spanish oranges per Kg

296 WebSphere MQ V7.0 Features and Enhancements

<*> Published message <cat/fresh/fruit/oranges,Spanish oranges per
Kg>

Enter the catalogID to request a quote for:
.. cat/<fresh|tinned|dry|glass>/<product type>/<product>
.. Example: 'cat/fresh/fruit/apple'
.. or press ENTER to end

--> CatalogId :

8. Press Enter to end the program:

Enter the catalogID to request a quote for:
.. cat/<fresh|tinned|dry|glass>/<product type>/<product>
.. Example: 'cat/fresh/fruit/apple'
.. or press ENTER to end

--> CatalogId :
**
* End of MATTS DELI prepare and send request for quote *******
***************** End Program ********************************

15.3.2 HQ process supplier quotes program

To run the SPhqprocquote program:

1. Open a Windows command prompt and execute the following command:

C:\> runas /user:hquser cmd.exe

2. Select the command prompt window started by the runas command.

3. Check that the queue manager is running:

C:\> dspmq
QMNAME(QMHQ) STATUS(Running)

4. Change the directory to the location of the executable code:

C:\> cd C:\Scenario\Chapter15_SupplierPricing\SPhqprocquote

5. Execute the program (or execute the command file SPrunhqprocquote.bat):

C:\Scenario\Chapter15_SupplierPricing\SPhqprocquote>
SPhqprocquote.exe
Supplier Pricing Process Supplier Quote Application START
<*> Connected to Queue Manager: QMHQ
<*> Open Subscription queue: <MATT.SUPPLIER.QUOTES>
<*> MQSUB ResolvedTopicString <matt/supplierquote/cat/#>
<*> Calling MQGET : 180 seconds wait time

 Chapter 15. Scenario: Supplier pricing using Pub/Sub 297

6. Wait for supplier quotes to arrive:

<*> Input supplier quote <cat/fresh/fruit/oranges,Spanish oranges
per Kg,0.65,SUPPA>

Processing an inbound quote
.. Catalog : cat/fresh/fruit/oranges
.. Desc : Spanish oranges per Kg
.. Price : 0.65
.. Supplier: SUPPA

New product publishing retained retail price for
cat/fresh/fruit/oranges of 1.30
<*> Target Topic is = matt/retail/cat/fresh/fruit/oranges
<*> Publish message <cat/fresh/fruit/oranges,Spanish oranges per Kg,
1.30,0.65,SUPPA>

<*> Target Topic is = matt/retail/cat
<*> Publish message <cat,cat,0.00,0.00,CATEGORY>

<*> Target Topic is = matt/retail/cat/fresh
<*> Publish message <cat/fresh,fresh,0.00,0.00,CATEGORY>

<*> Target Topic is = matt/retail/cat/fresh/fruit
<*> Publish message <cat/fresh/fruit,fruit,0.00,0.00,CATEGORY>

<*> Calling MQGET : 180 seconds wait time

7. Enter quit to terminate:

<*> Calling MQGET : 180 seconds wait time
<*> No more messages
Press ENTER to continue or type QUIT to terminate.

quit

<*> Program terminating
<*> Closing subscription handle (KEEP)
<*> Closing managed destination handle
Supplier Pricing Process Supplier Quote Application END

298 WebSphere MQ V7.0 Features and Enhancements

15.3.3 Supplier process quotes program

To run the SPsuppprocquote program:

1. Open a Windows command prompt and execute the following command:

C:\> runas /user:suppa cmd.exe

2. Select the command prompt window started by the runas command.

3. Change the directory to the location of the executable code:

C:\> cd C:\Scenario\Chapter15_SupplierPricing\SPsuppprocquote

4. Set the MQSERVER environment variable to establish the connection
information to the queue manager:

C:\Scenario\Chapter15_SupplierPricing\SPsuppprocquote> set MQSERVER=
QMHQ_SUPP_A/tcp/9.20.16.251(1414)

5. Execute the program (or execute command file SPrunsuppprocquote.bat):

C:\Scenario\Chapter15_SupplierPricing\SPsuppprocquote>
SPsuppprocquotec.exe QMHQ
**
* Welcome to MATTS DELI receive request for quote ***
* and send a supplier price quote. ***
**
Enter your Supplier Identification
.. or press ENTER to end

--> SupplierId :

6. Enter the supplier identification:

--> SupplierId : SUPPA
<*> Connecting to queue manager: QMHQ
<*> MQSUB ResolvedTopicString <matt/requestquote/cat/#>
<*> Calling MQGET : 180 seconds wait time

7. Wait for requests to arrive from Matt’s Deli:

<*> Received publication <cat/fresh/fruit/oranges,Spanish oranges
per Kg>
Received a request for quote from Matt's Deli
.. Catalog : cat/fresh/fruit/oranges
.. Desc : Spanish oranges per Kg

Enter a price to quote to Matt's Deli
.. or enter 0.00 to skip this request.
.. price format 999.99
--> Price :

 Chapter 15. Scenario: Supplier pricing using Pub/Sub 299

8. Enter a price to send the supplier quote or zeros to skip the request:

--> Price : 0.65

<*> Target Topic is = /matt/supplierquote/cat/fresh/fruit/oranges
<*> Published message <cat/fresh/fruit/oranges,Spanish oranges per
Kg,0.65,SUPPA>
<*> Calling MQGET : 180 seconds wait time

9. Enter quit to terminate the program:

<*> Calling MQGET : 180 seconds wait time

<*> No more messages
Press ENTER to continue or type QUIT to terminate.

quit

Program terminating
<*> Closing subscription handle (KEEP)
MQCLOSE ended with reason code 2045
<*> Closing managed destination handle
**
* End of MATTS DELI receive and process requests for quote ***
***************** End Program ********************************

15.4 Verifying the supplier pricing component

To verify the supplier pricing component:

1. Start programs SPhqrequestquote and SPhqprocquote in separate command
windows in the headquarters server where the queue manager is running.

2. Start the program SPsuppprocquote on a command window in the supplier
system as the MQ Client application.

3. Enter a request for quote on the SPhqrequestquote program.

4. Receive the request on the SPsuppprocquote program. Respond generating
a supplier quote entering a price that is not zeros.

5. Observe the supplier quote being processed by the SPhqprocquote program.

6. Use sample program amqssub to subscribe to the topic “matt/retail/cat/#” to
receive the retained publications from the retail price catalog:

C:\> amqssub matt/retail/cat/#
Sample AMQSSUBA start
Calling MQGET : 30 seconds wait time
message <cat/freh/fruit/apple,cox apples per kg, 2.16,1.08,SUPPA>

300 WebSphere MQ V7.0 Features and Enhancements

Calling MQGET : 30 seconds wait time
message <cat/freh/fruit/oranges,spanish oranges per kg,
1.98,0.99,SUPPA>
Calling MQGET : 30 seconds wait time
message <cat/fresh/fruit,fruit,0.00,0.00,CATEGORY>
Calling MQGET : 30 seconds wait time
message <cat/frseh,fresh,0.00,0.00,CATEGORY>
Calling MQGET : 30 seconds wait time
message <cat/glass/wine/red,spanish rioja,10.70,5.35,SUPPA>
Calling MQGET : 30 seconds wait time
message <cat/glass/wine/white,german white,14.50,7.25,SUPPA>
Calling MQGET : 30 seconds wait time
message <cat/glass/wine,wine,0.00,0.00,CATEGORY>
Calling MQGET : 30 seconds wait time
message <cat/glass,glass,0.00,0.00,CATEGORY>
Calling MQGET : 30 seconds wait time
message <cat/fresh/fruit/oranges,Spanish oranges per Kg,
1.30,0.65,SUPPA>
Calling MQGET : 30 seconds wait time
message <cat,cat,0.00,0.00,CATEGORY>
Calling MQGET : 30 seconds wait time
no more messages
Sample AMQSSUBA end

15.5 Summary

The Matt’s Deli supplier pricing component uses Publish/Subscribe to broadcast
requests for price quotes to all the suppliers. The suppliers subscribe to Matt’s
Deli requests and decide to reply with a price quote.

Matt’s Deli uses the retained publications of WebSphere MQ V7.0
Publish/Subscribe to implement the retail price catalog. Retained publications
allow a single price to be maintained for each product in the catalog. The
classification of the products in the catalog is implemented by the topic hierarchy.
Matt’s Deli stores can retrieve the current price of any product.

The catalog is updated by publishing a new retained publication to the topic that
represents a specific product.

The supplier pricing component demonstrates how to create durable and
non-durable subscriptions and how managed and non-managed subscriptions
work.

 Chapter 15. Scenario: Supplier pricing using Pub/Sub 301

In summary, these programs show how to do Publish/Subscribe using the new
Message Queue Interface extensions.

302 WebSphere MQ V7.0 Features and Enhancements

Chapter 16. Scenario: Store ordering
with JMS

This component of our scenario illustrates the use of Java Message Service
(JMS) to perform Publish/Subscribe and point-to-point messaging with an
emphasis on the enhancements in WebSphere MQ V7.0.

Retained publications are used to store the retail catalog of all products offered
by Matt’s Deli. The stores use non-durable subscriptions with a wildcard in the
topic string to browse publications on the topic tree.

This chapter includes the following sections:

� 16.1, “Design overview” on page 304
� 16.2, “Deploying the headquarters application” on page 305
� 16.3, “Running the headquarters application” on page 308
� 16.4, “Deploying the store application” on page 308
� 16.5, “Invoking the store application” on page 311
� 16.6, “Running the store application” on page 312
� 16.7, “Summary” on page 323

16

© Copyright IBM Corp. 2009. All rights reserved. 303

16.1 Design overview

The product catalog required for the stores to place orders is maintained at the
headquarters of Matt’s Deli. The details of each product in the catalog is held as
a retained publication on the WebSphere MQ queue manager at headquarters.

The store ordering application is independent of all other components of the
scenario. However, the retail order processing application that runs at
headquarters is also used by the Web ordering component, and it provides a
feed to the warehousing component.

The product catalog must be pre-loaded with descriptions and pricing information
by storing retained publications in the “matt/retail/cat” topic tree of the
headquarters queue manager. Refer to 16.4, “Deploying the store application” on
page 308, for details.

When a staff member at one of Matt’s Deli stores starts the store ordering
application at their local store, it first subscribes to the “matt/retail/cat/+” topic to
fetch all the main product categories. The user then has the option to navigate
down through the product hierarchy to select an item to order. The user can then
submit an order for a product to the retail order application that is running at
headquarters.

The headquarters application sends an order confirmation response back to the
user for display. The store ordering application waits for a maximum of 3 seconds
for the response and then control is returned to the user to place the next order.
The user has an option to check for asynchronous responses from headquarters
that were not received within the 3-second limit.

When the retail order application processes an order it also sends a
point-to-point message to a queue, which is processed by the warehouse to fulfill
delivery of the products ordered from the warehouse to the store.

The store ordering application and the retail order application both use Java
Message Service for communicating via the MQ client to the headquarters queue
manager.

304 WebSphere MQ V7.0 Features and Enhancements

Figure 16-1 shows the workflow of the store ordering and retail order
applications.

Figure 16-1 Store ordering component

16.2 Deploying the headquarters application

The retail order application at headquarters uses JMS and must always be
running and connecting to the headquarters queue manger. Before it can be
started, the following prerequisites must be met:

� Ensure that the WebSphere MQ client is installed on the machine.

� Ensure that Java Development Kit 1.4.2 or later is installed and configured on
the machine.

Note: The headquarters application is also used in Chapter 18, “Scenario:
Web ordering over HTTP” on page 343, and it generates messages that are
used by the Warehousing component described in Chapter 19, “Scenario:
Warehousing using call back” on page 361.

Store ordering workflow

Store ordering application
1) Get catalogue (non-durable subcriber &

get messages using ‘+’ wildcard)
2) Display catalogue
3) Select Product
4) Enter Quantity
5) Submit Order (P2P put)
6) Wait for response (P2P get wait)
7) Display Order Id & Status

matt/retail/cat/…/…

MATT.RETAIL.RESPONSES

MATT.RETAIL.ORDERS
MATT.RETAIL.WH.ORDERS

Retail Catalog Message

Warehouse
Retail
Message

Init Retail Catalog App
1) Read record from file
2) Open topic & publish retained details

Initial Retail Price File

Warehousing

Supplier Pricing

Retail Order Response Message

Retail Order Message

HQ Retail order application
1) Wait for order (P2P get with wait)
2) Generate Order Id
3) Send order to warehouse (P2P put)
4) Send response to store (P2P put)

Headquarters (HQ)

 Chapter 16. Scenario: Store ordering with JMS 305

� The classpath variable must be set to include all the WMQ v7.0 jar files found
under the WMQv7_Home/java/lib directory, as shown in Example 16-1.

Example 16-1 Set classpath variable

set classpath=.;C:\Program Files\IBM\WebSphere
MQ\Java\lib\CL3Export.zip;C:\Program Files\IBM\WebSphere
MQ\Java\lib\CL3Nonexport.zip;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mq.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mqbind.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mqjms.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\connector.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\fscontext.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\jms.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\jndi.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\jta.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\ldap.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\mqjbdf02.dll;C:\Program Files\IBM\WebSphere
MQ\Java\lib\mqjbnd05.dll;C:\Program Files\IBM\WebSphere
MQ\Java\lib\MQXAi02.dll;C:\Program Files\IBM\WebSphere
MQ\Java\lib\providerutil.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\rmm.jar;

� The Chapter16_StoreOrdering.zip file is supplied with the materials in
Appendix B, “Additional material” on page 379. Extract the compressed file
into the C:\Scenario directory. This creates the Chapter16_StoreOrdering
sub-directory, which also contains several subdirectories.

� Edit the HQSetup.bat file and modify the following values:

– WMQv7_HOME: Set this value to the WebSphere MQ installed directory.

Example 16-2 Set WMQv7_HOME value

WMQv7_HOME=C:\Program Files\IBM\WebSphere MQ

Note: The HQProcess subdirectory contains all the files required for the
headquarters application to run:

� hqprocess.jar: The main jar file that contains the class files

� HQSetup.bat: Initial setup file for the headquarters application

� HQRun.bat: Command file to execute store ordering application in
headquarters

306 WebSphere MQ V7.0 Features and Enhancements

– HQQUEMGRNAME: The headquarters queue manager to which the
headquarters application should connect.

Example 16-3 Queue manager

HQQUEMGRNAME=QMHQ

– HQPORT: The port number on which the headquarter queue manager
listens.

Example 16-4 Port

HQPORT=1414

– HQHOSTNAME: The host name on which the headquarters queue
manager resides.

Example 16-5 Host name

HQHOSTNAME=sam725hq
OR
HQHOSTNAME=12.87.234.65

� At the command prompt in the
C:\Scenario\Chapter16_StoreOrdering\HQProcess directory, run
HQSetup.bat:

Example 16-6 Run HQSetup.bat

HQSetup

Note: hqsetup.bat uses the WebSphere MQ JMSAdmin tool to create the
required Java Naming and Directory Interface objects. Ensure that the
JMSAdmin.config file under the WMQv7_Home/java/bin directory is
configured correctly. For more information about configuring the
JMSAdmin.config file, refer to the section “Using the WebSphere MQ JMS
administration tool” in the Using Java manual, which is available in the
WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

 Chapter 16. Scenario: Store ordering with JMS 307

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

16.3 Running the headquarters application

To invoke the retail order application:

1. In a command prompt window, execute the following command:

C:\runas /user:hquser cmd.exe

2. Select the command prompt window started by the runas command.

3. At the command prompt in the
C:\Scenario\Chapter16_StoreOrdering\HQProcess directory, run HQRun.bat.

Example 16-7 Execute HQRun.bat

HQRun

OR

java -cp "./hqprocess.jar;%CLASSPATH%"
com.ibm.residency.HQOrderProcessing
-icf=com.sun.jndi.fscontext.RefFSContextFactory
-url=file:/C:/JMSBindings

4. Once the application starts it is ready to process the requests from the stores
and Web ordering applications.

16.4 Deploying the store application

Before the store ordering application can be started, the following prerequisites
must be met on each store machine:

1. Ensure that the WebSphere MQ client is installed on the machine.

2. Ensure that Java Development Kit 1.4.2 or later is installed and configured on
the machine.

Note: Enter the same value for -icf and -url as you would specify in the
JMSAdmin.config file under the WMQv7_Home/java/bin directory.

308 WebSphere MQ V7.0 Features and Enhancements

3. The classpath variable must be set to include all the WebSphere MQ V7 jar
files found under the WMQv7_Home/java/lib directory, as shown in
Example 16-8.

Example 16-8 Include WebSphere MQ V7 jar files

set classpath=.;C:\Program Files\IBM\WebSphere
MQ\Java\lib\CL3Export.zip;C:\Program Files\IBM\WebSphere
MQ\Java\lib\CL3Nonexport.zip;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mq.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mqbind.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mqjms.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\connector.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\fscontext.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\jms.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\jndi.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\jta.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\ldap.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\mqjbdf02.dll;C:\Program Files\IBM\WebSphere
MQ\Java\lib\mqjbnd05.dll;C:\Program Files\IBM\WebSphere
MQ\Java\lib\MQXAi02.dll;C:\Program Files\IBM\WebSphere
MQ\Java\lib\providerutil.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\rmm.jar;

4. Extract the Chapter16_StoreOrdering.zip file to the C:\Scenario directory.

5. Edit the SOSetup.bat file and modify the following values:

– WMQv7_HOME: Set this value to the WebSphere MQ installed directory.

Example 16-9 Set WMQ_HOME value

WMQv7_HOME=C:\Program Files\IBM\WebSphere MQ

Note: The StoreOrdering subdirectory contains all the files required for the
store ordering application to run:

� storeordering.jar: The main jar file that contains the class files

� SOSetup.bat: Initial setup file for the store ordering application

� SORun.bat: Command file to run the store ordering application on the
store

 Chapter 16. Scenario: Store ordering with JMS 309

– SOQUEMGRNAME: The headquarters queue manager to which the store
ordering application should connect.

Example 16-10 Queue manager

SOQUEMGRNAME=QMHQ

– SOPORT: The port number on which the head quarter queuemanager
listens.

Example 16-11 Port

SOPORT=1414

– SOHOSTNAME: The host name on which the headquarters queue
manager resides.

Example 16-12 Host name

SOHOSTNAME=sam725hq

OR

SOHOSTNAME=12.87.234.65

6. At the command prompt in the
C:\Scenario\Chapter16_StoreOrdering\StoreOrdering directory, run
SOSetup.bat:

SOQSetup

Note: SOSetup.bat file uses the WebSphere MQ JMSAdmin tool to create
the required Java Naming and Directory Interface objects. Ensure that the
JMSAdmin.config file under the WMQv7_Home/java/bin directory is
configured correctly. For more information about configuring the
JMSAdmin.config file, refer to the section “Using the WebSphere MQ JMS
administration tool” in the Using Java manual, which is available in the
WebSphere MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

310 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

16.5 Invoking the store application

To invoke the store ordering application:

1. In a command prompt window, execute the following command:

C:\runas /user:stora cmd.exe

2. Select the command prompt window started by the runas command.

3. At the c:\Scenario\StoreOrdering prompt, execute SORun.bat, as in
Example 16-13.

Example 16-13 Execute SORun.bat

SORun

OR

java -cp "./storeordering.jar;%classpath%"
com.ibm.residency.StoreOrder
-icf=com.sun.jndi.fscontext.RefFSContextFactory
-url=file:/C:/JMSBindings

Note: Enter the same value for -icf and -url as you would specify in the
JMSAdmin.config file under the WMQv7_Home/java/bin directory.

 Chapter 16. Scenario: Store ordering with JMS 311

4. Once the application starts the user is presented with the panel shown in
Figure 16-2.

Figure 16-2 Store order application

16.6 Running the store application

To run the store application:

1. When the store ordering application is running at the main menu, the user is
presented with the options shown in Figure 16-2:

– Display Catalog: This option allows the user to view the product catalog
and then submit orders.

– Check Response: The user can use this option to view the responses for
the previously submitted orders.

– Exit: Terminate the application.

312 WebSphere MQ V7.0 Features and Enhancements

2. Display the product catalogue by entering 1 (Figure 16-3).

Figure 16-3 Display product catalog

 Chapter 16. Scenario: Store ordering with JMS 313

3. The user is then presented with a list of product categories (Figure 16-4).

Figure 16-4 Product categories

314 WebSphere MQ V7.0 Features and Enhancements

4. The user can select any of the product categories displayed to place an order.
To select category fresh from the list, enter 1 (Figure 16-5).

Figure 16-5 Select categories

 Chapter 16. Scenario: Store ordering with JMS 315

The user is presented with a list of products, as shown in Figure 16-6.

Figure 16-6 Product types

316 WebSphere MQ V7.0 Features and Enhancements

5. To view the different products under the product list, enter the corresponding
number. To view products under the dairy type, enter 1. The user is presented
with the products shown in Figure 16-7.

Figure 16-7 Select product types

 Chapter 16. Scenario: Store ordering with JMS 317

6. The user can now place the order for a product. Enter the Sl No, enter the
quantity, and enter y to confirm submission of the order (Figure 16-8).

Figure 16-8 Submit order

318 WebSphere MQ V7.0 Features and Enhancements

7. The headquarters application sends a response back to the user indicating
whether the order was successful, as shown in Figure 16-9.

Figure 16-9 Order response

Note: Figure 16-9 shows that the order for the product cheese was
submitted by the store to headquarters and a response was received.
Headquarters also forwards this order to the warehouse.

 Chapter 16. Scenario: Store ordering with JMS 319

8. The store ordering application then allows the user to place a new order
(Figure 16-10).

Figure 16-10 Place a new order

320 WebSphere MQ V7.0 Features and Enhancements

9. Check responses. In case headquarters was not able to send the response to
the store within 3 seconds, the user still is able to check for the response
asynchronously. On the main menu, select the Check Responses option by
entering 2, as shown in Figure 16-11.

Figure 16-11 Select Check Response

 Chapter 16. Scenario: Store ordering with JMS 321

10.The application then displays the responses for the previous orders
submitted, as shown in Figure 16-12.

Figure 16-12 Order status

322 WebSphere MQ V7.0 Features and Enhancements

11.The user can enter 0 at any time to go back to the main menu, and enter 0 to
exit from the application (Figure 16-13).

Figure 16-13 Exit

16.7 Summary

This component of the scenario demonstrates enhanced features of the
WebSphere MQ V7.0 implementation of Java Message Service.

The store ordering application uses the wildcard (+) to subscribe. This allows the
application to fetch only the immediate child topics.

The retail order application manages retained publications stored by the
WebSphere MQ queue manager at headquarters.

The connection factory objects can be configured to make use of the
asychcronous put and the read ahead features.

 Chapter 16. Scenario: Store ordering with JMS 323

324 WebSphere MQ V7.0 Features and Enhancements

Chapter 17. Scenario: News using client

This component of the scenario illustrates two of the enhancements in
WebSphere MQ V7.0 Client, asynchronous put and read ahead. These features
are detailed in Chapter 5, “WebSphere MQ Client enhancements” on page 59.

The new Publish/Subscribe feature of WebSphere MQ V7.0 is also used. Topic
objects are defined to restrict access to topic strings. Refer to Chapter 4,
“Publish/Subscribe integration” on page 43, for details on Publish/Subscribe and
the new topic object.

This chapter consists of the following sections:

� 17.1, “Design overview” on page 326
� 17.2, “Deploying the news component” on page 327
� 17.3, “Running the News component” on page 331
� 17.4, “Verifying the news component” on page 334
� 17.5, “Summary” on page 341

17

© Copyright IBM Corp. 2009. All rights reserved. 325

17.1 Design overview

News items are generated at the headquarters of Matt’s Deli and they are
available to be viewed by the store staff and the general public. This can be news
like internal staff bulletins, announcements of special offers, or new products.
Each news item is stored as a separate MQ message in plain text.

Figure 17-1 shows the overall design. The programs and data are independent of
all other components of the scenario.

Figure 17-1 Programs and data flows in the news component

News items are published to two layers of topics beneath the tree matt/news on
the headquarters queue manager using two different programs that are run by
headquarters staff. One of these is designed to read news from a text file that
has been prepared beforehand. The other program allows individual news items
to be manually entered one by one as needed.

At the stores, a program is started by a staff member every morning to subscribe
to all news topics. The news items are displayed on an overhead monitor as soon
as they are published.

The public can also run this program to connect to headquarters and subscribe
to a sub-set of the news topics. A RSS feed is also available in this scenario. A
Web browser with an appropriate RSS reader plug-in can view the latest news on
all the public topics, or a dedicated RSS reader program can be used.

News

Headquarters

Stores

Store News Display App
Program name: Nstoredisplayc

HQ News Command App
Program name: Nhqsend

matt/news/…/…
News Message

HQ News Generation App
Program name: Nhqgeneratec

WMQ V7.0 Client

WMQ V7.0 Server

Public user

Web Browser
http://matts.deli.com/news

HQ News RSS App
Program name: Nhqpublicrss

326 WebSphere MQ V7.0 Features and Enhancements

There is a JMS program that runs continuously at headquarters. It subscribes to
all public news topics and accumulates them in an XML file in RSS-compliant
format.

17.2 Deploying the news component

Some of the programs are designed to be run on the same system as the
headquarters queue manager. The programs at the stores and public Web
browser can be run on other systems, but they can also be run on the
headquarters system to simplify the deployment.

Executable programs are supplied for the Windows platform. C source and make
files are also included so that they can be recompiled. This is useful if the
programs are to be run on UNIX and other platforms that support C.

Listings of the data files and Windows command files are provided when they are
used in 17.4, “Verifying the news component” on page 334.

17.2.1 Copying files

The file Chapter17_News.zip is supplied with the materials in Appendix B,
“Additional material” on page 379. To deploy the news component, extract the
compressed file into the C:\Scenario folder on the headquarters and stores
systems. This creates a sub-folder called Chapter17_News. Table 17-1 contains
a list of the files required to run the component.

Table 17-1 News component fil

Program File names Description

News generation Nhqgeneratec.exe Windows executable program that
runs at headquarters. It uses the
MQ Client to read data records from
standard input and it publishes the
news items to the specified topics. It
demonstrates the new
asynchronous put feature for
improved performance.

testgendata1.txt Sample data for generating news
items on topics.

runnewsgendelay.bat
runnewsgenfast.bat

Command files to run the
Nhqgeneratec program with
specific parameters.

 Chapter 17. Scenario: News using client 327

17.2.2 Public Web browser

A Web browser, such as Microsoft Internet Explorer or Mozilla Firefox with an
appropriate RSS reader plug-in installed, can be used on any supported platform
to open and display a RSS feed of Matt’s Deli public news items. A dedicated
RSS reader program can also be used. These are not supplied with the materials
in Appendix B, “Additional material” on page 379.

17.2.3 Compiling the Windows executable programs

The C source files for all the programs are provided in the file
Chapter17_News.zip. A make file and batch file are also included to generate the
executable programs on Windows using a Microsoft command line compiler and
linker, such as the free Microsoft Visual C++ 2005 Express Edition. It requires

News command Nhqsend.exe Windows executable program that
runs at headquarters. It reads data
records from standard input and
publishes the news items to a
specific news topic. It demonstrates
publishing to a topic using the
MQPUT1 verb.

runnewssend.bat Command file to run the Nhqsend
program with specific parameters.

News RSS generation Nhqpublicrss.java Java program that runs at
headquarters. It subscribes to the
public news topics and generates a
RSS XML file.

runrssgenxml.bat Command file to run the
Nhqnewsgetter program.

Store news display Nstoredisplayc.exe Windows executable program that
runs at the stores. It uses MQ Client
to subscribe to news topics and
display the news items. It
demonstrates subscribing and also
the new read ahead feature for
improved performance.

runstoredisplay.bat Command file to run the
Nstoredisplayc program with
specific parameters.

Program File names Description

328 WebSphere MQ V7.0 Features and Enhancements

WebSphere MQ V7.0 Server to be installed as the programs call the new verbs in
the MQ API. The compiler is not supplied with the materials in Appendix B,
“Additional material” on page 379.

The make file must be changed to allow the programs to be compiled and linked
on UNIX. Details of the required changes are not covered in this book, as they
are dependent on the UNIX platform. For details on compilation of a C program,
refer to the Application Programming Guide manual, available in the WebSphere
MQ V7.0 Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The files are listed in Table 17-2.

Table 17-2 Files used to compile the news component

17.2.4 MQ Objects

The news component uses the queue manager at headquarters and does not
require any queue objects to be defined. It is purely Publish/Subscribe based,
and lets WebSphere MQ manage the subscription queues. Two topic objects are
defined to allow OAM security profiles to restrict access to the news topic strings.
News requires two SVRCONN channel objects to be defined so that MQ Client
programs can connect to the queue manager from a remote system and the
headquarters system.

File names Description

Nhqgenerate.c
Nhqsend.c
Nstoredisplay.c

The C source files for all the executable programs. They are
independent and do not require any other header files or libraries,
except the standard Windows and MQ libraries.

makenews.txt A make file for the C programs on Windows. This would normally be
named makefile on UNIX systems and requires modification to use
the UNIX compiler and linker.

make.bat A command file that uses makenews.txt to compile and link the C
programs on Windows.

 Chapter 17. Scenario: News using client 329

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

The MQSC commands in Example 17-1 are included in QMHQobjects.txt, which
is run during the scenario preparation steps described in Chapter 14, “Scenario
preparation” on page 269.

Example 17-1 MQSC commands for the news component

DEFINE CHANNEL(QMHQ_STORES) +
CHLTYPE(SVRCONN) +
TRPTYPE(TCP) +
REPLACE

DEFINE CHANNEL(QMHQ_NEWS) +
CHLTYPE(SVRCONN) +
TRPTYPE(TCP) +
REPLACE

DEFINE TOPIC(MATT.TOPIC.NEWS.INTERNAL) +
TOPICSTR('matt/news/internal') +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

DEFINE TOPIC(MATT.TOPIC.NEWS.PUBLIC) +
TOPICSTR('matt/news/public') +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

The Object Authority Manager (OAM) commands in Example 17-2 are included
in QMHQsetaut.bat, which is also run during the scenario preparation.

Example 17-2 OAM commands for the news component

setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.* -g hq -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.* -g hq +pub
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.INTERNAL -g st -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.INTERNAL -g st +sub
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.PUBLIC -g matt -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.PUBLIC -g matt +sub

This allows users in the hq group at headquarters to publish to all news topics,
and allows users in the st and matt groups to subscribe to all news topics.

17.2.5 RSS data directory

Create the directory C:\htmldata on the headquarters system. The Nhqpublicrss
Java program writes RSS XML data to the file news.xml in this directory.

330 WebSphere MQ V7.0 Features and Enhancements

17.3 Running the News component

In a Publish/Subscribe design using non-durable subscriptions and non-retained
publications, it is typical to start the subscribers first and then run the publishers.

Messages for non-retained publications are discarded if there are no durable
subscriptions and there are no non-durable subscribers running at the time of
publication.

This section provides general information about how to run the programs,
including details of the environment and command-line arguments that they
require.

17.3.1 Starting the news display program at the stores

Nstoredisplayc.exe requires the MQSERVER environment variable to be set to
specify the client channel name, the transport protocol, and the host and port
number of the headquarters queue manager.

Open a Windows command prompt window and enter the following command.
The host sam725hq and port number 1414 must be changed to whatever is
actually being used by the headquarters queue manager:

set MQSERVER=QMHQ_STORES/TCP/sam725hq(1414)

The program requires a news category to be specified on the command line. This
corresponds to a topic string to which the program subscribes, as per Table 17-3.

Table 17-3 News categories for store display program

For example, the program can be run to only display internal news for viewing by
the stores:

Nstoredisplayc internal

News category on command line Program subscribes to topic string

internal matt/news/internal/#

public matt/news/public/#

all matt/news/#

 Chapter 17. Scenario: News using client 331

17.3.2 Starting the news RSS generation program at headquarters

Nhqpublicrss runs on the headquarters system. It is a compiled Java class that
subscribes to the public news topics and generates a RSS XML file on
C:\htmldata\news.xml. It requires the CLASSPATH environment variable to be set
to include the required Java Archive (jar) files and the PATH environment variable
set to include the ‘bin’ folder for the Java runtime.

Start the program using the following command:

java Nhqpublicrss.class

17.3.3 Starting the public news RSS reader

Open the following URL in a Web browser that has a RSS plug-in or open it in a
special-purpose RSS reader program:

http://matts.deli.com/htmldata/news.xml

matts.deli.com needs to be changed to the host name of the headquarters
system. It displays the public news items.

17.3.4 Running the news generation program at headquarters

Nhqgeneratec.exe requires the MQSERVER environment variable to be set to
specify the client channel name, the transport protocol, and the host and port
number of the headquarters queue manager.

In a Windows command prompt, set the MQSERVER variable. The host
sam725hq and port number 1414 must be changed to whatever is actually being
used by the headquarters queue manager:

set MQSERVER=QMHQ_NEWS/TCP/sam725hq(1414)

Some test data is supplied on file testgendata1.txt. The program can be run to
publish each record of the test data as fast as possible:

Nhqgenerate -fast <testgendata1.txt

332 WebSphere MQ V7.0 Features and Enhancements

This provides good throughput using the asynchronous put feature. The file
consists of the following data records, which consist of two comma-separated
fields containing the topic name and the news item.

Example 17-3 Contents of file testgendata1.txt

matt/news/public/newproduct,New season oranges are now available at all stores
matt/news/public/offers,Buy 3 lemons and get 1 free
matt/news/public/general,Matt's Deli is opening a new store in Chandlers Ford
next month
matt/news/internal/staff,Celebrate Matt's birthday with him at The Dolphin on
Friday night
matt/news/internal/products,Ensure you have plenty of lemons to keep up with
demand for the current special offer
matt/news/public/newproduct,We are proud to announce that imported cackle
berries are now available
matt/news/public/offers,Salami can now be purchased in ultra thin slices
matt/news/public/general,Our Otterbourne store is open to 10PM on Friday nights
matt/news/internal/staff,Don't forget that next Monday is a public holiday
matt/news/internal/products,Please check all stocks of yoghurt to made sure its
not past the use-by-date
matt/news/public/newproduct,We now have a range of cold-climate olives from
Greenland
matt/news/public/offers,Fresh bacon will be sold for half price on Saturday
morning only
matt/news/public/general,Santa is appearing at the Eastleigh store on Sunday
from 9AM to 11AM
matt/news/internal/staff,Cardboard boxes will be collected for recycling over
the weekend
matt/news/internal/products,Tinned goods deliveries from the warehouse will now
be on Wednesdays

The program can also be run to delay the publishing of each news item and to
repeat the set of news items a specified number of times. This does not make
best use of the asynchronous put feature, but it does simulate a regular feed of
news items that can be subscribed to and displayed by the other programs:

Nhqgeneratec -delay 5 -repeat 100 <testgendata1.txt

This introduces a 5-second delay between each published news item and
repeats all the news items in the data file 100 times before the program
termination.

17.3.5 Running the news command-line program at headquarters

Nhqsend.exe runs on the headquarters system and uses a direct server binding
to the local queue manager, so it does not require a client channel to operate.

 Chapter 17. Scenario: News using client 333

The program command-line argument indicates the topic string to which the
program publishes news items. See Table 17-4.

Table 17-4 News categories for headquarters send program

Open a Windows command prompt window and enter the following command:

Nhqsend internal/products

The program prompts for standard input. Enter a news item on each line and it is
immediately published to the topic string. Enter a blank line to terminate the
program.

17.4 Verifying the news component

This section provides two test cases that verify the correct operation of the news
component. It gives an insight into how the programs interact and use the new
features.

Command files are run in a specific order and the expected output from the
programs is shown.

17.4.1 News is generated at headquarters and displayed by stores

On a store system:

1. Start the program to subscribe to and display all news topics by
double-clicking runstoredisplay.bat in Windows Explorer. The file contains
the following commands. The host sam725hq and port number 1414 must be
changed to whatever is actually being used by the headquarters queue
manager.

set MQSERVER=QMHQ_STORES/TCP/sam725hq(1414)
Nstoredisplayc all
pause

News topic on command line Program publishes to topic string

public/newproduct matt/news/public/newproduct

public/offers matt/news/public/offers

public/general matt/news/public/general

internal/staff matt/news/internal/staff

internal/products matt/news/internal/products

334 WebSphere MQ V7.0 Features and Enhancements

The program displays news items for all the internal and public topics. The
command prompt window should display the output shown in Example 17-4.

Example 17-4 Initial output of news display program at store

C:\Scenario\Chapter17_News> set MQSERVER=QMHQ_STORES/TCP/sam725hq(1414)
C:\Scenario\Chapter17_News> Nstoredisplayc all

* Nstoredisplay program starts *

<*> Connecting to default Queue Manager
<*> Starting non-durable subscription to topic string 'matt/news/#'

This program provides good throughput using the read ahead feature when
there is a high volume of news items.

2. On the headquarters system, start the program to quickly publish test data to
all five news topics by double-clicking runnewsgenfast.bat in Windows
Explorer. The file contains the following commands:

set MQSERVER=QMHQ_NEWS/TCP/localhost(1414)
Nhqgeneratec -fast <testgendata1.txt
pause

The command prompt window should display the output shown in
Example 17-5.

Example 17-5 Output of news generation program at headquarters

C:\Scenario\Chapter17_News> Nhqgenerate -fast <testgendata1.txt

* Nhqgenerate program starts *

<*> Reading records from standard input in format 'topic,data'
<*> 15 records read from standard input
<*> Connecting to default Queue Manager
<*> All 13 publications completed OK

* Nhqgenerate program ends *

C:\Scenario\Chapter17_News> pause
Press any key to continue . . .

 Chapter 17. Scenario: News using client 335

The news display program at the store should immediately display the 13
published news items. The last few lines of output should appear as in
Example 17-6.

Example 17-6 Updated output of news display program at store

<*> News arrived at 2007-12-12 16:20:38
public/newproduct
We now have a range of cold-climate olives from Greenland

<*> News arrived at 2007-12-12 16:20:38
public/offers
Fresh bacon will be sold for half price on Saturday morning only

<*> News arrived at 2007-12-12 16:20:38
public/general
Santa is appearing at the Eastleigh store on Sunday from 9AM to 11AM

<*> News arrived at 2007-12-12 16:20:38
internal/staff
Cardboard boxes will be collected for recycling over the weekend

<*> News arrived at 2007-12-12 16:20:38
internal/products
Tinned goods deliveries from the warehouse will now be on Wednesdays

3. On the headquarters system, start the program to interactively publish news
items to one specific topic by double-clicking runnewssend.bat in Windows
Explorer. The file contains the following commands:

Nhqsend internal/staff
pause

4. The command prompt window should prompt for a news item to be entered.
Enter some text. Enter shutdown and then enter a blank line to end the
program. The output should be similar to Example 17-7. The user input is
shown in bold.

Example 17-7 Output of news send program at headquarters

C:\Scenario\Chapter17_News> Nhqsend internal/staff

* Nhqsend program starts *

<*> Connecting to default Queue Manager
<*> Opening topic string 'matt/news/internal/staff'

336 WebSphere MQ V7.0 Features and Enhancements

Enter a news item for 'internal/staff' or a blank line to end the
program
you can all go home now
<*> Publishing news message 'matt/news/internal/staff,you can all go
home now'

Enter a news item for 'internal/staff' or a blank line to end the
program
shutdown
<*> Publishing news message 'matt/news/internal/staff,shutdown

Enter a news item for 'internal/staff' or a blank line to end the
program
blank line

* Nhqsend program ends *

C:\Scenario\Chapter17_News> pause
Press any key to continue . . .

5. Press any key to close the window. At the same time, the news display
program window should have progressively displayed the output in
Example 17-8.

Example 17-8 Updated output of news display program at store

<*> News arrived at 2007-12-12 16:46:02
internal/staff
you can all go home now

<*> News arrived at 2007-12-12 16:46:14
internal/staff
shutdown

* Nstoredisplay program ends *

C:\Scenario\Chapter17_News> pause
Press any key to continue . . .

Press any key to close the window. This concludes the verification of news
generation at headquarters and news display at the stores.

The next section runs the RSS generation program and verifies that a RSS
reader can view the news items.

 Chapter 17. Scenario: News using client 337

17.4.2 News is generated and displayed by a RSS reader

On the headquarters system, start the Java program to subscribe to all public
news topics and generate the RSS XML file. A Windows command file is
provided to compile and run the program. The files contain the commands listed
in Example 17-9.

Example 17-9 Contents of runrssgenxml.bat

@echo off
echo CLASSPATH must contain at least the three WebSphere MQ jar files
echo "com.ibm.mq.jmqi.jar", "com.ibm.mqjms.jar" and "com.ibm.mq.jar".
echo These are normally in the folder "C:\Program Files\IBM\WebSphere
MQ\Java\lib".
echo To be safe, they are all added to CLASSPATH.

set CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.jmqi.jar
set CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mqjms.jar
set CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mq.jar
echo CLASSPATH=%CLASSPATH%
pause

echo PATH must contain the "bin" folder for the installed Java SDK.
echo This example assumes the IBM Java 50 SDK has been installed.
echo The set command will need to be changed if another Java SDK is being used.
echo The current folder must also be added so that the java command can find
the
echo compiled class file.

set PATH=%PATH%;C:\Program Files\IBM\Java50\bin;.
path
pause

echo Compile the Java source file into a class file

del /q Nhqpublicrss.class
echo Command: javac Nhqpublicrss.java
javac Nhqpublicrss.java
pause

echo Run the class file

echo Command: java Nhqpublicrss.class
java Nhqpublicrss.class
pause

338 WebSphere MQ V7.0 Features and Enhancements

Double-click runrssgenxml.bat in Windows Explorer. Press any key when
prompted. The command prompt window should initially display the output
shown in Example 17-10.

Example 17-10 Initial output of news RSS generation program

CLASSPATH must contain at least the three WebSphere MQ jar files
"com.ibm.mq.jmqi.jar", "com.ibm.mqjms.jar" and "com.ibm.mq.jar".
These are normally in the folder "C:\Program Files\IBM\WebSphere MQ\Java\lib".
To be safe, they are all added to CLASSPATH.
CLASSPATH=C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.mqjms.jar;C:\Progra
m Files\IBM\WebSphere MQ\Java\lib\com.ibm.mq.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.jmqi.jar;C:\Program Files\IBM\WebSphere
MQ\Java\lib\com.ibm.
mqjms.jar;C:\Program Files\IBM\WebSphere MQ\Java\lib\com.ibm.mq.jar
Press any key to continue . . .
PATH must contain the "bin" folder for the installed Java SDK.
This example assumes the IBM Java 50 SDK has been installed.
The set command will need to be changed if another Java SDK is being used.
The current folder must also be added so that the java command can find the
compiled class file.
PATH=C:\Program Files\IBM\WebSphere
MQ\Java\lib;C:\WINDOWS\system32;C:\WINDOWS;C
:\WINDOWS\System32\Wbem;C:\Program Files\IBM\WebSphere MQ\bin;C:\Program
Files\I
BM\WebSphere MQ\tools\c\samples\bin;C:\Program Files\IBM\Java50\bin;.
Press any key to continue . . .
Compile the Java source file into a class file
Command: javac Nhqpublicrss.java
Note: Nhqpublicrss.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
Press any key to continue . . .
Run the class file
Command: java Nhqpublicrss.class
Listening on topic topic://matt/news/public/general
Listening on topic topic://matt/news/public/newproduct
Listening on topic topic://matt/news/public/offers
Listening on topic topic://matt/news/public/general
Listening on topic topic://matt/news/public/newproduct
Listening on topic topic://matt/news/public/offers

Also on the headquarters system, start the program to slowly publish test data to
all five news topics by double-clicking runnewsgendelay.bat in Windows
Explorer. The file contains the following commands:

set MQSERVER=QMHQ_NEWS/TCP/localhost(1414)
Nhqgeneratec -delay 2 -repeat 10 <testgendata1.txt
pause

 Chapter 17. Scenario: News using client 339

The program reads all the records from standard input into memory and then
publishes news items with a 2-second delay between each. It repeats the
sequence of records 10 times before terminating.

After about 15 seconds of running the command prompt window, the output
obtained is as shown in Example 17-11.

Example 17-11 Initial output of news generation program at headquarters

C:\Scenario\Chapter17_News> set MQSERVER=QMHQ_NEWS/TCP/localhost(1414)
C:\Scenario\Chapter17_News> Nhqgeneratec -delay 5 -repeat 10
0<testgendata1.txt

* Nhqgenerate program starts *

<*> Reading records from standard input in format 'topic,data'
<*> 15 records read from standard input
<*> Connecting to default Queue Manager
<*> Publishing message:
 Topic 'matt/news/public/newproduct'
 Data 'matt/news/public/newproduct,New season oranges are now
available at all stores'
<*> Publishing message:
 Topic 'matt/news/public/offers'
 Data 'matt/news/public/offers,Buy 3 lemons and get 1 free'
<*> Publishing message:
 Topic 'matt/news/public/general'
 Data 'matt/news/public/general,Matt's Deli is opening a new store in
Chandlers Ford next month'

Open the following URL in a Web browser that has a RSS plug-in, or open it in a
special purpose RSS Reader program:

http://matts.deli.com/htmldata/news.xml

matts.deli.com must be changed to the actual host name of the headquarters
system. It displays the public news items.

340 WebSphere MQ V7.0 Features and Enhancements

Verify that the news items appear soon after they are published by the
Nhqgenerate program. After about 10 minutes Nhqgenerate terminates and no
new news items should appear in the RSS reader. The final output of the
program is shown in Example 17-12.

Example 17-12 Final output of news generation program at headquarters

<*> Publishing message:
 Topic 'matt/news/internal/staff'
 Data 'matt/news/internal/staff,Cardboard boxes will be collected for
recycling over the weekend'
<*> Publishing message:
 Topic 'matt/news/internal/products'
 Data 'matt/news/internal/products,Tinned goods deliveries from the
warehouse will now be on Wednesdays'

* Nhqgenerate program ends *

C:\Scenario\Chapter17_News> pause
Press any key to continue . . .

17.5 Summary

The WebSphere MQ Client is used to implement a news distribution capability for
Matt’s Deli, where the users are remote from the central headquarters system.
The enhancements in MQ Client are demonstrated as being appropriate to the
solution design. Non-durable subscriptions and non-retained publications are
also used with a hierarchical topic tree of news categories.

The news generation program used the new asynchronous put feature to publish
a large number of messages without waiting for the response on each MQPUT.
The MQSTAT call at the end of the program acknowledged the success of all
MQPUTs.

The news display program in the stores used the new read ahead feature to get
news subscription messages and demonstrate an improved throughput of
batches of messages in WebSphere MQ V7.0 compared to the previous versions
of WebSphere MQ.

 Chapter 17. Scenario: News using client 341

342 WebSphere MQ V7.0 Features and Enhancements

Chapter 18. Scenario: Web ordering over
HTTP

This component of the scenario illustrates the WebSphere MQ Bridge for HTTP
that is supplied with WebSphere MQ V7.0. The bridge is deployed in an
Application Server, allowing a Web client application to directly interact with
WebSphere MQ without any MQ code installed on the client machine.

Both Publish/Subscribe and point-to-point messaging are supported by the
bridge, but this scenario component only demonstrates a simple request and
reply dialog using point-to-point. The JavaScript programming language is used
within a HTML page that is run in a Web browser.

This chapter includes the following sections:

� 18.1, “Design overview” on page 344
� 18.2, “Prerequisites” on page 345
� 18.3, “Deploying the Web ordering component” on page 347
� 18.4, “Running the Web ordering component” on page 353
� 18.5, “Summary” on page 359

18

© Copyright IBM Corp. 2009. All rights reserved. 343

18.1 Design overview

Matt’s Deli has recently introduced the ability for customers to order products via
the Internet. Customers use a Web page to place orders that are processed by
Matt’s Deli headquarters. The warehouse arranges delivery.

The Web ordering component uses the same WebSphere MQ back-end
application as the store ordering component. The back-end retail order
application runs continuously at headquarters to process retail orders from
stores and the Web.

Customers open the Matt’s Deli Web page and submit three pieces of
information to place an order:

� The catalog ID of the product
� The quantity that they require
� Their customer ID

The JavaScript Web ordering application in the Web page generates an HTTP
POST request to place a message on queue MATT.RETAIL.ORDERS. The
message on this queue is processed by the back-end retail order application at
headquarters and generates a response message on queue
MATT.RETAIL.RESPONSES.

The Web ordering application performs a HTTP DELETE request to receive the
response message for the order and then displays it to the customer. If the
headquarters application does not generate a response message within 5
seconds the Web ordering application displays an error message.

The customer can then place a new order if they wish.

344 WebSphere MQ V7.0 Features and Enhancements

Figure 18-1 depicts the workflow of the entire Web ordering component.

Figure 18-1 Web ordering component

HTTP requests are processed by the WebSphere MQ Bridge for HTTP, which is
deployed as a servlet in the WebSphere Application Server that is running on the
headquarters machine.

Web ordering is a zero footprint application because the JavaScript code does
not require WebSphere MQ code to be installed on customer machines.

18.2 Prerequisites

This section describes software products and applications that are prerequisites
to running the WebSphere MQ Bridge for HTTP and the Web ordering
component.

Web Ordering workflow

Web ordering application
1) Select Product
2) Enter Quantity
3) Submit Order (P2P POST)
4) Wait for response (P2P GET wait)
5) Display Order ID & Status

MATT.RETAIL.RESPONSES

MATT.RETAIL.ORDERS

Web order Response

Web order Request

HQ Retail order application
1) Wait for order (P2P GET with wait)
2) Generate Order Id
3) Send order to Warehouse (P2P PUT)
4) Send response to store (P2P PUT)

Headquarters (HQ)

MATT.RETAIL.WH.ORDERS

Warehouse
Retail
Message

Warehousing

J2EE 1.4
Application Server

WebSphere MQ
Bridge for HTTP

 Chapter 18. Scenario: Web ordering over HTTP 345

18.2.1 WebSphere Application Server on headquarters machine

WebSphere Application Server V6.1.0.0 must be installed on the headquarters
machine on which the headquarters WebSphere MQ V7.0 queue manager also
resides.

For instructions to install WebSphere Application Server, refer to the installation
guide available at:

http://www.ibm.com/software/webservers/appserv/was/library/

The default profile for WebSphere Application Server is used in this scenario, as
shown in Example 18-1.

Example 18-1 Profile for ‘server1’

Server name is:server1
Profile name is:AppSrv01
Profile home is:C:\Program Files\IBM\WebSphere\AppServer\profiles\AppSrv01
Profile type is:default
Cell name is:WMQV7GANode01Cell
Node name is:WMQV7GANode01
Current encoding is:Cp1252
Server port number is:9080

Start WebSphere Application Server and ensure that server1 is running. This can
be done by opening a command prompt window and entering the commands
shown in Example 18-2.

Example 18-2 Starting WebSphere Application Server

C:\>cd “C:\Program Files\IBM\WebSphere\AppServer\profiles\AppSrv01\bin”
C:\Program Files\IBM\WebSphere\AppServer\profiles\AppSrv01\bin>startServer
server1
ADMU0116I: Tool information is being logged in file C:\Program
Files\IBM\WebSphere\AppServer\profiles\AppSrv01\logs\server1\startServer.log
ADMU7701I: Because server1 is registered to run as a Windows Service, the
 request to start this server will be completed by starting the
 associated Windows Service.
ADMU0116I: Tool information is being logged in file C:\Program
Files\IBM\WebSphere\AppServer\profiles\AppSrv01\logs\server1\startServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: server1
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server server1 open for e-business; process id is 4771

346 WebSphere MQ V7.0 Features and Enhancements

http://www.ibm.com/software/webservers/appserv/was/library/

18.2.2 Retail order application on headquarters machine

Deploy the headquarters retail order application, as used by the store ordering
component of the scenario. Refer to 16.2, “Deploying the headquarters
application” on page 305, for instructions.

18.2.3 Web browser on client machine

The client machine that is used by a Web customer to make orders requires a
Web browser that supports JavaScript, such as Internet Explorer or Mozilla
Firefox. No other software is needed on this machine.

18.3 Deploying the Web ordering component

The WebSphere MQ Bridge for HTTP is a Java EE servlet and it can be deployed
within the servlet container of any Java EE 1.4 compliant application server.
WebSphere Application Server V6.1.0.0 is used in this component of the
scenario.

This section describes the configuration of WebSphere Application Server and
the deployment of the bridge and the Web ordering application.

18.3.1 Start WebSphere Application Server administrative console

Launch the WebSphere Application Server administrative console on the
headquarters system by using the start menu and selecting Programs → IBM
WebSphere → Application Server V6.1 → Profiles → AppSrv01 →
Administrative console.

An alternative is to open the URL http://localhost:9060/ibm/console/ in a
Web browser on the headquarters system.

Note: A WebSphere MQ resource adapter is required for connecting other
application servers to WebSphere MQ V7.0. For example, WebSphere
Application Server Community Edition (WAS CE) can be used in conjunction
with the WebSphere MQ V7.0 JCA Resource Adapter to connect to
WebSphere MQ V7.0. A description of deploying the scenario in other
application servers is beyond the scope of this book because every application
server has a different procedure.

 Chapter 18. Scenario: Web ordering over HTTP 347

18.3.2 Creating a WebSphere MQ connection factory

In the administrative console, navigate through Resources → JMS →
Connection factories. Set the scope to WMQV7GANode01 → New. Select
WebSphere MQ messaging provider → OK.

Enter the properties for the connection factory as provided Example 18-3.

Example 18-3 Connection factory properties

Name = WMQHTTPJCAConnectionFactory
JNDI Name = jms/WMQHTTPJCAConnectionFactory
Queue manager = QMHQ
Transport Type = Bindings

348 WebSphere MQ V7.0 Features and Enhancements

Figure 18-2 shows the connection factory creation. Select OK and save the
connection factory.

Figure 18-2 Create WebSphere MQ connection factory

 Chapter 18. Scenario: Web ordering over HTTP 349

Restart WebSphere Application Server. This can be done by opening a
command prompt window and entering the commands shown in Example 18-4.

Example 18-4 Restarting WebSphere Application Server

C:\>cd “C:\Program Files\IBM\WebSphere\AppServer\profiles\AppSrv01\bin”
C:\Program Files\IBM\WebSphere\AppServer\profiles\AppSrv01\bin>stopServer
server1
ADMU0116I: Tool information is being logged in file C:\Program
Files\IBM\WebSphere\AppServer\profiles\AppSrv01\logs\server1\stopServer.log
ADMU7702I: Because server1 is registered to run as a Windows Service, the
 request to stop this server will be completed by stopping the
 associated Windows Service.
ADMU0116I: Tool information is being logged in file C:\Program
Files\IBM\WebSphere\AppServer\profiles\AppSrv01\logs\server1\stopServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: server1
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server server1 stop completed.

C:\Program Files\IBM\WebSphere\AppServer\profiles\AppSrv01\bin>startServer
server1
ADMU0116I: Tool information is being logged in file C:\Program
Files\IBM\WebSphere\AppServer\profiles\AppSrv01\logs\server1\startServer.log
ADMU7701I: Because server1 is registered to run as a Windows Service, the
 request to start this server will be completed by starting the
 associated Windows Service.
ADMU0116I: Tool information is being logged in file C:\Program
Files\IBM\WebSphere\AppServer\profiles\AppSrv01\logs\server1\startServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: server1
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server server1 open for e-business; process id is 4776

18.3.3 Installing the Web ordering servlet

The Chapter18_WebOrdering.zip file is supplied with the materials in
Appendix B, “Additional material” on page 379. Extract the compressed file into
the C:\Scenario directory. This creates the Chapter18_WebOrdering
sub-directory, which contains the file weborder.war.

In the WebSphere Application Server Administrative Console:

1. Navigate to Applications → Enterprise Applications and select Install.

2. Browse to the file weborder.war in the C:\Scenario\Chapter18_WebOrdering
directory.

350 WebSphere MQ V7.0 Features and Enhancements

3. Set the context root to /http, as shown in Figure 18-3. This distinguishes the
application from other applications already deployed in the WebSphere
Application Server.

Figure 18-3 Installing servlet

4. Select Next for subsequent option pages, leaving the default options present,
to finally select Finish in the summary page.

 Chapter 18. Scenario: Web ordering over HTTP 351

5. On successful installation of the servlet, select Save to Master
Configuration, as shown in Figure 18-4.

Figure 18-4 Installing and saving the servlet to master configuration

352 WebSphere MQ V7.0 Features and Enhancements

6. After successful installation of the servlet, navigate to the Enterprise
Application page and start the application, as shown in Figure 18-5.

Figure 18-5 Starting the application after installation and deployment

18.4 Running the Web ordering component

The bridge connects via JMS to the headquarters queue manager. This allows
the Web ordering application to communicate with the store ordering application.
The Web ordering application uses a simple point-to-point interface to send a

Note: The deployment and installation can be verified using the following URL
in a Web browser on the headquarters machine:

http://localhost:9080/mq/msg/queue/SYSTEM.DEFAULT.LOCAL.QUEUE

If the WebSphere MQ Bridge for HTTP is correctly installed a MQ error
message is displayed in the Web browser. This confirms that the WebSphere
MQ Bridge for HTTP has successfully connected to the WebSphere MQ
queue manager.

 Chapter 18. Scenario: Web ordering over HTTP 353

product order message to headquarters by performing a HTTP POST request
and receives the order confirmation message by performing a HTTP DELETE
request. It uses the same retail product order message protocol and queues as
the store ordering component described in Chapter 16, “Scenario: Store ordering
with JMS” on page 303.

18.4.1 Starting the headquarters retail order application

Invoke the retail order application as described in 16.3, “Running the
headquarters application” on page 308. This runs continuously at headquarters
to process orders from stores and Web customers. The initial execution is shown
in Figure 18-6.

Figure 18-6 Starting the headquarters application

354 WebSphere MQ V7.0 Features and Enhancements

18.4.2 Invoking the Web ordering application from the Web page

Invoke the Web ordering application in a Web browser, as shown in Figure 18-7,
using the URL http://www.matts.deli.com/http/weborder.html, which is of the
format http://HostName:9080/http/weborder.html.

Figure 18-7 Web ordering application invocation

 Chapter 18. Scenario: Web ordering over HTTP 355

18.4.3 Component verification

Enter the catalog ID for the required order, followed by the Quantity and
Customer ID fields, as shown in Figure 18-8.

Figure 18-8 Placing a Web order

Submit the order by clicking Send.

356 WebSphere MQ V7.0 Features and Enhancements

The Retail order application running at the headquarters then processes the
request and sends a response back to the client, as shown in Figure 18-9.

Figure 18-9 Headquarters application having processed the order

 Chapter 18. Scenario: Web ordering over HTTP 357

The response obtained on successful order processing is shown in Figure 18-10.

Figure 18-10 Web order response

358 WebSphere MQ V7.0 Features and Enhancements

18.5 Summary

This component of the scenario demonstrates the WebSphere MQ Bridge for
HTTP that is supplied with WebSphere MQ V7.0.

The Web ordering application is a zero footprint client, with no WebSphere MQ
libraries installed on the client machine. The application is a servlet that is hosted
by WebSphere Application Server. It uses HTTP requests to implement a simple
point-to-point WebSphere MQ interface to send a request message and receive
a response message.

 Chapter 18. Scenario: Web ordering over HTTP 359

360 WebSphere MQ V7.0 Features and Enhancements

Chapter 19. Scenario: Warehousing
using call back

This component of our scenario illustrates the use of callback for asynchronous
consumption of WebSphere MQ messages. It also demonstrates how an
administrative subscription can be setup to send published messages to a
remote queue. The messages are processed by a point-to-point application that
is not aware of Publish/Subscribe.

This chapter contains the following sections:

� 19.1, “Design overview” on page 362
� 19.2, “Deploying the warehousing component” on page 363
� 19.3, “Running the warehousing component” on page 368
� 19.4, “Verifying the warehousing component” on page 369
� 19.5, “Summary” on page 372

19

© Copyright IBM Corp. 2009. All rights reserved. 361

19.1 Design overview

Matt’s Deli currently has one warehouse that receives deliveries of product
stocks from all suppliers, provides storage, and dispatches products to the stores
and Web customers in response to orders received. The warehouse
management system runs on a z/OS mainframe system in the warehouse data
center. All orders are received via WebSphere MQ messages from the
headquarters system.

The warehouse z/OS mainframe system has recently upgraded its queue
manager to WebSphere MQ V7.0 for z/OS. The warehouse applications were not
designed to use Publish/Subscribe. They rely on a point-to-point design for
application integration and communication.

The warehouse has modified its main application to use the new callback feature
in WebSphere MQ V7.0, enabling MQ to allocate message buffers with the
appropriate length to receive the order messages. This is very useful because
the messages can vary in size from a hundred bytes for simple orders from Web
customers up to many megabytes for large bulk orders from stores. The
application has also been modified to display message properties using new MQI
calls provided in WebSphere MQ V7.0.

The warehousing component of this scenario consists of two application
programs:

� A gateway application runs on the headquarters system to process orders
that are accumulated on the MATT.RETAIL.WH.ORDERS queue. It publishes
the orders to topics matt/warehouse/CatalogId. Headquarters decided to use
Pub/Sub instead of point-to-point communication with the warehouse
because they have plans to establish several warehouses around the country
as part of their business expansion strategy. Pub/Sub enables new
warehouses to subscribe to appropriate topics and receive orders that they
can fulfill, based on the type of stock that they have.

� An application runs on the warehouse z/OS system to receive orders. It gets
messages from the local queue MATT.WH.ORDERS and processes them. In
this scenario it merely displays them on SYSOUT. This application
implements callback for asynchronous consume.

362 WebSphere MQ V7.0 Features and Enhancements

Figure 19-1 shows the two application programs and the interaction between
headquarters and the warehouse.

Figure 19-1 Warehousing scenario component

19.2 Deploying the warehousing component

The warehousing component is made of two application programs. One program
runs on the headquarters Windows system and the other runs on the warehouse
z/OS system:

� HQ send orders (Whqsendorders) runs on the headquarters system.

This is a C language program that gets messages from the
MATT.RETAIL.WH.ORDERS queue and publishes them to topics
matt/warehouse/CatalogId.

� Warehouse receive orders (Wwhreceiveorders) runs on the warehouse z/OS
system as a batch program.

This program is provided in two languages, C and COBOL. The program gets
messages from local queue MATT.WH.ORDERS using a callback consumer
function. Orders are displayed on the standard output of the program
(SYSOUT).

The C program runs until it is cancelled by the operator or a message is
received with the text ‘shutdown’ in the message body.

Warehousing

HQ Send Orders App
Program name: Whqsendorders

matt/warehouse/cat/…

MATT.RETAIL.WH.ORDERS

Warehouse
Order
Message

Warehouse
Retail
Message

Store Ordering
Web Ordering

Warehouse Receive App
Program name: Wwhreceiveorders

QREMOTE
MATT.WH.ORDERS

QLOCAL
MATT.WH.ORDERS

SUBSCRIPTION
MATT.SUB.WH.ORDERS
(Durable, Provided, Properties=None)

Warehouse

Headquarters

WMQ V7.0 Server
WMQ V7.0 Server

 Chapter 19. Scenario: Warehousing using call back 363

The COBOL program runs until the operator responds with the word “QUIT” to
the system console message “TSTMQCBM Enter START, STOP or QUIT”.

This component requires the creation of administrative subscription
MATT.SUB.WH.ORDERS on the headquarters queue manager to topic
matt/warehouse/#. This is a non-managed durable subscription that has a
subscriber queue defined as remote queue MATT.WH.ORDERS. This remote
queue definition represents the queue MATT.WH.ORDERS on the queue
manager QMWH running in the warehouse. This subscription converts
publications made on the headquarters queue manager into messages on a local
queue in the warehouse queue manager.

Sender and receiver channels are configured between queue managers QMHQ
and QMWH to transport the messages to the warehouse.

19.2.1 Required MQ objects

The warehousing component requires the following objects to be defined in the
headquarters QMHQ queue manager. Example 19-1 shows the MQSC
commands to define them.

� MATT.TOPIC.WAREHOUSE: This topic object equates to the topic string
matt/warehouse. This topic object is used by the headquarters send orders
program to publish orders to the warehouse (or warehouses in the future).

� MATT.SUB.WH.ORDERS: This is a non-managed durable subscription to
topic object MATT.TOPIC.WAREHOUSE and to topic string #. The provided
(non-managed) subscriber queue is MATT.WH.ORDERS, which is a remote
queue definition.

� MATT.WH.ORDERS: This is a queue remote object definition. The remote
queue manager is QMWH and the remote queue is MATT.WH.ORDERS.

� MATT.RETAIL.WH.ORDERS: This is a local queue on the headquarters
queue manager and that is defined for the store ordering component. Refer to
Chapter 16, “Scenario: Store ordering with JMS” on page 303.

Example 19-1 Warehousing topics and queues for the headquarters queue manager

DEFINE QREMOTE(MATT.WH.ORDERS) +
RNAME(MATT.WH.ORDERS) +
RQMNAME(QMWH) +
REPLACE

* Topics
DEFINE TOPIC(MATT.TOPIC.WAREHOUSE) +

TOPICSTR('matt/warehouse') +

364 WebSphere MQ V7.0 Features and Enhancements

PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

* Subscriptions
DEFINE SUB(MATT.SUB.WH.ORDERS) +

TOPICOBJ(MATT.TOPIC.WAREHOUSE) +
TOPICSTR('#') +
DESTCLAS(PROVIDED) +
DEST(MATT.WH.ORDERS) +
REPLACE

The MATT.WH.ORDERS object is required on the warehouse QMWH queue
manager. Example 19-2 contains the MQSC command to define it. It is local
queue that receives the publications that match the subscription
MATT.SUB.WH.ORDERS.

Example 19-2 Warehousing queue for the z/OS queue manager

DEFINE QLOCAL(MATT.WH.ORDERS) +
DEFPSIST(YES) +
DEFSOPT(SHARED) +
REPLACE

Transmission queues and sender and receiver channels are required to
interconnect the QMHQ and QMWH queue managers.

19.2.2 Installation of warehousing component

The warehousing programs are packaged in a compressed file called
Chapter19_Warehousing.zip that is supplied with the materials in Appendix B,
“Additional material” on page 379. It contains source code, executable code, and
the make file to build the C language executables that run at headquarters. The
file also includes the source code and sample Job Control Language (JCL) to
compile and link the C program or COBOL program that runs on the warehouse
z/OS system.

This file also has a compiled copy of the C language program for receiving orders
(Wwhreceiveorders.exe) that can run on a Windows system, instead of requiring
a z/OS system to operate the warehouse application.

 Chapter 19. Scenario: Warehousing using call back 365

To install the executable code on Windows:

1. Extract the contents of the compressed file into the directory C:\Scenario.

2. The following directories are created by the extraction:

– C:\Scenario\Chapter19_Warehousing\windows

– C:\Scenario\Chapter19_Warehousing\zos

3. Change to the C:\Scenario\Chapter19_Warehousing\windows directory.

4. This directory contains files using the following naming convention:

– ProgramName.c: This is the program source code.

– ProgramName.exe: This is the executable code linked with the MQ server
bindings library.

– make.bat: This is the batch command file that executes nmake to compile
and link the programs. Execute this command if it necessary to recreate
the executable code.

– makewarehousing.txt: This is the nmake parameter file.

– testProgramName.bat: This is a command file to execute the program on a
Windows system.

These programs are compiled with a C language compiler such as the free
Microsoft Visual C++ Express Edition for Windows.

The following instructions describe how to install the program on the warehouse
z/OS system. It assumes that the reader is familiar with both Windows and z/OS
platforms:

1. Change to the C:\Scenario\Chapter19_Warehousing\zos\C directory.

2. This directory contains the following files for the C program:

– WRCVORD.c: This is the source code of the receive orders program in C
language.

– CCOMPILE.jcl: This is a sample JCL to compile the C language program
WRCVORD in z/OS.

– CLINK.jcl: This is a sample JCL to link the C language program and create
a load module (executable code).

– WRCVORD.jcl: This is a sample JCL to run the WRCVORD program.

366 WebSphere MQ V7.0 Features and Enhancements

3. Change to the C:\Scenario\Chapter19_Warehousing\zos\COBOL directory.
This directory contains the following files for the COBOL program:

– TSTMQCBM.cbl: This is the source code of the receive orders main
program in COBOL language.

– TSTMQCBF.cbl: This is the source code of the receive orders callback
function program in COBOL language.

– MQCOBOL.jcl: This is a sample JCL to compile and link the COBOL
language programs in z/OS.

– TSTMQCB.jcl: This is a sample JCL to run the TSTMQCBM program.

4. On the z/OS system, create PDS libraries to store the JCL and the source
code.

5. Transfer the source code and JCL files to the z/OS system, for example, using
FTP.

6. On the z/OS system, create datasets to store the object and load modules
that are generated by the compilation and link of the program.

For the C language program:

a. Execute the CCOMPILE JCL to create the object module.

b. Execute the CLINK JCL to link the object module and create the load
module.

c. Create the MQ objects required in the z/OS queue manager.

d. Run the program using the WRCVORD JCL.

e. Check the output of the program for the messages that show the orders
that have been received and processed.

f. This program runs a loop until a message with the word shutdown is
received or the operator cancels it.

For the COBOL language program:

a. Execute the MQCOBOL JCL to create the object module.

b. Create the MQ objects required in the z/OS queue manager.

c. Run the program using the TSTMQCB JCL.

d. Respond to the prompt message “Enter START, STOP or QUIT” on the
operator console with the word “START”. This starts the execution of the
callback function. Messages are now retrieved from the queue
MATT.WH.ORDERS.

e. Check the output of the program for the messages that show the orders
that have been received and processed.

 Chapter 19. Scenario: Warehousing using call back 367

f. This program runs a loop until the operator responds with the word “QUIT”
to the message prompt “Enter START, STOP or QUIT”. The word “STOP”
stops the callback function. The callback function can be restarted
(START) or terminated (QUIT) by the operator.

19.3 Running the warehousing component

To run the warehousing programs:

1. On the warehouse z/OS system, submit the WRCVORD JCL or TSTMQCB
JCL to run the warehouse receive orders program.

2. On the headquarters Windows system, open a command prompt window and
execute the runas command:

runas /user:hquser cmd.exe

3. Go to the command prompt window started by the runas command.

4. Change the directory to the location of the executable code:

cd C:\Scenario\Chapter19_Warehousing\windows

5. Execute the program Whqsendorders.exe:

Whqsendorders MATT.RETAIL.WH.ORDERS QMHQ

* Whqsendorders program starts *

Connecting to Queue Manager 'QMHQ'
Opening warehouse retail queue 'MATT.RETAIL.WH.ORDERS' for input

6. The program output shows the orders that are processed and published to the
warehouse:

Whqsendorders MATT.RETAIL.WH.ORDERS QMHQ

* Whqsendorders program starts *

Connecting to Queue Manager 'QMHQ'
Opening warehouse retail queue 'MATT.RETAIL.WH.ORDERS' for input
Got message 'matt/retail/cat/fresh/vegetable/british baby
carrots,1,101,1215059489750'
Publishing message:
 Topic string 'matt/warehouse/cat/fresh/vegetable/british baby
carrots'
 Message data 'cat/fresh/vegetable/british baby
carrots,1,101,1215059489750'

368 WebSphere MQ V7.0 Features and Enhancements

19.4 Verifying the warehousing component

To verify correct operation of the warehousing component:

1. On the warehouse z/OS system, submit the JCL to run program WRCVORD
or TSTMQCB.

2. On the headquarters Windows system, open a command prompt window and
execute the runas command:

runas /user:hquser cmd.exe

3. Go to the command prompt window started by the runas command. Execute
the program Whqsendorders.exe.

cd C:\Scenario\Chapter19_Warehousing\windows
Whqsendorders MATT.RETAIL.WH.ORDERS QMHQ

4. In another command prompt window, execute the test command file
testretailwhordersgen.bat to put some test orders on the
MATT.RETAIL.WH.ORDERS queue:

cd C:\Scenario\Chapter19_Warehousing\windows
testretailwhordersgen

The output of the command file should be:

C:\Scenario\Chapter19_Warehousing\windows>amqsput
MATT.RETAIL.WH.ORDERS 0<testretailwhordersdata1.txt
Sample AMQSPUT0 start
target queue is MATT.RETAIL.WH.ORDERS
Sample AMQSPUT0 end

C:\Scenario\Chapter19_Warehousing\windows>pause
Press any key to continue . . .

5. Check the output of the Whqsendorders.exe program running in the other
window:

* Whqsendorders program starts *

Connecting to Queue Manager 'QMHQ'
Opening warehouse retail queue 'MATT.RETAIL.WH.ORDERS' for input
Got message
'matt/retail/cat/fresh/fruit/apples,5,ORDER0001,CUST0012'
Publishing message:
 Topic string 'matt/warehouse/cat/fresh/fruit/apples'
 Message data 'cat/fresh/fruit/apples,5,ORDER0001,CUST0012'
Got message 'junk/cat/tinned/fish/salmon,3,ORDER0002,STOR0002'

 Chapter 19. Scenario: Warehousing using call back 369

Publishing message:
 Topic string 'matt/warehouse/cat/tinned/fish/salmon'
 Message data 'cat/tinned/fish/salmon,3,ORDER0002,STOR0002'
Got message 'cat/dry/flour/selfraising,2,ORDER0003,STOR0001'
Publishing message:
 Topic string 'matt/warehouse/cat/dry/flour/selfraising'
 Message data 'cat/dry/flour/selfraising,2,ORDER0003,STOR0001'
Got message 'cat/glass/spirit/vodka,6,ORDER0004,CUST0034'
Publishing message:
 Topic string 'matt/warehouse/cat/glass/spirit/vodka'
 Message data 'cat/glass/spirit/vodka,6,ORDER0004,CUST0034'

6. On the warehouse z/OS system, check the output of the TSTMQCBM
COBOL program:

TSTMQCBF - *** Warehouse order received ***
 TSTMQCBF - Description: cat/fresh/fruit/apples
 TSTMQCBF - Quantity: 5
 TSTMQCBF - Reference: ORDER0001
 TSTMQCBF *** AN ERROR OCCURRED IN MQINQMP. COMPLETION CODE = 2
REASON CODE = 2471 ***
 TSTMQCBF - *** Warehouse order received ***
 TSTMQCBF - Description: cat/tinned/fish/salmon
 TSTMQCBF - Quantity: 3
 TSTMQCBF - Reference: ORDER0002
 TSTMQCBF *** AN ERROR OCCURRED IN MQINQMP. COMPLETION CODE = 2
REASON CODE = 2471 ***
 TSTMQCBF - *** Warehouse order received ***
 TSTMQCBF - Description: cat/dry/flour/selfraising
 TSTMQCBF - Quantity: 2
 TSTMQCBF - Reference: ORDER0003
 TSTMQCBF *** AN ERROR OCCURRED IN MQINQMP. COMPLETION CODE = 2
REASON CODE = 2471 ***
 TSTMQCBF - *** Warehouse order received ***
 TSTMQCBF - Description: cat/glass/spirit/vodka
 TSTMQCBF - Quantity: 6
 TSTMQCBF - Reference: ORDER0004
 TSTMQCBF *** AN ERROR OCCURRED IN MQINQMP. COMPLETION CODE = 2
REASON CODE = 2471 ***

Note: The error in MQINQMP (reason code 2471) is caused by the test
command file testretailwhordersgen.bat that does not create the message
properties that are expected by the COBOL program.

370 WebSphere MQ V7.0 Features and Enhancements

7. On the z/OS system, check the output of the WRCVORD C program:

 * Wwhreceiveorders program starts *

 Main: Connecting to Queue Manager 'MQ71'
 Main: Opening warehouse orders queue 'MATT.WH.ORDERS' for input
 Main: Registering MQ callback function
 Main: Starting message consumer
 Main: While loop sleeping every 10 seconds
 WhOrdersConsumer: Message removed, Reason=0, DataLength=43,
 BufferLength=43, GMO.ReturnedLength=-1
 <*> Warehouse has received an order:
 Description 'cat/fresh/fruit/apples'
 Quantity '5'
 Reference 'ORDER0001'
 MQIMQMP failed with reason code 2471
 WhOrdersConsumer: Message removed, Reason=0, DataLength=43,
 BufferLength=43, GMO.ReturnedLength=-1
 <*> Warehouse has received an order:
 Description 'cat/tinned/fish/salmon'
 Quantity '3'
 Reference 'ORDER0002'
 MQIMQMP failed with reason code 2471
 WhOrdersConsumer: Message removed, Reason=0, DataLength=46,
 BufferLength=46, GMO.ReturnedLength=-1
 <*> Warehouse has received an order:
 Description 'cat/dry/flour/selfraising'
 Quantity '2'
 Reference 'ORDER0003'
 MQIMQMP failed with reason code 2471
 WhOrdersConsumer: Message removed, Reason=0, DataLength=43,
 BufferLength=46, GMO.ReturnedLength=-1
 <*> Warehouse has received an order:
 Description 'cat/glass/spirit/vodka'
 Quantity '6'
 Reference 'ORDER0004'
 MQIMQMP failed with reason code 2471

Note: The error in MQINQMP (reason code 2471) is caused by the test
command file testretailwhordersgen.bat that does not create the message
properties that are expected by the C program.

 Chapter 19. Scenario: Warehousing using call back 371

19.5 Summary

The warehousing component uses a durable non-managed subscription that is
created using administration commands to convert publications to a topic into
point-to-point messages on a specific remote queue on a z/OS queue manager
that is not running Pub/Sub.

Callback for asynchronous consume is demonstrated on a z/OS environment in
both C and COBOL languages. A benefit of callback is that message buffers are
allocated by the queue manager with the correct size for the message length. It
also allows the main line of the program to perform other useful work, rather than
waiting for messages to arrive on a call to MQGET.

The use of new MQI functions is also demonstrated to inquire about message
properties.

372 WebSphere MQ V7.0 Features and Enhancements

Appendix A. Scenario preparation scripts

This appendix contains scripts that are used for common scenario preparation:

� QMHQobjects.txt: The MQSC command script for headquarters queue
manager object definitions

� QMWHobjects.txt: The MQSC command script for warehouse queue
manager object definitions

� QMHQsetaut.bat: The Windows batch script for headquarters queue
manager object authority settings, using the setmqaut command

For detailed information about these scripts refer to 14.2, “WebSphere MQ
objects setup” on page 278.

A

© Copyright IBM Corp. 2009. All rights reserved. 373

QMHQobjects.txt

Example A-1 contains the QMHQobjects.txt script.

Example: A-1 The script QMHQobjects.txt

* This MQSC script defines headquarters queue manager objects
* needed for the scenario
* The script uses REPLACE so it can be run repeatedly
* V1, Martin Cernicky, 12 Dec 2007

* Dead letter queue for Queue manager
ALTER QMGR DEADQ(SYSTEM.DEAD.LETTER.QUEUE)

* Listener
DEFINE LISTENER(QMHQ.TCP) +

TRPTYPE(TCP) +
CONTROL(QMGR) +
PORT(1414) +
REPLACE

* Queues
DEFINE QLOCAL(QMWH) +

USAGE(XMITQ) +
REPLACE

DEFINE QLOCAL(MATT.RETAIL.ORDERS) +
REPLACE

DEFINE QLOCAL(MATT.RETAIL.RESPONSES) +
REPLACE

DEFINE QLOCAL(MATT.RETAIL.WH.ORDERS) +
REPLACE

DEFINE QLOCAL(MATT.SUPPLIER.QUOTES) +
 DEFPSIST(YES) +

DEFSOPT(SHARED) +
REPLACE

DEFINE QREMOTE(MATT.WH.ORDERS) +
RNAME(MATT.WH.ORDERS) +
RQMNAME(QMWH) +
REPLACE

* Channels
DEFINE CHANNEL(QMHQ_TO_QMWH) +

CHLTYPE(SDR) +
TRPTYPE(TCP) +
CONNAME('sam725wh(1420)') +

374 WebSphere MQ V7.0 Features and Enhancements

XMITQ(QMWH) +
REPLACE

DEFINE CHANNEL(QMWH_TO_QMHQ) +
CHLTYPE(RCVR) +
TRPTYPE(TCP) +
REPLACE

DEFINE CHANNEL(QMHQ_SUPP_A) +
CHLTYPE(SVRCONN) +
TRPTYPE(TCP) +
REPLACE

DEFINE CHANNEL(QMHQ_SUPP_B) +
CHLTYPE(SVRCONN) +
TRPTYPE(TCP) +
REPLACE

DEFINE CHANNEL(QMHQ_STORES) +
CHLTYPE(SVRCONN) +
TRPTYPE(TCP) +
REPLACE

DEFINE CHANNEL(QMHQ_NEWS) +
CHLTYPE(SVRCONN) +
TRPTYPE(TCP) +
REPLACE

* Topics
DEFINE TOPIC(MATT.TOPIC.REQUESTQUOTE) +

TOPICSTR('matt/requestquote') +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

DEFINE TOPIC(MATT.TOPIC.SUPPLIERQUOTE) +
TOPICSTR('matt/supplierquote') +
DEFPSIST(YES) +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

DEFINE TOPIC(MATT.TOPIC.RETAIL) +
TOPICSTR('matt/retail') +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

DEFINE TOPIC(MATT.TOPIC.WAREHOUSE) +
TOPICSTR('matt/warehouse') +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

 Appendix A. Scenario preparation scripts 375

DEFINE TOPIC(MATT.TOPIC.NEWS.INTERNAL) +
TOPICSTR('matt/news/internal') +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

DEFINE TOPIC(MATT.TOPIC.NEWS.PUBLIC) +
TOPICSTR('matt/news/public') +
PUB(ENABLED) +
SUB(ENABLED) +
REPLACE

* Subscriptions
DEFINE SUB(MATT.SUB.WH.ORDERS) +

TOPICOBJ(MATT.TOPIC.WAREHOUSE) +
TOPICSTR('#') +
DESTCLAS(PROVIDED) +
DEST(MATT.WH.ORDERS) +
REPLACE

* End of script

QMWHobjects.txt

Example A-2 contains the QMWHobjects.txt script.

Example: A-2 The script QMWHobjects.txt

* This MQSC script defines warehouse queue manager objects
* needed for the scenario
* The script uses REPLACE so it can be run repeatedly
* V1, Martin Cernicky, 12 Dec 2007
* V2, Glenn Baddeley, 16 Jul 2008

* Dead letter queue for Queue manager
ALTER QMGR DEADQ(SYSTEM.DEAD.LETTER.QUEUE)

* Listener
DEFINE LISTENER(QMWH.TCP) +

TRPTYPE(TCP) +
CONTROL(QMGR) +
PORT(1420) +
REPLACE

376 WebSphere MQ V7.0 Features and Enhancements

* Queues
DEFINE QLOCAL(QMHQ) +

USAGE(XMITQ) +
REPLACE

DEFINE QLOCAL(MATT.WH.ORDERS) +
REPLACE

* Channels
DEFINE CHANNEL(QMWH_TO_QMHQ) +

CHLTYPE(SDR) +
TRPTYPE(TCP) +
CONNAME('sam725hq(1414)') +
XMITQ(QMHQ) +
REPLACE

DEFINE CHANNEL(QMHQ_TO_QMWH) +
CHLTYPE(RCVR) +
TRPTYPE(TCP) +
REPLACE

* End of script

QMHQsetaut.bat

Example A-3 contains the QMHQsetaut.bat script.

Example: A-3 The script QMHQsetaut.bat

@echo off
rem This script sets up headquarters queue manager authorities
rem needed for the scenario
rem The script removes all authorities at first so it
rem can be run repeatedly
rem V1, Martin Cernicky, 12 Dec 2007

rem Set up for group "hq"
setmqaut -m QMHQ -t qmgr -g hq +none
setmqaut -m QMHQ -t qmgr -g hq +connect +inq
setmqaut -m QMHQ -t queue -n MATT.RETAIL.ORDERS -g hq -remove
setmqaut -m QMHQ -t queue -n MATT.RETAIL.ORDERS -g hq +get +inq +browse
setmqaut -m QMHQ -t queue -n MATT.RETAIL.RESPONSES -g hq -remove
setmqaut -m QMHQ -t queue -n MATT.RETAIL.RESPONSES -g hq +put
setmqaut -m QMHQ -t queue -n MATT.RETAIL.WH.ORDERS -g hq -remove
setmqaut -m QMHQ -t queue -n MATT.RETAIL.WH.ORDERS -g hq +get +put

 Appendix A. Scenario preparation scripts 377

setmqaut -m QMHQ -t queue -n MATT.SUPPLIER.QUOTES -g hq -remove
setmqaut -m QMHQ -t queue -n MATT.SUPPLIER.QUOTES -g hq +get +put
setmqaut -m QMHQ -t queue -n MATT.WH.ORDERS -g hq -remove
setmqaut -m QMHQ -t queue -n MATT.WH.ORDERS -g hq +put
setmqaut -m QMHQ -t topic -n MATT.TOPIC.REQUESTQUOTE -g hq -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.REQUESTQUOTE -g hq +pub
setmqaut -m QMHQ -t topic -n MATT.TOPIC.SUPPLIERQUOTE -g hq -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.SUPPLIERQUOTE -g hq +sub
+resume
setmqaut -m QMHQ -t topic -n MATT.TOPIC.WAREHOUSE -g hq -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.WAREHOUSE -g hq +pub +sub
setmqaut -m QMHQ -t topic -n MATT.TOPIC.RETAIL -g hq -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.RETAIL -g hq +pub +sub
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.* -g hq -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.* -g hq +pub

rem Set up for group "st"
setmqaut -m QMHQ -t qmgr -g st +none
setmqaut -m QMHQ -t qmgr -g st +connect +inq
setmqaut -m QMHQ -t queue -n MATT.RETAIL.ORDERS -g st -remove
setmqaut -m QMHQ -t queue -n MATT.RETAIL.ORDERS -g st +put
setmqaut -m QMHQ -t queue -n MATT.RETAIL.RESPONSES -g st -remove
setmqaut -m QMHQ -t queue -n MATT.RETAIL.RESPONSES -g st +get +inq
+browse
setmqaut -m QMHQ -t topic -n MATT.TOPIC.RETAIL -g st -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.RETAIL -g st +sub
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.INTERNAL -g st -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.INTERNAL -g st +sub

rem Set up for group "sp"
setmqaut -m QMHQ -t qmgr -g sp +none
setmqaut -m QMHQ -t qmgr -g sp +connect
setmqaut -m QMHQ -t topic -n MATT.TOPIC.REQUESTQUOTE -g sp -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.REQUESTQUOTE -g sp +sub
setmqaut -m QMHQ -t topic -n MATT.TOPIC.SUPPLIERQUOTE -g sp -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.SUPPLIERQUOTE -g sp +pub

rem Set up for group "matt"
setmqaut -m QMHQ -t qmgr -g matt +none
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.PUBLIC -g matt -remove
setmqaut -m QMHQ -t topic -n MATT.TOPIC.NEWS.PUBLIC -g matt +sub

rem End of script

378 WebSphere MQ V7.0 Features and Enhancements

Appendix B. Additional material

This IBM Redbooks publication refers to additional material that can be
downloaded from the Internet as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247583

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247583.

B

© Copyright IBM Corp. 2009. All rights reserved. 379

ftp://www.redbooks.ibm.com/redbooks/SG247583
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description
All.zip All zipped code samples
Chapter14_ScenarioPrep.zip Chapter 14 zipped code samples
Chapter15_SupplierPricing.zip Chapter 15 zipped code samples
Chapter16_StoreOrdering.zip Chapter 16 zipped code samples
Chapter17_News.zip Chapter 17 zipped code samples
Chapter18_WebOrdering.zip Chapter 18 zipped code samples
Chapter19_Warehousing.zip Chapter 19 zipped code samples

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

380 WebSphere MQ V7.0 Features and Enhancements

Glossary

Application server_ A managed environment
within which applications are deployed and run, with
access to a defined set of functionality which may
include a messaging facilities, such as WebSphere
MQ.

Asynchronous_Actions that occur without any
constraints on timing, for example, sending a
message to an independent party which may or may
not be active. Compare with Synchronous.

Broker_ In a Publish/Subscribe messaging model, a
broker maintains information about topics and the
subscribers upon those topics. When a publisher
publishes information on a topic to the broker, the
broker distributes that information to all registered
subscribers.

Browse_In terms of WebSphere MQ, to examine
the contents of a message without destructively
removing it from the queue.

Business critical data_Data which is not stored
elsewhere in the system. If this data is lost then
important information, or a change in state within the
system, is lost.

Callback_A software technique which allows a
function to be called when a defined event occurs,
independent of other threads of the program.

Channel_A network communications link between
two queue managers over which messages flow, or
a network communications link between an
application and a queue manager over which
Message Queuing Interface (MQI) commands flow.

Client application_An application connecting to a
WebSphere MQ queue manager over a network.

Cluster_See queue manager cluster.

© Copyright IBM Corp. 2009. All rights reserved.
Cluster message channel_A message channel
between two queue managers within the same
queue manager cluster.

Co-existence_In terms of WebSphere MQ for z/OS,
the ability to install and run more than one version of
the product in one operating system image.
Co-existence does not exist on any other platforms
supported by WebSphere MQ.

Common Object Request Broker Architecture
(CORBA)_A standard for software calls that enables
programs to communicate across multiple
languages and computers.

Conversation_ In terms of network communication,
a conversation is an established conduit for the
exchange of information between two computer
programs.

Customer Information Control System (CICS)_
IBM proprietary transaction server that runs on z/OS
systems.

Data conversion_The process of converting the
binary representation of characters and numbers
from that of one environment to that of another.

Distributed message channel_A message
channel between two queue managers, where all
messages are transferred from a single transmission
queue on one queue manager, to destination
queues on the remote queue manager.

Distributed queuing_Using particular types of
WebSphere MQ channels to interconnect queue
managers, namely SENDER, RECEIVER, SERVER
and REQUESTOR. Compare with queue manager
cluster.

 381

Eclipse_An open-source extensible software
platform for integrated development and
management of applications primarily written in
Java, led by the Eclipse Foundation.

Engine_An internal software component which
performs common functions which are used
throughout a product, for example
Publish/Subscribe in WebSphere MQ.

Enterprise Service Bus (ESB)_A software
architecture where messaging integration
technologies are used, generally as part of a SOA
implementation.

Exactly once delivery_An assurance provided by a
messaging infrastructure that a message arrives at
its destination, that it arrives once, and that it arrives
once only.

Full duplex_A communication system involving two
connected parties where information can be sent in
either direction at any time. Compare with Half
duplex

Global unit of work_A unit of work which includes
actions upon multiple different resources, which may
include WebSphere MQ and database products.
This unit of work is coordinated by a transaction
manager.

Half duplex_A communication system involving two
connected parties where information can only be
sent in one direction at a time. Compare with Full
duplex.

Handle_A binary number that represents an active
context or reference to an entity, such as a
connection, an open queue, or a message in
WebSphere MQ.

Heartbeat_In WebSphere MQ, a flow which is
periodically sent over channels when there are no
MQ messages to send. This allows channel failures
to be detected earlier.

Hub and Spoke architecture_A WebSphere MQ
infrastructure architecture in which services are
provided by a small number of hub queue managers,
and access to those services is extended through a
larger number of intermediate spoke queue
managers interconnected with those hub queue
managers.

Hyper Text Transport Protocol (HTTP)_A protocol
for client-server communication which has been
popularized by Internet for Web servers to deliver
content to Web browser clients.

IBM Message Service Client (XMS)_An
application programming interface for the C and C++
programming languages, and the .NET
environment, which is consistent with the Java
Message Service application programming
interface.

Java Message Service (JMS)_An industry
standardized application programming interface for
the Java programming language, which is part of the
Java 2 platform Enterprise Edition standard.

Message_A piece of information, with addressing or
other meta information associated, that can be
passed between software components.

Message channel_A network communications link
between two queue managers over which messages
flow.

Message Channel Agent (MCA)_A component of a
WebSphere MQ queue manager, or a WebSphere
MQ client product, which forms one half of a
channel, establishing network communications with,
or responding to network communications from, a
partner MCA.

Message Descriptor_See WebSphere MQ
Message Descriptor (MQMD)

Message property_A name and associated value
that is stored a WebSphere MQ message, separated
from the application message data.

382 WebSphere MQ V7.0 Features and Enhancements

Message queuing_A middleware technique which
allows unlike software components to interact
asynchronously through a queue.

Message queuing interface (MQI)_The core
application interface used to interact with a
WebSphere MQ infrastructure.

Message queuing interface (MQI) channel_A
network communications link between an
application and a queue manager over which
Message Queuing Interface (MQI) commands flow.

Message selector_A logical combination of
message property names and values that defines
criteria for selecting messages from a queue.

Middleware_A software infrastructure layer
between applications and the infrastructure
components they interact with; which is common to
multiple nodes in a system, and simplifies interaction
between the unlike software and hardware
components which reside on those nodes.

Non-persistent message_A WebSphere MQ
message which is not recovered if a queue manager
fails, or is restarted, or if there is a failure in the
underlying infrastructure or operating system.
Compare with Persistent message.

Object Authority Manager (OAM)_A component of
a WebSphere MQ queue manager that performs
authority checking.

Performance_The time taken between submitting a
request for a service and completion of that service.
How the start and end points of a service are
determined are specific to the function being
performed by the service.

Persistent message_A WebSphere MQ message
which can be fully recovered if a queue manager
fails, or is restarted, or if there is a failure in the
underlying infrastructure or operating system.
Persistent messages are required for guaranteed
message delivery in WebSphere MQ. Compare with
Non-persistent message.

Personal certificate_A public certificate which can
be used to identify an entity, combined with the
private key for that certificate.

Point to point messaging_The sending of
messages from one location to a single destination
that is determined based upon addressing
information provided by the sender of the message.

Polling_Repeatedly requesting a piece of
information at regular intervals, in order to detect
changes in that information

Process_An executing instance of a computer
program, consisting of one or more threads and
various resources, managed by an operating
system.

Production environment_An environment through
which real services are made available within and/or
outside of the business.

Proxy_An interface between an existing service,
usually with a proprietary interface, and a
middleware layer that is used by other nodes in the
system to access that service.

Publish/Subscribe messaging_A model of
messaging in which the producers of information do
not have direct knowledge of the consumers of that
information, which may be zero or many.

Publisher_In a Publish/Subscribe messaging
model, a publisher produces information on a
particular topic which is distributed to registered
subscribers on that topic by a broker.

Query data_Transient data being sent through a
system, derived from data that is stored safely within
the system.

Queue_A container for messages, from which
messages are usually retrieved in first-in-first-out
order, which can be used as an asynchronous buffer
between two software components.

 Glossary 383

Queue manager_Queue managers are the
interconnected nodes within a WebSphere MQ
infrastructure that maintain the messages and
queues, provide data integrity, and provide
applications with access to the infrastructure to send
and receive messages.

Queue manager cluster_A mechanism provided by
WebSphere MQ to interconnect queue managers in
a flexible way using CLUSSDR and CLUSRCVR
channels, which simplifies administration and
provides workload balancing facilities for scalability
and service availability. Compare with Distributed
queuing.

Queue name resolution_The action performed by
a queue manager whenever an application or
channel attempts to open a queue, in order to put a
message upon a queue hosted by that queue
manager, or to send a message through that queue
manager.

Queue sharing group_A feature of WebSphere MQ
for z/OS which allows applications connected to
multiple queue managers, running on different z/OS
systems within a sysplex, to get and put messages
to the same queue.

Remote Procedure Call (RPC)_Calling a software
component from a program as though it were local,
but the called procedure may be executed on
another computer. The calling program waits for the
called procedure to complete execution before
continuing.

Request/reply messaging_Asynchronous
communication between two software components,
in which a request message is sent and a reply
message is returned following processing of the
request.

Resource Access Control Facility (RACF)_IBM
proprietary security management service that runs
on z/OS systems

Resource manager_A component which, under the
control of a transaction manager, manages an
individual resource which is participating in a global
unit of work

Scalability_How easily the capacity of the system
can be increased to cope with increased load, and
how this affects performance.

Secure Sockets Layer (SSL)_An industry
standardized technology to provide authentication
and secure communication.

Send and forget messaging_The sending of
messages without requiring a reply upon processing
of those messages; hence relying on the exactly
once delivery assurance of the message queuing
infrastructure to deliver the message.

Service-oriented architecture (SOA)_A software
architecture where business processes are grouped
and interoperate as loosely coupled services. SOA
has well-defined guiding principles and architectural
constructs.

Servlet_A Java object in a Web server that receives
requests and generates replies, typically involving
HTML content.

Socket_A logical end-point in a connection between
two processes over the TCP/IP network
communications protocol.

State information_Information that changes over
time, but only has one value at any point in time.

Subscriber_In a Publish/Subscribe messaging
model, a subscriber registers with a broker to
receive all information published on a particular
topic.

SupportPac_A package of additional functionality
or documentation for the WebSphere MQ product,
distributed through the IBM SupportPacs Web page.

384 WebSphere MQ V7.0 Features and Enhancements

Synchronous_Actions that occur with constraints
on timing, for example, invoking a Remote
Procedure Call where the other program must be
available to immediately service the call. Compare
with Asynchronous.

Thread_A single independent sequence of
executing instructions in a Process.

Topic_In a Publish/Subscribe messaging model, a
topic is used group information so that publishers
which produce information on a topic can be loosely
coupled with subscribers that consume information
on that topic.

Transaction_The mechanism by which multiple
actions, possibly upon multiple resources, can be
grouped together in a unit of work.

Transaction manager_The component which
manages the resources participating in a global unit
of work.

Transport Layer Security (TLS)_An industry
standardized technology to provide authentication
and secure communication.

Unit of work_A logical grouping of actions, which
must either all succeed or all fail.

Web services_A standardized way to describe and
invoke services.

WebSphere MQ Client_The software components
of WebSphere MQ which allow client applications to
connect to a local or remote queue manager over
client connection channels.

WebSphere MQ Message Descriptor (MQMD)_A
data structure, associated with each WebSphere
MQ message, that contains meta information
associated with that message; such as identifying
and type information.

WebSphere MQ object model_A defined set of
classes, methods and properties to interact with
WebSphere MQ which are implemented for multiple
object oriented programming languages, including
Java and C++, building upon the facilities provided
by the Message Queuing Interface (MQI).

WebSphere MQ Server_The software components
of WebSphere MQ which allow a queue manager
instance to be run on the local machine. Server also
includes support for local Clients.

 Glossary 385

386 WebSphere MQ V7.0 Features and Enhancements

acronyms
API Application programming
interface

CAF Client Attach Facility

CCDT Client Channel Definition
Table

CCSID coded character set identifier

CHIN channel initiator

CL Command Language on
i5/OS

CORBA Common Object Request
Broker Architecture

CPU Central Processing Unit

CSV Comma-separated values

DLL Dynamic Link Library

DoS Denial of Service

DST Daylight Saving Time

ESB Enterprise Service Bus

FTP File Transfer Protocol

GTS Global Technology Services

GUI Graphical User Interface

HTTP Hyper Text Transport Protocol

IBM International Business
Machines Corporation

ISV Independent Software Vendor

IT information technology

ITSO International Technical
Support Organization

JAR Java Archive

JCA Java Connector Architecture

JCL Job Control Language

JMS Java Message Service

MCA Message Channel Agent

MDB Message Driven Beans

Abbreviations and

© Copyright IBM Corp. 2009. All rights reserved.
MLP Message Listener Port

MOM Message-oriented
middleware

MQI Message Queue Interface

MQMD MQ Message Descriptor

OAM Object Authority Manager

OTE Open Transaction
Environment

PCF Programmable Command
Format

PTF Program Temporary Fix

QoS Quality of service

QR Quasi-Reentrant

QSG Queue Sharing Group

REST Representational State
Transfer

RFH Rules and Formatting Header

RMI Remote Method Invocation

RPC Remote Procedure Call

RSS Really Simple Syndication

SOA Service-oriented architecture

SOAP Simple Object Access
Protocol

SSL Secure Sockets Layer

SYSOUT Standard output of the
program on z/OS

TCB Task Control Block

TCP/IP Transmission Control Protocol
/ Internet Protocol

TLS Transport Layer Security

UK United Kingdom

UOW Unit Of Work

URI Uniform Resource Identifier

URL Uniform Resource Locator

 387

WAS IBM WebSphere Application
Server

XML Extensible Markup Language

XMS IBM message service client

388 WebSphere MQ V7.0 Features and Enhancements

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbooks publication.

IBM Redbooks publications

For information about ordering these publications, see “Sun Java” on page 391.
Note that some of the documents referenced here may be available in softcopy
only.

� WebSphere MQ V6 Fundamentals, SG24-7128

http://www.redbooks.ibm.com/abstracts/sg247128.html

Other publications

These publications are also relevant as further information sources from the
WebSphere MQ V7.0 Information Center:

� WebSphere MQ Publish/Subscribe User’s Guide V7.0

� WebSphere MQ Messages V7.0

� WebSphere MQ Intercommunication V7.0

� WebSphere MQ Clients V7.0

� WebSphere MQ Script (MQSC) Command Reference V7.0

� WebSphere MQ System Administration Guide V7.0

� WebSphere MQ i5/OS System Administration Guide V7.0

� WebSphere MQ Programmable Command Formats and Administration
Interface V7.0

� WebSphere MQ System Administration Guide V7.0

� WebSphere MQ z/OS Concepts and Planning Guide V7.0

� WebSphere MQ z/OS Systems Setup Guide V7.0

� WebSphere MQ z/OS Program Directory V7.0

� WebSphere MQ Publish/Subscribe Users Guide V7.0

© Copyright IBM Corp. 2009. All rights reserved. 389

http://www.redbooks.ibm.com/abstracts/sg247128.html

� WebSphere MQ Security V7.0

� WebSphere MQ Application Programming Guide V7.0

� WebSphere MQ Application Programming Reference V7.0

� WebSphere MQ Migration Information V7.0

� WebSphere MQ Quick BeginningsV7.0 (for each distributed platform)

� WebSphere MQ Using Java V7.0

� WebSphere MQ Using C++ V7.0

� WebSphere MQ Using .NET V7.0

� WebSphere MQ Web Services V7.0

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

These publications are also available as PDF files from the WebSphere MQ V7.0
library:

http://www.ibm.com/software/integration/wmq/library

Online resources

These Web sites are also relevant as further information sources:

� Information on SOA

http://www.ibm.com/soa

� WebSphere MQ product information

http://www.ibm.com/support/docview.wss?uid=swg27007431

� WebSphere MQ system requirements:

http://www.ibm.com/software/integration/wmq/requirements

� WebSphere MQ File Transfer Edition V7.0

http://www.ibm.com/software/integration/wmq/filetransfer

� WebSphere MQ Bridge for HTTP

http://www.ibm.com/software/integration/wmq/httpbridge/

� WebSphere Application Server Installation Guide

http://www.ibm.com/software/webservers/appserv/was/library/

� SupportPac MS0Q: WebSphere MQ Explorer Publish/Subscribe plug-in

http://www.ibm.com/support/docview.wss?uid=swg24013508

390 WebSphere MQ V7.0 Features and Enhancements

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.ibm.com/software/integration/wmq/library
http://www.ibm.com/soa
http://www.ibm.com/support/docview.wss?rs=171&uid=swg27007431
http://www.ibm.com/support/docview.wss?uid=swg27007431
http://www.ibm.com/software/integration/wmq/requirements
http://www.ibm.com/software/integration/wmq/filetransfer
http://www-306.ibm.com/software/integration/wmq/httpbridge/
http://www-306.ibm.com/software/webservers/appserv/was/library/
http://www.ibm.com/support/docview.wss?uid=swg24013508

� SupportPac MS0B: WebSphere MQ Java classes for PCF

http://www.ibm.com/support/docview.wss?uid=swg24000668

� SupportPac MA0Y: IBM WebSphere MQ Bridge for HTTP

http://www.ibm.com/support/docview.wss?uid=swg24016142

� SupportPac MO72: MQSC Client for WebSphere MQ

http://www.ibm.com/support/docview.wss?uid=swg24007769

� SupportPac MQC6: WebSphere MQ V6.0 Clients

http://www.ibm.com/support/docview.wss?uid=swg24009961

� WebSphere MQ V7.0 Application Programming Guide → Compilation of a C
program

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

� Sun Java

http://www.java.com

� JMS Specification

http://java.sun.com/products/jms/docs.html

These pages in the WebSphere MQ V7.0 Information Center are used:

� WebSphere MQ V7.0 product installation and quick beginnings guides

� WebSphere MQ V7.0 Using Java → Mapping JMS messages

� WebSphere MQ V7.0 Using Java → WebSphere MQ classes for JMS →
Properties of objects

� WebSphere MQ V7.0 Using Java → WebSphere MQ classes for JMS →
Using WebSphere MQ classes for JMS → Solving problems

� WebSphere MQ V7.0 Intercommunication → Implications of sharing
conversations

� WebSphere MQ V7.0 Clients → Using MQCONN calls

� WebSphere MQ V7.0 System Administration → Details on the MaxChannels,
MaxActiveChannels, MAXCHL and MAXTCP parameters

� WebSphere MQ V7.0 Web Services → WebSphere MQ Bridge for HTTP →
HTTP Return codes

 Related publications 391

http://www.ibm.com/support/docview.wss?uid=swg24000668
http://www.ibm.com/support/docview.wss?uid=swg24016142
http://www.ibm.com/support/docview.wss?uid=swg24007769
http://www.ibm.com/support/docview.wss?uid=swg24009961
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://www.java.com
http://java.sun.com/products/jms/docs.html

How to get Redbooks publications

You can search for, view, or download Redbooks publications, Redpapers
publications, Technotes, draft publications and Additional materials, as well as
order hardcopy Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

392 WebSphere MQ V7.0 Features and Enhancements

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
access a service 26
accessing a service 26
actions performed 24
actual status 74
additional flexibility 23
administration capabilities 35, 192
administration interfaces 153
Administration nodes 29
administration of queue managers 166
administrative topic 47, 199–202, 208
algorithms 27
alias queue 48, 69
application 4, 8–10, 13, 15–16, 20–22, 24–25, 27,
29, 33–37, 39, 44, 47–49, 52, 56, 62, 68, 79–80,
86–91, 100, 102, 105, 108–109, 113, 122–123, 127,
134, 138–149, 156, 182–184, 186, 190, 192–193,
200, 226–228, 239, 243, 247, 251, 255, 258–260,
262–264, 266–267, 275, 288–290, 293, 300,
304–306, 308–309, 311–312, 319–320, 322–323,
343–344, 347, 351, 353–354, 357, 359, 361–363,
365
application programming interface 9, 31
application servers 347
Arithmetic Operators 51
assumptions 3
assurance of identity 27
asynchronous xxiii, 8, 13, 22, 25–26, 32–33, 39, 41,
61–62, 69, 71–72, 74, 108, 110, 141, 143–144, 149,
183, 187, 190–191, 259, 265–267, 304, 325, 327,
333, 341, 361–362, 372
Asynchronous put xxiii, 30, 33, 140–143, 182, 201
authorized 199, 239
automatically flow 21

B
broker xxv, 28, 44, 178, 212, 250
browsed messages 107, 159
browsing message 179
business flow 256, 260
business logic 255, 267
business priorities 17
business-critical data 21

© Copyright IBM Corp. 2009. All rights reserved.
C
Channel Exits 68
channel initiator 37, 240
channel object 82
character and numeric data 28
CICS Open Transaction Environment 38, 240
CLASSPATH 308, 332, 338–339
Client Attach Facility 37, 62, 83, 238
client channel 30, 61, 63–68, 82, 189, 239, 251,
331–333
client channel definition table 61–62, 66, 78, 80,
82–83, 251
client connection 26, 168, 183, 187–188, 240
client-server architectures 8, 13
cluster message channel 240
clustered queue 25
clustered topic 29, 56, 58
clustered topic object 56
command server 165
common security exit 167
communications link 65, 71
communications network 21, 26–27, 34, 63, 290
Comparison Operators 51
Compatibility 181, 184
Completion Code 70, 74–75
composite applications 16
concept of messaging xxiii, 1, 402
concepts of messaging 5, 7
configuration changes 243
connected to a queue manager 266
connection details 173, 208
connection handle 90–91, 114–115, 117–118, 120,
190–192
connection name 82
connection status parameters 189
contemporary IT architectures 5
control commands 35, 153, 194, 250, 279
Conversation sharing xxiii, 30, 34, 62, 65, 144–145,
186
CPU usage 34, 144, 146
creating JMS Topics 208

 393

D
data conversion 38, 241
data integrity 23
data types 23
dead letter queue 248, 279
decimal representation 54
decoupling 8–9
default attributes 47
default behavior 70
default persistence 200, 211
default queue manager 290, 293
default security exit 168–170, 172
delivery failures 24
design and implementation choices 4
development of applications 4
disparate applications 8
display the status 206–208, 223
distributed environment 27
distributed message channel 240
durable subscriptions 32, 123, 130–131, 200–201,
211, 287, 292, 301, 303, 331, 341
dynamic logical network 26
dynamic processing topology 9

E
Eclipse-based graphical tooling 154
Enterprise Service Bus xxix, 18, 38–39
error logs 222
Exception messages 194
excessive connections 184
existing services 18
expiry time 125
export and import capabilities 157
export settings 157
Extensible Markup Language 258
external transaction manager 141

F
fast connection 26
features and enhancements xxiii, 4–6, 28, 41, 59,
253, 402
File Transfer Edition 38, 40
File Transfer Protocol 40
First Failure Support 193
full duplex protocol 62, 64

G
Get Started 156
graphical tooling 35, 154
graphical user interface 37, 239
graphical wizards 36

H
half duplex protocol 63
hardware and software platforms 28
hardware failure 24
hardware platforms 27
Hardware requirements 22
high priority messages 105–106
host name 82, 307, 310, 332, 340
HTTP bridge xxiii, 36, 228, 278
HTTP capability 36, 225
HTTP protocol 36, 226, 228

I
identifier 50, 52, 55, 89, 105, 112, 119, 125
import settings 157–158
individual nodes 27
individual product 23
information technology 4
infrastructure components 27
infrastructure software 246
intended audience 3

J
Java Development Kit 305, 308
Java Message Service 4–5, 7–9, 23, 31, 33, 36, 89,
134, 137, 140, 144, 146, 148, 251, 263, 303–304,
323
Java Naming and Directory Interface 307, 310
JMS administration tool 34, 148, 307, 310
JMS API 23, 149
JMS functionality 39
JMS Message header 52
JMS object 161–164
JMS object wizard 164
JMS trace facility 150

L
listener 37, 144, 165, 227, 240, 247–250, 274, 280
Logging 193
logging 40, 180
Logical Operators 51, 55

394 WebSphere MQ V7.0 Features and Enhancements

logical topology 270
loss of the data 24
lower priority 106

M
managing topics 198
message body 89, 229, 290, 363
message channel 240
message content 159
message data 89, 147, 159, 228
message delivery 142
message descriptor 184
message format 100
message handles 31, 90–91, 102
Message Oriented Middleware xxiii, 1, 8–9, 402
message properties 29, 31–32, 49, 89–90, 94, 97,
103, 127, 133–134, 147–148, 154, 159, 180–181,
183, 228, 246, 362, 370–372
Message Property 41, 51, 53
message queue interface 4–5, 23, 31, 59, 85–90,
100, 102, 108, 118, 121, 123, 134–135, 147, 302
message queuing 20–21, 23
Message selectors xxiii, 29, 33, 134
Message tokens 31, 105
message type 105, 229
messaging backbone xxvi, 17, 38
messaging infrastructure 4, 8, 27
messaging integration middleware 20
middleware xxv, 6, 20
mixed case security 37, 238
MQ object 34, 47, 161–164, 179
MQ object properties 35
MQ object wizard 162
MQI function calls 31
mqm group 275
multiple applications 9, 105
multiple connections 34, 144
multiple instances 20, 26
multiple messages 24, 129
multiple queues 26, 108
multiplex 34, 144

N
Named Properties 160
network communication 23
network failures 24, 63
network topology 44
new functionality 85

new parameters 66, 76, 78, 180–181, 188,
194–195
new queue manager 236, 250
new security options 168
New Set wizard 177
non-administrative topics 47
non-durable subscriptions 201, 292
Non-persistent messages 24, 71, 182
numeric value 51, 54

O
Object Authority Manager 278, 330
object descriptor 115
object handle 71, 107, 110, 112, 114, 116–118,
120, 130, 133–134, 192
object name 47, 122, 125, 181, 217
object type 124, 181, 215
once-only delivery 20, 23

P
parent topic object 47, 202
PCF commands 192–193
Persistent messages 24, 71
persistent messages 23, 30, 68, 70–72, 138,
140–141, 149, 182, 190
personal certificate 169, 172
physical topology 270, 272
Platform specific capabilities 38
point-to-point messaging 13, 20, 48, 57, 134, 258,
266, 303, 343
Point-To-Point model 15
product features 4
programming language 6, 109, 343
programming languages 23, 27, 38–39, 86
programming paradigms 4
properties and parameters 34, 179, 192
proxy subscription 30, 56
Pub/Sub activity 56
Pub/Sub Cluster 56, 58
Publish property 199
publish/subscribe 47, 135, 212, 228, 250
Publish/Subscribe engine 44
Publish/Subscribe functionality 44
put actions 32

Q
qualities of service 38

 Index 395

quality of service 30, 61, 63, 69, 71, 226, 228
Quasi-Reentrant 38, 240
query data 24
Queue Alias object 180, 215
queue manager 20–22, 24–30, 32, 34, 37, 40,
43–44, 48, 50, 56, 58–59, 61–72, 74, 76–83, 86–88,
91, 93, 95, 98, 100, 102, 104–106, 109–110, 115,
118, 120, 122–123, 125, 129–130, 133, 139–142,
144, 146–147, 149, 156, 158, 161, 163, 165–167,
170, 172–173, 177–180, 184, 188–190, 194–196,
198, 200–201, 204, 206, 208, 211, 213, 215,
217–218, 220, 222–223, 226, 228, 236, 238–241,
245, 247–249, 251, 259–262, 266–267, 278–281,
283–284, 286, 288, 290–291, 293–294, 296–297,
299–300, 304, 307, 310, 323, 326–327, 329,
331–334, 346, 353, 362, 364–365, 367, 372–374,
376–377
queue manager name 290, 293
Queue object 180–181

R
RACF class 237
RACF profiles 236–237
read ahead 30, 33, 41, 61–62, 68–71, 120, 149,
182, 187, 190, 259, 265, 325, 328, 335, 341
Reason Code 64, 70, 74–75, 92, 94, 97, 99, 101,
103, 111, 114, 129–131
receive publications 58, 124, 129
receiving messages 24, 139
Redbooks Web site 392

Contact us xxx
registered subscribers 44
reliability, scalability, and security 4
remote administration 154, 165, 239
remote queue 47, 166, 172, 259, 283, 361, 364,
372
remote queue manager 364
Returning Users 156
run-time code 22

S
scenario preparation 269, 330, 373
Schemes and filters 158
secure administration connection 167
Secure Sockets Layer 20, 27, 239
security related parameters 168
selector string 33–34, 50, 134, 146
Service-oriented architecture xxiii, 1, 7, 16, 18, 38,

402
Simple Object Access Protocol 39
simplified communication 27
SOA connectivity 17
SOA entry points 17
software and hardware environments 4
software components 18
SSL and TLS standards 27
SSL Key Repositories 169
SSL Options 169
standardized API 23
standardized components 17
state information 89, 120
structure and semantics 29, 45
Subscribe property 199
subscriber 9–11, 13, 15, 29, 31, 44, 46, 48, 56, 86,
122–123, 129–132, 294, 364
subscriptions 12–13, 30, 32, 35–36, 45, 56, 58, 89,
123, 128–131, 195, 200–201, 207, 212, 216,
219–221, 262, 267, 283–284, 287, 292, 301, 303,
331, 341
SupportPac xxv, 28, 36, 84, 154, 178, 193, 227,
238, 251, 273, 277
SVRCONN type channel 30, 62, 66, 76, 82, 239
synchronous communication 22
synchronous operations 8
System administration 22

T
time interval 107, 179
time stamps 196
topic alias 48
topic attributes 47
topic hierarchy 29, 46, 49, 202, 217, 287, 301
topic object 29, 36–37, 45–47, 49, 56, 58, 74, 122,
124, 126, 128, 198–202, 204, 206, 208, 213, 261,
290–293, 325, 364
Topic Security 49, 213, 215
topic string 29, 45–47, 49, 122, 124, 126, 128, 132,
199, 202, 208, 217, 263–264, 288, 290–292, 303,
331, 334–336, 364
topic structure 46
topic tree 46–47, 199–201, 207, 261–262,
264–266, 303–304, 341
Tracing 150, 193
Transport Layer Security 27
Tutorials 156

396 WebSphere MQ V7.0 Features and Enhancements

U
unit of work 24, 71–72, 74
units of work 24
User Identification 169–170

V
Variable Length String 29, 45
Version information 193

W
Web browser 229, 265, 272, 274, 347, 353, 379
Web Resources 156
WebSphere MQ client installation 36
WebSphere MQ Explorer 4, 28, 34, 37, 40, 82, 153,
158–159, 167, 169, 171, 178–179, 238, 240, 280
WebSphere MQ product xxviii
wildcard character 96–97
wildcards 46

 Index 397

398 WebSphere MQ V7.0 Features and Enhancements

W
ebSphere M

Q V7.0 Features and Enhancem
ents

W
ebSphere M

Q V7.0 Features
and Enhancem

ents

W
ebSphere M

Q V7.0 Features
and Enhancem

ents

W
ebSphere M

Q V7.0 Features and Enhancem
ents

W
ebSphere M

Q V7.0
Features and
Enhancem

ents

W
ebSphere M

Q V7.0
Features and
Enhancem

ents

®

SG24-7583-00 ISBN 0738432202

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

WebSphere MQ V7.0
Features and
Enhancements

Integrated
Publish/Subscribe
engine and new MQI
functions

Improved JMS MQ
integration and MQ
Client enhancements

Scenario with
sample code

This IBM® Redbooks® publication is divided into three parts:
� Part 1, “Introduction” on page 1, provides an introduction to

message-oriented middleware and the WebSphere® MQ
product. We discuss the concept of messaging, explaining what
is new in WebSphere MQ V7.0 and how it is implemented. An
overview is provided on how it fits within the service-oriented
architecture (SOA) framework.

� Part 2, “WebSphere MQ V7.0 enhancements and
changes” on page 41, explains the new WebSphere MQ V7.0
features and enhancements in detail and includes compatibility
and the migration considerations from the previous supported
versions.

� Part 3, “Scenario” on page 253, contains a scenario that
demonstrates how the new features and enhancements
work and how to use them. The sample programs and
scripts used for this scenario are available for download
by following the instructions in Appendix B, “Additional
material” on page 379.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. Overview
	1.1 Executive summary
	1.2 The scope of this book
	1.3 Intended audience
	1.4 What is covered in this book
	1.5 What is not covered in this book
	1.6 Assumptions

	Chapter 2. Concepts of messaging
	2.1 Enterprise messaging
	2.2 Introducing Publish/Subscribe
	2.2.1 Publish/Subscribe
	2.2.2 Message selection
	2.2.3 Advantages

	2.3 Java Message Service
	2.3.1 Java Messaging
	2.3.2 Point-To-Point model
	2.3.3 Publish/Subscribe model
	2.3.4 Advantages of JMS

	2.4 Position messaging in service-oriented architecture

	Chapter 3. Introduction to WebSphere MQ
	3.1 Messaging with WebSphere MQ
	3.1.1 Core concept of WebSphere MQ
	3.1.2 WebSphere MQ messaging styles
	3.1.3 WebSphere MQ distributed messaging
	3.1.4 SSL support
	3.1.5 Diverse platforms

	3.2 What is new in WebSphere MQ V7.0
	3.2.1 Publish/Subscribe integration
	3.2.2 WebSphere MQ Client enhancements
	3.2.3 MQI extensions
	3.2.4 WebSphere MQ JMS provider implementation
	3.2.5 Administration enhancements
	3.2.6 Managing Publish/Subscribe
	3.2.7 WebSphere MQ Bridge for HTTP
	3.2.8 z/OS enhancements

	3.3 Positioning in WebSphere product family
	3.3.1 Foundation for SOA
	3.3.2 Enhanced Enterprise Service Bus

	Part 2 WebSphere MQ V7.0 enhancements and changes
	Chapter 4. Publish/Subscribe integration
	4.1 Publishing and subscribing in WebSphere MQ
	4.2 WebSphere MQ Publish Subscribe in V7.0
	4.2.1 Topics in WebSphere MQ V7.0
	4.2.2 Topic strings and topic objects
	4.2.3 Topic alias
	4.2.4 Topic security

	4.3 Selectors
	4.4 Distributed Publish/Subscribe
	4.4.1 Pub/Sub Cluster topology
	4.4.2 Pub/Sub hierarchical topology
	4.4.3 Loop detection
	4.4.4 Scope of publications and subscriptions in Distributed Pub/Sub

	Chapter 5. WebSphere MQ Client enhancements
	5.1 Overview of enhancements
	5.2 Full duplex channels, heartbeat, and quiesce
	5.3 Conversation sharing
	5.3.1 SHARECNV parameter and management of channel definitions
	5.3.2 MQCONNX options for conversation sharing
	5.3.3 Displaying channel status
	5.3.4 Channel exits

	5.4 Read ahead
	5.4.1 MQOPEN options to specify read ahead
	5.4.2 MQGET considerations
	5.4.3 MQCLOSE options to process unread messages
	5.4.4 Displaying connection status of read ahead

	5.5 Asynchronous put
	5.5.1 MQPUT and MQPUT1 options for asynchronous put
	5.5.2 MQSTAT to obtain status of asynchronous puts

	5.6 Instance limits on SVRCONN channels
	5.6.1 MAXINST
	5.6.2 MAXINSTC
	5.6.3 Dynamic changes
	5.6.4 Examples of setting the new parameters

	5.7 Weighted selection on CLNTCONN channels
	5.7.1 CLNTWGHT parameter
	5.7.2 AFFINITY

	5.8 Reconnecting via a previously used channel
	5.9 Max message length increased on MQSERVER environment variable
	5.10 Security exit details in WebSphere MQ Explorer
	5.11 Using MQ Explorer without a CAF license on z/OS
	5.12 Compatibility

	Chapter 6. Message Queue Interface extensions
	6.1 Variable-length strings
	6.1.1 MQCHARV data structure
	6.1.2 MQCHARV using pointer
	6.1.3 MQCHARV with offset
	6.1.4 Null terminated strings
	6.1.5 Coded character set identifier

	6.2 Message properties
	6.2.1 Message handles
	6.2.2 Set, inquire, and delete message properties
	6.2.3 MQCRTMH create message handle
	6.2.4 MQDLTMH delete message handle
	6.2.5 MQSETMP set a message property
	6.2.6 MQINQMP inquire message property
	6.2.7 MQDLTMP delete message property
	6.2.8 MQBUFMH converts buffer into message handle
	6.2.9 MQMHBUF converts a message handle into a buffer

	6.3 Message browsing
	6.3.1 Message tokens
	6.3.2 Browse and mark
	6.3.3 Cooperative dispatchers
	6.3.4 New MQOPEN option
	6.3.5 New MQGET options
	6.3.6 New Queue manager attribute
	6.3.7 Examples

	6.4 Callback for asynchronous consumers
	6.4.1 Threading modes
	6.4.2 Message consumers and event handlers
	6.4.3 MQCB manage callback
	6.4.4 MQCBD Callback Descriptor
	6.4.5 MQCTL control callbacks
	6.4.6 Callback function

	6.5 Publish/Subscribe
	6.5.1 Topics
	6.5.2 Publishers
	6.5.3 Subscribers
	6.5.4 MQOD Object Descriptor
	6.5.5 MQSD Subscription Descriptor
	6.5.6 MQPMO put message options
	6.5.7 MQMD message description
	6.5.8 MQSUB manage subscription
	6.5.9 MQSUBRQ subscription request
	6.5.10 MQCLOSE close object

	6.6 Put action indicators
	6.7 Message selectors
	6.8 Other MQI considerations

	Chapter 7. WebSphere MQ Java Message Service enhancements
	7.1 Read ahead
	7.2 Asynchronous put
	7.3 Asynchronous consume
	7.4 Conversation sharing sessions
	7.5 Selectors and mapping of MQ and JMS messages
	7.6 Properties of WebSphere MQ classes for Java Message Service
	7.7 Tracing programs

	Chapter 8. Administration enhancements
	8.1 WebSphere MQ Explorer
	8.1.1 General GUI enhancements
	8.1.2 Browsing messages
	8.1.3 Mapping between MQ objects and JMS objects
	8.1.4 Remote queue managers administration
	8.1.5 Security
	8.1.6 Queue manager sets
	8.1.7 SupportPac MS0Q integration

	8.2 Object properties and parameters
	8.2.1 Queue manager parameters
	8.2.2 Queue object parameters
	8.2.3 New channel and client connection properties
	8.2.4 Connection status and queue status enhancements

	8.3 Java and JMS-related administration enhancements
	8.3.1 Embedded PCF support for Java
	8.3.2 WebSphere MQ classes for JMS

	8.4 Control commands
	8.4.1 Create queue manager (crtmqm)
	8.4.2 Start queue manager (strmqm)
	8.4.3 WebSphere MQ CL commands on i5/OS

	8.5 Journals on i5/OS

	Chapter 9. Publish/Subscribe management
	9.1 Managing topics
	9.1.1 Creating topics using MQ Explorer
	9.1.2 Creating topics using MQSC
	9.1.3 Altering topics using MQ Explorer
	9.1.4 Altering topics using MQSC
	9.1.5 Displaying topic status using MQ Explorer
	9.1.6 Displaying topic status using MQSC
	9.1.7 Creating JMS topics using MQ Explorer
	9.1.8 Setting up topic security using MQ Explorer
	9.1.9 Setting up topic security using setmqaut
	9.1.10 Mapping queue aliases to a topic object

	9.2 Managing subscriptions
	9.2.1 Using MQ Explorer
	9.2.2 Using MQSC

	9.3 Displaying Publish/Subscribe status
	9.3.1 Display Pub/Sub status
	9.3.2 Display subscriber status

	Chapter 10. WebSphere MQ Bridge for HTTP
	10.1 Overview
	10.2 Prerequisites
	10.3 Supported verbs
	10.4 HTTP request and response
	10.4.1 URI FORMAT
	10.4.2 HTTP POST
	10.4.3 HTTP GET
	10.4.4 HTTP DELETE

	Chapter 11. z/OS enhancements
	11.1 Publish/Subscribe for z/OS
	11.2 RACF mixed case classes and profiles
	11.2.1 New queue manager parameter SCYCASE
	11.2.2 New RACF classes
	11.2.3 Using mixed case profiles
	11.2.4 Refreshing mixed-case profiles
	11.2.5 Migrating to mixed-case security

	11.3 Using WebSphere MQ Explorer without CAF
	11.4 WebSphere MQ for z/OS listener
	11.5 CICS OTE

	Chapter 12. Installation and migration
	12.1 Hardware and software prerequisites
	12.2 Installation of WebSphere MQ V7.0
	12.3 Co-existence with previous versions
	12.4 Migration
	12.4.1 General migration considerations
	12.4.2 Queue manager migration
	12.4.3 Migration steps
	12.4.4 Fallback considerations
	12.4.5 Publish/Subscribe engine
	12.4.6 Java application migration considerations
	12.4.7 General application migration considerations
	12.4.8 WebSphere MQ clients

	Part 3 Scenario
	Chapter 13. Scenario overview
	13.1 Business environment
	13.1.1 Business flow
	13.1.2 Choosing WebSphere MQ
	13.1.3 Simplifying the scenario

	13.2 Scenario implementation
	13.2.1 Application flow
	13.2.2 Infrastructure

	13.3 Components
	13.3.1 Supplier pricing
	13.3.2 Store ordering
	13.3.3 News
	13.3.4 Web ordering
	13.3.5 Warehousing

	Chapter 14. Scenario preparation
	14.1 Environment setup
	14.1.1 The logical topology of the scenario environment
	14.1.2 The physical topology of the scenario environment
	14.1.3 Machine configuration and software installation

	14.2 WebSphere MQ objects setup
	14.2.1 Creating the queue managers
	14.2.2 Creating the queue managers objects
	14.2.3 Setting object authority

	Chapter 15. Scenario: Supplier pricing using Pub/Sub
	15.1 Design overview
	15.2 Deploying the supplier pricing component
	15.2.1 HQ send request for quote program
	15.2.2 HQ process supplier quotes program
	15.2.3 Supplier process quotes program
	15.2.4 Required MQ objects
	15.2.5 Installation of supplier pricing component

	15.3 Running the supplier pricing component
	15.3.1 HQ send request for quote program
	15.3.2 HQ process supplier quotes program
	15.3.3 Supplier process quotes program

	15.4 Verifying the supplier pricing component
	15.5 Summary

	Chapter 16. Scenario: Store ordering with JMS
	16.1 Design overview
	16.2 Deploying the headquarters application
	16.3 Running the headquarters application
	16.4 Deploying the store application
	16.5 Invoking the store application
	16.6 Running the store application
	16.7 Summary

	Chapter 17. Scenario: News using client
	17.1 Design overview
	17.2 Deploying the news component
	17.2.1 Copying files
	17.2.2 Public Web browser
	17.2.3 Compiling the Windows executable programs
	17.2.4 MQ Objects
	17.2.5 RSS data directory

	17.3 Running the News component
	17.3.1 Starting the news display program at the stores
	17.3.2 Starting the news RSS generation program at headquarters
	17.3.3 Starting the public news RSS reader
	17.3.4 Running the news generation program at headquarters
	17.3.5 Running the news command-line program at headquarters

	17.4 Verifying the news component
	17.4.1 News is generated at headquarters and displayed by stores
	17.4.2 News is generated and displayed by a RSS reader

	17.5 Summary

	Chapter 18. Scenario: Web ordering over HTTP
	18.1 Design overview
	18.2 Prerequisites
	18.2.1 WebSphere Application Server on headquarters machine
	18.2.2 Retail order application on headquarters machine
	18.2.3 Web browser on client machine

	18.3 Deploying the Web ordering component
	18.3.1 Start WebSphere Application Server administrative console
	18.3.2 Creating a WebSphere MQ connection factory
	18.3.3 Installing the Web ordering servlet

	18.4 Running the Web ordering component
	18.4.1 Starting the headquarters retail order application
	18.4.2 Invoking the Web ordering application from the Web page
	18.4.3 Component verification

	18.5 Summary

	Chapter 19. Scenario: Warehousing using call back
	19.1 Design overview
	19.2 Deploying the warehousing component
	19.2.1 Required MQ objects
	19.2.2 Installation of warehousing component

	19.3 Running the warehousing component
	19.4 Verifying the warehousing component
	19.5 Summary

	Appendix A. Scenario preparation scripts
	QMHQobjects.txt
	QMWHobjects.txt
	QMHQsetaut.bat

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get Redbooks publications
	Help from IBM

	Index
	Back cover

