
ibm.com/redbooks

IBM InfoSphere
DataStage Data Flow
and Job Design

Nagraj Alur
Celso Takahashi
Sachiko Toratani

Denis Vasconcelos

IBM InfoSphere DataStage overview

Retail industry scenario

IBM Information Server
setups

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM InfoSphere DataStage
Data Flow and Job Design

July 2008

International Technical Support Organization

SG24-7576-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2008)

This edition applies to Version 8, Release 1, Modification 0 of IBM Information Server
(5724-Q36).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxxi.

Contents

Figures . vii

Tables .xxvii

Examples. xxix

Notices . xxxi
Trademarks .xxxii

Preface . xxxiii
The team that wrote this book . xxxiv
Become a published author . xxxv
Comments welcome. xxxvi

Chapter 1. IBM InfoSphere DataStage overview. 1
1.1 Introduction . 2
1.2 IBM Information Server architecture . 5

1.2.1 Component overview . 6
1.2.2 Topologies supported . 10

1.3 IBM InfoSphere DataStage within the IBM Information Server architecture15
1.3.1 Shared components . 15
1.3.2 Runtime architecture . 17

1.4 IBM InfoSphere DataStage main functions . 20
1.4.1 Data transformation. 21
1.4.2 Jobs. 22
1.4.3 Parallel processing . 24

1.5 Best practices overview. 27
1.5.1 Standards . 27
1.5.2 Development guidelines . 28
1.5.3 Component usage. 28
1.5.4 DataStage data types . 29
1.5.5 Partitioning data . 29
1.5.6 Collecting data . 31
1.5.7 Sorting. 31
1.5.8 Stage specific guidelines. 32

© Copyright IBM Corp. 2008. All rights reserved. iii

Chapter 2. IBM InfoSphere DataStage stages. 35
2.1 Introduction . 36
2.2 Aggregator. 37
2.3 Complex Flat File . 43
2.4 Column Import. 53
2.5 Column Export. 60
2.6 Data Set . 61
2.7 Distributed Transaction (new in Version 8.1) . 63
2.8 FTP Enterprise . 86
2.9 Funnel . 88
2.10 Join . 93
2.11 Lookup. 99
2.12 Merge . 107
2.13 Sequential File. 109
2.14 Slowly Changing Dimension . 113
2.15 Sort . 127
2.16 Surrogate Key Generator . 132
2.17 Transformer. 134

Chapter 3. Retail industry scenario . 139
3.1 Retail industry scenario . 140

3.1.1 One time tasks (Day 0) . 143
3.1.2 Recurring tasks . 341
3.1.3 Recurring tasks (Day 1) . 348
3.1.4 Recurring tasks (Day 2) . 507
3.1.5 Recurring tasks (Day 3) . 537

iv IBM InfoSphere DataStage Data Flow and Job Design

Appendix A. IBM Information Server setups . 563
A.1 Introduction . 564
A.2 Configure IBM InfoSphere Classic Federation Server for z/OS 565

A.2.1 Installation. 567
A.2.2 Configuration of IBM InfoSphere Classic Federation for z/OS system

catalog . 567
A.2.3 Configuration of Classic Data Architect . 574

A.3 Create the Queue Manager . 580
A.4 Set up the XA parameters on Queue Manager. 587
A.5 Create the queues . 591

Appendix B. Code and scripts used in the retail industry scenario. . . . 597
B.1 Introduction . 598

Appendix C. Additional material . 605
Locating the Web material . 605
Using the Web material . 606

How to use the Web material . 606

Related publications . 607
Other publications . 607
Online resources . 608
How to get Redbooks . 608
Help from IBM . 609

Index . 611

 Contents v

vi IBM InfoSphere DataStage Data Flow and Job Design

Figures

1-1 IBM Information Server architecture . 3
1-2 IBM Information Server client/server architecture perspective 6
1-3 Two-tier . 12
1-4 Three tier topology . 13
1-5 Cluster and Grid . 14
1-6 Parallel execution flow . 20
1-7 Stage examples . 23
1-8 Simple IBM InfoSphere DataStage job . 24
1-9 Partition parallelism. 26
1-10 Pipeline and partition parallelism . 26
2-1 Aggregator stage. 37
2-2 Aggregator stage example 1/6 . 40
2-3 Aggregator stage example 2/6 . 41
2-4 Aggregator stage example 3/6 . 41
2-5 Aggregator stage example 4/6 . 42
2-6 Aggregator stage example 5/6 . 42
2-7 Aggregator stage example 6/6 . 43
2-8 Complex Flat File stage . 45
2-9 Complex Flat File stage example 1/11 . 46
2-10 Complex Flat File stage example 2/11 . 46
2-11 Complex Flat File stage example 3/11 . 47
2-12 Complex Flat File stage example 4/11 . 47
2-13 Complex Flat File stage example 5/11 . 48
2-14 Complex Flat File stage example 6/11 . 49
2-15 Complex Flat File stage example 7/11 . 49
2-16 Complex Flat File stage example 8/11 . 50
2-17 Complex Flat File stage example 9/11 . 50
2-18 Complex Flat File stage example 10/11 . 51
2-19 Complex Flat File stage example 11/11 . 52
2-20 Column Import stage. 53
2-21 Column Import stage example 1/6 . 55
2-22 Column Import stage example 2/6 . 56
2-23 Column Import stage example 3/6 . 56
2-24 Column Import stage example 4/6 . 57
2-25 Column Import stage example 5/6 . 58
2-26 Column Import stage example 6/6 . 59
2-27 Column Export stage. 60
2-28 Data Set stage . 61

© Copyright IBM Corp. 2008. All rights reserved. vii

2-29 Data Set stage example 1/3 . 62
2-30 Data Set stage example 2/3 . 62
2-31 Data Set stage example 3/3 . 63
2-32 Distributed Transaction stage . 63
2-33 DTS flow concepts . 66
2-34 Configuring ordering in the DTS . 67
2-35 No ordering, no relationships . 68
2-36 No ordering but relationships exist topology . 69
2-37 Ordering a must topology . 69
2-38 No ordering (with no work queue) topology . 70
2-39 Ordering (with no work queue) topology . 70
2-40 DTS example 1/16 . 72
2-41 DTS example 2/16 . 72
2-42 DTS example 3/16 . 73
2-43 DTS example 4/16 . 74
2-44 DTS example 5/16 . 75
2-45 DTS example 6/16 . 76
2-46 DTS example 7/16 . 77
2-47 DTS example 8/16 . 78
2-48 DTS example 9/16 . 78
2-49 DTS example 10/16 . 79
2-50 DTS example 11/16 . 80
2-51 DTS example 12/16 . 81
2-52 DTS example 13/16 . 82
2-53 DTS example 14/16 . 83
2-54 DTS example 15/16 . 84
2-55 DTS example 16/16 . 85
2-56 FTP Enterprise stage . 86
2-57 FTP Enterprise stage example 1/3 . 87
2-58 FTP Enterprise stage example 2/3 . 88
2-59 FTP Enterprise stage example 3/3 . 88
2-60 Funnel stage . 89
2-61 Funnel stage example 1/5. 91
2-62 Funnel stage example 2/5. 91
2-63 Funnel stage example 3/5. 91
2-64 Funnel stage example 4/5. 92
2-65 Funnel stage example 5/5. 92
2-66 Join stage . 93
2-67 Join stage example 1/8 . 95
2-68 Join stage example 2/8 . 96
2-69 Join stage example 3/8 . 96
2-70 Join stage example 4/8 . 96
2-71 Join stage example 5/8 . 97

viii IBM InfoSphere DataStage Data Flow and Job Design

2-72 Join stage example 6/8 . 97
2-73 Join stage example 7/8 . 98
2-74 Join stage example 8/8 . 99
2-75 Lookup stage. 100
2-76 Lookup stage example 1/6 . 102
2-77 Lookup stage example 2/6 . 103
2-78 Lookup stage example 3/6 . 104
2-79 Lookup stage example 4/6 . 105
2-80 Lookup stage example 5/6 . 105
2-81 Lookup stage example 6/6 . 106
2-82 Merge stage . 107
2-83 Sequential stage . 109
2-84 Sequential stage example 1/4. 111
2-85 Sequential stage example 2/4. 111
2-86 Sequential stage example 3/4. 112
2-87 Sequential stage example 4/4. 113
2-88 SCD stage. 114
2-89 SCD job involving 3 stages 1/3 . 116
2-90 SCD job involving 3 stages 2/3 . 116
2-91 SCD job involving 3 stages 3/3 . 117
2-92 SCD job involving a single stage. 118
2-93 SCD stage example 1/7 . 122
2-94 SCD stage example 2/7 . 123
2-95 SCD stage example 3/7 . 123
2-96 SCD stage example 4/7 . 124
2-97 SCD stage example 5/7 . 125
2-98 SCD stage example 6/7 . 126
2-99 SCD stage example 7/7 . 126
2-100 Sort stage . 127
2-101 Sort stage example 1/6 . 129
2-102 Sort stage example 2/6 . 129
2-103 Sort stage example 3/6 . 130
2-104 Sort stage example 4/6 . 130
2-105 Sort stage example 5/6 . 131
2-106 Sort stage example 6/6 . 131
2-107 Surrogate Key Generator stage example 1/3 133
2-108 Surrogate Key Generator stage example 2/3 133
2-109 Surrogate Key Generator stage example 3/3 134
2-110 Transformer stage. 135
2-111 Transformer stage example 1/2 . 137
2-112 Transformer stage example 2/2 . 137
3-1 Retail industry scenario overview for WANTTHATSTUFF 141
3-2 WantThatStuff source OLTP data model . 141

 Figures ix

3-3 Star-schema of WantThatStuff’s data warehouse. 144
3-4 IBM Information Server development paradigm 147
3-5 Create the DS_Overview project 1/10. 149
3-6 Create the DS_Overview project 2/10. 149
3-7 Create the DS_Overview project 3/10. 150
3-8 Create the DS_Overview project 4/10. 150
3-9 Create the DS_Overview project 5/10. 151
3-10 Create the DS_Overview project 6/10. 151
3-11 Create the DS_Overview project 7/10. 152
3-12 Create the DS_Overview project 8/10. 152
3-13 Create the DS_Overview project 9/10. 153
3-14 Create the DS_Overview project 10/10. 153
3-15 Create J0_Import table definitions to repository from DB2: ODBC 1/7 . 155
3-16 Create J0_Import table definitions to repository from DB2: ODBC 2/7 . 155
3-17 Create J0_Import table definitions to repository from DB2: ODBC 3/7 . 156
3-18 Create J0_Import table definitions to repository from DB2: ODBC 4/7 . 156
3-19 Create J0_Import table definitions to repository from DB2: ODBC 5/7 . 157
3-20 Create J0_Import table definitions to repository from DB2: ODBC 6/7 . 158
3-21 Create J0_Import table definitions to repository from DB2: ODBC 7/7 . 159
3-22 Create the J01_IL_FTPCustomerFile job 1/45 161
3-23 Create the J01_IL_FTPCustomerFile job 2/45 162
3-24 Create the J01_IL_FTPCustomerFile job 3/45 163
3-25 Create the J01_IL_FTPCustomerFile job 4/45 164
3-26 Create the J01_IL_FTPCustomerFile job 5/45 165
3-27 Create the J01_IL_FTPCustomerFile job 6/45 166
3-28 Create the J01_IL_FTPCustomerFile job 7/45 167
3-29 Create the J01_IL_FTPCustomerFile job 8/45 167
3-30 Create the J01_IL_FTPCustomerFile job 9/45 168
3-31 Create the J01_IL_FTPCustomerFile job 10/45 168
3-32 Create the J01_IL_FTPCustomerFile job 11/45 169
3-33 Create the J01_IL_FTPCustomerFile job 12/45 169
3-34 Create the J01_IL_FTPCustomerFile job 13/45 170
3-35 Create the J01_IL_FTPCustomerFile job 14/45 170
3-36 Create the J01_IL_FTPCustomerFile job 15/45 171
3-37 Create the J01_IL_FTPCustomerFile job 16/45 171
3-38 Create the J01_IL_FTPCustomerFile job 17/45 172
3-39 Create the J01_IL_FTPCustomerFile job 18/45 172
3-40 Create the J01_IL_FTPCustomerFile job 19/45 173
3-41 Create the J01_IL_FTPCustomerFile job 20/45 173
3-42 Create the J01_IL_FTPCustomerFile job 21/45 174
3-43 Create the J01_IL_FTPCustomerFile job 22/45 174
3-44 Create the J01_IL_FTPCustomerFile job 23/45 174
3-45 Create the J01_IL_FTPCustomerFile job 24/45 175

x IBM InfoSphere DataStage Data Flow and Job Design

3-46 Create the J01_IL_FTPCustomerFile job 25/45 175
3-47 Create the J01_IL_FTPCustomerFile job 26/45 176
3-48 Create the J01_IL_FTPCustomerFile job 27/45 176
3-49 Create the J01_IL_FTPCustomerFile job 28/45 177
3-50 Create the J01_IL_FTPCustomerFile job 29/45 177
3-51 Create the J01_IL_FTPCustomerFile job 30/45 178
3-52 Create the J01_IL_FTPCustomerFile job 31/45 178
3-53 Create the J01_IL_FTPCustomerFile job 32/45 178
3-54 Create the J01_IL_FTPCustomerFile job 33/45 179
3-55 Create the J01_IL_FTPCustomerFile job 34/45 179
3-56 Create the J01_IL_FTPCustomerFile job 35/45 179
3-57 Create the J01_IL_FTPCustomerFile job 36/45 180
3-58 Create the J01_IL_FTPCustomerFile job 37/45 180
3-59 Create the J01_IL_FTPCustomerFile job 38/45 181
3-60 Create the J01_IL_FTPCustomerFile job 39/45 181
3-61 Create the J01_IL_FTPCustomerFile job 40/45 182
3-62 Create the J01_IL_FTPCustomerFile job 41/45 182
3-63 Create the J01_IL_FTPCustomerFile job 42/45 182
3-64 Create the J01_IL_FTPCustomerFile job 43/45 183
3-65 Create the J01_IL_FTPCustomerFile job 44/45 183
3-66 Create the J01_IL_FTPCustomerFile job 45/45 183
3-67 Create the J02_IL_LoadCustomerDim job 1/26 186
3-68 Create the J02_IL_LoadCustomerDim job 2/26 187
3-69 Create the J02_IL_LoadCustomerDim job 3/26 187
3-70 Create the J02_IL_LoadCustomerDim job 4/26 188
3-71 Create the J02_IL_LoadCustomerDim job 5/26 189
3-72 Create the J02_IL_LoadCustomerDim job 6/26 190
3-73 Create the J02_IL_LoadCustomerDim job 7/26 190
3-74 Create the J02_IL_LoadCustomerDim job 8/26 191
3-75 Create the J02_IL_LoadCustomerDim job 9/26 191
3-76 Create the J02_IL_LoadCustomerDim job 10/26 192
3-77 Create the J02_IL_LoadCustomerDim job 11/26 193
3-78 Create the J02_IL_LoadCustomerDim job 12/26 193
3-79 Create the J02_IL_LoadCustomerDim job 13/26 194
3-80 Create the J02_IL_LoadCustomerDim job 14/26 195
3-81 Create the J02_IL_LoadCustomerDim job 15/26 195
3-82 Create the J02_IL_LoadCustomerDim job 16/26 196
3-83 Create the J02_IL_LoadCustomerDim job 17/26 196
3-84 Create the J02_IL_LoadCustomerDim job 18/26 197
3-85 Create the J02_IL_LoadCustomerDim job 19/26 198
3-86 Create the J02_IL_LoadCustomerDim job 20/26 198
3-87 Create the J02_IL_LoadCustomerDim job 21/26 199
3-88 Create the J02_IL_LoadCustomerDim job 22/26 199

 Figures xi

3-89 Create the J02_IL_LoadCustomerDim job 23/26 200
3-90 Create the J02_IL_LoadCustomerDim job 24/26 201
3-91 Create the J02_IL_LoadCustomerDim job 25/26 201
3-92 Create the J02_IL_LoadCustomerDim job 26/26 201
3-93 Create the J03_IL_LoadProductDim job 1/12 . 203
3-94 Create the J03_IL_LoadProductDim job 2/12 . 204
3-95 Create the J03_IL_LoadProductDim job 3/12 . 204
3-96 Create the J03_IL_LoadProductDim job 4/12 . 205
3-97 Create the J03_IL_LoadProductDim job 5/12 . 206
3-98 Create the J03_IL_LoadProductDim job 6/12 . 207
3-99 Create the J03_IL_LoadProductDim job 7/12 . 207
3-100 Create the J03_IL_LoadProductDim job 8/12 207
3-101 Create the J03_IL_LoadProductDim job 9/12 208
3-102 Create the J03_IL_LoadProductDim job 10/12 208
3-103 Create the J03_IL_LoadProductDim job 11/12 208
3-104 Create the J03_IL_LoadProductDim job 12/12 209
3-105 Create the J04_IL_FTPEmployeeFile job 1/17 211
3-106 Create the J04_IL_FTPEmployeeFile job 2/17 212
3-107 Create the J04_IL_FTPEmployeeFile job 3/17 212
3-108 Create the J04_IL_FTPEmployeeFile job 4/17 213
3-109 Create the J04_IL_FTPEmployeeFile job 5/17 213
3-110 Create the J04_IL_FTPEmployeeFile job 6/17 214
3-111 Create the J04_IL_FTPEmployeeFile job 7/17 214
3-112 Create the J04_IL_FTPEmployeeFile job 8/17 215
3-113 Create the J04_IL_FTPEmployeeFile job 9/17 215
3-114 Create the J04_IL_FTPEmployeeFile job 10/17 216
3-115 Create the J04_IL_FTPEmployeeFile job 11/17 216
3-116 Create the J04_IL_FTPEmployeeFile job 12/17 217
3-117 Create the J04_IL_FTPEmployeeFile job 13/17 217
3-118 Create the J04_IL_FTPEmployeeFile job 14/17 217
3-119 Create the J04_IL_FTPEmployeeFile job 15/17 218
3-120 Create the J04_IL_FTPEmployeeFile job 16/17 218
3-121 Create the J04_IL_FTPEmployeeFile job 17/17 218
3-122 Create the J05_IL_LoadStoreDim job 1/16. 221
3-123 Create the J05_IL_LoadStoreDim job 2/16. 221
3-124 Create the J05_IL_LoadStoreDim job 3/16. 222
3-125 Create the J05_IL_LoadStoreDim job 4/16. 222
3-126 Create the J05_IL_LoadStoreDim job 5/16. 222
3-127 Create the J05_IL_LoadStoreDim job 6/16. 223
3-128 Create the J05_IL_LoadStoreDim job 7/16. 223
3-129 Create the J05_IL_LoadStoreDim job 8/16. 223
3-130 Create the J05_IL_LoadStoreDim job 9/16. 224
3-131 Create the J05_IL_LoadStoreDim job 10/16. 224

xii IBM InfoSphere DataStage Data Flow and Job Design

3-132 Create the J05_IL_LoadStoreDim job 11/16. 225
3-133 Create the J05_IL_LoadStoreDim job 12/16. 225
3-134 Create the J05_IL_LoadStoreDim job 13/16. 226
3-135 Create the J05_IL_LoadStoreDim job 14/16. 226
3-136 Create the J05_IL_LoadStoreDim job 15/16. 226
3-137 Create the J05_IL_LoadStoreDim job 16/16. 226
3-138 Steps in creating SOA services. 227
3-139 Create an SOA project 1/2 . 228
3-140 Create an SOA project 2/2 . 228
3-141 Create connection to an Information Provider 1/8. 230
3-142 Create connection to an Information Provider 2/8. 230
3-143 Create connection to an Information Provider 3/8. 231
3-144 Create connection to an Information Provider 4/8. 232
3-145 Create connection to an Information Provider 5/8. 233
3-146 Create connection to an Information Provider 6/8. 234
3-147 Create connection to an Information Provider 7/8. 235
3-148 Create an application 8/8 . 236
3-149 Create an application 1/2 . 237
3-150 Create an application 2/2 . 238
3-151 Generate SOA services, deploy, and test 1/21 241
3-152 Generate SOA services, deploy, and test 2/21 242
3-153 Generate SOA services, deploy, and test 3/21 243
3-154 Generate SOA services, deploy, and test 4/21 244
3-155 Generate SOA services, deploy, and test 5/21 245
3-156 Generate SOA services, deploy, and test 6/21 246
3-157 Generate SOA services, deploy, and test 7/21 247
3-158 Generate SOA services, deploy, and test 8/21 248
3-159 Generate SOA services, deploy, and test 9/21 249
3-160 Generate SOA services, deploy, and test 10/21 250
3-161 Generate SOA services, deploy, and test 11/21 251
3-162 Generate SOA services, deploy, and test 12/21 252
3-163 Generate SOA services, deploy, and test 13/21 253
3-164 Generate SOA services, deploy, and test 14/21 254
3-165 Generate SOA services, deploy, and test 15/21 255
3-166 Generate SOA services, deploy, and test 16/21 255
3-167 Generate SOA services, deploy, and test 17/21 256
3-168 Generate SOA services, deploy, and test 18/21 257
3-169 Generate SOA services, deploy, and test 19/21 258
3-170 Generate SOA services, deploy, and test 20/21 259
3-171 Generate SOA services, deploy, and test 21/21 259
3-172 Load exchange rate information (Web service) to a data set 1/20 . . . 263
3-173 Load exchange rate information (Web service) to a data set 2/20 . . . 263
3-174 Load exchange rate information (Web service) to a data set 3/20 . . . 264

 Figures xiii

3-175 Load exchange rate information (Web service) to a data set 4/20 . . . 264
3-176 Load exchange rate information (Web service) to a data set 5/20 . . . 265
3-177 Load exchange rate information (Web service) to a data set 6/20 . . . 266
3-178 Load exchange rate information (Web service) to a data set 7/20 . . . 266
3-179 Load exchange rate information (Web service) to a data set 8/20 . . . 267
3-180 Load exchange rate information (Web service) to a data set 9/20 . . . 268
3-181 Load exchange rate information (Web service) to a data set 10/20 . . 269
3-182 Load exchange rate information (Web service) to a data set 11/20 . . 269
3-183 Load exchange rate information (Web service) to a data set 12/20 . . 269
3-184 Load exchange rate information (Web service) to a data set 13/20 . . 270
3-185 Load exchange rate information (Web service) to a data set 14/20 . . 270
3-186 Load exchange rate information (Web service) to a data set 15/20 . . 271
3-187 Load exchange rate information (Web service) to a data set 16/20 . . 271
3-188 Load exchange rate information (Web service) to a data set 17/20 . . 271
3-189 Load exchange rate information (Web service) to a data set 18/20 . . 272
3-190 Load exchange rate information (Web service) to a data set 19/20 . . 272
3-191 Load exchange rate information (Web service) to a data set 20/20 . . 272
3-192 Create the J07A_SharedContainerLookupCurrency job 1/11. 275
3-193 Create the J07A_SharedContainerLookupCurrency job 2/11. 276
3-194 Create the J07A_SharedContainerLookupCurrency job 3/11. 277
3-195 Create the J07A_SharedContainerLookupCurrency job 4/11. 278
3-196 Create the J07A_SharedContainerLookupCurrency job 5/11. 279
3-197 Create the J07A_SharedContainerLookupCurrency job 6/11. 279
3-198 Create the J07A_SharedContainerLookupCurrency job 7/11. 280
3-199 Create the J07A_SharedContainerLookupCurrency job 8/11. 280
3-200 Create the J07A_SharedContainerLookupCurrency job 9/11. 281
3-201 Create the J07A_SharedContainerLookupCurrency job 10/11. 281
3-202 Create the J07A_SharedContainerLookupCurrency job 11/11. 282
3-203 Create the J07_IL_Daily_LoadSalesStore job 1/18 283
3-204 Create the J07_IL_Daily_LoadSalesStore job 2/18 284
3-205 Create the J07_IL_Daily_LoadSalesStore job 3/18 285
3-206 Create the J07_IL_Daily_LoadSalesStore job 4/18 286
3-207 Create the J07_IL_Daily_LoadSalesStore job 5/18 286
3-208 Create the J07_IL_Daily_LoadSalesStore job 6/18 287
3-209 Create the J07_IL_Daily_LoadSalesStore job 7/18 288
3-210 Create the J07_IL_Daily_LoadSalesStore job 8/18 289
3-211 Create the J07_IL_Daily_LoadSalesStore job 9/18 289
3-212 Create the J07_IL_Daily_LoadSalesStore job 10/18 290
3-213 Create the J07_IL_Daily_LoadSalesStore job 11/18 290
3-214 Create the J07_IL_Daily_LoadSalesStore job 12/18 290
3-215 Create the J07_IL_Daily_LoadSalesStore job 13/18 291
3-216 Create the J07_IL_Daily_LoadSalesStore job 14/18 291
3-217 Create the J07_IL_Daily_LoadSalesStore job 15/18 291

xiv IBM InfoSphere DataStage Data Flow and Job Design

3-218 Create the J07_IL_Daily_LoadSalesStore job 16/18 292
3-219 Create the J07_IL_Daily_LoadSalesStore job 17/18 292
3-220 Create the J07_IL_Daily_LoadSalesStore job 18/18 292
3-221 Create the J08_IL_LoadSalesFact job 1/34 . 295
3-222 Create the J08_IL_LoadSalesFact job 2/34 . 296
3-223 Create the J08_IL_LoadSalesFact job 3/34 . 297
3-224 Create the J08_IL_LoadSalesFact job 4/34 . 298
3-225 Create the J08_IL_LoadSalesFact job 5/34 . 298
3-226 Create the J08_IL_LoadSalesFact job 6/34 . 299
3-227 Create the J08_IL_LoadSalesFact job 7/34 . 299
3-228 Create the J08_IL_LoadSalesFact job 8/34 . 300
3-229 Create the J08_IL_LoadSalesFact job 9/34 . 301
3-230 Create the J08_IL_LoadSalesFact job 10/34 302
3-231 Create the J08_IL_LoadSalesFact job 11/34 303
3-232 Create the J08_IL_LoadSalesFact job 12/34 304
3-233 Create the J08_IL_LoadSalesFact job 13/34 305
3-234 Create the J08_IL_LoadSalesFact job 14/34 306
3-235 Create the J08_IL_LoadSalesFact job 15/34 307
3-236 Create the J08_IL_LoadSalesFact job 16/34 308
3-237 Create the J08_IL_LoadSalesFact job 17/34 309
3-238 Create the J08_IL_LoadSalesFact job 18/34 310
3-239 Create the J08_IL_LoadSalesFact job 19/34 311
3-240 Create the J08_IL_LoadSalesFact job 20/34 312
3-241 Create the J08_IL_LoadSalesFact job 21/34 313
3-242 Create the J08_IL_LoadSalesFact job 22/34 314
3-243 Create the J08_IL_LoadSalesFact job 23/34 314
3-244 Create the J08_IL_LoadSalesFact job 24/34 315
3-245 Create the J08_IL_LoadSalesFact job 25/34 315
3-246 Create the J08_IL_LoadSalesFact job 26/34 316
3-247 Create the J08_IL_LoadSalesFact job 27/34 316
3-248 Create the J08_IL_LoadSalesFact job 28/34 317
3-249 Create the J08_IL_LoadSalesFact job 29/34 318
3-250 Create the J08_IL_LoadSalesFact job 30/34 319
3-251 Create the J08_IL_LoadSalesFact job 31/34 319
3-252 Create the J08_IL_LoadSalesFact job 32/34 319
3-253 Create the J08_IL_LoadSalesFact job 33/34 320
3-254 Create the J08_IL_LoadSalesFact job 34/34 320
3-255 Create the J09_IL_LoadLookupCustomerDim job 1/12 322
3-256 Create the J09_IL_LoadLookupCustomerDim job 2/12 322
3-257 Create the J09_IL_LoadLookupCustomerDim job 3/12 323
3-258 Create the J09_IL_LoadLookupCustomerDim job 4/12 323
3-259 Create the J09_IL_LoadLookupCustomerDim job 5/12 324
3-260 Create the J09_IL_LoadLookupCustomerDim job 6/12 324

 Figures xv

3-261 Create the J09_IL_LoadLookupCustomerDim job 7/12 325
3-262 Create the J09_IL_LoadLookupCustomerDim job 8/12 325
3-263 Create the J09_IL_LoadLookupCustomerDim job 9/12 326
3-264 Create the J09_IL_LoadLookupCustomerDim job 10/12 326
3-265 Create the J09_IL_LoadLookupCustomerDim job 11/12 327
3-266 Create the J09_IL_LoadLookupCustomerDim job 12/12 327
3-267 Create the J10_IL_LoadLookupProductDim job 1/7 328
3-268 Create the J10_IL_LoadLookupProductDim job 2/7 328
3-269 Create the J10_IL_LoadLookupProductDim job 3/7 329
3-270 Create the J10_IL_LoadLookupProductDim job 4/7 329
3-271 Create the J10_IL_LoadLookupProductDim job 5/7 330
3-272 Create the J10_IL_LoadLookupProductDim job 6/7 330
3-273 Create the J10_IL_LoadLookupProductDim job 7/7 330
3-274 Create the J11_IL_LoadLookupStoreDim job 1/11 331
3-275 Create the J11_IL_LoadLookupStoreDim job 2/11 331
3-276 Create the J11_IL_LoadLookupStoreDim job 3/11 332
3-277 Create the J11_IL_LoadLookupStoreDim job 4/11 333
3-278 Create the J11_IL_LoadLookupStoreDim job 5/11 333
3-279 Create the J11_IL_LoadLookupStoreDim job 6/11 334
3-280 Create the J11_IL_LoadLookupStoreDim job 7/11 334
3-281 Create the J11_IL_LoadLookupStoreDim job 8/11 334
3-282 Create the J11_IL_LoadLookupStoreDim job 9/11 335
3-283 Create the J11_IL_LoadLookupStoreDim job 10/11 335
3-284 Create the J11_IL_LoadLookupStoreDim job 11/11 335
3-285 Create the J12_IL_GenerateSurrogateKey job 1/9. 336
3-286 Create the J12_IL_GenerateSurrogateKey job 2/9. 337
3-287 Create the J12_IL_GenerateSurrogateKey job 3/9. 337
3-288 Create the J12_IL_GenerateSurrogateKey job 4/9. 338
3-289 Create the J12_IL_GenerateSurrogateKey job 5/9. 338
3-290 Create the J12_IL_GenerateSurrogateKey job 6/9. 339
3-291 Create the J12_IL_GenerateSurrogateKey job 7/9. 339
3-292 Create the J12_IL_GenerateSurrogateKey job 8/9. 340
3-293 Create the J12_IL_GenerateSurrogateKey job 9/9. 340
3-294 Customer dimension table 1/3 . 344
3-295 Customer dimension table 2/3 . 345
3-296 Customer dimension table 3/3 . 345
3-297 Product dimension 1/3 . 345
3-298 Product dimension 2/3 . 346
3-299 Product dimension 3/3 . 346
3-300 Store dimension . 346
3-301 Sales fact table 1/2 . 346
3-302 Sales fact table 2/2 . 347
3-303 Customer dimension lookup table 1/2. 347

xvi IBM InfoSphere DataStage Data Flow and Job Design

3-304 Customer dimension lookup table 1/2. 347
3-305 Product dimension lookup table . 348
3-306 Store dimension lookup table 1/2 . 348
3-307 Store dimension lookup table 2/2 . 348
3-308 Customer dimension attribute changes 1/3. 349
3-309 Customer dimension attribute changes 2/3. 349
3-310 Customer dimension attribute changes 3/3. 349
3-311 STORE_ID 1 sales transactions 1/2 . 349
3-312 STORE_ID 1 sales transactions 2/2 . 350
3-313 STORE_ID 9 sales transactions 1/2 . 350
3-314 STORE_ID 9 sales transactions 2/2 . 350
3-315 STORE_ID 33 sales transactions 1/2 . 350
3-316 STORE_ID 33 sales transactions 2/2 . 351
3-317 J07_IL_Daily_LoadSalesStore (Day 1) execution 1/7. 353
3-318 J07_IL_Daily_LoadSalesStore (Day 1) execution 2/7. 353
3-319 J07_IL_Daily_LoadSalesStore (Day 1) execution 3/7. 354
3-320 J07_IL_Daily_LoadSalesStore (Day 1) execution 4/7. 354
3-321 J07_IL_Daily_LoadSalesStore (Day 1) execution 5/7. 355
3-322 J07_IL_Daily_LoadSalesStore (Day 1) execution 6/7. 355
3-323 J07_IL_Daily_LoadSalesStore (Day 1) execution 7/7. 356
3-324 General format of IBM WebSphere MQ message 357
3-325 Create the J13_Daily_UpdateLookupDim job 1/26 362
3-326 Create the J13_Daily_UpdateLookupDim job 2/26 363
3-327 Create the J13_Daily_UpdateLookupDim job 3/26 364
3-328 Create the J13_Daily_UpdateLookupDim job 4/26 365
3-329 Create the J13_Daily_UpdateLookupDim job 367
3-330 Create the J13_Daily_UpdateLookupDim job 367
3-331 Create the J13_Daily_UpdateLookupDim job 5/26 368
3-332 Create the J13_Daily_UpdateLookupDim job 6/26 368
3-333 Create the J13_Daily_UpdateLookupDim job 7/26 369
3-334 Create the J13_Daily_UpdateLookupDim job 8/26 370
3-335 Create the J13_Daily_UpdateLookupDim job 9/26 370
3-336 Create the J13_Daily_UpdateLookupDim job 10/26 371
3-337 Create the J13_Daily_UpdateLookupDim job 11/26 371
3-338 Create the J13_Daily_UpdateLookupDim job 12/26 372
3-339 Create the J13_Daily_UpdateLookupDim job 13/26 372
3-340 Create the J13_Daily_UpdateLookupDim job 14/26 373
3-341 Create the J13_Daily_UpdateLookupDim job 15/26 373
3-342 Create the J13_Daily_UpdateLookupDim job 16/26 374
3-343 Create the J13_Daily_UpdateLookupDim job 18/26 374
3-344 Create the J13_Daily_UpdateLookupDim job 19/26 375
3-345 Create the J13_Daily_UpdateLookupDim job 20/26 376
3-346 Create the J13_Daily_UpdateLookupDim job 21/26 377

 Figures xvii

3-347 Create the J13_Daily_UpdateLookupDim job 22/26 378
3-348 Create the J13_Daily_UpdateLookupDim job 23/26 379
3-349 Create the J13_Daily_UpdateLookupDim job 24/26 380
3-350 Create the J13_Daily_UpdateLookupDim job 25/26 381
3-351 Create the J13_Daily_UpdateLookupDim job 26/26 382
3-352 Execute the J13_Daily_UpdateLookupDim job (Day 1) 1/4 383
3-353 Execute the J13_Daily_UpdateLookupDim job (Day 1) 2/4 384
3-354 Execute the J13_Daily_UpdateLookupDim job (Day 1) 3/4 384
3-355 Execute the J13_Daily_UpdateLookupDim job (Day 1) 4/4 385
3-356 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 1) 1/3 386
3-357 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 1) 2/3 386
3-358 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 1) 3/3 387
3-359 Create the J15_Daily_CreateSalesAggDS job 1/41 392
3-360 Create the J15_Daily_CreateSalesAggDS job 2/41 393
3-361 Create the J15_Daily_CreateSalesAggDS job 3/41 394
3-362 Create the J15_Daily_CreateSalesAggDS job 4/41 394
3-363 Create the J15_Daily_CreateSalesAggDS job 5/41 395
3-364 Create the J15_Daily_CreateSalesAggDS job 6/41 395
3-365 Create the J15_Daily_CreateSalesAggDS job 7/41 396
3-366 Create the J15_Daily_CreateSalesAggDS job 8/41 397
3-367 Create the J15_Daily_CreateSalesAggDS job 9/41 398
3-368 Create the J15_Daily_CreateSalesAggDS job 10/41 398
3-369 Create the J15_Daily_CreateSalesAggDS job 11/41 399
3-370 Create the J15_Daily_CreateSalesAggDS job 12/41 399
3-371 Create the J15_Daily_CreateSalesAggDS job 13/41 400
3-372 Create the J15_Daily_CreateSalesAggDS job 14/41 400
3-373 Create the J15_Daily_CreateSalesAggDS job 15/41 401
3-374 Create the J15_Daily_CreateSalesAggDS job 16/41 401
3-375 Create the J15_Daily_CreateSalesAggDS job 17/41 402
3-376 Create the J15_Daily_CreateSalesAggDS job 18/41 402
3-377 Create the J15_Daily_CreateSalesAggDS job 19/41 403
3-378 Create the J15_Daily_CreateSalesAggDS job 20/41 404
3-379 Create the J15_Daily_CreateSalesAggDS job 21/41 404
3-380 Create the J15_Daily_CreateSalesAggDS job 22/41 405
3-381 Create the J15_Daily_CreateSalesAggDS job 23/41 405
3-382 Create the J15_Daily_CreateSalesAggDS job 24/41 406
3-383 Create the J15_Daily_CreateSalesAggDS job 25/41 407
3-384 Create the J15_Daily_CreateSalesAggDS job 26/41 408
3-385 Create the J15_Daily_CreateSalesAggDS job 27/41 408
3-386 Create the J15_Daily_CreateSalesAggDS job 28/41 409
3-387 Create the J15_Daily_CreateSalesAggDS job 29/41 409
3-388 Create the J15_Daily_CreateSalesAggDS job 30/41 410
3-389 Create the J15_Daily_CreateSalesAggDS job 31/41 410

xviii IBM InfoSphere DataStage Data Flow and Job Design

3-390 Create the J15_Daily_CreateSalesAggDS job 32/41 411
3-391 Create the J15_Daily_CreateSalesAggDS job 33/41 412
3-392 Create the J15_Daily_CreateSalesAggDS job 34/41 412
3-393 Create the J15_Daily_CreateSalesAggDS job 35/41 413
3-394 Create the J15_Daily_CreateSalesAggDS job 36/41 413
3-395 Create the J15_Daily_CreateSalesAggDS job 37/41 414
3-396 Create the J15_Daily_CreateSalesAggDS job 38/41 414
3-397 Create the J15_Daily_CreateSalesAggDS job 39/41 415
3-398 Create the J15_Daily_CreateSalesAggDS job 40/41 416
3-399 Create the J15_Daily_CreateSalesAggDS job 41/41 417
3-400 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 1/13. 418
3-401 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 2/13. 418
3-402 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 3/13. 419
3-403 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 4/13. 419
3-404 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 5/13. 419
3-405 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 6/13. 419
3-406 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 7/13. 420
3-407 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 8/13. 420
3-408 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 9/13. 420
3-409 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 10/13. 420
3-410 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 11/13. 421
3-411 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 12/13. 421
3-412 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 13/13. 421
3-413 Create the J16_Daily_CreateScdInputDS job 1/11. 423
3-414 Create the J16_Daily_CreateScdInputDS job 2/11. 423
3-415 Create the J16_Daily_CreateScdInputDS job 3/11. 424
3-416 Create the J16_Daily_CreateScdInputDS job 4/11. 425
3-417 Create the J16_Daily_CreateScdInputDS job 5/11. 426
3-418 Create the J16_Daily_CreateScdInputDS job 6/11. 427
3-419 Create the J16_Daily_CreateScdInputDS job 7/11. 427
3-420 Create the J16_Daily_CreateScdInputDS job 8/11. 428
3-421 Create the J16_Daily_CreateScdInputDS job 9/11. 428
3-422 Create the J16_Daily_CreateScdInputDS job 10/11. 429
3-423 Create the J16_Daily_CreateScdInputDS job 11/11. 430
3-424 Execute the J16_Daily_CreateScdInputDS job (Day 1) 1/7 431
3-425 Execute the J16_Daily_CreateScdInputDS job (Day 1) 2/7 431
3-426 Execute the J16_Daily_CreateScdInputDS job (Day 1) 3/7 431
3-427 Execute the J16_Daily_CreateScdInputDS job (Day 1) 4/7 432
3-428 Execute the J16_Daily_CreateScdInputDS job (Day 1) 5/7 432
3-429 Execute the J16_Daily_CreateScdInputDS job (Day 1) 6/7 432
3-430 Execute the J16_Daily_CreateScdInputDS job (Day 1) 7/7 433
3-431 Create the J17_DailyCreateSalesFactDS job 1/68 437
3-432 Create the J17_DailyCreateSalesFactDS job 2/68 438

 Figures xix

3-433 Create the J17_DailyCreateSalesFactDS job 3/68 438
3-434 Create the J17_DailyCreateSalesFactDS job 4/68 439
3-435 Create the J17_DailyCreateSalesFactDS job 5/68 439
3-436 Create the J17_DailyCreateSalesFactDS job 6/68 440
3-437 Create the J17_DailyCreateSalesFactDS job 7/68 441
3-438 Create the J17_DailyCreateSalesFactDS job 8/68 442
3-439 Create the J17_DailyCreateSalesFactDS job 9/68 443
3-440 Create the J17_DailyCreateSalesFactDS job 10/68 443
3-441 Create the J17_DailyCreateSalesFactDS job 11/68 444
3-442 Create the J17_DailyCreateSalesFactDS job 12/68 445
3-443 Create the J17_DailyCreateSalesFactDS job 13/68 446
3-444 Create the J17_DailyCreateSalesFactDS job 14/68 447
3-445 Create the J17_DailyCreateSalesFactDS job 15/68 448
3-446 Create the J17_DailyCreateSalesFactDS job 16/68 448
3-447 Create the J17_DailyCreateSalesFactDS job 17/68 449
3-448 Create the J17_DailyCreateSalesFactDS job 18/68 449
3-449 Create the J17_DailyCreateSalesFactDS job 19/68 450
3-450 Create the J17_DailyCreateSalesFactDS job 20/68 451
3-451 Create the J17_DailyCreateSalesFactDS job 21/68 452
3-452 Create the J17_DailyCreateSalesFactDS job 22/68 453
3-453 Create the J17_DailyCreateSalesFactDS job 23/68 454
3-454 Create the J17_DailyCreateSalesFactDS job 24/68 455
3-455 Create the J17_DailyCreateSalesFactDS job 25/68 456
3-456 Create the J17_DailyCreateSalesFactDS job 26/68 456
3-457 Create the J17_DailyCreateSalesFactDS job 27/68 457
3-458 Create the J17_DailyCreateSalesFactDS job 28/68 458
3-459 Create the J17_DailyCreateSalesFactDS job 29/68 458
3-460 Create the J17_DailyCreateSalesFactDS job 30/68 459
3-461 Create the J17_DailyCreateSalesFactDS job 31/68 459
3-462 Create the J17_DailyCreateSalesFactDS job 32/68 460
3-463 Create the J17_DailyCreateSalesFactDS job 33/68 460
3-464 Create the J17_DailyCreateSalesFactDS job 34/68 461
3-465 Create the J17_DailyCreateSalesFactDS job 35/68 461
3-466 Create the J17_DailyCreateSalesFactDS job 36/68 462
3-467 Create the J17_DailyCreateSalesFactDS job 37/68 462
3-468 Create the J17_DailyCreateSalesFactDS job 38/68 463
3-469 Create the J17_DailyCreateSalesFactDS job 39/68 463
3-470 Create the J17_DailyCreateSalesFactDS job 40/68 464
3-471 Create the J17_DailyCreateSalesFactDS job 41/68 464
3-472 Create the J17_DailyCreateSalesFactDS job 42/68 465
3-473 Create the J17_DailyCreateSalesFactDS job 43/68 465
3-474 Create the J17_DailyCreateSalesFactDS job 44/68 466
3-475 Create the J17_DailyCreateSalesFactDS job 45/68 467

xx IBM InfoSphere DataStage Data Flow and Job Design

3-476 Create the J17_DailyCreateSalesFactDS job 46/68 467
3-477 Create the J17_DailyCreateSalesFactDS job 47/68 468
3-478 Create the J17_DailyCreateSalesFactDS job 48/68 468
3-479 Create the J17_DailyCreateSalesFactDS job 49/68 468
3-480 Create the J17_DailyCreateSalesFactDS job 50/68 468
3-481 Create the J17_DailyCreateSalesFactDS job 51/68 468
3-482 Create the J17_DailyCreateSalesFactDS job 52/68 468
3-483 Create the J17_DailyCreateSalesFactDS job 53/68 469
3-484 Create the J17_DailyCreateSalesFactDS job 54/68 469
3-485 Create the J17_DailyCreateSalesFactDS job 55/68 469
3-486 Create the J17_DailyCreateSalesFactDS job 56/68 469
3-487 Create the J17_DailyCreateSalesFactDS job 57/68 469
3-488 Create the J17_DailyCreateSalesFactDS job 58/68 470
3-489 Create the J17_DailyCreateSalesFactDS job 59/68 470
3-490 Create the J17_DailyCreateSalesFactDS job 60/68 471
3-491 Create the J17_DailyCreateSalesFactDS job 61/68 471
3-492 Create the J17_DailyCreateSalesFactDS job 62/68 472
3-493 Create the J17_DailyCreateSalesFactDS job 63/68 472
3-494 Create the J17_DailyCreateSalesFactDS job 64/68 473
3-495 Create the J17_DailyCreateSalesFactDS job 65/68 473
3-496 Create the J17_DailyCreateSalesFactDS job 66/68 473
3-497 Create the J17_DailyCreateSalesFactDS job 67/68 474
3-498 Create the J17_DailyCreateSalesFactDS job 68/68 474
3-499 Execute the J17_DailyCreateSalesFactDS job (Day 1) 1/8 476
3-500 Execute the J17_DailyCreateSalesFactDS job (Day 1) 2/8 476
3-501 Execute the J17_DailyCreateSalesFactDS job (Day 1) 3/8 476
3-502 Execute the J17_DailyCreateSalesFactDS job (Day 1) 4/8 476
3-503 Execute the J17_DailyCreateSalesFactDS job (Day 1) 5/8 477
3-504 Execute the J17_DailyCreateSalesFactDS job (Day 1) 6/8 477
3-505 Execute the J17_DailyCreateSalesFactDS job (Day 1) 7/8 477
3-506 Execute the J17_DailyCreateSalesFactDS job (Day 1) 8/8 477
3-507 Create the J18_Daily_UpdateStoreDim job 1/8 479
3-508 Create the J18_Daily_UpdateStoreDim job 2/8 480
3-509 Create the J18_Daily_UpdateStoreDim job 3/8 481
3-510 Create the J18_Daily_UpdateStoreDim job 4/8 481
3-511 Create the J18_Daily_UpdateStoreDim job 5/8 481
3-512 Create the J18_Daily_UpdateStoreDim job 6/8 482
3-513 Create the J18_Daily_UpdateStoreDim job 7/8 483
3-514 Create the J18_Daily_UpdateStoreDim job 8/8 483
3-515 Execute the J18_Daily_UpdateStoreDim job (Day 1) 484
3-516 Create the J19_Daily_UpdateCustomerDim job 1/9 485
3-517 Create the J19_Daily_UpdateCustomerDim job 2/9 486
3-518 Create the J19_Daily_UpdateCustomerDim job 3/9 487

 Figures xxi

3-519 Create the J19_Daily_UpdateCustomerDim job 4/9 488
3-520 Create the J19_Daily_UpdateCustomerDim job 5/9 489
3-521 Create the J19_Daily_UpdateCustomerDim job 6/9 489
3-522 Create the J19_Daily_UpdateCustomerDim job 7/9 490
3-523 Create the J19_Daily_UpdateCustomerDim job 8/9 491
3-524 Create the J19_Daily_UpdateCustomerDim job 9/9 491
3-525 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 1/4 493
3-526 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 2/4 493
3-527 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 3/4 494
3-528 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 4/4 494
3-529 Create the J20_Daily_UpdateProductDim job 1/3 495
3-530 Create the J20_Daily_UpdateProductDim job 2/3 496
3-531 Create the J20_Daily_UpdateProductDim job 3/3 497
3-532 Execute the J20_Daily_UpdateProductDim job (Day 1) 498
3-533 Create the J21_Daily_UpdateDateDim job 1/3 499
3-534 Create the J21_Daily_UpdateDateDim job 2/3 500
3-535 Create the J21_Daily_UpdateDateDim job 3/3 501
3-536 Execute the J21_Daily_UpdateDateDim job (Day 1) 502
3-537 Create the J22_Daily_UpdateSalesFact job 1/3 503
3-538 Create the J22_Daily_UpdateSalesFact job 2/3 504
3-539 Create the J22_Daily_UpdateSalesFact job 3/3 505
3-540 Execute the J22_Daily_UpdateSalesFact job (Day 1) 1/3 506
3-541 Execute the J22_Daily_UpdateSalesFact job (Day 1) 2/3 506
3-542 Execute the J22_Daily_UpdateSalesFact job (Day 1) 3/3 506
3-543 Customer dimension attribute changes 1/2. 507
3-544 Customer dimension attribute changes 2/2. 507
3-545 Product dimension attribute changes 1/4 . 507
3-546 Product dimension attribute changes 2/4 . 508
3-547 Product dimension attribute changes 3/4 . 508
3-548 Product dimension attribute changes 4/4 . 508
3-549 Store dimension attribute changes 1/4 . 508
3-550 Store dimension attribute changes 2/4 . 509
3-551 Store dimension attribute changes 3/4 . 509
3-552 Store dimension attribute changes 4/4 . 509
3-553 STORE_ID 9 sales transactions 1/2 . 509
3-554 STORE_ID 9 sales transactions 2/2 . 510
3-555 STORE_ID 33 sales transactions 1/2 . 510
3-556 STORE_ID 33 sales transactions 2/2 . 510
3-557 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 1/7 512
3-558 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 2/7 512
3-559 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 3/7 513
3-560 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 4/7 513
3-561 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 5/7 513

xxii IBM InfoSphere DataStage Data Flow and Job Design

3-562 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 6/7 514
3-563 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 7/7 514
3-564 Execute the J13_Daily_UpdateLookupDim job (Day 2) 1/8 515
3-565 Execute the J13_Daily_UpdateLookupDim job (Day 2) 2/8 516
3-566 Execute the J13_Daily_UpdateLookupDim job (Day 2) 3/8 516
3-567 Execute the J13_Daily_UpdateLookupDim job (Day 2) 4/8 516
3-568 Execute the J13_Daily_UpdateLookupDim job (Day 2) 5/8 517
3-569 Execute the J13_Daily_UpdateLookupDim job (Day 2) 6/8 517
3-570 Execute the J13_Daily_UpdateLookupDim job (Day 2) 7/8 517
3-571 Execute the J13_Daily_UpdateLookupDim job (Day 2) 8/8 518
3-572 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 2) 1/3 518
3-573 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 2) 2/3 519
3-574 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 2) 3/3 519
3-575 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 1/13. 520
3-576 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 2/13. 520
3-577 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 3/13. 520
3-578 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 4/13. 521
3-579 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 5/13. 521
3-580 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 6/13. 521
3-581 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 7/13. 521
3-582 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 8/13. 521
3-583 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 9/13. 522
3-584 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 10/13. 522
3-585 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 11/13. 522
3-586 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 12/13. 522
3-587 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 13/13. 522
3-588 Execute the J16_Daily_CreateScdInputDS job (Day 2) 1/7 523
3-589 Execute the J16_Daily_CreateScdInputDS job (Day 2) 2/7 524
3-590 Execute the J16_Daily_CreateScdInputDS job (Day 2) 3/7 524
3-591 Execute the J16_Daily_CreateScdInputDS job (Day 2) 4/7 524
3-592 Execute the J16_Daily_CreateScdInputDS job (Day 2) 5/7 525
3-593 Execute the J16_Daily_CreateScdInputDS job (Day 2) 6/7 525
3-594 Execute the J16_Daily_CreateScdInputDS job (Day 2) 7/7 525
3-595 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 1/12 . 527
3-596 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 2/12 . 527
3-597 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 3/12 . 527
3-598 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 4/12 . 528
3-599 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 5/12 . 528
3-600 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 6/12 . 528
3-601 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 7/12 . 528
3-602 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 8/12 . 528
3-603 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 9/12 . 529
3-604 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 10/12 529

 Figures xxiii

3-605 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 11/12 529
3-606 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 12/12 529
3-607 Execute the J18_Daily_UpdateStoreDim job (Day 2) 1/3 530
3-608 Execute the J18_Daily_UpdateStoreDim job (Day 2) 2/3 530
3-609 Execute the J18_Daily_UpdateStoreDim job (Day 2) 3/3 531
3-610 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 1/4 532
3-611 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 2/4 532
3-612 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 3/4 533
3-613 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 4/4 533
3-614 Execute the J20_Daily_UpdateProductDim job (Day 2) 1/3 534
3-615 Execute the J20_Daily_UpdateProductDim job (Day 2) 2/3 534
3-616 Execute the J20_Daily_UpdateProductDim job (Day 2) 3/3 535
3-617 Execute the J21_Daily_UpdateDateDim job (Day 2) 1/? 535
3-618 Execute the J22_Daily_UpdateSalesFact job (Day 2) 1/4 536
3-619 Execute the J22_Daily_UpdateSalesFact job (Day 2) 2/4 536
3-620 Execute the J22_Daily_UpdateSalesFact job (Day 2) 3/4 537
3-621 Execute the J22_Daily_UpdateSalesFact job (Day 2) 4/4 537
3-622 Store dimension attribute changes 1/3 . 538
3-623 Execute the J13_Daily_UpdateLookupDim job (Day 3) 2/3 538
3-624 Execute the J13_Daily_UpdateLookupDim job (Day 3) 3/3 538
3-625 STORE_ID 1 sales transactions 2/2 . 538
3-626 STORE_ID 1 sales transactions 2/2 . 539
3-627 STORE_ID 9 sales transactions 1/2 . 539
3-628 STORE_ID 9 sales transactions 2/2 . 539
3-629 STORE_ID 33 sales transactions 1/2 . 539
3-630 STORE_ID 33 sales transactions 2/2 . 540
3-631 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 1/6 542
3-632 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 2/6 542
3-633 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 3/6 543
3-634 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 4/6 543
3-635 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 5/6 544
3-636 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 6/6 544
3-637 Execute the J13_Daily_UpdateLookupDim job (Day 3) 1/4 545
3-638 Execute the J13_Daily_UpdateLookupDim job (Day 3) 2/4 545
3-639 Execute the J13_Daily_UpdateLookupDim job (Day 3) 3/4 546
3-640 Execute the J13_Daily_UpdateLookupDim job (Day 3) 4/4 546
3-641 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 3) 1/3 547
3-642 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 3) 2/3 547
3-643 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 3) 3/3 547
3-644 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 1/13. 548
3-645 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 2/13. 549
3-646 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 3/13. 549
3-647 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 4/13. 549

xxiv IBM InfoSphere DataStage Data Flow and Job Design

3-648 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 5/13. 549
3-649 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 6/13. 550
3-650 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 7/13. 550
3-651 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 8/13. 550
3-652 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 9/13. 550
3-653 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 10/13. 551
3-654 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 11/13. 551
3-655 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 12/13. 551
3-656 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 13/13. 551
3-657 Execute the J16_Daily_CreateScdInputDS job (Day 3) 1/7 552
3-658 Execute the J16_Daily_CreateScdInputDS job (Day 3) 2/7 553
3-659 Execute the J16_Daily_CreateScdInputDS job (Day 3) 3/7 553
3-660 Execute the J16_Daily_CreateScdInputDS job (Day 3) 4/7 553
3-661 Execute the J16_Daily_CreateScdInputDS job (Day 3) 5/7 553
3-662 Execute the J16_Daily_CreateScdInputDS job (Day 3) 6/7 554
3-663 Execute the J16_Daily_CreateScdInputDS job (Day 3) 7/7 554
3-664 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 1/7 . . 555
3-665 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 2/7 . . 555
3-666 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 3/7 . . 556
3-667 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 4/7 . . 556
3-668 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 5/7 . . 556
3-669 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 6/7 . . 556
3-670 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 7/7 . . 556
3-671 Execute the J18_Daily_UpdateStoreDim job (Day 3) 1/3 557
3-672 Execute the J18_Daily_UpdateStoreDim job (Day 3) 2/3 558
3-673 Execute the J18_Daily_UpdateStoreDim job (Day 3) 3/3 558
3-674 Execute the J19_Daily_UpdateCustomerDim job (Day 3) 559
3-675 Execute the J20_Daily_UpdateProductDim job (Day 3) 1/? 559
3-676 Execute the J21_Daily_UpdateDateDim job (Day 3) 1/? 560
3-677 Execute the J22_Daily_UpdateSalesFact job (Day 3) 1/3 561
3-678 Execute the J22_Daily_UpdateSalesFact job (Day 3) 2/3 561
3-679 Execute the J22_Daily_UpdateSalesFact job (Day 3) 3/3 562
A-1 Configure access to PRODUCT VSAM file 1/8 575
A-2 Configure access to PRODUCT VSAM file 2/8 575
A-3 Configure access to PRODUCT VSAM file 3/8 576
A-4 Configure access to PRODUCT VSAM file 4/8 576
A-5 Configure access to PRODUCT VSAM file 5/8 577
A-6 Configure access to PRODUCT VSAM file 6/8 578
A-7 Configure access to PRODUCT VSAM file 7/8 579
A-8 Configure access to PRODUCT VSAM file 8/8 580
A-9 Create the Queue Manager 1/8 . 581
A-10 Create the Queue Manager 2/8 . 582
A-11 Create the Queue Manager 3/8 . 583

 Figures xxv

A-12 Create the Queue Manager 4/8 . 584
A-13 Create the Queue Manager 5/8 . 585
A-14 Create the Queue Manager 6/8 . 586
A-15 Create the Queue Manager 7/8 . 586
A-16 Create the Queue Manager 8/8 . 587
A-17 Set up the XA parameters on Queue Manager 1/4 588
A-18 Set up the XA parameters on Queue Manager 2/4 589
A-19 Set up the XA parameters on Queue Manager 3/4 590
A-20 Set up the XA parameters on Queue Manager 4/4 590
A-21 Create the queues 1/6 . 592
A-22 Create the queues 2/6 . 592
A-23 Create the queues 3/6 . 593
A-24 Create the queues 4/6 . 594
A-25 Create the queues 5/6 . 594
A-26 Create the queues 6/6 . 595
B-1 Entities and fields in WantThatStuff’s OLTP systems. 598

xxvi IBM InfoSphere DataStage Data Flow and Job Design

Tables

3-1 One time tasks jobs. 145
3-2 Recurring (daily) tasks jobs. 342

© Copyright IBM Corp. 2008. All rights reserved. xxvii

xxviii IBM InfoSphere DataStage Data Flow and Job Design

Examples

3-1 J07_Seq_Sales_schema.osh schema file . 353
3-2 Derivation of stage variables. 365
3-3 STORE_ID 1 sales transactions . 509
A-1 Configuration file contents on the data server . 568
A-2 Allocate data sets . 570
A-3 Update IBM InfoSphere Classic Federation Server system catalog. . . . 571
A-4 Contents of CACMUCON file . 573
A-5 Product VSAM file DDL definition . 573
A-6 Store VSAM file DDL definition. 573
B-1 DDL statements in the WantThatStuff star-schema data warehouse. . . 599
B-2 DDL statements for the interim tables for the sales transaction 603

© Copyright IBM Corp. 2008. All rights reserved. xxix

xxx IBM InfoSphere DataStage Data Flow and Job Design

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2008. All rights reserved. xxxi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
DataStage®
DB2®
Ernie®
IBM®
IMS™
Informix®

InfoSphere™
LoadLeveler®
MVS™
Orchestrate®
Rational®
Redbooks®
Redbooks (logo) ®

System p™
System z™
Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

AMD, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

EJB, J2EE, Java, JDBC, Solaris, Sun, and all Java-based trademarks are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Expression, Microsoft, SQL Server, Windows Server, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel, Itanium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of
Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xxxii IBM InfoSphere DataStage Data Flow and Job Design

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication documents the procedures for implementing
IBM InfoSphere™ DataStage® and related technologies using a typical retail
industry scenario.

It is aimed at IT architects, Information Management specialists, and Information
Integration specialists responsible for developing IBM InfoSphere DataStage on
a Red Hat Enterprise Linux® 4.0 platform.

The book offers a step-by-step approach to implementing IBM InfoSphere
DataStage on Red Hat Enterprise Linux 4.0 platforms accessing information
stored on IBM z/OS® and IBM AIX® platforms.

This book is organized as follows:

� Chapter 1, “IBM InfoSphere DataStage overview” on page 1 provides an
overview of IBM Information Server architecture and main components, IBM
InfoSphere DataStage within the IBM Information Server architecture, and
IBM InfoSphere DataStage’s main functions.

� Chapter 2, “IBM InfoSphere DataStage stages” on page 35 provides an
overview of some of the commonly used stages in IBM InfoSphere
DataStage.

� Chapter 3, “Retail industry scenario” on page 139 describes a step-by-step
approach to implementing a “real world” retail industry scenario involving a
typical star-schema data warehousing flow using IBM InfoSphere DataStage.
Included in the flow are the Complex Flat File, Distributed Transaction Stage,
and Slowly Changing Dimension stage.

� Appendix A, “IBM Information Server setups” on page 563 describes the
setups of various components required to implement the retail industry
scenario.

� Appendix B, “Code and scripts used in the retail industry scenario” on
page 597 documents some of the code and scripts used in the retail industry
scenario.

© Copyright IBM Corp. 2008. All rights reserved. xxxiii

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Nagraj Alur is a Project Leader with the IBM ITSO, San Jose Center. He holds a
Master’s degree in Computer Science from the Indian Institute of Technology
(IIT), Mumbai, India. He has more than 33 years of experience in database
management systems (DBMSs), and has been a programmer, systems analyst,
project leader, independent consultant, and researcher. His areas of expertise
include DBMSs, data warehousing, distributed systems management, database
performance, information integration, and client/server and Internet computing.
He has written extensively on these subjects and has taught classes and
presented at conferences all around the world. Before joining the ITSO in
November 2001, he was on a two-year assignment from the Software Group to
the IBM Almaden Research Center, where he worked on Data Links solutions
and an eSourcing prototype.

Celso Takahashi is a Technical Sales Specialist in IBM Brazil. He has 12 years
experience in database management systems such as Informix® and Oracle®.
He has done Proof of Concept (POC) projects involving IBM Information Server
for customers in Brazil. His areas of expertise include DataStage, QualityStage,
Information Analyzer, DataMirror, Business Glossary and Metadata Workbench.
Celso has a Bachelor's degree in Computer Science and an MBA degree in
Project Management.

Sachiko Toratani is an IT Specialist providing technical support on IBM
Information Platform products to customers in Japan. She has more than eight
years experience in database management systems (DBMSs), and application
development in government related systems. Her areas of expertise include
Information Integration and DBMSs, with extensive skills in IBM Information
Server, IBM InfoSphere DataStage, and DB2® for Linux®, UNIX®, and
Windows®. She is IBM Certified in Database Administrator DB2 UDB for Linux,
UNIX, and Windows.

Denis Vasconcelos is a Data Specialist with IBM Brazil. He had over five years
experience with several non-IBM data management systems before joining IBM
in 2006. His areas of expertise include database administration, data modeling,
heterogeneous database migration, and project management. Denis has a
Bachelor's degree in Computer Science and a post-graduate degree in Project
Management.

xxxiv IBM InfoSphere DataStage Data Flow and Job Design

Thanks to the following people for their contributions to this project:

Aarti Borkar
Brian Caufield
Atul Chadha
Gary Faircloth
Jennifer Fell
Sreejith Kurup
Tamara Khaleel
Gaurav Rawal
Paul Stanley
Gregg Upton
IBM Silicon Valley Laboratory, San Jose

Paul Christensen
Tony Curcio
Ernie® Ostic
Barry Scott Rosen
Emily White
IBM USA

Carmen Ruppach
IBM Germany

Deepak Naik
IBM India

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

 Preface xxxv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xxxvi IBM InfoSphere DataStage Data Flow and Job Design

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. IBM InfoSphere DataStage
overview

In this chapter we provide an overview of IBM Information Server architecture
and main components, IBM InfoSphere DataStage within the IBM Information
Server architecture, IBM InfoSphere DataStage’s main functions, and best
practices.

The topics covered are:

� IBM Information Server architecture
� IBM InfoSphere DataStage within the IBM Information Server architecture
� IBM InfoSphere DataStage main functions
� Best practices overview

1

© Copyright IBM Corp. 2008. All rights reserved. 1

1.1 Introduction

Over the years, most organizations have made significant investments in
enterprise resource planning, customer relationship management, and supply
chain management packages in addition to their home grown applications. This
has resulted in larger amounts of data being captured about their businesses.
To turn all this data into consistent, timely, and accurate information for
decision-making requires an effective means of integrating information. Statutory
compliance requirements such as Basel II and Sarbanes-Oxley place additional
demands for consistent, complete, and trustworthy information.

IBM Information Server addresses these critical information integration
requirements of consistent, complete, and trustworthy information with a
comprehensive, unified foundation for enterprise information architectures.
IBM Information Server is capable of scaling to meet any information volume
requirement so that companies can deliver business results faster and with
higher quality results for all their critical initiatives such as business intelligence,
master data management, infrastructure rationalization, business transformation,
and risk and compliance.

IBM Information Server combines the technologies of key information integration
functions within the IBM Information Platform & Solutions portfolio into a single
unified platform that enables companies to understand, cleanse, transform, and
deliver trustworthy and context-rich information as shown in Figure 1-1.

2 IBM InfoSphere DataStage Data Flow and Job Design

Figure 1-1 IBM Information Server architecture

IBM Information Server includes the following product modules:

� IBM InfoSphere DataStage

Enables organizations to design data flows that extract information from
multiple source systems, transform it in ways that make it more valuable, and
then deliver it to one or more target databases or applications.

This is the focus of this Redbooks publication.

DevelopersSubject Matter Experts Data AnalystsBusiness Users Architects DBAs

User Clients Administrative Clients

UNIFIED USER INTERFACE

UNIFIED
METADATA
repository

Design

Operational

COMMON CONNECTIVITY

Structured, Unstructured, Applications, Mainframe

COMMON SERVICES

Metadata
Services

Security
Services

Logging &
Reporting
Services

Unified
Service

Deployment
(InfoSphere
Information

Services
Director)

User
community

UNIFIED PARALLEL PROCESSING

Synchronize, virtualize,
and move information

for in-line delivery

DELIVER

Discover, model
and govern information
structure and content

InfoSphere Information Analyzer
InfoSphere Business Glossary

UNDERSTAND

Standardize, merge
and correct
information

InfoSphere QualityStage

CLEANSE

Combine and restructure
information

for new users

InfoSphere DataStage

TRANSFORM

Partial list of companion products include:. InfoSphere Federation Server. Rational Data Architect. InfoSphere Replication Server. Event Publisher

 Chapter 1. IBM InfoSphere DataStage overview 3

� IBM InfoSphere QualityStage

Designed to help organizations understand and improve the overall quality of
their data assets, IBM InfoSphere QualityStage provides advanced features
to help investigate, repair, consolidate, and validate heterogeneous data
within an integration workflow.

This was the focus of a previous Redbooks publication, IBM WebSphere
QualityStage Methodologies, Standardization, and Matching, SG24-7546.

� IBM InfoSphere Information Services Director

IBM Information Server provides a unified mechanism for publishing and
managing shared Service Oriented Architecture (SOA) services across data
quality, data transformation, and federation functions, allowing information
specialists to easily deploy services for any information integration task and
consistently manage them. This enables developers to take data integration
logic built using IBM Information Server and publish it as an “always on”
service — in minutes. The common services also include the metadata
services, which provide standard service-oriented access and analysis of
metadata across the platform.

This was the focus of a previous Redbooks publication, SOA Solutions Using
IBM Information Server, SG24-7402.

� IBM InfoSphere Information Analyzer

IBM InfoSphere Information Analyzer profiles and analyzes data so that you
can deliver trusted information to your users. It can automatically scan
samples of your data to determine their quality and structure. This analysis
aids you in understanding the inputs to your integration process, ranging from
individual fields to high-level data entities. Information analysis also enables
you to correct problems with structure or validity before they affect your
project. While analysis of source data is a critical first step in any integration
project, you must continually monitor the quality of the data. IBM InfoSphere
Information Analyzer enables you to treat profiling and analysis as an ongoing
process and create business metrics that you can run and track over time.

This was the focus of a previous Redbooks publication, IBM WebSphere
Information Analyzer & Data Quality Assessment, SG24-7508.

� IBM Information Server FastTrack

Simplifies and streamlines communication between the business analyst and
developer by capturing business requirements and automatically translating
into IBM InfoSphere DataStage ETL jobs.

4 IBM InfoSphere DataStage Data Flow and Job Design

� IBM InfoSphere Business Glossary

IBM Information Server provides a Web-based tool that enables business
analysts and subject-matter experts to create, manage, and share a common
enterprise vocabulary and classification system. IBM InfoSphere Business
Glossary enables users to link business terms to more technical artifacts
managed by the metadata repository. The metadata repository also enables
sharing of the business terms by IBM Rational® Data Architect and IBM
InfoSphere Information Analyzer, creating a common set of semantic tags for
reuse by data modelers, data analysts, business analysts, and end users.

A number of companion products support IBM Information Server, such as
InfoSphere Federation Server, Rational Data Architect, InfoSphere Replication
Server, and Event Publisher.

In the following sections, we describe IBM Information Server’s architecture,
IBM InfoSphere DataStage within the IBM Information Server architecture, and
IBM InfoSphere DataStage’s main functions. We also provided an overview of
best practices.

1.2 IBM Information Server architecture

IBM Information Server is a client-server architecture made up of client-based
design, administration, and operation tools that access a set of server-based
data integration capabilities through a common services layer as shown here in
Figure 1-2. This is a slightly different and more detailed view of the same
information shown previously in Figure 1-1 on page 3.

Note: For an overview of IBM Information Server, refer to the Web site
http://www.ibm.com/software/data/integration/info_server/

Attention: This Redbooks publication does not cover all the functions and
features of IBM InfoSphere DataStage. Refer to the resources described in
“Related publications” on page 607 for complete details on IBM InfoSphere
DataStage.

 Chapter 1. IBM InfoSphere DataStage overview 5

http://www-306.ibm.com/software/data/integration/info_server/

Figure 1-2 IBM Information Server client/server architecture perspective

In this section, we briefly discuss the following topics:

� Component overview
� Topologies supported

1.2.1 Component overview

The main components shown in Figure 1-2 on page 6 are briefly described here.

Client tier
IBM Information Server provides a number of client interfaces, optimized to
different user roles within an organization. The clients tier includes IBM
InfoSphere DataStage and QualityStage clients (Administrator, Designer, and
Director), IBM Information Server console, and IBM Information Server Web
console.

There are two broad categories of clients — Administrative clients and User
clients. Both these types of clients have desktop and Web based interfaces.

6 IBM InfoSphere DataStage Data Flow and Job Design

� Administrative clients

These clients allow you to manage the areas of security, licensing, logging,
and scheduling.

– Administration tasks are performed in the IBM Information Server Web
console. The IBM Information Server Web console is a browser-based
interface for administrative activities such as managing security and
creating views of scheduled tasks.

– For IBM InfoSphere DataStage and IBM InfoSphere QualityStage project
administration, you use the IBM InfoSphere DataStage Administrator
client. It administers IBM InfoSphere DataStage projects and conducts
housekeeping on the server. It is used to specify general server defaults,
add and delete projects, and to set project properties. User and group
privileges are also set using the Administrator client.

� User clients

These clients help perform client tasks such as creating, managing, and
designing jobs, as well as validating, running, scheduling. and monitoring
jobs. The IBM Information Server console is a rich client-based interface for
activities such as profiling data and developing service-oriented applications.

– The IBM InfoSphere DataStage and QualityStage Designer helps you
create, manage, and design jobs. You can also use the Designer client to
define tables and access metadata services.

The Designer client allows you to move DataStage and QualityStage
objects between projects on the same Information Server engine, or on
different Information Server engines. You can also use the Information
Server Manager client to move objects from one domain to another.
The Information Server Manager supports the model of having separate
systems for the developing, testing and running of DataStage and
QualityStage jobs. It facilitates the model by providing secure and
managed methods of moving objects between the different systems.

– The IBM InfoSphere DataStage and QualityStage Director client is the
client component that validates, runs, schedules, and monitors jobs on the
IBM InfoSphere DataStage Server.

Server tiers
The server tiers of the Information Server Platform that includes the Services,
Engine, Repository, Working Areas, and Information Services Director Resource
Providers as follows:

Note: Clients are supported on 32-bit Microsoft® Windows XP Pro, Vista, and
Server 2003.

 Chapter 1. IBM InfoSphere DataStage overview 7

� Services tier

IBM Information Server is built entirely on a set of shared services that
centralize core tasks across the platform. Shared services allow these tasks
to be managed and controlled in one place, regardless of which suite
component is being used.

The Services Tier includes both common and product-specific services:

– Common services are used across the Information Server suite for tasks
such as security, user administration, logging, reporting, metadata, and
execution.

– Product-specific services provide tasks for specific products within the
Information Server suite. For example, IBM InfoSphere Information
Analyzer calls a column analyzer service (a product-specific service) that
was created for enterprise data analysis. The shared service environment
allows integration across IBM Information Server because they are
deployed using common SOA standards.

IBM Information Server products can access three general categories of
service:

– Design

Design services help developers create function-specific services that can
also be shared.

– Execution

Execution services include logging, scheduling, monitoring, reporting,
security, and Web framework.

– Metadata

Using metadata services, metadata is shared “live” across tools so that
changes made in one IBM Information Server component are instantly
visible across all of the suite components. Metadata services are tightly
integrated with the common repository. You can also exchange metadata
with external tools by using metadata services.

The common services layer is deployed on the J2EE™-compliant application
server IBM WebSphere® Application Server, which is included with IBM
Information Server.

Note: An Application Server is a high performance transaction engine that
helps you build, run, integrate, and manage dynamic Web based
applications typically involving HTTP protocol.

8 IBM InfoSphere DataStage Data Flow and Job Design

� Repository tier

The shared repository is used to store all IBM Information Server product
module objects1 (including IBM InfoSphere DataStage objects), and is shared
with other applications in the suite. Clients can access metadata and results
of data analysis from the respective service layers.

� Engine tier

This is the parallel runtime engine that executes the IBM Information Server
tasks. It comprises the Information Server engine, Service Agents, and
Connectors and Packaged Application Connectivity Kits (PACKS2).

– The IBM Information Server engine consists of the products that you
install, such as IBM InfoSphere DataStage and IBM InfoSphere
QualityStage. It runs jobs to extract, transform, load, and standardize data.
The engine runs DataStage and QualityStage jobs. It also executes the
parallel jobs for Information Analyzer tasks.

– Service Agents are Java™ processes that run in the background on each
computer that hosts IBM InfoSphere DataStage.They provide the
communication between the Services and Engine tiers of Information
Server.

– Connectors and PACKS

IBM Information Server connects to a variety of information sources
whether they are structured, unstructured, on the mainframe, or
applications. Metadata-driven connectivity is shared across the suite
components, and connection objects are reusable across functions.

Connectors provide design-time importing of metadata, data browsing and
sampling, run-time dynamic metadata access, error handling, and high
functionality and high performance run-time data access.

Prebuilt interfaces for packaged applications called PACKS provide
adapters to SAP®, Siebel®, Oracle, and others, enabling integration with
enterprise applications and associated reporting and analytical systems.

1 This includes jobs and table definitions, as well as operational metadata such as job start and stop
times. The repository is also used to store Information Server configuration settings, such as user
group assignments and roles.

Note: The repository supports DB2 for LUW 9, Oracle10g R2, or
SQLServer 2005 as the underlying database.

2 PACKs provide an application-specific view of data, using the packaged application vendor's APIs
for connectivity and business metadata.

 Chapter 1. IBM InfoSphere DataStage overview 9

� Working areas

These are temporary storage areas used by the suite components.

� Information Services Director (ISD) Resource Providers

Information service providers are the (data) sources of operations for your
services. Using IBM InfoSphere Information Services Director, you can create
services from five sources — IBM InfoSphere DataStage and QualityStage,
IBM DB2 for LUW, IBM InfoSphere Federation Server, IBM InfoSphere
Classic Federation Server for z/OS, and Oracle Database Server.

1.2.2 Topologies supported

IBM Information Server is built on a highly scalable parallel software architecture
that delivers high levels of throughput and performance. For maximum
scalability, integration software must do more than run on Symmetric
Multiprocessing (SMP) and Massively Parallel Processing (MPP) computer
systems. If the data integration platform does not saturate all of the nodes of the
MPP box or system in the cluster or Grid, scalability cannot be maximized. The
IBM Information Server components fully exploit SMP, clustered, Grid, and MPP
environments to optimize the use of all available hardware resources.

Note: The Information Server Platform 8.0.1 release supports the following
operating systems:

� IBM AIX 5.2, 5.3

� HP-UX Itanium™ 11i v2

� HP-UX PA-RISC 11i v2

� Sun™ Solaris™ 9, 10

� Red Hat Enterprise Server Linux 4 (Intel®, AMD™)

� SUSE Linux Enterprise Server Linux 10 (Intel, AMD, System p™,
System z™)

� Microsoft Windows Server® 2003 (32-bit)

10 IBM InfoSphere DataStage Data Flow and Job Design

IBM Information Server supports multiple topologies to satisfy a variety of your
data integration and hardware business requirements, as follows:

� Two-tier
� Three-tier
� Cluster
� Grid

For all topologies, you can add clients and engines (for scalability) on additional
computers.

To select a topology, you must consider your performance needs by reviewing
the capacity requirements for the topology elements — the server, disk, network,
data sources, targets, data volumes, processing requirements, and any
service-level agreements.

Each of these topologies is briefly described here.

Two-tier
The engine, application server, and metadata repository are all on the same
computer system, while the clients are on a different machine as shown in
Figure 1-3.

High availability and failover are simpler to manage with two computers because
all the servers fail over at the same time.

Tip: We recommend that you use the same topology for your test and
production environments to minimize issues when a job is deployed into
production.

Note: On a Microsoft Windows platform, the clients, engine, application
server, and metadata repository can be collocated on the same machine. This
topology (not shown here) is only suitable for demonstrations, as an
educational or proof-of-concept platform.

 Chapter 1. IBM InfoSphere DataStage overview 11

Figure 1-3 Two-tier

Three tier
The engine is on one machine, the application server and metadata repository
are co-located on another machine, while the clients are on a third machine as
shown in Figure 1-4.

Failover configuration is more complex because of the increased number of
failover scenarios that are required by three or more computers.

12 IBM InfoSphere DataStage Data Flow and Job Design

Figure 1-4 Three tier topology

Cluster
This is a slight variation of the three-tier topology with the engine duplicated over
multiple computers as shown in Figure 1-5.

In a cluster environment, a single parallel job execution can span multiple
computers, each with its own engine.

The processing of a job on the multiple machines is driven by a configuration file
associated with the job. The configuration file specifies the machines to be used
by the job.

 Chapter 1. IBM InfoSphere DataStage overview 13

Figure 1-5 Cluster and Grid

Grid
With hardware computing power a commodity, Grid computing allows you to
apply more processing power to a task than was previously possible. Grid
computing uses all of the low-cost computing resources, processors, and
memory that are available on the network to create a single system image.

Grid topology is very similar to that of a cluster (Figure 1-5 on page 14) with
engines distributed over multiple machines. As in the case of a cluster
environment, a single parallel job execution can span multiple computers, each
with its own engine.

14 IBM InfoSphere DataStage Data Flow and Job Design

The key difference with cluster computing is that in a Grid environment, the
machines over which a job executes are dynamically determined (through the
generation of a dynamic configuration file) using an integrated resource manager
such as IBM Tivoli® Workload Scheduler LoadLeveler®.

The parallel processing architecture of IBM Information Server leverages the
computing power of Grid environments and greatly simplifies the development of
scalable integration systems that run in parallel for Grid environments.

1.3 IBM InfoSphere DataStage within the IBM
Information Server architecture

IBM InfoSphere DataStage facilitates data integration in both high-volume batch
and services-oriented deployment scenarios required by enterprise system
architectures. As part of the integrated IBM Information Server platform, it is
supported by a broad range of shared services and benefits from the reuse of
several suite components.

IBM InfoSphere DataStage and IBM InfoSphere QualityStage share the same
infrastructure for importing and exporting data, designing, deploying, and running
jobs, and reporting. The developer uses the same design canvas to specify the
flow of data from preparation to transformation and delivery.

Multiple discrete services give IBM InfoSphere DataStage the flexibility to match
increasingly varied customer environments and tiered architectures. Figure 1-1
on page 3 shows how IBM InfoSphere DataStage Designer (labeled “User
Clients”) interacts with other elements of the IBM Information Server platform to
deliver enterprise data analysis services.

In this section, we briefly describe the following topics:

� Shared components
� Runtime architecture

1.3.1 Shared components

With reference to Figure 1-1 on page 3, the following suite components are
shared between IBM InfoSphere DataStage and IBM Information Server:

 Chapter 1. IBM InfoSphere DataStage overview 15

� Unified user interface

The following client applications comprise the IBM InfoSphere DataStage
user interface:

– IBM InfoSphere DataStage and QualityStage Designer

A graphical design interface is used to create InfoSphere DataStage
applications (known as jobs). Because transformation is an integral part of
data quality, the InfoSphere DataStage and QualityStage Designer is the
design interface for both InfoSphere DataStage and InfoSphere
QualityStage.

Each job specifies the data sources, the required transformations, and the
destination of the data. Jobs are compiled to create parallel job flows and
reusable components that are scheduled by the InfoSphere DataStage
and QualityStage Director and run in parallel by the Information Server
engine. The Designer client manages design metadata in the repository,
while compiled execution data is deployed on the Information Server
Engine tier.

– IBM InfoSphere DataStage and QualityStage Director

A graphical user interface that is used to validate, schedule, run, and
monitor InfoSphere DataStage job sequences. The Director client displays
job run-time information including job status and detailed job logs. This
client can also be used to establish schedules for job execution.

– InfoSphere DataStage and InfoSphere QualityStage Administrator

A graphical user interface that is used for administration tasks such as:

• Setting up DataStage and Information Server Engine users

• Creating, deleting, and customizing projects

• Setting up criteria for purging runtime log records.

� Common services

As part of the IBM Information Server Suite, DataStage leverages the
common services as well as DataStage-specific services.

The common services provides flexible, configurable interconnections among
the many parts of the architecture as follows:

– Metadata services such as impact analysis and search

– Execution services that support all InfoSphere DataStage functions

– Design services that support development and maintenance of InfoSphere
DataStage tasks

16 IBM InfoSphere DataStage Data Flow and Job Design

� Common repository

The common repository holds three types of metadata that are required to
support IBM InfoSphere DataStage, as follows:

– Project metadata

All the project-level metadata components including IBM InfoSphere
DataStage jobs, table definitions, built-in stages, reusable
subcomponents, and routines are organized into folders.

– Operational metadata

The repository holds metadata that describes the operational history of
integration process runs, success or failure of jobs, parameters that were
used, and the time and date of these events.

– Design metadata

The repository holds design time metadata that is created by the IBM
InfoSphere DataStage and QualityStage Designer and IBM InfoSphere
Information Analyzer.

� Common parallel processing engine

The engine runs executable jobs that extract, transform, and load data in a
wide variety of settings. The engine uses parallelism and pipelining to handle
high volumes of work more quickly and to scale a single job across the
boundaries of a single server in cluster or Grid topologies.

� Common connectors

The connectors provide connectivity to a large number of external resources
and access to the common repository from the processing engine. Any data
source that is supported by IBM Information Server can be used as input to or
output from an IBM InfoSphere DataStage job.

1.3.2 Runtime architecture

This section briefly describes the generation of the OSH (Orchestrate® SHell
Script) script, and the execution flow of IBM InfoSphere DataStage using the
Information Server engine.

OSH script
The IBM InfoSphere DataStage and QualityStage Designer client creates IBM
InfoSphere DataStage jobs that are compiled into parallel job flows, and reusable
components that execute on the parallel Information Server engine. It allows you
to use familiar graphical point-and-click techniques to develop job flows for
extracting, cleansing, transforming, integrating, and loading data into target files,
target systems, or packaged applications.

 Chapter 1. IBM InfoSphere DataStage overview 17

The Designer generates all the code. It generates the OSH (Orchestrate SHell
Script) and C++ code for any Transformer stages used.

Briefly, the Designer performs the following tasks:

� Validates link requirements, mandatory stage options, transformer logic, etc.

� Generates OSH representation of data flows and stages (representations of
framework “operators”).

� Generates transform code for each Transformer stage which is then compiled
into C++ and then to corresponding native operators.

� Reusable BuildOp stages can be compiled using the Designer GUI or from
the command line.

Here is a brief primer on the OSH:

� Comment blocks introduce each operator, the order of which is determined by
the order stages were added to the canvas.

� OSH uses the familiar syntax of the UNIX shell. such as Operator name,
schema, operator options (“-name value” format), input (indicated by n<
where n is the input#), and output (indicated by the n> where n is the
output #).

� For every operator, input and/or output data sets are numbered sequentially
starting from zero.

� Virtual data sets (in memory native representation of data links) are
generated to connect operators.

Framework (Information Server Engine) terms and DataStage terms have
equivalency. The GUI frequently uses terms from both paradigms. Runtime
messages use framework terminology because the framework engine is where
execution occurs. The following list shows the equivalency between framework
and DataStage terms:

� Schema corresponds to table definition
� Property corresponds to format
� Type corresponds to SQL type and length
� Virtual data set corresponds to link
� Record/field corresponds to row/column
� Operator corresponds to stage

Note: The actual execution order of operators is dictated by input/output
designators, and not by their placement on the diagram. The data sets
connect the OSH operators. These are “virtual data sets”, that is, in memory
data flows. Link names are used in data set names — it is therefore good
practice to give the links meaningful names.

18 IBM InfoSphere DataStage Data Flow and Job Design

� Step, flow, OSH command correspond to a job
� Framework corresponds to Information Server Engine

Execution flow
When you execute a job, the generated OSH and contents of the configuration
file ($APT_CONFIG_FILE) is used to compose a “score”. This is similar to a SQL
query optimization plan.

At runtime, IBM InfoSphere DataStage identifies the degree of parallelism and
node assignments for each operator, and inserts sorts and partitioners as
needed to ensure correct results. It also defines the connection topology (virtual
data sets/links) between adjacent operators/stages, and inserts buffer operators
to prevent deadlocks (for example, in fork-joins). It also defines the number of
actual OS processes. Multiple operators/stages are combined within a single OS
process as appropriate, to improve performance and optimize resource
requirements.

The job score is used to fork processes with communication interconnects for
data, message and control3. Processing begins after the job score and
processes are created. Job processing ends when either the last row of data is
processed by the final operator, a fatal error is encountered by any operator, or
the job is halted by DataStage Job Control or human intervention such as
DataStage Director STOP.

Job scores are divided into two sections — data sets (partitioning and collecting)
and operators (node/operator mapping). Both sections identify sequential or
parallel processing.

The execution (orchestra) manages control and message flow across processes
and consists of the conductor node and one or more processing nodes as shown
in Figure 1-6. Actual data flows from player to player — the conductor and
section leader are only used to control process execution through control and
message channels.

� Conductor is the initial framework process. It creates the Section Leader (SL)
processes (one per node), consolidates messages to the DataStage log, and
manages orderly shutdown. The Conductor node has the start-up process.
The Conductor also communicates with the players.

3 Set $APT_STARTUP_STATUS to show each step of the job startup, and $APT_PM_SHOW_PIDS
to show process IDs in the DataStage log.

Note: You can direct the score to a job log by setting $APT_DUMP_SCORE.
To identify the Score dump, look for “main program: This step....”.

 Chapter 1. IBM InfoSphere DataStage overview 19

� Section Leader is a process that forks player processes (one per stage) and
manages up/down communications. SLs communicate between the
conductor and player processes only. For a given parallel configuration file,
one section leader will be started for each logical node.

� Players are the actual processes associated with the stages. It sends stderr
and stdout to the SL, establishes connections to other players for data flow,
and cleans up on completion. Each player has to be able to communicate
with every other player. There are separate communication channels
(pathways) for control, errors, messages and data. The data channel does
not go through the section leader/conductor as this would limit scalability.
Data flows directly from upstream operator to downstream operator.

Figure 1-6 Parallel execution flow

1.4 IBM InfoSphere DataStage main functions

In its simplest form, IBM InfoSphere DataStage performs data transformation
and movement from source systems to target systems in batch and in real time.
The data sources might include indexed files, sequential files, relational
databases, archives, external data sources, enterprise applications, and
message queues.

Conductor Node

Player

Player

Player

Player

Player

Section Leader
(one per node)

Player Player

OS Process

Processing Node

Player

Section Leader
(one per node)

Player Player

OS Process

Processing Node

20 IBM InfoSphere DataStage Data Flow and Job Design

DataStage manages data that arrives and data that is received on a periodic or
scheduled basis. It enables companies to solve large-scale business problems
with high-performance processing of massive data volumes. By leveraging the
parallel processing capabilities of multiprocessor hardware platforms, DataStage
can scale to satisfy the demands of ever-growing data volumes, stringent
real-time requirements, and ever-shrinking batch windows.

Leveraging the combined suite of IBM Information Server, DataStage can
simplify the development of authoritative master data by showing where and how
information is stored across source systems. DataStage can also consolidate
disparate data into a single, reliable record, cleanses and standardizes
information, removes duplicates, and links records together across systems. This
master record can be loaded into operational data stores, data warehouses, or
master data applications such as IBM MDM using IBM InfoSphere DataStage.

IBM InfoSphere DataStage delivers four core capabilities:

� Connectivity to a wide range of mainframe, legacy, and enterprise
applications, databases, file formats, and external information sources.

� Prebuilt library of more than 300 functions including data validation rules and
very complex transformations.

� Maximum throughput using a parallel, high-performance processing
architecture.

� Enterprise-class capabilities for development, deployment, maintenance, and
high-availability. It leverages metadata for analysis and maintenance. It also
operates in batch, real time, or as a Web service.

IBM InfoSphere DataStage enables an integral part of the information integration
process — data transformation as shown in Figure 1-1 on page 3.

In the following sections, we briefly describe the following aspects of IBM
InfoSphere DataStage:

� Data transformation
� Jobs
� Parallel processing

1.4.1 Data transformation

Data transformation and movement is the process by which source data is
selected, converted, and mapped to the format required by targeted systems.
The process manipulates data to bring it into compliance with business, domain,
and integrity rules and with other data in the target environment. Transformation
can take some of the following forms:

 Chapter 1. IBM InfoSphere DataStage overview 21

� Aggregation

Consolidating or summarizing data values into a single value. Collecting daily
sales data to be aggregated to the weekly level is a common example of
aggregation.

� Basic conversion

Ensuring that data types are correctly converted and mapped from source to
target columns.

� Cleansing

Resolving inconsistencies and fixing the anomalies in source data.

� Derivation

Transforming data from multiple sources by using a complex business rule or
algorithm.

� Enrichment

Combining data from internal or external sources to provide additional
meaning to the data.

� Normalizing

Reducing the amount of redundant and potentially duplicated data.

� Combining

The process of combining data from multiple sources via parallel Lookup,
Join, or Merge operations.

� Pivoting

Converting records in an input stream to many records in the appropriate
table in the data warehouse or data mart.

� Sorting

Grouping related records and sequencing data based on data or string
values.

1.4.2 Jobs

An IBM InfoSphere DataStage job consists of individual stages linked together
which describe the flow of data from a data source to a data target.

A stage usually has at least one data input and/or one data output. However,
some stages can accept more than one data input, and output to more than one
stage. Each stage has a set of predefined and editable properties that tell it how
to perform or process data. Properties might include the file name for the
Sequential File stage, the columns to sort, the transformations to perform,

22 IBM InfoSphere DataStage Data Flow and Job Design

and the database table name for the DB2 stage. These properties are viewed or
edited using stage editors. Stages are added to a job and linked together using
the Designer. Figure 1-7 shows some of the stages and their iconic
representations.

Figure 1-7 Stage examples

Stages and links can be grouped in a shared container. Instances of the shared
container can then be reused in different parallel jobs. You can also define a
local container within a job — this groups stages and links into a single unit, but
can only be used within the job in which it is defined.

The different types of jobs have different stage types. The stages that are
available in the Designer depend on the type of job that is currently open in the
Designer.

Parallel Job stages are organized into different groups on the Designer palette as
follows:

� General includes stages such as Container and Link.

� Data Quality includes stages such as Investigate, Standardize, Reference
Match, and Survive.

 Chapter 1. IBM InfoSphere DataStage overview 23

� Database includes stages such as Classic Federation, DB2 UDB, DB2
UDB/Enterprise, Oracle, Sybase, SQL Server®, Teradata, Distributed
Transaction, and ODBC.

� Development/Debug includes stages such as Peek, Sample, Head, Tail, and
Row Generator.

� File includes stages such as Complex Flat File, Data Set, Lookup File Set,
and Sequential File.

� Processing includes stages such as Aggregator, Copy, FTP, Funnel, Join,
Lookup, Merge, Remove Duplicates, Slowly Changing Dimension, Surrogate
Key Generator, Sort, and Transformer

� Real Time includes stages such as Web Services Transformer, WebSphere
MQ, and Web Services Client.

� Restructure includes stages such as Column Export and Column Import.

1.4.3 Parallel processing

Figure 1-8 represents one of the simplest jobs you could have — a data source,
a Transformer (conversion) stage, and the data target. The links between the
stages represent the flow of data into or out of a stage.

In a parallel job, each stage would normally (but not always) correspond to a
process. You can have multiple instances of each process to run on the available
processors in your system.

Figure 1-8 Simple IBM InfoSphere DataStage job

Note: Applies when IBM InfoSphere QualityStage is installed.

Note: For details on all the available stages, refer to IBM WebSphere
DataStage and QualityStage Parallel Job Developer Guide, SC18-9891-00
and relevant connectivity guides for stages concerned with connecting to
external data sources and data targets.

Transformer Data TargetData Source

24 IBM InfoSphere DataStage Data Flow and Job Design

A parallel DataStage job incorporates two basic types of parallel processing —
pipeline and partitioning. Both of these methods are used at runtime by the
Information Server engine to execute the simple job shown in Figure 1-8.

To the DataStage developer, this job would appear the same on your Designer
canvas, but you can optimize it through advanced properties.

� Pipeline parallelism

In the Figure 1-8 example, all stages run concurrently, even in a single-node
configuration. As data is read from the Oracle source, it is passed to the
Transformer stage for transformation, where it is then passed to the DB2
target. Instead of waiting for all source data to be read, as soon as the source
data stream starts to produce rows, these are passed to the subsequent
stages. This method is called pipeline parallelism, and all three stages in our
example operate simultaneously regardless of the degree of parallelism of the
configuration file. The Information Server Engine always executes jobs with
pipeline parallelism.

If you ran the example job on a system with multiple processors, the stage
reading would start on one processor and start filling a pipeline with the data it
had read. The transformer stage would start running as soon as there was
data in the pipeline, process it and start filling another pipeline. The stage
writing the transformed data to the target database would similarly start
writing as soon as there was data available. Thus all three stages are
operating simultaneously.

� Partition parallelism

When large volumes of data are involved, you can use the power of parallel
processing to your best advantage by partitioning the data into a number of
separate sets, with each partition being handled by a separate instance of the
job stages. Partition parallelism is accomplished at runtime, instead of a
manual process that would be required by traditional systems.

The DataStage developer only needs to specify the algorithm to partition the
data, not the degree of parallelism or where the job will execute. Using
partition parallelism the same job would effectively be run simultaneously by
several processors, each handling a separate subset of the total data. At the
end of the job the data partitions can be collected back together again and
written to a single data source. This is shown in Figure 1-9.

Attention: You do not need multiple processors to run in parallel. A single
processor is capable of running multiple concurrent processes.

 Chapter 1. IBM InfoSphere DataStage overview 25

Figure 1-9 Partition parallelism

� Combining pipeline and partition parallelism

The Information Server engine combines pipeline and partition parallel
processing to achieve even greater performance gains. In this scenario you
would have stages processing partitioned data and filling pipelines so the
next one could start on that partition before the previous one had finished.
This is shown in Figure 1-10.

Figure 1-10 Pipeline and partition parallelism

In some circumstances you might want to actually re-partition your data between
stages. This could happen, for example, where you want to group data
differently. Suppose that you have initially processed data based on customer
last name, but now you want to process on data grouped by zip code. You will
have to re-partition to ensure that all customers sharing the same zip code are in
the same group. DataStage allows you to re-partition between stages as and

26 IBM InfoSphere DataStage Data Flow and Job Design

when necessary. With the Information Server engine, re-partitioning happens in
memory between stages, instead of writing to disk.

For full details on parallelism, refer to IBM WebSphere DataStage and
QualityStage Parallel Job Developer Guide, SC18-9891-00.

1.5 Best practices overview

This section provides an overview of recommendations for standard practices.

The recommendations are categorized as follows:

� Standards
� Development guidelines
� Component usage
� DataStage Data Types
� Partitioning data
� Collecting data
� Sorting
� Stage specific guidelines

1.5.1 Standards

It is important to establish and follow consistent standards in:

� Directory structures for installation and application support directories.

� Naming conventions, especially for DataStage Project categories, stage
names, and links.

All DataStage jobs should be documented with the Short Description field, as
well as Annotation fields.

It is the DataStage developer’s responsibility to make personal backups of their
work on their local workstation, using DataStage's DSX export capability. This
can also be used for integration with source code control systems.

Note: A detailed discussion of these practices is beyond the scope of this
Redbooks publication, and you should speak to your Account Executive to
engage IBM IPS Services.

 Chapter 1. IBM InfoSphere DataStage overview 27

1.5.2 Development guidelines

Modular development techniques should be used to maximize re-use of
DataStage jobs and components:

� Job parameterization allows a single job design to process similar logic
instead of creating multiple copies of the same job. The Multiple-Instance job
property allows multiple invocations of the same job to run simultaneously.

� A set of standard job parameters should be used in DataStage jobs for source
and target database parameters (DSN, user, password, etc.) and directories
where files are stored. To ease re-use, these standard parameters and
settings should be made part of a Designer Job Parameter Sets.

� Create a standard directory structure outside of the DataStage project
directory for source and target files, intermediate work files, and so forth.

� Where possible, create re-usable components such as parallel shared
containers to encapsulate frequently-used logic.

� DataStage Template jobs should be created with:

– Standard parameters such as source and target file paths, and database
login properties

– Environment variables and their default settings

– Annotation blocks

� Job Parameters should always be used for file paths, file names, database
login settings.

� Standardized Error Handling routines should be followed to capture errors
and rejects.

1.5.3 Component usage

The following guidelines should be followed when constructing parallel jobs in
IBM InfoSphere DataStage Enterprise Edition:

� Never use Server Edition components (BASIC Transformer, Server Shared
Containers) within a parallel job. BASIC Routines are appropriate only for job
control sequences.

� Always use parallel Data Sets for intermediate storage between jobs unless
that specific data also needs to be shared with other applications.

� Use the Copy stage as a placeholder for iterative design, and to facilitate
default type conversions.

� Use the parallel Transformer stage (not the BASIC Transformer) instead of
the Filter or Switch stages.

28 IBM InfoSphere DataStage Data Flow and Job Design

� Use BuildOp stages only when logic cannot be implemented in the parallel
Transformer.

1.5.4 DataStage data types

The following guidelines should be followed with DataStage data types:

� Be aware of the mapping between DataStage (SQL) data types and the
internal DS/EE data types. If possible, import table definitions for source
databases using the Orchestrate Schema Importer (orchdbutil) utility.

� Leverage default type conversions using the Copy stage or across the Output
mapping tab of other stages.

1.5.5 Partitioning data

In most cases, the default partitioning method (Auto) is appropriate. With Auto
partitioning, the Information Server Engine will choose the type of partitioning at
runtime based on stage requirements, degree of parallelism, and source and
target systems. While Auto partitioning will generally give correct results, it might
not give optimized performance. As the job developer, you have visibility into
requirements, and can optimize within a job and across job flows.

Given the numerous options for keyless and keyed partitioning, the following
objectives form a methodology for assigning partitioning:

� Objective 1

Choose a partitioning method that gives close to an equal number of rows in
each partition, while minimizing overhead. This ensures that the processing
workload is evenly balanced, minimizing overall run time.

� Objective 2

The partition method must match the business requirements and stage
functional requirements, assigning related records to the same partition if
required.

Any stage that processes groups of related records (generally using one or
more key columns) must be partitioned using a keyed partition method.

This includes, but is not limited to: Aggregator, Change Capture, Change
Apply, Join, Merge, Remove Duplicates, and Sort stages. It might also be
necessary for Transformers and BuildOps that process groups of related
records.

 Chapter 1. IBM InfoSphere DataStage overview 29

� Objective 3

Unless partition distribution is highly skewed, minimize re-partitioning,
especially in cluster or Grid configurations.

Re-partitioning data in a cluster or Grid configuration incurs the overhead of
network transport.

� Objective 4

Partition method should not be overly complex. The simplest method that
meets the above objectives will generally be the most efficient and yield the
best performance.

Using the above objectives as a guide, the following methodology can be
applied:

a. Start with Auto partitioning (the default).

b. Specify Hash partitioning for stages that require groups of related records
as follows:

• Specify only the key column(s) that are necessary for correct grouping
as long as the number of unique values is sufficient

• Use Modulus partitioning if the grouping is on a single integer key
column

• Use Range partitioning if the data is highly skewed and the key column
values and distribution do not change significantly over time (Range
Map can be reused)

c. If grouping is not required, use Round Robin partitioning to redistribute
data equally across all partitions.

• Especially useful if the input Data Set is highly skewed or sequential

d. Use Same partitioning to optimize end-to-end partitioning and to minimize
re-partitioning

• Be mindful that Same partitioning retains the degree of parallelism of
the upstream stage

• Within a flow, examine up-stream partitioning and sort order and
attempt to preserve for down-stream processing. This may require
re-examining key column usage within stages and re-ordering stages
within a flow (if business requirements permit).

Note: In satisfying the requirements of this second objective, it might not
be possible to choose a partitioning method that gives an almost equal
number of rows in each partition.

30 IBM InfoSphere DataStage Data Flow and Job Design

Across jobs, persistent Data Sets can be used to retain the partitioning and sort
order. This is particularly useful if downstream jobs are run with the same degree
of parallelism (configuration file) and require the same partition and sort order.

1.5.6 Collecting data

Given the options for collecting data into a sequential stream, the following
guidelines form a methodology for choosing the appropriate collector type:

1. When output order does not matter, use Auto partitioning (the default).

2. Consider how the input Data Set has been sorted:

– When the input Data Set has been sorted in parallel, use Sort Merge
collector to produce a single, globally sorted stream of rows.

– When the input Data Set has been sorted in parallel and Range
partitioned, the Ordered collector might be more efficient.

3. Use a Round Robin collector to reconstruct rows in input order for round-robin
partitioned input Data Sets, as long as the Data Set has not been
re-partitioned or reduced.

1.5.7 Sorting

Apply the following methodology when sorting in an IBM InfoSphere DataStage
Enterprise Edition data flow:

1. Start with a link sort.

2. Specify only necessary key column(s).

3. Do not use Stable Sort unless needed.

4. Use a stand-alone Sort stage instead of a Link sort for options that are not
available on a Link sort:

– The “Restrict Memory Usage” option should be included here. If you want
more memory available for the sort, you can only set that via the Sort
Stage — not on a sort link. The environment variable
$APT_TSORT_STRESS_BLOCKSIZE can also be used to set sort
memory usage (in MB) per partition.

– Sort Key Mode, Create Cluster Key Change Column, Create Key Change
Column, Output Statistics.

– Always specify “DataStage” Sort Utility for standalone Sort stages.

– Use the “Sort Key Mode=Don’t Sort (Previously Sorted)” to resort a
sub-grouping of a previously-sorted input Data Set.

 Chapter 1. IBM InfoSphere DataStage overview 31

5. Be aware of automatically-inserted sorts:

– Set $APT_SORT_INSERTION_CHECK_ONLY to verify but not establish
required sort order.

6. Minimize the use of sorts within a job flow.

7. To generate a single, sequential ordered result set, use a parallel Sort and a
Sort Merge collector.

1.5.8 Stage specific guidelines

The guidelines by stage are as follows:

� Transformer

Take precautions when using expressions or derivations on nullable columns
within the parallel Transformer:

– Always convert nullable columns to in-band values before using them in
an expression or derivation.

– Always place a reject link on a parallel Transformer to capture / audit
possible rejects.

� Lookup

It is most appropriate when reference data is small enough to fit into available
shared memory. If the Data Sets are larger than available memory resources,
use the Join or Merge stage.

Limit the use of database Sparse Lookups to scenarios where the number of
input rows is significantly smaller (for example 1:100 or more) than the
number of reference rows, or when exception processing.

� Join

Be particularly careful to observe the nullability properties for input links to
any form of Outer Join. Even if the source data is not nullable, the non-key
columns must be defined as nullable in the Join stage input in order to identify
unmatched records.

� Aggregators

Use Hash method Aggregators only when the number of distinct key column
values is small. A Sort method Aggregator should be used when the number
of distinct key values is large or unknown.

32 IBM InfoSphere DataStage Data Flow and Job Design

� Database Stages

The following guidelines apply to database stages:

– Where possible, use the Connector stages or native parallel database
stages for maximum performance and scalability.

– The ODBC Connector and ODBC Enterprise stages should only be used
when a native parallel stage is not available for the given source or target
database.

– When using Oracle, DB2, or Informix databases, use Orchestrate Schema
Importer (orchdbutil) to properly import design metadata.

– Take care to observe the data type mappings.

– If possible, use an SQL where clause to limit the number of rows sent to a
DataStage job.

– Avoid the use of database stored procedures on a per-row basis within a
high-volume data flow. For maximum scalability and parallel performance,
it is best to implement business rules natively using DataStage parallel
components.

 Chapter 1. IBM InfoSphere DataStage overview 33

34 IBM InfoSphere DataStage Data Flow and Job Design

Chapter 2. IBM InfoSphere DataStage
stages

In this chapter we provide an overview of some of the commonly used stages in
IBM InfoSphere DataStage, including the new stages available in Version 8.1.

2

© Copyright IBM Corp. 2008. All rights reserved. 35

2.1 Introduction

As mentioned in “Jobs” on page 22, an IBM InfoSphere DataStage job consists
of individual stages linked together, which describe the flow of data from a data
source to a data target.

A stage usually has at least one data input and/or one data output. However,
some stages can accept more than one data input, and output to more than one
stage. Each stage has a set of predefined and editable properties that tell it how
to perform or process data. Properties might include the file name for the
Sequential File stage, the columns to sort, the transformations to perform, and
the database table name for the DB2 stage. These properties are viewed or
edited using stage editors. Stages are added to a job and linked together using
the Designer.

In this chapter we focus on the most commonly used stages and the new stages
available in Version 8.1, as follows:

� Aggregator
� Complex Flat File
� Column Import
� Column Export
� Data Set
� Distributed Transaction (new in Version 8.1)
� FTP Enterprise
� Funnel
� Join
� Lookup
� Merge
� Sequential File
� Slowly Changing Dimension
� Sort
� Surrogate Key Generator
� Transformer

For details on all the available stages, refer to IBM WebSphere DataStage and
QualityStage Parallel Job Developer Guide, SC18-9891-00, and relevant
connectivity guides for stages concerned with connecting to external data
sources and data targets.

36 IBM InfoSphere DataStage Data Flow and Job Design

2.2 Aggregator

The Aggregator stage is a processing stage. It classifies data rows from a single
input link into groups and computes totals or other aggregate functions for each
group. The summed totals for each group are output from the stage via an output
link. This is shown in Figure 2-1.

Figure 2-1 Aggregator stage

The Aggregator stage gives you access to grouping and summary operations.
Records can be grouped by one or more characteristics, where record
characteristics correspond to column values. In other words, a group is a set of
records with the same value for one or more columns. For example, transaction
records might be grouped by both day of the week and by month. These
groupings might show that the busiest day of the week varies by season.

In addition to revealing patterns in your data, grouping can also reduce the
volume of data by summarizing the records in each group, making it easier to
manage. If you group a large volume of data on the basis of one or more
characteristics of the data, the resulting data set is generally much smaller than
the original and is therefore easier to analyze.

Attention: In all the following sections, to avoid overburdening you with
excessive screen captures, we have not included all the panels that you would
typically navigate through in order to perform the desired function. Instead we
have focused on including select screen captures (and in some cases, just
portions of them) that highlight the key items of interest, thereby skipping both
initial screen captures, as well as some intervening ones, in the process.
Screen captures involving default values are not shown here either. And
finally, also not covered is a discussion of each property of the stages since
they are all well described in the IBM WebSphere DataStage and
QualityStage Parallel Job Developer Guide, SC18-9891-00.

 Chapter 2. IBM InfoSphere DataStage stages 37

Figure 2-2 on page 40 through Figure 2-7 on page 43 show an example of an
Aggregator stage in a job (“J15_Daily_CreateSalesAggDS (Day 1)” on page 387
in the retail industry scenario described in “Retail industry scenario” on
page 140), as follows:

1. Figure 2-2 on page 40 shows the job that enhances the sales transaction
records for input to the Slowly Changing Dimension stage. This is described
in “J15_Daily_CreateSalesAggDS (Day 1)” on page 387 and is not repeated
here. Instead, we only focus on the configuration of the Aggregator stage in
this job.

2. The Agg_Sales - Aggregator window (Figure 2-3 on page 41) shows the
configured properties under the Properties tab in the Stage page. It allows
you to specify properties that determine what the stage actually does. Some
of the properties are mandatory, although many have default settings. We
only described some of the more important properties here, as follows:

– The Grouping Keys category identifies the input columns you are using as
group keys. It shows seven columns (CUSTOMER_ID, PRODUCT_ID,
STORE_ID, MEMBERSHIP_EXPIRE_DT, MEMBERSHIP_LEVEL, and
MANAGER_NAME) forming the Grouping Keys.

– The Aggregations category has multiple properties Aggregation type,
Column for calculation, and Count output column.

• Aggregation type property allows you to specify the type of aggregation
operation your stage is performing, such as Calculate (the default),
Recalculate, and Count Rows. Since this was a calculation, we
selected Calculate.

• For the Calculate aggregate type, you can identify the column or
columns in the input whose contents you want to summarize, by
applying one or more aggregate functions to it. We selected three
columns (TOTAL_LOCAL_CURRENCY, QUANTITY, and
TOTAL_USD) for calculation using the Sum function. The output
column in this case is the same as the input column. The output type of
a calculation or recalculation column is double, but setting this property

Note: In a parallel environment, the way that you partition data before
grouping and summarizing it can affect the results. For example, if you
partitioned using the round robin method, records with identical values in the
column you are grouping on would end up in different partitions. If you then
performed a sum operation within these partitions, you would not be operating
on all the relevant rows. In such circumstances you might want to key partition
the data on one or more of the grouping keys to ensure that your groups are
“entire” (which is another partitioning method).

38 IBM InfoSphere DataStage Data Flow and Job Design

(Decimal Output = 10,2) causes it to default to decimal with the
appropriate default precision and scale.

– The Options category has the following properties set:

• The Allow Null Output property is set to False to specify that the null
value will have 0 substituted when all input values for the calculation
column are null.

• The aggregate stage has two modes of operation — hash and sort.
Your choice of mode depends primarily on the number of groupings in
the input data set, taking into account the amount of memory available.
Hash mode is typically used for a relatively small number of groups.
We chose sort.

3. We set all the properties to default under the Advanced tab in the Stage
page.

– The Execution Mode specifies whether the stage can execute in parallel
mode or sequential mode.

– The Combinability mode allows IBM InfoSphere DataStage to combine the
operators that underlie parallel stages so that they run in the same
process if it is sensible for this type of stage.

– Preserve partitioning when Set, requests that the next stage in the job
attempt to maintain the partitioning.

– Node pool and resource constraints when selected constrains parallel
execution to the node pool or pools and/or resource pool or pools
specified in the grid.

4. Figure 2-4 on page 41 shows the properties under the Partitioning tab in the
Input page, which allows you to specify details about how the incoming data is
partitioned or collected before it is grouped and/or summarized. It also allows
you to specify that the data should be sorted before being operated on.

Since the Aggregator stage is set to execute in parallel, we selected the
partitioning method of Same from the Partition type drop-down list, which
preserves the partitioning already in place.

5. Figure 2-5 on page 42 shows the columns under the Columns tab in the
Input page, which specifies the column definitions of incoming data.

6. Figure 2-6 on page 42 shows the properties under the Mapping tab in the
Output page, which allows you to specify the relationship between the
processed data being produced by the Aggregator stage and the Output
columns. The left pane shows the input columns and/or the generated
columns. The right pane shows the output columns for each link.

The aggregated columns using the Sum function is mapped as shown in the
Derivation field.

 Chapter 2. IBM InfoSphere DataStage stages 39

7. Figure 2-7 on page 43 shows the columns under the Columns tab in the
Output page, which specifies the column definitions of outgoing data that you
define through mapping.

Figure 2-2 Aggregator stage example 1/6

40 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-3 Aggregator stage example 2/6

Figure 2-4 Aggregator stage example 3/6

 Chapter 2. IBM InfoSphere DataStage stages 41

Figure 2-5 Aggregator stage example 4/6

Figure 2-6 Aggregator stage example 5/6

42 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-7 Aggregator stage example 6/6

2.3 Complex Flat File

The Complex Flat File (CFF) stage is a file stage. You can use the stage to read
a file or write to a file, but you cannot use the same stage instance to do both.

� As a source, the CFF stage can have multiple output links and a single reject
link. You can read data from one or more complex flat files, including MVS™
data sets with QSAM and VSAM files. You can also read data from files that
contain multiple record types.

The source data can contain one or more of the following clauses:

– GROUP
– REDEFINES
– OCCURS
– OCCURS DEPENDING ON

CFF source stages run in parallel mode when they are used to read multiple
files.

When a CFF stage is defined as a source, you must provide details about the
file that the stage will read, create record definitions for the data, define the
column metadata, specify record ID constraints, and select output columns.

– If you are reading data from a file that contains multiple record types, you
must create a separate record definition for each type.

 Chapter 2. IBM InfoSphere DataStage stages 43

– You must define columns to specify what data the CFF stage will read (or
write). The fastest way to define column metadata is to load columns from
a table definition in the repository. But you can also define column
metadata by typing column definitions in the columns grid.

Mainframe table definitions frequently contain hundreds of columns. If you
do not want to display all of these columns in the CFF stage, you can
create fillers to save storage space and processing time.

– If you are using the CFF stage to read data from a file that contains
multiple record types, you must specify a record ID constraint to identify
the format of each record. Columns that are identified in the record ID
clause must be in the same physical storage location (offset) across
records. The constraint must be a simple equality expression, where a
column equals a value such as COL1=’Y’.

– You can specify which columns from the source file the CFF stage should
pass to the output links. You can select columns from multiple record
types to output from the stage. If you do not select columns to output on
each link, the CFF stage automatically propagates all of the stage
columns except group columns to each empty output link. You can also
filter the data on each output link from the CFF stage by defining a
constraint.

� As a target, the CFF stage can have a single input link and a single reject link.
You can write data to one or more complex flat files. You cannot write to MVS
data sets or to files that contain multiple record types.

When a CFF stage is defined as a target, you must provide details about the
file that the stage will write, define the record format of the data, and define
the column metadata.

The CFF stage can have a single reject link, whether you use the stage as a
source or a target.

� For CFF source stages, reject links are supported only if the source file
contains a single record type without any OCCURS DEPENDING ON (ODO)
columns.

� For CFF target stages, reject links are supported only if the target file does
not contain ODO columns.

You cannot change the selection properties of a reject link. The Selection tab for
a reject link is blank. You cannot edit the column definitions for a reject link. For
writing files, the reject link uses the input link column definitions. For reading
files, the reject link uses a single column named “rejected” that contains raw data
for the columns that were rejected after reading because they did not match the
schema.

44 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-8 shows a job that has a Complex Flat File source stage with a single
reject link, and a Complex Flat File target stage with a single reject link.

Figure 2-8 Complex Flat File stage

Figure 2-9 on page 46 through Figure 2-19 on page 52 show an example of an
Complex Flat File stage in a job (“J02_IL_LoadCustomerDim” on page 184 in the
retail industry scenario described in “Retail industry scenario” on page 140), as
follows:

1. Figure 2-9 on page 46 shows the job that extracts and processes customer
information from a file that contains multiple record types for loading into the
dimension table. This is described in “J02_IL_LoadCustomerDim” on
page 184 and is not repeated here. Instead, we only focus on the
configuration of the CFF stage in this job.

In the CFF stage, you must provide details about the file that the stage will
read, create record definitions for the data, define the column metadata,
specify record ID constraints, and select output columns.

2. Figure 2-10 on page 46 shows the File options tab in the Stage page, which
provides details about the file that the stage will read.

3. Figure 2-11 on page 47 shows the Record options tab in the Stage page,
which describes the format of the data in the file.

4. Since the stage will be reading a file containing multiple record types, we
must create the record definitions of the data. Figure 2-12 on page 47 through
Figure 2-14 on page 49 show the Records tab in the Stage page, which
identify the three record definitions in the customer file by either typing or
loading column definitions from the repository.

 Chapter 2. IBM InfoSphere DataStage stages 45

5. Figure 2-15 on page 49 through Figure 2-17 on page 50 define the record ID
constraint for each record (CUSTOMER record type with a value ‘CD’,
HOMEADDRESS record type with a value ‘HA’, and WORKADDRESS record
type with a value ‘WA’) on the Records ID tab.

6. Figure 2-18 on page 51 shows the Selection tab in the Output page, which
specifies how to read data from the source file. It shows the selection of
multiple columns (excluding only the RECTYPE, RECTYPE_2, and
RECTYPE_3 columns from the input) for the Trx_Customer output link.

7. Figure 2-19 on page 52 shows the Constraint tab in the Output page, which
filters the rows (based on the values ‘CD’, ‘HA’, and ‘WA’ in the record type
columns in this case) on the output.

Figure 2-9 Complex Flat File stage example 1/11

Figure 2-10 Complex Flat File stage example 2/11

46 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-11 Complex Flat File stage example 3/11

Figure 2-12 Complex Flat File stage example 4/11

 Chapter 2. IBM InfoSphere DataStage stages 47

Figure 2-13 Complex Flat File stage example 5/11

48 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-14 Complex Flat File stage example 6/11

Figure 2-15 Complex Flat File stage example 7/11

 Chapter 2. IBM InfoSphere DataStage stages 49

Figure 2-16 Complex Flat File stage example 8/11

Figure 2-17 Complex Flat File stage example 9/11

50 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-18 Complex Flat File stage example 10/11

 Chapter 2. IBM InfoSphere DataStage stages 51

Figure 2-19 Complex Flat File stage example 11/11

52 IBM InfoSphere DataStage Data Flow and Job Design

2.4 Column Import

The Column Import stage is a restructure stage. It can have a single input link, a
single output link and a single reject link as shown here in Figure 2-20. The
complement to this stage is the Column Export stage, described in 2.5, “Column
Export” on page 60.

Figure 2-20 Column Import stage

The Column Import stage imports data from a single column and outputs it to
one or more columns. You would typically use it to divide data arriving in a single
column into multiple columns. The data would be structured in some way to tell
the Column Import stage where to make the divisions.

The input column must be a string or binary data; the output columns can be any
data type.

You supply an import table definition to specify the target columns and their
types. This also determines the order in which data from the import column is
written to output columns. Information about the format of the incoming column
(for example, how it is delimited) must be provided. You can optionally save
reject1 records and write them to a reject link. In addition to importing a column
you can also pass other columns straight through the stage. So, for example, you
could pass a key column straight through.

1 Records whose import was rejected

 Chapter 2. IBM InfoSphere DataStage stages 53

Figure 2-21 on page 55 through Figure 2-21 on page 55 show an example of a
Column Import stage in a job (“J13_Daily_UpdateLookupDim (Day 1)” on
page 356 in the retail industry scenario described in “Retail industry scenario” on
page 140), as follows:

1. Figure 2-21 on page 55 shows the job that processes changes to attributes of
dimension tables arriving via a IBM WebSphere MQ queue. This is described
in “J13_Daily_UpdateLookupDim (Day 1)” on page 356 and is not repeated
here. Instead, we only focus on the configuration of the Column Import stage
in this job.

2. Figure 2-22 on page 56 shows the Properties tab in the Stage page, which
allows you to specify properties that determine what the stage actually does.

– The Input category Import input column specifies the name of the column
(body_customer) containing the string or binary data to import.

– The Output category Column method specifies whether the columns to
import should be derived from column definitions on the Output page
Columns tab (Explicit) or from a schema file (Schema File). We specified
Explicit.

– The Output category Column to Import specifies an output column. The
metadata for this column determines the type that the import column will
be converted to. The order of the Columns to Import that you specify
should match the order on the Columns tab.

– The Options category Keep Import Column specifies whether the original
input column should be transferred to the output data set unchanged in
addition to being imported and converted. Default is False.

– The Options category Reject Mode specification of Continue directs the
stage is to continue but report failures to the log file.

3. Figure 2-23 on page 56 shows the Columns tab in the Input page, which
specifies the column definitions of incoming data.

4. The Output page allows you to specify details about data output from the
Column Import stage. Figure 2-24 on page 57 shows the Format tab in the
Output page, which allows you to specify details about how data in the column
you are importing is formatted so the stage can divide it into separate
columns.

5. Figure 2-25 on page 58 shows the Mapping tab in the Output page, which
allows you to specify how the output columns are derived. We recommend
that you maintain the automatic mappings of the generated columns when
using this stage.

6. Figure 2-26 on page 59 shows the Columns tab in the Output page, which
specifies the column definitions of the output data. We did not select Runtime
column propagation since all columns were explicitly defined.

54 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-21 Column Import stage example 1/6

 Chapter 2. IBM InfoSphere DataStage stages 55

Figure 2-22 Column Import stage example 2/6

Figure 2-23 Column Import stage example 3/6

56 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-24 Column Import stage example 4/6

 Chapter 2. IBM InfoSphere DataStage stages 57

Figure 2-25 Column Import stage example 5/6

58 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-26 Column Import stage example 6/6

 Chapter 2. IBM InfoSphere DataStage stages 59

2.5 Column Export

The Column Export stage is a restructure stage. It can have a single input link, a
single output link, and a single reject link as shown here in Figure 2-27.

Figure 2-27 Column Export stage

The Column Export stage exports data from a number of columns of different
data types into a single column of data type string or binary. It is the
complementary stage to Column Import described in 2.4, “Column Import” on
page 53.

The input data column definitions determine the order in which the columns are
exported to the single output column. You must provide information about how
the single column being exported is structured. You can optionally save reject
records whose export was rejected. In addition to exporting a column, you can
also pass other columns straight through the stage. So, for example, you could
pass a key column straight through.

The configuration is an inverse of the configuration corresponding to 2.4,
“Column Import” on page 53 and is not repeated here.

60 IBM InfoSphere DataStage Data Flow and Job Design

2.6 Data Set

The Data Set stage is a file stage. It allows you to read data from or write data to
a data set. The stage can have a single input link or a single output link as shown
in Figure 2-28. It can be configured to execute in parallel or sequential mode.

Figure 2-28 Data Set stage

Parallel jobs use data sets to manage data within a job. You can think of each
link in a job as carrying a (virtual) data set. The Data Set stage allows you to
store data being operated on in a persistent form, which can then be used by
other IBM InfoSphere DataStage jobs. Data sets preserve the partitioning and
sorting that may have been done on the data.

Data sets are operating system files, each referred to by a control file, which by
convention has the suffix .ds. The control file points IBM InfoSphere DataStage
to a set of other files that carry the data. The location of these data files is
determined by the “resource disk” property in the configuration file used to run
the job. Using data sets wisely can be key to good performance in a set of linked
jobs. You can also manage data sets independently of a job using the Data Set
Management utility, available from the IBM InfoSphere DataStage and
QualityStage Designer or Director.

Figure 2-29 on page 62 through Figure 2-31 on page 63 show an example of a
write to a Data Set stage in a job (“J04_IL_FTPEmployeeFile” on page 209 in the
retail industry scenario described in “Retail industry scenario” on page 140).

 Chapter 2. IBM InfoSphere DataStage stages 61

The flow is as follows:

1. Figure 2-29 shows the job that extracts Employee data from the mainframe
and writes it to a data set. This is described in “J04_IL_FTPEmployeeFile” on
page 209 and is not repeated here. Instead, we only focus on the
configuration of the Data Set stage in this job.

2. The Input stage allows you to specify details about how the Data Set stage
writes data to a data set. Figure 2-30 shows the Properties tab in the Input
page, which allows you to specify properties for the input link. These dictate
how incoming data is written and to what data set.

– The Update Policy specifies what action will be taken if the data set you
are writing to already exists. We chose Overwrite to overwrite any existing
data with new data.

3. We let the properties default under the Partitioning tab in the Input page,
which allows you to specify details about how the incoming data is partitioned
or collected before it is written to the data set. It also allows you to specify that
the data should be sorted before being written.

4. Figure 2-31 shows the Columns tab in the Input page, which specifies the
column definitions of the input data.

5. We let all the values default under the Advanced tab in the Stage page,
which allows you to specify how the stage executes.

Figure 2-29 Data Set stage example 1/3

Figure 2-30 Data Set stage example 2/3

62 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-31 Data Set stage example 3/3

2.7 Distributed Transaction (new in Version 8.1)

The connector framework is being enhanced to provide support for distributed
two-phased XA transactions in DataStage Enterprise jobs.

Figure 2-32 shows the main elements involved in exploiting the Distributed
Transaction stage.

Figure 2-32 Distributed Transaction stage

Note: At the time of writing this Redbooks publication, DTS is only supported
for DB2.

 Chapter 2. IBM InfoSphere DataStage stages 63

The flow is as follows:

1. Transaction data is carried by IBM WebSphere MQ messages that arrive at
the source queue. Each message can include multiple business
transactions2. Multiple messages may be grouped together as a single
transaction.

2. The MQ Connector stage allows you to configure transaction3 boundaries.
You can specify the number of source messages to include in each
transaction, or the time interval after which a transaction boundary is set
regardless of the number of source messages received till that moment.

The MQ Connector uses a specially designated work queue as a temporary
buffer storage for source messages that participate in transactions. This is the
default, but it may optionally work without the work queue.

3. The retrieved messages may be processed by any number and combination
of transformation stages, chosen from a rich palette of stage types provided
by IBM InfoSphere DataStage.

The processed messages from these transformation stages result in rows of
data that arrive at the Distributed Transaction Stage (DTS) on one or more
input links.

Each input link on the DTS is associated with one external resource4. The
rows on each link are sent to the designated resource (as insert, update, or
delete operations on the resource).

2 A business transaction is a set of related records that are provided to IBM InfoSphere DataStage
within a single IBM WebSphere MQ message. A business transaction cannot be spread across
more than one message, but a single message could contain more than one business transaction.
The records that comprise a business transaction are sent to DTS as individual rows of data. It is
possible that a record may involve multiple rows, but for simplicity's sake, assume that one record
maps to one row.

3 A transaction corresponds to a unit-of-work and may comprise a number of messages, the actual
number determined by the configuration of the MQ Connector stage. As mentioned, this number
may be absolute, or may have a time-based component making it a variable number. A unit-of-work
is atomic in that all of the records within a unit-of-work are processed as a single indivisible unit —
either all records are written to the target, or none are.

4 They may all be the same resource as well. In other words, we may be updating, deleting, and
inserting to the same table.

Note: Each link can support a combination of insert, update and delete
operations.

64 IBM InfoSphere DataStage Data Flow and Job Design

DTS reads from the input link into the stage and packages into that XA
transaction a delete from the work queue (or the source queue if it is
configured not use a work queue). If the transaction commits successfully, the
message is then removed from the work queue.

The reading of messages and writing to external resources is done in an
atomic manner using two-phase XA protocol, with IBM WebSphere MQ
Transaction Manager coordinating the XA global transaction.

Figure 2-33 shows a typical flow in DTS. There are two source messages that
are processed as a single transaction (unit-of-work). Each of these messages
contains three records.

1. The MQ Connector stage moves these two messages to an IBM WebSphere
MQ work queue, and sends the data from these two messages to its output
link. It then marks the end-of-wave (EOW)5, since the MQ Connector stage is
configured to emit an end-of-wave marker after every two messages.

2. The job logic (typically implemented through Column Import stages) parses
out the individual records within the transactional messages, and puts a row
on the input link of the DTS for each separate record. The result is a total of
six rows on the input link, which is then followed by an EOW marker. The DTS
will process all rows up to the end-of-wave as a single XA transaction. The
messages in the IBM WebSphere MQ work queue are deleted as part of this
XA transaction.

5 A key aspect of the overall architecture is the use of IBM InfoSphere DataStage's end-of-wave
markers, which are used to define transactional scopes. The MQ Connector stage can emit EOW
markers after it has read a given number of messages, or after a given time period has elapsed.
The DTS acts upon these markers to understand the scope of a transaction.

Note: The DTS also supports reading messages directly from a source
queue. In this case, the MQ Connector stage will only browse the source
queue (non-destructively), rather than destructively getting the source
message from the queue and writing them to a work queue. In this case, since
there is no work queue, the DTS will (destructively) read directly from the
source queue.

 Chapter 2. IBM InfoSphere DataStage stages 65

Figure 2-33 DTS flow concepts

There are many ways in which DTS jobs can be deployed. The choice of a
particular topology is dependent upon the nature of the source data and how it
must be processed, as follows:

� Order

Whether the messages have to be processed in the order they were written to
the source queue. If the order must be maintained, then it is not possible to
execute the job in parallel, since there is no co-ordination between player
processes on multiple nodes.

Ordering is specified in the configuration of DTS as the “Order messages”
parameter as shown in Figure 2-34.

66 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-34 Configuring ordering in the DTS

� Relationships

Whether or not the source messages are related — for example, they have
some key field that indicates that they must be processed as a unit. A hash
partitioner should then be used to ensure that all messages with a given key
are processed by the same node.

The topologies possible when the following conditions apply are described here:

� No order and no relationships between messages

Since the order of processing of source messages is not important, and there
is no relationship between messages, it is possible to run the jobs fully in
parallel.

Figure 2-35 shows what such a topology would look like.

 Chapter 2. IBM InfoSphere DataStage stages 67

Figure 2-35 No ordering, no relationships

Each node contains an MQ Connector stage, a work queue and a DTS. The
MQ Connector stages access a single source queue and distribute these to
the nodes. Since the MQ Connector stage instances read the messages
destructively off the source queue, there is no contention for messages.

The reason to have multiple work queues is to be able to restart jobs upon
catastrophic failure. Multiple work queues also aid performance, since there is
no contention for work queues, and the DTS is more likely to find its message
from the head of the queue.

� No order, but relationships exist in the messages

Since it is necessary to ensure that all messages that are related to each
other by a shared key value are sent to the same node, a single MQ
Connector stage combined with the use of a hash partitioner must be used if
parallelism is desired.

Figure 2-36 shows what such a topology would look like.

Note: The numbers under the queues represent message sequence
numbers and illustrate how messages may be distributed across the
queues. The letters represent hash partitioning key fields. The solid arrows
show the movement of IBM WebSphere MQ messages to and from the
queues. The dashed lines represent the job links. For clarity, only MQ
Connector and Distributed Transaction stages are shown here, but in
reality there would be other stages in between to implement the business
logic of the extract, transformation, and load (ETL) job.

68 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-36 No ordering but relationships exist topology

In this scenario, there must be a single work queue, since the MQ Connector
cannot determine which node will be targeted for a specific message.

� Ordering is a must

Since the messages must be processed in the order they arrive on the source
queue, it is necessary to execute the entire job sequentially. This is because
there is no synchronization between nodes, and therefore distributing
messages to multiple nodes cannot guarantee any ordering of messages.

Figure 2-37 shows what such a topology would look like.

Figure 2-37 Ordering a must topology

Note: These topologies can be modified to support scenarios where work
queues bypassed. This is shown in Figure 2-38 and Figure 2-39. By omitting
the necessity to write to a work queue, overall performance could possibly be
improved.

 Chapter 2. IBM InfoSphere DataStage stages 69

Figure 2-38 No ordering (with no work queue) topology

Figure 2-39 Ordering (with no work queue) topology

Figure 2-40 on page 72 through Figure 2-55 on page 85 show an example of a
write to a Distributed Transaction stage in a job (“J13_Daily_UpdateLookupDim
(Day 1)” on page 356 in the retail industry scenario described in “Retail industry
scenario” on page 140).

The flow is as follows:

1. Figure 2-40 on page 72 shows the job that processes changes to attributes of
dimension tables arriving via a IBM WebSphere MQ queue. This is described
in “J13_Daily_UpdateLookupDim (Day 1)” on page 356 and is not repeated
here. Instead, we only focus on the configuration of the Distributed
Transaction stage in this job.

70 IBM InfoSphere DataStage Data Flow and Job Design

2. Figure 2-41 on page 72 shows the Properties tab in the Stage page, which
allows you to specify connection details (Queue Manager QM_Kazan and
Work queue WORKQ) and usage details such as whether the messages
across all the input links should be processed in order6 (Order messages
Yes). It shows the nine input links — three (insert, update and delete) for each
target (Customer, Product and Store).

3. Figure 2-42 on page 73 through Figure 2-54 on page 84 show the
configuration of the Customer_Insert, Customer_Update, and
Customer_Delete input links, as follows:

– Figure 2-42 on page 73 shows the Properties tab for the Customer_Insert
link that identifies the connection to the target database DSSAMPLE, and
the Write mode (Insert). Rather than let the stage generate the insert SQL,
the Generate SQL property is set to No to indicate that the SQL will be
provided manually (partially seen here).

The order of processing of the input links is specified under the Link
Ordering tab as shown in Figure 2-43 on page 74. It is essential to order
the input links correctly to ensure parent-child relationships are properly
coordinated. Finally, when a link is selected, the 'Connector' drop-down list
provides a way to select the target connector for the stage such as DB2 or
WebSphere MQ.

Figure 2-44 on page 75 shows the input column definitions under the
Columns tab for this link.

Figure 2-45 on page 76 shows the properties of the Partitioning tab,
which allows you to specify details about how the incoming data is
partitioned or collected on this input link before being processed by the
stage. It shows a Hash Partition type and a sort being requested on the
DTS_String_Timestamp column (in the Selected pane).

– Figure 2-46 on page 77 through Figure 2-51 on page 81 are similar to the
configuration of the Configuration_Insert link and show the configuration of
the Customer_Update link. The manually provided Update SQL statement
is shown in Figure 2-48 on page 78.

– Figure 2-52 on page 82 through Figure 2-55 on page 85 show the
corresponding configuration of the Customer_Delete link.

6 We have to process the updates to the various dimension tables in the order in which they occurred
in the originating OLTP system to maintain correct versioning. Therefore, this parameter (also
called cross link ordering) must be set to Yes.

Note: Similar configurations must be defined for the other two
dimension tables Product and Store — not shown here.

 Chapter 2. IBM InfoSphere DataStage stages 71

Figure 2-40 DTS example 1/16

Figure 2-41 DTS example 2/16

72 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-42 DTS example 3/16

 Chapter 2. IBM InfoSphere DataStage stages 73

Figure 2-43 DTS example 4/16

74 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-44 DTS example 5/16

 Chapter 2. IBM InfoSphere DataStage stages 75

Figure 2-45 DTS example 6/16

76 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-46 DTS example 7/16

 Chapter 2. IBM InfoSphere DataStage stages 77

Figure 2-47 DTS example 8/16

Figure 2-48 DTS example 9/16

78 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-49 DTS example 10/16

 Chapter 2. IBM InfoSphere DataStage stages 79

Figure 2-50 DTS example 11/16

80 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-51 DTS example 12/16

 Chapter 2. IBM InfoSphere DataStage stages 81

Figure 2-52 DTS example 13/16

82 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-53 DTS example 14/16

 Chapter 2. IBM InfoSphere DataStage stages 83

Figure 2-54 DTS example 15/16

84 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-55 DTS example 16/16

 Chapter 2. IBM InfoSphere DataStage stages 85

2.8 FTP Enterprise

The FTP Enterprise stage transfers multiple files in parallel, as well as a single
file. These are sets of files that are transferred from one or more FTP servers into
IBM InfoSphere DataStage or from IBM InfoSphere DataStage to one or more
FTP servers, as shown in Figure 2-56.

Figure 2-56 FTP Enterprise stage

The source or target for the file is identified by a URI (Universal Resource
Identifier). The FTP Enterprise stage invokes an FTP client program and
transfers files to or from a remote host using the FTP Protocol.

Figure 2-57 on page 87 through Figure 2-59 on page 88 show an example of the
configuration of an FTP Enterprise stage in a job (“J01_IL_FTPCustomerFile” on
page 159 in the retail industry scenario described in “Retail industry scenario” on
page 140), as follows:

1. Figure 2-57 on page 87 shows the job that transfers a file from the mainframe
to a sequential file. This is described in “J01_IL_FTPCustomerFile” on
page 159 and is not repeated here. Instead, we only focus on the
configuration of the FTP Enterprise stage in this job.

86 IBM InfoSphere DataStage Data Flow and Job Design

2. The Output page allows you to specify details about how the FTP Enterprise
stage transfers one or more files from a remote host using the FTP protocol.
Figure 2-58 on page 88 shows the Properties tab in the Output page, which
allows you to specify properties that determine what the stage actually does.
The available properties are displayed in a tree structure. They are divided
into categories to help you find your way around them:

– The Source category property URI specifies the pathname connecting the
Stage to a source file on a remote host, which corresponds to the
Customer file on the mainframe.

– The Connection category allows you to specify the User name (nalur1)
and Password to access the data source identified by the URI.

– The Transfer Protocol category Transfer Mode property is FTP.

– The Options category Transfer Type is Binary.

3. Figure 2-59 on page 88 shows the Columns tab in the Output page which
identifies a single column definition for this file named Body of VARCHAR
(255). Runtime column propagation is not enabled here.

Figure 2-57 FTP Enterprise stage example 1/3

Note: Format tab is used in the same way as in the Column Import or
Sequential File stage to add context to how the data can be understood on
receipt. This is not shown here.

 Chapter 2. IBM InfoSphere DataStage stages 87

Figure 2-58 FTP Enterprise stage example 2/3

Figure 2-59 FTP Enterprise stage example 3/3

2.9 Funnel

The Funnel stage is a processing stage. It copies multiple input data sets to a
single output data set. This operation is useful for combining separate data sets
into a single large data set. The stage can have any number of input links and a
single output link, as shown in Figure 2-60.

88 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-60 Funnel stage

The Funnel stage can operate in one of three modes:

� Continuous Funnel combines the records of the input data in no guaranteed
order. It takes one record from each input link in turn. If data is not available
on an input link, the stage skips to the next link rather than waiting.

� Sort Funnel combines the input records in the order defined by the value(s) of
one or more key columns, and the order of the output records is determined
by these sorting keys.

The sort funnel method has some particular requirements about its input data.
All input data sets must be sorted by the same key columns as will be used by
the Funnel operation. Typically all input data sets for a sort funnel operation
are hash-partitioned before they are sorted — choosing the auto partitioning
method will ensure that this is done.

Hash partitioning guarantees that all records with the same key column
values are located in the same partition and so are processed on the same
node. If sorting and partitioning are carried out on separate stages before the
Funnel stage, this partitioning must be preserved.

 Chapter 2. IBM InfoSphere DataStage stages 89

The sortfunnel operation allows you to set one primary key and multiple
secondary keys. The Funnel stage first examines the primary key in each
input record. For multiple records with the same primary key value, it then
examines secondary keys to determine the order of records it will output.

� Sequence copies all records from the first input data set to the output data
set, then all the records from the second input data set, and so on.

For all methods, the metadata of all input data sets should be identical —
mismatched columns are automatically dropped.

Figure 2-61 on page 91 through Figure 2-65 on page 92 show an example of the
configuration of a Funnel stage in a job (“J14_Daily_CreateAllSalesStoreDS
(Day 1)” on page 385 in the retail industry scenario described in “Retail industry
scenario” on page 140), as follows:

1. Figure 2-61 on page 91 shows the job that collects all the sales transactions
from three stores into a single Data Set. This is described in
“J14_Daily_CreateAllSalesStoreDS (Day 1)” on page 385 and is not repeated
here. Instead, we only focus on the configuration of the FTP Enterprise stage
in this job.

2. Figure 2-62 on page 91 shows the Properties tab in the Stage page, which
allows you to specify properties that determine what the stage actually does.
We let the Options category property Funnel Type default to Continuous
Funnel.

3. We let all the properties default under the Advanced tab in the Stage page.

4. We let the properties default under the Partitioning tab in the Input page,
which allows you to specify details about how the incoming data is partitioned
or collected.

5. Figure 2-63 on page 91 shows the Columns tab in the Input page, which
identifies the input column definitions.

6. The Output page allows you to specify details about data output from the
Funnel stage. Figure 2-64 on page 92 shows the Mapping tab in the Output
page, which allows you to specify how the output columns are derived, that is,
what input columns map onto them or how they are generated. In this case
we defined a one-to-one mapping between the input and output columns.

7. Figure 2-65 on page 92 shows the Columns tab in the Output page, which
identifies the output column definitions mapped earlier. Runtime column
propagation is not enabled here.

90 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-61 Funnel stage example 1/5

Figure 2-62 Funnel stage example 2/5

Figure 2-63 Funnel stage example 3/5

 Chapter 2. IBM InfoSphere DataStage stages 91

Figure 2-64 Funnel stage example 4/5

Figure 2-65 Funnel stage example 5/5

92 IBM InfoSphere DataStage Data Flow and Job Design

2.10 Join

The Join stage is a processing stage. It performs join operations on two or more
inputs to the stage and then outputs the resulting data set, as shown in
Figure 2-66.

Figure 2-66 Join stage

The Join stage is one of three stages that join tables based on the values of key
columns. The other two are the Lookup stage described in 2.11, “Lookup” on
page 99 and the Merge stage described in 2.12, “Merge” on page 107.

The three stages differ mainly in the memory they use, the treatment of rows with
unmatched keys, and their requirements for data being input (for example,
whether it is sorted).

In the Join stage, the input data sets are notionally identified as the “right” set
and the “left” set, and “intermediate” sets. You can specify which is which. It has
any number (other than 1) of input links and a single output link.

 Chapter 2. IBM InfoSphere DataStage stages 93

The stage can perform one of four join operations:

� “Inner” transfers records from input data sets whose key columns contain
equal values to the output data set. Records whose key columns do not
contain equal values are dropped.

� “Left outer” transfers all values from the left data set but transfers values from
the right data set and intermediate data sets only where key columns match.
The stage drops the key column from the right and intermediate data sets.

� “Right outer” transfers all values from the right data set and transfers values
from the left data set and intermediate data sets only where key columns
match. The stage drops the key column from the left and intermediate data
sets.

� “Full outer” transfers records in which the contents of the key columns are
equal from the left and right input data sets to the output data set. It also
transfers records whose key columns contain unequal values from both input
data sets to the output data set. (Full outer joins do not support more than two
input links.)

The data sets input to the Join stage must be key partitioned and sorted. This
ensures that rows with the same key column values are located in the same
partition and will be processed by the same node. It also minimizes memory
requirements because fewer rows have to be in memory at any one time.
Choosing the auto partitioning method will ensure that partitioning and sorting is
done. If sorting and partitioning are carried out on separate stages before the
Join stage, IBM InfoSphere DataStage in auto mode will detect this and not
re-partition — alternatively you could explicitly specify the “Same” partitioning
method.

Figure 2-67 on page 95 through Figure 2-74 on page 99 show an example of the
configuration of a Join stage in a job (“J15_Daily_CreateSalesAggDS (Day 1)” on
page 387 in the retail industry scenario described in “Retail industry scenario” on
page 140), as follows:

1. Figure 2-67 on page 95 shows the job that prepares the consolidated sales
transactions for input to the SCD stage by appending the dimension attributes
to each row. This is described in “J15_Daily_CreateSalesAggDS (Day 1)” on
page 387 and is not repeated here. Instead, we only focus on the
configuration of the Join stage in this job.

2. Figure 2-68 on page 96 shows the Properties tab in the Stage page, which
allows you to specify properties that determine what the stage actually does.

– The Join Keys category property Key identifies the join column
(CUSTOMER_ID).

– The Options category property Join Type specifies a Left Outer join.

94 IBM InfoSphere DataStage Data Flow and Job Design

3. We let all the properties default under the Advanced tab in the Stage page.

4. Figure 2-69 on page 96 shows the Link Ordering tab in the Stage page,
which allows you to specify which input link is regarded as the left link and
which link is regarded as the right link, and which links are regarded as
intermediate. You can use this tab to reorder the links as required.

5. Figure 2-70 on page 96 shows the Partitioning tab in the Input page, which
allows you to specify details about how the incoming data is partitioned or
collected. We chose the Hash Partition Type and sorted the input on the
CUSTOMER_ID column.

6. Figure 2-71 on page 97 shows the Columns tab in the Input page, which
identifies the input column definitions of the Joi_CustomerDim link.

7. The Output page allows you to specify details about data output from the Join
stage. Figure 2-72 on page 97 and Figure 2-73 on page 98 show the
Mapping tab in the Output page, which allows you to specify how the output
columns are derived, that is, what input columns map onto them or how they
are generated. In this case we defined a one-to-one mapping between the
input and output columns.

8. Figure 2-74 on page 99 shows the Columns tab in the Output page, which
identifies the output column definitions mapped earlier. Runtime column
propagation is not enabled here.

Figure 2-67 Join stage example 1/8

 Chapter 2. IBM InfoSphere DataStage stages 95

Figure 2-68 Join stage example 2/8

Figure 2-69 Join stage example 3/8

Figure 2-70 Join stage example 4/8

96 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-71 Join stage example 5/8

Figure 2-72 Join stage example 6/8

 Chapter 2. IBM InfoSphere DataStage stages 97

Figure 2-73 Join stage example 7/8

98 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-74 Join stage example 8/8

2.11 Lookup

The Lookup stage is a processing stage. It is used to perform lookup operations
on a data set read into memory from any other Parallel job stage that can output
data. It can also perform lookups directly in all DBMSs or in a lookup table
contained in a Lookup File Set stage.

The Lookup stage can have a reference link (Ds_rate), a single input link
(shared_cont), a single output link (Trx_LocCurrency), and a single reject
(Ds_reject) link as shown in Figure 2-75 on page 100.

 Chapter 2. IBM InfoSphere DataStage stages 99

Figure 2-75 Lookup stage

Depending upon the type and setting of the stage(s) providing the lookup
information, it can have multiple reference links (where it is directly looking up a
DB2 table or Oracle table, it can only have a single reference link). A lot of the
setting up of a lookup operation takes place on the stage providing the lookup
table.

The input link carries the data from the source data set and is known as the
primary link.

For each record of the source data set from the primary link, the Lookup stage
performs a table lookup on each of the lookup tables attached by reference links.
The table lookup is based on the values of a set of lookup key columns, one set
for each table. The keys are defined on the Lookup stage. For lookups of data
accessed through the Lookup File Set stage, the keys are specified when you
create the lookup file set.

100 IBM InfoSphere DataStage Data Flow and Job Design

You can specify a condition on each of the reference links, such that the stage
will only perform a lookup on that reference link if the condition is satisfied.

Lookup stages do not require data on the input link or reference links to be
sorted. Be aware, though, that large in-memory lookup tables will degrade
performance because of their paging requirements.

Each record of the output data set contains columns from a source record plus
columns from all the corresponding lookup records where corresponding source
and lookup records have the same value for the lookup key columns. The lookup
key columns do not have to have the same names in the primary and the
reference links.

The optional reject link carries source records that do not have a corresponding
entry in the input lookup tables.

You can also perform a range lookup, which compares the value of a source
column to a range of values between two lookup table columns. If the source
column value falls within the required range, a row is passed to the output link.
Alternatively, you can compare the value of a lookup column to a range of values
between two source columns. Range lookups must be based on column values,
not constant values. Multiple ranges are supported.

There are some special partitioning considerations for Lookup stages. You must
ensure that the data being looked up in the lookup table is in the same partition
as the input data referencing it. One way of doing this is to partition the lookup
tables using the Entire method. Another way is to partition it in the same way as
the input data.

The most common use for a lookup is to map short codes in the input data set
onto expanded information from a lookup table, which is then joined to the
incoming data and output. For example, you could have an input data set
carrying names and addresses of your U.S. customers. The data as presented
identifies state as a two letter U. S. state postal code, but you want the data to
carry the full name of the state.

You could define a lookup table that carries a list of codes matched to states,
defining the code as the key column. As the Lookup stage reads each line, it
uses the key to look up the state in the lookup table. It adds the state to a new
column defined for the output link, and so the full state name is added to each
address. If any state codes have been incorrectly entered in the data set, the
code will not be found in the lookup table, and so that record will be rejected.

Lookups can also be used for validation of a row. If there is no corresponding
entry in a lookup table to the key’s values, the row is rejected.

 Chapter 2. IBM InfoSphere DataStage stages 101

Figure 2-76 on page 102 through Figure 2-81 on page 106 show an example of
the configuration of a Lookup stage in a job
(“J07A_SharedContainerLookupCurrency” on page 273 in the retail industry
scenario described in “Retail industry scenario” on page 140), as follows:

1. Figure 2-76 on page 102 shows the job that performs a lookup of the currency
conversion rate of the day from a data set that was populated using a Web
service. This is described in “J07A_SharedContainerLookupCurrency” on
page 273 and is not repeated here. Instead, we only focus on the
configuration of the Lookup stage in this job.

2. Figure 2-77 on page 103 through Figure 2-79 on page 105 show the mapping
of one column each from the two input links (shared_cont and Ds_rate) to the
output link Trx_LocCurrency. The column definitions of each of these links is
shown in the bottom pane.

3. Figure 2-80 on page 105 shows the Link Ordering tab in the Stage page,
which allows you to specify which input link is regarded as the Primary
(shared_cont) and which link is regarded as the Lookup (Ds_rate). You can
use this tab to reorder the links as required.

4. Figure 2-81 on page 106 shows the General tab in the Outputs page, which
has Runtime column propagation checked.

Figure 2-76 Lookup stage example 1/6

102 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-77 Lookup stage example 2/6

 Chapter 2. IBM InfoSphere DataStage stages 103

Figure 2-78 Lookup stage example 3/6

104 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-79 Lookup stage example 4/6

Figure 2-80 Lookup stage example 5/6

 Chapter 2. IBM InfoSphere DataStage stages 105

Figure 2-81 Lookup stage example 6/6

106 IBM InfoSphere DataStage Data Flow and Job Design

2.12 Merge

The Merge stage is a processing stage. It can have any number (more than 1) of
input links, a single output link, and the same number of reject links as there are
update input links, as shown in Figure 2-82.

Figure 2-82 Merge stage

As mentioned earlier, the Merge stage is one of three stages that join tables
based on the values of key columns. The other two are the Join stage as
described in 2.10, “Join” on page 93 and the Lookup stage described in 2.11,
“Lookup” on page 99. The three stages differ mainly in the memory they use, the
treatment of rows with unmatched keys, and their requirements for data being
input (for example, whether it is sorted).

 Chapter 2. IBM InfoSphere DataStage stages 107

The Merge stage combines a master data set with one or more update data sets.
The columns from the records in the master and update data sets are merged so
that the output record contains all the columns from the master record plus any
additional columns from each update record that are required. A master record
and an update record are merged only if both of them have the same values for
the merge key column(s) that you specify. Merge key columns are one or more
columns that exist in both the master and update records.

The data sets input to the Merge stage must be key partitioned and sorted. This
ensures that rows with the same key column values are located in the same
partition and will be processed by the same node. It also minimizes memory
requirements because fewer rows have to be in memory at any one time.
Choosing the auto partitioning method will ensure that partitioning and sorting is
done. If sorting and partitioning are carried out on separate stages before the
Merge stage, IBM InfoSphere DataStage in auto partition mode will detect this
and not re-partition (alternatively you could explicitly specify the Same
partitioning method).

As part of preprocessing your data for the Merge stage, you should also remove
duplicate records from the master data set. If you have more than one update
data set, you must remove duplicate records from the update data sets as well.

Unlike Join stages and Lookup stages, the Merge stage allows you to specify
several reject links. You can route update link rows that fail to match a master
row down a reject link that is specific for that link. You must have the same
number of reject links as you have update links. You can also specify whether to
drop unmatched master rows, or output them on the output data link.

108 IBM InfoSphere DataStage Data Flow and Job Design

2.13 Sequential File

The Sequential File stage is a file stage. It allows you to read data from or write
data to one or more flat files as shown in Figure 2-83. The stage can have a
single input link or a single output link, and a single rejects link.

Figure 2-83 Sequential stage

The stage executes in parallel mode by default if reading multiple files but
executes sequentially if it is only reading one file. By default, a complete file will
be read by a single node (although each node might read more than one file).

 Chapter 2. IBM InfoSphere DataStage stages 109

For fixed-width files, however, you can configure the stage to behave differently:

� You can specify that single files can be read by multiple nodes. This can
improve performance on cluster systems.

� You can specify that a number of readers run on a single node. This means,
for example, that a single file can be partitioned as it is read.

These two options are mutually exclusive.

The stage executes in parallel if writing to multiple files, but executes sequentially
if writing to a single file.

When reading or writing a flat file, IBM InfoSphere DataStage needs to know
something about the format of the file. The information required is how the file is
divided into rows and how rows are divided into columns.

Figure 2-84 on page 111 through Figure 2-87 on page 113 show an example of
the configuration of a Sequential stage in a job (“J07_IL_Daily_LoadSalesStore”
on page 282 in the retail industry scenario described in “Retail industry scenario”
on page 138), as follows:

1. Figure 2-84 on page 111 shows the job that reads sales data from a
sequential file and performs a lookup to obtain the current exchange rate for
the appropriate country code and writes it to a DB2 table. This is described in
“J07_IL_Daily_LoadSalesStore” on page 282 and is not repeated here.
Instead, we only focus on the configuration of the Sequential File stage in this
job.

2. The Output page allows you to specify details about how the Sequential File
stage reads data from one or more flat files. Figure 2-85 on page 111 shows
the Properties tab in the Output page, which allows you to specify properties
for the output link. These dictate how incoming data is read from what files.

Figure 2-86 on page 112 shows the Format tab in the Output page, which allows
you to supply information about the format of the flat file or files that you are
reading. The tab has a similar format to the Properties tab. We let the properties
default.

Note: Information for properties such as File and Schema File is not
provided here since we expect to provide it at execution time. You specify a
job parameter to represent the missing information, so that when you run
the job, you are prompted to supply a value for the job parameter. This is
shown in Figure 3-215 on page 291.

110 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-87 on page 113 shows the Columns tab in the Output page, which
specifies the explicitly defined column definitions of the output data. Runtime
column propagation is checked to ensure that the metadata of all columns as
specified in the schema file are propagated to the next stage.

Figure 2-84 Sequential stage example 1/4

Figure 2-85 Sequential stage example 2/4

 Chapter 2. IBM InfoSphere DataStage stages 111

Figure 2-86 Sequential stage example 3/4

112 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-87 Sequential stage example 4/4

2.14 Slowly Changing Dimension

The Slowly Changing Dimension (SCD) stage is a processing stage that works
within the context of a star schema database. The SCD stage has a single input
link, a single output link, a dimension reference link, and a dimension update link
as shown in Figure 2-88 on page 114.

The SCD stage reads source data on the input link, performs a dimension table
lookup on the reference link, and writes data on the output link. The output link
can pass data to another SCD stage, to a different type of processing stage, or to
a fact table. The dimension update link is a separate output link that carries
changes for the dimension. You can perform these steps in a single job or a
series of jobs, depending on the number of dimensions in your database and
your performance requirements.

 Chapter 2. IBM InfoSphere DataStage stages 113

Figure 2-88 SCD stage

SCD stages support both SCD Type 1 and SCD Type 2 processing, as follows:

� SCD Type 1

Overwrites an attribute in a dimension table.

� SCD Type 2

Updates the existing row to indicate it expired and adds a new row to the
dimension table.

Each SCD stage processes a single dimension and performs lookups by using
an equality matching technique. If the dimension is a database table, the stage
reads the database to build an in memory lookup table of all the current
dimension entries.

� If a match is found, the SCD stage updates7 rows in the dimension table to
reflect the changed data.

� If a match is not found, the stage creates a new row in the dimension table. All
of the columns that are needed to create a new dimension row must be
present in the source data.

7 As indicated earlier, a Type 1 change results in an update to the existing row; a Type 2 change
updates the existing row to indicate it expired and adds a new row to the dimension table.

114 IBM InfoSphere DataStage Data Flow and Job Design

Input data to SCD stages must accurately represent the order in which events
occurred. You might have to presort your input data by a sequence number or a
date field. If a job has multiple SCD stages, you must ensure that the sort order
of the input data is correct for each stage.

If the SCD stage is running in parallel, the input data must be hash partitioned by
key. Hash partitioning allows all records with the same business key to be
handled by the same process. The SCD stage divides the dimension table
across processes by building a separate lookup table for each process.

Each SCD stage processes a single dimension, but job design is flexible. You
can design one or more jobs to process dimensions, update the dimension table,
and load the fact table.

� Processing dimensions

You can create a separate job for each dimension, one job for all dimensions,
or several jobs, each of which has several dimensions.

� Updating dimensions

You can update the dimension table as the job runs by linking the SCD stage
to a database stage, or you can update the dimension table later by sending
dimension changes to a flat file that you use in a separate job. Actual
dimension changes are applied to the lookup table in memory and are
mirrored to the dimension update link, giving you the flexibility to handle a
series of changes to the same dimension row.

� Loading the fact table

You can load the fact table as the final step of the job that updates the last
dimension, or in a separate job.

We describe two possible job designs, as follows:

� Figure 2-89 on page 116 through Figure 2-91 on page 117 show a series of
jobs, where the first job performs the dimension lookup, the second job
performs the dimension table update, and the third job loads the fact table.

Important: If both Type 1 and Type 2 changes exist for the same record, the
Type 2 change takes precedence over the Type 1 change. This means that a
new dimension record is first created, and then the Type 1 changes are
applied to the newly created record only. The Type 1 changes in this case are
not reflected in the earlier row(s).

 Chapter 2. IBM InfoSphere DataStage stages 115

The job design shown in these figures minimizes the use of database
facilities. The job in Figure 2-89 builds a lookup table in memory for the
dimension, so the database connection is active only when the table is being
created. Both the output data and the dimension update records are written to
flat files.

The jobs in Figure 2-90 and Figure 2-91 use these files to update the
dimension table and to load the fact table later. This series of jobs represents
a single dimension table. If you have multiple dimensions, each has a job
corresponding to Figure 2-89 and Figure 2-90. The output of the last job
corresponding to Figure 2-89 is the input to the job corresponding to
Figure 2-91.

.

Figure 2-89 SCD job involving 3 stages 1/3

Figure 2-90 SCD job involving 3 stages 2/3

116 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-91 SCD job involving 3 stages 3/3

� Figure 2-92 on page 118 shows a strategy that combines jobs corresponding
to Figure 2-89 on page 116 and Figure 2-90 on page 116 into a single step.

Here the SCD stage provides the necessary column information to the
database stage so that it can generate the correct INSERT and UPDATE
SQL statements to update the dimension table.

By contrast, the design in Figure 2-89 on page 116 through Figure 2-91 here
requires you to save your output columns from the SCD stage in the job
corresponding to Figure 2-89 on page 116 as a table definition in the
repository. You must then load columns from this table definition into the
database stage in the job corresponding to Figure 2-90 on page 116.

Note: The advantage of the approach shown in Figure 2-92 on page 118,
over combining all the updates (dimension and fact table) in a single job,
is that you can ensure that all the dimension tables are updated correctly
before updating the fact table. This allows you to correct any dimension
table update failures before running the fact table update so that no failures
occur during the fact table load.

Combining all the updates (dimension and fact table) in a single job (not
shown here) opens the possibility of a failure of a dimension table update
and can cause fact table update failures.

 Chapter 2. IBM InfoSphere DataStage stages 117

Figure 2-92 SCD job involving a single stage

Purpose codes and surrogate keys are important concepts in SCD processing,
as follows:

� Purpose codes are an attribute of dimension columns in SCD stages.
Purpose codes are used to build the lookup table, to detect dimension
changes, and to update the dimension table.

– Building the lookup table

The SCD stage uses purpose codes to determine how to build the lookup
table for the dimension lookup. If a dimension has only Type 1 columns,
the stage builds the lookup table by using all dimension rows. If any Type
2 columns exist, the stage builds the lookup table by using only the current
rows. If a dimension has a Current Indicator column, the stage uses the
derivation value of this column on the Dim Update tab to identify the
current rows of the dimension table. If a dimension does not have a
Current Indicator column, then the stage uses the Expiration Date column
and its derivation value to identify the current rows. Any dimension
columns that are not needed are not used. This technique minimizes the
amount of memory that is required by the lookup table.

– Detecting dimension changes

Purpose codes are also used to detect dimension changes. The SCD
stage compares Type 1 and Type 2 column values to source column
values to determine whether to update an existing row, insert a new row,
or expire a row in the dimension table.

118 IBM InfoSphere DataStage Data Flow and Job Design

– Updating the dimension table

Purpose codes are part of the column metadata that the SCD stage
propagates to the dimension update link. You can send this column
metadata to a database stage in the same job, or you can save the
metadata on the Columns tab and load it into a database stage in a
different job. When the database stage uses the auto-generated SQL
option to perform inserts and updates, it uses the purpose codes to
generate the correct SQL statements.

The SCD stage provides nine purpose codes to support dimension
processing, as follows:

– (blank)

The column has no SCD purpose. This purpose code is the default.

– Surrogate Key

The column is a surrogate key that is used to identify dimension records.

– Business Key

The column is a business key that is typically used in the lookup condition.

– Type 1

The column is an SCD Type 1 field. SCD Type 1 column values are
always current. When changes occur, the SCD stage overwrites existing
values in the dimension table.

– Type 2

The column is an SCD Type 2 field. SCD Type 2 column values represent
a point in time. When changes occur, the SCD stage updates the existing
row to indicate that it has expired, and adds a new row to the dimension
table.

– Current Indicator (Type 2)

The column is the current record indicator for SCD Type 2 processing.
Only one Current Indicator column is allowed.

– Effective Date (Type 2)

The column is the effective date for SCD Type 2 processing. Only one
Effective Date column is allowed.

– Expiration Date (Type 2)

The column is the expiration date for SCD Type 2 processing. An
Expiration Date column is required if there is no Current Indicator column,
otherwise it is optional.

 Chapter 2. IBM InfoSphere DataStage stages 119

– SK Chain

The column is used to link a record to the previous record or the next
record by using the value of the Surrogate Key column. Only one
Surrogate Key column can exist if you have an SK Chain column.

� Surrogate keys are used to join a dimension table to a fact table in a star
schema database.

When the SCD stage performs a dimension lookup:

– If a matching record is found, it retrieves the value of the existing
surrogate key.

– If a match is not found, the stage obtains a new surrogate key value by
using the derivation of the Surrogate Key column on the Dim Update tab.

• If you want the SCD stage to generate new surrogate keys by using a
key source that you created with a Surrogate Key Generator stage as
described in “Surrogate Key Generator” on page 132, you must use the
NextSurrogateKey function to derive the Surrogate Key column.

• If you want to use your own method to handle surrogate keys, you
should derive the Surrogate Key column from a source column.

You can replace the dimension information in the source data stream with the
surrogate key value by mapping the Surrogate Key column to the output link.

Figure 2-93 on page 122 through Figure 2-99 on page 126 show an example of
the configuration of a Slowly Changing Dimension stage in a job
(“J07_IL_Daily_LoadSalesStore” on page 282 in the retail industry scenario
described in “Retail industry scenario” on page 138), as follows:

1. Figure 2-93 on page 122 shows the job that reads sales transactions with
attributes of dimension tables, updates the dimension (Store, Customer,
Product and Date) is Type 1or Type 2 changes are present, appends the
surrogate key (via a lookup of the appropriate dimension table) to the sales
transactions, and generates the enhanced sales transactions file for updating
the fact table. This is described in “J07_IL_Daily_LoadSalesStore” on
page 282 and is not repeated here. Instead, we only focus on the
configuration of the Slowly Changing Dimension stage in this job.

To edit an SCD stage, you must define how the stage should lookup data in
the dimension table, obtain surrogate key values, update the dimension table,
and write data to the output link.

2. Figure 2-94 on page 123 shows the Lookup tab in the Input page for the
Odbc_StoreDim link, which allows you to define the match condition to use for
the dimension lookup. The match condition specifies how the SCD stage
should perform the dimension lookup. You may associate one or more pairs
of columns. A successful lookup requires all associated pairs of columns to
match. In this case, STORE_ID is the match condition.

120 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-94 on page 123 also shows the purpose codes, which specify how
the SCD stage should process dimension data. Purpose codes apply to
columns on the dimension reference link and on the dimension update link.
Purpose codes are selected according to the type of columns in a dimension:

– If a dimension contains a Type 2 column, you must select a Current
Indicator column, an Expiration Date column, or both. An Effective Date
column is optional. You cannot assign Type 2 and Current Indicator to the
same column.

– If a dimension contains only Type 1 columns, no Current Indicator,
Effective Date, Expiration Date, or SK Chain columns are allowed.

STORE_DIM_KEY is identified with the Surrogate Key purpose code.

CITY_POPULATION and STATE_POPULATION are identified with the
Type 1 purpose code.

MANAGER_NAME is identified with the Type 2 purpose code.

CURRENT_IND (Current Indicator (Type 2) purpose code), EFFECTIVE_TS
(Effective Date (Type 2) purpose code), and EXPIRATION_TS (Expiration
Date (Type 2) purpose code) are the other specifications.

3. Figure 2-95 on page 123 shows the Surrogate Key tab in the Input page for
the Odbc_StoreDim link, which allows you to specify the source type and
source name of the surrogate key generator stage generated file.

Calls to the key source are made by the NextSurrogateKey function.
On the Dim Update tab in the next step, we create a derivation that uses the
NextSurrogateKey function for the column that has a purpose code of
Surrogate Key. The NextSurrogateKey function returns the value of the next
surrogate key when the SCD stage creates a new dimension row.

4. Figure 2-96 on page 124 shows the Dim_Update tab in the Output page for
the Ds_StoreDimUpdate link, which allows you to specify how to update the
dimension table, including the values to use for new records and when
records should expire. Every dimension column must have a derivation.
Relationship lines show which dimension columns are derived from source
columns, either directly or as part of an expression.

The Derivation columns show the following values:

– STORE_DIM_KEY has the NextSurrogateKey() function identified in the
previous step.

– CURRENT_IND has the value of “Y”

– EXPIRATION_TS has the value 2099-12-31-00.00.00.000000

 Chapter 2. IBM InfoSphere DataStage stages 121

5. Figure 2-97 on page 125 shows the Output Map tab in the Output page for
the Fri_Store link, which allows you to specify how to write (map) data from
the input links to the output link. You can map input data and dimension data
to the output link. Dimension data is mapped from the lookup table in
memory, so new rows and changed data are available for output.

6. Figure 2-98 on page 126 shows the Columns tab in the Output page for the
Fri_Store link with the columns definitions corresponding to the mapping
defined in Figure 2-97 on page 125.

7. Figure 2-99 on page 126 shows the column definitions for the
Ds_StoreDimUpdate link under the Columns tab in the Output page. The
mapping that resulted in this is not shown here.

Figure 2-93 SCD stage example 1/7

122 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-94 SCD stage example 2/7

Figure 2-95 SCD stage example 3/7

 Chapter 2. IBM InfoSphere DataStage stages 123

Figure 2-96 SCD stage example 4/7

124 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-97 SCD stage example 5/7

 Chapter 2. IBM InfoSphere DataStage stages 125

Figure 2-98 SCD stage example 6/7

Figure 2-99 SCD stage example 7/7

126 IBM InfoSphere DataStage Data Flow and Job Design

2.15 Sort

The Sort stage is a processing stage. It is used to perform more complex sort
operations than can be provided for on the Input page Partitioning tab of parallel
job stage editors. You can also use it to insert a more explicit sort operation
where you want to make your job easier to understand.

The Sort stage has a single input link that carries the data to be sorted, and a
single output link carrying the sorted data as shown in Figure 2-100.

Figure 2-100 Sort stage

You specify sorting keys as the criteria on which to perform the sort. A key is a
column on which to sort the data, for example, if you had a name column you
might specify that as the sort key to produce an alphabetical list of names. The
first column you specify as a key to the stage is the primary key, but you can
specify additional secondary keys.

If multiple rows have the same value for the primary key column, then IBM
InfoSphere DataStage uses the secondary columns to sort these rows. You can
sort in sequential mode to sort data in its entirety or in parallel mode to sort data
within partitions,

Many types of processing, such as re-partitioning, can destroy the sort order of a
sorted data set. For example, assume you sorted a data set on a system with
four processing nodes and stored the results to a data set stage. The data set
will therefore have four partitions. You then use that data set as input to a stage
executing on a different number of nodes, possibly due to node constraints.

IBM InfoSphere DataStage automatically re-partitions a data set to spread out
the data set to all nodes in the system, unless you tell it not to, thereby possibly
destroying the sort order of the data. You could avoid this by specifying the
“Same” partitioning method. The stage then does not perform any re-partitioning
as it reads the input data set, and the original partitions are preserved.

 Chapter 2. IBM InfoSphere DataStage stages 127

You must also be careful when using a stage operating sequentially to process a
sorted data set. A sequential stage executes on a single processing node to
perform its action. Sequential stages will collect the data where the data set has
more than one partition, which may also destroy the sorting order of its input data
set. You can avoid this if you specify the collection method as follows:

� If the data was range partitioned before being sorted, you should use the
ordered collection method to preserve the sort order of the data set. Using
this collection method causes all the records from the first partition of a data
set to be read first, then all records from the second partition, and so on.

� If the data was hash partitioned before being sorted, you should use the sort
merge collection method specifying the same collection keys as the data was
partitioned on.

By default, the stage will sort with the native IBM InfoSphere DataStage sorter,
but you direct it to use the UNIX sort command.

Figure 2-101 on page 129 through Figure 2-106 on page 131 show an example
of the configuration of a Sort stage in a job (“J09_IL_LoadLookupCustomerDim”
on page 320 in the retail industry scenario described in “Retail industry scenario”
on page 138), as follows:

1. Figure 2-101 on page 129 shows the job that creates an intermediate
dimension lookup table and involves the use of a sort. This is described in
“J09_IL_LoadLookupCustomerDim” on page 320 and is not repeated here.
Instead, we only focus on the configuration of the Sort stage in this job.

2. Figure 2-102 on page 129 shows the Properties tab in the Stage page, which
allows you to specify properties that determine what the stage actually does.

– The Sorting Keys category Key property identifies columns
CUSTOMER_ID and EFFECTIVE_TS as the sorting keys with an
Ascending for the Sort Order property.

– The Options category properties were allowed to default as shown.

3. The Input page for the Srt_CustomerDim link allows you to specify details
about the data coming in to be sorted.

– Figure 2-103 on page 130 shows the Partitioning tab, which allows you to
specify details about how the incoming data is partitioned or collected
before the sort is performed. A sort is performed using the
CUSTOMER_ID as the sort key.

Note: We should have marked CUSTOMER_ID as having been sorted
previously. This was an error on our part.

128 IBM InfoSphere DataStage Data Flow and Job Design

– Figure 2-104 on page 130 shows the Columns tab with the column
definitions of the input data.

4. The Output page for the Rmd_CustomerDim allows you to specify details
about data output from the Sort stage.

– Figure 2-105 on page 131 shows the Mapping tab allows you to specify
how the output columns are derived, i.e., what input columns map onto
them. In this case the data has been mapped directly across from the
input.

– Figure 2-106 on page 131 shows the Columns tab with the column
definitions of the output data based on the mapping in the earlier step.

Figure 2-101 Sort stage example 1/6

Figure 2-102 Sort stage example 2/6

 Chapter 2. IBM InfoSphere DataStage stages 129

Figure 2-103 Sort stage example 3/6

Figure 2-104 Sort stage example 4/6

130 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-105 Sort stage example 5/6

Figure 2-106 Sort stage example 6/6

 Chapter 2. IBM InfoSphere DataStage stages 131

2.16 Surrogate Key Generator

The Surrogate Key Generator stage is a processing stage that generates
surrogate key columns and maintains the key source.

A surrogate key is a unique primary key that is not derived from the data that it
represents, therefore changes to the data will not change the primary key. In a
star schema database, surrogate keys are used to join a fact table to a
dimension table.

The Surrogate Key Generator stage can have a single input link, a single output
link, both an input link and an output link, or no links.

Job design depends on the purpose of the stage. You can use a Surrogate Key
Generator stage to perform the following tasks:

� Create or delete the key source before other jobs run

� Update a state file with a range of key values

� Generate surrogate key columns and pass them to the next stage in the job

� View the contents of the state file

Generated keys are unsigned 64-bit integers. The key source can be a state file
or a database sequence.

Figure 2-107 through Figure 2-109 show an example of the configuration of a
Surrogate Key Generator stage in a job (“J12_IL_GenerateSurrogateKey” on
page 335 in the retail industry scenario described in “Retail industry scenario” on
page 138), as follows:

1. Figure 2-107 shows the job that creates a surrogate key source and updates
its state. This is described in “J12_IL_GenerateSurrogateKey” on page 335
and is not repeated here. Instead, we only focus on the configuration of the
Surrogate Key Generator stage in this job.

Note: You can use the Surrogate Key Generator stage to update a state file,
but not a database sequence. Sequences must be modified with database
tools.

132 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-108 shows the Properties tab in the Stage page, which allows you to
specify properties that determine what the stage actually does.

The Key Source category Input Column Name property identifies the input
column to update the state file. This column usually is the surrogate key column
— PRODUCT_DIM_KEY in this case.

The Key Source Update Action property is set to Create and Update since the
state file does not exist in our case and we want to create it.

The Source Name property identifies the file and set the Source Type
property to Flat File.

We let the Advanced tab and Partitioning tab properties default — this is not
shown here.

2. Figure 2-109 shows the Columns tab in the Input page for the
Skg_ProductDim link Input page, which allows you to provide the column
definitions of the input data.

Figure 2-107 Surrogate Key Generator stage example 1/3

Figure 2-108 Surrogate Key Generator stage example 2/3

 Chapter 2. IBM InfoSphere DataStage stages 133

Figure 2-109 Surrogate Key Generator stage example 3/3

2.17 Transformer

The Transformer stage is a processing stage. It appears under the processing
category in the tool palette. Transformer stages allow you to create
transformations to apply to your data. These transformations can be simple or
complex and can be applied to individual columns in your data. Transformations
are specified using a powerful set of functions such as date & time, logical,
mathematical, null handling, number, raw, string, vector, type conversions, type
casting, and utility functions. For complete details of these functions, refer to IBM
WebSphere DataStage and QualityStage Parallel Job Developer Guide,
SC18-9891-00.

Transformer stages can have a single input and any number of outputs. It can
also have a reject link, which takes any rows that have not been written to any of
the outputs links by reason of a write failure or expression evaluation failure. This
is shown in Figure 2-110.

134 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-110 Transformer stage

You might want to pass some data straight through the Transformer stage
unaltered, but it is likely that you will want to transform data from some input
columns before outputting it from the Transformer stage.

You can specify such an operation by entering a transform expression. The
source of an output link column is defined in that column’s Derivation cell within
the Transformer Editor. You can use the Expression® Editor to enter
expressions in this cell. You can also simply drag an input column to an output
column’s Derivation cell, to pass the data straight through the Transformer stage.

In addition to specifying derivation details for individual output columns, you can
also specify constraints that operate on entire output links. A constraint is an
expression that specifies criteria that data must meet before it can be passed to
the output link. You can also specify a constraint otherwise link, which is an
output link that carries all the data not output on other links, that is, columns that
have not met the criteria.

Each output link is processed in turn. If the constraint expression evaluates to
TRUE for an input row, the data row is output on that link. Conversely, if a
constraint expression evaluates to FALSE for an input row, the data row is not
output on that link.

 Chapter 2. IBM InfoSphere DataStage stages 135

Constraint expressions on different links are independent. If you have more than
one output link, an input row may result in a data row being output from some,
none, or all of the output links.

You can also specify another output link, which takes rows that have not been
written to any other links because of write failure or expression evaluation failure.
This is specified outside the stage by adding a link and converting it to a reject
link. This link is not shown in the Transformer metadata grid, and derives its
metadata from the input link. Its column values are those in the input row that
failed to be written.

Figure 2-111 and Figure 2-112 show an example of the configuration of a
Transformer stage in a job (“J03_IL_LoadProductDim” on page 202 in the retail
industry scenario described in “Retail industry scenario” on page 138), as
follows:

1. Figure 2-111 shows the job that initially loads the Product dimension table.
This is described in “J03_IL_LoadProductDim” on page 202 and is not
repeated here. Instead, we only focus on the configuration of the Transformer
stage in this job.

2. Figure 2-112 shows the Trim function being used to remove trailing blanks in
all the input columns before being written to the output link
Odbc_ProductDim.

However, for the SKU column, a constraint8 is defined that the raw length of
the value in this field must exceed 5 bytes before it can be passed to the
output link.

Note: If you have enabled Runtime Column Propagation for an output link,
you do not have to specify metadata for that link. IBM InfoSphere DataStage is
flexible about metadata. It can cope with the situation where metadata is not
fully defined. You can define part of your schema and specify that, if your job
encounters extra columns that are not defined in the metadata when it actually
runs, it will adopt these extra columns and propagate them through the rest of
the job. This is known as runtime column propagation (RCP).

This can be enabled for a project via the IBM InfoSphere DataStage and
QualityStage Admin, and set for individual links via the Output Page Columns
tab for most stages, or in the Output page General tab for Transformer stages.
You should always ensure that runtime column propagation is turned on if you
want to use schema files to define column metadata.

8 A constraint is an expression that specifies criteria that data must meet before it can be passed to
the output link.

136 IBM InfoSphere DataStage Data Flow and Job Design

Figure 2-111 Transformer stage example 1/2

Figure 2-112 Transformer stage example 2/2

 Chapter 2. IBM InfoSphere DataStage stages 137

138 IBM InfoSphere DataStage Data Flow and Job Design

Chapter 3. Retail industry scenario

In this chapter we use a “real world” retail industry scenario to demonstrate a
typical star-schema data warehousing flow using IBM InfoSphere DataStage.
Included in the flow are the Complex Flat File, Distributed Transaction Stage,
and Slowly Changing Dimension stage.

3

© Copyright IBM Corp. 2008. All rights reserved. 139

3.1 Retail industry scenario

In this scenario, we use a “real world” retail industry scenario to demonstrate a
typical star-schema data warehousing flow using IBM InfoSphere DataStage.
Hopefully, you can then extrapolate/customize this process flow to address the
unique star-schema data warehousing requirements of your organization.

Our scenario assumes a fictitious national department store named
WantThatStuff, which decides to build a star-schema based sales analysis data
warehouse with the dimensions of customer, store, product, and date. Over time,
dimension attributes are expected to change, and the requirement is to preserve
versions of these changes in the star-schema data warehouse in order to deliver
accurate results with queries that relate to prior versions of dimension attributes.

The data source for the star-schema is an OLTP system on a z/OS platform.
Customer information, Employee information and SALESTRANS information
(one SALESTRANS file per store) are stored in sequential files, while product
information and store information are stored in VSAM files.

Figure 3-1 provides an overview of the retail industry scenario environment. It
starts with WantThatStuff having two stores initially and then expanding with
another store (indicated by a dotted line) sometime after the star-schema data
warehouse is populated.

Each store’s sales transactions is assumed to be collected locally and then
transferred to the mainframe at the end of the store’s business day, presumably
using file transfer protocol. These files are subsequently moved (using file
transfer protocol) to the IBM InfoSphere DataStage server for processing.

A number of processes are required to extract and transform the data in the
source OLTP systems before it can be used to update the star-schema data
warehouse. These processes are collectively grouped together in Figure 3-1 as
“Pre-process data on Linux platform prior to updating star-schema data
warehouse”.

Note: In the real world, the mainframe OLTP systems is more likely to be
DBMS based (such as IMS™ or DB2 for z/OS). However, we wanted to
showcase the sequential file and VSAM access capabilities of this solution
and hence chose them as the OLTP sources in this scenario.

140 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-1 Retail industry scenario overview for WANTTHATSTUFF

A description of the data model of the CUSTOMER, PRODUCT, STORE,
EMPLOYEE, and SALESTRANS entities is shown here in Figure 3-2, while that
of the star-schema is shown in Figure 3-3 on page 144.

Figure 3-2 WantThatStuff source OLTP data model

Linux platform Store 3

SalesTrans (sequential file)

z/OS OLTP platform
Customer (sequential file)
Product (VSAM file)
Store (VSAM file)
Employee (sequential file)
SalesTrans (sequential files)

CustomerDim
ProductDim
StoreDim
DateDim
SalesFact

DB2 star-schema
data warehouse

on Linux platform

Pre-process data
on Linux platform
prior to updating

star-schema data warehouse

Linux platform Store 1

SalesTrans (sequential file)

Linux platform Store 2

SalesTrans (sequential file)

STORE

Customer data
RECTYPE CHAR(2) value ‘CD’
CUSTOMER_ID CHAR(4)
NAME CHAR(50)
MEMBERSHIPID CHAR(4)
MEMBER_EXPIRE_DT CHAR(10)
MEMBER_LEVEL CHAR(1)
WORKPHONE CHAR(12)
HOMEPHONE CHAR(12)

Customer home address
RECTYPE CHAR(2) value ‘HA’
ADDRESS CHAR(50)
CITY CHAR(50)
STATE CHAR(50)
ZIP CHAR(15)
COUNTRY CHAR(50)

Customer home address
RECTYPE_2 CHAR(2) value ‘WA’
ADDRESS_2 CHAR(50)
CITY_2 CHAR(50)
STATE_2 CHAR(50)
ZIP_2 CHAR(15)
COUNTRY_2 CHAR(50)

CUSTOMER (multiple record types)

STORE_ID INTEGER
SALES_ID INTEGER
DATE TIMESTAMP
QUANTITY INTEGER
PRICE_USD DECIMAL(10,2)

EMPLOYEE
SALESTRANS

EMPLOYEE_ID CHAR(4)
FIRST_NAME CHAR(21)
LAST_NAME CHAR(21)
MANAGER_INDICATOR CHAR(1)
DEPT CHAR(20)
SALARY CHAR(10)

STORE_ID INTEGER
ADDRESS CHAR(50)
CITY CHAR(50)
CITY_POPULATION DECIMAL(8,0)
STATE CHAR(50)
STATE_POPULATION DECIMAL(8,0)
ZIP CHAR(15)
COUNTRY CHAR(50)
MANAGER_ID INTEGER

PRODUCT
PRODUCT_ID INTEGER
DESCRIPTION VARCHAR(50)
BRAND VARCHAR(50)
CATEGORY VARCHAR(50)
FACTORY VARCHAR(50)
SUPPLIER VARCHAR(50)
SKU VARCHAR(50)

 Chapter 3. Retail industry scenario 141

We make the following assumptions about this retail industry scenario:

� The star-schema data warehouse is updated daily.

� Changes to dimension tables are captured in the relevant operational
systems and fed into an IBM WebSphere MQ message queue.

� Transactions associated with Late Arriving Dimensions (LAD) are to be
rejected and written to a separate file for analysis and subsequent
re-processing.

LAD corresponds to a scenario where a transaction contains a dimension
business key (such as a customer number or a store id) that has not yet been
inserted into the corresponding dimension table.

� Late Arriving or Non-Arriving Data (LANAD) changes should be processed —
in other words, the dimension tables should reflect these changes even if
there are no transactions referencing them.

LANAD corresponds to a scenario where changes are processed for a
dimension key or attribute, and there are no transactions corresponding to
these dimension changes.

� Dimension table changes may arrive in the following combinations for a given
business key:

– Changes to a single dimension table may contain more than one Type 1
attribute change.

– Changes to a single dimension table may contain more than one Type 2
attribute change.

– Changes to a single dimension table may contain a mix of Type 1 and
Type 2 attribute changes.

The following tasks must be performed to achieve WantThatStuff’s business
objectives:

� One time tasks (Day 0) involve the following actions:

a. Designing the star-schema.

b. Populating the dimension tables and fact table.

c. Setting up for the recurring tasks.

Note: The norm is more likely to be the absence of any dimension table
changes during a particular daily update cycle.

Note: The loading of the DATE dimension table is not shown here,
because the input for it does not come from the OLTP systems, but is
generated directly from a calendar.

142 IBM InfoSphere DataStage Data Flow and Job Design

� Recurring tasks (Day 1, Day 2, and Day 3) involve capturing dimension table
changes and the sales transactions and preparing the information for
updating the dimension tables and fact table over multiple update cycles as
follows:

a. Capture dimension table changes occurring in the operational OLTP
systems.

b. Collect sales transactions from the stores from the operational OLTP
systems.

c. Prepare the changes to the dimension table for updating the dimension
tables.

d. Prepare the sales transactions for updating the fact table.

e. Update the dimension tables.

f. Update the fact table.

As mentioned earlier, the update cycle is daily.

3.1.1 One time tasks (Day 0)

WantThatStuff designed the following series of steps to perform these tasks:

1. The star-schema for the data warehouse is shown in Figure 3-3. It shows four
dimension tables CUSTOMER, PRODUCT, STORE and DATE, and the
SALES fact table.

The Type 1 and Type 2 columns were identified as follows:

– Type 1

• Customer dimension table columns HOME_PHONE, WORK_PHONE,
NAME, HOMEADDRESS, and WORKADDRESS

• Store dimension table columns CITY_POPULATION and
STATE_POPULATION

Attention: As mentioned earlier, in all the following sections, to avoid
overburdening you with excessive screen captures, we have not included all
the panels that you would typically navigate through in order to perform the
desired function. Instead we have focused on including select screen captures
(and in some cases, just portions of them) that highlight the key items of
interest, thereby skipping both initial screen captures, as well as some
intervening ones in the process. Screen captures involving default values are
not shown here either. And finally, also not covered is a discussion of each
property of the stages, since they are all well described in the IBM WebSphere
DataStage and QualityStage Parallel Job Developer Guide, SC18-9891-00.

 Chapter 3. Retail industry scenario 143

– Type 2

• Customer dimension table columns MEMBERSHIP_EXPIRE_DT and
MEMBERSHIP_LEVEL

• Store dimension table column MANAGER_NAME

Figure 3-3 Star-schema of WantThatStuff’s data warehouse

2. All applications, operations, and services are associated with a project as
shown in Figure 3-4 on page 147. Therefore, you first have to create a project
before you can define any applications, operations or services. A project is a
collaborative environment that you use to design applications, services, and
operations.

“J0A_Create a project” on page 147 performs this step by creating the
DS_Overview project.

144 IBM InfoSphere DataStage Data Flow and Job Design

3. After the DS_Overview project has been created, you have to import all the
table definitions required by the IBM InfoSphere DataStage jobs into the IBM
Information Server metadata repository. These include the star-schema
tables, and the some of the intermediate tables used in the retail industry
scenario.

“J0B_Import table definitions into repository from DB2 using ODBC” on
page 154 performs this step.

4. A number of other prerequisites must be installed and configured prior to the
initial load of the star-schema database such as these:

– Create an IBM WebSphere MQ queue manager for use by the Distributed
Transaction stage. This is described in “Create the Queue Manager” on
page 580.

– Set up the XA parameters on the Queue Manager for use by the
Distributed Transaction stage. This is described in “Set up the XA
parameters on Queue Manager” on page 587.

– Use the Classic Data Architect (CDA) of IBM Information Integrator
Classic Federation to configure access to the VSAM files on the
mainframe as relational tables on the Linux platform where IBM
InfoSphere DataStage is installed. This is described in “Configuration of
Classic Data Architect” on page 574.

5. Table 3-1 lists the IBM InfoSphere DataStage jobs we created to perform the
one time tasks identified earlier. These were performed on November 5th,
2007.

Table 3-1 One time tasks jobs

Job name Brief description

“J01_IL_FTPCustomerFile” on page 159 Transfers Customer file from the
mainframe to the Linux platform

“J02_IL_LoadCustomerDim” on page 184 Loads the Customer dimension table

“J03_IL_LoadProductDim” on page 202 Loads the Product dimension table

“J04_IL_FTPEmployeeFile” on page 209 Transfers Employee file from the
mainframe to the Linux platform

“J05_IL_LoadStoreDim” on page 219 Loads the Store dimension table

“J06_IL_Daily_CreateCurrencyLookup_Service”
on page 227

Performs a lookup of the daily currency
exchange rate

“J07_IL_Daily_LoadSalesStore” on page 282 Loads the daily sales transactions of a
store to a table

“J08_IL_LoadSalesFact” on page 292 Loads the Sales fact table

 Chapter 3. Retail industry scenario 145

Each of these jobs is briefly described here:

– The Complex Flat File stage processes single and multiple record type
sequential files, but the restriction is that the sequential file must be on the
same server as the IBM InfoSphere DataStage server. Therefore, in order
to process the Customer and Employee files (that reside on the
mainframe), we musthave to first transfer these EBCDIC files from the
mainframe on to the Linux platform using the FTP Enterprise stage as
described in “J01_IL_FTPCustomerFile” on page 159 and
“J04_IL_FTPEmployeeFile” on page 209.

– Once the Customer and Employee files have been transferred to the Linux
platform, we can use the Complex Flat File stage to process its contents.
We have to consolidate the information from the multiple record types
(relating to a single customer) into a single record and the single record
type of the Employee file for populating the CustomerDim and StoreDim
tables respectively. “J02_IL_LoadCustomerDim” on page 184,
“J03_IL_LoadProductDim” on page 202 and “J05_IL_LoadStoreDim” on
page 219 perform the steps of loading the dimension tables.

– Some customers use non-US credit cards to purchase products at the
various WantThatStuff stores. The individual sales transactions captured
at the individual stores are in $US, but the foreign currency equivalent
must be determined and then loaded into an interim DB2 table for
subsequent loading into the Sales fact table. These steps are performed
by “J06_IL_Daily_CreateCurrencyLookup_Service” on page 227,
“J07_IL_Daily_LoadSalesStore” on page 282, and
“J07A_SharedContainerLookupCurrency” on page 273.

– The sales transactions (in the interim DB2 tables) from the various stores
are then merged, aggregated, and assigned the appropriate surrogate key
(corresponding to the business key) before being loaded into the Sales
fact table as described in “J08_IL_LoadSalesFact” on page 292.

“J09_IL_LoadLookupCustomerDim” on page 320 Creates interim table for Customer
dimension keys

“J10_IL_LoadLookupProductDim” on page 327 Creates interim table for Product dimension
keys

“J11_IL_LoadLookupStoreDim” on page 330 Creates interim table for Store dimension
keys

“J12_IL_GenerateSurrogateKey” on page 335 Creates the surrogate key files SCD
handling

Job name Brief description

146 IBM InfoSphere DataStage Data Flow and Job Design

– As mentioned earlier, the sales transactions must have surrogate keys
assigned to them before being loaded into the Sales fact table. Dimension
lookup tables and surrogate key files must be generated to provide this
information. “J09_IL_LoadLookupCustomerDim” on page 320,
“J10_IL_LoadLookupProductDim” on page 327,
“J11_IL_LoadLookupStoreDim” on page 330, and
“J12_IL_GenerateSurrogateKey” on page 335 performs these steps.

At the completion of these one time tasks on November 5th, 2007, you can
proceed to processing the recurring tasks as described in 3.1.2, “Recurring
tasks” on page 341.

J0A_Create a project
IBM Information Server is a project-based development environment as shown in
Figure 3-4.

Figure 3-4 IBM Information Server development paradigm

All applications, operations, and services are associated with a project as shown
in Figure 3-4. Therefore, you first have to create a project before you can define
any applications, operations, or services. A project is a collaborative environment
that you use to design applications, services, and operations. All project
information that you create is saved in the common metadata repository so that it
can easily be shared among other IBM Information Server components. For our
retail industry scenario, we created a project named DS_Overview.

 Chapter 3. Retail industry scenario 147

Jobs define the sequence of steps that determine how IBM Information Server
performs its work. After they are designed, jobs are compiled and run on the
parallel processing engine.

Each time that an IBM InfoSphere DataStage job is validated, run, or scheduled,
you can set options to change parameters, override default limits for row
processing, assign invocation IDs, and set tracing options. When you have a
large number of jobs that run with the same parameters, it is more efficient to
create a parameter set object once and have it reused by all the jobs.

Figure 3-5 on page 149 through Figure 3-14 on page 153 describe the steps in
creating the DS_Overview project in IBM Information Server, as follows:

1. Launch the IBM InfoSphere DataStage and QualityStage Administrator
program by clicking Start → All Programs → IBM Information Server →
IBM WebSphere DataStage and QualityStage Administrator as shown in
Figure 3-5 on page 149.

2. Attach to the DataStage server KAZAN.ITSOSJ.SANJOSE.IBM.COM at
domain 9.43.86.77:9080 with username (admin) and appropriate password
as shown in Figure 3-6 on page 149. Click OK.

3. Under the Projects tab, click Add to add a new project as shown in Figure 3-7
on page 150.

4. Provide the Name (DS_Overview) in Figure 3-8 on page 150 and click OK.

5. Figure 3-9 on page 151 through Figure 3-14 on page 153 show the definition
of user-defined environment variables for this DS_Overview project and the
project’s successful creation.

148 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-5 Create the DS_Overview project 1/10

Figure 3-6 Create the DS_Overview project 2/10

 Chapter 3. Retail industry scenario 149

Figure 3-7 Create the DS_Overview project 3/10

Figure 3-8 Create the DS_Overview project 4/10

150 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-9 Create the DS_Overview project 5/10

Figure 3-10 Create the DS_Overview project 6/10

 Chapter 3. Retail industry scenario 151

Figure 3-11 Create the DS_Overview project 7/10

Figure 3-12 Create the DS_Overview project 8/10

152 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-13 Create the DS_Overview project 9/10

Figure 3-14 Create the DS_Overview project 10/10

 Chapter 3. Retail industry scenario 153

J0B_Import table definitions into repository from DB2 using
ODBC

You must import metadata into the metadata repository1 for use in all IBM
InfoSphere DataStage projects. You can import all, or selected tables, files, or
columns in a schema/directory.

Figure 3-15 on page 155 through Figure 3-21 on page 159 describe the import of
the required star-schema and other table definitions using ODBC from the
DSSAMPLE database into the metadata repository as follows:

1. After launching the IBM InfoSphere DataStage and QualityStage Designer
(similar to that shown in Figure 3-5 on page 149 but selecting IBM
WebSphere DataStage and QualityStage Designer instead) for the
DS_Overview project in the KAZAN.ITSOSJ.SANJOSE.IBM.COM server,
select Import → Table Definitions → ODBC Table Definitions from the
main menu bar as shown in Figure 3-15 on page 155.

2. In the Import Meta Data (ODBC) window, provide access details of the
database (DSSAMPLE) containing the tables of interest and click OK as
shown in Figure 3-16 on page 155.

3. Select all the tables whose definitions you want to import, provide the target
folder in the To folder field (\Table Definitions\ODBC\DSSAMPLE) and click
Import as shown in Figure 3-17 on page 156. Figure 3-18 on page 156
shows the progress of the import.

4. Figure 3-19 on page 157 through Figure 3-21 on page 159 show the
properties of the imported table definition of the DS.CUSTOMER_DIM table.

You can now proceed to file transfer the mainframe files to the Linux platform as
described in “J01_IL_FTPCustomerFile” on page 159.

1 The metadata repository (XMETA database) stores imported metadata, project configurations,
reports, and results for all components of IBM Information Server.

154 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-15 Create J0_Import table definitions to repository from DB2: ODBC 1/7

Figure 3-16 Create J0_Import table definitions to repository from DB2: ODBC 2/7

 Chapter 3. Retail industry scenario 155

Figure 3-17 Create J0_Import table definitions to repository from DB2: ODBC 3/7

Figure 3-18 Create J0_Import table definitions to repository from DB2: ODBC 4/7

156 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-19 Create J0_Import table definitions to repository from DB2: ODBC 5/7

 Chapter 3. Retail industry scenario 157

Figure 3-20 Create J0_Import table definitions to repository from DB2: ODBC 6/7

158 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-21 Create J0_Import table definitions to repository from DB2: ODBC 7/7

J01_IL_FTPCustomerFile
In this job, we use the IBM InfoSphere DataStage FTP Enterprise stage to file
transfer the CUSTOMER sequential (EBCDIC) file from the mainframe to the
Linux platform.

Figure 3-22 on page 161 through Figure 3-66 on page 183 describe the steps
using Designer Client to build and execute the DataStage job to perform this
task:

The steps are as follows:

1. After launching the IBM InfoSphere DataStage and QualityStage Designer
(similar to that shown in Figure 3-5 on page 149, but selecting IBM
WebSphere DataStage and QualityStage Designer instead), attach to the
DS_Overview project in the kazan.itsosj.sanjose.ibm.com server as shown in
Figure 3-22 on page 161. Click OK.

2. Figure 3-23 on page 162 through Figure 3-31 on page 168 show the creation
a parallel job (using drag and drop in the Designer canvas) using the FTP
Enterprise stage to transfer a sequential file from one platform to another. The
renaming of these stages is also shown here.

 Chapter 3. Retail industry scenario 159

3. Figure 3-32 on page 169 through Figure 3-46 on page 175 show the
configuration of the FTP Enterprise stage. The Output page allows you to
specify details about how the FTP Enterprise stage transfers one or more files
from a remote host using the FTP protocol. Figure 3-33 on page 169 through
Figure 3-41 on page 173 show the Properties tab in the Output page, which
allows you to specify properties that determine what the stage actually does.

– The Source category property URI specifies the pathname connecting the
Stage to a source file on a remote host, which corresponds to the
Customer file on the mainframe.

– The Connection category allows you to specify the User name (nalur1)
and Password to access the data source identified by the URI.

– The Transfer Protocol category Transfer Mode property is FTP.

– The Options category Transfer Type is Binary.

4. Figure 3-42 on page 174 through Figure 3-46 on page 175 show the
Columns tab in the Output page, which identifies a single column definition
for this file named Body of VARCHAR (255). Runtime column propagation is
not enabled here.

5. Figure 3-47 on page 176 through Figure 3-54 on page 179 show the
configuration of the sequential file to which the FTP Enterprise stage writes.
The Input page allows you to specify details about how the Sequential File
stage writes data to one or more flat files.

– The Properties tab allows you to specify details of exactly what the link
does as shown in Figure 3-48 on page 176. The File property in the Target
category defines the flat file that the incoming data will be written to. The
File Update Mode property specifies Overwrite to overwrite existing files,

– The Formats tab gives information about the format of the files being
written as shown in Figure 3-49 on page 177 through Figure 3-53 on
page 178.

• The Record level properties define details about how data records are
formatted in the flat file. The Final delimiter value of end (default) is
removed.

• The Field defaults properties defines the default properties for columns
written to the file. These are applied to all columns written, but can be
overridden for individual columns from the Columns tab. The Quote
specifies that variable length fields are enclosed in a double quote.

– The Columns tab specifies the column definitions of data being written.
A single column named Body with a VarChar of length 255 is defined as
shown in Figure 3-54 on page 179.

160 IBM InfoSphere DataStage Data Flow and Job Design

6. Clicking the Run taskbar to execute this job prompts you to save this job
(Figure 3-55 on page 179 through Figure 3-59 on page 181) before execution
begins.

7. The execution of this job can be tracked by selecting Tools → Run Director
in the menu as shown in Figure 3-60 on page 181 and Figure 3-61 on
page 182. Selecting the J01_IL_FTPCustomerFile job, you can view its log by
clicking the Log icon in the toolbar as shown in Figure 3-62 on page 182. The
successful execution of the job is shown in Figure 3-63 on page 182.

8. The contents of the sequential file can be viewed by right-clicking the
sequential file stage and selecting View Seq_Customer data as shown in
Figure 3-64 on page 183 through Figure 3-66 on page 183. The contents are
undecipherable because it is EBCDIC.

The contents of the CUSTOMER file is used to load the CUSTOMER_DIM table
as described in “J02_IL_LoadCustomerDim” on page 184.

Figure 3-22 Create the J01_IL_FTPCustomerFile job 1/45

 Chapter 3. Retail industry scenario 161

Figure 3-23 Create the J01_IL_FTPCustomerFile job 2/45

162 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-24 Create the J01_IL_FTPCustomerFile job 3/45

 Chapter 3. Retail industry scenario 163

Figure 3-25 Create the J01_IL_FTPCustomerFile job 4/45

164 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-26 Create the J01_IL_FTPCustomerFile job 5/45

 Chapter 3. Retail industry scenario 165

Figure 3-27 Create the J01_IL_FTPCustomerFile job 6/45

166 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-28 Create the J01_IL_FTPCustomerFile job 7/45

Figure 3-29 Create the J01_IL_FTPCustomerFile job 8/45

 Chapter 3. Retail industry scenario 167

Figure 3-30 Create the J01_IL_FTPCustomerFile job 9/45

Figure 3-31 Create the J01_IL_FTPCustomerFile job 10/45

168 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-32 Create the J01_IL_FTPCustomerFile job 11/45

Figure 3-33 Create the J01_IL_FTPCustomerFile job 12/45

 Chapter 3. Retail industry scenario 169

Figure 3-34 Create the J01_IL_FTPCustomerFile job 13/45

Figure 3-35 Create the J01_IL_FTPCustomerFile job 14/45

170 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-36 Create the J01_IL_FTPCustomerFile job 15/45

Figure 3-37 Create the J01_IL_FTPCustomerFile job 16/45

 Chapter 3. Retail industry scenario 171

Figure 3-38 Create the J01_IL_FTPCustomerFile job 17/45

Figure 3-39 Create the J01_IL_FTPCustomerFile job 18/45

172 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-40 Create the J01_IL_FTPCustomerFile job 19/45

Figure 3-41 Create the J01_IL_FTPCustomerFile job 20/45

 Chapter 3. Retail industry scenario 173

Figure 3-42 Create the J01_IL_FTPCustomerFile job 21/45

Figure 3-43 Create the J01_IL_FTPCustomerFile job 22/45

Figure 3-44 Create the J01_IL_FTPCustomerFile job 23/45

174 IBM InfoSphere DataStage Data Flow and Job Design

v

Figure 3-45 Create the J01_IL_FTPCustomerFile job 24/45

Figure 3-46 Create the J01_IL_FTPCustomerFile job 25/45

 Chapter 3. Retail industry scenario 175

Figure 3-47 Create the J01_IL_FTPCustomerFile job 26/45

Figure 3-48 Create the J01_IL_FTPCustomerFile job 27/45

176 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-49 Create the J01_IL_FTPCustomerFile job 28/45

Figure 3-50 Create the J01_IL_FTPCustomerFile job 29/45

 Chapter 3. Retail industry scenario 177

Figure 3-51 Create the J01_IL_FTPCustomerFile job 30/45

Figure 3-52 Create the J01_IL_FTPCustomerFile job 31/45

Figure 3-53 Create the J01_IL_FTPCustomerFile job 32/45

178 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-54 Create the J01_IL_FTPCustomerFile job 33/45

Figure 3-55 Create the J01_IL_FTPCustomerFile job 34/45

Figure 3-56 Create the J01_IL_FTPCustomerFile job 35/45

 Chapter 3. Retail industry scenario 179

Figure 3-57 Create the J01_IL_FTPCustomerFile job 36/45

Figure 3-58 Create the J01_IL_FTPCustomerFile job 37/45

180 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-59 Create the J01_IL_FTPCustomerFile job 38/45

Figure 3-60 Create the J01_IL_FTPCustomerFile job 39/45

 Chapter 3. Retail industry scenario 181

Figure 3-61 Create the J01_IL_FTPCustomerFile job 40/45

Figure 3-62 Create the J01_IL_FTPCustomerFile job 41/45

Figure 3-63 Create the J01_IL_FTPCustomerFile job 42/45

182 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-64 Create the J01_IL_FTPCustomerFile job 43/45

Figure 3-65 Create the J01_IL_FTPCustomerFile job 44/45

Figure 3-66 Create the J01_IL_FTPCustomerFile job 45/45

 Chapter 3. Retail industry scenario 183

J02_IL_LoadCustomerDim
In this job, we extract relevant attributes from the Customer file and load them
into the CUSTOMER_DIM dimension table.

Figure 3-67 on page 186 through Figure 3-92 on page 201 describe the steps
using Designer Client to build and execute the DataStage job to perform this
task.

The steps are as follows:

1. Figure 3-67 on page 186 shows the various stages used in this job — it
includes the Data Set created in “J01_IL_FTPCustomerFile” on page 159, a
Complex Flat File stage, a Transformer stage, a Remove Duplicates stage,
and an ODBCConnector stage. The names of the stages were modified as
shown.

2. Figure 3-68 on page 187 through Figure 3-77 on page 193 show the
configuration of the Complex Flat File stage that extracts and processes
customer information from a file that contains multiple record types for loading
into the dimension table.

In the CFF stage, you must provide details about the file that the stage will
read, create record definitions for the data, define the column metadata,
specify record ID constraints, and select output columns.

– Figure 3-68 on page 187 shows the File options tab in the Stage page,
which provides details about the file (J01_seq_customer.ebcdic) that the
stage will read.

– Figure 3-69 on page 187 shows the Record options tab in the Stage
page, which describes the format of the data in the file. Specifically, the
Character set (EBCDIC), Data format (Binary), and Record delimiter
(UNIX Newline) are of interest, corresponding to the file transferred by the
FTP Enterprise stage in “J01_IL_FTPCustomerFile” on page 159.

– Since the stage will be reading a file containing multiple record types, we
have to create the record definitions of the data. Figure 3-70 on page 188
through Figure 3-72 on page 190 show the Records tab in the Stage
page, which identify the three (CUSTOMER, HOMEADDRESS, and
WORKADDRESS) record definitions in the customer file by either typing
or loading column definitions from the repository.

– Figure 3-73 on page 190 through Figure 3-75 on page 191 define the
record ID constraint for each record (CUSTOMER record type with a value
‘CD’, HOMEADDRESS record type with a value ‘HA’, and
WORKADDRESS record type with a value ‘WA’) on the Records ID tab.

184 IBM InfoSphere DataStage Data Flow and Job Design

– Figure 3-76 on page 192 shows the Selection tab in the Output page,
which specifies how to read data from the source file. It shows the
selection of multiple columns (excluding only the RECTYPE,
RECTYPE_2, and RECTYPE_3 columns from the input) for the
Trx_Customer output link.

– Figure 3-77 on page 193 shows the Constraint tab in the Output page,
which filters the rows (based on the values ‘CD’, ‘HA’, and ‘WA’ in the
record type columns in this case) on the output.

3. Figure 3-78 on page 193 through Figure 3-79 on page 194 show the contents
of the output file of the CFF stage. It shows multiple records for the same
customer corresponding to each record type — some customers have only
one record type (Beel Jones); others have two record types (Barn Williams);
and some have all three record types (Archana Smith).

4. The Transformer stage is used to trim the trailing blanks in the various fields
using the TRIM function as shown in Figure 3-80 on page 195.

Note: By selecting output columns, you specify which columns from the
source file the CFF stage should pass to the output links. You can
select columns from multiple record types to output from the stage. If
you do not select columns to output on each link, the CFF stage
automatically propagates all of the stage columns except group
columns to each empty output link when you click OK to exit the stage.

Note: You must specify a record ID constraint to identify the format of
each record. Columns that are identified in the record ID clause must
be in the same physical storage location across records. The constraint
must be a simple equality expression, where a column equals a value.

Note: The fields of only the last instance of a particular customer record
have all the information from all the record types, which is why Duplicate
To Retain = Last option is used in the following Remove Duplicates stage.

 Chapter 3. Retail industry scenario 185

5. The Remove Duplicates stage is required to eliminate the multiple
occurrences of the same customer. Each record instance in the CFF stage
output has columns populated from the different record types depending upon
the sequence of arrival of each record type. The record instance
corresponding to the last record type arrival (in the input file) for a customer
has the consolidated information from all the record types associated with
that customer. This is the record instance of the customer that must be
preserved in the Remove Duplicates stage with the Duplicate To Retain =
Last option as shown in Figure 3-81 on page 195 through Figure 3-84 on
page 197.

6. The ODBCConnectorPX stage does a simple SQL INSERT of the cleansed
and consolidated customer information into the CUSTOMER_DIM dimension
table as shown in Figure 3-85 on page 198 and Figure 3-86 on page 198. The
SQL INSERT statement is manually coded rather than being automatically
generated.

7. The execution result of this job is shown in Figure 3-87 on page 199 and
Figure 3-88 on page 199. It shows 27 records from the CFF stage being
reduced to 11 records in the Remove Duplicates stage, which are then
inserted into the CUSTOMER_DIM table.

8. Figure 3-89 on page 200 through Figure 3-92 on page 201 show the 11
records that are input to the ODBCConnectorPX stage.

We then proceeded to load the Product dimension table as described in
“J03_IL_LoadProductDim” on page 202.

Figure 3-67 Create the J02_IL_LoadCustomerDim job 1/26

186 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-68 Create the J02_IL_LoadCustomerDim job 2/26

Figure 3-69 Create the J02_IL_LoadCustomerDim job 3/26

 Chapter 3. Retail industry scenario 187

Figure 3-70 Create the J02_IL_LoadCustomerDim job 4/26

188 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-71 Create the J02_IL_LoadCustomerDim job 5/26

 Chapter 3. Retail industry scenario 189

Figure 3-72 Create the J02_IL_LoadCustomerDim job 6/26

Figure 3-73 Create the J02_IL_LoadCustomerDim job 7/26

190 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-74 Create the J02_IL_LoadCustomerDim job 8/26

Figure 3-75 Create the J02_IL_LoadCustomerDim job 9/26

 Chapter 3. Retail industry scenario 191

Figure 3-76 Create the J02_IL_LoadCustomerDim job 10/26

192 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-77 Create the J02_IL_LoadCustomerDim job 11/26

Figure 3-78 Create the J02_IL_LoadCustomerDim job 12/26

 Chapter 3. Retail industry scenario 193

Figure 3-79 Create the J02_IL_LoadCustomerDim job 13/26

194 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-80 Create the J02_IL_LoadCustomerDim job 14/26

Figure 3-81 Create the J02_IL_LoadCustomerDim job 15/26

 Chapter 3. Retail industry scenario 195

Figure 3-82 Create the J02_IL_LoadCustomerDim job 16/26

Figure 3-83 Create the J02_IL_LoadCustomerDim job 17/26

196 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-84 Create the J02_IL_LoadCustomerDim job 18/26

 Chapter 3. Retail industry scenario 197

Figure 3-85 Create the J02_IL_LoadCustomerDim job 19/26

Figure 3-86 Create the J02_IL_LoadCustomerDim job 20/26

198 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-87 Create the J02_IL_LoadCustomerDim job 21/26

Figure 3-88 Create the J02_IL_LoadCustomerDim job 22/26

 Chapter 3. Retail industry scenario 199

Figure 3-89 Create the J02_IL_LoadCustomerDim job 23/26

200 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-90 Create the J02_IL_LoadCustomerDim job 24/26

Figure 3-91 Create the J02_IL_LoadCustomerDim job 25/26

Figure 3-92 Create the J02_IL_LoadCustomerDim job 26/26

 Chapter 3. Retail industry scenario 201

J03_IL_LoadProductDim
In this job, we extract relevant attributes from the Product VSAM file and load
them into the PRODUCT_DIM dimension table. Since the Product information is
stored in a VSAM file on the mainframe, we used the Classic Federation stage to
access and retrieve the contents of this file.

Our objective in storing Product information in a VSAM file on the mainframe was
to showcase the Classic Federation stage of IBM InfoSphere DataStage.

Figure 3-93 on page 203 through Figure 3-104 on page 209 describe the steps
using Designer Client to build and execute the DataStage job to perform this
task.

The steps are as follows:

1. Figure 3-93 on page 203 shows the various stages used in this job — it
includes a Classic Federation stage, a Transformer stage, and an
ODBCConnector stage. The names of the stages were modified as shown.

2. Figure 3-94 on page 204 and Figure 3-95 on page 204 show the configuration
of the Classic Federation stage. The Output page allows you to specify details
about how the Classic Federation stage accesses data from a remote host
and writes it to an output link.

– Figure 3-94 on page 204 shows the Properties tab in the Output page,
which allows you to specify properties that determine what the stage
actually does:

• The Source category property Read Method = Table specifies a
relational table that is identified by the Table = CAC.PRODUCT
property.

• The Connection category allows you to specify the User name (nalur1)
and Password to access the CAC.PRODUCT table.

– Figure 3-95 on page 204 shows the Columns tab in the Output page
where you identify all the columns associated with this table.

3. The Transformer stage is used to trim the trailing blanks in the various fields
using the TRIM function as shown in Figure 3-96 on page 205.

Note: The IBM InfoSphere Classic Federation configuration of the
Product VSAM file (to be accessed as a relational table) was done
using Classic Data Architect as described in “Configuration of
Classic Data Architect” on page 574.

202 IBM InfoSphere DataStage Data Flow and Job Design

4. The ODBCConnectorPX stage does a simple SQL INSERT of the product
information into the PRODUCT_DIM dimension table as shown in Figure 3-97
on page 206. The SQL INSERT statement is automatically generated.

5. The execution results of this job is shown in Figure 3-98 on page 207. It
shows 4 records from the Classic Federation stage being inserted into the
PRODUCT_DIM table.

6. Figure 3-99 on page 207 through Figure 3-102 on page 208 show the 4
records that are input to the ODBCConnectorPX stage.

7. Figure 3-103 on page 208 and Figure 3-104 on page 209 show the rows in
the PRODUCT_DIM table using the DB2 Control Center.

We then proceeded to FTP the Employee file from the mainframe as described in
“J04_IL_FTPEmployeeFile” on page 209.

Figure 3-93 Create the J03_IL_LoadProductDim job 1/12

 Chapter 3. Retail industry scenario 203

Figure 3-94 Create the J03_IL_LoadProductDim job 2/12

Figure 3-95 Create the J03_IL_LoadProductDim job 3/12

204 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-96 Create the J03_IL_LoadProductDim job 4/12

 Chapter 3. Retail industry scenario 205

Figure 3-97 Create the J03_IL_LoadProductDim job 5/12

206 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-98 Create the J03_IL_LoadProductDim job 6/12

Figure 3-99 Create the J03_IL_LoadProductDim job 7/12

Figure 3-100 Create the J03_IL_LoadProductDim job 8/12

 Chapter 3. Retail industry scenario 207

Figure 3-101 Create the J03_IL_LoadProductDim job 9/12

Figure 3-102 Create the J03_IL_LoadProductDim job 10/12

Figure 3-103 Create the J03_IL_LoadProductDim job 11/12

208 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-104 Create the J03_IL_LoadProductDim job 12/12

J04_IL_FTPEmployeeFile
In this job, we use the IBM InfoSphere DataStage FTP Enterprise stage to file
transfer the EMPLOYEE sequential (EBCDIC) file from the mainframe to the
Linux platform. Only the employees (manager id, first name, and last name) that
are managers are extracted from this file using a Filter stage, and the first name
and last name is then concatenated into a single column using a Transformer
stage.

This manager information (manager id, first name and last name) is extracted in
this step, so that it can be associated with store information (that only has a
manager id associated with it) for populating the STORE_DIM dimension table.
This association and loading of the STORE_DIM table is described in
“J05_IL_LoadStoreDim” on page 219.

Figure 3-105 on page 211 through Figure 3-121 on page 218 describe the steps
using Designer Client to build and execute the DataStage job to perform this
task:

The steps are as follows:

1. Figure 3-105 on page 211 shows the various stages used in this job — it
includes an FTP Enterprise stage, a Filter stage, Transformer stage, and a
Data Set stage. The names of the stages were modified as shown.

 Chapter 3. Retail industry scenario 209

2. Figure 3-106 on page 212 through Figure 3-108 on page 213 show the
configuration of the FTP Enterprise stage. The Output page allows you to
specify details about how the FTP Enterprise stage transfers one or more files
from a remote host using the FTP protocol.

– Figure 3-106 on page 212 shows the Properties tab in the Output page,
which allows you to specify properties that determine what the stage
actually does.

• The Source category property URI specifies the pathname connecting
the Stage to a source file on a remote host which corresponds to the
Employee file on the mainframe.

• The Connection category allows you to specify the User name (nalur1)
and Password to access the data source identified by the URI.

• The Transfer Protocol category Transfer Mode property is FTP.

• The Options category Transfer Type is Binary.

– Figure 3-107 on page 212 shows the Format tab in the Output page,
which gives information about the format of the output.

– Figure 3-108 on page 213 shows the Columns tab in the Output page
where you identify the column definitions for this file. Runtime column
propagation is not enabled here.

3. Figure 3-109 on page 213 shows the 20 rows retrieved from the Employee
table which contains manager and non-manager records (Manager_Indicator
of Y or N).

4. Figure 3-110 on page 214 through Figure 3-114 on page 216 show the
configuration of the Filter stage that extracts only the manager records
containing manager id, first name, and last name and writes it to the output
link:

– Figure 3-110 on page 214 shows the Properties tab in the Stage page,
which specifies the predicate (MANAGER_INDICATOR=’Y’) to filter only
managers as shown in the Predicates category Where Clause property.

– Figure 3-111 on page 214 shows the Link Ordering tab in the Stage page
that specifies the mapping of the qualifying rows to the output link
(Trx_ConcatName).

– Figure 3-112 on page 215 shows the Columns tab in the Input page that
specifies the column definitions of the data being read.

– Figure 3-113 on page 215 shows the Mapping tab in the Output page that
specifies how the input columns are mapped to the Output name
(Trx_ConcatName). Only the MANAGER_ID, FIRST_NAME, and
LAST_NAME are mapped from the input to the output.

210 IBM InfoSphere DataStage Data Flow and Job Design

5. Figure 3-114 on page 216 shows the Columns tab in the Output page
identifying the three output columns. Runtime column propagation is not
selected.

6. The first name and last name columns are concatenated together into a
single column using a Transformer stage as shown in Figure 3-115 on
page 216 and Figure 3-116 on page 217.

7. The transformed data is written to a data set (with two columns
MANAGER_ID and NAME containing the concatenated first name and last
name values) as shown in the configuration of the Data Set stage in
Figure 3-117 on page 217 and Figure 3-118 on page 217.

8. The results of the execution of this job is shown in Figure 3-119 on page 218,
which shows 6 manager records out of a total of 20 employee records.
Figure 3-120 on page 218 shows the 20 employee records, while
Figure 3-121 on page 218 shows the 6 manager records and their
concatenated name data that is written to the output data set.

This information is merged with store information (that only has the manager id of
the employee but not the first name and last name information of the manager) to
load the STORE_DIM table (that has a column for name information) as
described in “J05_IL_LoadStoreDim” on page 219.

Figure 3-105 Create the J04_IL_FTPEmployeeFile job 1/17

 Chapter 3. Retail industry scenario 211

Figure 3-106 Create the J04_IL_FTPEmployeeFile job 2/17

Figure 3-107 Create the J04_IL_FTPEmployeeFile job 3/17

212 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-108 Create the J04_IL_FTPEmployeeFile job 4/17

Figure 3-109 Create the J04_IL_FTPEmployeeFile job 5/17

 Chapter 3. Retail industry scenario 213

Figure 3-110 Create the J04_IL_FTPEmployeeFile job 6/17

Figure 3-111 Create the J04_IL_FTPEmployeeFile job 7/17

214 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-112 Create the J04_IL_FTPEmployeeFile job 8/17

Figure 3-113 Create the J04_IL_FTPEmployeeFile job 9/17

 Chapter 3. Retail industry scenario 215

Figure 3-114 Create the J04_IL_FTPEmployeeFile job 10/17

Figure 3-115 Create the J04_IL_FTPEmployeeFile job 11/17

216 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-116 Create the J04_IL_FTPEmployeeFile job 12/17

Figure 3-117 Create the J04_IL_FTPEmployeeFile job 13/17

Figure 3-118 Create the J04_IL_FTPEmployeeFile job 14/17

 Chapter 3. Retail industry scenario 217

Figure 3-119 Create the J04_IL_FTPEmployeeFile job 15/17

Figure 3-120 Create the J04_IL_FTPEmployeeFile job 16/17

Figure 3-121 Create the J04_IL_FTPEmployeeFile job 17/17

218 IBM InfoSphere DataStage Data Flow and Job Design

J05_IL_LoadStoreDim
In this job, we extract relevant attributes from the Store VSAM file and join it with
manager name information retrieved in the “J04_IL_FTPEmployeeFile” on
page 209 job from the Employee file before loading the STORE_DIM dimension
table. Since Store information is stored in a VSAM file on the mainframe, we
used the Classic Federation stage to access and retrieve the contents of this file.

Our objective in storing Store information in a VSAM file on the mainframe was to
showcase the Classic Federation stage of IBM InfoSphere DataStage.

Figure 3-122 on page 221 through Figure 3-137 on page 226 describe the steps
using Designer Client to build and execute the DataStage job to perform this
task.

The steps are as follows:

1. Figure 3-122 on page 221 shows the various stages used in this job — it
includes a Classic Federation stage, a Data Set stage, a Join stage, and an
ODBCConnector stage. The names of the stages were modified as shown.

2. Figure 3-123 on page 221 and Figure 3-124 on page 222 show the
configuration of the Classic Federation stage. The Output page allows you to
specify details about how the Classic Federation stage accesses data from a
remote host and writes it to an output link.

– Figure 3-123 on page 221 shows the Properties tab in the Output page,
which allows you to specify properties that determine what the stage
actually does.

• The Source category property Read Method = Table specifies a
relational table that is identified by the Table = CAC.STORE property.

• The Connection category allows you to specify the User name (nalur1)
and Password to access the CAC.STORE table.

– Figure 3-124 on page 222 shows the Columns tab in the Output page
where you identify all the columns associated with this Store file.

3. Figure 3-125 on page 222 shows the contents (2 records) of the Store file
(table) as stored on the mainframe.

Note: The IBM InfoSphere Classic Federation configuration of the
Product VSAM file (to be accessed as a relational table) was done
using Classic Data Architect as described in “Configuration of
Classic Data Architect” on page 574.

 Chapter 3. Retail industry scenario 219

4. Figure 3-126 on page 222 and Figure 3-127 on page 223 show the
configuration of the data set created in “J04_IL_FTPEmployeeFile” on
page 209. They identify the file and the column definitions. Figure 3-128 on
page 223 shows the contents of this data set.

5. Figure 3-129 on page 223 through Figure 3-131 on page 224 describe the
configuration of the Join stage that joins the Store file retrieved from the
mainframe in the Classic Federation stage with the filtered manager
information from the Employee file generated in “J04_IL_FTPEmployeeFile”
on page 209 on the MANAGER_ID column. The output of the join includes
selected columns from the two input sources.

– Figure 3-129 on page 223 shows the Properties tab in the Stage page
that identifies the Key property in the Join Keys category as
MANAGER_ID and the Join Type property as Inner (join).

– Figure 3-130 on page 224 shows the Link Ordering tab in the Stage page
that identifies the left and right links in the join. This is not relevant for an
inner join, but would be relevant had a left or right outer join been chosen.

– Figure 3-131 on page 224 shows the Mapping tab in the Output page that
identifies the columns that will be mapped to the output from the two input
sources being joined. It shows most of the columns in the Store file and
the concatenated (manager) name, but excludes the manager id.

6. The ODBCConnectorPX stage generates a simple SQL INSERT of the store
information into the STORE_DIM dimension table as shown in Figure 3-132
on page 225. The SQL INSERT statement is manually generated as shown in
Figure 3-133 on page 225.

7. The execution results of this job is shown in Figure 3-134 on page 226. It
shows 2 records from the Join stage being inserted into the STORE_DIM
table.

8. Figure 3-135 on page 226 shows the 2 records that are input to the Join
stage.

9. Figure 3-136 on page 226 and Figure 3-137 on page 226 show the rows
inserted into the STORE_DIM dimension table.

We then proceeded to FTP the Employee file from the mainframe as described in
“J04_IL_FTPEmployeeFile” on page 209.

220 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-122 Create the J05_IL_LoadStoreDim job 1/16

Figure 3-123 Create the J05_IL_LoadStoreDim job 2/16

 Chapter 3. Retail industry scenario 221

Figure 3-124 Create the J05_IL_LoadStoreDim job 3/16

Figure 3-125 Create the J05_IL_LoadStoreDim job 4/16

Figure 3-126 Create the J05_IL_LoadStoreDim job 5/16

222 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-127 Create the J05_IL_LoadStoreDim job 6/16

Figure 3-128 Create the J05_IL_LoadStoreDim job 7/16

Figure 3-129 Create the J05_IL_LoadStoreDim job 8/16

 Chapter 3. Retail industry scenario 223

Figure 3-130 Create the J05_IL_LoadStoreDim job 9/16

Figure 3-131 Create the J05_IL_LoadStoreDim job 10/16

224 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-132 Create the J05_IL_LoadStoreDim job 11/16

Figure 3-133 Create the J05_IL_LoadStoreDim job 12/16

 Chapter 3. Retail industry scenario 225

Figure 3-134 Create the J05_IL_LoadStoreDim job 13/16

Figure 3-135 Create the J05_IL_LoadStoreDim job 14/16

Figure 3-136 Create the J05_IL_LoadStoreDim job 15/16

Figure 3-137 Create the J05_IL_LoadStoreDim job 16/16

226 IBM InfoSphere DataStage Data Flow and Job Design

J06_IL_Daily_CreateCurrencyLookup_Service
As mentioned earlier, some of the sales transactions at stores occur with a credit
card from a foreign country. While the sales transaction is in $US, it must be
converted into the foreign currency equivalent before it can be loaded into the
sales fact table.

In order to showcase the Web service capabilities of IBM InfoSphere DataStage,
we specified that the daily exchange rates would be available as a Web service
that would be looked up for each sales transaction involving foreign currency.

In this step, we create a Web service using IBM Information Server on an SQL
query that retrieves daily currency exchange rates stored in a CURRENCY table
in the CURRENCY database. In a subsequent step, we create a shared
container of the lookup of the currency exchange as described in
“J07A_SharedContainerLookupCurrency” on page 273. This shared container is
incorporated in the job that prepares the daily sales transactions for updating the
sales fact table as described in “J07_IL_Daily_LoadSalesStore” on page 282.

Figure 3-138 shows the main steps in creating an SOA service using IBM
Information Server. These are described in more detail as follows:

Figure 3-138 Steps in creating SOA services

Note: For performance reasons, we assumed that the exchange rates by
country (ISOCODE) would be downloaded at the beginning of each day and
written to a data set that would then serve as the lookup source for each sales
transaction involving foreign currency.

Stepb: Create connection to an Information Provider

Stepc: Create an application

Stepe: Load exchange rate info (Web service) to a data set

Stepa: Create a project

Stepd: Generate SOA services, deploy and test

 Chapter 3. Retail industry scenario 227

Stepa: Create a project
To create an SOA service using IBM Information Server, you have to create a
project and an application. While the application is a deployable unit2, a project is
a mechanism for grouping SOA services together in a logical unit. A project is a
collaborative environment that you use to design applications, services, and
operations.

The main steps are as follows:

1. After logging in to the IBM Information Server Console, click New Project as
shown in Figure 3-139.

2. Provide the Name (Proj_J06) in Figure 3-140 and click OK.

3. Provide a Description (Proj_J06) and click Save to complete the definition of
the project — this is not shown here.

We can now proceed to create a connection to an Information Provider as
described in “Stepb: Create connection to an Information Provider” on page 229.

Figure 3-139 Create an SOA project 1/2

Figure 3-140 Create an SOA project 2/2

2 An application becomes a “.ear” file that gets deployed on the WebSphere Application Server
associated with IBM Information Server.

228 IBM InfoSphere DataStage Data Flow and Job Design

Stepb: Create connection to an Information Provider
You must create a connection to an Information Provider before being able to
generate an SOA service. There are two types of Information Providers — a
“DataStage and QualityStage” type for DataStage and QualityStage jobs, and a
“DB2 or Federation Server” type for stored procedures and federated queries.

Figure 3-141 on page 230 through Figure 3-148 on page 236 describe the
creation and testing of a “DB2 or Federation Server” type of information provider:

1. Launch the IBM Information Server console by clicking Start → Programs →
IBM Information Server → IBM Information Server Console and then
provide login information — this is not shown here.

2. Click Home, expand Configuration, and click Information Services
Connections as shown in Figure 3-141 on page 230.

3. Then click New under Tasks column in Figure 3-142 on page 230 to create a
new Information Services connection.

4. Provide details of the Connection Name (we chose Connection_J06),
Information Provider Type (“DB2 or Federation Server” from the drop-down
list) as shown in Figure 3-143 on page 231.

5. Then provide details of the Agent Host (KAZAN from the drop-down list which
is where IBM Information Server is installed), Database Host (KAZAN where
the database is installed) and its Port (50001) as shown in Figure 3-143 on
page 231.

6. Click Add to add databases to the list of databases. Provide database details
(currency) along with the User Name and Password to access it, and click OK
as shown in Figure 3-144 on page 232.

7. Highlight the currency database in the Database box, and click Test to ensure
that the database has been configured correctly as shown in Figure 3-145 on
page 233 and Figure 3-146 on page 234. Click OK in Figure 3-146 on
page 234.

8. After successful validation, click Save & Enable and Close to complete the
definition of the Information Provider as shown in Figure 3-147 on page 235
and Figure 3-148 on page 236.

We can now proceed to create an application under this project as described in
“Stepc: Create an application” on page 237.

Note: JDBC™ Connection Properties such as isolation levels may be
specified in Figure 3-143 on page 231 to override defaults used by IBM
Information Server.

 Chapter 3. Retail industry scenario 229

Figure 3-141 Create connection to an Information Provider 1/8

Figure 3-142 Create connection to an Information Provider 2/8

230 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-143 Create connection to an Information Provider 3/8

 Chapter 3. Retail industry scenario 231

Figure 3-144 Create connection to an Information Provider 4/8

232 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-145 Create connection to an Information Provider 5/8

 Chapter 3. Retail industry scenario 233

Figure 3-146 Create connection to an Information Provider 6/8

234 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-147 Create connection to an Information Provider 7/8

 Chapter 3. Retail industry scenario 235

Figure 3-148 Create an application 8/8

236 IBM InfoSphere DataStage Data Flow and Job Design

Stepc: Create an application
The main steps in creating an application are as follows:

1. For the PROJ_J06 project, click Information Services Application under
the Develop icon. Click New under the Tasks column to create a new
Information Services Application to work as shown in Figure 3-149.

2. Provide details of the application such as Name (Appl_J06) and Description
(WebServices Select Currency for DataStage job) and click Save
Application to complete the definition as shown in Figure 3-150.

We can now proceed to generate the various SOA services, deploy them, and
test them, as described in “Step 3d: Generate SOA services, deploy, and test” on
page 78.

Figure 3-149 Create an application 1/2

Note: An application is a deployable unit, in that a “.ear” file is created for each
application, and appears as an installed application when viewed from the
WebSphere Application Server Administrative Console.

 Chapter 3. Retail industry scenario 237

Figure 3-150 Create an application 2/2

238 IBM InfoSphere DataStage Data Flow and Job Design

Stepd: Generate SOA services, deploy, and test
In this section, we show the definition of service involving a federated query and
its deployment and test that involves SOAP over HTTP and EJB™ bindings.

Figure 3-151 on page 241 through Figure 3-171 on page 259 describe some of
the steps involved in generating an SOA service of a federated query.

The main steps are as follows:

1. After creating an application, expand Services and select New → Service for
the Appl_J06 application as shown in Figure 3-151 on page 241.

2. Provide details such as the Service Name (Serv_J06) and optionally the
Description and click Save Application as shown in Figure 3-152 on
page 242.

3. Expand Operations, double-click newOperation1 (in Figure 3-153 on
page 243) and then modify the Name field to operJ06 and optional
Description field as shown in Figure 3-154 on page 244. Click Select to select
an information provider.

4. Select DB2 or Federation Server as the (Information Provider) Type from
the drop-down list, SQL Statement from the Subtype drop-down list, and
Create SQL Statement from the Action drop-down list. Select currency in the
Select a Database column. Then type the SQL statement as shown and click
OK in Figure 3-155 on page 245.

5. For the operJ06 operation, the Inputs (none in this case, since this service
just returns the daily exchange rates for all the countries) are shown in
Figure 3-156 on page 246, Outputs (which include the country_iso_code,
date, and rate_from_usd columns) are shown in Figure 3-157 on page 247,
the SQL Statement is shown in Figure 3-158 on page 248, the Provider
Properties are shown in Figure 3-159 on page 249, and the Default
Settings are shown in Figure 3-160 on page 250. Click Save Application in
Figure 3-160 on page 250 to save the changes.

6. Next specify the bindings for the service. Double-click Bindings for the
Serv_J06 as shown in Figure 3-161 on page 251. Then click Attach
Bindings and select SOAP over HTTP.

7. Click Save Application to save these changes as shown in Figure 3-162 on
page 252.

Note: Multiple bindings can be defined depending upon the environments
(J2EE and/or .NET) in which client applications consuming these services
operate. We chose only the SOAP over HTTP binding here.

 Chapter 3. Retail industry scenario 239

1. The next step is to deploy the federated query service. from the To deploy the
saved Appl_J06 application, select it in the Select Information Services
Application to Work With under the Information Services Application tab
and select Deploy as shown in Figure 3-163 on page 253.

2. Confirm the services, bindings and operations to include in this deployment
by checking the appropriate boxes, and click Deploy as shown in
Figure 3-164 on page 254.

3. When deployment is completed, the status of the Appl_J06 has a Deployment
Status of Deployed as shown in Figure 3-165 on page 255.

4. All deployed services can be viewed from IBM Information Server console
follows:

a. For the PROJ_J06 project, click OPERATE and then Deployed
Information Services Applications as shown in Figure 3-166 on
page 255 through

b. Expand Appl_J06 and select operJ06 as shown in Figure 3-167 on
page 256 to see the overview of this operation’s features.

c. Select the name of the service Serv_J06 and click View Service in
Catalog as shown in Figure 3-168 on page 257 to view details of this
service as seen in Figure 3-169 on page 258.

d. Select Bindings in Figure 3-169 on page 258 to view the SOAP over
HTTP binding that was chosen for this service. The WSDL3 document for
this service can be viewed by clicking Open WSDL Document in
Figure 3-169 on page 258. Its contents can be seen in Figure 3-171 on
page 259.

5. This service has to be tested before making it available to the user
community. A number of freeware products are available to test a SOAP over
HTTP service. We have not included them here. Refer to the Redbooks
publication, SOA Solutions Using IBM Information Server, SG24-7402 for full
details on generating, deploying, and testing SOA services using IBM
Information Server.

3 A Web Services Description Language (WSDL) is an XML format document that is used to
exchange interface information between a Web service producer and Web service consumers. A
WSDL description allows a consumer (client application) to utilize a Web service’s capabilities
without having to know the technologies used to implement the Web service.

240 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-151 Generate SOA services, deploy, and test 1/21

 Chapter 3. Retail industry scenario 241

Figure 3-152 Generate SOA services, deploy, and test 2/21

242 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-153 Generate SOA services, deploy, and test 3/21

 Chapter 3. Retail industry scenario 243

Figure 3-154 Generate SOA services, deploy, and test 4/21

244 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-155 Generate SOA services, deploy, and test 5/21

 Chapter 3. Retail industry scenario 245

Figure 3-156 Generate SOA services, deploy, and test 6/21

246 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-157 Generate SOA services, deploy, and test 7/21

 Chapter 3. Retail industry scenario 247

Figure 3-158 Generate SOA services, deploy, and test 8/21

248 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-159 Generate SOA services, deploy, and test 9/21

 Chapter 3. Retail industry scenario 249

Figure 3-160 Generate SOA services, deploy, and test 10/21

250 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-161 Generate SOA services, deploy, and test 11/21

 Chapter 3. Retail industry scenario 251

Figure 3-162 Generate SOA services, deploy, and test 12/21

252 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-163 Generate SOA services, deploy, and test 13/21

 Chapter 3. Retail industry scenario 253

Figure 3-164 Generate SOA services, deploy, and test 14/21

254 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-165 Generate SOA services, deploy, and test 15/21

Figure 3-166 Generate SOA services, deploy, and test 16/21

 Chapter 3. Retail industry scenario 255

Figure 3-167 Generate SOA services, deploy, and test 17/21

256 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-168 Generate SOA services, deploy, and test 18/21

 Chapter 3. Retail industry scenario 257

Figure 3-169 Generate SOA services, deploy, and test 19/21

258 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-170 Generate SOA services, deploy, and test 20/21

Figure 3-171 Generate SOA services, deploy, and test 21/21

 Chapter 3. Retail industry scenario 259

Stepe: Load exchange rate info (Web service) to a data set
In this section, we access the exchange rates using the Web service created
earlier and write its contents to a data set.

Figure 3-172 on page 263 through Figure 3-191 on page 272 describe some of
the steps involved in accessing the exchange rates using the Web service and
writing it in XML format to a data set. This involves importing the WSDL
document for this Web service, and using the WSClientPX stage, an
XMLInputPX stage, and a Data Set stage as shown in Figure 3-177 on page 266.

The main steps are as follows:

1. After launching the IBM InfoSphere DataStage and QualityStage Designer,
click Import →Table Definitions →Web Services WSDL Definitions.. as
shown in Figure 3-172 on page 263.

2. Paste the URL for the WSDL document (that was copied in Figure 3-171 on
page 259) in the Address field as shown in Figure 3-173 on page 263. Click
Import in Figure 3-174 on page 264 to import the WSDL document into the
Designer tool. Figure 3-175 on page 264 shows the successful import
message.

3. Figure 3-176 on page 265 shows the partial contents of the CURRENCY
table that stores currency exchange rates by ISO country code and date
which is accessed by the Web service.

4. Figure 3-177 on page 266 shows the various stages used in this job — it
includes a WSClientPX stage, an XMLInputPX stage, and a Data Set stage.
The names of the stages were modified as shown.

5. Figure 3-178 on page 266 through Figure 3-181 on page 269 show the
configuration of the Web Service Client stage that retrieves the exchange
rates stored in a database via the Web service created in “Stepd: Generate
SOA services, deploy, and test” on page 239.

The Web Services Client stage is used when you need the Web service to act
as either a data source or a data target during an operation. The Web
Services Client stage encodes requests as SOAP messages and decodes
responses from SOAP messages, using metadata that is defined for a Web
service operation in its Web Services Description Language (WSDL).

– Figure 3-178 on page 266 shows the Web service and operation to be
accessed under the General tab in the Stage page.

– Figure 3-179 on page 267 shows the InputArguments tab in the Output
page, which identifies namespace information and input parameters for
the Web service operation listed as a Stage property in Figure 3-178 on
page 266. The output is XML content.

260 IBM InfoSphere DataStage Data Flow and Job Design

The Input Arguments page is used to:

• Load the namespace, input parameters, and other table definition
information for the Web service that you specify on the General page of
the Stage properties page. This information is used to create the SOAP
message for a Web service request.

• Specify constants or job parameters (#param#) for each input
parameter.

• Supply input SOAP header elements.

• Indicate whether or not a reference link supplies an input parameter.

– Figure 3-180 on page 268 shows the OutputMessage tab in the Output
page, which contains message information from the Web service. Select
the User-Defined Message check box, and select the column SOAPbody
(of the linked stage that will receive the output message) in the drop-down
list of the Choose the Column Receiving the User Message field.

The Output Message page is used to perform one of these actions:

• Load namespace information and output parameters from the table
definition that contains WSDL information. The Web Services Client
stage uses this information to create an output message.

• Specify the column on the output link that receives the response from
the Web service.

– Figure 3-181 on page 269 shows the Columns tab in the Output page,
which contains the column definition (SOAPbody) for the data being
output.

Use the Columns page to:

• Inspect the definitions of output values.
• Load another table definition.

6. Figure 3-182 on page 269 through Figure 3-186 on page 271 show the
configuration of the XMLInputPX stage that is used to convert XML data
(generated by the WSClientPX stage in its output link Xml_Currency) to flat
relational tables.

– Figure 3-182 on page 269 shows the XML Source tab in the Input page,
which specifies the input column (SOAPbody) that contains the XML
document.

– Figure 3-183 on page 269 shows the Columns tab in the Input page,
which describes the input, including the location of the XML document that
is transformed. It specifies the column definitions for the data written to the
table or file on the chosen link.

 Chapter 3. Retail industry scenario 261

– Figure 3-184 on page 270 shows the Transformation Settings tab in the
Output page. It is used to:

• Indicate that the output link inherits properties from the Stage page.

• Replace missing elements and attributes with empty values.

• Replace empty elements and empty values with NULLs.

• Load namespaces from a table definition created with the XML Meta
Data Importer.

• Supply namespace declarations manually.

– Figure 3-185 on page 270 shows the Columns tab in the Output page,
which specifies the output columns, including columns that receive the
transformed output. The Derivation column identifies the source of each
column in the output.

There are two major steps in using XML Input, as follows:

– Create mappings between XML and relational data.

You create mappings for XML Input using the XML Meta Data Importer.
The output is a table definition that contains a set of XML XPath
expressions. These XPath expressions specify how to extract information
from the XML document to a relational database format.

You can also manually create XPath expressions through the XML Input
stage.

– Add the XML Input stage to a server job.

Drag-and-drop the XML Input stage to your server job, and set up
properties within the stage.

7. Figure 3-187 on page 271 through Figure 3-191 on page 272 show the
configuration of the Ds_Currency Data Set stage that and its partial contents
after execution:

– Figure 3-187 on page 271 shows the Properties tab in the Input page that
identifies the location and name (J06_Dst_Currency.ds) of the data set.

– Figure 3-188 on page 271 shows the Columns tab in the Input page that
identifies the incoming input columns.

– Figure 3-189 on page 272 shows the execution results of this job,
indicating 135 records being written to the data set.

– Figure 3-190 on page 272 and Figure 3-191 on page 272 show the partial
contents of the data set created.

262 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-172 Load exchange rate information (Web service) to a data set 1/20

Figure 3-173 Load exchange rate information (Web service) to a data set 2/20

 Chapter 3. Retail industry scenario 263

Figure 3-174 Load exchange rate information (Web service) to a data set 3/20

Figure 3-175 Load exchange rate information (Web service) to a data set 4/20

264 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-176 Load exchange rate information (Web service) to a data set 5/20

 Chapter 3. Retail industry scenario 265

Figure 3-177 Load exchange rate information (Web service) to a data set 6/20

Figure 3-178 Load exchange rate information (Web service) to a data set 7/20

266 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-179 Load exchange rate information (Web service) to a data set 8/20

 Chapter 3. Retail industry scenario 267

Figure 3-180 Load exchange rate information (Web service) to a data set 9/20

268 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-181 Load exchange rate information (Web service) to a data set 10/20

Figure 3-182 Load exchange rate information (Web service) to a data set 11/20

Figure 3-183 Load exchange rate information (Web service) to a data set 12/20

 Chapter 3. Retail industry scenario 269

Figure 3-184 Load exchange rate information (Web service) to a data set 13/20

Figure 3-185 Load exchange rate information (Web service) to a data set 14/20

270 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-186 Load exchange rate information (Web service) to a data set 15/20

Figure 3-187 Load exchange rate information (Web service) to a data set 16/20

Figure 3-188 Load exchange rate information (Web service) to a data set 17/20

 Chapter 3. Retail industry scenario 271

Figure 3-189 Load exchange rate information (Web service) to a data set 18/20

Figure 3-190 Load exchange rate information (Web service) to a data set 19/20

Figure 3-191 Load exchange rate information (Web service) to a data set 20/20

272 IBM InfoSphere DataStage Data Flow and Job Design

J07A_SharedContainerLookupCurrency
“J06_IL_Daily_CreateCurrencyLookup_Service” on page 227 described the
creation of a Web service to retrieve the daily exchange rate for foreign currency
vis-a-vis the US dollar.

In this section, we create a shared container4 where input consists of the iso
country code, date (date), and the total US dollar value (of the sales transaction).
This input is processed using a Lookup stage and a Transformer stage to
produce an output that corresponds to the corresponding foreign currency (local
to the credit card) equivalent of the US dollar transaction. The objective here was
to showcase the shared container capability of IBM InfoSphere DataStage.

Figure 3-192 on page 275 through Figure 3-202 on page 282 describe the main
steps in creating a shared container that converts a $US (sales transaction)
amount into the equivalent amount in the foreign currency of a given iso country.
This shared container is used in the “J07_IL_Daily_LoadSalesStore” on
page 282 job.

1. Figure 3-192 on page 275 shows the various stages in the Parallel Container
— it includes a Container Input interface, a Container Output interface, a Data
Set stage, a Lookup stage, a Sequential file stage, and a Transformer stage.
The names of the stages were modified as shown.

2. Figure 3-193 on page 276 shows the Columns tab in the Output page of the
Data Set stage which includes the country_iso_code, date and rate_from_usd
columns. This data set is created daily (as shown in Figure 3-177 on
page 266) from the Web service and is used here for performance reasons,
since accessing the Web service for each incoming sales transaction would

4 Instances of a shared container can be reused in different parallel jobs. You can use shared
containers to make common job components available throughout the project. You can create a
shared container from a stage and associated metadata and add the shared container to the
palette to make this pre-configured stage available to other jobs. Shared containers comprise
groups of stages and links and are stored in the metadata repository like IBM InfoSphere
DataStage jobs. When you insert a shared container into a job, IBM InfoSphere DataStage places
an instance of that container into the design. When you compile the job containing an instance of a
shared container, the code for the container is included in the compiled job. You can use the
InfoSphere DataStage debugger on instances of shared containers used within server jobs. When
you add an instance of a shared container to a job, you will have to map metadata for the links into
and out of the container, as these may vary in each job in which you use the shared container. If
you change the contents of a shared container, you will have to recompile those jobs that use the
container in order for the changes to take effect. For parallel shared containers, you can take
advantage of runtime column propagation to avoid having to map the metadata. If you enable
runtime column propagation, then, when the job runs, metadata will be automatically propagated
across the boundary between the shared container and the stage(s) to which it connects in the job.
You can create a shared container from scratch, or place a set of existing stages and links within a
shared container.

 Chapter 3. Retail industry scenario 273

be expensive. This data set contains all the exchange rates for all dates for all
iso countries. Runtime column propagation is enabled so that any extra
columns that are not defined in the metadata when it actually runs, will be
adopted and propagated through the rest of the job.

3. Figure 3-194 on page 277 through Figure 3-197 on page 279 show the
configuration of the Lookup stage. For each record of the source data set
from the primary link (shared_cont), the Lookup stage performs a table
lookup on the lookup table attached by reference link (Ds_rate).

– The table lookup is based on the values of a set of lookup key columns
(COUNTRY_ISO_CODE and LookupDate in the Ds_rate link and the
country_iso_code and date in the shared_cont link). These are identified
in Figure 3-194 on page 277 through Figure 3-196 on page 279. You can
specify a condition on the reference link such that the stage will only
perform a lookup on that reference link if the condition is satisfied. The
equality condition is used here as shown in Figure 3-194 on page 277
through Figure 3-196 on page 279.

– Each record of the output link (Trx_LocCurrency) contains columns from
the source plus columns from all the corresponding lookup record where
corresponding source and lookup record have the same value for the
lookup key columns. The lookup key columns do not have to have the
same names in the primary and the reference links. The TOTALUSD
column from the shared_cont primary link and the rate_from_usd column
from the Ds_rate reference link are copied to the output link
(Trx_LocCurrency). This is shown in Figure 3-194 on page 277 through
Figure 3-196 on page 279.

– Figure 3-197 on page 279 shows the Link Ordering tab in the Stage
page, which identifies the Primary (link) as being the shared_cont link and
the Lookup (Reference link) as being the Ds_rate link.

– The optional reject link Ds_reject carries source records that do not have a
corresponding entry in the input lookup table. Figure 3-198 on page 280
through Figure 3-200 on page 281 identify the Properties (such as the
name), Format, and Columns of the sequential file to which the rejected
records are written.

4. Figure 3-201 on page 281 shows the configuration of the Transformer stage
that computes the value of equivalent of the $US value in foreign currency by
multiplying the $US amount by the exchange rate.

5. Figure 3-202 on page 282 shows the contents of the Ds_reject link which has
an invalid ISO code CHN in the source.

274 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-192 Create the J07A_SharedContainerLookupCurrency job 1/11

 Chapter 3. Retail industry scenario 275

Figure 3-193 Create the J07A_SharedContainerLookupCurrency job 2/11

276 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-194 Create the J07A_SharedContainerLookupCurrency job 3/11

 Chapter 3. Retail industry scenario 277

Figure 3-195 Create the J07A_SharedContainerLookupCurrency job 4/11

278 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-196 Create the J07A_SharedContainerLookupCurrency job 5/11

Figure 3-197 Create the J07A_SharedContainerLookupCurrency job 6/11

 Chapter 3. Retail industry scenario 279

Figure 3-198 Create the J07A_SharedContainerLookupCurrency job 7/11

Figure 3-199 Create the J07A_SharedContainerLookupCurrency job 8/11

280 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-200 Create the J07A_SharedContainerLookupCurrency job 9/11

Figure 3-201 Create the J07A_SharedContainerLookupCurrency job 10/11

 Chapter 3. Retail industry scenario 281

Figure 3-202 Create the J07A_SharedContainerLookupCurrency job 11/11

J07_IL_Daily_LoadSalesStore
As mentioned earlier, some customers use non-US credit cards to purchase
products at the various WantThatStuff stores. The individual sales transactions
captured at the individual stores are in $US, but the foreign currency equivalent
must be determined and then loaded into an interim DB2 table for subsequent
loading into the Sales fact table.

In this job, we compute the foreign currency equivalent for a sales transaction
involving a non-US credit card using the shared container stage created in
“J07A_SharedContainerLookupCurrency” on page 273 and write it to an interim
DB2 table for subsequent processing prior to being loaded into the sales fact
table.

Figure 3-203 on page 283 through Figure 3-211 on page 289 describe the main
steps processing sales transactions from the stores and generating the foreign
currency equivalent of the $US amount before writing it to a DB2 table.

1. Figure 3-203 on page 283 shows the various stages in the job — it includes a
Sequential file stage, a Transformer stage, a shared container stage, a Copy
stage and an ODBCConnectorPX stage. The names of the stages were
modified as shown.

2. Figure 3-204 on page 284 shows the configuration of the Sequential file
containing the sales transactions of an individual store. It shows the Columns
tab in the Output page, which identifies all the columns associated with a
sales transaction. Note in particular the Timestamp data type of the DATE
column, and the Runtime column propagation box being checked.

3. The COUNTRY_ISO_CODE, DATE, and TOTAL_USD columns are
required input to the shared container stage described in
“J07A_SharedContainerLookupCurrency” on page 273. However, the shared
container requires a DATE data type and not TIMESTAMP. Therefore an
intervening Transformer stage (Trx_Conv) is required to convert the
TIMESTAMP data type to a DATE data type using the TimestampToDate
function as shown in Figure 3-205 on page 285.

282 IBM InfoSphere DataStage Data Flow and Job Design

4. The output of the shared container stage is then written to a Data Set
involving a one-to-one mapping of the columns using a Copy stage as shown
in Figure 3-206 on page 286 and Figure 3-207 on page 286. This stage was
introduced to disable Runtime column propagation (as shown in Figure 3-208
on page 287) so that only the columns of interest (as identified in
Figure 3-208 on page 287) are passed to the ODBCConnectorPX stage.

5. The output of the Copy stage is then loaded into a DB2 table using an
ODBCConnectorPX stage as shown in Figure 3-209 on page 288. The
INSERT SQL statement is automatically generated as shown.

6. This job is then executed twice — once for store transactions corresponding
to store ST1 and the second corresponding to store ST33. Note the
enablement of runtime column propagation as shown in Figure 3-211 on
page 289:

– Figure 3-210 on page 289 through Figure 3-214 on page 290 show the job
properties and execution results associated with store ST1 which has 5
sales transactions. These 5 sales transactions are shown in Figure 3-217
on page 291 and Figure 3-218 on page 292. Note the foreign currency
equivalents of the $US amounts and the country iso code associated with
each sales transaction.

– Figure 3-215 on page 291 and Figure 3-216 on page 291 show the job
properties and execution results associated with store ST33 which has 2
sales transactions. These 2 sales transactions are shown in Figure 3-219
on page 292 and Figure 3-220 on page 292. Note the foreign currency
equivalents of the $US amounts and the country iso code associated with
each sales transaction.

You can now proceed to load the sales fact table with the sales transactions in
the interim DB2 tables as described in “J08_IL_LoadSalesFact” on page 292.

Figure 3-203 Create the J07_IL_Daily_LoadSalesStore job 1/18

 Chapter 3. Retail industry scenario 283

Figure 3-204 Create the J07_IL_Daily_LoadSalesStore job 2/18

284 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-205 Create the J07_IL_Daily_LoadSalesStore job 3/18

 Chapter 3. Retail industry scenario 285

Figure 3-206 Create the J07_IL_Daily_LoadSalesStore job 4/18

Figure 3-207 Create the J07_IL_Daily_LoadSalesStore job 5/18

286 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-208 Create the J07_IL_Daily_LoadSalesStore job 6/18

 Chapter 3. Retail industry scenario 287

Figure 3-209 Create the J07_IL_Daily_LoadSalesStore job 7/18

288 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-210 Create the J07_IL_Daily_LoadSalesStore job 8/18

Figure 3-211 Create the J07_IL_Daily_LoadSalesStore job 9/18

 Chapter 3. Retail industry scenario 289

Figure 3-212 Create the J07_IL_Daily_LoadSalesStore job 10/18

Figure 3-213 Create the J07_IL_Daily_LoadSalesStore job 11/18

Figure 3-214 Create the J07_IL_Daily_LoadSalesStore job 12/18

290 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-215 Create the J07_IL_Daily_LoadSalesStore job 13/18

Figure 3-216 Create the J07_IL_Daily_LoadSalesStore job 14/18

Figure 3-217 Create the J07_IL_Daily_LoadSalesStore job 15/18

 Chapter 3. Retail industry scenario 291

Figure 3-218 Create the J07_IL_Daily_LoadSalesStore job 16/18

Figure 3-219 Create the J07_IL_Daily_LoadSalesStore job 17/18

Figure 3-220 Create the J07_IL_Daily_LoadSalesStore job 18/18

J08_IL_LoadSalesFact
In this job, all the sales transactions (in the interim DB2 tables) from the various
stores are merged, aggregated, and assigned the appropriate surrogate key
(corresponding to the business key) before being loaded into the Sales fact table.

The Sales fact table does not contain the raw sales transactions, but aggregated
summaries of the sales transactions. Figure 3-221 on page 295 through
Figure 3-254 on page 320 describe the main steps in processing the sales
transactions prior to loading the Sales fact table.

1. Figure 3-221 on page 295 shows the various stages in the job — it includes
seven ODBCConnectorPX stages, a Funnel stage, a Modify stage, an
Aggregator stage, a Lookup stage, a Filter stage, and a Sequential file stage.
The names of the stages were modified as shown.

292 IBM InfoSphere DataStage Data Flow and Job Design

2. Figure 3-222 on page 296 shows an ODBCConnectorPX stage that retrieves
sales transactions from the interim DB2 table corresponding to the ST1 store,
while Figure 3-223 on page 297 shows the corresponding
ODBCConnectorPX stage that retrieves sales transactions from the interim
DB2 table corresponding to the ST33 store. The SQL to access these tables
are generated automatically. The rows from these two tables are then
unioned using a Funnel stage (Fnl_Sales).

3. Figure 3-224 on page 298 and Figure 3-225 on page 298 show the
configuration of the Funnel stage including the mapping of columns in the
output.

4. In the output of the Funnel stage, the DATE column is a TIMESTAMP data
type. In order to aggregate the sales transactions on multiple columns
including the date, we first have to create a Modify stage that converts the
TIMESTAMP data type to a DATE for all the sales transactions. This is shown
in Figure 3-226 on page 299.

5. After the conversion of the date columns in the sales transactions in the
Modify stage as shown in Figure 3-226 on page 299, we can aggregate the
sales transactions’ QUANTITY (number of units of the product sold),
TOTAL_USD (total cost of the units in $US) and
TOTAL_LOCAL_CURRENCY (equivalent total cost of the units in the foreign
currency) columns based on the grouping columns CUSTOMER_ID,
PRODUCT_ID, STORE_ID, DATE, COUNTRY_ISO_CODE, PRICE_USD,
and SELLING_PRICE_USD.

– Figure 3-227 on page 299 shows the Properties tab in the Stage page,
which identifies the Grouping Keys, and the Aggregations details such as
the sum calculation.

– Figure 3-228 on page 300 shows the Mapping tab in the Output page that
identifies the columns mapped to the output Lku_Dim link. It includes the
grouping columns as well as the aggregated columns.

6. Figure 3-229 on page 301 through Figure 3-240 on page 312 show the
configuration of the Lookup stage. For each record of the source data set
from the primary link (Lku_Dim), the Lookup stage performs a table lookup on
the four lookup tables attached by reference links (Odbc_Customer,
Odbc_Product, Odbc_Store, and Odbc_Date).

– Figure 3-229 on page 301 through Figure 3-235 on page 307 identify the
access to each of the four reference links using the ODBCConnectorPX
stage using manually generated SQL SELECT statements that retrieve all
the business key and surrogate key pairs.

– The table lookups are based on the values of a set of lookup key columns
as identified in Figure 3-236 on page 308 through Figure 3-240 on
page 312. You can specify a condition on each reference link such that the

 Chapter 3. Retail industry scenario 293

stage will only perform a lookup on that reference link if the condition is
satisfied. The equality condition is used here as shown in Figure 3-236 on
page 308 through Figure 3-240 on page 312.

– Each record of the output link (filter) contains columns from the source
plus columns from all the corresponding lookup records where the
corresponding source and lookup records have the same value for the
lookup key columns. The lookup key columns do not have to have the
same names in the primary and the reference links. This is shown in
Figure 3-241 on page 313.

– Figure 3-242 on page 314 shows the Link Ordering tab in the Stage
page, which identifies the Primary (link) as being the Lku_Dim link and the
Lookups (Reference links) as being the Odbc_Customer, Odbc_Product,
Odbc_Store, and Odbc_Date.

We chose not to define the optional reject link for this stage.

7. The output of the Lookup stage is then input to a Filter stage to only accept
records that have a non-zero value in the surrogate keys (Figure 3-243 on
page 314 and Figure 3-244 on page 315) and write them out to the output link
Odbc_Fact, and write the rejects (those that do not qualify per the predicate)
to the Seq_reject link.

Figure 3-245 on page 315 shows the Link Ordering tab in the Stage page
that directs the records that qualify to the Odbc_Fact link, while the rejects are
directed to the Seq_reject link.

Figure 3-246 on page 316 shows the Mapping tab in the Output page that
copies all columns from the input to the output.

Figure 3-247 on page 316 (Properties tab in the Input page) and
Figure 3-248 on page 317 (Format tab in the Input page) show the
configuration of the sequential file containing the reject records

8. Figure 3-249 on page 318 shows the ODBCConnectorPX stage that is used
to insert the sales transactions into the SALES_FACT table. The SQL
INSERT statement is automatically generated. The Write mode is Delete then
insert to ensure that no insert failures can occur.

9. Figure 3-250 on page 319 shows the results of executing this job. Three rows
are inserted into the SALES_FACT table, while three rows are written to the
reject file.

Figure 3-251 on page 319 and Figure 3-252 on page 319 show the rows
rejected because of at least one of the dimension keys has a zero value.

Figure 3-253 on page 320 and Figure 3-254 on page 320 show the rows
successfully inserted into the SALES_FACT table.

This concludes the initial load of the sales fact table and the dimension tables.

294 IBM InfoSphere DataStage Data Flow and Job Design

Before you can commence the recurring tasks (update of the sales fact table with
sales transactions, and the update of the dimension tables with new business
keys or changes to attributes), you have to create interim lookup dimension
tables and surrogate key files the dimension tables as described in
“J09_IL_LoadLookupCustomerDim” on page 320,
“J10_IL_LoadLookupProductDim” on page 327, “J11_IL_LoadLookupStoreDim”
on page 330, and “J12_IL_GenerateSurrogateKey” on page 335.

Figure 3-221 Create the J08_IL_LoadSalesFact job 1/34

 Chapter 3. Retail industry scenario 295

Figure 3-222 Create the J08_IL_LoadSalesFact job 2/34

296 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-223 Create the J08_IL_LoadSalesFact job 3/34

 Chapter 3. Retail industry scenario 297

Figure 3-224 Create the J08_IL_LoadSalesFact job 4/34

Figure 3-225 Create the J08_IL_LoadSalesFact job 5/34

298 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-226 Create the J08_IL_LoadSalesFact job 6/34

Figure 3-227 Create the J08_IL_LoadSalesFact job 7/34

 Chapter 3. Retail industry scenario 299

Figure 3-228 Create the J08_IL_LoadSalesFact job 8/34

300 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-229 Create the J08_IL_LoadSalesFact job 9/34

 Chapter 3. Retail industry scenario 301

Figure 3-230 Create the J08_IL_LoadSalesFact job 10/34

302 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-231 Create the J08_IL_LoadSalesFact job 11/34

 Chapter 3. Retail industry scenario 303

Figure 3-232 Create the J08_IL_LoadSalesFact job 12/34

304 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-233 Create the J08_IL_LoadSalesFact job 13/34

 Chapter 3. Retail industry scenario 305

Figure 3-234 Create the J08_IL_LoadSalesFact job 14/34

306 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-235 Create the J08_IL_LoadSalesFact job 15/34

 Chapter 3. Retail industry scenario 307

Figure 3-236 Create the J08_IL_LoadSalesFact job 16/34

308 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-237 Create the J08_IL_LoadSalesFact job 17/34

 Chapter 3. Retail industry scenario 309

Figure 3-238 Create the J08_IL_LoadSalesFact job 18/34

310 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-239 Create the J08_IL_LoadSalesFact job 19/34

 Chapter 3. Retail industry scenario 311

Figure 3-240 Create the J08_IL_LoadSalesFact job 20/34

312 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-241 Create the J08_IL_LoadSalesFact job 21/34

 Chapter 3. Retail industry scenario 313

Figure 3-242 Create the J08_IL_LoadSalesFact job 22/34

Figure 3-243 Create the J08_IL_LoadSalesFact job 23/34

314 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-244 Create the J08_IL_LoadSalesFact job 24/34

Figure 3-245 Create the J08_IL_LoadSalesFact job 25/34

 Chapter 3. Retail industry scenario 315

Figure 3-246 Create the J08_IL_LoadSalesFact job 26/34

Figure 3-247 Create the J08_IL_LoadSalesFact job 27/34

316 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-248 Create the J08_IL_LoadSalesFact job 28/34

 Chapter 3. Retail industry scenario 317

Figure 3-249 Create the J08_IL_LoadSalesFact job 29/34

318 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-250 Create the J08_IL_LoadSalesFact job 30/34

Figure 3-251 Create the J08_IL_LoadSalesFact job 31/34

Figure 3-252 Create the J08_IL_LoadSalesFact job 32/34

 Chapter 3. Retail industry scenario 319

Figure 3-253 Create the J08_IL_LoadSalesFact job 33/34

Figure 3-254 Create the J08_IL_LoadSalesFact job 34/34

J09_IL_LoadLookupCustomerDim
When multiple versions of a business key are maintained in a dimension table,
each of the entries associated with a particular business is associated with an
effective date range and a surrogate key. The process that maintains multiple
versions of a business key (Slowly Changing Dimension in our case) is
responsible for maintaining the effective date and generating a surrogate key for
the current version of a business key.

Before an incoming sales transaction can be loaded into the SALES_FACT
table, it has to be aggregated per the grouping columns, and then associated
with the surrogate key of that business key corresponding to the date of the sales
transaction. Typically, an incoming sales transaction would correspond to the
current version of the business key in the dimension table unless delays caused
late arriving data that corresponds to an earlier version of the business key.
A lookup table must be generated for each dimension table that corresponds to
the current version of a business key that specifies the effective date.

In this job, we extract all the current version of the business keys from the
Customer_Dim table and write it to an interim LOOKUP_CUSTOMER_DIM
table. All the attributes of the CUSTOMER_DIM table are written to this lookup
table excepting the surrogate key.

320 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-255 on page 322 through Figure 3-266 on page 327 describe the main
steps in creating a Customer lookup dimension table as follows:

1. Figure 3-255 on page 322 shows the various stages in the job — it includes a
source ODBCConnectorPX stage, a Sort, a Remove Duplicates stage, and a
target ODBCConnectorPX stage. The names of the stages were modified as
shown.

1. Figure 3-256 on page 322 shows an ODBCConnectorPX stage that retrieves
records from the CUSTOMER_DIM table using automatically generated SQL
SELECT statements.

2. The extracted rows from the previous stage are written to the output link
Srt_CustomerDim to be sorted on ascending sequence of CUSTOMER_ID
(business key) and EFFECTIVE_TS (effective timestamp) as shown in the
Properties tab of the Stage page in Figure 3-257 on page 323.

Figure 3-258 on page 323 shows the Mapping tab in the Output page, which
maps all the input columns to the output.

3. When multiple versions exist for a particular business key, there will be
duplicates of the same business key (CUSTOMER_ID) value. To ensure that
only the current version is selected (corresponding to the row with the latest
effective timestamp), the output of the previous stage is fed to a Remove
Duplicates stage with the specification Duplicate To Retain = Last option
selected. This ensures that only the business key with the highest effective
timestamp is retained in the output link ODBC_LookupCustomerDim. This is
shown in Figure 3-259 on page 324.

4. Figure 3-260 on page 324 shows the Mapping tab in the Output page, which
maps all the input columns to the output except the surrogate key
CUSTOMER_DIM_KEY.

5. Figure 3-261 on page 325 shows the ODBCConnectorPX stage that is used
to update/insert the current version of the business key into the
LOOKUP_CUSTOMER_DIM table. The Write mode is Update then Insert,
since an insert will fail if the business key already exists. The SQL INSERT
(Figure 3-262 on page 325) and UPDATE (Figure 3-263 on page 326) are
manually generated as shown. statement is automatically generated.

6. Figure 3-264 on page 326 shows the results of the job execution,
where a total of eleven rows are generated and inserted into the
LOOKUP_CUSTOMER_DIM table. Figure 3-265 on page 327 and
Figure 3-266 on page 327 show the eleven rows inserted into the
LOOKUP_CUSTOMER_DIM table.

 Chapter 3. Retail industry scenario 321

Figure 3-255 Create the J09_IL_LoadLookupCustomerDim job 1/12

Figure 3-256 Create the J09_IL_LoadLookupCustomerDim job 2/12

322 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-257 Create the J09_IL_LoadLookupCustomerDim job 3/12

Figure 3-258 Create the J09_IL_LoadLookupCustomerDim job 4/12

 Chapter 3. Retail industry scenario 323

Figure 3-259 Create the J09_IL_LoadLookupCustomerDim job 5/12

Figure 3-260 Create the J09_IL_LoadLookupCustomerDim job 6/12

324 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-261 Create the J09_IL_LoadLookupCustomerDim job 7/12

Figure 3-262 Create the J09_IL_LoadLookupCustomerDim job 8/12

 Chapter 3. Retail industry scenario 325

Figure 3-263 Create the J09_IL_LoadLookupCustomerDim job 9/12

Figure 3-264 Create the J09_IL_LoadLookupCustomerDim job 10/12

326 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-265 Create the J09_IL_LoadLookupCustomerDim job 11/12

Figure 3-266 Create the J09_IL_LoadLookupCustomerDim job 12/12

J10_IL_LoadLookupProductDim
In this job, we load the LOOKUP_PRODUCT_DIM table from the
PRODUCT_DIM dimension table. Figure 3-267 on page 328 through
Figure 3-273 on page 330 show some of the main steps in loading this table.
Since this is similar to the process described in
“J09_IL_LoadLookupCustomerDim” on page 320, it is not repeated here.

 Chapter 3. Retail industry scenario 327

Figure 3-267 Create the J10_IL_LoadLookupProductDim job 1/7

Figure 3-268 Create the J10_IL_LoadLookupProductDim job 2/7

328 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-269 Create the J10_IL_LoadLookupProductDim job 3/7

Figure 3-270 Create the J10_IL_LoadLookupProductDim job 4/7

 Chapter 3. Retail industry scenario 329

Figure 3-271 Create the J10_IL_LoadLookupProductDim job 5/7

Figure 3-272 Create the J10_IL_LoadLookupProductDim job 6/7

Figure 3-273 Create the J10_IL_LoadLookupProductDim job 7/7

J11_IL_LoadLookupStoreDim
In this job, we load the LOOKUP_STORE_DIM table from the STORE_DIM
dimension table. Figure 3-274 on page 331 through Figure 3-284 on page 335
show some of the main steps in loading this table. Since this is similar to the
process described in “J09_IL_LoadLookupCustomerDim” on page 320, it is not
repeated here.

330 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-274 Create the J11_IL_LoadLookupStoreDim job 1/11

Figure 3-275 Create the J11_IL_LoadLookupStoreDim job 2/11

 Chapter 3. Retail industry scenario 331

Figure 3-276 Create the J11_IL_LoadLookupStoreDim job 3/11

332 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-277 Create the J11_IL_LoadLookupStoreDim job 4/11

Figure 3-278 Create the J11_IL_LoadLookupStoreDim job 5/11

 Chapter 3. Retail industry scenario 333

Figure 3-279 Create the J11_IL_LoadLookupStoreDim job 6/11

Figure 3-280 Create the J11_IL_LoadLookupStoreDim job 7/11

Figure 3-281 Create the J11_IL_LoadLookupStoreDim job 8/11

334 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-282 Create the J11_IL_LoadLookupStoreDim job 9/11

Figure 3-283 Create the J11_IL_LoadLookupStoreDim job 10/11

Figure 3-284 Create the J11_IL_LoadLookupStoreDim job 11/11

J12_IL_GenerateSurrogateKey
As described in “Slowly Changing Dimension” on page 113, when the SCD stage
performs a dimension lookup, and a match is not found, the stage obtains a new
surrogate key value by using the derivation of the Surrogate Key column on the
Dim Update tab. Since we want the SCD stage to generate new surrogate keys
by using a key source that you create with a Surrogate Key Generator stage as
described in “Surrogate Key Generator” on page 132, you must use the
NextSurrogateKey function to derive the Surrogate Key column.

In this job, we create a surrogate key source for each of the four dimension
tables using the Surrogate Key Generator stage using the surrogate key value
initially loaded into the individual dimension tables.

Figure 3-285 on page 336 through Figure 3-293 on page 340 describe main
steps for creating a surrogate key source for each of the four dimension tables.

 Chapter 3. Retail industry scenario 335

The flow is as follows:

1. Figure 3-285 here shows the various stages in the job — it includes a source
ODBCConnectorPX stage, and a Surrogate Key Generator stage for each of
the four dimension tables. The names of the stages were modified as shown.

1. Figure 3-286 on page 337 shows an ODBCConnectorPX stage that retrieves
records from the PRODUCT_DIM table using an automatically generated
SQL SELECT statement. Figure 3-287 on page 337 shows the Properties
tab in the Stage page, which identifies the Key Source’s Input Column Name
= PRODUCT_DIM_KEY for priming the surrogate key file. The Source Name
identifies the name of the surrogate key source file.

2. Figure 3-288 on page 338 through Figure 3-293 on page 340 show the
equivalent configurations for the STORE_DIM, CUSTOMER_DIM, and
DATE_DIM dimension tables.

Figure 3-285 Create the J12_IL_GenerateSurrogateKey job 1/9

336 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-286 Create the J12_IL_GenerateSurrogateKey job 2/9

Figure 3-287 Create the J12_IL_GenerateSurrogateKey job 3/9

 Chapter 3. Retail industry scenario 337

Figure 3-288 Create the J12_IL_GenerateSurrogateKey job 4/9

Figure 3-289 Create the J12_IL_GenerateSurrogateKey job 5/9

338 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-290 Create the J12_IL_GenerateSurrogateKey job 6/9

Figure 3-291 Create the J12_IL_GenerateSurrogateKey job 7/9

 Chapter 3. Retail industry scenario 339

Figure 3-292 Create the J12_IL_GenerateSurrogateKey job 8/9

Figure 3-293 Create the J12_IL_GenerateSurrogateKey job 9/9

340 IBM InfoSphere DataStage Data Flow and Job Design

3.1.2 Recurring tasks

As mentioned earlier, the recurring (daily) tasks involve capturing dimension
table changes and the sales transactions and preparing the information for
updating the dimension tables and fact table over multiple update cycles, as
follows:

1. Capture dimension table changes occurring in the operational OLTP systems.

2. Collect sales transactions from the stores from the operational OLTP
systems.

3. Prepare the changes (to the dimension tables) for updating the dimension
tables.

4. Prepare the sales transactions for updating the fact table.

5. Update the dimension tables.

6. Update the fact table.

In the following sections, we describe the jobs processing Day 1 on November
6th, 2007. In subsequent sections, we describe Day 2 processing on November
7th, 2007 (3.1.4, “Recurring tasks (Day 2)” on page 507) and Day 3 processing
on November 8th, 2007 (3.1.5, “Recurring tasks (Day 3)” on page 537).

Table 3-2 lists the IBM InfoSphere DataStage jobs that we created to perform the
recurring tasks identified earlier.

Note: We chose three (daily) processing cycles in order to showcase various
scenarios as follows:

� Update to dimension tables that include Type 1 changes only, Type 2
changes only, and a combination of Type 1 and Type 2 changes.

� Sales transactions belonging to a previous version of the business key,
that is, they do not correspond to the current version of the business key.

� Sales transactions that have some business keys that have no
correspondence in the dimension tables,

� Late arriving dimensions (sales transactions with no corresponding
business key entries in the dimension tables). This is a slight variation of
the previous scenario.

� Dimension table changes with no corresponding sales transactions.

 Chapter 3. Retail industry scenario 341

Table 3-2 Recurring (daily) tasks jobs

Job name Brief description

“J06_IL_Daily_CreateCurrencyLookup_Service” on
page 227

Downloads the daily exchange rate by
country iso codes vis-a-vis the $US

“J07_IL_Daily_LoadSalesStore” on page 282 Loads the daily sales transactions of a
store to a table

“J13_Daily_UpdateLookupDim (Day 1)” on page 356 Updates the dimension lookup tables
with incoming Type 1 and/or Type 2
attribute changes

“J14_Daily_CreateAllSalesStoreDS (Day 1)” on
page 385

Merge the sales transactions from all the
stores

“J15_Daily_CreateSalesAggDS (Day 1)” on
page 387

Associates dimension attributes from the
lookup tables with the sales transactions,
and aggregates sales transactions by
quantity, foreign currency and US
currency using the grouping of customer,
produce, store, and date.

“J16_Daily_CreateScdInputDS (Day 1)” on page 421 Merges the aggregated sales
transactions created in the
“J15_Daily_CreateSalesAggDS (Day 1)”
on page 387 job with the dimension table
updates data sets (with nulls in the sales
transaction columns) created in the
“J13_Daily_UpdateLookupDim (Day 1)”
on page 356 job. The result is in the
format required as input to the SCD
stage.

“J17_DailyCreateSalesFactDS (Day1)” on page 433 Creates the files to update dimension
tables and the sales fact table in the
star-schema using the SCD stage. Late
arriving data is identified and written to a
reject file.

“J18_Daily_UpdateStoreDim (Day 1)” on page 478 Updates the Store dimension table using
the file created in the
“J17_DailyCreateSalesFactDS (Day1)”
on page 433 job

“J19_Daily_UpdateCustomerDim (Day 1)” on
page 485

Updates the Customer dimension table
using the file created in the
“J17_DailyCreateSalesFactDS (Day1)”
on page 433 job

“J20_Daily_UpdateProductDim (Day 1)” on page 494 Updates the Product dimension table
using the file created in the
“J17_DailyCreateSalesFactDS (Day1)”
on page 433 job

342 IBM InfoSphere DataStage Data Flow and Job Design

Here, we briefly describe each of these jobs:

� As described earlier in “J06_IL_Daily_CreateCurrencyLookup_Service” on
page 227 job, this job describes the creation of a data set containing the
exchange rates for different ISO country codes using a Web service.

� As described earlier in “J07_IL_Daily_LoadSalesStore” on page 282, this job
computes the foreign currency equivalent for a sales transaction involving a
non-US credit card and write it to an interim DB2 table.

� The “J13_Daily_UpdateLookupDim (Day 1)” on page 356 job retrieves
changes to customer, product, and store attributes (Type 1 and Type 2) from
an IBM WebSphere MQ queue and updates the dimension lookup tables
(created in “J09_IL_LoadLookupCustomerDim” on page 320,
“J10_IL_LoadLookupProductDim” on page 327, and
“J11_IL_LoadLookupStoreDim” on page 330 jobs). It also creates a data set
for each dimension table (with nulls in the sales transaction portion of the
records — more on this later) for input to the SCD stage in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job.

� The “J14_Daily_CreateAllSalesStoreDS (Day 1)” on page 385 job merges the
sales transactions from the individual stores into a single data set for
subsequent processing to update the star-schema database.

� The “J15_Daily_CreateSalesAggDS (Day 1)” on page 387 job associates
dimension attributes from the lookup tables with the sales transactions, and
aggregates sales transactions by quantity, foreign currency, and US currency
using the grouping of customer, produce, store, and date. Sales transactions
corresponding to late arriving dimension updates and invalid business keys
are identified and written to a reject file in this job.

� The “J16_Daily_CreateScdInputDS (Day 1)” on page 421 job creates a data
set in the format required as input to the SCD stage in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job, by merging the
aggregated sales transactions created in the J15_Daily_CreateSalesAggDS
job with the dimension table updates data sets (with nulls in the sales
transaction columns) created in the J13_Daily_UpdateLookupDim job.

“J21_Daily_UpdateDateDim (Day 1)” on page 499 Updates the Date dimension table using
the file created in the
“J17_DailyCreateSalesFactDS (Day1)”
on page 433 job

“J22_Daily_UpdateSalesFact (Day 1)” on page 502 Updates the Sales fact table using the file
created in the
“J17_DailyCreateSalesFactDS (Day1)”
on page 433 job

Job name Brief description

 Chapter 3. Retail industry scenario 343

� The “J17_DailyCreateSalesFactDS (Day1)” on page 433 job creates the files
to update dimension tables and the sales fact table in the star-schema using
the SCD stage. Late arriving data is identified and written to a reject file.

� The “J18_Daily_UpdateStoreDim (Day 1)” on page 478 job updates the Store
dimension table with the DBCConnectorPX stage using the file created in the
J17_Daily_CreateSalesFactDS job.

� The “J19_Daily_UpdateCustomerDim (Day 1)” on page 485 job updates the
Customer dimension table with the DBCConnectorPX stage using the file
created in the J17_Daily_CreateSalesFactDS job.

� The “J20_Daily_UpdateProductDim (Day 1)” on page 494 job updates the
Product dimension table with the ODBCConnectorPX stage using the file
created in the J17_Daily_CreateSalesFactDS job.

� The “J21_Daily_UpdateDateDim (Day 1)” on page 499 job updates the Date
dimension table with the DBCConnectorPX stage using the file created in the
J17_Daily_CreateSalesFactDS job.

� The “J22_Daily_UpdateSalesFact (Day 1)” on page 502 job updates the
Sales fact table with the DBCConnectorPX stage using the file created in the
J17_Daily_CreateSalesFactDS job.

The content of the dimension tables (excluding the Date dimension), the
dimension lookup tables (excluding the Date dimension), and the Sales fact
tables after the initial load (and just prior to the recurring daily cycle) is as follows:

� Dimension tables content

– Customer dimension table (11 rows) is shown in Figure 3-294 through
Figure 3-296.

Figure 3-294 Customer dimension table 1/3

344 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-295 Customer dimension table 2/3

Figure 3-296 Customer dimension table 3/3

– Product dimension table is shown in Figure 3-297 through Figure 3-299.

Figure 3-297 Product dimension 1/3

 Chapter 3. Retail industry scenario 345

Figure 3-298 Product dimension 2/3

Figure 3-299 Product dimension 3/3

– Store dimension table (2 rows) is shown in Figure 3-300.

Figure 3-300 Store dimension

� Sales fact table contents

Sales fact table (3 rows) is shown in Figure 3-301 and Figure 3-302.

Figure 3-301 Sales fact table 1/2

346 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-302 Sales fact table 2/2

� Dimension lookup tables content

– Customer dimension lookup table (11 rows) is shown in Figure 3-303 and
Figure 3-304.

Figure 3-303 Customer dimension lookup table 1/2

Figure 3-304 Customer dimension lookup table 1/2

 Chapter 3. Retail industry scenario 347

– Product dimension lookup table (4 rows) is shown in Figure 3-305.

Figure 3-305 Product dimension lookup table

– Store dimension lookup table (2 rows) is shown in Figure 3-306 and
Figure 3-307.

Figure 3-306 Store dimension lookup table 1/2

Figure 3-307 Store dimension lookup table 2/2

The three cycles of recurring tasks are described in 3.1.3, “Recurring tasks (Day
1)” on page 348, 3.1.4, “Recurring tasks (Day 2)” on page 507, and 3.1.5,
“Recurring tasks (Day 3)” on page 537.

3.1.3 Recurring tasks (Day 1)

In this cycle, we processed the following data on November 6th, 2007:

� Dimension table changes

– Customer dimension

• Update (TABLE_CMD value of U) of CUSTOMER_ID 1

Type 1 changes are the NAME (Arch Smith), WORK_ADDRESS (100
Air Road), and HOME_ADDRESS (2121 Carl St).

There are no Type 2 changes.

• Delete (TABLE_CMD value of D) the CUSTOMER_ID (7).

348 IBM InfoSphere DataStage Data Flow and Job Design

These are shown in Figure 3-308 through Figure 3-310.

Figure 3-308 Customer dimension attribute changes 1/3

Figure 3-309 Customer dimension attribute changes 2/3

Figure 3-310 Customer dimension attribute changes 3/3

– There are no changes to the Store, Product, and Date dimensions.

� Sales transactions

Sales transactions are collected from three stores — ST1 (STORE_ID of 1)
with 6 transactions as shown in Figure 3-311 here and Figure 3-312 on
page 350, ST9 (STORE_ID of 9) with 1 transaction as shown in Figure 3-313
on page 350 and Figure 3-314 on page 350, and ST33 (STORE_ID of 33)
with 6 transactions as shown in Figure 3-315 on page 350 and Figure 3-316
on page 351.

Figure 3-311 STORE_ID 1 sales transactions 1/2

 Chapter 3. Retail industry scenario 349

Figure 3-312 STORE_ID 1 sales transactions 2/2

Figure 3-313 STORE_ID 9 sales transactions 1/2

Figure 3-314 STORE_ID 9 sales transactions 2/2

Figure 3-315 STORE_ID 33 sales transactions 1/2

350 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-316 STORE_ID 33 sales transactions 2/2

Seven of these sales transactions were deliberately tailored to create the
following error conditions, which result in all these transactions being written to a
reject file corresponding to late arriving dimensions, since no matching business
keys are found (for these records) in the appropriate dimension tables:

� STORE_ID of 9 and 99 do not exist in the Store dimension table.

� CUSTOMER_ID of 5 does not exist in the Customer dimension table.

� PRODUCT_ID of 3 and 11 do not exist in the Product dimension table.

These records are highlighted in Figure 3-311 on page 349 through
Figure 3-316.

Table 3-2 on page 342 identifies the jobs executed in the recurring (daily) tasks,
and the configuration and execution of these jobs are briefly described in the
following sections starting with “J07_IL_Daily_LoadSalesStore” on page 282.

Note: We also did not have a sales transaction for CUSTOMER_ID of 7,
which gets deleted in the operational system.

Note: “J06_IL_Daily_CreateCurrencyLookup_Service” on page 227 should
be executed every day to pick up the latest exchange rates for each ISO
country code. In our case, however, we created all the exchange rates for the
different ISO country code countries for our three recurring daily cycles up
front (during the initial load phase), and therefore do not repeat it here.

 Chapter 3. Retail industry scenario 351

J07_IL_Daily_LoadSalesStore (Day 1)
As described in “J07_IL_Daily_LoadSalesStore” on page 282, this job computes
the foreign currency equivalent for a sales transaction involving a non-US credit
card and writes it to an interim DB2 table for subsequent processing prior to
being loaded into the sales fact table.

Figure 3-317 on page 353 shows the various stages in the job. Since this was
described in “J07_IL_Daily_LoadSalesStore” on page 282, it is not repeated
here.

This job has to be repeated for sales transactions for each of the three stores (1,
9, and 33).

� Figure 3-318 on page 353 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071106_ST1.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh as
shown in Example 3-1 on page 353), and the name of the interim DB2 table
(DS.SALES_ST1) to which these sales transactions are written.

Figure 3-319 on page 354 shows the execution results of this job, indicating 6
sales transactions being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-311 on page 349 and Figure 3-312 on page 350.

� Figure 3-320 on page 354 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071106_ST9.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and
the name of the interim DB2 table (DS.SALES_ST9) to which these sales
transactions are written.

Figure 3-321 on page 355 shows the execution results of this job, indicating 1
sales transaction being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-313 on page 350 and Figure 3-314 on page 350.

� Figure 3-322 on page 355 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071106_ST33.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and
the name of the interim DB2 table (DS.SALES_ST33) to which these sales
transactions are written.

Figure 3-323 on page 356 shows the execution results of this job, indicating 6
sales transactions being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-315 on page 350 and Figure 3-316 on page 351.

352 IBM InfoSphere DataStage Data Flow and Job Design

The next step is to execute the job described in “J13_Daily_UpdateLookupDim
(Day 1)” on page 356.

Figure 3-317 J07_IL_Daily_LoadSalesStore (Day 1) execution 1/7

Figure 3-318 J07_IL_Daily_LoadSalesStore (Day 1) execution 2/7

Example 3-1 J07_Seq_Sales_schema.osh schema file

record
 {final_delim=end, record_delim='\n', delim=',', quote=double}
(
 SALES_ID:int32 {quote=none};
 DATE:nullable timestamp {null_field=''};

 Chapter 3. Retail industry scenario 353

 QUANTITY:nullable int32 {quote=none, null_field=''};
 PRICE_USD:nullable decimal[10,2] {quote=none, null_field=''};
 SELLING_PRICE_USD:nullable decimal[10,2] {quote=none, null_field=''};
 TOTAL_USD:nullable decimal[10,2] {quote=none, null_field=''};
 TOTAL_LOCAL_CURRENCY:nullable decimal[10,2] {quote=none, null_field=''};
 CUSTOMER_ID:nullable int32 {quote=none, null_field=''};
 STORE_ID:nullable int32 {quote=none, null_field=''};
 PRODUCT_ID:nullable int32 {quote=none, null_field=''};
 COUNTRY_ISO_CODE:nullable string[3] {null_field=''};
)

Figure 3-319 J07_IL_Daily_LoadSalesStore (Day 1) execution 3/7

Figure 3-320 J07_IL_Daily_LoadSalesStore (Day 1) execution 4/7

354 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-321 J07_IL_Daily_LoadSalesStore (Day 1) execution 5/7

Figure 3-322 J07_IL_Daily_LoadSalesStore (Day 1) execution 6/7

 Chapter 3. Retail industry scenario 355

Figure 3-323 J07_IL_Daily_LoadSalesStore (Day 1) execution 7/7

J13_Daily_UpdateLookupDim (Day 1)
This job retrieves changes to customer, product, and store attributes (Type 1 and
Type 2) from an IBM WebSphere MQ queue, and then:

1. Updates the dimension lookup tables (created in
“J09_IL_LoadLookupCustomerDim” on page 320,
“J10_IL_LoadLookupProductDim” on page 327, and
“J11_IL_LoadLookupStoreDim” on page 330 jobs)

2. Creates a data set for each dimension table (with nulls in the sales
transaction5 portion of the records) for input to the SCD stage in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job.

Figure 3-325 on page 362 through Figure 3-351 on page 382 explain the main
stages in this job and the configuration of these stages as described in
“J13_Daily_UpdateLookupDim configuration” on page 356, while Figure 3-352
on page 383 through Figure 3-358 on page 387 explain the execution of this job
with Day 1 input as described in “J13_Daily_UpdateLookupDim execution (Day
1)” on page 382.

J13_Daily_UpdateLookupDim configuration
Figure 3-325 on page 362 shows the various stages in the job — it includes a
WebSphereMQConnectorPX stage, a Transformer stage, three sets of Funnel,
Column Import, Copy, Data Set, Transformer, and Filter stages, and one
DTStagePX stage. The names of the stages were modified as shown.

5 This record is created to ensure that the dimension tables are updated in the SCD stage in
“J17_DailyCreateSalesFactDS (Day1)” on page 433 even if there are no sales transactions
associated with those dimension table changes. This is the late arriving (or no existing) sales
transactions scenario where the dimension tables must be updated with the Type 1 and Type 2
attribute changes even when there are no incoming sales transactions in that daily cycle.

356 IBM InfoSphere DataStage Data Flow and Job Design

1. Figure 3-326 on page 363 and Figure 3-327 on page 364 show the
configuration of the WebSphereMQConnectorPX stage which is used to
access external data sources (message queues) in IBM WebSphere MQ
enterprise messaging systems.

Figure 3-324 General format of IBM WebSphere MQ message

Figure 3-326 on page 363 shows the Properties tab for the output
Transform_Parse link that identifies the Connection details (Queue manager,
Username and Password), the Queue name (SOURCEQ) and the Access
mode6 (As in queue definition). The Message read mode (Move to work
queue) specifies that after the message is read it is removed from the
SOURCEQ and moved to the work queue.

Note: We assume that a process exists on the operational OLTP systems
that captures changes occurring to the Customer, Product, and Store
entities and writes them out to an IBM WebSphere MQ queue. This is not
shown here. The format of the messages written to the queue are as
shown in Figure 3-324 on page 357.

6 This specifies that the queue is opened by using the default access as defined for that queue. This
is described in “Create the queues” on page 591.

Format of fields depends upon the tableTable
Code

Op
Code

Table code: C for Customer, S for Store, P for Product
Op Code: I for Insert, U for Update, D for Delete

A single operation format

Operation 1 Operation 3 (optional)Operation 2 (optional)

A single WebSphere MQ message can contain up to 3 operations

Format of fields for the different tables

CUSTOMER_ID" INTEGER NOT NULL ,
"NAME" VARCHAR(50) ,
"HOME_PHONE" CHAR(12) ,
"WORK_PHONE" CHAR(12) ,
"WORK_ADDRESS" VARCHAR(50) ,
"WORK_CITY" VARCHAR(50) ,
"WORK_STATE" VARCHAR(50) ,
"WORK_ZIP" VARCHAR(15) ,
"WORK_COUNTRY" VARCHAR(50) ,
"HOME_ADDRESS" VARCHAR(50) ,
"HOME_CITY" VARCHAR(50) ,
"HOME_ZIP" VARCHAR(15) ,
"HOME_STATE" VARCHAR(50) ,
"HOME_COUNTRY" VARCHAR(50) ,
"MEMBERSHIP_ID" INTEGER ,
"MEMBERSHIP_EXPIRE_DT" DATE ,
"MEMBERSHIP_LEVEL" CHAR(1)

StoreCustomer Product
"PRODUCT_ID" INTEGER NOT NULL ,
"DESCRIPTION" VARCHAR(50) ,
"BRAND" VARCHAR(50) ,
"CATEGORY" VARCHAR(50) ,
"FACTORY" VARCHAR(50) ,
"SUPPLIER" VARCHAR(50) ,
"SKU" VARCHAR(50)

"STORE_ID" INTEGER NOT NULL ,
"ADDRESS" VARCHAR(50) NOT NULL ,
"CITY" VARCHAR(50) NOT NULL ,
"CITY_POPULATION" DECIMAL(8,0) ,
"STATE" VARCHAR(50) NOT NULL ,
"STATE_POPULATION" DECIMAL(8,0) ,
"ZIP" VARCHAR(15) NOT NULL ,
"COUNTRY" VARCHAR(50) ,
"MANAGER_NAME" VARCHAR(50)

 Chapter 3. Retail industry scenario 357

Figure 3-327 on page 364 shows the Columns tab which allows you to define
the column metadata for the selected output link. It shows two defined
columns — Body (SQL type of Varchar 2000) and DTS_msgID (SQL type of
Binary). The Runtime column propagation box is not checked.

2. Figure 3-328 on page 365 shows the Transformer Stage window that
processes the input from the WebSphereMQConnectorPX stage and splits
the records to nine different outputs depending upon the table and the type of
operation involved. There are 3 tables (Customer, Product and Store), and
each table can have an insert, update, or delete operation — making up a
total of nine output links.

‘Example 3-2 on page 365 shows the stage variables defined in the
Transformer Stage window in Figure 3-328 on page 365.

Figure 3-328 on page 365 also shows the mapping of the columns from the
incoming message to the Fnl_ParseCustomer_1 output link which has the
constraint svCustomerTablePart1 = “‘Y”. Based on the stage variables
defined, this Fnl_ParseCustomer_1 output link will contain Customer table
records generated from the first transaction in the IBM WebSphere MQ
message as long as the TABLE_CMD column has one of the three values ‘I’,
‘U’, or ‘D’ corresponding to an SQL INSERT, UPDATE, or DELETE operation.
Fnl_ParseCustomer_2 will contain Customer table records from the second
transaction (if any) in the IBM WebSphere MQ message, while
Fnl_ParseCustomer_3 will contain Customer table records from the third
transaction (if any) in the IBM WebSphere MQ message.

Figure 3-329 on page 367 shows the Preserves sort order box checked to
ensure that the output link has the records written in the same order as the
incoming records. This ensures that the sequence of update operations in the
source are maintained.

Figure 3-330 on page 367 shows the constraints associated with each of the
nine output links.

3. The three Funnel stages shown in Figure 3-325 on page 362 merge the
transactions from the three output links associated with each table into a
single output link for each table. This is not shown here since it is similar to
other Funnel stage configurations described earlier.

4. Figure 3-331 on page 368 through Figure 3-334 on page 370 show the
configuration of the Column Import stage that imports data from a single
column and outputs it to one or more columns.

– Figure 3-331 on page 368 shows the Properties tab in the Stage page,
which identifies the input column in the Import Input Column property
(body_customer) of the Input category.

The Output category identifies the output columns to which the input
column is mapped to.

358 IBM InfoSphere DataStage Data Flow and Job Design

– Figure 3-332 on page 368 shows the Columns tab in the Input page that
defines the metadata of the incoming data.

– Figure 3-333 on page 369 shows the Mapping tab in the Output page,
which maps the input columns to the output Cpy_Customer link.

– Figure 3-334 on page 370 shows the Columns tab in the Output page,
which defines the metadata of the of the output columns.

5. Figure 3-335 on page 370 and Figure 3-336 on page 371 show the
configuration of the Copy stage that essentially copies the same records into
two links — one of which is a Data Set stage and the other as input to a
Transformer stage.

– Figure 3-335 on page 370 shows the Mapping tab in the Output page,
which maps the input columns to the output Trx_Customer link.

– Figure 3-336 on page 371 shows the Columns tab in the Output page,
which defines the metadata of the of the output columns in the
Trx_Customer link.

The same mapping and column definitions apply to the Ds_Customer link —
this is not shown here.

6. Figure 3-337 on page 371 shows the configuration of the Data Set stage. It
shows the Properties stage in the Input page that defines the output files
name (J13_Customer.ds) and an overwrite update policy.

7. Figure 3-338 on page 372 shows the Transformer Stage window, which adds
a column DTS_String_TimeStamp to the output link (Fltr_Customer) that is
derived from the timestamp corresponding to when the transaction was
executed in the OLTP system. This column is a duplicate of the input
TRANSACTION_TS column. This new column is used to sort all the
transactions (in the subsequent DTStagePX stage) in the sequence they
executed in the OLTP system to ensure that the sequence is faithfully
replicated. We have also configured the Transformer stage output to preserve
the sort order of the incoming data — this is not shown here.

Note: We could have chosen to use the existing TRANSACTION_TS
column for this sort purpose, but we chose to call attention to the method
by creating a separate column.

 Chapter 3. Retail industry scenario 359

8. Figure 3-339 on page 372 through Figure 3-343 on page 374 shows the
configuration of a Filter stage that directs inserts, updates, and deletes to
separate links for each dimension table.

– Figure 3-339 on page 372 shows the Properties tab in the Stage page,
which specifies the Where Clause property in the Predicates category.
The TABLE_CMD column identifies the SQL operation that is used to
direct the records to the appropriate output link.

The Options category has two properties:

• The Output Rejects = False property indicates that rows that fail all the
predicates should not be sent to the reject link (one was not defined by
us).

• The Output Rows Only Once = False specifies that rows are output
down the links of all Where clauses that they satisfy.

– Figure 3-340 on page 373 shows the Link Ordering tab in the Stage page
that shows how the qualifying rows are directed to the appropriate output
link.

– Figure 3-341 on page 373 shows the Columns tab in the Input page that
defines the metadata definitions of the incoming data.

– Figure 3-342 on page 374 shows the Mapping tab in the Output page (for
the Customer_Insert link) that maps all the columns in the input to the
output.

Figure 3-343 on page 374 shows the Columns tab in the Output page that
maps all the columns in the input to the output. It confirms all the columns
being mapped.

The same applies to the other two output links Customer_Update and
Customer_Delete.

9. Figure 3-344 on page 375 through Figure 3-351 on page 382 show the
configuration of the distributed transaction stage DTStagePX that processes
all the dimension update rows in the 9 input links in the order in which they
were generated in the source OLTP system and updates the corresponding
dimension lookup tables Customer, Product and Store.

360 IBM InfoSphere DataStage Data Flow and Job Design

– Figure 3-344 on page 375 shows the Properties tab in the Stage page of
the DTStagePX window for the Customer_Insert input link that specifies
the Order messages7 property of Yes which indicates that the messages
should be processed in sequence across the various links.

The rows in the various links are sorted in ascending sequence of
DTS_String_TimeStamp as shown in Figure 3-348 on page 379 for the
Customer_Insert link.

– Figure 3-345 on page 376 shows the configuration of the Properties tab
of the Customer_Insert input link which shows the Write mode (Insert) for
the SQL statement and Generate SQL No. A portion of the manually
generated SQL is shown.

– Figure 3-346 on page 377 shows the Link Ordering tab for the
Customer_Insert link that identifies and orders all the links.

– Figure 3-347 on page 378 shows the Columns tab for the
Customer_Insert input link that specifies the metadata of all the columns in
the incoming data.

– Figure 3-348 on page 379 shows the Partitioning tab for the
Customer_Insert input link that specifies a Partition type (Hash) and a sort
of the rows in the input in ascending sequence of the
DTS_String_TimeStamp.

– Figure 3-349 on page 380 shows the configuration of the Properties tab
of the Customer_Update input link which shows the Write mode (Update)
for the SQL statement and Generate SQL No. Figure 3-350 on page 381
shows the manually generated SQL is shown.

– Figure 3-351 on page 382 shows the configuration of the Properties tab
of the Customer_Delete input link which shows the Write mode (Delete)
for the SQL statement and Generate SQL No. A portion of the manually
generated SQL is shown.

The results of the execution of this job on Day 1 are described in
“J13_Daily_UpdateLookupDim execution (Day 1)” on page 382.

7 Also sometimes referred to as cross-link ordering.

 Chapter 3. Retail industry scenario 361

Figure 3-325 Create the J13_Daily_UpdateLookupDim job 1/26

362 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-326 Create the J13_Daily_UpdateLookupDim job 2/26

 Chapter 3. Retail industry scenario 363

Figure 3-327 Create the J13_Daily_UpdateLookupDim job 3/26

364 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-328 Create the J13_Daily_UpdateLookupDim job 4/26

Example 3-2 Derivation of stage variables

svCustomerTable:
IF Transform_Parse.Body[1,1] = 'C' THEN 'Y' ELSE 'N'

svProductTable:
IF Transform_Parse.Body[1,1] = 'P' THEN 'Y' ELSE 'N'

svStoreTable:
IF Transform_Parse.Body[1,1] = 'S' THEN 'Y' ELSE 'N'

svCustomerTablePart1:
IF svCustomerTable = 'Y' and (Transform_Parse.Body[3,1] = 'I' or Transform_Parse.Body[3,1] =
'U' or Transform_Parse.Body[3,1] = 'D') then 'Y' else 'N'

svCustomerTablePart2:

 Chapter 3. Retail industry scenario 365

IF svCustomerTable = 'Y' and (Transform_Parse.Body[584,1] = 'I' or Transform_Parse.Body[584,1]
= 'U' or Transform_Parse.Body[584,1] = 'D') then 'Y' else 'N'

svCustomerTablePart3:
IF svCustomerTable = 'Y' and (Transform_Parse.Body[1165,1] = 'I' or
Transform_Parse.Body[1165,1] = 'U' or Transform_Parse.Body[1165,1] = 'D') then 'Y' else 'N'

svProductTablePart1:
IF svProductTable = 'Y' and (Transform_Parse.Body[3,1] = 'I' or Transform_Parse.Body[3,1] =
'U' or Transform_Parse.Body[3,1] = 'D') then 'Y' else 'N'

svProductTablePart2:
IF svProductTable = 'Y' and (Transform_Parse.Body[349,1] = 'I' or Transform_Parse.Body[349,1]
= 'U' or Transform_Parse.Body[349,1] = 'D') then 'Y' else 'N'

svProductTablePart3:
IF svProductTable = 'Y' and (Transform_Parse.Body[695,1] = 'I' or Transform_Parse.Body[695,1]
= 'U' or Transform_Parse.Body[695,1] = 'D') then 'Y' else 'N'

svStoreTablePart1:
IF svStoreTable = 'Y' and (Transform_Parse.Body[3,1] = 'I' or Transform_Parse.Body[3,1] = 'U'
or Transform_Parse.Body[3,1] = 'D') then 'Y' else 'N'

svStoreTablePart2:
IF svStoreTable = 'Y' and (Transform_Parse.Body[332,1] = 'I' or Transform_Parse.Body[332,1] =
'U' or Transform_Parse.Body[332,1] = 'D') then 'Y' else 'N'

svStoreTablePart3:
IF svStoreTable = 'Y' and (Transform_Parse.Body[661,1] = 'I' or Transform_Parse.Body[661,1] =
'U' or Transform_Parse.Body[661,1] = 'D') then 'Y' else 'N'

366 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-329 Create the J13_Daily_UpdateLookupDim job

Figure 3-330 Create the J13_Daily_UpdateLookupDim job

 Chapter 3. Retail industry scenario 367

Figure 3-331 Create the J13_Daily_UpdateLookupDim job 5/26

Figure 3-332 Create the J13_Daily_UpdateLookupDim job 6/26

368 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-333 Create the J13_Daily_UpdateLookupDim job 7/26

 Chapter 3. Retail industry scenario 369

Figure 3-334 Create the J13_Daily_UpdateLookupDim job 8/26

Figure 3-335 Create the J13_Daily_UpdateLookupDim job 9/26

370 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-336 Create the J13_Daily_UpdateLookupDim job 10/26

Figure 3-337 Create the J13_Daily_UpdateLookupDim job 11/26

 Chapter 3. Retail industry scenario 371

Figure 3-338 Create the J13_Daily_UpdateLookupDim job 12/26

Figure 3-339 Create the J13_Daily_UpdateLookupDim job 13/26

372 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-340 Create the J13_Daily_UpdateLookupDim job 14/26

Figure 3-341 Create the J13_Daily_UpdateLookupDim job 15/26

 Chapter 3. Retail industry scenario 373

Figure 3-342 Create the J13_Daily_UpdateLookupDim job 16/26

Figure 3-343 Create the J13_Daily_UpdateLookupDim job 18/26

374 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-344 Create the J13_Daily_UpdateLookupDim job 19/26

 Chapter 3. Retail industry scenario 375

Figure 3-345 Create the J13_Daily_UpdateLookupDim job 20/26

376 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-346 Create the J13_Daily_UpdateLookupDim job 21/26

 Chapter 3. Retail industry scenario 377

Figure 3-347 Create the J13_Daily_UpdateLookupDim job 22/26

378 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-348 Create the J13_Daily_UpdateLookupDim job 23/26

 Chapter 3. Retail industry scenario 379

Figure 3-349 Create the J13_Daily_UpdateLookupDim job 24/26

380 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-350 Create the J13_Daily_UpdateLookupDim job 25/26

 Chapter 3. Retail industry scenario 381

Figure 3-351 Create the J13_Daily_UpdateLookupDim job 26/26

J13_Daily_UpdateLookupDim execution (Day 1)
Figure 3-352 on page 383 through Figure 3-355 on page 385 show the results of
the execution of this job with Day 1 data described earlier.

� Figure 3-352 on page 383 shows the results of the execution. It accepts 2
rows as input from the IBM WebSphere MQ message queue, which are both
changes (one an update and the other a delete) to the Customer dimension
table only. These two changes are written to the Ds_Customer data set as
shown in Figure 3-308 on page 349 through Figure 3-310 on page 349.

382 IBM InfoSphere DataStage Data Flow and Job Design

� Figure 3-353 on page 384 through Figure 3-355 on page 385 show the
LOOKUP_CUSTOMER_DIM table that incorporates the changes due to the
update and delete. The CUSTOMER_ID 7 is no longer in the table, while the
NAME, WORK_ADDRESS, HOME_ADDRESS, and TRANSACTION_TS
reflect the incoming changes.

The next step is to execute the job described in
“J14_Daily_CreateAllSalesStoreDS (Day 1)” on page 385.

Figure 3-352 Execute the J13_Daily_UpdateLookupDim job (Day 1) 1/4

 Chapter 3. Retail industry scenario 383

Figure 3-353 Execute the J13_Daily_UpdateLookupDim job (Day 1) 2/4

Figure 3-354 Execute the J13_Daily_UpdateLookupDim job (Day 1) 3/4

384 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-355 Execute the J13_Daily_UpdateLookupDim job (Day 1) 4/4

J14_Daily_CreateAllSalesStoreDS (Day 1)
This job merges the sales transactions from all the stores into a single data set.
Since the configuration of a Funnel stage has been described before, it is not
repeated here.

Figure 3-356 on page 386 through Figure 3-358 on page 387 show the results of
the execution of this job with Day 1 data described earlier.

� Figure 3-356 on page 386 shows the results of the execution. It accepts six
rows from store 1, one row from store 9, and six rows from store 33 for a total
of 13 rows that are written to the output data set.

� Figure 3-357 on page 386 through Figure 3-358 on page 387 show the
contents of the output data set DS_AllSales.

The next step is to execute the job described in “J15_Daily_CreateSalesAggDS
(Day 1)” on page 387.

 Chapter 3. Retail industry scenario 385

Figure 3-356 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 1) 1/3

Figure 3-357 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 1) 2/3

386 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-358 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 1) 3/3

J15_Daily_CreateSalesAggDS (Day 1)
This job associates dimension attributes from the lookup tables with the sales
transactions, and aggregates sales transactions by quantity, foreign currency
and US currency using the grouping of customer, product, store, and date. The
appending of dimension attributes is required by a subsequent SCD stage, while
the aggregation is required for updating the Sales fact table.

Figure 3-359 on page 392 through Figure 3-399 on page 417 explain the
main stages in this job and the configuration of these stages as described in
“J15_Daily_CreateSalesAggDS (Day 1) configuration” on page 387, while
Figure 3-400 on page 418 through Figure 3-412 on page 421 explain the
execution of this job with Day 1 input as described in
“J15_Daily_CreateSalesAggDS (Day 1) execution” on page 417.

J15_Daily_CreateSalesAggDS (Day 1) configuration
Figure 3-359 on page 392 shows the various stages in the job — it includes a
three Data Set stages, three ODBCConnectorPX stages, four Join stages, one
Transformer stage, one Aggregator stage, and one Remove Duplicates stage.
The names of the stages were modified as shown:

1. Figure 3-360 on page 393 shows the Properties tab for the
Joi_LookupCustomerDim output link involving an ODBCConnectorPX stage
that retrieves dimension attributes from the LOOKUP_CUSTOMER_DIM
table using automatically generated SQL.

Figure 3-361 on page 394 shows the Columns tab for the same link that
defines the metadata of the columns retrieved from the table.

 Chapter 3. Retail industry scenario 387

2. Figure 3-362 on page 394 through Figure 3-364 on page 395 show the
configuration of a Join stage that performs a left outer join of the merged
sales transactions (from “J14_Daily_CreateAllSalesStoreDS (Day 1)” on
page 385) with the Customer dimension lookup table on the CUSTOMER_ID
column as the join key. The attributes from the Customer dimension lookup
table are appended to those of the sales transactions in the output. The left
outer join is specified because we want the sales transaction to appear in the
join results, even if a business key in a sales transaction does not match a
business key in the dimension lookup table.

– Figure 3-362 on page 394 shows the Properties tab in the Stage page
that identifies the Key as CUSTOMER_ID and Join Type as Left Outer.

– Figure 3-363 on page 395 shows the Link Ordering tab in the Stage page
that identifies the link Joi_CustomerDim as the Left (table) in the join, while
the Joi_LookupCustomerDim link is identified as the Right (table) in the
join.

– Figure 3-364 on page 395 shows the Mapping tab in the Output page of
the Joi_StoreDim link which maps all the columns from the two sources to
the output link.

– Figure 3-365 on page 396 shows the Columns tab in the Output page of
the Joi_StoreDim link which defines the metadata of the columns. It
includes all the columns from the two input sources.

3. Figure 3-366 on page 397 through Figure 3-372 on page 400 show the
configuration of a Join stage that performs a left outer join of the output of the
previous stage (Joi_StoreDim link) with the Store dimension lookup table
(LOOKUP_STORE_DIM) on the STORE_ID column as the join key. The
attributes from the Store dimension lookup table are appended to those of the
columns in the output of the previous Join stage. Here again, the left outer
join is specified because we want the sales transaction to appear in the join
results, even if a business key in a sales transaction does not match a
business key in the dimension lookup table.

4. Figure 3-373 on page 401 through Figure 3-377 on page 403 show the
configuration of a Join stage that performs a left outer join of the output of the
previous stage (Joi_ProductDim link) with the Product dimension lookup table
on the PRODUCT_ID column as the join key. The attributes from the Product
dimension lookup table are appended to those of the columns in the output of
the previous Join stage. Here again, the left outer join is specified because
we want the sales transaction to appear in the join results, even if a business
key in a sales transaction does not match a business key in the dimension
lookup table.

388 IBM InfoSphere DataStage Data Flow and Job Design

5. The output of the Trx_Dim link contains all the sales transactions appended
with all the corresponding attributes (based on the business key).

This data has to be processed in the Transformer stage as follows:

a. Because of the left outer join specification, some of the values in the
dimension lookup attributes of certain sales transactions will be NULL
because of the absence of a business key match. Such a condition
corresponds to a late arriving dimension scenario that must be rejected.

b. The individual sales transactions might have a transaction date with at
least one business key that does not correspond to the current version of
that business key in the dimension lookup table. Such a condition
corresponds to a late arriving data scenario that has to be rejected. Such
transactions have to be processed outside the SCD stage flow because
they are not handled correctly in the SCD stage.

c. The remaining individual sales transactions must be aggregated using an
Aggregator stage on columns TOTAL_LOCAL_CURRENCY, QUANTITY
and TOTAL_USD based on grouping columns CUSTOMER_ID,
PRODUCT_ID, STORE_ID, and DATE.

The input data has many columns that are neither grouping keys or
aggregations. Therefore, such columns must be separated out from the
input to the Aggregator stage and then rejoined with the aggregated
columns.

These actions are performed in the Trx_Dim Transformer stage, Agg_Sales
Aggregator stage, Rmd_Dim Remove Duplicates stage, and the
Joi_Sales_Dm Join stage. These are described briefly here.

6. Figure 3-378 on page 404 through Figure 3-385 on page 408 shows the
configuration of the Transformer stage that uses constraints to reject late
arriving dimension and late arriving data sales transactions to a Data Set
stage, select grouping keys and aggregation columns for the Aggregator
stage, and all the columns in the input Trx_Dim link to the Remove Duplicates
stage.

– Figure 3-378 on page 404 shows the Transformer stage with mappings to
the Rmd_Dim and Agg_Sales output links and the constraint that moves
the data to these columns. The Agg_Sales output link has only the date
component of the timestamp column Trx_Dim.DATE mapped to the output
column DATE using the TimestampToDate function.The
Ds_LateArrivingDim link is not shown here.

Restriction: The Aggregator stage has a restriction that all the
incoming columns to it must either be Grouping Keys or Aggregations.

 Chapter 3. Retail industry scenario 389

– Figure 3-379 on page 404 through Figure 3-381 on page 405 show the
constraints that direct the output to the individual output links. Briefly, the
following conditions cause a sales transaction to be directed to the
Rmd_Dim and Agg_Sales output links:

• Any sales transaction with a transaction timestamp (Trx_Dim.DATE
column) that is greater than the P_TRANSACTION_TS (Product
dimension effective timestamp8), S_TRANSACTION_TS (Store
dimension effective timestamp) and C_TRANSACTION_TS (Customer
dimension effective timestamp) NULL in the P_TRANSACTION_TS,
C_TRANSACTION_TS, and S_TRANSACTION_TS columns is
directed to the Rmd_Dim and Agg_Sales output links.

– Figure 3-382 on page 406 through Figure 3-384 on page 408 show the
partial list of columns associated with the Rmd_Dim, Ag_Sales, and
Ds_LateArrivingDim links respectively.

– Figure 3-385 on page 408 shows the Link Ordering tab in the Stage page
that identifies the ordering of the output links.

7. Figure 3-386 on page 409 through Figure 3-388 on page 410 shows the
configuration of the Ds_LateArrivingDim Data Set stage.

– Figure 3-386 on page 409 shows the Properties tab in the Input stage
which identifies the target file name (J15_Ds_LateArrivingDim.ds).

– Figure 3-387 on page 409 and Figure 3-388 on page 410 shows the
Columns tab in the Input stage which identifies all the columns from the
Trx_Dim input link to the Trx_Dim Transformer stage.

8. Figure 3-389 on page 410 and Figure 3-390 on page 411 show the
configuration of the Remove Duplicates stage. The incoming data on the
Rmd_Dim input link must have any duplicates on the combined columns
(CUSTOMER_ID, PRODUCT_ID, STORE_ID, DATE) removed by retaining
only the first of such duplicates in the output link Joi_Dim. This is required to
ensure that the subsequent Join stage that rebuilds the sales transaction with
the aggregations computed in the Agg_Sales Aggregator stage does not
produce erroneous results that contain duplicates.

8 An effective timestamp corresponds to the current version of the business key of a dimension.

Note: The sales transaction timestamp (Trx_Dim.DATE column) that
fails this condition is directed to the reject link. A value of NULL in the
Trx_Dim.DATE column corresponds to a late arriving dimension and
has to be directed to the reject link. It is therefore assigned a timestamp
2099-12-31-00.00.00.000000 (using the NullToValue function) to
ensure that the predicate evaluates to false.

390 IBM InfoSphere DataStage Data Flow and Job Design

– Figure 3-389 on page 410 shows the Properties tab in the Stage page
that identify the columns (CUSTOMER_ID, PRODUCT_ID, STORE_ID,
DATE) to be checked for duplicates, and to retain only the first occurrence
(Duplicate To Retain = First) in the output.

– Figure 3-390 on page 411 shows the Mapping tab in the Output page that
shows all the columns being mapped to the output link Joi_Dim.

9. Figure 3-391 on page 412 through Figure 3-394 on page 413 describe the
configuration of the Aggregator stage identifying the Grouping Keys
(CUSTOMER_ID, PRODUCT_ID, STORE_ID, DATE) and the Aggregations
columns TOTAL_LOCAL_CURRENCY, QUANTITY, and TOTAL_USD.

– Figure 3-391 on page 412 shows the Properties tab in the Stage page
identifying the four Grouping Keys columns, and the three Aggregations
columns.

The Options category specifies Method = Sort. This is recommended if the
the number of groups is large, or if some grouping keys can take on many
values. However, sort mode requires the input data set to have been
partition sorted with all of the grouping keys specified as hashing and
sorting keys (this happens automatically if the auto method is set in the
Partitioning tab). Sorting requires a pre-grouping operation — after
sorting, all records in a given group in the same partition are consecutive.

– Figure 3-392 on page 412 shows the Columns tab in the Input page,
which identifies the metadata of the incoming data. It only includes
grouping keys and aggregation columns.

– Figure 3-393 on page 413 shows the Mapping tab in the Output page of
the Joi_Sales link. It is a one-to-one mapping of all the columns as seen in
the Columns tab in the Output page as shown in Figure 3-394 on
page 413.

10.Figure 3-395 on page 414 through Figure 3-399 on page 417 show the
configuration of the Joi_Sales_Dim Join stage that re-appends the three
dimension lookup attributes from the Rmd_Dim Remove Duplicates stage
with the aggregated sales transaction output of the Agg_Sales Aggregator
stage. An inner join is specified since all the dimension lookup business keys
originated from the same sales transactions.

– Figure 3-395 on page 414 shows the Properties tab in the Stage page
that identifies the Join Keys (CUSTOMER_ID, PRODUCT_ID, STORE_ID,
DATE) and inner join (Join Type = Inner).

– Figure 3-396 on page 414 shows the Link Ordering tab in the Stage
page. Since this is an inner join, the choice of left and right do not really
matter.

 Chapter 3. Retail industry scenario 391

– Figure 3-397 on page 415 shows the Mapping tab in the Output page of
the Ds_AggSales link. It is a one-to-one mapping of all the columns as
seen in the Columns tab in the Output page as shown in Figure 3-398 on
page 416 and Figure 3-399 on page 417.

The results of the execution of this job on Day 1 are described in
“J15_Daily_CreateSalesAggDS (Day 1) execution” on page 417.

Figure 3-359 Create the J15_Daily_CreateSalesAggDS job 1/41

392 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-360 Create the J15_Daily_CreateSalesAggDS job 2/41

 Chapter 3. Retail industry scenario 393

Figure 3-361 Create the J15_Daily_CreateSalesAggDS job 3/41

Figure 3-362 Create the J15_Daily_CreateSalesAggDS job 4/41

394 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-363 Create the J15_Daily_CreateSalesAggDS job 5/41

Figure 3-364 Create the J15_Daily_CreateSalesAggDS job 6/41

 Chapter 3. Retail industry scenario 395

Figure 3-365 Create the J15_Daily_CreateSalesAggDS job 7/41

396 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-366 Create the J15_Daily_CreateSalesAggDS job 8/41

 Chapter 3. Retail industry scenario 397

Figure 3-367 Create the J15_Daily_CreateSalesAggDS job 9/41

Figure 3-368 Create the J15_Daily_CreateSalesAggDS job 10/41

398 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-369 Create the J15_Daily_CreateSalesAggDS job 11/41

Figure 3-370 Create the J15_Daily_CreateSalesAggDS job 12/41

 Chapter 3. Retail industry scenario 399

Figure 3-371 Create the J15_Daily_CreateSalesAggDS job 13/41

Figure 3-372 Create the J15_Daily_CreateSalesAggDS job 14/41

400 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-373 Create the J15_Daily_CreateSalesAggDS job 15/41

Figure 3-374 Create the J15_Daily_CreateSalesAggDS job 16/41

 Chapter 3. Retail industry scenario 401

Figure 3-375 Create the J15_Daily_CreateSalesAggDS job 17/41

Figure 3-376 Create the J15_Daily_CreateSalesAggDS job 18/41

402 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-377 Create the J15_Daily_CreateSalesAggDS job 19/41

 Chapter 3. Retail industry scenario 403

Figure 3-378 Create the J15_Daily_CreateSalesAggDS job 20/41

Figure 3-379 Create the J15_Daily_CreateSalesAggDS job 21/41

404 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-380 Create the J15_Daily_CreateSalesAggDS job 22/41

Figure 3-381 Create the J15_Daily_CreateSalesAggDS job 23/41

 Chapter 3. Retail industry scenario 405

Figure 3-382 Create the J15_Daily_CreateSalesAggDS job 24/41

406 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-383 Create the J15_Daily_CreateSalesAggDS job 25/41

 Chapter 3. Retail industry scenario 407

Figure 3-384 Create the J15_Daily_CreateSalesAggDS job 26/41

Figure 3-385 Create the J15_Daily_CreateSalesAggDS job 27/41

408 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-386 Create the J15_Daily_CreateSalesAggDS job 28/41

Figure 3-387 Create the J15_Daily_CreateSalesAggDS job 29/41

 Chapter 3. Retail industry scenario 409

Figure 3-388 Create the J15_Daily_CreateSalesAggDS job 30/41

Figure 3-389 Create the J15_Daily_CreateSalesAggDS job 31/41

410 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-390 Create the J15_Daily_CreateSalesAggDS job 32/41

 Chapter 3. Retail industry scenario 411

Figure 3-391 Create the J15_Daily_CreateSalesAggDS job 33/41

Figure 3-392 Create the J15_Daily_CreateSalesAggDS job 34/41

412 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-393 Create the J15_Daily_CreateSalesAggDS job 35/41

Figure 3-394 Create the J15_Daily_CreateSalesAggDS job 36/41

 Chapter 3. Retail industry scenario 413

Figure 3-395 Create the J15_Daily_CreateSalesAggDS job 37/41

Figure 3-396 Create the J15_Daily_CreateSalesAggDS job 38/41

414 IBM InfoSphere DataStage Data Flow and Job Design

b

Figure 3-397 Create the J15_Daily_CreateSalesAggDS job 39/41

 Chapter 3. Retail industry scenario 415

Figure 3-398 Create the J15_Daily_CreateSalesAggDS job 40/41

416 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-399 Create the J15_Daily_CreateSalesAggDS job 41/41

J15_Daily_CreateSalesAggDS (Day 1) execution
Figure 3-400 on page 418 through Figure 3-412 on page 421 show the results of
the execution of this job with Day 1 data described earlier.

� Figure 3-400 on page 418 shows the results of the execution. It accepts 13
rows as input from the “J14_Daily_CreateAllSalesStoreDS (Day 1)” on
page 385 job as seen in Figure 3-357 on page 386 and Figure 3-358 on
page 387.

� The two outputs of this job are:

– The aggregated sales transactions appended with the dimension lookup
tables. This is a total of 7 rows as seen in Figure 3-401 on page 418
through Figure 3-406 on page 420.

 Chapter 3. Retail industry scenario 417

– The rejected sales transactions (either late arriving dimensions or late
arriving data). This is a total of 6 rows as seen in Figure 3-407 on
page 420 through Figure 3-412 on page 421. The invalid column values
are highlighted.

The next step is to execute the job described in “J16_Daily_CreateScdInputDS
(Day 1)” on page 421.

Figure 3-400 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 1/13

Figure 3-401 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 2/13

418 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-402 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 3/13

Figure 3-403 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 4/13

Figure 3-404 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 5/13

Figure 3-405 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 6/13

 Chapter 3. Retail industry scenario 419

Figure 3-406 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 7/13

Figure 3-407 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 8/13

Figure 3-408 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 9/13

Figure 3-409 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 10/13

420 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-410 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 11/13

Figure 3-411 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 12/13

Figure 3-412 Execute the J15_Daily_CreateSalesAggDS job (Day 1) 13/13

J16_Daily_CreateScdInputDS (Day 1)
This job merges the aggregated sales transactions created in the
“J15_Daily_CreateSalesAggDS (Day 1) execution” on page 417 job with the
dimension table updates data sets (with nulls in the sales transaction columns)
created in the “J13_Daily_UpdateLookupDim execution (Day 1)” on page 382
job. The result is in the format required as input to the SCD stage.

Note: As mentioned earlier, the dimension table updates must be merged with
the actual sales transactions to ensure that dimension changes that do not
have corresponding sales transactions (also called the late arriving data
scenario) are still reflected in the star-schema’s dimension tables. The sales
transaction portion of the merged dimension table changes is set to null in
order to conform to the SCD stage input requirements and to enable its union
with the actual sales transactions via the Funnel stage.

 Chapter 3. Retail industry scenario 421

Figure 3-413 on page 423 through Figure 3-423 on page 430 explain the main
stages in this job and the configuration of these stages as described in
“J16_Daily_CreateScdInputDS (Day 1) configuration” on page 422, while
Figure 3-424 on page 431 through Figure 3-430 on page 433 explain the
execution of this job with Day 1 input as described in
“J16_Daily_CreateScdInputDS (Day 1) execution” on page 430.

J16_Daily_CreateScdInputDS (Day 1) configuration
Figure 3-413 on page 423 shows the various stages in the job — it includes five
Data Set stages, three Transformer stages, and one Funnel stage. The names of
the stages were modified as shown:

1. Figure 3-414 on page 423 shows the Columns tab in the Output page of the
Trx_ProductDimLookup link, which defines the column metadata of the
Product dimension lookup table.

2. Figure 3-415 on page 424 shows the Trx_ProductDimLookup Transformer
stage that maps all the input columns (except the TABLE_CMD column) from
the Trx_ProductDimLookup output link, and adds additional columns (with
NULLs in them) present in the Ds_AggSales data such as
MEMBERSHIP_EXPIRE_DT, MEMBERSHIP_LEVEL, MANAGER_NAME
and PRICE_USD. This is required to be able to union data in a Funnel stage,
since there must be a one-to-one match of the columns in the sources input to
the Funnel stage.

3. Figure 3-416 on page 425 shows the Columns tab in the Output page of the
Trx_StoreDimLookup link, which defines the column metadata of the Store
dimension lookup table.

4. Figure 3-417 on page 426 shows the Trx_StoreDimLookup Transformer stage
that maps all the input columns from the Trx_StoreDimLookup output link, and
adds additional columns (with NULLs in them) present in the Ds_AggSales
data such as DATE, QUANTITY, TOTAL_USD, and CUSTOMER_ID.

5. Figure 3-418 on page 427 through Figure 3-420 on page 428 show the
equivalent transformation for the Customer dimension lookup table.

6. Figure 3-421 on page 428 through Figure 3-423 on page 430 show the
configuration of the output Data Set stage Ds_SCDinput that contains the
results of the union via the Funnel stage.

The results of the execution of this job on Day 1 are described in
“J16_Daily_CreateScdInputDS (Day 1) execution” on page 430.

422 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-413 Create the J16_Daily_CreateScdInputDS job 1/11

Figure 3-414 Create the J16_Daily_CreateScdInputDS job 2/11

 Chapter 3. Retail industry scenario 423

Figure 3-415 Create the J16_Daily_CreateScdInputDS job 3/11

424 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-416 Create the J16_Daily_CreateScdInputDS job 4/11

 Chapter 3. Retail industry scenario 425

Figure 3-417 Create the J16_Daily_CreateScdInputDS job 5/11

426 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-418 Create the J16_Daily_CreateScdInputDS job 6/11

Figure 3-419 Create the J16_Daily_CreateScdInputDS job 7/11

 Chapter 3. Retail industry scenario 427

Figure 3-420 Create the J16_Daily_CreateScdInputDS job 8/11

Figure 3-421 Create the J16_Daily_CreateScdInputDS job 9/11

428 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-422 Create the J16_Daily_CreateScdInputDS job 10/11

 Chapter 3. Retail industry scenario 429

Figure 3-423 Create the J16_Daily_CreateScdInputDS job 11/11

J16_Daily_CreateScdInputDS (Day 1) execution
Figure 3-424 on page 431 through Figure 3-430 on page 433 show the results of
the execution of this job with Day 1 data described earlier:

� Figure 3-424 on page 431 shows the results of the execution. The inputs to
this job are as follows:

– Accepts 7 rows as input from the “J15_Daily_CreateSalesAggDS (Day 1)
execution” on page 417 job as seen in Figure 3-401 on page 418 through
Figure 3-406 on page 420.

– Accepts 2 rows (corresponding to CUSTOMER_ID 1 and 7) as input from
the Customer dimension lookup data set generated in
“J13_Daily_UpdateLookupDim execution (Day 1)” on page 382.

� The output of this job shows 9 rows corresponding to the union of the two
inputs via the Funnel stage. Figure 3-425 on page 431 through Figure 3-430
on page 433 show the nine rows in the output. The NULLs added prior to the
Funnel stage are highlighted.

The next step is to execute the job described in “J17_DailyCreateSalesFactDS
(Day1)” on page 433.

430 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-424 Execute the J16_Daily_CreateScdInputDS job (Day 1) 1/7

Figure 3-425 Execute the J16_Daily_CreateScdInputDS job (Day 1) 2/7

Figure 3-426 Execute the J16_Daily_CreateScdInputDS job (Day 1) 3/7

 Chapter 3. Retail industry scenario 431

Figure 3-427 Execute the J16_Daily_CreateScdInputDS job (Day 1) 4/7

Figure 3-428 Execute the J16_Daily_CreateScdInputDS job (Day 1) 5/7

Figure 3-429 Execute the J16_Daily_CreateScdInputDS job (Day 1) 6/7

432 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-430 Execute the J16_Daily_CreateScdInputDS job (Day 1) 7/7

J17_DailyCreateSalesFactDS (Day1)
This job creates the files to update dimension tables and the sales fact table in
the star-schema using the SCD stage. Late arriving data is identified and written
to a reject file. This single job includes updates to all four dimensions (Store,
Customer, Product, and Date) and creates separate files for each dimension
containing updates to that dimension. It also creates a file that contains updates
to the Sales fact table. Late arriving data (updates to dimension tables without
corresponding sales transactions) are identified by the fact that sales transaction
information (such as QUANTITY and TOTAL_USD are NULL) and written to a
reject file.

The actual updates to the four dimension tables and the fact table are done in
different jobs — “J18_Daily_UpdateStoreDim (Day 1)” on page 478,
“J19_Daily_UpdateCustomerDim (Day 1)” on page 485,
“J20_Daily_UpdateProductDim (Day 1)” on page 494,
“J21_Daily_UpdateDateDim (Day 1)” on page 499, and
“J22_Daily_UpdateSalesFact (Day 1)” on page 502. We deliberately chose to
create separate jobs for updating the dimension tables and fact table in order to
minimize the use of database facilities. The database connection (that reads the
reference database) is active only when it is being accessed and the lookup table
in memory is being created.

Figure 3-431 on page 437 through Figure 3-495 on page 473 explain the main
stages in this job and the configuration of these stages as described in
“J17_DailyCreateSalesFactDS (Day1) configuration” on page 434, while
Figure 3-499 on page 476 through Figure 3-506 on page 477 explain the
execution of this job with Day 1 input as described in
“J17_DailyCreateSalesFactDS (Day1) execution” on page 475.

 Chapter 3. Retail industry scenario 433

J17_DailyCreateSalesFactDS (Day1) configuration
Figure 3-431 on page 437 shows the various stages in the job — it includes
seven Data Set stages, five Transformer stages, four ODBCConnectorPX stages,
four Funnel stages, and four PxSCD stages. The names of the stages were
modified as shown:

1. Figure 3-432 on page 438 through Figure 3-434 on page 439 describe the
configuration of the Trx_Store Transformer stage that processes the sales
transactions data set created in the “J16_Daily_CreateScdInputDS (Day 1)
execution” on page 430 job and directs appropriate rows to the Scd_StoreDim
PxSCD stage:

– Figure 3-432 on page 438 shows the Trx_Store Transformer stage with a
constraint that directs rows to the Scd_StoreDim or Fnl_StoreIDnull links.
All the columns are mapped to each output link — this is not shown here
explicitly.

– Figure 3-433 on page 438 shows the Trx_Store Transformer Stage
Constraints window that defines the constraint that directs the rows to the
appropriate output link. Briefly, the constraint specifies that records that
have the STORE_ID column not null and not equal to zero should be
directed to the Scd_StoreDim output link9, and those records that evaluate
the predicate to false are directed to the Fnl_StoreIDnull link.

– Figure 3-434 on page 439 shows the Link Ordering tab in the Trx_Store
Stage page that identifies the ordering of the output links as shown.

2. Figure 3-435 on page 439 and Figure 3-436 on page 440 show the
configuration of the Odbc_StoreDim ODBCConnectorPX stage retrieves the
STORE_DIM table which is the reference link:

– Figure 3-435 on page 439 identifies the Connection details and the Table
name (ds.store_dim) accessed using automatically generated SQL.

– Figure 3-436 on page 440 shows the Columns tab for the
Odbc_StoreDim link that identifies column metadata of the reference link.

3. Figure 3-437 on page 441 through Figure 3-439 on page 443 show the
configuration of the Scd_StoreDim PxSCD stage that references the
STORE_DIM dimension table and writes the following outputs:

– Dimension updates to a data set on the Ds_StoreDimUpdate link.

– Sales transactions with the surrogate key for the STORE_ID business key
to the Fnl_Store output link.

9 These records correspond to the late arriving data scenario where there are no sales transactions
corresponding to dimension attribute changes that have occurred on that date.

434 IBM InfoSphere DataStage Data Flow and Job Design

In the event of a Type 2 attribute change, the PxSCD stage expires the earlier
version and creates a new version with a new surrogate key. In the case of
Type 1 changes only, the attributes are updated in place and no new version
is created.

Figure 3-437 on page 441 shows the Lookup tab in the Input page
(Odbc_StoreDim) that identifies the STORE_ID column as the key of the
reference link. The Purpose identifies the various columns and their purpose
codes such as Type 1 (CITY_POPULATION and STATE_POPULATION),
Type 2 (MANAGER_NAME), Current Indicator (Type 2) [CURRENT_IND],
Effective Date (Type 2) [EFFECTIVE_TS], and Expiration Date (Type 2)
[EXPIRATION_TS].

Figure 3-438 on page 442 shows the Dim_Update tab10 in the Output page
(Ds_StoreDimUpdate) that maps the columns to the Ds_StoreDimUpdate
link. The Derivation column specifies how the columns are derived — in
particular, the assignment of “Y” to the CURRENT_IND column (with a Type 2
change) and “N” for the Expire record, and “2099-12-31-00.00.00.000000” to
the EXPIRATION_TS column (with a Type 2 change) and
S_TRANSACTION_TS column for the Expire record.

Figure 3-439 on page 443 shows the Output Map11 tab in the Output page
(Fnl_Store) that maps select incoming Scd_StoreDim link columns (including
the surrogate key) to the Fnl_Store link that are required to update the Sales
fact table. The columns excluded are columns related to the attributes in the
STORE_DIM table such as MANAGER_NAME, ADDRESS, CITY,
CITY_POPULATION, STATE, STATE_POPULATION, ZIP and COUNTRY
since they are not part of the Sales fact table update.

4. Figure 3-440 on page 443 shows the column metadata of the input link
Ds_StoreUpdateDim of the Data Set stage Ds_StoreUpdateDim.

5. The Funnel stage Fnl_Store merges the records from late arriving data
(Fnl_StoreIDnull link) and the enhanced sales transaction (after the Store
dimension table reference) with the surrogate key (Fnl_Store). The
Fnl_StoreIDnull link has 43 columns in its metadata as shown in Figure 3-441
on page 444, while the Fnl_Store link has 35 columns in its metadata as
shown in Figure 3-442 on page 445. The result of the Funnel stage on the
output Trx_Customer link is the 35 columns corresponding to the columns in
the input Fnl_Store link as shown in Figure 3-443 on page 446.

10 This tab is used to create column derivations that specify how to update the dimension table. You
must create a derivation for every dimension column. Columns with a purpose code of Type 1 or
Type 2 must be derived from a source column. Columns with a purpose code of Current Indicator
or Expiration Date must be derived from a literal value, and must also have an Expire derivation.

11 This tab is used to map data from the input links to the output link. You must create a derivation for
every output column.

 Chapter 3. Retail industry scenario 435

6. Figure 3-444 on page 447 through Figure 3-456 on page 456 describe the
corresponding configurations involving the Customer dimension table
reference and update.

7. Figure 3-457 on page 457 through Figure 3-469 on page 463 describe the
corresponding configurations involving the Product dimension table reference
and update.

8. Figure 3-470 on page 464 through Figure 3-492 on page 472 describe the
corresponding configurations involving the Date dimension table reference
and update. Figure 3-477 on page 468 through Figure 3-487 on page 469
describe the derivations for the different columns in the Date dimension table.

9. Figure 3-493 on page 472 through Figure 3-498 on page 474 describe the
configuration of the Trx_SalesFact Transformer stage, which separates late
arriving data onto a separate data set.

– Figure 3-493 on page 472 shows the Trx_SalesFact Transformer stage
with a constraint that directs rows to the Ds_LateArrivingData or
Ds_SalesFactUpdate links. All the columns in the input are mapped to the
Ds_LateArrivingData output link as shown in Figure 3-497 on page 474,
while some columns (C_TRANSACTION_TS, P_TRANSACTION_TS, and
S_TRANSACTION_TS) are excluded from the Ds_SalesFactUpdate
output link as shown in Figure 3-498 on page 474.

– Figure 3-494 on page 473 and Figure 3-495 on page 473 show the
Trx_SalesFact Transformer Stage Constraints window that defines the
constraint that directs the rows to the appropriate output link. Briefly, the
constraint specifies that records that have NULLs in the QUANTITY,
PRICE_USD, SELLING_PRICE_USD, TOTAL_USD,
TOTAL_LOCAL_CURRENCY, or COUNTRY_ISO_CODE columns
should be directed to the Ds_LateArrivingData output link, and those
records that evaluate the predicate to false are directed to the
Ds_SalesFactUpdate link.

– Figure 3-496 on page 473 shows the Link Ordering tab in the
Trx_StalesFact Stage page that identifies the ordering of the output links
as shown.

The results of the execution of this job on Day 1 are described in
“J17_DailyCreateSalesFactDS (Day1) execution” on page 475.

436 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-431 Create the J17_DailyCreateSalesFactDS job 1/68

 Chapter 3. Retail industry scenario 437

Figure 3-432 Create the J17_DailyCreateSalesFactDS job 2/68

Figure 3-433 Create the J17_DailyCreateSalesFactDS job 3/68

438 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-434 Create the J17_DailyCreateSalesFactDS job 4/68

Figure 3-435 Create the J17_DailyCreateSalesFactDS job 5/68

 Chapter 3. Retail industry scenario 439

Figure 3-436 Create the J17_DailyCreateSalesFactDS job 6/68

440 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-437 Create the J17_DailyCreateSalesFactDS job 7/68

 Chapter 3. Retail industry scenario 441

Figure 3-438 Create the J17_DailyCreateSalesFactDS job 8/68

442 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-439 Create the J17_DailyCreateSalesFactDS job 9/68

Figure 3-440 Create the J17_DailyCreateSalesFactDS job 10/68

 Chapter 3. Retail industry scenario 443

Figure 3-441 Create the J17_DailyCreateSalesFactDS job 11/68

444 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-442 Create the J17_DailyCreateSalesFactDS job 12/68

 Chapter 3. Retail industry scenario 445

Figure 3-443 Create the J17_DailyCreateSalesFactDS job 13/68

446 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-444 Create the J17_DailyCreateSalesFactDS job 14/68

 Chapter 3. Retail industry scenario 447

Figure 3-445 Create the J17_DailyCreateSalesFactDS job 15/68

Figure 3-446 Create the J17_DailyCreateSalesFactDS job 16/68

448 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-447 Create the J17_DailyCreateSalesFactDS job 17/68

Figure 3-448 Create the J17_DailyCreateSalesFactDS job 18/68

 Chapter 3. Retail industry scenario 449

Figure 3-449 Create the J17_DailyCreateSalesFactDS job 19/68

450 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-450 Create the J17_DailyCreateSalesFactDS job 20/68

 Chapter 3. Retail industry scenario 451

Figure 3-451 Create the J17_DailyCreateSalesFactDS job 21/68

452 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-452 Create the J17_DailyCreateSalesFactDS job 22/68

 Chapter 3. Retail industry scenario 453

Figure 3-453 Create the J17_DailyCreateSalesFactDS job 23/68

454 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-454 Create the J17_DailyCreateSalesFactDS job 24/68

 Chapter 3. Retail industry scenario 455

Figure 3-455 Create the J17_DailyCreateSalesFactDS job 25/68

Figure 3-456 Create the J17_DailyCreateSalesFactDS job 26/68

456 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-457 Create the J17_DailyCreateSalesFactDS job 27/68

 Chapter 3. Retail industry scenario 457

Figure 3-458 Create the J17_DailyCreateSalesFactDS job 28/68

Figure 3-459 Create the J17_DailyCreateSalesFactDS job 29/68

458 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-460 Create the J17_DailyCreateSalesFactDS job 30/68

Figure 3-461 Create the J17_DailyCreateSalesFactDS job 31/68

 Chapter 3. Retail industry scenario 459

Figure 3-462 Create the J17_DailyCreateSalesFactDS job 32/68

Figure 3-463 Create the J17_DailyCreateSalesFactDS job 33/68

460 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-464 Create the J17_DailyCreateSalesFactDS job 34/68

Figure 3-465 Create the J17_DailyCreateSalesFactDS job 35/68

 Chapter 3. Retail industry scenario 461

Figure 3-466 Create the J17_DailyCreateSalesFactDS job 36/68

Figure 3-467 Create the J17_DailyCreateSalesFactDS job 37/68

462 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-468 Create the J17_DailyCreateSalesFactDS job 38/68

Figure 3-469 Create the J17_DailyCreateSalesFactDS job 39/68

 Chapter 3. Retail industry scenario 463

Figure 3-470 Create the J17_DailyCreateSalesFactDS job 40/68

Figure 3-471 Create the J17_DailyCreateSalesFactDS job 41/68

464 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-472 Create the J17_DailyCreateSalesFactDS job 42/68

Figure 3-473 Create the J17_DailyCreateSalesFactDS job 43/68

 Chapter 3. Retail industry scenario 465

Figure 3-474 Create the J17_DailyCreateSalesFactDS job 44/68

466 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-475 Create the J17_DailyCreateSalesFactDS job 45/68

Figure 3-476 Create the J17_DailyCreateSalesFactDS job 46/68

 Chapter 3. Retail industry scenario 467

Figure 3-477 Create the J17_DailyCreateSalesFactDS job 47/68

Figure 3-478 Create the J17_DailyCreateSalesFactDS job 48/68

Figure 3-479 Create the J17_DailyCreateSalesFactDS job 49/68

Figure 3-480 Create the J17_DailyCreateSalesFactDS job 50/68

Figure 3-481 Create the J17_DailyCreateSalesFactDS job 51/68

Figure 3-482 Create the J17_DailyCreateSalesFactDS job 52/68

468 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-483 Create the J17_DailyCreateSalesFactDS job 53/68

Figure 3-484 Create the J17_DailyCreateSalesFactDS job 54/68

Figure 3-485 Create the J17_DailyCreateSalesFactDS job 55/68

Figure 3-486 Create the J17_DailyCreateSalesFactDS job 56/68

Figure 3-487 Create the J17_DailyCreateSalesFactDS job 57/68

 Chapter 3. Retail industry scenario 469

Figure 3-488 Create the J17_DailyCreateSalesFactDS job 58/68

Figure 3-489 Create the J17_DailyCreateSalesFactDS job 59/68

470 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-490 Create the J17_DailyCreateSalesFactDS job 60/68

Figure 3-491 Create the J17_DailyCreateSalesFactDS job 61/68

 Chapter 3. Retail industry scenario 471

Figure 3-492 Create the J17_DailyCreateSalesFactDS job 62/68

Figure 3-493 Create the J17_DailyCreateSalesFactDS job 63/68

472 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-494 Create the J17_DailyCreateSalesFactDS job 64/68

Figure 3-495 Create the J17_DailyCreateSalesFactDS job 65/68

Figure 3-496 Create the J17_DailyCreateSalesFactDS job 66/68

 Chapter 3. Retail industry scenario 473

Figure 3-497 Create the J17_DailyCreateSalesFactDS job 67/68

Figure 3-498 Create the J17_DailyCreateSalesFactDS job 68/68

474 IBM InfoSphere DataStage Data Flow and Job Design

J17_DailyCreateSalesFactDS (Day1) execution
Figure 3-499 on page 476 through Figure 3-506 on page 477 show the results of
the execution of this job with Day 1 data described earlier.

� Figure 3-499 on page 476 shows the results of the execution. It accepts 9
rows as input from the “J16_Daily_CreateScdInputDS (Day 1) execution” on
page 430 job as seen in Figure 3-425 on page 431 through Figure 3-430 on
page 433.

� The outputs of this job are as follows:

– The input had two Customer dimension attribute changes. One was an
update of CUSTOMER_ID 1, while the other was a delete of
CUSTOMER_ID 7. However, the input in this case does not have the
operation code, that is, update or delete.

However, the Ds_CustDimUpdate data set has only 1 row in the output
corresponding to the Type 1 update of CUSTOMER_ID 1 as shown in
Figure 3-500 on page 476 through Figure 3-502 on page 476. There is no
corresponding record for CUSTOMER_ID 7 because all the values in the
Type 1 and Type 2 attributes of this record are identical to those attributes
for CUSTOMER_ID 7 in the CUSTOMER_DIM table, and the SCD stage
therefore considers that it is not necessary to update the dimension table
for this record.

– Seven rows (as expected from the input) are written to the
Ds_SalesFactUpdate data set with the appropriate surrogate key
assigned to each sales transaction as shown in Figure 3-503 on page 477
through Figure 3-505 on page 477.

– The two rows corresponding to late arriving dimensions in the input are
rejected and written to the Ds_LateArrivingData data set as shown in
Figure 3-505 on page 477 and Figure 3-506 on page 477.

The next step is to execute the job described in “J18_Daily_UpdateStoreDim
(Day 1)” on page 478.

 Chapter 3. Retail industry scenario 475

Figure 3-499 Execute the J17_DailyCreateSalesFactDS job (Day 1) 1/8

Figure 3-500 Execute the J17_DailyCreateSalesFactDS job (Day 1) 2/8

Figure 3-501 Execute the J17_DailyCreateSalesFactDS job (Day 1) 3/8

Figure 3-502 Execute the J17_DailyCreateSalesFactDS job (Day 1) 4/8

476 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-503 Execute the J17_DailyCreateSalesFactDS job (Day 1) 5/8

Figure 3-504 Execute the J17_DailyCreateSalesFactDS job (Day 1) 6/8

Figure 3-505 Execute the J17_DailyCreateSalesFactDS job (Day 1) 7/8

Figure 3-506 Execute the J17_DailyCreateSalesFactDS job (Day 1) 8/8

 Chapter 3. Retail industry scenario 477

J18_Daily_UpdateStoreDim (Day 1)
This job updates the Store dimension table using the file created in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job. The input record does
not contain an operation code (insert, update, or delete). The update of the
dimension table is therefore performed with an SQL UPDATE operation followed
by an SQL INSERT operation using the surrogate key of the business key.

� If the record exists in the dimension table, then the SQL UPDATE operation
will update the appropriate Type 1 columns and the SQL INSERT operation
will fail.

� If the record does not exist in the dimension table, then the SQL UPDATE
operation will fail and the SQL INSERT operation will succeed.

Any records that have nulls in the Type 1 columns CITY_POPULATION or
STATE_POPULATION must be rejected, because this would otherwise set the
corresponding Type 1 columns in the dimension table to NULL, which is not our
desired semantics.

Figure 3-507 on page 479 through Figure 3-514 on page 483 explain the main
stages in this job and the configuration of these stages as described in
“J18_Daily_UpdateStoreDim (Day 1) configuration” on page 478, while
Figure 3-515 on page 484 explains the execution of this job with Day 1 input as
described in “J18_Daily_UpdateStoreDim (Day 1) execution” on page 484.

J18_Daily_UpdateStoreDim (Day 1) configuration
Figure 3-507 on page 479 shows the various stages in the job — it includes a
Data Set stage, a Sequential File stage, a Transformer stage, and a
ODBCConnectorPX stage. The names of the stages were modified as shown:

1. Figure 3-508 on page 480 through Figure 3-514 on page 483 describe the
configuration of the Trx_StoreDim Transformer stage that processes the
dimension update records data set created in the
“J17_DailyCreateSalesFactDS (Day1) execution” on page 475 job and directs
appropriate rows to two output links.

– Figure 3-508 on page 480 shows the Trx_StoreDim Transformer stage
with a constraint that directs rows to the Odbc_StoreDim or Rej_StoreDim
links. All the columns are mapped to each output link as shown in
Figure 3-510 on page 481 and Figure 3-511 on page 481 respectively.

Note: If you want to set the Type 1 columns to NULL in the dimension table,
then you must take such action independently using the records in the reject
file.

478 IBM InfoSphere DataStage Data Flow and Job Design

– Figure 3-509 on page 481 shows the Trx_StoreDim Transformer Stage
Constraints window that defines the constraint that directs the rows to the
appropriate output link. Briefly, the constraint specifies that records that
have a NULL in the CITY_POPULATION or STATE_POPULATION
columns should be directed to the Rej_StoreDim output link, and those
records that evaluate the predicate to false are directed to the
Odbc_StoreDim link.

2. Figure 3-512 on page 482 through Figure 3-514 on page 483 show the
configuration of the Odbc_StoreDim ODBCConnectorPX stage that updates
the STORE_DIM table which is the reference link.

– Figure 3-512 on page 482 identifies the Connection details, the Write
mode (Update then Insert), and manually generated SQL.

– Figure 3-513 on page 483 shows the manually generated SQL UPDATE
statement, while Figure 3-514 on page 483 shows the manually generated
SQL INSERT statement.

The results of the execution of this job on Day 1 are described in
“J18_Daily_UpdateStoreDim (Day 1) execution” on page 484.

Figure 3-507 Create the J18_Daily_UpdateStoreDim job 1/8

 Chapter 3. Retail industry scenario 479

Figure 3-508 Create the J18_Daily_UpdateStoreDim job 2/8

480 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-509 Create the J18_Daily_UpdateStoreDim job 3/8

Figure 3-510 Create the J18_Daily_UpdateStoreDim job 4/8

Figure 3-511 Create the J18_Daily_UpdateStoreDim job 5/8

 Chapter 3. Retail industry scenario 481

Figure 3-512 Create the J18_Daily_UpdateStoreDim job 6/8

482 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-513 Create the J18_Daily_UpdateStoreDim job 7/8

Figure 3-514 Create the J18_Daily_UpdateStoreDim job 8/8

 Chapter 3. Retail industry scenario 483

J18_Daily_UpdateStoreDim (Day 1) execution
Figure 3-515 shows the results of the execution of this job with Day 1 data
described earlier.

It shows no input records to update the Store dimension tables.

The next step is to execute the job described in “J19_Daily_UpdateCustomerDim
(Day 1)” on page 485 job.

Figure 3-515 Execute the J18_Daily_UpdateStoreDim job (Day 1)

484 IBM InfoSphere DataStage Data Flow and Job Design

J19_Daily_UpdateCustomerDim (Day 1)
This job updates the Customer dimension table using the file created in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job similar to the process
described in “J18_Daily_UpdateStoreDim (Day 1)” on page 478.

Figure 3-516 on page 485 through Figure 3-524 on page 491 explain the main
stages in this job and the configuration of these stages as described in
“J19_Daily_UpdateCustomerDim (Day 1) configuration” on page 485, while
Figure 3-525 on page 493 through Figure 3-528 on page 494 explain the
execution of this job with Day 1 input as described in
“J19_Daily_UpdateCustomerDim (Day 1) execution” on page 492.

J19_Daily_UpdateCustomerDim (Day 1) configuration
Since this configuration is very similar to that described in
“J18_Daily_UpdateStoreDim (Day 1) configuration” on page 478, it is not
repeated here.

The results of the execution of this job on Day 1 are described in
“J19_Daily_UpdateCustomerDim (Day 1) execution” on page 492.

Figure 3-516 Create the J19_Daily_UpdateCustomerDim job 1/9

 Chapter 3. Retail industry scenario 485

Figure 3-517 Create the J19_Daily_UpdateCustomerDim job 2/9

486 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-518 Create the J19_Daily_UpdateCustomerDim job 3/9

 Chapter 3. Retail industry scenario 487

Figure 3-519 Create the J19_Daily_UpdateCustomerDim job 4/9

488 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-520 Create the J19_Daily_UpdateCustomerDim job 5/9

Figure 3-521 Create the J19_Daily_UpdateCustomerDim job 6/9

 Chapter 3. Retail industry scenario 489

Figure 3-522 Create the J19_Daily_UpdateCustomerDim job 7/9

490 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-523 Create the J19_Daily_UpdateCustomerDim job 8/9

Figure 3-524 Create the J19_Daily_UpdateCustomerDim job 9/9

 Chapter 3. Retail industry scenario 491

J19_Daily_UpdateCustomerDim (Day 1) execution
Figure 3-525 on page 493 through Figure 3-528 on page 494 show the results of
the execution of this job with Day 1 data described earlier.

� Figure 3-525 on page 493 shows the results of the execution. It accepts 1 row
as input from the “J17_DailyCreateSalesFactDS (Day1) execution” on
page 475 job as seen in Figure 3-500 on page 476 through Figure 3-502 on
page 476.

� The outputs are as follows:

– There are no rows written to the Rej_CustomerDim link.

– The 1 row written to the Odbc_CustomerDim link updates the
CUSTOMER_DIM dimension table with these changes (as highlighted) as
seen in Figure 3-526 on page 493 through Figure 3-528 on page 494.

The next step is to execute the job described in “J20_Daily_UpdateProductDim
(Day 1)” on page 494.

Note: CUSTOMER_ID 7 still exists in the Customer dimension table
because the SCD stage does not support a delete operation. The
general concept here is that there will usually be some records in the
fact table for every business key in the dimension tables. Therefore,
deleting a business key in the dimension table will affect queries
interested in looking at reports in an earlier time interval, ignoring for the
moment, potential referential integrity violations that would occur with
such a delete operation. If you still want to go ahead and delete a
business key in a dimension table, you should first delete all the entries
referencing this business key in the fact table and then delete the
business key in the dimension table.

492 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-525 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 1/4

Figure 3-526 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 2/4

 Chapter 3. Retail industry scenario 493

Figure 3-527 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 3/4

Figure 3-528 Execute the J19_Daily_UpdateCustomerDim job (Day 1) 4/4

J20_Daily_UpdateProductDim (Day 1)
This job updates the Product dimension table using the data set created in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job. However, there are no
Type 1 attribute changes for the Product dimension table, and therefore no
requirement to introduce a Transformer stage as in the case of the process
described in “J18_Daily_UpdateStoreDim (Day 1)” on page 478.

Figure 3-529 on page 495 through Figure 3-531 on page 497 explain the main
stages in this job and the configuration of these stages as described in
“J20_Daily_UpdateProductDim (Day 1) configuration” on page 495, while
Figure 3-532 on page 498 explains the execution of this job with Day 1 input, as
described in “J20_Daily_UpdateProductDim (Day 1) execution” on page 498.

494 IBM InfoSphere DataStage Data Flow and Job Design

J20_Daily_UpdateProductDim (Day 1) configuration
Figure 3-529 shows the various stages in the job — it includes a Data Set stage
and a ODBCConnectorPX stage. The names of the stages were modified as
shown.

Figure 3-530 on page 496 and Figure 3-531 on page 497 show the configuration
of the Odbc_ProductDim ODBCConnectorPX stage that inserts a row into
PRODUCT_DIM table which is the reference link. There is no update
requirement since this table has no Type 1 attributes defined.

� Figure 3-530 on page 496 identifies the Connection details, the Write mode
(Insert), and manually generated SQL.

� Figure 3-531 on page 497 shows the manually generated SQL INSERT
statement.

The results of the execution of this job on Day 1 are described in
“J20_Daily_UpdateProductDim (Day 1) execution” on page 498.

Figure 3-529 Create the J20_Daily_UpdateProductDim job 1/3

 Chapter 3. Retail industry scenario 495

Figure 3-530 Create the J20_Daily_UpdateProductDim job 2/3

496 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-531 Create the J20_Daily_UpdateProductDim job 3/3

 Chapter 3. Retail industry scenario 497

J20_Daily_UpdateProductDim (Day 1) execution
Figure 3-532 on page 498 shows the results of the execution of this job with the
Day 1 data described earlier.

It shows no input records to update the Product dimension tables.

The next step is to execute the job described in “J21_Daily_UpdateDateDim (Day
1)” on page 499.

Figure 3-532 Execute the J20_Daily_UpdateProductDim job (Day 1)

498 IBM InfoSphere DataStage Data Flow and Job Design

J21_Daily_UpdateDateDim (Day 1)
This job updates the Date dimension table using the file created in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job similar to the process
described in “J20_Daily_UpdateProductDim (Day 1)” on page 494.

Figure 3-533 on page 499 through Figure 3-535 on page 501 explain the main
stages in this job and the configuration of these stages as described in
“J21_Daily_UpdateDateDim (Day 1) configuration” on page 499, while
Figure 3-536 on page 502 explains the execution of this job with Day 1 input as
described in “J19_Daily_UpdateCustomerDim (Day 1) execution” on page 492.

J21_Daily_UpdateDateDim (Day 1) configuration
Since this configuration is very similar to that described in
“J20_Daily_UpdateProductDim (Day 1) configuration” on page 495, it is not
repeated here.

The results of the execution of this job on Day 1 are described in
“J21_Daily_UpdateDateDim (Day 1) execution” on page 502.

Figure 3-533 Create the J21_Daily_UpdateDateDim job 1/3

 Chapter 3. Retail industry scenario 499

Figure 3-534 Create the J21_Daily_UpdateDateDim job 2/3

500 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-535 Create the J21_Daily_UpdateDateDim job 3/3

 Chapter 3. Retail industry scenario 501

J21_Daily_UpdateDateDim (Day 1) execution
Figure 3-536 on page 502 shows the results of the execution of this job with Day
1 data described earlier.

It shows no input records to update the Date dimension tables.

The next step is to execute the job described in “J22_Daily_UpdateSalesFact
(Day 1)” on page 502.

Figure 3-536 Execute the J21_Daily_UpdateDateDim job (Day 1)

J22_Daily_UpdateSalesFact (Day 1)
This job updates the Product dimension table using the data set created in the
“J17_DailyCreateSalesFactDS (Day1)” on page 433 job. However, there are no
Type 1 attribute changes for the Product dimension table, and therefore no
requirement to introduce a Transformer stage as in the case of the process
described in “J18_Daily_UpdateStoreDim (Day 1)” on page 478.

Figure 3-529 on page 495 through Figure 3-531 on page 497 explain the main
stages in this job and the configuration of these stages as described in
“J20_Daily_UpdateProductDim (Day 1) configuration” on page 495, while
Figure 3-532 on page 498 explains the execution of this job with Day 1 input as
described in “J20_Daily_UpdateProductDim (Day 1) execution” on page 498.

502 IBM InfoSphere DataStage Data Flow and Job Design

J22_Daily_UpdateSalesFact (Day 1) configuration
Figure 3-529 on page 495 shows the various stages in the job — it includes a
Data Set stage and a ODBCConnectorPX stage. The names of the stages were
modified as shown.

Figure 3-530 on page 496 and Figure 3-531 on page 497 show the configuration
of the Odbc_ProductDim ODBCConnectorPX stage that inserts a row into
PRODUCT_DIM table which is the reference link. There is no update
requirement since this table has no Type 1 attributes defined.

� Figure 3-530 on page 496 identifies the Connection details, the Write mode
(Insert), and manually generated SQL.

� Figure 3-531 on page 497 shows the manually generated SQL INSERT
statement.

The results of the execution of this job on Day 1 are described in
“J20_Daily_UpdateProductDim (Day 1) execution” on page 498.

Figure 3-537 Create the J22_Daily_UpdateSalesFact job 1/3

 Chapter 3. Retail industry scenario 503

Figure 3-538 Create the J22_Daily_UpdateSalesFact job 2/3

504 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-539 Create the J22_Daily_UpdateSalesFact job 3/3

J22_Daily_UpdateSalesFact (Day 1) execution
Figure 3-540 on page 506 through Figure 3-542 on page 506 show the results of
the execution of this job with Day 1 data described earlier.

� Figure 3-540 on page 506 shows the results of the execution. It accepts 1 row
as input from the “J17_DailyCreateSalesFactDS (Day1) execution” on
page 475 job as seen in Figure 3-503 on page 477 and Figure 3-504 on
page 477.

� The output shows 7 rows being written to the Odbc_SalesFact link which is
used to update the SALES_FACT table. Figure 3-541 on page 506 and
Figure 3-542 on page 506 show the updated contents of the SALES_FACT
table as highlighted.

This concludes Day 1 processing.

You can proceed to Day 2 processing as described in 3.1.4, “Recurring tasks
(Day 2)” on page 507.

 Chapter 3. Retail industry scenario 505

Figure 3-540 Execute the J22_Daily_UpdateSalesFact job (Day 1) 1/3

Figure 3-541 Execute the J22_Daily_UpdateSalesFact job (Day 1) 2/3

Figure 3-542 Execute the J22_Daily_UpdateSalesFact job (Day 1) 3/3

506 IBM InfoSphere DataStage Data Flow and Job Design

3.1.4 Recurring tasks (Day 2)

In this cycle, we processed the following data on November 7th, 2007:

� Dimension table changes:

– Customer dimension:

• Update (TABLE_CMD value of U) of CUSTOMER_ID 6

The Type 1 changes are NAME (Belad Davis), WORK_PHONE
(408-555-8333), and WORK_ADDRESS (2 N First Street).

The Type 2 changes are MEMBERSHIP_EXPIRE_DT (2020-02-13)
and MEMBERSHIP_LEVEL (G).

These are shown in Figure 3-543 through Figure 3-544.

Figure 3-543 Customer dimension attribute changes 1/2

Figure 3-544 Customer dimension attribute changes 2/2

– Product dimension:

• Insert (TABLE_CMD value of I) of PRODUCT_ID 7

• Insert (TABLE_CMD value of I) of PRODUCT_ID 11

These are shown in Figure 3-545 through Figure 3-548.

Figure 3-545 Product dimension attribute changes 1/4

 Chapter 3. Retail industry scenario 507

Figure 3-546 Product dimension attribute changes 2/4

Figure 3-547 Product dimension attribute changes 3/4

Figure 3-548 Product dimension attribute changes 4/4

– Store dimension:

• Insert (TABLE_CMD value of I) of STORE_ID 9

• Update (TABLE_CMD value of U) of STORE_ID 33

The Type 1 change is STATE_POPULATION (37700000).

The Type 2 change is MANAGER_NAME (Abigail Wilson).

• Update (TABLE_CMD value of U) of STORE_ID 1

The Type 1 change is STATE_POPULATION (37700000).

There are no Type 2 changes.

These are shown in Figure 3-549 through Figure 3-552.

Figure 3-549 Store dimension attribute changes 1/4

508 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-550 Store dimension attribute changes 2/4

Figure 3-551 Store dimension attribute changes 3/4

Figure 3-552 Store dimension attribute changes 4/4

� Sales transactions:

Sales transactions are collected from three stores — ST1 (STORE_ID of 1)
with 1 transaction as shown in Example 3-3, ST9 (STORE_ID of 9) with 2
transactions, as shown in Figure 3-553 and Figure 3-554, and ST33
(STORE_ID of 33) with 3 transactions as shown in Figure 3-555 and
Figure 3-556.

Example 3-3 STORE_ID 1 sales transactions

SALES_ID, DATE, QUANTITY, PRICE_USD, SELLING_PRICE_USD, COUNTRY_ISO_CODE, TOTAL_USD, CUSTOMER_ID,
STORE_ID, PRODUCT_ID
101,2007-11-07 10:09:42,1,37,37,CHN,37,0009,1,5,

Figure 3-553 STORE_ID 9 sales transactions 1/2

 Chapter 3. Retail industry scenario 509

Figure 3-554 STORE_ID 9 sales transactions 2/2

Figure 3-555 STORE_ID 33 sales transactions 1/2

Figure 3-556 STORE_ID 33 sales transactions 2/2

Two of these sales transactions were deliberately tailored to create the following
error conditions, which result in these transactions being rejected at some point.

� The one sales transaction from Store ST1 has an invalid
COUNTRY_ISO_CODE of ‘CHN’.

� PRODUCT_ID of 9 does not exist in the Product dimension table, which
invalidates a sales transaction in Store 9.

These fields are highlighted in Example 3-3 on page 509 through Figure 3-554
here.

In addition, no sales transactions were created with PRODUCT_ID of 7 and 11
(which are inserted as new business keys), which results in these dimension
changes corresponding to a late arriving data scenario.

510 IBM InfoSphere DataStage Data Flow and Job Design

Table 3-2 on page 342 identifies the jobs executed in the recurring (daily) tasks.

� The configuration of these tasks is briefly described in “Recurring tasks (Day
1)” on page 348.

� The execution of these jobs and the corresponding recurring tasks (Day 2)
are briefly described in the following sections starting with
“J07_IL_Daily_LoadSalesStore (Day 2) execution” on page 511.

J07_IL_Daily_LoadSalesStore (Day 2) execution
This job has to be repeated for sales transactions for each of the three stores
(1, 9, and 33) for Day 2.

� Figure 3-557 on page 512 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071107_ST1.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and
the name of the interim DB2 table (DS.SALES_ST1) to which these sales
transactions are written.

Figure 3-558 on page 512 shows the execution results of this job, indicating
one sales transaction being processed but zero sales transaction in the
output, since the input transaction was rejected because of an invalid
COUNTRY_ISO_CODE of ‘CHN’.

The contents of the DB2 interim table after the execution are shown in
Figure 3-558 on page 512.

� Figure 3-559 on page 513 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071107_ST9.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and
the name of the interim DB2 table (DS.SALES_ST9) to which these sales
transactions are written.

Figure 3-560 on page 513 shows the execution results of this job, indicating 2
sales transactions being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-553 on page 509 and Figure 3-554 on page 510.

� Figure 3-561 on page 513 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071107_ST33.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and

Note: “J06_IL_Daily_CreateCurrencyLookup_Service” on page 227 should
be executed every day to pick up the latest exchange rates for each ISO
country code. In our case however, we created all the exchange rates for the
different ISO country code countries for our three recurring daily cycles up
front (during the initial load phase), and therefore do not repeat it here.

 Chapter 3. Retail industry scenario 511

the name of the interim DB2 table (DS.SALES_ST33) to which these sales
transactions are written.

Figure 3-562 on page 514 shows the execution results of this job, indicating 6
sales transactions being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-555 on page 510 and Figure 3-556 on page 510.

The next step is to execute the job described in
“J14_Daily_CreateAllSalesStoreDS (Day 2) execution” on page 518.

Figure 3-557 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 1/7

Figure 3-558 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 2/7

512 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-559 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 3/7

Figure 3-560 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 4/7

Figure 3-561 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 5/7

 Chapter 3. Retail industry scenario 513

Figure 3-562 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 6/7

Figure 3-563 Execute the J07_IL_Daily_LoadSalesStore job (Day 2) 7/7

J13_Daily_UpdateLookupDim (Day 2) execution
Figure 3-564 on page 515 through Figure 3-571 on page 518 show the results of
the execution of this job with Day 2 data described earlier.

� Figure 3-564 on page 515 shows the results of the execution. It accepts 6
rows as input from the IBM WebSphere MQ message queue, which are
changes (three inserts and four updates) to the Customer, Product and Store
dimension tables. These changes are written to the Ds_Customer data set
(as shown in Figure 3-543 on page 507 and Figure 3-544 on page 507),
Ds_Product data set (as shown in Figure 3-545 on page 507 through
Figure 3-548 on page 508), and Ds_Store data set (as shown in Figure 3-549
on page 508 through Figure 3-552 on page 509).

514 IBM InfoSphere DataStage Data Flow and Job Design

� Figure 3-565 on page 516 through Figure 3-567 on page 516 show the
LOOKUP_CUSTOMER_DIM table that incorporates the changes
(highlighted) due to the update to CUSTOMER_ID 6.

� Figure 3-568 on page 517 and Figure 3-569 on page 517 show the
LOOKUP_PRODUCT_DIM table that incorporates the changes (highlighted)
due to the inserts of PRODUCT_ID 7 and 11.

� Figure 3-570 on page 517 and Figure 3-571 on page 518 show the
LOOKUP_STORE_DIM table that incorporates the changes (highlighted) due
to the insert of STORE_ID 9, and updates to STORE_ID 33 and 1.

The next step is to execute the job described in
“J14_Daily_CreateAllSalesStoreDS (Day 2) execution” on page 518.

Figure 3-564 Execute the J13_Daily_UpdateLookupDim job (Day 2) 1/8

 Chapter 3. Retail industry scenario 515

Figure 3-565 Execute the J13_Daily_UpdateLookupDim job (Day 2) 2/8

Figure 3-566 Execute the J13_Daily_UpdateLookupDim job (Day 2) 3/8

Figure 3-567 Execute the J13_Daily_UpdateLookupDim job (Day 2) 4/8

516 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-568 Execute the J13_Daily_UpdateLookupDim job (Day 2) 5/8

Figure 3-569 Execute the J13_Daily_UpdateLookupDim job (Day 2) 6/8

Figure 3-570 Execute the J13_Daily_UpdateLookupDim job (Day 2) 7/8

 Chapter 3. Retail industry scenario 517

Figure 3-571 Execute the J13_Daily_UpdateLookupDim job (Day 2) 8/8

J14_Daily_CreateAllSalesStoreDS (Day 2) execution
Figure 3-572 through Figure 3-574 on page 519 show the results of the
execution of this job with Day 2 data described earlier.

� Figure 3-572 shows the results of the execution. It accepts zero rows from
store 1, three row from store 9, and two rows from store 33 for a total of 5
rows that are written to the output data set.

� Figure 3-573 on page 519 and Figure 3-574 on page 519 show the contents
of the output data set DS_AllSales.

The next step is to execute the job described in “J15_Daily_CreateSalesAggDS
(Day 2) execution” on page 519.

Figure 3-572 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 2) 1/3

518 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-573 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 2) 2/3

Figure 3-574 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 2) 3/3

J15_Daily_CreateSalesAggDS (Day 2) execution
Figure 3-575 on page 520 through Figure 3-587 on page 522 show the results of
the execution of this job with Day 2 data described earlier.

� Figure 3-575 on page 520 shows the results of the execution. It accepts 5
rows as input from the “J14_Daily_CreateAllSalesStoreDS (Day 2) execution”
on page 518 job as seen in Figure 3-573 and Figure 3-574.

� The two outputs of this job are:

– The aggregated sales transactions appended with the dimension lookup
tables. This is a total of 2 rows as seen in Figure 3-576 on page 520
through Figure 3-581 on page 521.

– The rejected sales transactions (either late arriving dimensions or late
arriving data). This is a total of 1 row as seen in Figure 3-582 on page 521
through Figure 3-587 on page 522. The invalid column value
(PRODUCT_ID of 9) is highlighted.

The next step is to execute the job described in “J16_Daily_CreateScdInputDS
(Day 2) execution” on page 522.

 Chapter 3. Retail industry scenario 519

Figure 3-575 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 1/13

Figure 3-576 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 2/13

Figure 3-577 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 3/13

520 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-578 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 4/13

Figure 3-579 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 5/13

Figure 3-580 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 6/13

Figure 3-581 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 7/13

Figure 3-582 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 8/13

 Chapter 3. Retail industry scenario 521

Figure 3-583 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 9/13

Figure 3-584 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 10/13

Figure 3-585 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 11/13

Figure 3-586 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 12/13

Figure 3-587 Execute the J15_Daily_CreateSalesAggDS job (Day 2) 13/13

J16_Daily_CreateScdInputDS (Day 2) execution
Figure 3-588 on page 523 through Figure 3-594 on page 525 show the results of
the execution of this job with Day 2 data described earlier.

522 IBM InfoSphere DataStage Data Flow and Job Design

� Figure 3-588 shows the results of the execution. The inputs to this job are as
follows:

– Accepts 2 rows as input from the “J15_Daily_CreateSalesAggDS (Day 2)
execution” on page 519 job as seen in Figure 3-576 on page 520 through
Figure 3-581 on page 521.

– Accepts 2 rows (corresponding to PRODUCT_ID 7 and 11) as input from
the Product dimension lookup data set generated in
“J13_Daily_UpdateLookupDim (Day 2) execution” on page 514.

– Accepts 3 rows (corresponding to STORE_ID 9, 33, and 1) as input from
the Store dimension lookup data set generated in
“J13_Daily_UpdateLookupDim (Day 2) execution” on page 514.

– Accepts 1 row (corresponding to CUSTOMER_ID 6) as input from the
Customer dimension lookup data set generated in
“J13_Daily_UpdateLookupDim (Day 2) execution” on page 514.

� The output of this job shows 8 rows corresponding to the union of the two
inputs via the Funnel stage. Figure 3-589 on page 524 through Figure 3-594
on page 525 show the 8 rows in the output.

The next step is to execute the job described in “J17_DailyCreateSalesFactDS
(Day 2) execution” on page 526.

Figure 3-588 Execute the J16_Daily_CreateScdInputDS job (Day 2) 1/7

 Chapter 3. Retail industry scenario 523

Figure 3-589 Execute the J16_Daily_CreateScdInputDS job (Day 2) 2/7

Figure 3-590 Execute the J16_Daily_CreateScdInputDS job (Day 2) 3/7

Figure 3-591 Execute the J16_Daily_CreateScdInputDS job (Day 2) 4/7

524 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-592 Execute the J16_Daily_CreateScdInputDS job (Day 2) 5/7

Figure 3-593 Execute the J16_Daily_CreateScdInputDS job (Day 2) 6/7

Figure 3-594 Execute the J16_Daily_CreateScdInputDS job (Day 2) 7/7

 Chapter 3. Retail industry scenario 525

J17_DailyCreateSalesFactDS (Day 2) execution
Figure 3-595 on page 527 through Figure 3-606 on page 529 show the results of
the execution of this job with Day 2 data described earlier.

� Figure 3-595 on page 527 shows the results of the execution. It accepts 8
rows as input from the “J16_Daily_CreateScdInputDS (Day 2) execution” on
page 522 job as seen in Figure 3-589 on page 524 through Figure 3-594.

� The outputs of this job are as follows:

– Four rows to the Ds_StoreDimUpdate data set (shown in Figure 3-596 on
page 527 and Figure 3-597 on page 527).

• There is one row for the insert of STORE_ID 9.

• There are two rows for the update of STORE_ID 33 because it has
both Type 1 and Type 2 (MANAGER_NAME) changes. The Type 2
change requires the expiry of the existing row in the Store dimension
table (CURRENT_IND to ‘N’ and EXPIRATION_TS to Current
Timestamp12), and the addition of a new current row (CURRENT_IND
of ‘Y’, EFFECTIVE_TS and EXPIRATION-TS).

• There is only 1 row for the update of STORE_ID 1 because it only has
Type 1 changes which requires an update in place.

– Two rows to the Ds_CustomerDimUpdate data set (shown in Figure 3-598
on page 528 through Figure 3-600 on page 528) for the update of
CUSTOMER_ID 6 because it has both Type 1 and Type 2 changes
requiring expiry of the existing record in the dimension table.

– Two rows to the Ds_ProductDimUpdate data set (shown in Figure 3-601
on page 528 and Figure 3-602 on page 528) corresponding to the 2
inserts to the Product dimension table.

– No rows to the Ds_DateDimUpdate data set, since there were no changes
to the Date dimension table.

– Two rows (as expected from the input) are written to the
Ds_SalesFactUpdate data set with the appropriate surrogate key
assigned to each sales transaction as shown in Figure 3-603 on page 529
through Figure 3-604 on page 529.

– The six rows corresponding to late arriving data in the input are rejected
and written to the Ds_LateArrivingData data set as shown in Figure 3-605
on page 529 and Figure 3-606 on page 529.

The next step is to execute the job described in “J18_Daily_UpdateStoreDim
(Day 2) execution” on page 529.

12 This should actually have been the C_TRANSACTION_TS value of November 7th, 2007, but was
wrongly configured.

526 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-595 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 1/12

Figure 3-596 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 2/12

Figure 3-597 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 3/12

 Chapter 3. Retail industry scenario 527

Figure 3-598 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 4/12

Figure 3-599 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 5/12

Figure 3-600 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 6/12

Figure 3-601 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 7/12

Figure 3-602 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 8/12

528 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-603 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 9/12

Figure 3-604 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 10/12

Figure 3-605 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 11/12

Figure 3-606 Execute the J17_DailyCreateSalesFactDS (Day 2) job (Day 2) 12/12

J18_Daily_UpdateStoreDim (Day 2) execution
Figure 3-607 on page 530 through Figure 3-609 on page 531 show the results of
the execution of this job with Day 2 data described earlier.

� Figure 3-607 on page 530 shows the results of the execution. It accepts 4
rows as input from the “J17_DailyCreateSalesFactDS (Day 2) execution” on
page 526 job as seen in Figure 3-596 on page 527 and Figure 3-597 on
page 527.

 Chapter 3. Retail industry scenario 529

� The outputs are as follows:

– There are no rows written to the Rej_StoreDim link.

– The 4 rows written to the Odbc_StoreDim link updates the STORE_DIM
dimension table with these changes (as highlighted) as seen in
Figure 3-608 and Figure 3-609 on page 531.

The next step is to execute the job described in “J19_Daily_UpdateCustomerDim
(Day 2) execution” on page 531.

Figure 3-607 Execute the J18_Daily_UpdateStoreDim job (Day 2) 1/3

Figure 3-608 Execute the J18_Daily_UpdateStoreDim job (Day 2) 2/3

530 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-609 Execute the J18_Daily_UpdateStoreDim job (Day 2) 3/3

J19_Daily_UpdateCustomerDim (Day 2) execution
Figure 3-607 on page 530 shows the results of the execution of this job with Day
2 data described earlier.

� Figure 3-607 on page 530 shows the results of the execution. It accepts 4
rows as input from the “J17_DailyCreateSalesFactDS (Day 2) execution” on
page 526 job as seen in Figure 3-598 on page 528 through Figure 3-600 on
page 528.

� The outputs are as follows:

– There are no rows written to the Rej_StoreDim link.

– The 4 rows written to the Odbc_StoreDim link updates the STORE_DIM
dimension table with these changes (as highlighted) as seen in
Figure 3-608 on page 530 and Figure 3-609.

The next step is to execute the job described in “J20_Daily_UpdateProductDim
(Day 2) execution” on page 533.

 Chapter 3. Retail industry scenario 531

Figure 3-610 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 1/4

Figure 3-611 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 2/4

532 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-612 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 3/4

Figure 3-613 Execute the J19_Daily_UpdateCustomerDim job (Day 2) 4/4

J20_Daily_UpdateProductDim (Day 2) execution
Figure 3-614 on page 534 shows the results of the execution of this job with
Day 2 data described earlier.

� Figure 3-614 on page 534 shows the results of the execution. It accepts 2
rows as input from the “J17_DailyCreateSalesFactDS (Day 2) execution” on
page 526 job as seen in Figure 3-601 on page 528 and Figure 3-602 on
page 528.

 Chapter 3. Retail industry scenario 533

� The outputs are as follows:

– There are no rows written to the Rej_StoreDim link.

– The 2 rows written to the Odbc_ProductDim link updates the
PRODUCT_DIM dimension table with these changes (as highlighted) as
seen in Figure 3-615 and Figure 3-616 on page 535.

The next step is to execute the job described in “J21_Daily_UpdateDateDim (Day
2) execution” on page 535.

Figure 3-614 Execute the J20_Daily_UpdateProductDim job (Day 2) 1/3

Figure 3-615 Execute the J20_Daily_UpdateProductDim job (Day 2) 2/3

534 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-616 Execute the J20_Daily_UpdateProductDim job (Day 2) 3/3

J21_Daily_UpdateDateDim (Day 2) execution
Figure 3-617 shows the results of the execution of this job with Day 2 data
described earlier.

It shows no input records to update the Date dimension table.

The next step is to execute the job described in “J22_Daily_UpdateSalesFact
(Day 2) execution” on page 535.

Figure 3-617 Execute the J21_Daily_UpdateDateDim job (Day 2) 1/?

J22_Daily_UpdateSalesFact (Day 2) execution
Figure 3-618 on page 536 through Figure 3-621 on page 537 show the results of
the execution of this job with Day 2 data described earlier.

 Chapter 3. Retail industry scenario 535

� Figure 3-618 shows the results of the execution. It accepts 2 rows as input
from the “J17_DailyCreateSalesFactDS (Day 2) execution” on page 526 job
as seen in Figure 3-603 on page 529 and Figure 3-604 on page 529.

� The output shows 2 rows being written to the Odbc_SalesFact link which is
used to update the SALES_FACT table. Figure 3-619 through Figure 3-621
on page 537 show the updated contents of the SALES_FACT table as
highlighted.

This concludes Day 2 processing.

You can proceed to Day 3 processing as described in 3.1.5, “Recurring tasks
(Day 3)” on page 537.

Figure 3-618 Execute the J22_Daily_UpdateSalesFact job (Day 2) 1/4

Figure 3-619 Execute the J22_Daily_UpdateSalesFact job (Day 2) 2/4

536 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-620 Execute the J22_Daily_UpdateSalesFact job (Day 2) 3/4

Figure 3-621 Execute the J22_Daily_UpdateSalesFact job (Day 2) 4/4

3.1.5 Recurring tasks (Day 3)

In this cycle, we processed the following data on November 8th, 2007:

� Dimension table changes:

– Store dimension:

• Update (TABLE_CMD value of U) of STORE_ID 9.

The Type 2 change is MANAGER_NAME (Isabella Paris).

There are no Type 1 changes.

These are shown in Figure 3-622 on page 538 through Figure 3-624 on
page 538.

 Chapter 3. Retail industry scenario 537

Figure 3-622 Store dimension attribute changes 1/3

Figure 3-623 Execute the J13_Daily_UpdateLookupDim job (Day 3) 2/3

Figure 3-624 Execute the J13_Daily_UpdateLookupDim job (Day 3) 3/3

– There are no Customer, Product, and Date dimension changes.

� Sales transactions:

Sales transactions are collected from three stores — ST1 (STORE_ID of 1)
with 3 transactions as shown in Figure 3-625 and Figure 3-626 on page 539,
ST9 (STORE_ID of 9) with 1 transaction as shown in Figure 3-627 on
page 539 and Figure 3-628 on page 539, and ST33 (STORE_ID of 33) with 5
transactions as shown in Figure 3-629 on page 539 and Figure 3-630 on
page 540.

Figure 3-625 STORE_ID 1 sales transactions 2/2

538 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-626 STORE_ID 1 sales transactions 2/2

Figure 3-627 STORE_ID 9 sales transactions 1/2

Figure 3-628 STORE_ID 9 sales transactions 2/2

Figure 3-629 STORE_ID 33 sales transactions 1/2

 Chapter 3. Retail industry scenario 539

Figure 3-630 STORE_ID 33 sales transactions 2/2

Three of these sales transactions were deliberately tailored to create the
following error condition, which resulted in this transactions being rejected as late
arriving data.

� One sales transaction is from Store ST9 which has a date of November 6th,
2007.

� Two sales transactions are from Store ST9 which has a date of November
9th, 2007.

These fields are highlighted in Figure 3-629 on page 539.

Table 3-2 on page 342 identifies the jobs executed in the recurring (daily) tasks.

� The configuration of these tasks is briefly described in “Recurring tasks (Day
1)” on page 348.

� The execution of these jobs and the corresponding recurring tasks (Day 3)
are briefly described in the following sections starting with
“J07_IL_Daily_LoadSalesStore (Day 3) execution” on page 541.

Note: “J06_IL_Daily_CreateCurrencyLookup_Service” on page 227 should
be executed every day to pick up the latest exchange rates for each ISO
country code. In our case, however, we created all the exchange rates for the
different ISO country code countries for our three recurring daily cycles up
front (during the initial load phase), and therefore do not repeat it here.

540 IBM InfoSphere DataStage Data Flow and Job Design

J07_IL_Daily_LoadSalesStore (Day 3) execution
This job has to be repeated for sales transactions for each of the three stores
(1, 9, and 33) for Day 2.

� Figure 3-631 on page 542 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071108_ST1.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and
the name of the interim DB2 table (DS.SALES_ST1) to which these sales
transactions are written.

Figure 3-632 on page 542 shows the execution results of this job, indicating 3
sales transactions being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-625 on page 538 and Figure 3-626 on page 539.

� Figure 3-633 on page 543 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071108_ST9.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and
the name of the interim DB2 table (DS.SALES_ST9) to which these sales
transactions are written.

Figure 3-634 on page 543 shows the execution results of this job, indicating 1
sales transaction being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-627 on page 539 and Figure 3-628 on page 539.

� Figure 3-635 on page 544 shows the Job Run Options window that identifies
the input file (J07_Seq_Sales_20071108_ST33.txt) containing the sales
transactions, the name of the schema file (J07_Seq_Sales_schema.osh), and
the name of the interim DB2 table (DS.SALES_ST33) to which these sales
transactions are written.

Figure 3-636 on page 544 shows the execution results of this job, indicating 5
sales transactions being processed.

The contents of the DB2 interim table after the execution are shown in
Figure 3-629 on page 539 and Figure 3-630 on page 540.

The next step is to execute the job described in
“J14_Daily_CreateAllSalesStoreDS (Day 3) execution” on page 546.

 Chapter 3. Retail industry scenario 541

Figure 3-631 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 1/6

Figure 3-632 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 2/6

542 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-633 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 3/6

Figure 3-634 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 4/6

 Chapter 3. Retail industry scenario 543

Figure 3-635 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 5/6

Figure 3-636 Execute the J07_IL_Daily_LoadSalesStore job (Day 3) 6/6

J13_Daily_UpdateLookupDim (Day 3) execution
Figure 3-637 on page 545 through Figure 3-640 on page 546 show the results of
the execution of this job with Day 3 data described earlier.

� Figure 3-637 on page 545 shows the results of the execution. It accepts 1 row
as input from the IBM WebSphere MQ message queue which is a change to
the Store dimension table. This change is written to the Store_IDs data set as
shown in Figure 3-622 on page 538 through Figure 3-624 on page 538.

544 IBM InfoSphere DataStage Data Flow and Job Design

� Figure 3-638 through Figure 3-640 on page 546 show the
LOOKUP_STORE_DIM table that incorporates the changes (highlighted) due
to the update of STORE_ID 9.

The next step is to execute the job described in
“J14_Daily_CreateAllSalesStoreDS (Day 3) execution” on page 546.

Figure 3-637 Execute the J13_Daily_UpdateLookupDim job (Day 3) 1/4

Figure 3-638 Execute the J13_Daily_UpdateLookupDim job (Day 3) 2/4

 Chapter 3. Retail industry scenario 545

Figure 3-639 Execute the J13_Daily_UpdateLookupDim job (Day 3) 3/4

Figure 3-640 Execute the J13_Daily_UpdateLookupDim job (Day 3) 4/4

J14_Daily_CreateAllSalesStoreDS (Day 3) execution
Figure 3-641 on page 547 through Figure 3-643 on page 547 show the results of
the execution of this job with Day 3 data described earlier.

� Figure 3-641 on page 547 shows the results of the execution. It accepts 3
rows from store 1, five rows from store 9, and five rows from store 33 for a
total of 9 rows that are written to the output data set.

� Figure 3-642 on page 547 and Figure 3-643 on page 547 show the contents
of the output data set DS_AllSales.

The next step is to execute the job described in “J15_Daily_CreateSalesAggDS
(Day 3) execution” on page 548.

546 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-641 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 3) 1/3

Figure 3-642 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 3) 2/3

Figure 3-643 Execute the J14_Daily_CreateAllSalesStoreDS job (Day 3) 3/3

 Chapter 3. Retail industry scenario 547

J15_Daily_CreateSalesAggDS (Day 3) execution
Figure 3-644 through Figure 3-656 on page 551 show the results of the
execution of this job with Day 3 data described earlier.

� Figure 3-644 shows the results of the execution. It accepts 9 rows as input
from the “J14_Daily_CreateAllSalesStoreDS (Day 3) execution” on page 546
job as seen in Figure 3-642 on page 547 and Figure 3-643 on page 547.

� The two outputs of this job are:

– The aggregated sales transactions appended with the dimension lookup
tables. This is a total of 5 rows as seen in Figure 3-645 on page 549
through Figure 3-650 on page 550.

– The rejected sales transactions (either late arriving dimensions or late
arriving data). This is a total of 3 rows as seen in Figure 3-651 on
page 550 through Figure 3-656 on page 551. The invalid dates are
highlighted.

The next step is to execute the job described in “J16_Daily_CreateScdInputDS
(Day 3) execution” on page 552.

Figure 3-644 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 1/13

548 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-645 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 2/13

Figure 3-646 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 3/13

Figure 3-647 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 4/13

Figure 3-648 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 5/13

 Chapter 3. Retail industry scenario 549

Figure 3-649 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 6/13

Figure 3-650 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 7/13

Figure 3-651 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 8/13

Figure 3-652 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 9/13

550 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-653 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 10/13

Figure 3-654 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 11/13

Figure 3-655 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 12/13

Figure 3-656 Execute the J15_Daily_CreateSalesAggDS job (Day 3) 13/13

 Chapter 3. Retail industry scenario 551

J16_Daily_CreateScdInputDS (Day 3) execution
Figure 3-657 on page 552 through Figure 3-663 on page 554 show the results of
the execution of this job with Day 3 data described earlier.

� Figure 3-657 on page 552 shows the results of the execution. The inputs to
this job are as follows:

– Accepts 5 rows as input from the “J15_Daily_CreateSalesAggDS (Day 3)
execution” on page 548 job as seen in Figure 3-645 on page 549 through
Figure 3-650 on page 550.

– Accepts 1 row (corresponding to STORE_ID 9) as input from the Store
dimension lookup data set generated in “J13_Daily_UpdateLookupDim
(Day 3) execution” on page 544.

� The output of this job shows 6 rows corresponding to the union of the two
inputs via the Funnel stage. Figure 3-658 on page 553 through Figure 3-663
on page 554 show the 6 rows in the output.

The next step is to execute the job described in “J17_DailyCreateSalesFactDS
(Day 3) execution” on page 554.

Figure 3-657 Execute the J16_Daily_CreateScdInputDS job (Day 3) 1/7

552 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-658 Execute the J16_Daily_CreateScdInputDS job (Day 3) 2/7

Figure 3-659 Execute the J16_Daily_CreateScdInputDS job (Day 3) 3/7

Figure 3-660 Execute the J16_Daily_CreateScdInputDS job (Day 3) 4/7

Figure 3-661 Execute the J16_Daily_CreateScdInputDS job (Day 3) 5/7

 Chapter 3. Retail industry scenario 553

Figure 3-662 Execute the J16_Daily_CreateScdInputDS job (Day 3) 6/7

Figure 3-663 Execute the J16_Daily_CreateScdInputDS job (Day 3) 7/7

J17_DailyCreateSalesFactDS (Day 3) execution
Figure 3-664 on page 555 through Figure 3-670 on page 556 show the results of
the execution of this job with Day 3 data described earlier.

� Figure 3-664 on page 555 shows the results of the execution. It accepts 6
rows as input from the “J16_Daily_CreateScdInputDS (Day 3) execution” on
page 552 job as seen in Figure 3-658 on page 553 through Figure 3-663.

� The outputs of this job are as follows:

– Two rows to the Ds_StoreDimUpdate data set (shown in Figure 3-665 on
page 555 and Figure 3-666 on page 556).

• There are two rows for the update of STORE_ID 9 because it has a
Type 2 (MANAGER_NAME) change. The Type 2 change requires the
expiry of the existing row in the Store dimension table (CURRENT_IND
to ‘N’ and EXPIRATION_TS to Current Timestamp), and the addition of
a new current row (CURRENT_IND of ‘Y’, EFFECTIVE_TS and
EXPIRATION-TS).

– No rows to the Ds_CustDimUpdate, Ds_ProdDimUpdate, and
Ds_DateDimUpdate data set since there were no changes to the
Customer, Product, and Date dimension tables.

554 IBM InfoSphere DataStage Data Flow and Job Design

– Five rows (as expected from the input) are written to the
Ds_SalesFactUpdate data set with the appropriate surrogate key
assigned to each sales transaction as shown in Figure 3-667 on page 556
through Figure 3-668 on page 556.

– The one row corresponding to late arriving data in the input is rejected and
written to the Ds_LateArrivingData data set as shown in Figure 3-669 on
page 556 and Figure 3-670 on page 556.

The next step is to execute the job described in “J18_Daily_UpdateStoreDim
(Day 3) execution” on page 557.

Figure 3-664 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 1/7

Figure 3-665 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 2/7

 Chapter 3. Retail industry scenario 555

Figure 3-666 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 3/7

Figure 3-667 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 4/7

Figure 3-668 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 5/7

Figure 3-669 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 6/7

Figure 3-670 Execute the J17_DailyCreateSalesFactDS (Day 3) job (Day 3) 7/7

556 IBM InfoSphere DataStage Data Flow and Job Design

J18_Daily_UpdateStoreDim (Day 3) execution
Figure 3-671 here through Figure 3-673 on page 558 show the results of the
execution of this job with Day 3 data described earlier.

� Figure 3-671 shows the results of the execution. It accepts 2 rows as input
from the “J17_DailyCreateSalesFactDS (Day 3) execution” on page 554 job
as seen in Figure 3-665 on page 555 and Figure 3-666 on page 556.

� The outputs are as follows:

– There are no rows written to the Rej_StoreDim link.

– The 2 rows written to the Odbc_StoreDim link updates the STORE_DIM
dimension table with these changes (as highlighted) as seen in
Figure 3-672 on page 558 and Figure 3-673 on page 558.

The next step is to execute the job described in “J19_Daily_UpdateCustomerDim
(Day 3) execution” on page 558.

Figure 3-671 Execute the J18_Daily_UpdateStoreDim job (Day 3) 1/3

 Chapter 3. Retail industry scenario 557

Figure 3-672 Execute the J18_Daily_UpdateStoreDim job (Day 3) 2/3

Figure 3-673 Execute the J18_Daily_UpdateStoreDim job (Day 3) 3/3

J19_Daily_UpdateCustomerDim (Day 3) execution
Figure 3-674 on page 559 shows the results of the execution of this job with Day
3 data described earlier.

It shows no input records to update the Customer dimension table.

The next step is to execute the job described in “J20_Daily_UpdateProductDim
(Day 3) execution” on page 559.

558 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-674 Execute the J19_Daily_UpdateCustomerDim job (Day 3)

J20_Daily_UpdateProductDim (Day 3) execution
Figure 3-675 shows the results of the execution of this job with Day 3 data
described earlier.

It shows no input records to update the Product dimension table.

The next step is to execute the job described in “J21_Daily_UpdateDateDim (Day
3) execution” on page 560.

Figure 3-675 Execute the J20_Daily_UpdateProductDim job (Day 3) 1/?

 Chapter 3. Retail industry scenario 559

J21_Daily_UpdateDateDim (Day 3) execution
Figure 3-676 shows the results of the execution of this job with Day 3 data
described earlier.

It shows no input records to update the Date dimension table.

The next step is to execute the job described in “J22_Daily_UpdateSalesFact
(Day 3) execution” on page 560.

Figure 3-676 Execute the J21_Daily_UpdateDateDim job (Day 3) 1/?

J22_Daily_UpdateSalesFact (Day 3) execution
Figure 3-677 on page 561 through Figure 3-679 on page 562 show the results of
the execution of this job with Day 3 data described earlier.

� Figure 3-677 on page 561 shows the results of the execution. It accepts 5
rows as input from the “J17_DailyCreateSalesFactDS (Day 3) execution” on
page 554 job as seen in Figure 3-667 on page 556 and Figure 3-668 on
page 556.

� The output shows 5 rows being written to the Odbc_SalesFact link which is
used to update the SALES_FACT table. Figure 3-678 on page 561 and
Figure 3-679 on page 562 show the updated contents of the SALES_FACT
table as highlighted.

This concludes Day 3 processing and our retail industry scenario.

560 IBM InfoSphere DataStage Data Flow and Job Design

Figure 3-677 Execute the J22_Daily_UpdateSalesFact job (Day 3) 1/3

Figure 3-678 Execute the J22_Daily_UpdateSalesFact job (Day 3) 2/3

 Chapter 3. Retail industry scenario 561

Figure 3-679 Execute the J22_Daily_UpdateSalesFact job (Day 3) 3/3

562 IBM InfoSphere DataStage Data Flow and Job Design

Appendix A. IBM Information Server
setups

In this appendix we describe the setup of various products used in the retail
industry scenario, such as IBM Information Integrator Classic Federation server
for z/OS, creating a Queue Manager, setting up the XA parameters on Queue
Manager, and creating the queues.

The topics covered include:

� Configuring IBM InfoSphere Classic Federation Server for z/OS

� Creating the Queue Manager

� Setting up the XA parameters on Queue Manager

� Creating the queues

A

© Copyright IBM Corp. 2008. All rights reserved. 563

A.1 Introduction

WantThatStuff’s operational systems are provided on a z/OS platform. While
most of the data sources are on DB2 for z/OS, two of the data sources (Product
and Store) are VSAM files, while three data sources (Customer, Employee, and
SalesTrans) are sequential files.

The sequential files (Customer, Employee, and SalesTrans) are processed on
the IBM Information Server (kazan.itsosj.sanjose.ibm.com) using the IBM
InfoSphere DataStage FTP Enterprise and CFF stages similar to that described
in “J01_IL_FTPCustomerFile” on page 159 and “J02_IL_LoadCustomerDim” on
page 184.

The VSAM files (Product and Store) are accessed as relational tables on the IBM
Information Server (kazan.itsosj.sanjose.ibm.com) platform using IBM
InfoSphere Classic Federation Server for z/OS similar to that described in
“J03_IL_LoadProductDim” on page 202.

Classic Data Architect is used to create relational tables and views that map to
data sources in supported non-relational database management systems. With
IBM InfoSphere Classic Federation Server for z/OS, client applications can issue
SQL queries against these tables to access data in the non-relational databases.
Client applications can also issue INSERT, DELETE, and UPDATE requests
against the tables to modify the data in the non-relational databases. Before you
begin, you must perform the following tasks on the data server where the query
processor will run:

1. Create and initialize a metadata catalog as described in A.2.2, “Configuration
of IBM InfoSphere Classic Federation for z/OS system catalog” on page 567.

2. Set up the configuration file (contents are shown in Example A-1 on page 568
— the highlighted portion shows the changes made for our scenario).

3. Start the data server (not shown here).

The configuration of IBM InfoSphere Classic Federation Server for z/OS for the
Product and Store VSAM files is described in “Configure IBM InfoSphere Classic
Federation Server for z/OS” on page 565.

The “J13_Daily_UpdateLookupDim (Day 1)” on page 356 retrieves changes to
customer, product, and store attributes (Type 1 and Type 2) from an IBM
WebSphere MQ queue, updates the dimension lookup tables, and creates a data
set for each dimension table (with nulls in the sales transaction1 portion of the
records) for input to the SCD stage in the job, “J17_DailyCreateSalesFactDS
(Day1)” on page 424.

564 IBM InfoSphere DataStage Data Flow and Job Design

The configuration of the IBM WebSphere MQ queue manager, setting up the XA
parameters for the queue manager, and creating the queues, are described in
“Create the Queue Manager” on page 580, “Set up the XA parameters on Queue
Manager” on page 587, and “Create the queues” on page 591.

A.2 Configure IBM InfoSphere Classic Federation
Server for z/OS

IBM InfoSphere Classic Federation Server for z/OS is a complete, high-powered
solution that provides SQL access to mainframe databases and files without
mainframe programming.

Using the key product features, you can:

� Read from and write to mainframe data sources using SQL.

� Map logical relational table structures to existing physical mainframe
databases and files.

� Use the Classic Data Architect graphical user interface (GUI) to issue
standard SQL commands to the logical tables.

� Use standards-based access with ODBC, JDBC, or CLI interfaces.

� Take advantage of multi-threading with native drivers for scalable
performance.

The architecture of InfoSphere Classic Federation Server for z/OS consists of
the following major components:

� Data server

Data servers perform all data access. The architecture of the data server is
service-based. The data server consists of several components, or services.
A major service embedded in the data server is the query processor that acts
as the relational engine for Classic federation.

� Data connectors

The query processor dynamically loads one or more data connectors to
access the target database or file system that is referenced in an SQL
request.

1 This record is created to ensure that the dimension tables are updated in the SCD stage in
“J17_DailyCreateSalesFactDS (Day1)” on page 433 even if there are no sales transactions
associated with those dimension table changes. This is the late arriving (or no existing) sales
transactions scenario where the dimension tables must be updated with the Type 1 and Type 2
attribute changes even when there are no incoming sales transactions in that daily cycle.

 Appendix A. IBM Information Server setups 565

� Classic Data Architect

To process SQL data access requests, data definitions must be mapped to
logical tables. Classic Data Architect2 is the administrative tool that you
should use to perform this mapping.

Classic Data Architect is the enhanced interface introduced in Version 9 that
replaces the Classic Data Mapper. The purpose of the Classic Data Architect
is to administer the logical table definitions, views, and SQL security
information that are stored in the metadata catalog.

The key benefits that the Classic Data Architect tool provides make it easier
for you to perform the following tasks:

– Define tables, columns, primary keys, indexes, stored procedures, and
views.

– Specify user authorization for all objects.

– Import existing physical definitions from copybooks, CA-IDMS schemas,
and IMS database descriptors (DBDs).

– Generate DDL for the objects that you create that can be run directly on a
server or saved to a script file.

– Generate DDL script from objects already defined in the catalog and
export DDL scripts to a data set on the server for use with the metadata
utility.

– Connect directly to a Classic data source and view the objects in the
system catalog.

� Metadata catalog

The information that you generate from the Classic Data Architect is stored in
metadata catalogs. A metadata catalog is a set of relational tables that
contain information about how to convert data from non-relational to relational
formats. The data server accesses the information stored in these catalogs.

� Clients (ODBC, JDBC, and CLI)

InfoSphere Classic Federation Server for z/OS provides the ODBC, JDBC,
and CLI clients. The clients enable client applications or tools to submit SQL
queries to the data server.

The following sections briefly describe the installation of Classic Data Architect
and IBM InfoSphere Classic Federation Server for z/OS, configuration of the IBM
InfoSphere Classic Federation Server for z/OS system catalog, and the
configuration of Classic Data Architect.

2 Classic Data Architect is a new Eclipse-based GUI tool that assists you in configuring access to
mainframe data sources and InfoSphere Classic components.

566 IBM InfoSphere DataStage Data Flow and Job Design

A.2.1 Installation

The installation of Classic Data Architect and IBM InfoSphere Classic Federation
Server for z/OS is briefly described here:

1. Install Classic Data Architect with the typical setup option on the Linux
platform where IBM InfoSphere DataStage is installed —
kazan.itsosj.sanjose.ibm.com in our case.

For details on installing Classic Data Architect, refer to:
http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/index.jsp?top
ic=/com.ibm.websphere.ii.product.install.clas.doc/topics/iiypicac-in
stcda.html

2. Install IBM InfoSphere Classic Federation Server for z/OS on the z/OS
platform where WantThatStuff’s VSAM data sources are located.

For details on installing IBM InfoSphere Classic Federation Server for z/OS,
refer to Program Directory for IBM WebSphere Classic Federation Server for
z/OS V09.01.00, Program Number 5655-R52, GI10-8750-00.

A.2.2 Configuration of IBM InfoSphere Classic Federation for z/OS
system catalog

In this section we allocate the system (metadata) catalog and update it with
metadata about the Product and Store VSAM files (Example A-1 on page 568).

Example A-2 on page 570 shows the CACPOST job that allocates and populates
the appropriate data sets such as the error message catalog and the metadata
catalog. The catalog initialization and maintenance utility (CACCATUT) is a z/OS
batch job that creates or performs operations on an offline metadata catalog —
the INIT operation of the CACCATUT initializes data sets for a version 9.1
sequential metadata catalog and creates the SYSIBM and SYSCAC system
tables that make up the metadata catalog. The ENGCAT DD statement
references the message catalog3.

Attention: It is essential that you install Classic Data Architect before you
install IBM InfoSphere Classic Federation Server for z/OS. Failure to do so
will result in the ODBC drivers for z/OS not being installed if you happen to
use them in your scenario. For examples of configuring ODBC data
sources on the z/OS platform, refer to the Redbooks publication, IBM
WebSphere Information Analyzer & Data Quality Assessment, SG24-7508.

3 The message catalog is accessed by the CLI component and the metadata utility to retrieve the text
for error messages reported by the data server and error conditions detected by CLI or by the
metadata utility.

 Appendix A. IBM Information Server setups 567

http://publib.boulder.ibm.com/infocenter/iisclzos/v9r1/index.jsp?topic=/com.ibm.websphere.ii.product.install.clas.doc/topics/iiypicac-instcda.html

Example A-3 on page 571 shows the CACMETAU4 job that connects to the data
server (Example A-4 on page 573 shows the connect configuration details), then
reads the DDL statements from SYSIN * and sends the statements to the server
to update the system catalog. Example A-5 on page 573 shows the DDL
statements for the PRODUCT data source, while Example A-6 on page 573
shows the DDL statements for the STORE data source.

Example: A-1 Configuration file contents on the data server

**
* *
* DATA SERVER CONFIGURATION *
* *
* THIS FILE CONTAINS CONFIGURATION DATA REQUIRED *
* FOR THE OPERATION OF THE DATA SERVER. *
* *
* THE FILE IS ORGANIZED AS A SERIES OF ENTRIES EACH *
* OF WHICH CONSISTS OF A KEYWORD AND VALUE PAIR *
* SEPARATED BY A REQUIRED "=" SIGN. ORDER OF THE *
* ENTRIES IS NOT IMPORTANT, EXCEPT WHERE NOTED. *
* MAXIMUM LENGTH OF AN ENTRY IS 80 CHARACTERS PER *
* LINE, WITH A MAXIMUM PARAMETER LENGTH OF 255 *
* CHARACTERS, SPANNED BY THE BACKSLASH CONTINUATION *
* CHARACTER - \. *
* *
* NOTE: WHEN EDITING CONFIGURATION MEMBERS ENSURE THAT *
* "NUM OFF" IS SPECIFIED. IF THE CONFIGURATION *
* CONTAINS SEQUENCE NUMBERS, UNKNOWN CONFIGURATION *
* PARAMETERS, OR INVALID SUB-PARAMETER VALUES THE *
* DATA SERVER WILL NOT RUN. *
* *
**
*
* THE FOLLOWING SERVICE INFO ENTRIES ARE REQUIRED.
SERVICE INFO ENTRY = CACCNTL CNTL 0 1 1 100 4 5M 5M NO_DATA
SERVICE INFO ENTRY = CACLOG LOG 1 1 1 100 1 5M 5M DISPLAY
SERVICE INFO ENTRY = CACOPER OPER 2 1 1 100 4 5M 5M NO_DATA
*
**
*
* LANGUAGE ENVIRONMENT
* UNCOMMENT THE FOLLOWING SERVICE INFO ENTRIES IF YOU WILL BE
* USING RECORD EXITS OR STORED PROCEDURES USING IBM'S
* LANGUAGE ENVIRONMENT OR COBOL II. THE FIRST ENTRY IS FOR LE
* AND THE SECOND FOR COBOL II.

4 The catalog initialization and maintenance utility (CACCATUT) is a z/OS batch job that creates or
performs operations on an offline metadata catalog. Offline means that no services can reference
the metadata catalog while CACCATUT is running.

568 IBM InfoSphere DataStage Data Flow and Job Design

* FOR COBOL II, IF YOU WILL HAVE MORE THAN ONE CONCURRENT USER,
* DO NOT ACTIVATE THIS INTERFACE.
*SERVICE INFO ENTRY = CACLE LANGENV 2 1 1 50 4 5M 5M CEEPIPI
*SERVICE INFO ENTRY = CACLE LANGENV 2 1 1 50 4 5M 5M IGZERRE
*
**
*
* WLM USER EXIT INTERFACE INITIALIZATION
*SERVICE INFO ENTRY = CACWLM WLM01 2 1 1 1 4 5M 5M \
* CACSX06,SUBSYS=JES,SUBSYSNM=CAC01
*
**
*
* QUERY PROCESSOR SERVICE INFO ENTRY
* THE LAST SUBPARAMETER POINTS TO A QP SERVICE CONFIGURATION FILE
SERVICE INFO ENTRY = CACQP CACSAMP 2 5 10 20 4 5M 5M CACQPCF
*
**
*
* CA-DATACOM/DB INTERFACE
*SERVICE INFO ENTRY = CACDCI DCOM 2 1 1 50 4 5M 5M 4
*
* DB2 INTERFACE
* CHANGE THE DSN FIELD TO THE SUBSYSTEM IDENTIFIER FOR
* YOUR SITE'S DB2 SUBSYSTEM.
*SERVICE INFO ENTRY = CACCAF DB8A 2 1 5 1 4 5M 5M CAC91PLN
SERVICE INFO ENTRY = CACCAF DB8A 2 1 5 1 1 5M 5M CAC91PLN
*
* IMS DBB/BMP INTERFACE
*SERVICE INFO ENTRY = CACIMSIF IMS 2 1 1 50 4 5M 5M NO_DATA
*
* IMS DRA INTERFACE
*SERVICE INFO ENTRY = CACDRA IMS 2 1 1 50 4 5M 5M 00,DRAUSER,DEFPSB
*
* IMS ODBA INTERFACE
*SERVICE INFO ENTRY = CACRRSI IMS 2 1 1 50 4 5M 5M SSID,DEFPSB
*
* VSAM INTERFACE
SERVICE INFO ENTRY = CACVSMS VSAMSRV 2 1 1 50 4 5M 5M CLOSE_ON_IDLE
*
**
*
* TCP/IP CONNECTION HANDLER
* REFER TO DOCUMENTATION FOR DETAILED INFORMATION ON LAST SUBPARAMETER
SERVICE INFO ENTRY = CACINIT TCPIP 2 1 1 100 4 5M 5M \
TCP/0.0.0.0/5525
*TCP/WTSC59.ITSO.IBM.COM/5001
*
* TCP/IP SYSTEM FILE HIGH LEVEL QUALIFIER, SUBSYSTEM NAME

 Appendix A. IBM Information Server setups 569

* AND TIMEZONE SETTING
*TASK PARAMETERS = =TCPIP_PREFIX=HLQUAL =TCPIP_MACH=TCPIP =TZ=PST9PDT
*
* XM CONNECTION HANDLER
* REFER TO DOCUMENTATION FOR DETAILED INFORMATION ON LAST SUBPARAMETER
*SERVICE INFO ENTRY = CACINIT XMNT 2 1 1 50 4 5M 5M \
* XM1/CAC/CAC
*
* MQ-SERIES CONNECTION HANDLER
* REFER TO DOCUMENTATION FOR DETAILED INFORMATION ON LAST SUBPARAMETER
*SERVICE INFO ENTRY = CACINIT MQI 2 1 1 50 4 5M 5M \
* MQI/SCQ1/CAC.SERVER
*
**
*
* SAF (SECURITY) SYSTEM EXIT
*SAF EXIT = CACSX04 IMS CLASS=PIMS
*
* SMF (REPORTING) SYSTEM EXIT
*SMF EXIT = CACSX02 RECTYPE=255,SYSID=JES2
*

*
* MISC REQUIRED PARAMETERS
*
MESSAGE POOL SIZE = 16777216
*
NL = US ENGLISH
NL CAT = DD:ENGCAT
*
* IF YOU ARE NOT ALLOWING UPDATES TO THE CATALOG FILES WHILE
* ANY DATA SERVERS ARE ACCESSING THE CATALOG FILES, CHANGE THE
* VALUE TO A ONE. THE CATALOG FILES WILL ONLY BE OPENED DURING
* QP INITIALIZATION RATHER THAN DURING EACH QUERY OPEN CURSOR.
*
STATIC CATALOGS = 0

Example: A-2 Allocate data sets

//CACPOST JOB (999,POK),'POST SMPE TASKS',CLASS=A,
// MSGCLASS=X,NOTIFY=&SYSUID
//**
//CACCLN EXEC PGM=IEFBR14
//SCACMENU DD DISP=(MOD,DELETE,DELETE),VOL=SER=OP1TSD,
// UNIT=SYSALLDA,RECFM=FBS,LRECL=80,BLKSIZE=27920,
// SPACE=(CYL,(1,1)),
// DSN=NALUR1.CAC.PRODUCT.SCACMENU

570 IBM InfoSphere DataStage Data Flow and Job Design

//*
//CACENG1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,
// DSN=CAC.SCACSAMP(CACENGCT)
//SYSUT2 DD DISP=(NEW,CATLG,DELETE),VOL=SER=OP1TSD,
// UNIT=SYSALLDA,RECFM=FBS,LRECL=80,BLKSIZE=27920,
// SPACE=(CYL,(1,1)),
// DSN=NALUR1.CAC.PRODUCT.SCACMENU
//SYSIN DD DUMMY
//*
//CACCATAL EXEC PGM=IEFBR14
//CACCAT DD UNIT=SYSALLDA,VOL=SER=OP1TSD,
// DSN=NALUR1.CAC.PRODUCT.CATALOG,
// SPACE=(CYL,(10,10)),
// DCB=(RECFM=FBS,LRECL=1,BLKSIZE=5120),
// DISP=(NEW,CATLG,DELETE)
//CACINDX DD UNIT=SYSALLDA,VOL=SER=OP1TSD,
// DSN=NALUR1.CAC.PRODUCT.CATINDX,
// SPACE=(CYL,(2,1)),
// DCB=(RECFM=FBS,LRECL=1,BLKSIZE=5120),
// DISP=(NEW,CATLG,DELETE)
//*
//CACCATIN EXEC PGM=CACCATUT,PARM='INIT'
//STEPLIB DD DISP=SHR,DSN=CAC.SCACLOAD
//ENGCAT DD DISP=SHR,DSN=NALUR1.CAC.PRODUCT.SCACMENU
//CTRANS DD DISP=SHR,DSN=CAC.SCACSASC
//CACCAT DD DISP=SHR,DSN=NALUR1.CAC.PRODUCT.CATALOG
//CACINDX DD DISP=SHR,DSN=NALUR1.CAC.PRODUCT.CATINDX
//SYSTERM DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*

Example: A-3 Update IBM InfoSphere Classic Federation Server system catalog

//CACMETAU JOB (POK,999),'METADATA UTILITY',CLASS=A,MSGCLASS=X,
// NOTIFY=&SYSUID
//**
//* *
//* CACMETAU - JCL TO UPDATE THE SYSTEM CATALOG *
//* *
//* THIS JOB INVOKES THE META DATA UTILITY. *
//* THE METADATA UTILITY CONNECTS TO DATA THE SERVER IDENTIFIED BY *
//* THE CONNECT TO SERVER STATEMENT. A SAMPLE CONNECT TO STATEMENT *
//* IS PROVIDED IN THE SCACCONF CACMETAU MEMBER. *

 Appendix A. IBM Information Server setups 571

//* *
//* THE METADATA UTILITY THEN READS THE DDL STATEMENTS FROM SYSIN *
//* AND SENDS THE STATEMENTS TO THE SERVER IDENTIFIED IN THE *
//* CONNECT TO SERVER STATEMENT TO UPDATE THE SYSTEM CATALOG. *
//* THE METADATA UTILITY ALSO ACCEPTS CONNECT TO DB2 AND DB2 *
//* IMPORT STATEMENTS THAT CAUSE THE METADATA UTILITY TO ACCESS A *
//* LOCAL DB2 SUBSYSTEM TO EXTRACT THE REQUIRED INFORMATION TO *
//* GENERATE CREATE TABLE AND INDEX STATEMENTS FOR DB2 OBJECTS. *
//* *
//* 1) PROVIDE A JOB CARD THAT IS VALID FOR YOUR SITE *
//* 2) CHANGE CAC PARM TO INSTALLED HIGH LEVEL QUALIFIER *
//* 3) UNCOMMENT THE DB2 PARM AND THEN CHANGE TO THE APPROPRIATE *
//* SYSTEM HLQ IF YOU ARE IMPORTING DB2 DEFINITIONS *
//* 4) TAILOR CONNECT MEMBER (CACMETAU) AND PROVIDE SERVER *
//* CONNECTION AND IDENTIFICATION INFORMATION *
//* 5) CHANGE THE DDLIN PARM TO THE MEMBER THAT CONTAINS THE *
//* DDL STATEMENTS TO BE PROCESSED *
//* 6) UPDATE THE RGN PARAMETER IF YOU NEED TO PROCESS LARGE *
//* DDL STATEMENTS. IF 'OUT-OF-MEMORY' ERRORS ARE REPORTED BY *
//* THE METADATA UTILITY THEN THE REGION SIZE NEEDS TO BE *
//* INCREASED. INCRESE THE REGION SIZE IN TWO MEGA-BYTE *
//* INCREMENTS. *
//* *
//**
//*
//METAUTL PROC CAC='CAC', INSTALLED HIGH LEVEL QUALIFIER
// CONNECT=CACMUCON, SAMPLE CONFIGURATION MEMBER
// DB2='DB8A8', DB2 HIGH LEVEL QUALIFIER
// DDLIN=CACDB2P, INPUT DDL STATEMENT MEMBER NAME
// RGN=8M, REGION SIZE
// SOUT='*' SYSOUT CLASS
//*
//**
//METAU EXEC PGM=CACMETA,REGION=&RGN
//STEPLIB DD DISP=SHR,DSN=&CAC..SCACLOAD
// DD DISP=SHR,DSN=&DB2..SDSNLOAD
//*
//CTRANS DD DISP=SHR,DSN=&CAC..SCACSASC
//*
//CACCAT DD DISP=SHR,DSN=NALUR1.CAC.PRODUCT.CATALOG
//CACINDX DD DISP=SHR,DSN=NALUR1.CAC.PRODUCT.CATINDX
//*
//ENGCAT DD DISP=SHR,DSN=NALUR1.CAC.PRODUCT.SCACMENU
//SYSTERM DD SYSOUT=&SOUT
//SYSPRINT DD SYSOUT=&SOUT

572 IBM InfoSphere DataStage Data Flow and Job Design

//SYSIN DD DISP=SHR,DSN=&CAC..SCACCONF(&CONNECT)
// DD DISP=SHR,DSN=&CAC..SCACSAMP(&DDLIN)
// PEND
//METAUTL EXEC METAUTL

Example: A-4 Contents of CACMUCON file

CONNECT TO SERVER CACSAMP "TCP/0.0.0.0/5525";

Example: A-5 Product VSAM file DDL definition

DROP TABLE CAC.PRODUCT;
USE TABLE CAC.PRODUCT DBTYPE VSAM
 DS 'NALUR1.CAC.VSAM.PRODUCT' (
 PRODUCT_ID SOURCE DEFINITION DATAMAP
 OFFSET 0 LENGTH 4 DATATYPE C USE AS DECIMAL(6),
 DESCRIPTION SOURCE DEFINITION DATAMAP
 OFFSET 5 LENGTH 50 DATATYPE C USE AS CHAR(50),
 BRAND SOURCE DEFINITION DATAMAP
 OFFSET 55 LENGTH 50 DATATYPE C USE AS CHAR(50),
 CATEGORY SOURCE DEFINITION DATAMAP
 OFFSET 105 LENGTH 50 DATATYPE C USE AS CHAR(50),
 FACTORY SOURCE DEFINITION DATAMAP
 OFFSET 155 LENGTH 50 DATATYPE C USE AS CHAR(50),
 SUPPLIER SOURCE DEFINITION DATAMAP
 OFFSET 205 LENGTH 50 DATATYPE C USE AS CHAR(50),
 SKU SOURCE DEFINITION DATAMAP
 OFFSET 255 LENGTH 50 DATATYPE C USE AS CHAR(50));

Example: A-6 Store VSAM file DDL definition

DROP TABLE CAC.STORE;
USE TABLE CAC.STORE DBTYPE VSAM
 DS 'NALUR1.CAC.VSAM.STORE' (
 STORE_ID SOURCE DEFINITION DATAMAP
 OFFSET 0 LENGTH 4 DATATYPE C USE AS DECIMAL(6),
 ADDRESS SOURCE DEFINITION DATAMAP
 OFFSET 5 LENGTH 50 DATATYPE C USE AS CHAR(50),
 CITY SOURCE DEFINITION DATAMAP
 OFFSET 55 LENGTH 50 DATATYPE C USE AS CHAR(50),
 CITY_POPULATION SOURCE DEFINITION DATAMAP
 OFFSET 105 LENGTH 8 DATATYPE C USE AS DECIMAL(10),
 STATE SOURCE DEFINITION DATAMAP

 Appendix A. IBM Information Server setups 573

 OFFSET 114 LENGTH 50 DATATYPE C USE AS CHAR(50),
 STATE_POPULATION SOURCE DEFINITION DATAMAP
 OFFSET 164 LENGTH 8 DATATYPE C USE AS DECIMAL(10),
 ZIP SOURCE DEFINITION DATAMAP
 OFFSET 173 LENGTH 15 DATATYPE C USE AS CHAR(15),
 COUNTRY SOURCE DEFINITION DATAMAP
 OFFSET 188 LENGTH 50 DATATYPE C USE AS CHAR(50),
 MANAGER_ID SOURCE DEFINITION DATAMAP
 OFFSET 238 LENGTH 4 DATATYPE C USE AS DECIMAL(6));

A.2.3 Configuration of Classic Data Architect

In this section, Figure A-1 on page 575 through Figure A-8 on page 580 show
how Classic Data Architect (CDA) is used to access the Product (VSAM) file as a
logical relational table:

1. Launch CDA from your desktop (not shown here), choose the workspace for
your session, and click OK as shown in Figure A-1 on page 575.

2. Right-click Connections in Database Explorer and select New Connection
as shown in Figure A-2 on page 575.

3. Provide details of the database manager, JDBC driver and required
connection parameters including User ID and Password, and click Test
Connection.

4. A successful connection is shown in Figure A-4 on page 576. Click OK.

5. Click Next in Figure A-5 on page 577 to specify any filter for the objects to
view in the CACSAMP database.

6. Check the Disable filter box and click Finish in Figure A-6 on page 578 to
proceed to view all the objects in the CACSAMP database.

7. Expand the navigation tree in the CACSAMP database, and right-click
PRODUCT (VSAM) → Data → Sample Contents as shown in Figure A-7 on
page 579 to view the contents of the PRODUCT table (4 rows is shown under
the Data Output tab in Figure A-8 on page 580).

574 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-1 Configure access to PRODUCT VSAM file 1/8

Figure A-2 Configure access to PRODUCT VSAM file 2/8

 Appendix A. IBM Information Server setups 575

Figure A-3 Configure access to PRODUCT VSAM file 3/8

Figure A-4 Configure access to PRODUCT VSAM file 4/8

576 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-5 Configure access to PRODUCT VSAM file 5/8

 Appendix A. IBM Information Server setups 577

Figure A-6 Configure access to PRODUCT VSAM file 6/8

578 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-7 Configure access to PRODUCT VSAM file 7/8

 Appendix A. IBM Information Server setups 579

Figure A-8 Configure access to PRODUCT VSAM file 8/8

A.3 Create the Queue Manager

In this section, Figure A-9 on page 581 through Figure A-16 on page 587 show
the creation of a queue manager5 QM_Kazan using WebSphere MQ Explorer, as
follows:

1. From the WebSphere MQ Explorer window, expand the IBM WebSphere MQ
label, then right-click Queue Managers and select New → Queue Manager
from the pop-up menu as shown in Figure A-9 on page 581.

2. In Figure A-10 on page 582, provide the name of the queue manager
(QM_Kazan) and other details, and check the box to make this your default
queue manager. Click Next.

3. Specify the type of logging that the queue manager will perform, and the
maximum number of log files that can be produced in Figure A-11 on
page 583, and click Next.

4. Check the Start queue manager box and click Next in Figure A-11 on
page 583.

5 Before you use the WebSphere MQ applications, you must create a queue manager. The queue
manager is a system program that is responsible for maintaining the queues and ensuring that the
messages in the queues reach their destination. It also performs other functions associated with
message queuing.

580 IBM InfoSphere DataStage Data Flow and Job Design

5. In Figure A-12 on page 584, specify the information that enables the
WebSphere MQ applications that are running on your machine to
communicate with other machines. Check the Create listener configured for
TCP/IP box, and enter the port number for WebSphere MQ (default is 1414)
as shown in Figure A-13 on page 585. Click Next to continue.

6. Check the Autoreconnect and Automatically refresh information shown for
this queue manager boxes in Figure A-14 on page 586, and click Finish to
create your queue manager. It might take a minute to create and start the
queue manager as shown in Figure A-15 on page 586.

7. On successful creation and startup, the status of this queue manager
QM_Kazan is shown in Figure A-16 on page 587.

Figure A-9 Create the Queue Manager 1/8

 Appendix A. IBM Information Server setups 581

Figure A-10 Create the Queue Manager 2/8

582 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-11 Create the Queue Manager 3/8

 Appendix A. IBM Information Server setups 583

Figure A-12 Create the Queue Manager 4/8

584 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-13 Create the Queue Manager 5/8

 Appendix A. IBM Information Server setups 585

Figure A-14 Create the Queue Manager 6/8

Figure A-15 Create the Queue Manager 7/8

586 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-16 Create the Queue Manager 8/8

A.4 Set up the XA parameters on Queue Manager

IBM WebSphere MQ has to be configured for the distributed transaction support
provided by the Distributed Transaction stage described in 2.7, “Distributed
Transaction (new in Version 8.1)” on page 63 as follows:

1. Ensure that your DB2 environment variables are set for queue manager
processes as well as in your application processes. In particular, you must
always set the DB2INSTANCE environment variable before you start the
queue manager. The DB2INSTANCE environment variable identifies the DB2
instance containing the DB2 databases that are being updated. For example:

set DB2INSTANCE=DB2

2. Copy db2swit.dll6 to the appropriate directory (default location is C:\Program
Files\IBM\WebSphere MQ\exits on the Microsoft Windows platform) of IBM
WebSphere MQ.

3. Launch IBM WebSphere MQ Explorer (not shown here), right-click the queue
manager (QM_Kazan) to configure, and select Properties… as shown in
Figure A-17 on page 588.

4. Click XA resource managers from the Properties dialog and click the Add…
button to add an XA resource as shown in Figure A-18 on page 589.

6 The switch load file is a shared library (a DLL on Windows systems) that is loaded by the code in
your WebSphere MQ application and the queue manager. Its purpose is to simplify the loading of
the database's client shared library, and to return the pointers to the XA functions. The details of the
switch load file must be specified before the queue manager is started.

 Appendix A. IBM Information Server setups 587

5. In the dialog shown in Figure A-19 on page 590, enter the values for Name
(db2) and SwitchFile (which matches the name of the DLL you copied above).
The XAOpenString is composed of these components:-

– databaseName,username,password,toc=c

– toc=p means 'thread of control is thread'. Include this in the XAOpenString
and make sure you set ThreadOfControl to Thread.

Click OK in Figure A-19 on page 590 to complete the successful application
of the changes is shown in Figure A-20 on page 590.

Figure A-17 Set up the XA parameters on Queue Manager 1/4

588 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-18 Set up the XA parameters on Queue Manager 2/4

 Appendix A. IBM Information Server setups 589

Figure A-19 Set up the XA parameters on Queue Manager 3/4

Figure A-20 Set up the XA parameters on Queue Manager 4/4

590 IBM InfoSphere DataStage Data Flow and Job Design

A.5 Create the queues

The Distributed Transaction stage uses the following IBM WebSphere MQ
queues:

� SOURCEQ is the source queue for the Distributed Transaction stage jobs.

� WORKQ is the work queue used by the Distributed Transaction stage jobs.

� REJECTQ is the reject queue used by job RejectTransaction.

Figure A-21 on page 592 through Figure A-26 on page 595 show the definition of
the SOURCEQ using IBM WebSphere MQ Explorer:

1. Expand the navigation tree and right-click Queues (under the QM_Kazan
queue manager), and then select New → Local Queue from the pop-up
menu as shown in Figure A-21.

2. Provide details of the local queue to be create such as Name (SOURCEQ)
and model it with the attributes of the SYSTEM.DEFAULT.LOCAL.QUEUE.
Click Next in Figure A-22 on page 592 to view and change the properties of
the queue.

3. Change the properties as required and click Finish as shown in Figure A-23
on page 593.

4. The successful creation of this queue is shown in Figure A-24 on page 594
Figure A-25 on page 594.

5. Figure A-26 on page 595 shows the three local queues (SOURCEQ,
REJECTQ, and WORKQ) created for the Distributed Transaction stage.

 Appendix A. IBM Information Server setups 591

Figure A-21 Create the queues 1/6

Figure A-22 Create the queues 2/6

592 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-23 Create the queues 3/6

 Appendix A. IBM Information Server setups 593

Figure A-24 Create the queues 4/6

Figure A-25 Create the queues 5/6

594 IBM InfoSphere DataStage Data Flow and Job Design

Figure A-26 Create the queues 6/6

 Appendix A. IBM Information Server setups 595

596 IBM InfoSphere DataStage Data Flow and Job Design

Appendix B. Code and scripts used in the
retail industry scenario

In this appendix we document some of the code and scripts used in the retail
industry scenario.

B

© Copyright IBM Corp. 2008. All rights reserved. 597

B.1 Introduction

This appendix documents some of the code and scripts used in the retail industry
scenario, as follows:

� Figure B-1 here shows the entities and fields in WantThatStuff’s OLTP
systems. Product and Store are VSAM files, while the others are sequential
files.

� Example B-1 on page 599 shows the DDL for creating the tables in
WantThatStuff’s star-schema data warehouse.

� Example B-2 on page 603 shows the DDL for creating the interim sales
transaction tables used in WantThatStuff’s recurring tasks.

Figure B-1 Entities and fields in WantThatStuff’s OLTP systems

STORE

Customer data
RECTYPE CHAR(2) value ‘CD’
CUSTOMER_ID CHAR(4)
NAME CHAR(50)
MEMBERSHIPID CHAR(4)
MEMBER_EXPIRE_DT CHAR(10)
MEMBER_LEVEL CHAR(1)
WORKPHONE CHAR(12)
HOMEPHONE CHAR(12)

Customer home address
RECTYPE CHAR(2) value ‘HA’
ADDRESS CHAR(50)
CITY CHAR(50)
STATE CHAR(50)
ZIP CHAR(15)
COUNTRY CHAR(50)

Customer home address
RECTYPE_2 CHAR(2) value ‘WA’
ADDRESS_2 CHAR(50)
CITY_2 CHAR(50)
STATE_2 CHAR(50)
ZIP_2 CHAR(15)
COUNTRY_2 CHAR(50)

CUSTOMER (multiple record types)

STORE_ID INTEGER
SALES_ID INTEGER
DATE TIMESTAMP
QUANTITY INTEGER
PRICE_USD DECIMAL(10,2)

EMPLOYEE
SALESTRANS

EMPLOYEE_ID CHAR(4)
FIRST_NAME CHAR(21)
LAST_NAME CHAR(21)
MANAGER_INDICATOR CHAR(1)
DEPT CHAR(20)
SALARY CHAR(10)

STORE_ID INTEGER
ADDRESS CHAR(50)
CITY CHAR(50)
CITY_POPULATION DECIMAL(8,0)
STATE CHAR(50)
STATE_POPULATION DECIMAL(8,0)
ZIP CHAR(15)
COUNTRY CHAR(50)
MANAGER_ID INTEGER

PRODUCT
PRODUCT_ID INTEGER
DESCRIPTION VARCHAR(50)
BRAND VARCHAR(50)
CATEGORY VARCHAR(50)
FACTORY VARCHAR(50)
SUPPLIER VARCHAR(50)
SKU VARCHAR(50)

598 IBM InfoSphere DataStage Data Flow and Job Design

Example: B-1 DDL statements in the WantThatStuff star-schema data warehouse

-- This CLP file was created using DB2LOOK Version 9.1
-- Timestamp: Mon Mar 3 14:55:15 CST 2008
-- Database Name: DSSAMPLE
-- Database Manager Version: DB2/AIX64 Version 9.1.3
-- Database Codepage: 819
-- Database Collating Sequence is: UNIQUE
CONNECT TO DSSAMPLE;
--
-- DDL Statements for table "DS "."CUSTOMER_DIM"
--
CREATE TABLE "DS "."CUSTOMER_DIM" (

 "CUSTOMER_DIM_KEY" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (
 START WITH +700
 INCREMENT BY +1
 MINVALUE +700
 MAXVALUE +2147483647
 NO CYCLE
 CACHE 20
 NO ORDER) ,
 "CUSTOMER_ID" INTEGER ,
 "NAME" VARCHAR(50) ,
 "HOME_PHONE" CHAR(12) ,
 "WORK_PHONE" CHAR(12) ,
 "WORK_ADDRESS" VARCHAR(50) ,
 "WORK_CITY" VARCHAR(50) ,
 "WORK_STATE" VARCHAR(50) ,
 "WORK_ZIP" VARCHAR(15) ,
 "WORK_COUNTRY" VARCHAR(50) ,
 "HOME_ADDRESS" VARCHAR(50) ,
 "HOME_CITY" VARCHAR(50) ,
 "HOME_ZIP" VARCHAR(15) ,
 "HOME_STATE" VARCHAR(50) ,
 "HOME_COUNTRY" VARCHAR(50) ,
 "MEMBERSHIP_ID" INTEGER ,
 "MEMBERSHIP_EXPIRE_DT" DATE ,
 "MEMBERSHIP_LEVEL" CHAR(1) ,
 "CURRENT_IND" CHAR(1) WITH DEFAULT 'Y' ,
 "EFFECTIVE_TS" TIMESTAMP WITH DEFAULT CURRENT TIMESTAMP ,
 "EXPIRATION_TS" TIMESTAMP WITH DEFAULT '2099-12-31-00.00.00.000000')
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "DS "."CUSTOMER_DIM"

ALTER TABLE "DS "."CUSTOMER_DIM"
ADD PRIMARY KEY

("CUSTOMER_DIM_KEY");

ALTER TABLE "DS "."CUSTOMER_DIM" ALTER COLUMN "CUSTOMER_DIM_KEY" RESTART WITH 879;

--
-- DDL Statements for table "DS "."DATE_DIM"
--

 Appendix B. Code and scripts used in the retail industry scenario 599

CREATE TABLE "DS "."DATE_DIM" (
 "DATE_DIM_KEY" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (
 START WITH +700
 INCREMENT BY +1
 MINVALUE +700
 MAXVALUE +2147483647
 NO CYCLE
 CACHE 20
 NO ORDER) ,
 "DATE" DATE NOT NULL ,
 "DAY_OF_WEEK" VARCHAR(20) ,
 "MONTH" CHAR(2) ,
 "QUARTER" CHAR(1) ,
 "YEAR" CHAR(4) ,
 "FISCAL_MONTH" CHAR(2) ,
 "FISCAL_QUARTER" CHAR(1) ,
 "FISCAL_YEAR" CHAR(4) ,
 "CURRENT_IND" CHAR(1) WITH DEFAULT 'Y' ,
 "EFFECTIVE_TS" TIMESTAMP WITH DEFAULT CURRENT TIMESTAMP ,
 "EXPIRATION_TS" TIMESTAMP WITH DEFAULT '2099-12-31-00.00.00.000000')
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "DS "."DATE_DIM"

ALTER TABLE "DS "."DATE_DIM"
ADD PRIMARY KEY

("DATE_DIM_KEY");

--
-- DDL Statements for table "DS "."PRODUCT_DIM"
--
CREATE TABLE "DS "."PRODUCT_DIM" (

 "PRODUCT_DIM_KEY" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (
 START WITH +700
 INCREMENT BY +1
 MINVALUE +700
 MAXVALUE +2147483647
 NO CYCLE
 CACHE 20
 NO ORDER) ,
 "PRODUCT_ID" INTEGER ,
 "DESCRIPTION" VARCHAR(50) ,
 "BRAND" VARCHAR(50) ,
 "CATEGORY" VARCHAR(50) ,
 "FACTORY" VARCHAR(50) ,
 "SUPPLIER" VARCHAR(50) ,
 "SKU" VARCHAR(50) ,
 "CURRENT_IND" CHAR(1) WITH DEFAULT 'Y' ,
 "EFFECTIVE_TS" TIMESTAMP WITH DEFAULT CURRENT TIMESTAMP ,
 "EXPIRATION_TS" TIMESTAMP WITH DEFAULT '2099-12-31-00.00.00.000000')
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "DS "."PRODUCT_DIM"

600 IBM InfoSphere DataStage Data Flow and Job Design

ALTER TABLE "DS "."PRODUCT_DIM"
ADD PRIMARY KEY

("PRODUCT_DIM_KEY");

ALTER TABLE "DS "."PRODUCT_DIM" ALTER COLUMN "PRODUCT_DIM_KEY" RESTART WITH 799;

--
-- DDL Statements for table "DS "."SALES_FACT"
--
CREATE TABLE "DS "."SALES_FACT" (

 "CUSTOMER_DIM_KEY" INTEGER NOT NULL ,
 "DATE_DIM_KEY" INTEGER NOT NULL ,
 "PRODUCT_DIM_KEY" INTEGER NOT NULL ,
 "QUANTITY" INTEGER ,
 "PRICE_USD" DECIMAL(10,2) ,
 "SELLING_PRICE_USD" DECIMAL(10,2) ,
 "TOTAL_USD" DECIMAL(10,2) ,
 "STORE_DIM_KEY" INTEGER NOT NULL ,
 "TOTAL_LOCAL_CURRENCY" DECIMAL(10,2) ,
 "COUNTRY_ISO_CODE" CHAR(3))
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "DS "."SALES_FACT"

ALTER TABLE "DS "."SALES_FACT"
ADD PRIMARY KEY

("CUSTOMER_DIM_KEY",
 "DATE_DIM_KEY",
 "PRODUCT_DIM_KEY",
 "STORE_DIM_KEY");

--
-- DDL Statements for table "DS "."STORE_DIM"
--
CREATE TABLE "DS "."STORE_DIM" (

 "STORE_DIM_KEY" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (
 START WITH +700
 INCREMENT BY +1
 MINVALUE +700
 MAXVALUE +2147483647
 NO CYCLE
 CACHE 20
 NO ORDER) ,
 "STORE_ID" INTEGER ,
 "ADDRESS" VARCHAR(50) ,
 "CITY" VARCHAR(50) ,
 "CITY_POPULATION" DECIMAL(8,0) ,
 "STATE" CHAR(2) ,
 "STATE_POPULATION" DECIMAL(8,0) ,
 "ZIP" VARCHAR(15) ,
 "COUNTRY" VARCHAR(50) ,
 "MANAGER_NAME" VARCHAR(50) ,
 "CURRENT_IND" CHAR(1) WITH DEFAULT 'Y' ,

 Appendix B. Code and scripts used in the retail industry scenario 601

 "EFFECTIVE_TS" TIMESTAMP WITH DEFAULT CURRENT TIMESTAMP ,
 "EXPIRATION_TS" TIMESTAMP WITH DEFAULT '2099-12-31-00.00.00.000000')
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "DS "."STORE_DIM"

ALTER TABLE "DS "."STORE_DIM"
ADD PRIMARY KEY

("STORE_DIM_KEY");

ALTER TABLE "DS "."STORE_DIM" ALTER COLUMN "STORE_DIM_KEY" RESTART WITH 779;

-- DDL Statements for foreign keys on Table "DS "."SALES_FACT"

ALTER TABLE "DS "."SALES_FACT"
ADD CONSTRAINT "SQL071121141338930" FOREIGN KEY

("PRODUCT_DIM_KEY")
REFERENCES "DS "."PRODUCT_DIM"

("PRODUCT_DIM_KEY")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

ALTER TABLE "DS "."SALES_FACT"
ADD CONSTRAINT "SQL071121141338950" FOREIGN KEY

("STORE_DIM_KEY")
REFERENCES "DS "."STORE_DIM"

("STORE_DIM_KEY")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

ALTER TABLE "DS "."SALES_FACT"
ADD CONSTRAINT "SQL071121141338970" FOREIGN KEY

("CUSTOMER_DIM_KEY")
REFERENCES "DS "."CUSTOMER_DIM"

("CUSTOMER_DIM_KEY")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

ALTER TABLE "DS "."SALES_FACT"
ADD CONSTRAINT "SQL071121141338980" FOREIGN KEY

("DATE_DIM_KEY")
REFERENCES "DS "."DATE_DIM"

("DATE_DIM_KEY")
ON DELETE NO ACTION
ON UPDATE NO ACTION
ENFORCED
ENABLE QUERY OPTIMIZATION;

602 IBM InfoSphere DataStage Data Flow and Job Design

COMMIT WORK;

CONNECT RESET;

TERMINATE;

Example: B-2 DDL statements for the interim tables for the sales transaction

--
-- DDL Statements for table "DS "."SALES_ST1"
--
CREATE TABLE "DS "."SALES_ST1" (

 "SALES_ID" INTEGER NOT NULL ,
 "DATE" TIMESTAMP ,
 "QUANTITY" INTEGER ,
 "PRICE_USD" DECIMAL(10,2) ,
 "SELLING_PRICE_USD" DECIMAL(10,2) ,
 "TOTAL_USD" DECIMAL(10,2) ,
 "TOTAL_LOCAL_CURRENCY" DECIMAL(10,2) ,
 "CUSTOMER_ID" INTEGER ,
 "STORE_ID" INTEGER ,
 "PRODUCT_ID" INTEGER ,
 "COUNTRY_ISO_CODE" CHAR(3))
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "DS "."SALES_ST1"

ALTER TABLE "DS "."SALES_ST1"
ADD PRIMARY KEY

("SALES_ID");

--
-- DDL Statements for table "DS "."SALES_ST33"
--
CREATE TABLE "DS "."SALES_ST33" (

 "SALES_ID" INTEGER NOT NULL ,
 "DATE" TIMESTAMP ,
 "QUANTITY" INTEGER ,
 "PRICE_USD" DECIMAL(10,2) ,
 "SELLING_PRICE_USD" DECIMAL(10,2) ,
 "TOTAL_USD" DECIMAL(10,2) ,
 "TOTAL_LOCAL_CURRENCY" DECIMAL(10,2) ,
 "CUSTOMER_ID" INTEGER ,
 "STORE_ID" INTEGER ,
 "PRODUCT_ID" INTEGER ,
 "COUNTRY_ISO_CODE" CHAR(3))
 IN "USERSPACE1" ;

 Appendix B. Code and scripts used in the retail industry scenario 603

-- DDL Statements for primary key on Table "DS "."SALES_ST33"

ALTER TABLE "DS "."SALES_ST33"
ADD PRIMARY KEY

("SALES_ID");

--
-- DDL Statements for table "DS "."SALES_ST9"
--

CREATE TABLE "DS "."SALES_ST9" (
 "SALES_ID" INTEGER NOT NULL ,
 "DATE" TIMESTAMP ,
 "QUANTITY" INTEGER ,
 "PRICE_USD" DECIMAL(10,2) ,
 "SELLING_PRICE_USD" DECIMAL(10,2) ,
 "TOTAL_USD" DECIMAL(10,2) ,
 "TOTAL_LOCAL_CURRENCY" DECIMAL(10,2) ,
 "CUSTOMER_ID" INTEGER ,
 "STORE_ID" INTEGER ,
 "PRODUCT_ID" INTEGER ,
 "COUNTRY_ISO_CODE" CHAR(3))
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "DS "."SALES_ST9"

ALTER TABLE "DS "."SALES_ST9"
ADD PRIMARY KEY

("SALES_ID");

604 IBM InfoSphere DataStage Data Flow and Job Design

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247576

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247576.

C

© Copyright IBM Corp. 2008. All rights reserved. 605

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this book includes the following
files:

File name Description
SG247576.zip Zipped Code Samples

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

606 IBM InfoSphere DataStage Data Flow and Job Design

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

For information about ordering these publications, see “How to get Redbooks” on
page 608. Note that some of the documents referenced here may be available in
softcopy only.

� SOA Solutions Using IBM Information Server, SG24-7402

� IBM WebSphere Information Analyzer Data Quality Assessment, SG24-7508

� IBM WebSphere QualityStage Methodologies, Standandarization, and
Matching, SG24-7546

Other publications

These publications are also relevant as further information sources:

� IBM Information Server - Delivering information you can trust, IBM United
States Announcement 206-308 dated December 12, 2006

� IBM Information Server Version 8.0.1 Planning, Installation, and Configuration
Guide, GC19-1048-01.

� IBM Information Server Version 8.0.1 Information Server Introduction,
SC19-1049-01.

� IBM Information Server Version 8.0.1 IBM Information Server Administration
Guide, SC19-9929-00.

� IBM Information Server Version 8.0.1 Reporting Guide, SC19-1162-01.

� IBM Information Server — Delivers next generation data profiling analysis and
monitoring through the new IBM WebSphere Information Analyzer module,
IBM United States Announcement 207-043 dated March 13th 2007.

� IBM Information Management Software Profiling: Take the first step toward
assuring data quality, December 2006, IMW11808-USEN-00.

� IBM WebSphere DataStage and QualityStage Version 8 Parallel Job
Developer Guide, SC18-9891-00.

� IBM WebSphere DataStage and QualityStage Version 8.0.1 Parallel Job
Advanced Developer Guide, LC18-9892-01.

© Copyright IBM Corp. 2008. All rights reserved. 607

� IBM WebSphere DataStage and QualityStage Version 8 Designer Client
Guide, SC18-9893-00.

� IBM WebSphere DataStage and QualityStage Version 8 Director Client
Guide, SC18-9894-00.

� IBM WebSphere DataStage and QualityStage Version 8 Administrator Client
Guide, SC18-9895-00.

� IBM WebSphere DataStage and QualityStage Version 8 Basic Reference
Guide, SC18-9897-00.

� IBM WebSphere DataStage and QualityStage Version 8 Server Job
Developer Guide, SC18-9898-00.

� IBM WebSphere DataStage and QualityStage Version 8 Parallel Engine
Message Reference, LC18-9931-00.

� IBM WebSphere DataStage and QualityStage Version 8 Connectivity Guide
for DB2 Databases, SC18-9932-00.

Online resources

These Web sites are also relevant as further information sources:

� IBM Information Server information center

http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp

� IBM Information Server Quick Start Guide

http://www-1.ibm.com/support/docview.wss?uid=swg27009391&aid=1

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks, at
this Web site:

ibm.com/redbooks

608 IBM InfoSphere DataStage Data Flow and Job Design

http://www-1.ibm.com/support/docview.wss?uid=swg27009391&aid=1
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 609

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

610 IBM InfoSphere DataStage Data Flow and Job Design

Index

Symbols
$APT_CONFIG_FILE 19
$APT_DUMP_SCORE 19
$APT_PM_SHOW_PIDS 19
$APT_STARTUP_STATUS 19
“resource disk” property 61

A
A2Z Financial Services Inc.

Step 3a
Create connection to an Information Provider
229

Step 3b
Create a project 228

Step 3c
Create an application 237

Step 3d
Generate SOA services, deploy and test 239

Aggregator 37
architecture 5
atomic 65
auto mode 94
auto partition mode 108
auto partitioning 94, 108

B
Basel II 2
Best practices 27
Business Key 119
business metrics 4
business transaction 64

C
CFF 43
cluster 13
Code and scripts used in the business scenarios
597
Column Export 60
Column Import 53, 65, 87
Combining 22
common services 4
Complex Flat File 43, 139

© Copyright IBM Corp. 2008. All rights reserved.
complex flat files 43
Conductor 19
connector framework 63
Connectors and Packs 9
Continuous Funnel 89
Current Indicator 119

D
data channel 20
data integration logic 4
data quality 4
Data Set 61
data transformation 4, 20–21
DB2 for z/OS 140
degree of parallelism 19
deployable unit 228
Design services 16
Designer canvas 25
dimension 113
dimension lookup 120
dimension table 115, 117
dimension tables 142
dimension update link 113
Distributed Transaction 63, 139
downstream operator 20
DTS 63

Order 66
Relationships 67

E
Effective Date 119
end-of-wave 65
end-of-wave marker 65
Entire method 101
EOW 65
EOW marker 65
Event Publisher 5
Execution services 16
Expiration Date 119

F
Failover 12

 611

federation functions 4
FTP Enterprise 86
Full outer 94
Funnel 88

Continuous Funnel 89
Sort Funnel 89

G
Grid 14

H
hash partitioner 67
hash partitioning 68, 89

I
IBM Information Server

Administrative clients 7
architecture 5
Best practices 27

Collecting data 31
Component usage 28
DataStage Data Types 29
Development guidelines 28
Partitioning data 29
Sorting 31
Stage specific guidelines 32

Aggregators 32
Database Stage 33
Join 32
Lookup 32
Transformer 32

Standards 27
Client-side 6
Common connectors 17
Common parallel processing engine 17
Common repository 17

Design metadata 17
Operational metadata 17
Project metadata 17

Common services 16
Component overview 6
execution flow 17, 19
Runtime architecture 17
Server-side 7

Connectors and Packs 9
Engine 9
IBM Information Server engine 9

Information Services Director (ISD) Resource
Providers 10
Repository 9
Service Agents 9
Services 8
Working areas 10

topologies 11
Topologies supported

Cluster 13
Grid 14
Three tier 12
Two-tier 11

Unified user interface 16
User clients 7

IBM Information Server setups 563
Configure IBM WebSphere Classic Federation
Server for z/OS 565

IBM Information Server Web console 7
IBM Tivoli Workload Scheduler LoadLeveler 15
IBM WebSphere Classic Federation Server for z/OS
10
IBM WebSphere DataStage 15, 17, 21, 36

Data transformation 21
Aggregation 22
Basic conversion 22
Cleansing 22
Derivation 22
Enrichment 22
Normalizing 22
Pivoting 22
Sorting 22

Jobs 22
main functions 20
Parallel processing 25

IBM WebSphere DataStage Administrator client 7
IBM WebSphere DataStage and QualityStage
Designer 7, 16–17, 61
IBM WebSphere DataStage and QualityStage
Director 16, 61
IBM WebSphere DataStage Designer 15
IBM WebSphere DataStage stages

Aggregator 37
CFF 43
Column Export 60
Column Import 53
Complex Flat File 43
Data Set 61
Distributed Transaction 63
DTS 64

612 IBM InfoSphere DataStage Data Flow and Job Design

FTP Enterprise 86
Funnel 88
Join 93
Lookup 99
Merge 107
SCD 113
Sequential File 109
Slowly Changing Dimension 113
Sort 127
Surrogate Key Generator 132
Transformer 134

IBM WebSphere DataStage® and QualityStage™
Director client 7
IBM WebSphere QualityStage 15, 24
IBM WebSphere® Information Services Director 10
importing metadata 154
IMS™ 140
information providers 229
Information Server engine 9
Inner 94
integration workflow 4

J
J2EE-compliant 8
JDBC Connection Properties 229
Job parameterization 28
Join 93

Full outer 94
Inner 94
Left outer 94
Right outer 94

K
key partitioned 108

L
LAD 142
LANAD 142
Late Arriving Dimensions 142
Left outer 94
links 23
Lookup 99
lookup table 101

M
master data 21
master record 21

MDM 21
memory lookup table 114
Merge 107
metadata repository 154
Metadata services 16
MQ Connector 64, 68
MQ message 64
MQ messages 64

N
Non-Arriving Data 142

O
OLTP sources 140
orchestra 19
Orchestrate SHell 18
Order 66
OSH 18
OSH script 17

P
Parallel Job stages 23
parallel mode 109
parallel processing 24
Partition parallelism 25
Pipeline parallelism 25
Players 19
primary link 100
profiling 4
Purpose codes 118

Q
QSAM 43

R
range lookup 101
Rational Data Architect 5
Rational® Data Architect 5
Recurring tasks 341
Recurring tasks (Day 1) 348
Redbooks Web site 608

Contact us xxxvi
reference links 100
reject link 44, 53, 60, 99, 101, 107–108, 134
rejects link 109
Retail industry scenario 140

One time tasks (Day 0) 143

 Index 613

J01_IL_FTPCustomerFile 159
J02_IL_LoadCustomerDim 184
J03_IL_LoadProductDim 202
J04_IL_FTPEmployeeFile 209
J05_IL_LoadStoreDim 219
J06_IL_Daily_CreateCurrencyLookup_
Service 227
J06_IL_Daily_CreateCurrencyLookup_Servic
e

Stepa
Create a project 228

Stepb
Create connection to an Information
Provider 229

Stepc
Create an application 237

Stepd
Generate SOA services, deploy, and test
239

Stepe
Load exchange rate info (Web service) to a
data set 260

J07_IL_Daily_LoadSalesStore 282
J07A_SharedContainerLookupCurrency 273
J08_IL_LoadSalesFact 292
J09_IL_LoadLookupCustomerDim 320
J0A_Create a project 147
J0B_Import table definitions into repository
from DB2 using ODBC 154
J10_IL_LoadLookupProductDim 327
J11_IL_LoadLookupStoreDim 330
J12_IL_GenerateSurrogateKey 335

Recurring tasks (Day 1)
J07_IL_Daily_LoadSalesStore (Day 1) 352
J13_Daily_UpdateLookupDim (Day 1) 356

J13_Daily_UpdateLookupDim configuration
356
J13_Daily_UpdateLookupDim execution
(Day 1) 382

J14_Daily_CreateAllSalesStoreDS (Day 1)
385
J15_Daily_CreateSalesAggDS (Day 1) 387

J15_Daily_CreateSalesAggDS (Day 1)
configuration 387
J15_Daily_CreateSalesAggDS (Day 1)
execution 417

J16_Daily_CreateScdInputDS (Day 1) 421
J16_Daily_CreateScdInputDS (Day 1)
configuration 422

J16_Daily_CreateScdInputDS (Day 1)
execution 430

J17_DailyCreateSalesFactDS (Day1) 433
J17_DailyCreateSalesFactDS (Day1)
configuration 434
J17_DailyCreateSalesFactDS (Day1)
execution 475

J18_Daily_UpdateStoreDim (Day 1) 478
J18_Daily_UpdateStoreDim (Day 1)
configuration 478
J18_Daily_UpdateStoreDim (Day 1)
execution 484

J19_Daily_UpdateCustomerDim (Day 1) 485
J19_Daily_UpdateCustomerDim (Day 1)
configuration 485
J19_Daily_UpdateCustomerDim (Day 1)
execution 492

J20_Daily_UpdateProductDim (Day 1)
J20_Daily_UpdateProductDim (Day 1)
execution 498

J21_Daily_UpdateDateDim (Day 1) 499
J21_Daily_UpdateDateDim (Day 1)
configuration 499
J21_Daily_UpdateDateDim (Day 1)
execution 502

J22_Daily_UpdateSalesFact (Day 1) 502
J22_Daily_UpdateSalesFact (Day 1)
configuration 503
J22_Daily_UpdateSalesFact (Day 1)
execution 505

Recurring tasks (Day 2) 507
J07_IL_Daily_LoadSalesStore (Day 2)
execution 511
J13_Daily_UpdateLookupDim (Day 2)
execution 514
J14_Daily_CreateAllSalesStoreDS (Day 2)
execution 518
J15_Daily_CreateSalesAggDS (Day 2)
execution 519
J16_Daily_CreateScdInputDS (Day 2)
execution 522
J17_DailyCreateSalesFactDS (Day 2)
execution 526
J18_Daily_UpdateStoreDim (Day 2) execution
529
J19_Daily_UpdateCustomerDim (Day 2)
execution 531
J20_Daily_UpdateProductDim (Day 2)
execution 533

614 IBM InfoSphere DataStage Data Flow and Job Design

J21_Daily_UpdateDateDim (Day 2) execution
535
J22_Daily_UpdateSalesFact (Day 2)
execution 535

Recurring tasks (Day 3) 537
J07_IL_Daily_LoadSalesStore (Day 3)
execution 541
J13_Daily_UpdateLookupDim (Day 3)
execution 544
J14_Daily_CreateAllSalesStoreDS (Day 3)
execution 546
J15_Daily_CreateSalesAggDS (Day 3)
execution 548
J16_Daily_CreateScdInputDS (Day 3)
execution 552
J17_DailyCreateSalesFactDS (Day 3)
execution 554
J18_Daily_UpdateStoreDim (Day 3) execution
557
J19_Daily_UpdateCustomerDim (Day 3)
execution 558
J20_Daily_UpdateProductDim (Day 3)
execution 559
J21_Daily_UpdateDateDim (Day 3) execution
560
J22_Daily_UpdateSalesFact (Day 3)
execution 560

sales transactions 140
Right outer 94
Runtime Column Propagation 136

S
same partitioning 94, 127
Sarbanes-Oxley 2
SCD

business key 119
Current Indicator 119
effective date 119
expiration date 119
Loading the fact table 115
matching record 120
Processing dimensions 115
Purpose codes 118
SK Chain 120
surrogate key 119
Type 1 114, 119
Type 2 114, 119
Updating dimensions 115

SCD stage 113
score 19
Section Leader 19
Sequential File 87, 109
Service Agents 9
SK Chain 120
Slowly Changing Dimension 113, 139
SOA 4
Sort 127
Sort Funnel 89
source message 65
source queue 65
star schema 113, 132
star-schema 139–140
statutory compliance 2
stderr 20
stdout 20
Surrogate Key 119
surrogate key 132
Surrogate Key Generator 132

T
table definition 53
topologies 69
Topologies supported 10
transaction boundary 64
transformations 134
Transformer 134
Type 1 114–115, 119, 142
Type 2 114–115, 119, 142

U
unit-of-work 64
Universal Resource Identifier 86
update input links 107
upstream operator 20
URI 86

V
VSAM 43, 140, 564

W
WebSphere Business Glossary 5
WebSphere DataStage 3
WebSphere DataStage and WebSphere
QualityStage Administrator 16
WebSphere Federation Server 5

 Index 615

WebSphere Information Analyzer 4
WebSphere Information Services Director 4
WebSphere QualityStage 4
WebSphere Replication Server 5
work queue 64–65, 69
write failure 134

X
XA global transaction 65
XA protocol 65
XA transaction 65
XA transactions 63
XMETA database 154

616 IBM InfoSphere DataStage Data Flow and Job Design

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

IBM
 InfoSphere DataStage

Data Flow
 and Job Design

®

SG24-7576-00 ISBN 0738431117

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

IBM InfoSphere
DataStage Data Flow
and Job Design
IBM InfoSphere
DataStage overview

Retail industry
scenario

IBM Information
Server setups

IBM Information Server is a revolutionary new software
platform that helps organizations derive more value from the
complex heterogeneous information spread across their
systems. It enables organizations to integrate disparate data
and deliver trusted information wherever and whenever
needed, in line and in context, to specific people,
applications, and processes.

IBM InfoSphere DataStage is a critical component of the IBM
Information Server, and the parallel framework of IBM
InfoSphere DataStage is also the foundation for IBM
InfoSphere QualityStage and IBM InfoSphere Information
Analyzer components.

This IBM Redbooks publication develops usage scenarios
that describe the implementation of IBM InfoSphere
DataStage flow and job design with special emphasis on the
new features such as the distributed transaction stage (DTS)
in Version 8.0.1, slowly changing dimensions stage (Version
8.0.1), complex flat file stage (Version 8.0.1), and access to
mainframe data.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. IBM InfoSphere DataStage overview
	1.1 Introduction
	1.2 IBM Information Server architecture
	1.2.1 Component overview
	1.2.2 Topologies supported

	1.3 IBM InfoSphere DataStage within the IBM Information Server architecture
	1.3.1 Shared components
	1.3.2 Runtime architecture

	1.4 IBM InfoSphere DataStage main functions
	1.4.1 Data transformation
	1.4.2 Jobs
	1.4.3 Parallel processing

	1.5 Best practices overview
	1.5.1 Standards
	1.5.2 Development guidelines
	1.5.3 Component usage
	1.5.4 DataStage data types
	1.5.5 Partitioning data
	1.5.6 Collecting data
	1.5.7 Sorting
	1.5.8 Stage specific guidelines

	Chapter 2. IBM InfoSphere DataStage stages
	2.1 Introduction
	2.2 Aggregator
	2.3 Complex Flat File
	2.4 Column Import
	2.5 Column Export
	2.6 Data Set
	2.7 Distributed Transaction (new in Version 8.1)
	2.8 FTP Enterprise
	2.9 Funnel
	2.10 Join
	2.11 Lookup
	2.12 Merge
	2.13 Sequential File
	2.14 Slowly Changing Dimension
	2.15 Sort
	2.16 Surrogate Key Generator
	2.17 Transformer

	Chapter 3. Retail industry scenario
	3.1 Retail industry scenario
	3.1.1 One time tasks (Day 0)
	3.1.2 Recurring tasks
	3.1.3 Recurring tasks (Day 1)
	3.1.4 Recurring tasks (Day 2)
	3.1.5 Recurring tasks (Day 3)

	Appendix A. IBM Information Server setups
	A.1 Introduction
	A.2 Configure IBM InfoSphere Classic Federation Server for z/OS
	A.2.1 Installation
	A.2.2 Configuration of IBM InfoSphere Classic Federation for z/OS system catalog
	A.2.3 Configuration of Classic Data Architect

	A.3 Create the Queue Manager
	A.4 Set up the XA parameters on Queue Manager
	A.5 Create the queues

	Appendix B. Code and scripts used in the retail industry scenario
	B.1 Introduction

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

