
ibm.com/redbooks

IBM WebSphere QualityStage 
Methodologies, Standardization, 
and Matching

Nagraj Alur
Alok Kumar Jha

Barry Rosen
Torben Skov

IBM WebSphere QualityStage 
architecture

Merger and acquisition 
business scenario

IBM Information Server 
overview

Front cover
 

 

 

 

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


 

 

 

 



IBM WebSphere QualityStage Methodologies, 
Standardization, and Matching

June 2008

International Technical Support Organization

SG24-7546-00

 

 

 

 



© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2008)

This edition applies to Version 1, Release 8, Modification 0 of IBM Information Server 
(5724-Q36). 

Note: Before using this information and the product it supports, read the information in 
“Notices” on page xxxv.

 

 

 

 



Contents

Figures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi

Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxvi

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxxvii
The team that wrote this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxviii
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xl
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xl

Chapter 1.  IBM WebSphere QualityStage overview . . . . . . . . . . . . . . . . . . . 1
1.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2  IBM WebSphere QualityStage overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3  IBM WebSphere QualityStage architecture. . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4  IBM WebSphere QualityStage main functions  . . . . . . . . . . . . . . . . . . . . . 12
1.5  IBM WebSphere QualityStage in a project context . . . . . . . . . . . . . . . . . . 15

1.5.1  Source access or extraction (optional)  . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.2  Conditioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.3  Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.4  Address verification (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.5  Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.6  Group association (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.7  Survivorship (optional)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.8  Data enrichment (optional)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.9  Output formatting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.10  Auditing the load process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6  Investigate stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.1  Character Investigate option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6.2  Word Investigate option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7  Standardize stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.7.1  Standardize rule sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.7.2  WAVES, CASS, DPID, SERP, MNS, Geolocator, Country rule set  . 78

1.8  Match stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.9  Survive stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

1.9.1  Survive rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. iii



1.10  Mailing list scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
1.10.1  Create a project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.10.2  Create additional folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.10.3  Import table definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
1.10.4  Create a parameter set object. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1.10.5  Credit Card Customer cleansing . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.10.6  Mailing list cleansing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
1.10.7  Enhance credit card customers. . . . . . . . . . . . . . . . . . . . . . . . . . . 437
1.10.8  Generate mailing master with household for promotion mailing . . 472

Chapter 2.  Financial services business scenario  . . . . . . . . . . . . . . . . . . 479
2.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
2.2  Business requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
2.3  Environment configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
2.4  General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

2.4.1  Step 1: General guidelines for the process . . . . . . . . . . . . . . . . . . . 488
2.4.2  Step 2: Identify differences between the sources and targets  . . . . 490
2.4.3  Step 3: Determine action in specific cases . . . . . . . . . . . . . . . . . . . 491
2.4.4  Step 4: Determine strategy and plan to execute action  . . . . . . . . . 491
2.4.5  Step 5: Execute the plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
2.4.6  Step 6: Review success of the process  . . . . . . . . . . . . . . . . . . . . . 493

2.5  Scope of this book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
2.6  Data integration of North American Bank and Northern California Bank 

systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
2.6.1  Cleansing North American Bank’s core and non-core services  . . . 508
2.6.2  Cleansing Northern California Bank’s core and non-core services. 706
2.6.3  Matching and surviving Northern California Bank and Northern 

California Bank information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
2.7  Post migration from North American Bank systems’ to Northern California 

Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848
2.7.1  Cleansing names and addresses, matching, and surviving data in the 

migrated system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854

 

 

 

 

iv IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Appendix A.  IBM Information Server overview. . . . . . . . . . . . . . . . . . . . . 857
A.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858
A.2  IBM Information Server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

A.2.1  Unified user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
A.2.2  Common services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
A.2.3  Key integration functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
A.2.4  Unified parallel processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
A.2.5  Unified metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
A.2.6  Common connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874
A.2.7  Client application access to services  . . . . . . . . . . . . . . . . . . . . . . . 874

A.3  Configuration flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
A.3.1  Step 1a: Create connection to an Information Server provider. . . . 877
A.3.2  Step 1b: Create a project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
A.3.3  Step 1c: Create an application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
A.3.4  Step 1d: Generate SOA services . . . . . . . . . . . . . . . . . . . . . . . . . . 878
A.3.5  Step 1e: Deploy SOA services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
A.3.6  Step 1f: Test deployed SOA services . . . . . . . . . . . . . . . . . . . . . . . 879
A.3.7  Step 1g: Optionally export service to IBM WebSphere Service Registry 

Repository. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
A.4  Runtime flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

A.4.1  Service artifacts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880
A.4.2  Flow of a request  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

Appendix B.  Code and scripts used in the financial services business 
scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887

B.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888

Appendix C.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
Locating the Web material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
Using the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

How to use the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
IBM Redbooks publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
How to get IBM Redbooks publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

 

 

 

 

 Contents v



 

 

 

 

vi IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figures

1-1  Lack of information standards example  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1-2  Data surprises in individual fields example . . . . . . . . . . . . . . . . . . . . . . . . . 4
1-3  Information buried in free-form fields example . . . . . . . . . . . . . . . . . . . . . . 5
1-4  Data myopia example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1-5  Redundancy within individual tables example. . . . . . . . . . . . . . . . . . . . . . . 6
1-6  IBM Information Server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1-7  IBM WebSphere QualityStage process overview . . . . . . . . . . . . . . . . . . . 11
1-8  Specification of the C mask for discrete columns . . . . . . . . . . . . . . . . . . . 26
1-9  Frequency distribution report for discrete columns and the C mask . . . . . 27
1-10  Specification of the T mask for discrete columns . . . . . . . . . . . . . . . . . . 28
1-11  Frequency distribution with discrete columns and the T mask . . . . . . . . 29
1-12  Specification of the T, C, and X masks for concatenated columns . . . . . 30
1-13  Frequency distribution report with the T, C, and X masks for concatenated 

columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1-14  Token (frequency word) report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1-15  Pattern (frequency pattern) report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1-16  Partial list of columns added by the Standardize stage using the 

domain-specific USNAME rule set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1-17  Domain pre-processor rule set USPREP output . . . . . . . . . . . . . . . . . . . 43
1-18  Specifying delimiters for columns 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1-19  Specifying delimiters for columns 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1-20  Domain-specific USNAME rule set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1-21  Validation rule set 1/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1-22  Validation rule set 2/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1-23  Validation rule set 3/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1-24  Validation rule set 4/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1-25  Validation rule set 5/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1-26  Validation rule set 6/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1-27  Validation rule set 7/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1-28  Validation rule set 8/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1-29  Validation rule set 9/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1-30  Validation rule set 10/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1-31  Validation rule set 11/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1-32  Standardize Stage processing flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1-33  Rule Management window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1-34  Classification override of AVEDUE input token 1/2. . . . . . . . . . . . . . . . . 65
1-35  Classification override of AVEDUE input token 2/2. . . . . . . . . . . . . . . . . 66
1-36  Input text override example 1/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. vii



1-37  Input text override example 2/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1-38  Input text override example 3/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1-39  Input text override example 4/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1-40  Input text override example 5/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1-41  Input text override example 6/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1-42  Input pattern override for domain-specific rule set 1/3  . . . . . . . . . . . . . . 74
1-43  Input pattern override for domain-specific rule set 2/3  . . . . . . . . . . . . . . 74
1-44  Input pattern override for domain-specific rule set 3/3  . . . . . . . . . . . . . . 75
1-45  Output of Country Rule Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1-46  U.S. delimiter for country code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1-47  Block overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
1-48  Match Frequency stage output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1-49  Saving table definition of the Match Frequency stage 1/3  . . . . . . . . . . . 94
1-50  Saving table definition of the Match Frequency stage 2/3  . . . . . . . . . . . 94
1-51  Saving table definition of the Match Frequency stage 3/3  . . . . . . . . . . . 95
1-52  Match command example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1-53  Compose tab showing CUSTOMER_NAME_ADDR pass . . . . . . . . . . 102
1-54  Compose tab showing CUSTOMER_ZIP3 pass. . . . . . . . . . . . . . . . . . 103
1-55  Total Statistics tab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1-56  Merged match and duplicate records . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1-57  Clerical review records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1-58  Clerical review records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1-59  Residual records 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1-60  Residual records 2/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1-61  Configure Reference Match stage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1-62  Simple rule example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
1-63  Rule Expression Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
1-64  IBM Information Server development paradigm . . . . . . . . . . . . . . . . . . 119
1-65  Create the PROJQSSAMP project 1/6 . . . . . . . . . . . . . . . . . . . . . . . . . 121
1-66  Create the PROJQSSAMP project 2/6 . . . . . . . . . . . . . . . . . . . . . . . . . 122
1-67  Create the PROJQSSAMP project 3/6 . . . . . . . . . . . . . . . . . . . . . . . . . 122
1-68  Create the PROJQSSAMP project 4/6 . . . . . . . . . . . . . . . . . . . . . . . . . 123
1-69  Create the PROJQSSAMP project 5/6 . . . . . . . . . . . . . . . . . . . . . . . . . 123
1-70  Create the PROJQSSAMP project 6/6 . . . . . . . . . . . . . . . . . . . . . . . . . 123
1-71  Create mailing list scenario folders 1/4 . . . . . . . . . . . . . . . . . . . . . . . . . 125
1-72  Create mailing list scenario folders 2/4 . . . . . . . . . . . . . . . . . . . . . . . . . 125
1-73  Create mailing list scenario folders 3/4 . . . . . . . . . . . . . . . . . . . . . . . . . 126
1-74  Create mailing list scenario folders 4/4 . . . . . . . . . . . . . . . . . . . . . . . . . 126
1-75  Import plug-in metadata definitions 1/6 . . . . . . . . . . . . . . . . . . . . . . . . . 127
1-76  Import plug-in metadata definitions 2/6 . . . . . . . . . . . . . . . . . . . . . . . . . 128
1-77  Import plug-in metadata definitions 3/6 . . . . . . . . . . . . . . . . . . . . . . . . . 128
1-78  Import plug-in metadata definitions 4/6 . . . . . . . . . . . . . . . . . . . . . . . . . 129
1-79  Import plug-in metadata definitions 5/6 . . . . . . . . . . . . . . . . . . . . . . . . . 129

 

 

 

 

viii IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1-80  Import plug-in metadata definitions 6/6 . . . . . . . . . . . . . . . . . . . . . . . . . 130
1-81  Create a parameter set specification 1/7  . . . . . . . . . . . . . . . . . . . . . . . 131
1-82  Create a parameter set specification 2/7  . . . . . . . . . . . . . . . . . . . . . . . 132
1-83  Create a parameter set specification 3/7  . . . . . . . . . . . . . . . . . . . . . . . 132
1-84  Create a parameter set specification 4/7  . . . . . . . . . . . . . . . . . . . . . . . 133
1-85  Create a parameter set specification 5/7  . . . . . . . . . . . . . . . . . . . . . . . 133
1-86  Create a parameter set specification 6/7  . . . . . . . . . . . . . . . . . . . . . . . 134
1-87  Create a parameter set specification 7/7  . . . . . . . . . . . . . . . . . . . . . . . 134
1-88  Customer information cleanup process flow . . . . . . . . . . . . . . . . . . . . . 141
1-89  Create the J00_SRC_CUSTOMER job 1/39. . . . . . . . . . . . . . . . . . . . . 145
1-90  Create the J00_SRC_CUSTOMER job 2/39. . . . . . . . . . . . . . . . . . . . . 145
1-91  Create the J00_SRC_CUSTOMER job 3/39. . . . . . . . . . . . . . . . . . . . . 146
1-92  Create the J00_SRC_CUSTOMER job 4/39. . . . . . . . . . . . . . . . . . . . . 146
1-93  Create the J00_SRC_CUSTOMER job 5/39. . . . . . . . . . . . . . . . . . . . . 147
1-94  Create the J00_SRC_CUSTOMER job 6/39. . . . . . . . . . . . . . . . . . . . . 147
1-95  Create the J00_SRC_CUSTOMER job 7/39. . . . . . . . . . . . . . . . . . . . . 148
1-96  Create the J00_SRC_CUSTOMER job 8/39. . . . . . . . . . . . . . . . . . . . . 148
1-97  Create the J00_SRC_CUSTOMER job 9/39. . . . . . . . . . . . . . . . . . . . . 149
1-98  Create the J00_SRC_CUSTOMER job 10/39. . . . . . . . . . . . . . . . . . . . 149
1-99  Create the J00_SRC_CUSTOMER job 11/39. . . . . . . . . . . . . . . . . . . . 149
1-100  Create the J00_SRC_CUSTOMER job 12/39. . . . . . . . . . . . . . . . . . . 150
1-101  Create the J00_SRC_CUSTOMER job 13/39. . . . . . . . . . . . . . . . . . . 151
1-102  Create the J00_SRC_CUSTOMER job 14/39. . . . . . . . . . . . . . . . . . . 151
1-103  Create the J00_SRC_CUSTOMER job 15/39. . . . . . . . . . . . . . . . . . . 152
1-104  Create the J00_SRC_CUSTOMER job 16/39. . . . . . . . . . . . . . . . . . . 152
1-105  Create the J00_SRC_CUSTOMER job 17/39. . . . . . . . . . . . . . . . . . . 153
1-106  Create the J00_SRC_CUSTOMER job 18/39. . . . . . . . . . . . . . . . . . . 153
1-107  Create the J00_SRC_CUSTOMER job 19/39. . . . . . . . . . . . . . . . . . . 154
1-108  Create the J00_SRC_CUSTOMER job 20/39. . . . . . . . . . . . . . . . . . . 154
1-109  Create the J00_SRC_CUSTOMER job 21/39. . . . . . . . . . . . . . . . . . . 154
1-110  Create the J00_SRC_CUSTOMER job 22/39. . . . . . . . . . . . . . . . . . . 155
1-111  Create the J00_SRC_CUSTOMER job 23/39. . . . . . . . . . . . . . . . . . . 155
1-112  Create the J00_SRC_CUSTOMER job 24/39. . . . . . . . . . . . . . . . . . . 156
1-113  Create the J00_SRC_CUSTOMER job 25/39. . . . . . . . . . . . . . . . . . . 156
1-114  Create the J00_SRC_CUSTOMER job 26/39. . . . . . . . . . . . . . . . . . . 157
1-115  Create the J00_SRC_CUSTOMER job 27/39. . . . . . . . . . . . . . . . . . . 157
1-116  Create the J00_SRC_CUSTOMER job 28/39. . . . . . . . . . . . . . . . . . . 158
1-117  Create the J00_SRC_CUSTOMER job 29/39. . . . . . . . . . . . . . . . . . . 158
1-118  Create the J00_SRC_CUSTOMER job 30/39. . . . . . . . . . . . . . . . . . . 159
1-119  Create the J00_SRC_CUSTOMER job 31/39. . . . . . . . . . . . . . . . . . . 159
1-120  Create the J00_SRC_CUSTOMER job 32/39. . . . . . . . . . . . . . . . . . . 159
1-121  Create the J00_SRC_CUSTOMER job 33/39. . . . . . . . . . . . . . . . . . . 160
1-122  Create the J00_SRC_CUSTOMER job 34/39. . . . . . . . . . . . . . . . . . . 160

 

 

 

 

 Figures ix



1-123  Create the J00_SRC_CUSTOMER job 35/39. . . . . . . . . . . . . . . . . . . 160
1-124  Create the J00_SRC_CUSTOMER job 36/39. . . . . . . . . . . . . . . . . . . 161
1-125  Create the J00_SRC_CUSTOMER job 37/39. . . . . . . . . . . . . . . . . . . 161
1-126  Create the J00_SRC_CUSTOMER job 38/39. . . . . . . . . . . . . . . . . . . 161
1-127  Create the J00_SRC_CUSTOMER job 39/39. . . . . . . . . . . . . . . . . . . 162
1-128  Create J00A_INV_CUSTOMER job 1/9 . . . . . . . . . . . . . . . . . . . . . . . 164
1-129  Create J00A_INV_CUSTOMER job 2/9 . . . . . . . . . . . . . . . . . . . . . . . 164
1-130  Create J00A_INV_CUSTOMER job 3/9 . . . . . . . . . . . . . . . . . . . . . . . 165
1-131  Create J00A_INV_CUSTOMER job 4/9 . . . . . . . . . . . . . . . . . . . . . . . 165
1-132  Create J00A_INV_CUSTOMER job 5/9 . . . . . . . . . . . . . . . . . . . . . . . 166
1-133  Create J00A_INV_CUSTOMER job 6/9 . . . . . . . . . . . . . . . . . . . . . . . 166
1-134  Create J00A_INV_CUSTOMER job 7/9 . . . . . . . . . . . . . . . . . . . . . . . 167
1-135  Create J00A_INV_CUSTOMER job 8/9 . . . . . . . . . . . . . . . . . . . . . . . 168
1-136  Create J00A_INV_CUSTOMER job 9/9 . . . . . . . . . . . . . . . . . . . . . . . 168
1-137  Create J01_STAN_COUNTRY job 1/31 . . . . . . . . . . . . . . . . . . . . . . . 171
1-138  Create J01_STAN_COUNTRY job 2/31 . . . . . . . . . . . . . . . . . . . . . . . 172
1-139  Create J01_STAN_COUNTRY job 3/31 . . . . . . . . . . . . . . . . . . . . . . . 172
1-140  Create J01_STAN_COUNTRY job 4/31 . . . . . . . . . . . . . . . . . . . . . . . 173
1-141  Create J01_STAN_COUNTRY job 5/31 . . . . . . . . . . . . . . . . . . . . . . . 173
1-142  Create J01_STAN_COUNTRY job 6/31 . . . . . . . . . . . . . . . . . . . . . . . 174
1-143  Create J01_STAN_COUNTRY job 7/31 . . . . . . . . . . . . . . . . . . . . . . . 174
1-144  Create J01_STAN_COUNTRY job 8/31 . . . . . . . . . . . . . . . . . . . . . . . 175
1-145  Create J01_STAN_COUNTRY job 9/31 . . . . . . . . . . . . . . . . . . . . . . . 175
1-146  Create J01_STAN_COUNTRY job 10/31 . . . . . . . . . . . . . . . . . . . . . . 176
1-147  Create J01_STAN_COUNTRY job 11/31 . . . . . . . . . . . . . . . . . . . . . . 176
1-148  Create J01_STAN_COUNTRY job 12/31 . . . . . . . . . . . . . . . . . . . . . . 177
1-149  Create J01_STAN_COUNTRY job 13/31 . . . . . . . . . . . . . . . . . . . . . . 177
1-150  Create J01_STAN_COUNTRY job 14/31 . . . . . . . . . . . . . . . . . . . . . . 177
1-151  Create J01_STAN_COUNTRY job 15/31 . . . . . . . . . . . . . . . . . . . . . . 178
1-152  Create J01_STAN_COUNTRY job 16/31 . . . . . . . . . . . . . . . . . . . . . . 178
1-153  Create J01_STAN_COUNTRY job 17/31 . . . . . . . . . . . . . . . . . . . . . . 179
1-154  Create J01_STAN_COUNTRY job 18/31 . . . . . . . . . . . . . . . . . . . . . . 179
1-155  Create J01_STAN_COUNTRY job 19/31 . . . . . . . . . . . . . . . . . . . . . . 180
1-156  Create J01_STAN_COUNTRY job 20/31 . . . . . . . . . . . . . . . . . . . . . . 180
1-157  Create J01_STAN_COUNTRY job 21/31 . . . . . . . . . . . . . . . . . . . . . . 181
1-158  Create J01_STAN_COUNTRY job 22/31 . . . . . . . . . . . . . . . . . . . . . . 181
1-159  Create J01_STAN_COUNTRY job 23/31 . . . . . . . . . . . . . . . . . . . . . . 182
1-160  Create J01_STAN_COUNTRY job 24/31 . . . . . . . . . . . . . . . . . . . . . . 182
1-161  Create J01_STAN_COUNTRY job 25/31 . . . . . . . . . . . . . . . . . . . . . . 183
1-162  Create J01_STAN_COUNTRY job 26/31 . . . . . . . . . . . . . . . . . . . . . . 183
1-163  Create J01_STAN_COUNTRY job 27/31 . . . . . . . . . . . . . . . . . . . . . . 184
1-164  Create J01_STAN_COUNTRY job 28/31 . . . . . . . . . . . . . . . . . . . . . . 184
1-165  Create J01_STAN_COUNTRY job 29/31 . . . . . . . . . . . . . . . . . . . . . . 185

 

 

 

 

x IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1-166  Create J01_STAN_COUNTRY job 30/31 . . . . . . . . . . . . . . . . . . . . . . 185
1-167  Create J01_STAN_COUNTRY job 31/31 . . . . . . . . . . . . . . . . . . . . . . 186
1-168  Create J02_INVCC_CODE 1/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
1-169  Create J02_INVCC_CODE 2/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
1-170  Create J02_INVCC_CODE 3/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
1-171  Create J02_INVCC_CODE 4/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
1-172  Create J02_INVCC_CODE 5/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1-173  Create J02_INVCC_CODE 6/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1-174  Create J02_INVCC_CODE 7/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1-175  Create J02_INVCC_CODE 8/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
1-176  Create J02_INVCC_CODE 9/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
1-177  Create J02_INVCC_CODE 10/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
1-178  Create J02_INVCC_CODE 11/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
1-179  Create J02_INVCC_CODE 12/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
1-180  Create J02_INVCC_CODE 13/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
1-181  Create J02_INVCC_CODE 14/14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
1-182  Create J03_STAN_USPREP job 1/11  . . . . . . . . . . . . . . . . . . . . . . . . 198
1-183  Create J03_STAN_USPREP job 2/11  . . . . . . . . . . . . . . . . . . . . . . . . 198
1-184  Create J03_STAN_USPREP job 3/11  . . . . . . . . . . . . . . . . . . . . . . . . 199
1-185  Create J03_STAN_USPREP job 4/11  . . . . . . . . . . . . . . . . . . . . . . . . 199
1-186  Create J03_STAN_USPREP job 5/11  . . . . . . . . . . . . . . . . . . . . . . . . 200
1-187  Create J03_STAN_USPREP job 6/11  . . . . . . . . . . . . . . . . . . . . . . . . 200
1-188  Create J03_STAN_USPREP job 7/11  . . . . . . . . . . . . . . . . . . . . . . . . 201
1-189  Create J03_STAN_USPREP job 8/11  . . . . . . . . . . . . . . . . . . . . . . . . 201
1-190  Create J03_STAN_USPREP job 9/11  . . . . . . . . . . . . . . . . . . . . . . . . 202
1-191  Create J03_STAN_USPREP job 10/11  . . . . . . . . . . . . . . . . . . . . . . . 202
1-192  Create J03_STAN_USPREP job 11/11  . . . . . . . . . . . . . . . . . . . . . . . 203
1-193  Create J04_INVW_USPREP job 1/18. . . . . . . . . . . . . . . . . . . . . . . . . 206
1-194  Create J04_INVW_USPREP job 2/18. . . . . . . . . . . . . . . . . . . . . . . . . 206
1-195  Create J04_INVW_USPREP job 3/18. . . . . . . . . . . . . . . . . . . . . . . . . 207
1-196  Create J04_INVW_USPREP job 4/18. . . . . . . . . . . . . . . . . . . . . . . . . 207
1-197  Create J04_INVW_USPREP job 5/18. . . . . . . . . . . . . . . . . . . . . . . . . 208
1-198  Create J04_INVW_USPREP job 6/18. . . . . . . . . . . . . . . . . . . . . . . . . 208
1-199  Create J04_INVW_USPREP job 7/18. . . . . . . . . . . . . . . . . . . . . . . . . 209
1-200  Create J04_INVW_USPREP job 8/18. . . . . . . . . . . . . . . . . . . . . . . . . 209
1-201  Create J04_INVW_USPREP job 9/18. . . . . . . . . . . . . . . . . . . . . . . . . 210
1-202  Create J04_INVW_USPREP job 10/18. . . . . . . . . . . . . . . . . . . . . . . . 210
1-203  Create J04_INVW_USPREP job 11/18. . . . . . . . . . . . . . . . . . . . . . . . 211
1-204  Create J04_INVW_USPREP job 12/18. . . . . . . . . . . . . . . . . . . . . . . . 211
1-205  Create J04_INVW_USPREP job 13/18. . . . . . . . . . . . . . . . . . . . . . . . 212
1-206  Create J04_INVW_USPREP job 14/18. . . . . . . . . . . . . . . . . . . . . . . . 212
1-207  Create J04_INVW_USPREP job 15/18. . . . . . . . . . . . . . . . . . . . . . . . 213
1-208  Create J04_INVW_USPREP job 16/18. . . . . . . . . . . . . . . . . . . . . . . . 214

 

 

 

 

 Figures xi



1-209  Create J04_INVW_USPREP job 17/18. . . . . . . . . . . . . . . . . . . . . . . . 214
1-210  Create J04_INVW_USPREP job 18/18. . . . . . . . . . . . . . . . . . . . . . . . 214
1-211  Create J03_Z_Override_And_After job 1/7. . . . . . . . . . . . . . . . . . . . . 216
1-212  Create J03_Z_Override_And_After job 2/7. . . . . . . . . . . . . . . . . . . . . 216
1-213  Create J03_Z_Override_And_After job 3/7. . . . . . . . . . . . . . . . . . . . . 217
1-214  Create J03_Z_Override_And_After job 4/7. . . . . . . . . . . . . . . . . . . . . 217
1-215  Create J03_Z_Override_And_After job 5/8. . . . . . . . . . . . . . . . . . . . . 218
1-216  Create J03_Z_Override_And_After job 6/8. . . . . . . . . . . . . . . . . . . . . 218
1-217  Create J03_Z_Override_And_After job 7/8. . . . . . . . . . . . . . . . . . . . . 219
1-218  Create J03_Z_Override_And_After job 8/8. . . . . . . . . . . . . . . . . . . . . 219
1-219  Create J05_CASS_USPREP job 1/10  . . . . . . . . . . . . . . . . . . . . . . . . 223
1-220  Create J05_CASS_USPREP job 2/10  . . . . . . . . . . . . . . . . . . . . . . . . 223
1-221  Create J05_CASS_USPREP job 3/10  . . . . . . . . . . . . . . . . . . . . . . . . 224
1-222  Create J05_CASS_USPREP job 4/10  . . . . . . . . . . . . . . . . . . . . . . . . 225
1-223  Create J05_CASS_USPREP job 5/10  . . . . . . . . . . . . . . . . . . . . . . . . 225
1-224  Create J05_CASS_USPREP job 6/10  . . . . . . . . . . . . . . . . . . . . . . . . 226
1-225  Create J05_CASS_USPREP job 7/10  . . . . . . . . . . . . . . . . . . . . . . . . 226
1-226  Create J05_CASS_USPREP job 8/10  . . . . . . . . . . . . . . . . . . . . . . . . 227
1-227  Create J05_CASS_USPREP job 9/10  . . . . . . . . . . . . . . . . . . . . . . . . 227
1-228  Create J05_CASS_USPREP job 10/10  . . . . . . . . . . . . . . . . . . . . . . . 228
1-229  Create J06_INVCC_CASS job 1/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 230
1-230  Create J06_INVCC_CASS job 2/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 231
1-231  Create J06_INVCC_CASS job 3/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 231
1-232  Create J06_INVCC_CASS job 4/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 231
1-233  Create J06_INVCC_CASS job 5/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 232
1-234  Create J06_INVCC_CASS job 6/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 232
1-235  Create J06_INVCC_CASS job 7/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 232
1-236  Create J06_INVCC_CASS job 8/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 233
1-237  Create J06_INVCC_CASS job 9/12 . . . . . . . . . . . . . . . . . . . . . . . . . . 233
1-238  Create J06_INVCC_CASS job 10/12 . . . . . . . . . . . . . . . . . . . . . . . . . 234
1-239  Create J06_INVCC_CASS job 11/12 . . . . . . . . . . . . . . . . . . . . . . . . . 234
1-240  Create J06_INVCC_CASS job 12/12 . . . . . . . . . . . . . . . . . . . . . . . . . 234
1-241  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 1/9. . . . 236
1-242  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 2/9. . . . 237
1-243  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 3/9. . . . 237
1-244  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 4/9. . . . 238
1-245  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 5/9. . . . 238
1-246  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 6/9. . . . 239
1-247  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 7/9. . . . 240
1-248  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 8/9. . . . 240
1-249  Create J07_STAN_CUSTOMER_Domain_Preprocessor job 9/9. . . . 241
1-250  Create J08_STAN_CUSTOMER_Domain_Specific 1/22 . . . . . . . . . . 243
1-251  Create J08_STAN_CUSTOMER_Domain_Specific 2/22 . . . . . . . . . . 243

 

 

 

 

xii IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1-252  Create J08_STAN_CUSTOMER_Domain_Specific 3/22 . . . . . . . . . . 243
1-253  Create J08_STAN_CUSTOMER_Domain_Specific 4/22 . . . . . . . . . . 244
1-254  Create J08_STAN_CUSTOMER_Domain_Specific 5/22 . . . . . . . . . . 244
1-255  Create J08_STAN_CUSTOMER_Domain_Specific 6/22 . . . . . . . . . . 244
1-256  Create J08_STAN_CUSTOMER_Domain_Specific 7/22 . . . . . . . . . . 245
1-257  Create J08_STAN_CUSTOMER_Domain_Specific 8/22 . . . . . . . . . . 245
1-258  Create J08_STAN_CUSTOMER_Domain_Specific 9/22 . . . . . . . . . . 246
1-259  Create J08_STAN_CUSTOMER_Domain_Specific 10/22 . . . . . . . . . 246
1-260  Create J08_STAN_CUSTOMER_Domain_Specific 11/22 . . . . . . . . . 247
1-261  Create J08_STAN_CUSTOMER_Domain_Specific 12/22 . . . . . . . . . 247
1-262  Create J08_STAN_CUSTOMER_Domain_Specific 13/22 . . . . . . . . . 248
1-263  Create J08_STAN_CUSTOMER_Domain_Specific 14/22 . . . . . . . . . 248
1-264  Create J08_STAN_CUSTOMER_Domain_Specific 15/22 . . . . . . . . . 249
1-265  Create J08_STAN_CUSTOMER_Domain_Specific 16/22 . . . . . . . . . 249
1-266  Create J08_STAN_CUSTOMER_Domain_Specific 17/22 . . . . . . . . . 250
1-267  Create J08_STAN_CUSTOMER_Domain_Specific 18/22 . . . . . . . . . 250
1-268  Create J08_STAN_CUSTOMER_Domain_Specific 19/22 . . . . . . . . . 251
1-269  Create J08_STAN_CUSTOMER_Domain_Specific 20/22 . . . . . . . . . 251
1-270  Create J08_STAN_CUSTOMER_Domain_Specific 21/22 . . . . . . . . . 252
1-271  Create J08_STAN_CUSTOMER_Domain_Specific 22/22 . . . . . . . . . 252
1-272  Create J09_INVCC_STAN_CUSTOMER 1/16 . . . . . . . . . . . . . . . . . . 255
1-273  Create J09_INVCC_STAN_CUSTOMER 2/16 . . . . . . . . . . . . . . . . . . 256
1-274  Create J09_INVCC_STAN_CUSTOMER 3/16 . . . . . . . . . . . . . . . . . . 257
1-275  Create J09_INVCC_STAN_CUSTOMER 4/16 . . . . . . . . . . . . . . . . . . 258
1-276  Create J09_INVCC_STAN_CUSTOMER 5/16 . . . . . . . . . . . . . . . . . . 258
1-277  Create J09_INVCC_STAN_CUSTOMER 6/16 . . . . . . . . . . . . . . . . . . 259
1-278  Create J09_INVCC_STAN_CUSTOMER 7/16 . . . . . . . . . . . . . . . . . . 259
1-279  Create J09_INVCC_STAN_CUSTOMER 8/16 . . . . . . . . . . . . . . . . . . 260
1-280  Create J09_INVCC_STAN_CUSTOMER 9/16 . . . . . . . . . . . . . . . . . . 260
1-281  Create J09_INVCC_STAN_CUSTOMER 10/16 . . . . . . . . . . . . . . . . . 260
1-282  Create J09_INVCC_STAN_CUSTOMER 11/16 . . . . . . . . . . . . . . . . . 261
1-283  Create J09_INVCC_STAN_CUSTOMER 12/16 . . . . . . . . . . . . . . . . . 261
1-284  Create J09_INVCC_STAN_CUSTOMER 13/16 . . . . . . . . . . . . . . . . . 261
1-285  Create J09_INVCC_STAN_CUSTOMER 14/16 . . . . . . . . . . . . . . . . . 261
1-286  Create J09_INVCC_STAN_CUSTOMER 15/16 . . . . . . . . . . . . . . . . . 262
1-287  Create J09_INVCC_STAN_CUSTOMER 16/16 . . . . . . . . . . . . . . . . . 262
1-288  J09_Z_Override_And_After job 1/6. . . . . . . . . . . . . . . . . . . . . . . . . . . 263
1-289  J09_Z_Override_And_After job 2/6. . . . . . . . . . . . . . . . . . . . . . . . . . . 264
1-290  J09_Z_Override_And_After job 3/6. . . . . . . . . . . . . . . . . . . . . . . . . . . 264
1-291  J09_Z_Override_And_After job 4/6. . . . . . . . . . . . . . . . . . . . . . . . . . . 265
1-292  J09_Z_Override_And_After job 5/6. . . . . . . . . . . . . . . . . . . . . . . . . . . 265
1-293  J09_Z_Override_And_After job 6/6. . . . . . . . . . . . . . . . . . . . . . . . . . . 265
1-294  J10_MATCHFREQ_STAN_CUSTOMER job 1/6 . . . . . . . . . . . . . . . . 267

 

 

 

 

 Figures xiii



1-295  J10_MATCHFREQ_STAN_CUSTOMER job 2/6 . . . . . . . . . . . . . . . . 267
1-296  J10_MATCHFREQ_STAN_CUSTOMER job 3/6 . . . . . . . . . . . . . . . . 267
1-297  J10_MATCHFREQ_STAN_CUSTOMER job 4/6 . . . . . . . . . . . . . . . . 268
1-298  J10_MATCHFREQ_STAN_CUSTOMER job 5/6 . . . . . . . . . . . . . . . . 268
1-299  J10_MATCHFREQ_STAN_CUSTOMER job 6/6 . . . . . . . . . . . . . . . . 269
1-300  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 1/17  . . . . . 271
1-301  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 2/17  . . . . . 272
1-302  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 3/17  . . . . . 272
1-303  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 4/17  . . . . . 273
1-304  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 5/17  . . . . . 273
1-305  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 6/17  . . . . . 274
1-306  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 7/17  . . . . . 274
1-307  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 8/17  . . . . . 275
1-308  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 9/17  . . . . . 276
1-309  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 10/17  . . . . 277
1-310  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 11/17  . . . . 277
1-311  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 12/17  . . . . 278
1-312  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 13/17  . . . . 279
1-313  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 14/17  . . . . 279
1-314  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 15/17  . . . . 280
1-315  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 16/17  . . . . 281
1-316  Create J10_Undup_MatchSpec_STAN_CUSTOMER job 17/17  . . . . 282
1-317  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 1/15 . . . . . . . . 285
1-318  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 2/15 . . . . . . . . 285
1-319  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 3/15 . . . . . . . . 286
1-320  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 4/15 . . . . . . . . 286
1-321  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 5/15 . . . . . . . . 287
1-322  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 6/15 . . . . . . . . 287
1-323  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 7/15 . . . . . . . . 288
1-324  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 8/15 . . . . . . . . 288
1-325  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 9/15 . . . . . . . . 288
1-326  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 10/15 . . . . . . . 288
1-327  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 11/15 . . . . . . . 288
1-328  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 12/15 . . . . . . . 289
1-329  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 13/15 . . . . . . . 289
1-330  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 14/15 . . . . . . . 289
1-331  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 15/15 . . . . . . . 290
1-332  Create J12_CLERICAL_REVIEW_CUSTOMER job 1/8  . . . . . . . . . . 292
1-333  Create J12_CLERICAL_REVIEW_CUSTOMER job 2/8  . . . . . . . . . . 293
1-334  Create J12_CLERICAL_REVIEW_CUSTOMER job 3/8  . . . . . . . . . . 293
1-335  Create J12_CLERICAL_REVIEW_CUSTOMER job 4/8  . . . . . . . . . . 294
1-336  Create J12_CLERICAL_REVIEW_CUSTOMER job 5/8  . . . . . . . . . . 294
1-337  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 6/8 . . . . . . . . . 295

 

 

 

 

xiv IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1-338  Create J11_UNDUP_DEP_MATCH_CUSTOMER job 7/8 . . . . . . . . . 295
1-339  Create J12_CLERICAL_REVIEW_CUSTOMER job 8/8  . . . . . . . . . . 295
1-340  Create J13_SURVIVE_CUSTOMER job 1/14  . . . . . . . . . . . . . . . . . . 297
1-341  Create J13_SURVIVE_CUSTOMER job 2/14  . . . . . . . . . . . . . . . . . . 298
1-342  Create J13_SURVIVE_CUSTOMER job 3/14  . . . . . . . . . . . . . . . . . . 298
1-343  Create J13_SURVIVE_CUSTOMER job 4/14  . . . . . . . . . . . . . . . . . . 298
1-344  Create J13_SURVIVE_CUSTOMER job 5/14  . . . . . . . . . . . . . . . . . . 299
1-345  Create J13_SURVIVE_CUSTOMER job 6/14  . . . . . . . . . . . . . . . . . . 299
1-346  Create J13_SURVIVE_CUSTOMER job 7/14  . . . . . . . . . . . . . . . . . . 300
1-347  Create J13_SURVIVE_CUSTOMER job 8/14  . . . . . . . . . . . . . . . . . . 301
1-348  Create J13_SURVIVE_CUSTOMER job 9/14  . . . . . . . . . . . . . . . . . . 301
1-349  Create J13_SURVIVE_CUSTOMER job 10/14  . . . . . . . . . . . . . . . . . 302
1-350  Create J13_SURVIVE_CUSTOMER job 11/14  . . . . . . . . . . . . . . . . . 302
1-351  Create J13_SURVIVE_CUSTOMER job 12/14  . . . . . . . . . . . . . . . . . 302
1-352  Create J13_SURVIVE_CUSTOMER job 13/14  . . . . . . . . . . . . . . . . . 303
1-353  Create J13_SURVIVE_CUSTOMER job 14/14  . . . . . . . . . . . . . . . . . 303
1-354  Create J14_CUSTOMER_MASTER job 1/20 . . . . . . . . . . . . . . . . . . . 305
1-355  Create J14_CUSTOMER_MASTER job 2/20 . . . . . . . . . . . . . . . . . . . 306
1-356  Create J14_CUSTOMER_MASTER job 3/20 . . . . . . . . . . . . . . . . . . . 306
1-357  Create J14_CUSTOMER_MASTER job 4/20 . . . . . . . . . . . . . . . . . . . 307
1-358  Create J14_CUSTOMER_MASTER job 5/20 . . . . . . . . . . . . . . . . . . . 307
1-359  Create J14_CUSTOMER_MASTER job 6/20 . . . . . . . . . . . . . . . . . . . 308
1-360  Create J14_CUSTOMER_MASTER job 7/20 . . . . . . . . . . . . . . . . . . . 308
1-361  Create J14_CUSTOMER_MASTER job 8/20 . . . . . . . . . . . . . . . . . . . 309
1-362  Create J14_CUSTOMER_MASTER job 9/20 . . . . . . . . . . . . . . . . . . . 309
1-363  Create J14_CUSTOMER_MASTER job 10/20 . . . . . . . . . . . . . . . . . . 310
1-364  Create J14_CUSTOMER_MASTER job 11/20 . . . . . . . . . . . . . . . . . . 310
1-365  Create J14_CUSTOMER_MASTER job 12/20 . . . . . . . . . . . . . . . . . . 311
1-366  Create J14_CUSTOMER_MASTER job 13/20 . . . . . . . . . . . . . . . . . . 311
1-367  Create J14_CUSTOMER_MASTER job 14/20 . . . . . . . . . . . . . . . . . . 312
1-368  Create J14_CUSTOMER_MASTER job 15/20 . . . . . . . . . . . . . . . . . . 312
1-369  Create J14_CUSTOMER_MASTER job 16/20 . . . . . . . . . . . . . . . . . . 313
1-370  Create J14_CUSTOMER_MASTER job 17/20 . . . . . . . . . . . . . . . . . . 314
1-371  Create J14_CUSTOMER_MASTER job 18/20 . . . . . . . . . . . . . . . . . . 314
1-372  Create J14_CUSTOMER_MASTER job 19/20 . . . . . . . . . . . . . . . . . . 315
1-373  Create J14_CUSTOMER_MASTER job 20/20 . . . . . . . . . . . . . . . . . . 315
1-374  Create J14A_CUSTOMER_MASTER. . . . . . . . . . . . . . . . . . . . . . . . . 316
1-375  Create J15_FREQ_CUSTOMER_MASTER 1/2 . . . . . . . . . . . . . . . . . 317
1-376  Create J15_FREQ_CUSTOMER_MASTER 2/2 . . . . . . . . . . . . . . . . . 318
1-377  Create J15_Undup_MatchSpec_CUSTOMER job 1/3 . . . . . . . . . . . . 320
1-378  Create J15_Undup_MatchSpec_CUSTOMER job 2/3 . . . . . . . . . . . . 321
1-379  Create J15_Undup_MatchSpec_CUSTOMER job 3/3 . . . . . . . . . . . . 322
1-380  Create J16_UNDUP_IND_MATCH_CUSTOMER job 1/9  . . . . . . . . . 324

 

 

 

 

 Figures xv



1-381  Create J16_UNDUP_IND_MATCH_CUSTOMER job 2/9  . . . . . . . . . 324
1-382  Create J16_UNDUP_IND_MATCH_CUSTOMER job 3/9  . . . . . . . . . 325
1-383  Create J16_UNDUP_IND_MATCH_CUSTOMER job 4/9  . . . . . . . . . 325
1-384  Create J16_UNDUP_IND_MATCH_CUSTOMER job 5/9  . . . . . . . . . 325
1-385  Create J16_UNDUP_IND_MATCH_CUSTOMER job 6/9  . . . . . . . . . 326
1-386  Create J16_UNDUP_IND_MATCH_CUSTOMER job 7/9  . . . . . . . . . 326
1-387  Create J16_UNDUP_IND_MATCH_CUSTOMER job 8/9  . . . . . . . . . 326
1-388  Create J16_UNDUP_IND_MATCH_CUSTOMER job 9/9  . . . . . . . . . 327
1-389  Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 1/7 . . 328
1-390  Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 2/7 . . 329
1-391  Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 3/7 . . 330
1-392  Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 4/7 . . 331
1-393  Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 5/7 . . 331
1-394  Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 6/7 . . 332
1-395  Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 7/7 . . 332
1-396  Create J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD 1/2 . 333
1-397  Create J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD 2/2 . 334
1-398  Mailing list cleanup and merge with Customer data process flow. . . . 341
1-399  Create J00_SRC_MAILING_LIST job 1/9. . . . . . . . . . . . . . . . . . . . . . 342
1-400  Create J00_SRC_MAILING_LIST job 2/9. . . . . . . . . . . . . . . . . . . . . . 343
1-401  Create J00_SRC_MAILING_LIST job 3/9. . . . . . . . . . . . . . . . . . . . . . 343
1-402  Create J00_SRC_MAILING_LIST job 4/9. . . . . . . . . . . . . . . . . . . . . . 344
1-403  Create J00_SRC_MAILING_LIST job 5/9. . . . . . . . . . . . . . . . . . . . . . 344
1-404  Create J00_SRC_MAILING_LIST job 6/9. . . . . . . . . . . . . . . . . . . . . . 345
1-405  Create J00_SRC_MAILING_LIST job 7/9. . . . . . . . . . . . . . . . . . . . . . 345
1-406  Create J00_SRC_MAILING_LIST job 8/9. . . . . . . . . . . . . . . . . . . . . . 346
1-407  Create J00_SRC_MAILING_LIST job 9/9. . . . . . . . . . . . . . . . . . . . . . 347
1-408  Create J00A_INV_MAILING_LIST job 1/8  . . . . . . . . . . . . . . . . . . . . . 349
1-409  Create J00A_INV_MAILING_LIST job 2/8  . . . . . . . . . . . . . . . . . . . . . 349
1-410  Create J00A_INV_MAILING_LIST job 3/8  . . . . . . . . . . . . . . . . . . . . . 350
1-411  Create J00A_INV_MAILING_LIST job 4/8  . . . . . . . . . . . . . . . . . . . . . 350
1-412  Create J00A_INV_MAILING_LIST job 5/8  . . . . . . . . . . . . . . . . . . . . . 351
1-413  Create J00A_INV_MAILING_LIST job 6/8  . . . . . . . . . . . . . . . . . . . . . 352
1-414  Create J00A_INV_MAILING_LIST job 7/8  . . . . . . . . . . . . . . . . . . . . . 352
1-415  Create J00A_INV_MAILING_LIST job 8/8  . . . . . . . . . . . . . . . . . . . . . 353
1-416  Create J01_STAN_COUNTRY_M job 1/6  . . . . . . . . . . . . . . . . . . . . . 354
1-417  Create J01_STAN_COUNTRY_M job 2/6  . . . . . . . . . . . . . . . . . . . . . 355
1-418  Create J01_STAN_COUNTRY_M job 3/6  . . . . . . . . . . . . . . . . . . . . . 355
1-419  Create J01_STAN_COUNTRY_M job 4/6  . . . . . . . . . . . . . . . . . . . . . 356
1-420  Create J01_STAN_COUNTRY_M job 5/6  . . . . . . . . . . . . . . . . . . . . . 357
1-421  Create J01_STAN_COUNTRY_M job 6/6  . . . . . . . . . . . . . . . . . . . . . 358
1-422  Create J02_INVCC_ISOCODE_M job 1/4  . . . . . . . . . . . . . . . . . . . . . 359
1-423  Create J02_INVCC_ISOCODE_M job 2/4  . . . . . . . . . . . . . . . . . . . . . 360

 

 

 

 

xvi IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1-424  Create J02_INVCC_ISOCODE_M job 3/4  . . . . . . . . . . . . . . . . . . . . . 360
1-425  Create J02_INVCC_ISOCODE_M job 4/4  . . . . . . . . . . . . . . . . . . . . . 361
1-426  Create J03_STAN_USPREP_M job 1/7 . . . . . . . . . . . . . . . . . . . . . . . 362
1-427  Create J03_STAN_USPREP_M job 2/7 . . . . . . . . . . . . . . . . . . . . . . . 362
1-428  Create J03_STAN_USPREP_M job 3/7 . . . . . . . . . . . . . . . . . . . . . . . 363
1-429  Create J03_STAN_USPREP_M job 4/7 . . . . . . . . . . . . . . . . . . . . . . . 363
1-430  Create J03_STAN_USPREP_M job 5/7 . . . . . . . . . . . . . . . . . . . . . . . 364
1-431  Create J03_STAN_USPREP_M job 6/7 . . . . . . . . . . . . . . . . . . . . . . . 365
1-432  Create J03_STAN_USPREP_M job 7/7 . . . . . . . . . . . . . . . . . . . . . . . 366
1-433  Create J04_INVW_USPREP_M job 1/11 . . . . . . . . . . . . . . . . . . . . . . 368
1-434  Create J04_INVW_USPREP_M job 2/11 . . . . . . . . . . . . . . . . . . . . . . 368
1-435  Create J04_INVW_USPREP_M job 3/11 . . . . . . . . . . . . . . . . . . . . . . 369
1-436  Create J04_INVW_USPREP_M job 4/11 . . . . . . . . . . . . . . . . . . . . . . 369
1-437  Create J04_INVW_USPREP_M job 5/11 . . . . . . . . . . . . . . . . . . . . . . 370
1-438  Create J04_INVW_USPREP_M job 6/11 . . . . . . . . . . . . . . . . . . . . . . 370
1-439  Create J04_INVW_USPREP_M job 7/11 . . . . . . . . . . . . . . . . . . . . . . 371
1-440  Create J04_INVW_USPREP_M job 8/11 . . . . . . . . . . . . . . . . . . . . . . 371
1-441  Create J04_INVW_USPREP_M job 9/11 . . . . . . . . . . . . . . . . . . . . . . 372
1-442  Create J04_INVW_USPREP_M job 10/11 . . . . . . . . . . . . . . . . . . . . . 372
1-443  Create J04_INVW_USPREP_M job 11/11 . . . . . . . . . . . . . . . . . . . . . 373
1-444  Create J04_Z_After_Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
1-445  Create J05_CASS_USPREP_M job 1/7 . . . . . . . . . . . . . . . . . . . . . . . 375
1-446  Create J05_CASS_USPREP_M job 2/7 . . . . . . . . . . . . . . . . . . . . . . . 376
1-447  Create J05_CASS_USPREP_M job 3/7 . . . . . . . . . . . . . . . . . . . . . . . 376
1-448  Create J05_CASS_USPREP_M job 4/7 . . . . . . . . . . . . . . . . . . . . . . . 377
1-449  Create J05_CASS_USPREP_M job 5/7 . . . . . . . . . . . . . . . . . . . . . . . 377
1-450  Create J05_CASS_USPREP_M job 6/7 . . . . . . . . . . . . . . . . . . . . . . . 378
1-451  Create J05_CASS_USPREP_M job 7/7 . . . . . . . . . . . . . . . . . . . . . . . 379
1-452  Create J06_INVCC_CASS_M job 1/6. . . . . . . . . . . . . . . . . . . . . . . . . 381
1-453  Create J06_INVCC_CASS_M job 2/6. . . . . . . . . . . . . . . . . . . . . . . . . 381
1-454  Create J06_INVCC_CASS_M job 3/6. . . . . . . . . . . . . . . . . . . . . . . . . 382
1-455  Create J06_INVCC_CASS_M job 4/6. . . . . . . . . . . . . . . . . . . . . . . . . 382
1-456  Create J06_INVCC_CASS_M job 5/6. . . . . . . . . . . . . . . . . . . . . . . . . 382
1-457  Create J06_INVCC_CASS_M job 6/6. . . . . . . . . . . . . . . . . . . . . . . . . 383
1-458  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 1/9. . . . . 384
1-459  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 2/9. . . . . 385
1-460  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 3/9. . . . . 385
1-461  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 4/9. . . . . 385
1-462  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 5/9. . . . . 386
1-463  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 6/9. . . . . 387
1-464  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 7/9. . . . . 388
1-465  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 8/9. . . . . 389
1-466  Create J07_STAN_MAILING_LIST_Domain_Preprocessor 9/9. . . . . 390

 

 

 

 

 Figures xvii



1-467  Create J08_STAN_MAILING_LIST_Domain_Specific 1/12 . . . . . . . . 392
1-468  Create J08_STAN_MAILING_LIST_Domain_Specific 2/12 . . . . . . . . 392
1-469  Create J08_STAN_MAILING_LIST_Domain_Specific 3/12 . . . . . . . . 393
1-470  Create J08_STAN_MAILING_LIST_Domain_Specific 4/12 . . . . . . . . 393
1-471  Create J08_STAN_MAILING_LIST_Domain_Specific 5/12 . . . . . . . . 393
1-472  Create J08_STAN_MAILING_LIST_Domain_Specific 6/12 . . . . . . . . 394
1-473  Create J08_STAN_MAILING_LIST_Domain_Specific 7/12 . . . . . . . . 394
1-474  Create J08_STAN_MAILING_LIST_Domain_Specific 8/12 . . . . . . . . 395
1-475  Create J08_STAN_MAILING_LIST_Domain_Specific 9/12 . . . . . . . . 396
1-476  Create J08_STAN_MAILING_LIST_Domain_Specific 10/12 . . . . . . . 397
1-477  Create J08_STAN_MAILING_LIST_Domain_Specific 11/12 . . . . . . . 398
1-478  Create J08_STAN_MAILING_LIST_Domain_Specific 12/12 . . . . . . . 399
1-479  Create J09_INVCC_STAN_MAILING_LIST job 1/12 . . . . . . . . . . . . . 401
1-480  Create J09_INVCC_STAN_MAILING_LIST job 2/12 . . . . . . . . . . . . . 401
1-481  Create J09_INVCC_STAN_MAILING_LIST job 3/12 . . . . . . . . . . . . . 402
1-482  Create J09_INVCC_STAN_MAILING_LIST job 4/12 . . . . . . . . . . . . . 402
1-483  Create J09_INVCC_STAN_MAILING_LIST job 5/12 . . . . . . . . . . . . . 403
1-484  Create J09_INVCC_STAN_MAILING_LIST job 6/12 . . . . . . . . . . . . . 404
1-485  Create J09_INVCC_STAN_MAILING_LIST job 7/12 . . . . . . . . . . . . . 405
1-486  Create J09_INVCC_STAN_MAILING_LIST job 8/12 . . . . . . . . . . . . . 406
1-487  Create J09_INVCC_STAN_MAILING_LIST job 9/12 . . . . . . . . . . . . . 407
1-488  Create J09_INVCC_STAN_MAILING_LIST job 10/12 . . . . . . . . . . . . 407
1-489  Create J09_INVCC_STAN_MAILING_LIST job 11/12 . . . . . . . . . . . . 408
1-490  Create J09_INVCC_STAN_MAILING_LIST job 12/12 . . . . . . . . . . . . 408
1-491  Create J09_Z_After_Override 1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
1-492  Create J09_Z_After_Override 2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
1-493  Create J09_Z_After_Override 3/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
1-494  Create J10_MATCHFREQ_STAN_MAILING_LIST job 1/4  . . . . . . . . 411
1-495  Create J10_MATCHFREQ_STAN_MAILING_LIST job 2/4  . . . . . . . . 412
1-496  Create J10_MATCHFREQ_STAN_MAILING_LIST job 3/4  . . . . . . . . 412
1-497  Create J10_MATCHFREQ_STAN_MAILING_LIST job 4/4  . . . . . . . . 413
1-498  Create J10_REFERENCE_MatchSpec_MAILING_LIST 1/2  . . . . . . . 415
1-499  Create J10_REFERENCE_MatchSpec_MAILING_LIST 2/2  . . . . . . . 416
1-500  Create J11_REFMATCH job 1/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
1-501  Create J11_REFMATCH job 2/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
1-502  Create J11_REFMATCH job 3/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
1-503  Create J11_REFMATCH job 4/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
1-504  Create J11_REFMATCH job 5/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
1-505  Create J11_REFMATCH job 6/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
1-506  Create J11_REFMATCH job 7/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
1-507  Create J11_REFMATCH job 8/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
1-508  Create J11_REFMATCH job 9/25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
1-509  Create J11_REFMATCH job 10/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 424

 

 

 

 

xviii IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1-510  Create J11_REFMATCH job 11/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 424
1-511  Create J11_REFMATCH job 12/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1-512  Create J11_REFMATCH job 13/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1-513  Create J11_REFMATCH job 14/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1-514  Create J11_REFMATCH job 15/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1-515  Create J11_REFMATCH job 16/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1-516  Create J11_REFMATCH job 17/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 426
1-517  Create J11_REFMATCH job 18/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 426
1-518  Create J11_REFMATCH job 19/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 427
1-519  Create J11_REFMATCH job 20/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 427
1-520  Create J11_REFMATCH job 21/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 428
1-521  Create J11_REFMATCH job 22/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 428
1-522  Create J11_REFMATCH job 23/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 429
1-523  Create J11_REFMATCH job 24/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 429
1-524  Create J11_REFMATCH job 25/25. . . . . . . . . . . . . . . . . . . . . . . . . . . 430
1-525  Create J12_CLERICAL_REPORT_MAILING_LIST 1/11 . . . . . . . . . . 432
1-526  Create J12_CLERICAL_REPORT_MAILING_LIST 2/11 . . . . . . . . . . 433
1-527  Create J12_CLERICAL_REPORT_MAILING_LIST 3/11 . . . . . . . . . . 434
1-528  Create J12_CLERICAL_REPORT_MAILING_LIST 4/11 . . . . . . . . . . 434
1-529  Create J12_CLERICAL_REPORT_MAILING_LIST 5/11 . . . . . . . . . . 435
1-530  Create J12_CLERICAL_REPORT_MAILING_LIST 6/11 . . . . . . . . . . 435
1-531  Create J12_CLERICAL_REPORT_MAILING_LIST 7/11 . . . . . . . . . . 436
1-532  Create J12_CLERICAL_REPORT_MAILING_LIST 8/11 . . . . . . . . . . 436
1-533  Create J12_CLERICAL_REPORT_MAILING_LIST 9/11 . . . . . . . . . . 437
1-534  Create J12_CLERICAL_REPORT_MAILING_LIST 10/11 . . . . . . . . . 437
1-535  Create J12_CLERICAL_REPORT_MAILING_LIST 11/11 . . . . . . . . . 437
1-536  Create J13_ENHANCE_CUSTOMER 1/7  . . . . . . . . . . . . . . . . . . . . . 439
1-537  Create J13_ENHANCE_CUSTOMER 2/7  . . . . . . . . . . . . . . . . . . . . . 440
1-538  Create J13_ENHANCE_CUSTOMER 3/7  . . . . . . . . . . . . . . . . . . . . . 441
1-539  Create J13_ENHANCE_CUSTOMER 4/7  . . . . . . . . . . . . . . . . . . . . . 441
1-540  Create J13_ENHANCE_CUSTOMER 5/7  . . . . . . . . . . . . . . . . . . . . . 442
1-541  Create J13_ENHANCE_CUSTOMER 6/7  . . . . . . . . . . . . . . . . . . . . . 442
1-542  Create J13_ENHANCE_CUSTOMER 7/7  . . . . . . . . . . . . . . . . . . . . . 442
1-543  Create J14_MAILING_LIST_RESIDUAL_FREQ 1/4  . . . . . . . . . . . . . 443
1-544  Create J14_MAILING_LIST_RESIDUAL_FREQ 2/4  . . . . . . . . . . . . . 444
1-545  Create J14_MAILING_LIST_RESIDUAL_FREQ 3/4  . . . . . . . . . . . . . 444
1-546  Create J14_MAILING_LIST_RESIDUAL_FREQ 4/4  . . . . . . . . . . . . . 445
1-547  Create J14_UNDUP_DEP_MATCHSPEC_MAILING 1/3 . . . . . . . . . . 447
1-548  Create J14_UNDUP_DEP_MATCHSPEC_MAILING 2/3 . . . . . . . . . . 448
1-549  Create J14_UNDUP_DEP_MATCHSPEC_MAILING 3/3 . . . . . . . . . . 449
1-550  Create J15_UNDUP_DEP_MATCH_MAILING 1/9. . . . . . . . . . . . . . . 451
1-551  Create J15_UNDUP_DEP_MATCH_MAILING 2/9. . . . . . . . . . . . . . . 451
1-552  Create J15_UNDUP_DEP_MATCH_MAILING 3/9. . . . . . . . . . . . . . . 452

 

 

 

 

 Figures xix



1-553  Create J15_UNDUP_DEP_MATCH_MAILING 4/9. . . . . . . . . . . . . . . 452
1-554  Create J15_UNDUP_DEP_MATCH_MAILING 5/9. . . . . . . . . . . . . . . 453
1-555  Create J15_UNDUP_DEP_MATCH_MAILING 6/9. . . . . . . . . . . . . . . 453
1-556  Create J15_UNDUP_DEP_MATCH_MAILING 7/9. . . . . . . . . . . . . . . 453
1-557  Create J15_UNDUP_DEP_MATCH_MAILING 8/9. . . . . . . . . . . . . . . 453
1-558  Create J15_UNDUP_DEP_MATCH_MAILING 9/9. . . . . . . . . . . . . . . 454
1-559  Create J16_SURVIVE_MAILING 1/6  . . . . . . . . . . . . . . . . . . . . . . . . . 455
1-560  Create J16_SURVIVE_MAILING 2/6  . . . . . . . . . . . . . . . . . . . . . . . . . 456
1-561  Create J16_SURVIVE_MAILING 3/6  . . . . . . . . . . . . . . . . . . . . . . . . . 456
1-562  Create J16_SURVIVE_MAILING 4/6  . . . . . . . . . . . . . . . . . . . . . . . . . 457
1-563  Create J16_SURVIVE_MAILING 5/6  . . . . . . . . . . . . . . . . . . . . . . . . . 457
1-564  Create J16_SURVIVE_MAILING 6/6  . . . . . . . . . . . . . . . . . . . . . . . . . 457
1-565  Create J17_MAILING_MASTER 1/5. . . . . . . . . . . . . . . . . . . . . . . . . . 459
1-566  Create J17_MAILING_MASTER 2/5. . . . . . . . . . . . . . . . . . . . . . . . . . 459
1-567  Create J17_MAILING_MASTER 3/5. . . . . . . . . . . . . . . . . . . . . . . . . . 460
1-568  Create J17_MAILING_MASTER 4/5. . . . . . . . . . . . . . . . . . . . . . . . . . 460
1-569  Create J17_MAILING_MASTER 5/5. . . . . . . . . . . . . . . . . . . . . . . . . . 461
1-570  Create J18_FREQ_MAILING_MASTER 1/4. . . . . . . . . . . . . . . . . . . . 462
1-571  Create J18_FREQ_MAILING_MASTER 2/4. . . . . . . . . . . . . . . . . . . . 462
1-572  Create J18_FREQ_MAILING_MASTER 3/4. . . . . . . . . . . . . . . . . . . . 463
1-573  Create J18_FREQ_MAILING_MASTER 4/4. . . . . . . . . . . . . . . . . . . . 464
1-574  Create J18_UNDUP_IND_MATCHSPEC_MAILING 1/3  . . . . . . . . . . 466
1-575  Create J18_UNDUP_IND_MATCHSPEC_MAILING 2/3  . . . . . . . . . . 467
1-576  Create J18_UNDUP_IND_MATCHSPEC_MAILING 3/3  . . . . . . . . . . 468
1-577  Create J19_UNDUP_IND_MATCH_MAILING 1/7  . . . . . . . . . . . . . . . 470
1-578  Create J19_UNDUP_IND_MATCH_MAILING 2/7  . . . . . . . . . . . . . . . 470
1-579  Create J19_UNDUP_IND_MATCH_MAILING 3/7  . . . . . . . . . . . . . . . 471
1-580  Create J19_UNDUP_IND_MATCH_MAILING 4/7  . . . . . . . . . . . . . . . 471
1-581  Create J19_UNDUP_IND_MATCH_MAILING 5/7  . . . . . . . . . . . . . . . 471
1-582  Create J19_UNDUP_IND_MATCH_MAILING 6/7  . . . . . . . . . . . . . . . 472
1-583  Create J19_UNDUP_IND_MATCH_MAILING 7/7  . . . . . . . . . . . . . . . 472
1-584  Create J20_MAILING_MASTER_WITH_HOUSEHOLD 1/6. . . . . . . . 474
1-585  Create J20_MAILING_MASTER_WITH_HOUSEHOLD 2/6. . . . . . . . 475
1-586  Create J20_MAILING_MASTER_WITH_HOUSEHOLD 3/6. . . . . . . . 476
1-587  Create J20_MAILING_MASTER_WITH_HOUSEHOLD 4/6. . . . . . . . 477
1-588  Create J20_MAILING_MASTER_WITH_HOUSEHOLD 5/6. . . . . . . . 477
1-589  Create J20_MAILING_MASTER_WITH_HOUSEHOLD 6/6. . . . . . . . 478
2-1  Data model of the North American Bank. . . . . . . . . . . . . . . . . . . . . . . . . 483
2-2  Data model of the Northern California Bank . . . . . . . . . . . . . . . . . . . . . . 484
2-3  “Off-the-shelf” data model of the CRM  . . . . . . . . . . . . . . . . . . . . . . . . . . 485
2-4  Merged banks’ environment configuration  . . . . . . . . . . . . . . . . . . . . . . . 486
2-5  General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
2-6  Data integration cleansing tasks for North American Bank. . . . . . . . . . . 496

 

 

 

 

xx IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2-7  Data integration cleansing tasks for Northern California Bank . . . . . . . . 498
2-8  Data integration into the CRM system  . . . . . . . . . . . . . . . . . . . . . . . . . . 500
2-9  Create j00_SRC_NAB job 1/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
2-10  Create j00_SRC_NAB job 2/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
2-11  Create j00_SRC_NAB job 3/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
2-12  Create j00_SRC_NAB job 4/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
2-13  Create j00_SRC_NAB job 5/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
2-14  Create j00_SRC_NAB job 6/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
2-15  Create j01_STAN_COUNTRY_NAB 1/8. . . . . . . . . . . . . . . . . . . . . . . . 520
2-16  Create j01_STAN_COUNTRY_NAB 2/8. . . . . . . . . . . . . . . . . . . . . . . . 520
2-17  Create j01_STAN_COUNTRY_NAB 3/8. . . . . . . . . . . . . . . . . . . . . . . . 521
2-18  Create j01_STAN_COUNTRY_NAB 4/8. . . . . . . . . . . . . . . . . . . . . . . . 521
2-19  Create j01_STAN_COUNTRY_NAB 5/8. . . . . . . . . . . . . . . . . . . . . . . . 522
2-20  Create j01_STAN_COUNTRY_NAB 6/8. . . . . . . . . . . . . . . . . . . . . . . . 523
2-21  Create j01_STAN_COUNTRY_NAB 7/8. . . . . . . . . . . . . . . . . . . . . . . . 524
2-22  Create j01_STAN_COUNTRY_NAB 8/8. . . . . . . . . . . . . . . . . . . . . . . . 525
2-23  Create j02_INVCC_ISOCODE_NAB 1/8  . . . . . . . . . . . . . . . . . . . . . . . 527
2-24  Create j02_INVCC_ISOCODE_NAB 2/8  . . . . . . . . . . . . . . . . . . . . . . . 527
2-25  Create j02_INVCC_ISOCODE_NAB 3/8  . . . . . . . . . . . . . . . . . . . . . . . 528
2-26  Create j02_INVCC_ISOCODE_NAB 4/8  . . . . . . . . . . . . . . . . . . . . . . . 528
2-27  Create j02_INVCC_ISOCODE_NAB 5/8  . . . . . . . . . . . . . . . . . . . . . . . 529
2-28  Create j02_INVCC_ISOCODE_NAB 6/8  . . . . . . . . . . . . . . . . . . . . . . . 529
2-29  Create j02_INVCC_ISOCODE_NAB 7/8  . . . . . . . . . . . . . . . . . . . . . . . 529
2-30  Create j02_INVCD_ISOCODE_NAB 8/8  . . . . . . . . . . . . . . . . . . . . . . . 530
2-31  Create j03_STAN_XXPREP_NAB 1/13  . . . . . . . . . . . . . . . . . . . . . . . . 532
2-32  Create j03_STAN_XXPREP_NAB 2/13  . . . . . . . . . . . . . . . . . . . . . . . . 533
2-33  Create j03_STAN_XXPREP_NAB 3/13  . . . . . . . . . . . . . . . . . . . . . . . . 534
2-34  Create j03_STAN_XXPREP_NAB 4/13  . . . . . . . . . . . . . . . . . . . . . . . . 534
2-35  Create j03_STAN_XXPREP_NAB 5/13  . . . . . . . . . . . . . . . . . . . . . . . . 535
2-36  Create j03_STAN_XXPREP_NAB 6/13  . . . . . . . . . . . . . . . . . . . . . . . . 535
2-37  Create j03_STAN_XXPREP_NAB 7/13  . . . . . . . . . . . . . . . . . . . . . . . . 536
2-38  Create j03_STAN_XXPREP_NAB 8/13  . . . . . . . . . . . . . . . . . . . . . . . . 537
2-39  Create j03_STAN_XXPREP_NAB 9/13  . . . . . . . . . . . . . . . . . . . . . . . . 538
2-40  Create j03_STAN_XXPREP_NAB 10/13  . . . . . . . . . . . . . . . . . . . . . . . 538
2-41  Create j03_STAN_XXPREP_NAB 11/13  . . . . . . . . . . . . . . . . . . . . . . . 539
2-42  Create j03_STAN_XXPREP_NAB 12/13  . . . . . . . . . . . . . . . . . . . . . . . 540
2-43  Create j03_STAN_XXPREP_NAB 13/13  . . . . . . . . . . . . . . . . . . . . . . . 541
2-44  Create j04_INVCC_XXPREP_INPUT_PATTERN 1/38  . . . . . . . . . . . . 544
2-45  Create j04_INVCC_XXPREP_INPUT_PATTERN 2/38  . . . . . . . . . . . . 545
2-46  Create j04_INVCC_XXPREP_INPUT_PATTERN 3/38  . . . . . . . . . . . . 545
2-47  Create j04_INVCC_XXPREP_INPUT_PATTERN 4/38  . . . . . . . . . . . . 546
2-48  Create j04_INVCC_XXPREP_INPUT_PATTERN 5/38  . . . . . . . . . . . . 546
2-49  Create j04_INVCC_XXPREP_INPUT_PATTERN 6/38  . . . . . . . . . . . . 547

 

 

 

 

 Figures xxi



2-50  Create j04_INVCC_XXPREP_INPUT_PATTERN 7/38  . . . . . . . . . . . . 548
2-51  Create j04_INVCC_XXPREP_INPUT_PATTERN 8/38  . . . . . . . . . . . . 549
2-52  Create j04_INVCC_XXPREP_INPUT_PATTERN 9/38  . . . . . . . . . . . . 549
2-53  Create j04_INVCC_XXPREP_INPUT_PATTERN 10/38  . . . . . . . . . . . 550
2-54  Create j04_INVCC_XXPREP_INPUT_PATTERN 11/38  . . . . . . . . . . . 550
2-55  Create j04_INVCC_XXPREP_INPUT_PATTERN 12/38  . . . . . . . . . . . 551
2-56  Create j04_INVCC_XXPREP_INPUT_PATTERN 13/38  . . . . . . . . . . . 551
2-57  Create j04_INVCC_XXPREP_INPUT_PATTERN 14/38  . . . . . . . . . . . 552
2-58  Create j04_INVCC_XXPREP_INPUT_PATTERN 15/38  . . . . . . . . . . . 553
2-59  Create j04_INVCC_XXPREP_INPUT_PATTERN 16/38  . . . . . . . . . . . 554
2-60  Create j04_INVCC_XXPREP_INPUT_PATTERN 17/38  . . . . . . . . . . . 555
2-61  Create j04_INVCC_XXPREP_INPUT_PATTERN 18/38  . . . . . . . . . . . 556
2-62  Create j04_INVCC_XXPREP_INPUT_PATTERN 19/38  . . . . . . . . . . . 556
2-63  Create j04_INVCC_XXPREP_INPUT_PATTERN 20/38  . . . . . . . . . . . 557
2-64  Create j04_INVCC_XXPREP_INPUT_PATTERN 21/38  . . . . . . . . . . . 557
2-65  Create j04_INVCC_XXPREP_INPUT_PATTERN 22/38  . . . . . . . . . . . 558
2-66  Create j04_INVCC_XXPREP_INPUT_PATTERN 23/38  . . . . . . . . . . . 558
2-67  Create j04_INVCC_XXPREP_INPUT_PATTERN 24/38  . . . . . . . . . . . 559
2-68  Create j04_INVCC_XXPREP_INPUT_PATTERN 25/38  . . . . . . . . . . . 560
2-69  Create j04_INVCC_XXPREP_INPUT_PATTERN 26/38  . . . . . . . . . . . 561
2-70  Create j04_INVCC_XXPREP_INPUT_PATTERN 27/38  . . . . . . . . . . . 562
2-71  Create j04_INVCC_XXPREP_INPUT_PATTERN 28/38  . . . . . . . . . . . 563
2-72  Create j04_INVCC_XXPREP_INPUT_PATTERN 29/38  . . . . . . . . . . . 564
2-73  Create j04_INVCC_XXPREP_INPUT_PATTERN 30/38  . . . . . . . . . . . 565
2-74  Create j04_INVCC_XXPREP_INPUT_PATTERN 31/38  . . . . . . . . . . . 566
2-75  Create j04_INVCC_XXPREP_INPUT_PATTERN 32/38  . . . . . . . . . . . 567
2-76  Create j04_INVCC_XXPREP_INPUT_PATTERN 33/38  . . . . . . . . . . . 568
2-77  Create j04_INVCC_XXPREP_INPUT_PATTERN 34/38  . . . . . . . . . . . 569
2-78  Create j04_INVCC_XXPREP_INPUT_PATTERN 35/38  . . . . . . . . . . . 570
2-79  Create j04_INVCC_XXPREP_INPUT_PATTERN 36/38  . . . . . . . . . . . 570
2-80  Create j04_INVCC_XXPREP_INPUT_PATTERN 37/38  . . . . . . . . . . . 571
2-81  Create j04_INVCC_XXPREP_INPUT_PATTERN 38/38  . . . . . . . . . . . 572
2-82  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 1/8 . . . . 574
2-83  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 2/8 . . . . 575
2-84  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 3/8 . . . . 575
2-85  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 4/8 . . . . 576
2-86  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 5/8 . . . . 576
2-87  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 6/8 . . . . 577
2-88  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 7/8 . . . . 577
2-89  Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 8/8 . . . . 577
2-90  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 1/8 . . . . 579
2-91  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 2/8 . . . . 580
2-92  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 3/8 . . . . 580

 

 

 

 

xxii IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2-93  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 4/8 . . . . 581
2-94  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 5/8 . . . . 582
2-95  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 6/8 . . . . 583
2-96  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 7/8 . . . . 584
2-97  Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 8/8 . . . . 584
2-98  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 1/9. . . . . . . . 586
2-99  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 2/9. . . . . . . . 587
2-100  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 3/9. . . . . . . 587
2-101  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 4/9. . . . . . . 588
2-102  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 5/9. . . . . . . 589
2-103  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 6/9. . . . . . . 590
2-104  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 7/9. . . . . . . 591
2-105  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 8/9. . . . . . . 592
2-106  Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 9/9. . . . . . . 592
2-107  Create j05d_INVW_DRIVER_XXPREP 1/10  . . . . . . . . . . . . . . . . . . . 594
2-108  Create j05d_INVW_DRIVER_XXPREP 2/10  . . . . . . . . . . . . . . . . . . . 595
2-109  Create j05d_INVW_DRIVER_XXPREP 3/10  . . . . . . . . . . . . . . . . . . . 596
2-110  Create j05d_INVW_DRIVER_XXPREP 4/10  . . . . . . . . . . . . . . . . . . . 597
2-111  Create j05d_INVW_DRIVER_XXPREP 5/10  . . . . . . . . . . . . . . . . . . . 598
2-112  Create j05d_INVW_DRIVER_XXPREP 6/10  . . . . . . . . . . . . . . . . . . . 599
2-113  Create j05d_INVW_DRIVER_XXPREP 7/10  . . . . . . . . . . . . . . . . . . . 600
2-114  Create j05d_INVW_DRIVER_XXPREP 8/10  . . . . . . . . . . . . . . . . . . . 601
2-115  Create j05d_INVW_DRIVER_XXPREP 9/10  . . . . . . . . . . . . . . . . . . . 602
2-116  Create j05d_INVW_DRIVER_XXPREP 10/10  . . . . . . . . . . . . . . . . . . 602
2-117  Create j05e_INVW_CUSTOMER_XXPREP 1/3 . . . . . . . . . . . . . . . . . 603
2-118  Create j05e_INVW_CUSTOMER_XXPREP 2/3 . . . . . . . . . . . . . . . . . 604
2-119  Create j05e_INVW_CUSTOMER_XXPREP 3/3 . . . . . . . . . . . . . . . . . 605
2-120  Create j06_XXPREP_CASS 1/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
2-121  Create j06_XXPREP_CASS 2/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
2-122  Create j06_XXPREP_CASS 3/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
2-123  Create j06_XXPREP_CASS 4/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
2-124  Create j06_XXPREP_CASS 5/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
2-125  Create j06_XXPREP_CASS 6/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
2-126  Create j06_XXPREP_CASS 7/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
2-127  Create j06_XXPREP_CASS 8/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
2-128  Create j06_XXPREP_CASS 9/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
2-129  Create j06_XXPREP_CASS 10/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
2-130  Create j06_XXPREP_CASS 11/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
2-131  Create j06_XXPREP_CASS 12/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
2-132  Create j07_INVCC_CASS 1/7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
2-133  Create j07_INVCC_CASS 2/7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
2-134  Create j07_INVCC_CASS 3/7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
2-135  Create j07_INVCC_CASS 4/7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

 

 

 

 

 Figures xxiii



2-136  Create j07_INVCC_CASS 5/7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
2-137  Create j07_INVCC_CASS 6/7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
2-138  Create j07_INVCC_CASS 7/7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
2-139  Create j08_USPREP_CASS 1/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
2-140  Create j08_USPREP_CASS 2/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
2-141  Create j08_USPREP_CASS 3/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
2-142  Create j08_USPREP_CASS 4/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
2-143  Create j08_USPREP_CASS 5/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
2-144  Create j08_USPREP_CASS 6/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
2-145  Create j08_USPREP_CASS 7/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
2-146  Create j08_USPREP_CASS 8/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
2-147  Create j08_USPREP_CASS 9/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
2-148  Create j08_USPREP_CASS 10/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
2-149  Create j08_USPREP_CASS 11/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
2-150  Create j08_USPREP_CASS 12/12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
2-151  Create j09_STAN_CASS 1/7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
2-152  Create j09_STAN_CASS 2/7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
2-153  Create j09_STAN_CASS 3/7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
2-154  Create j09_STAN_CASS 4/7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
2-155  Create j09_STAN_CASS 5/7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
2-156  Create j09_STAN_CASS 6/7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
2-157  Create j09_STAN_CASS 7/7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
2-158  Create j10a_INVCC_CUSTOMER_XXPREP_STAN 1/4 . . . . . . . . . . 639
2-159  Create j10a_INVCC_CUSTOMER_XXPREP_STAN 2/4 . . . . . . . . . . 639
2-160  Create j10a_INVCC_CUSTOMER_XXPREP_STAN 3/4 . . . . . . . . . . 640
2-161  Create j10a_INVCC_CUSTOMER_XXPREP_STAN 4/4 . . . . . . . . . . 640
2-162  Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 

1/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
2-163  Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 

2/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
2-164  Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 

3/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
2-165  Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 

4/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
2-166  Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 

5/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
2-167  Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 

6/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
2-168  Create 

j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 1/5 . 
646

2-169  Create 
j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 2/5 . 

 

 

 

 

xxiv IBM WebSphere QualityStage Methodologies, Standardization, and Matching



646
2-170  Create 

j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 3/5 . 
647

2-171  Create 
j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 4/5 . 
647

2-172  Create 
j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 5/5 . 
647

2-173  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 1/8
649

2-174  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 2/8
649

2-175  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 3/8
650

2-176  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 4/8
650

2-177  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 5/8
651

2-178  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 6/8
651

2-179  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 7/8
651

2-180  Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 8/8
651

2-181  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 1/9. . . . . . . . 653
2-182  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 2/9. . . . . . . . 654
2-183  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 3/9. . . . . . . . 654
2-184  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 4/9. . . . . . . . 655
2-185  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 5/9. . . . . . . . 655
2-186  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 6/9. . . . . . . . 656
2-187  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 7/9. . . . . . . . 656
2-188  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 8/9. . . . . . . . 657
2-189  Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 9/9. . . . . . . . 657
2-190  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 1/16  . . . . . . . . . 659
2-191  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 2/16  . . . . . . . . . 660
2-192  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 3/16  . . . . . . . . . 661
2-193  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 4/16  . . . . . . . . . 662
2-194  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 5/16  . . . . . . . . . 663
2-195  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 6/16  . . . . . . . . . 664
2-196  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 7/16  . . . . . . . . . 665
2-197  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 8/16  . . . . . . . . . 666

 

 

 

 

 Figures xxv



2-198  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 9/16  . . . . . . . . . 667
2-199  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 10/16  . . . . . . . . 668
2-200  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 11/16  . . . . . . . . 669
2-201  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 12/16  . . . . . . . . 670
2-202  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 13/16  . . . . . . . . 671
2-203  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 14/16  . . . . . . . . 672
2-204  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 15/16  . . . . . . . . 673
2-205  Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 16/16  . . . . . . . . 674
2-206  Create j12_JOIN_NAB_WORK_AND_HOME 1/12  . . . . . . . . . . . . . . 676
2-207  Create j12_JOIN_NAB_WORK_AND_HOME 2/12  . . . . . . . . . . . . . . 677
2-208  Create j12_JOIN_NAB_WORK_AND_HOME 3/12  . . . . . . . . . . . . . . 678
2-209  Create j12_JOIN_NAB_WORK_AND_HOME 4/12  . . . . . . . . . . . . . . 679
2-210  Create j12_JOIN_NAB_WORK_AND_HOME 5/12  . . . . . . . . . . . . . . 680
2-211  Create j12_JOIN_NAB_WORK_AND_HOME 6/12  . . . . . . . . . . . . . . 681
2-212  Create j12_JOIN_NAB_WORK_AND_HOME 7/12  . . . . . . . . . . . . . . 682
2-213  Create j12_JOIN_NAB_WORK_AND_HOME 8/12  . . . . . . . . . . . . . . 683
2-214  Create j12_JOIN_NAB_WORK_AND_HOME 9/12  . . . . . . . . . . . . . . 684
2-215  Create j12_JOIN_NAB_WORK_AND_HOME 10/12  . . . . . . . . . . . . . 685
2-216  Create j12_JOIN_NAB_WORK_AND_HOME 11/12  . . . . . . . . . . . . . 686
2-217  Create j12_JOIN_NAB_WORK_AND_HOME 12/12  . . . . . . . . . . . . . 687
2-218  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 1/17 . . . . . . . . . 689
2-219  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 2/17 . . . . . . . . . 690
2-220  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 3/17 . . . . . . . . . 691
2-221  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 4/17 . . . . . . . . . 692
2-222  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 5/17 . . . . . . . . . 693
2-223  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 6/17 . . . . . . . . . 694
2-224  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 7/17 . . . . . . . . . 695
2-225  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 8/17 . . . . . . . . . 696
2-226  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 9/17 . . . . . . . . . 697
2-227  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 10/17 . . . . . . . . 698
2-228  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 11/17 . . . . . . . . 699
2-229  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 12/17 . . . . . . . . 700
2-230  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 13/17 . . . . . . . . 701
2-231  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 14/17 . . . . . . . . 702
2-232  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 15/17 . . . . . . . . 703
2-233  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 16/17 . . . . . . . . 704
2-234  Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 17/17 . . . . . . . . 705
2-235  Create j14_FUNNEL_NAB_DATA_FOR_CRM  . . . . . . . . . . . . . . . . . 706
2-236  Create j00_SRC_NCB 1/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
2-237  Create j00_SRC_NCB 2/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
2-238  Create j00_SRC_NCB 3/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
2-239  Create j00_SRC_NCB 4/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
2-240  Create j00_SRC_NCB 5/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

 

 

 

 

xxvi IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2-241  Create j00_SRC_NCB 6/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
2-242  Create j00_SRC_NCB 7/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
2-243  Create j00_SRC_NCB 8/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
2-244  Create j00_SRC_NCB 9/9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
2-245  Create j01_STAN_COUNTRY_NCB 1/8. . . . . . . . . . . . . . . . . . . . . . . 720
2-246  Create j01_STAN_COUNTRY_NCB 2/8. . . . . . . . . . . . . . . . . . . . . . . 721
2-247  Create j01_STAN_COUNTRY_NCB 3/8. . . . . . . . . . . . . . . . . . . . . . . 721
2-248  Create j01_STAN_COUNTRY_NCB 4/8. . . . . . . . . . . . . . . . . . . . . . . 722
2-249  Create j01_STAN_COUNTRY_NCB 5/8. . . . . . . . . . . . . . . . . . . . . . . 723
2-250  Create j01_STAN_COUNTRY_NCB 6/8. . . . . . . . . . . . . . . . . . . . . . . 724
2-251  Create j01_STAN_COUNTRY_NCB 7/8. . . . . . . . . . . . . . . . . . . . . . . 725
2-252  Create j01_STAN_COUNTRY_NCB 8/8. . . . . . . . . . . . . . . . . . . . . . . 726
2-253  Create j02_INVCD_ISOCODE_NCB 1/5  . . . . . . . . . . . . . . . . . . . . . . 727
2-254  Create j02_INVCD_ISOCODE_NCB 2/5  . . . . . . . . . . . . . . . . . . . . . . 728
2-255  Create j02_INVCD_ISOCODE_NCB 3/5  . . . . . . . . . . . . . . . . . . . . . . 728
2-256  Create j02_INVCD_ISOCODE_NCB 4/5  . . . . . . . . . . . . . . . . . . . . . . 728
2-257  Create j02_INVCD_ISOCODE_NCB 5/5  . . . . . . . . . . . . . . . . . . . . . . 729
2-258  Create j03_STAN_USPREP_NCB 1/8 . . . . . . . . . . . . . . . . . . . . . . . . 730
2-259  Create j03_STAN_USPREP_NCB 2/8 . . . . . . . . . . . . . . . . . . . . . . . . 730
2-260  Create j03_STAN_USPREP_NCB 3/8 . . . . . . . . . . . . . . . . . . . . . . . . 731
2-261  Create j03_STAN_USPREP_NCB 4/8 . . . . . . . . . . . . . . . . . . . . . . . . 731
2-262  Create j03_STAN_USPREP_NCB 5/8 . . . . . . . . . . . . . . . . . . . . . . . . 732
2-263  Create j03_STAN_USPREP_NCB 6/8 . . . . . . . . . . . . . . . . . . . . . . . . 733
2-264  Create j03_STAN_USPREP_NCB 7/8 . . . . . . . . . . . . . . . . . . . . . . . . 734
2-265  Create j03_STAN_USPREP_NCB 8/8 . . . . . . . . . . . . . . . . . . . . . . . . 735
2-266  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 1/8  . . . . . . . 737
2-267  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 2/8  . . . . . . . 737
2-268  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 3/8  . . . . . . . 738
2-269  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 4/8  . . . . . . . 738
2-270  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 5/8  . . . . . . . 739
2-271  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 6/8  . . . . . . . 740
2-272  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 7/8  . . . . . . . 741
2-273  Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 8/8  . . . . . . . 742
2-274  Create j05_CASS_USPREP_NCB 1/11 . . . . . . . . . . . . . . . . . . . . . . . 743
2-275  Create j05_CASS_USPREP_NCB 2/11 . . . . . . . . . . . . . . . . . . . . . . . 744
2-276  Create j05_CASS_USPREP_NCB 3/11 . . . . . . . . . . . . . . . . . . . . . . . 744
2-277  Create j05_CASS_USPREP_NCB 4/11 . . . . . . . . . . . . . . . . . . . . . . . 745
2-278  Create j05_CASS_USPREP_NCB 5/11 . . . . . . . . . . . . . . . . . . . . . . . 746
2-279  Create j05_CASS_USPREP_NCB 6/11 . . . . . . . . . . . . . . . . . . . . . . . 747
2-280  Create j05_CASS_USPREP_NCB 7/11 . . . . . . . . . . . . . . . . . . . . . . . 748
2-281  Create j05_CASS_USPREP_NCB 8/11 . . . . . . . . . . . . . . . . . . . . . . . 749
2-282  Create j05_CASS_USPREP_NCB 9/11 . . . . . . . . . . . . . . . . . . . . . . . 750
2-283  Create j05_CASS_USPREP_NCB 10/11 . . . . . . . . . . . . . . . . . . . . . . 751

 

 

 

 

 Figures xxvii



2-284  Create j05_CASS_USPREP_NCB 11/11 . . . . . . . . . . . . . . . . . . . . . . 752
2-285  Create j06_INVCC_CASS_NCB 1/5 . . . . . . . . . . . . . . . . . . . . . . . . . . 753
2-286  Create j06_INVCC_CASS_NCB 2/5 . . . . . . . . . . . . . . . . . . . . . . . . . . 754
2-287  Create j06_INVCC_CASS_NCB 3/5 . . . . . . . . . . . . . . . . . . . . . . . . . . 754
2-288  Create j06_INVCC_CASS_NCB 4/5 . . . . . . . . . . . . . . . . . . . . . . . . . . 755
2-289  Create j06_INVCC_CASS_NCB 5/5 . . . . . . . . . . . . . . . . . . . . . . . . . . 755
2-290  Create j07_PREP_CASS_NCB 1/7  . . . . . . . . . . . . . . . . . . . . . . . . . . 757
2-291  Create j07_PREP_CASS_NCB 2/7  . . . . . . . . . . . . . . . . . . . . . . . . . . 758
2-292  Create j07_PREP_CASS_NCB 3/7  . . . . . . . . . . . . . . . . . . . . . . . . . . 759
2-293  Create j07_PREP_CASS_NCB 4/7  . . . . . . . . . . . . . . . . . . . . . . . . . . 760
2-294  Create j07_PREP_CASS_NCB 5/7  . . . . . . . . . . . . . . . . . . . . . . . . . . 761
2-295  Create j07_PREP_CASS_NCB 6/7  . . . . . . . . . . . . . . . . . . . . . . . . . . 762
2-296  Create j07_PREP_CASS_NCB 7/7  . . . . . . . . . . . . . . . . . . . . . . . . . . 763
2-297  Create j08_STAN_CASS_NCB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
2-298  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 1/11. . . . . . . 766
2-299  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 2/11. . . . . . . 766
2-300  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 3/11. . . . . . . 766
2-301  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 4/11. . . . . . . 767
2-302  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 5/11. . . . . . . 767
2-303  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 6/11. . . . . . . 767
2-304  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 7/11. . . . . . . 768
2-305  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 8/11. . . . . . . 768
2-306  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 9/11. . . . . . . 769
2-307  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 10/11. . . . . . 770
2-308  Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 11/11. . . . . . 771
2-309  Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 1/4  . . . . . . 772
2-310  Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 2/4  . . . . . . 773
2-311  Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 3/4  . . . . . . 773
2-312  Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 4/4  . . . . . . 773
2-313  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 1/8 . . . . . . . . . . 774
2-314  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 2/8 . . . . . . . . . . 775
2-315  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 3/8 . . . . . . . . . . 776
2-316  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 4/8 . . . . . . . . . . 777
2-317  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 5/8 . . . . . . . . . . 778
2-318  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 6/8 . . . . . . . . . . 779
2-319  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 7/8 . . . . . . . . . . 780
2-320  Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 8/8 . . . . . . . . . . 781
2-321  Create j11_FUNNEL_NCB_DATA  . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
2-322  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 1/12 . . . . 786
2-323  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 2/12 . . . . 787
2-324  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 3/12 . . . . 788
2-325  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 4/12 . . . . 789
2-326  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 5/12 . . . . 790

 

 

 

 

xxviii IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2-327  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 6/12 . . . . 791
2-328  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 7/12 . . . . 792
2-329  Create J11_funnel_ncb_data 8/12  . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
2-330  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 9/12 . . . . 794
2-331  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 10/12 . . . 795
2-332  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 11/12 . . . 796
2-333  Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 12/12 . . . 797
2-334  Create j13_FUNNEL_NCB_NAB_CRM_DATA  . . . . . . . . . . . . . . . . . 798
2-335  Create j14_CRM_FREQUENCY 1/3. . . . . . . . . . . . . . . . . . . . . . . . . . 799
2-336  Create j14_CRM_FREQUENCY 2/3. . . . . . . . . . . . . . . . . . . . . . . . . . 800
2-337  Create j14_CRM_FREQUENCY 3/3. . . . . . . . . . . . . . . . . . . . . . . . . . 801
2-338  Create j14a_MATCHSPEC 1/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
2-339  Create j14a_MATCHSPEC 2/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
2-340  Create j14a_MATCHSPEC 3/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
2-341  Create j14a_MATCHSPEC 4/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806
2-342  Create j14a_MATCHSPEC 5/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
2-343  Create j14a_MATCHSPEC 6/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808
2-344  Create j14a_MATCHSPEC 7/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
2-345  Create j15_UNDUP_CRM 1/5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811
2-346  Create j15_UNDUP_CRM 2/5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
2-347  Create j15_UNDUP_CRM 3/5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
2-348  Create j15_UNDUP_CRM 4/5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
2-349  Create j15_UNDUP_CRM 5/5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
2-350  Create j16_SURVIVE_CRM 1/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
2-351  Create j16_SURVIVE_CRM 2/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2-352  Create j16_SURVIVE_CRM 3/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
2-353  Create j16_SURVIVE_CRM 4/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
2-354  Create j16_SURVIVE_CRM 5/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
2-355  Create j16_SURVIVE_CRM 6/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
2-356  Create j16_SURVIVE_CRM 7/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
2-357  Create j16_SURVIVE_CRM 8/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
2-358  Create j16_SURVIVE_CRM 9/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
2-359  Create j16_SURVIVE_CRM 10/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 820
2-360  Create j16_SURVIVE_CRM 11/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
2-361  Create j16_SURVIVE_CRM 12/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 821
2-362  Create j16_SURVIVE_CRM 13/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
2-363  Create j16_SURVIVE_CRM 14/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
2-364  Create j16_SURVIVE_CRM 15/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
2-365  Create j16_SURVIVE_CRM 16/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 823
2-366  Create j16_SURVIVE_CRM 17/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
2-367  Create j16_SURVIVE_CRM 18/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 824
2-368  Create j16_SURVIVE_CRM 19/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
2-369  Create j16_SURVIVE_CRM 20/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 825

 

 

 

 

 Figures xxix



2-370  Create j16_SURVIVE_CRM 21/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
2-371  Create j16_SURVIVE_CRM 22/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
2-372  Create j16_SURVIVE_CRM 23/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
2-373  Create j16_SURVIVE_CRM 24/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
2-374  Create j16_SURVIVE_CRM 25/25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 829
2-375  Create j17_FUNNEL_UNDUP_RES_DATA 1/4 . . . . . . . . . . . . . . . . . 830
2-376  Create j17_FUNNEL_UNDUP_RES_DATA 2/4 . . . . . . . . . . . . . . . . . 831
2-377  Create j17_FUNNEL_UNDUP_RES_DATA 3/4 . . . . . . . . . . . . . . . . . 832
2-378  Create j17_FUNNEL_UNDUP_RES_DATA 4/4 . . . . . . . . . . . . . . . . . 833
2-379  Create j18_CRM_DATA_TRANSFORM 1/14 . . . . . . . . . . . . . . . . . . . 835
2-380  Create j18_CRM_DATA_TRANSFORM 2/14 . . . . . . . . . . . . . . . . . . . 836
2-381  Create j18_CRM_DATA_TRANSFORM 3/14 . . . . . . . . . . . . . . . . . . . 837
2-382  Create j18_CRM_DATA_TRANSFORM 4/14 . . . . . . . . . . . . . . . . . . . 838
2-383  Create j18_CRM_DATA_TRANSFORM 5/14 . . . . . . . . . . . . . . . . . . . 839
2-384  Create j18_CRM_DATA_TRANSFORM 6/14 . . . . . . . . . . . . . . . . . . . 840
2-385  Create j18_CRM_DATA_TRANSFORM 7/14 . . . . . . . . . . . . . . . . . . . 841
2-386  Create j18_CRM_DATA_TRANSFORM 8/14 . . . . . . . . . . . . . . . . . . . 842
2-387  Create j18_CRM_DATA_TRANSFORM 9/14 . . . . . . . . . . . . . . . . . . . 843
2-388  Create j18_CRM_DATA_TRANSFORM 10/14 . . . . . . . . . . . . . . . . . . 844
2-389  Create j18_CRM_DATA_TRANSFORM 11/14 . . . . . . . . . . . . . . . . . . 845
2-390  Create j18_CRM_DATA_TRANSFORM 12/14 . . . . . . . . . . . . . . . . . . 846
2-391  Create j18_CRM_DATA_TRANSFORM 13/14 . . . . . . . . . . . . . . . . . . 847
2-392  Create j18_CRM_DATA_TRANSFORM 14/14 . . . . . . . . . . . . . . . . . . 848
A-1  IBM Information Server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861
A-2  Web console for setting up logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
A-3  Web console scheduling view creation. . . . . . . . . . . . . . . . . . . . . . . . . . 865
A-4  Web console logging report creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
A-5  Web console to administer users and groups. . . . . . . . . . . . . . . . . . . . . 867
A-6  Information Services in the SOA Reference Architecture. . . . . . . . . . . . 875
A-7  Steps in creating SOA services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
A-8  Partial contents of IBM Information Server application EAR file. . . . . . . 881

 

 

 

 

xxx IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Tables

1-1  Class and description associated with a token . . . . . . . . . . . . . . . . . . . . . 37
1-2  Metadata description versus data content  . . . . . . . . . . . . . . . . . . . . . . . . 43
1-3  Domain specific columns and their data content after preprocessing. . . . 44
1-4  Validation rule sets for the U.S.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1-5  Object types that override the standardize domain-preprocessor rule sets67
1-6  Designation of pattern ^+T  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1-7  Object types that override the standardize domain-specific rule sets . . . . 72
1-8  Guidelines for choosing a particular override method. . . . . . . . . . . . . . . . 77
1-9  WAVES processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1-10  Common comparisons and where they are used . . . . . . . . . . . . . . . . . . 95
1-11  Sample data to demonstrate Dependent and Independent Match . . . . 106
1-12  Techniques (commonly used survive rules) available. . . . . . . . . . . . . . 113
1-13  Duplicates representing the same individual. . . . . . . . . . . . . . . . . . . . . 114
1-14  Best record output of the Survive Stage . . . . . . . . . . . . . . . . . . . . . . . . 114
1-15  Number of characters in each column in a record group  . . . . . . . . . . . 117
2-1  Commonly encountered differences and potential actions . . . . . . . . . . . 489
2-2  Summary of differences between source and target and the action to be 

taken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
2-3  North American Bank information missing in the CRM data model  . . . . 507
2-4  Northern California Bank information missing in the CRM data model . . 507
2-5  Summary of differences between source and target core services and the 

action to be taken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
2-6  Missing information in source or target bank relating to core services and 

action to be taken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. xxxi



 

 

 

 

xxxii IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Examples

1-1  Classification table for the USPREP rule set  . . . . . . . . . . . . . . . . . . . . . . 33
1-2  Contents of the Dictionary table for the USPREP rule set  . . . . . . . . . . . . 63
A-1  The svcs.jar file contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
A-2  The soaprouter.war file contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
A-3  The soapbinding.jar file contents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
A-4  The ejbbinding.jar file contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
A-5  The soa-deployment.xml descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
A-6  BrokerageApp.ear file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
A-7  Information Server application.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
B-1  Fields in the tables in the Northern California Bank data model. . . . . . . 888
B-2  Fields in the tables in the North American Bank data model  . . . . . . . . . 897
B-3  VSAM file containing EMPLOYEE records. . . . . . . . . . . . . . . . . . . . . . . 903
B-4  Fields in the tables in the CRM data model  . . . . . . . . . . . . . . . . . . . . . . 904

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. xxxiii



 

 

 

 

xxxiv IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you. 

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. 

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. xxxv



Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business 
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked 
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), 
indicating US registered or common law trademarks owned by IBM at the time this information was 
published. Such trademarks may also be registered or common law trademarks in other countries. A current 
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

AIX®
DataStage®
DB2®
IBM®

InfoSphere™
MVS™
Rational®
Redbooks®

Redbooks (logo) ®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation 
and/or its affiliates.

SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in 
several other countries.

EJB, J2EE, Java, JDBC, JSP, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in 
the United States, other countries, or both.

Active Directory, Expression, Microsoft, SQL Server, and the Windows logo are trademarks of Microsoft 
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others. 

 

 

 

 

xxxvi IBM WebSphere QualityStage Methodologies, Standardization, and Matching

http://www.ibm.com/legal/copytrade.shtml


Preface

This IBM® Redbooks® publication documents the procedures for implementing 
IBM WebSphere® QualityStage and related technologies using a typical merger 
and acquisition financial services business scenario. 

It is aimed at IT architects, Information Management specialists, and Information 
Integration specialists who are responsible for developing IBM WebSphere 
QualityStage on a Red Hat Enterprise Linux® 4.0 platform.

The book offers a step-by-step approach to implementing IBM WebSphere 
QualityStage on Red Hat Enterprise Linux 4.0 platform accessing information 
that is stored on IBM z/OS® and IBM AIX® platforms. 

This book is organized as follows:

� Chapter 1, “IBM WebSphere QualityStage overview” on page 1 provides a 
detailed description of IBM WebSphere QualityStage, its architecture, 
configuration flow, and runtime flow.

� Chapter 2, “Financial services business scenario” on page 479 describes a 
step-by-step approach to implementing IBM WebSphere QualityStage on a 
Red Hat Enterprise Linux 4.0 platform using a typical merger and acquisition 
financial services business scenario that involves migration and data 
integration.

� Appendix A, “IBM Information Server overview” on page 857 provides a 
detailed description of IBM Information Server, its architecture, configuration 
flow, and runtime flow.

� Appendix B, “Code and scripts used in the financial services business 
scenario” on page 887 documents some of the code and scripts that are used 
in the migration and data integration business scenarios.

� Appendix C, “Additional material” on page 909 explains how to locate and 
download the additional materials that accompany this book.

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. xxxvii



The team that wrote this book

This book was produced by a team of specialists from around the world working 
at the International Technical Support Organization (ITSO), San Jose Center.

Nagraj Alur is a a Project Leader with the IBM ITSO, San Jose Center. He holds 
a master’s degree in computer science from the Indian Institute of Technology 
(IIT), Mumbai, India. He has more than 33 years of experience in database 
management systems (DBMSs) and has been a programmer, systems analyst, 
project leader, independent consultant, and researcher. His areas of expertise 
include DBMSs, data warehousing, distributed systems management, database 
performance, information integration, and client/server and Internet computing. 
He has written extensively on these subjects and has taught classes and 
presented at conferences all around the world. Before joining the ITSO in 
November 2001, he was on a two-year assignment from the Software Group to 
the IBM Almaden Research Center, where he worked on Data Links solutions 
and an eSourcing prototype.

Alok Kumar Jha is currently working as a BI Solution Architect in Industry 
Solutions at the IBM India Software Lab (ISL) in Bangalore. His expertise 
includes designing and developing BI Solutions across the verticals. He earned 
his MBA degree from FMS-IIRM, Jaipur, and masters in Statistics from Hindu 
College, Delhi University. He earned his bachelors in Statistics from Kirori Mal 
College, Delhi University. He has eight years of experience in Data 
Warehousing/BI. He has worked with IBM for the past four years. Prior to joining 
the ISL at IBM he worked at Cognizant Technology Solutions, iGate Global 
Solutions, and SPSS in various roles. Alok’s core area of expertise includes 
end-to-end Data Warehousing/BI. His skills include Dimensional Modeling, Data 
Integration (ETL, EII), Relational Database Reporting, Multidimensional 
Modeling and Analysis (OLAP), Data Mining, and Statistical Analysis. Alok has 
designed ETL processes that involved application data such as SAP® R/3 for 
designing and developing Profitability Analysis (CO-PA) for multidimensional 
analysis for different KPIs. He has worked extensively on different BI platforms, 
including DB2® Framework for Business Intelligence, Cognos Framework for 
Business Intelligence, Microsoft® Framework for Business Intelligence, SPSS, 
and SAS technologies.

Barry Rosen is currently serving as Director of Best Practices and Data 
Management in the Center of Excellence for Data Integration and a “champion” 
of Data Profiling, Data Quality, and Metadata at IBM. His past roles include 
Director of Enterprise Architecture/Data Warehousing, Technical Architect, and 
Principal Consultant. He holds a master’s degree in Engineering Management 
and Computer Information Systems from Northeastern University. Barry has 
designed, managed, and implemented multiple highly available, large scale 
transaction, data warehousing/mining and business intelligence solutions in 

 

 

 

 

xxxviii IBM WebSphere QualityStage Methodologies, Standardization, and Matching



various vertical market segments worldwide including financial, telecom, 
insurance, pharmaceutical and retail sectors. He has over 25 years of technical 
architecture and customer focused information management expertise. He has 
provided technical leadership for business system architecture and applications 
including ERP, CRM, and data warehousing. Barry has consulted on various 
complex, high-risk, time sensitive systems for companies such as Epsilon Data 
Management, Fidelity Investments, Wellington Management Company, Investors 
Bank and Trust, and Harte-Hanks Data Technologies.

Torben Skov is working as an IT Specialist within the IOD department in IBM 
Denmark. His current area of interest is the IBM WebSphere Information Server 
product suite focusing on QualityStage and DataStage®. Torben holds a Master 
of Science in Economics and Business Administration from the University of 
Southern Denmark, specializing in Organizational Theory and Operations 
Research. Torben has 10 years of experience in ETL and application 
development using the SAS System. Torben has for the past two years been 
working for IBM within the BI/IOD area. While working at IBM on previous 
assignments, Torben was engaged in projects at some of the largest companies 
within the telecommunication and agricultural sector of Denmark. The tasks 
include designing and developing a system for financial modelling, Project 
Manger for building a Web portal with secured content for the Agricultural 
Industry and Project Manager re-factoring a company-wide budgeting system 
using Web Services. 

Thanks to the following people for their contributions to this project:

Elizabeth Dial
Stewart Henna
Harald Smith
IBM Westbboro

Atul Chadha
Asim Singh
IBM Silicon Valley Laboratory, San Jose

Denis Vasconcelos
IBM Brazil 

 

 

 

 

 Preface xxxix



Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with 
specific products or solutions, while getting hands-on experience with 
leading-edge technologies. You will have the opportunity to team with IBM 
technical professionals, Business Partners, and Clients. 

Your efforts will help increase product acceptance and customer satisfaction. As 
a bonus, you will develop a network of contacts in IBM development labs, and 
increase your productivity and marketability. 

Find out more about the residency program, browse the residency index, and 
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about 
this book or other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 

 

 

 

xl IBM WebSphere QualityStage Methodologies, Standardization, and Matching

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


Chapter 1. IBM WebSphere 
QualityStage overview 

In this chapter, we provide an overview of IBM WebSphere QualityStage, its 
architecture, and the configuration and execution of its main functions. 

The topics that we cover in this chapter are:

� IBM WebSphere QualityStage overview
� IBM WebSphere QualityStage architecture
� IBM WebSphere QualityStage main functions
� IBM WebSphere QualityStage in a project context
� Investigate stage
� Standardize stage
� Match stage
� Survive stage
� Mailing list scenario

1
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 1



1.1  Introduction 

The data that drives today’s business systems often comes from a variety of 
sources and disparate data structures. As organizations grow, they retain old 
data systems and augment them with new and improved systems. Thus, data 
becomes difficult to manage and use, and a clear picture of a customer, product, 
or buying trend can be practically impossible to ascertain. 

Data quality can be broadly defined from a qualitative viewpoint as information 
that you can trust or ensuring that data at a particular point in time is suitable for 
its purpose. A more specific quantitative definition can include the level of 
compliance that is attained by an enterprise’s data environment to independently 
define rules that describe that data environment. The emphasis is on the 
business user’s perception of data quality—what is delivered to the user and the 
semantics of the data that is presented. In this case, data quality might well 
depend upon the data itself (such as correct data types, consistent formatting, 
retrievability, and usability) and the processes and applications that deliver this 
data to the business user. 

The source of data quality issues is a lack of common standards on how to store 
data and an inconsistency in how the data is input. Different business operations 
are often very creative with the data values that they introduce into your 
application environments. Inconsistency across sources makes understanding 
relationships between critical business entities such as customers and products 
very difficult. In many cases, there is no reliable and persistent key that you can 
use across the enterprise to get all the information that is associated with a 
single customer or product. 

Without high-quality data, strategic systems cannot match and integrate all 
related data to provide a complete view of the organization and the 
interrelationships within it. CIOs can no longer count on a return on the 
investments made in critical business applications. The solution calls for a 
product that can automatically re-engineer and match all types of customer, 
product, and enterprise data, in batch or at the transaction level in real time. 

Important: To assess and improve data quality, you need a concerted 
cooperative effort from a number of individuals such as subject matter experts 
(SME) and IT Data Analysts (DA) using state of the art tools and technologies. 
These tools and technologies need to assist an individual detect poor quality, 
fix poor quality data, identify the causes and entry points of poor quality data, 
develop processes to trap poor quality data at the point of origin, and then 
monitor the success of the efforts to improve data quality.

 

 

 

 

2 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



IBM Information Server addresses these requirements with an integrated 
software platform that provides the full spectrum of tools and technologies that 
are required to address data quality issues. These technologies include data 
profiling1 (IBM WebSphere Information Analyzer and IBM WebSphere 
AuditStage), data cleansing (IBM WebSphere QualityStage), and data movement 
and transformation (IBM WebSphere DataStage) as follows: 

� IBM WebSphere Information Analyzer (the focus of IBM WebSphere 
Information Analyzer and Data Quality Assessment, SG24-7508) is a new 
module of IBM Information Server that represents the next generation data 
profiling and analysis tool. It is designed to help business and data analysts 
understand the content, quality, and structure of their data sources by 
automating the data discovery process. The IBM WebSphere Information 
Analyzer product module helps increase the productivity of data personnel 
and improve return on investment (ROI) and time to benefit of data-intensive 
projects.

� IBM WebSphere DataStage (which will be covered in an upcoming IBM 
Redbooks publication) integrates data across multiple and high volumes of 
data sources and target applications. It integrates data on demand with a high 
performance parallel framework, extended metadata management, and 
enterprise connectivity. 

� IBM WebSphere QualityStage (the focus of this book) enables customers to 
use the following processes to make a significant impact in the data that 
drives an organization’s success.

– Investigation of source data to understand the nature, scope, and detail of 
data quality challenges. 

– Standardization to ensure that data is formatted and conforms to 
organization-wide specifications, including name and firm standards as 
well as address cleansing and verification. 

– Matching of data to identify duplicate records within and across data sets. 

– Survivorship to eliminate duplicate records and create the “best record 
view” of data.

1.2, “IBM WebSphere QualityStage overview” on page 4 provides further 
details about these processes. 

1  Data profiling is a data management practice that reveals the content, quality, and structure of the 
data. It is vital to the success of any business integration effort.

Note: For an overview of IBM Information Server, refer to:

http://www.ibm.com/software/data/integration/info_server/

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 3

http://www.ibm.com/software/data/integration/info_server/


In the following sections, we provide an overview of IBM WebSphere 
QualityStage, its architecture, main functions, project context, main components, 
and a mailing list scenario to showcase its main as well as commonly used 
features. 

1.2  IBM WebSphere QualityStage overview

As briefly introduced in 1.1, “Introduction” on page 2, the five types of issues that 
generally occur within enterprise data stores are as follows:

� Lack of information standards 

Names, addresses, part numbers, and other data are entered in inconsistent 
ways, particularly across different systems. These differences make records 
look different even when they are actually the same as shown in Figure 1-1, 
where Kate Roberts is represented in three different ways, with different 
address standards. 

Figure 1-1   Lack of information standards example

� Data surprises in individual fields

Data in a database is often misplaced, while in other cases some fields are 
used for multiple purposes. Figure 1-2 shows an example where the Name 
field contains company and address information, the Tax ID field contains 
telephone numbers, and the Telephone field has a variety of mistakes. This 
often leads to program and application errors and results in the 
mis-identification of key products and customers.

Figure 1-2   Data surprises in individual fields example

Kate A. Roberts   416 Columbus Ave #2, Boston, Mass 02116

Catherine Roberts Four sixteen Columbus APT2, Boston, MA 02116

Mrs. K. Roberts   416 Columbus Suite #2, Suffolk County 02116

Kate A. Roberts   416 Columbus Ave #2, Boston, Mass 02116

Catherine Roberts Four sixteen Columbus APT2, Boston, MA 02116

Mrs. K. Roberts   416 Columbus Suite #2, Suffolk County 02116

Name Tax ID Telephone

J Smith DBA Lime Cons. 228-02-1975   6173380300
Williams & Co. C/O Bill  025-37-1888   415-392-2000
1st Natl Provident 34-2671434 3380321
HP 15 State St. 508-466-1200  Orlando

Name Tax ID Telephone

J Smith DBA Lime Cons. 228-02-1975   6173380300
Williams & Co. C/O Bill  025-37-1888   415-392-2000
1st Natl Provident 34-2671434 3380321
HP 15 State St. 508-466-1200  Orlando

 

 

 

 

4 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Information is buried in free-form fields

In this case, valuable information is hidden away in text fields as shown in 
Figure 1-3. Because these fields are difficult to query using SQL, this 
information is often not taken advantage of, although it most likely has value 
to the business. This type of problem is common in product information and 
help desk case records. 

Figure 1-3   Information buried in free-form fields example

� Data myopia (our term for the lack of consistent identifiers across different 
systems)

Without adequate foreign-key relationships, it is impossible to get a complete 
view of information across systems. Figure 1-4 shows three products that look 
very different but that are actually the same.

Figure 1-4   Data myopia example

WING ASSY DRILL 4 HOLE USE 5J868A HEXBOLT 1/4 INCH

WING ASSEMBY, USE 5J868-A HEX BOLT .25” - DRILL FOUR HOLES

USE 4 5J868A BOLTS (HEX .25) - DRILL HOLES FOR EA ON WING ASSEM

RUDER, TAP 6 WHOLES, SECURE W/KL2301 RIVETS (10 CM)

WING ASSY DRILL 4 HOLE USE 5J868A HEXBOLT 1/4 INCH

WING ASSEMBY, USE 5J868-A HEX BOLT .25” - DRILL FOUR HOLES

USE 4 5J868A BOLTS (HEX .25) - DRILL HOLES FOR EA ON WING ASSEM

RUDER, TAP 6 WHOLES, SECURE W/KL2301 RIVETS (10 CM)

19-84-103 RS232 Cable 6' M-F CandS

CS-89641 6 ft. Cable Male-F, RS232 #87951

C&SUCH6 Male/Female 25 PIN 6 Foot Cable

19-84-103 RS232 Cable 6' M-F CandS

CS-89641 6 ft. Cable Male-F, RS232 #87951

C&SUCH6 Male/Female 25 PIN 6 Foot Cable

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 5



� Redundancy within individual tables

This issue is extremely common, where data is re-entered into systems 
because the data entry mechanism is not aware that the original record is 
already there. This issue is a common side effect of the lack of standards, but 
it is one of the worst data quality problems, because it links directly to costs 
and customer dissatisfaction. Figure 1-5 shows an example of redundant IBM 
information that is represented differently in a data store. 

Figure 1-5   Redundancy within individual tables example

IBM WebSphere QualityStage helps to identify and resolve all these issues for 
any type of data. It helps to ensure that systems deliver accurate and complete 
information to business users across the enterprise. IBM WebSphere 
QualityStage is a data re-engineering environment that is designed to help 
programmers, programmer analysts, business analysts, and others cleanse and 
enrich data to meet business objectives and data quality management standards. 

A process for re-engineering data can help accomplish the following goals:

� Resolve conflicting and ambiguous meanings for data values 

� Identify new or hidden attributes from free-form and loosely controlled source 
fields 

� Standardize data to make it easier to find 

� Identify duplication and relationships among such business entities as 
customers, prospects, vendors, suppliers, parts, locations, and events 

� Create one unique view of the business entity 

� Facilitate enrichment of re-engineered data, such as adding information from 
vendor sources or applying standard postal certification routines 

IBM WebSphere QualityStage provides data quality functions on an easy-to-use, 
design-as-you-think flow diagram, which allows data quality to be embedded in 
any information integration process. 

Note: You can use a data re-engineering process in batch or real time for 
continuous data quality improvement.

90328574 IBM 187 N.Pk. Str. Salem NH 01456
90328575 I.B.M. Inc. 187 N.Pk. St. Salem NH 01456
90238495 Int. Bus. Machines    187 No. Park St Salem NH 04156
90233479 International Bus. M. 187  Park Ave Salem NH 04156
90233489 Inter-Nation Consults 15 Main Street Andover MA 02341
90345672 I.B. Manufacturing    Park Blvd. Bostno MA  04106

90328574 IBM 187 N.Pk. Str. Salem NH 01456
90328575 I.B.M. Inc. 187 N.Pk. St. Salem NH 01456
90238495 Int. Bus. Machines    187 No. Park St Salem NH 04156
90233479 International Bus. M. 187  Park Ave Salem NH 04156
90233489 Inter-Nation Consults 15 Main Street Andover MA 02341
90345672 I.B. Manufacturing    Park Blvd. Bostno MA  04106

 

 

 

 

6 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



IBM WebSphere QualityStage data quality functions include:

� Free-form text investigation that allows you to recognize and parse out 
individual fields of data from free-form text

Investigation provides the ability to determine the number and frequency of 
the unique values found in either single-domain or free-form columns:

– For single-domain columns, the unique values can represent complete 
data values, partial data values (that is prefixes, suffixes, or substrings), 
simple data formats (alpha, numeric, blanks, or special characters), or 
combinations of values and simple data formats.

– Free-form columns often contain multiple (usually related) data elements 
such as person names, business names, or postal addresses. For 
free-form columns, the unique values can represent individual tokens 
(words) that are determined by parsing the free-form data or lexical 
patterns providing context to help understand the free-form data.

� Standardization that allows individual fields to be parsed and made uniform 
according to your own standards

Standardization provides the ability to normalize your information to defined 
standards. This incorporates the ability to parse free-form columns into 
single-domain data elements to create a consistent representation of the 
input data and to ensure data values conform to standard representation. 

� Address verification and correction that uses postal information to 
standardize, validate, and enrich address data

For addresses, standardization incorporates postal standards with delivered 
rule sets. It also prepares data elements for more effective matching.

� Record linkage and matching that allows duplicates to be identified from 
individual sources, and common records across sources to be identified and 
linked

The central strength of IBM WebSphere QualityStage is its ability to match 
data from different records, even when it appears very different. IBM 
WebSphere QualityStage utilizes a statistical matching technique called 
Probabilistic Record Linkage2 that provides the highest optimization of each 
contributing data element to a match and an unlimited number of elements for 
the highest confidence in your information. This matching allows each 
individual field score to be summed to produce a final score that precisely 
measures the information content of the matching fields. That final score, or 
match weight, is an accurate gauge of the probability of a match.

2  Probabilistic Record Linkage is familiar to computer science professionals who must perform highly 
precise matching when there is great liability and consequence from errors. This method evaluates 
each field, taking into account frequency, discriminating value, and data reliability, and produces a 
score that is a numerical representation of the amount of information that is produced by the single 
pair of values.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 7



Because of this ability to match records, IBM WebSphere QualityStage is a 
key enabler of creating a single view of customers or products.

� Survivorship that allows the best data from across different systems to be 
merged into a consolidated record

Survivorship is the process of aggregating or consolidating a group of records 
into a single unique representation of data, a single consolidated record for 
retaining the best of breed information from the given individual records.

Survivorship incorporates a flexible process of assessing data at the record or 
individual field level based on specific survivorship rules. These rules can 
include completeness of data, frequency of data, or logical conditions.

These capabilities of IBM WebSphere QualityStage support the re-engineering 
of data to meet complex business goals and challenges.

Note: The design of these matching rules is very important, because it 
determines which records are brought together. These match rules are 
designed using a visual, business-centric interface that provides instant 
feedback on match rule changes to allow the rules to be fine tuned quickly 
and easily.

Note: A key opportunity exists in these investigation and standardization 
phases to extend the reach of IBM WebSphere QualityStage with the addition 
of IBM Global Name Recognition (GNR).a The challenge is that 
representations of names vary dramatically according to the cultures from 
which they come. A cultural understanding of a name can go a great length 
towards the effective, accurate processing of client information. We do not 
discuss IBM Global Name Recognition in this book. For more information, see:

http://www.ibm.com/software/data/ips/products/masterdata/globalname/

a. A unique competitive advantage is achieved with the addition of IBM Global 
Name Recognition, the industry’s leading solution for comprehensive 
multi-cultural name genderization, cultural classification, parsing, recognition, 
and analysis. This unique solution is built upon years of extensive linguistic 
research and a knowledge base of approximately one billion names, 
representing over 200 countries from around the world. The result is a deeper 
understanding of multi-cultural names and the information that these names 
contain to increase business insight and further enhance the quality of data.

 

 

 

 

8 IBM WebSphere QualityStage Methodologies, Standardization, and Matching

http://www.ibm.com/software/data/ips/products/masterdata/globalname/


1.3  IBM WebSphere QualityStage architecture

IBM WebSphere QualityStage is built around a services-oriented vision for 
structuring data quality tasks that are used by many new enterprise system 
architectures. As part of the integrated IBM Information Server platform, it is 
supported by a broad range of shared services and benefits from the reuse of 
several suite components.

IBM WebSphere QualityStage (and IBM WebSphere DataStage) share the same 
infrastructure for importing and exporting data, for designing, deploying, and 
running jobs, and for reporting. The developer uses the same design canvas to 
specify the flow of data from preparation to transformation and delivery.

Multiple discrete services give IBM WebSphere QualityStage the flexibility to 
match increasingly varied customer environments and tiered architectures. 
Figure 1-6 on page 10 shows how IBM WebSphere QualityStage Designer 
(labeled Development interface) interacts with other elements of the IBM 
Information Server platform to deliver enterprise data analysis services.

Attention: In this book, we do not cover all the functions and features of IBM 
WebSphere QualityStage. Refer to the resources that are described in 
“Related publications” on page 911 for more details about IBM WebSphere 
QualityStage.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 9



Figure 1-6   IBM Information Server architecture

With reference to Figure 1-6, the following suite components are shared between 
IBM WebSphere QualityStage and IBM Information Server:

� Unified user interface

The IBM WebSphere DataStage and QualityStage Designer provides a 
development environment. The IBM WebSphere DataStage and QualityStage 
Administrator provides access to deployment and administrative functions. 
IBM WebSphere QualityStage is integrated tightly with IBM WebSphere 
DataStage and shares the same design canvas, which enables users to 
design jobs with data transformation stages and data quality stages in the 
same session.

� Common services

IBM WebSphere QualityStage uses the common services in IBM Information 
Server for logging and security. Because metadata is shared “live” across 

DevelopersSubject Matter Experts Data AnalystsBusiness Users Architects DBAs

Analysis
Interface

Web Admin
Interface

Development
Interface

UNIFIED USER INTERFACE

UNIFIED
METADATA
WebSphere
Metadata

Server

Design

Operational

COMMON CONNECTIVITY

Structured, Unstructured, Applications, Mainframe

COMMON SERVICES

Metadata
Services

Security
Services

Logging &
Reporting
Services

Unified
Service

Deployment
(WebSphere
Information

Services
Director)

User
community

UNIFIED PARALLEL PROCESSING

Synchronize, virtualize, 
and move information 

for in-line delivery

WebSphere Federation Server

DELIVER

Discover, model 
and govern information
structure and content

WebSphere Information Analyzer
WebSphere Business Glossary

UNDERSTAND

Standardize, merge
and correct 
information

WebSphere QualityStage

CLEANSE

Combine and restructure 
information 

for new users

WebSphere DataStage

TRANSFORM & MOVE

 

 

 

 

10 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



tools, you can access services such as impact analysis without leaving the 
design environment. You can also access domain-specific services for 
enterprise data cleansing such as investigate, standardize, match, and 
survive from this layer.

� Common repository

The repository holds data to be shared by multiple projects. Clients can 
access metadata and results of data analysis from the respective service 
layers.

� Common parallel processing engine

The parallel processing engine addresses high throughput requirements for 
analyzing large quantities of source data and handling increasing volumes of 
work in decreasing time frames.

� Common connectors

Any data source that is supported by IBM Information Server can be used as 
input to a IBM WebSphere QualityStage job by using connectors. The 
connectors also enable access to the common repository from the processing 
engine.

IBM WebSphere QualityStage uses one or more of the stages shown in 
Figure 1-7 to improve an organization’s data quality.

Figure 1-7   IBM WebSphere QualityStage process overview

The main functions are investigate, standardize, match, and survive as follows: 

� Investigate source data to understand the nature, scope, and detail of data 
quality challenges. 

� Standardize data to ensure that it is formatted and conforms to 
organization-wide specifications including name and firm standards as well as 
address cleansing and verification. Investigate can be used to assess the 

MatchInvestigate SurviveStandardize

IBM WebSphere QualityStage
Target system

(such as
Master Data

Or
Data Warehouse)

Compare source data against 
other files or master for 

duplicationsSource data
(databases & files)

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 11



effectiveness of Standardize. The standard rules can then be augmented to 
improve the Standardize data.

� Match data to identify duplicate records within and across data sets. 

� Survive appropriate data by eliminating duplicate records and creating the 
best record view of data. 

IBM WebSphere QualityStage comprises a set of stages, a Match Designer, and 
related capabilities that provide a development environment for building 
data-cleansing tasks called jobs. The IBM WebSphere QualityStage components 
include the Match Designer for designing and testing match passes and the IBM 
WebSphere QualityStage stage types, including Investigate, Standardize, Match 
Frequency, Reference Match, Unduplicate Match, and Survive. (This is not a 
comprehensive list.)

When a IBM WebSphere QualityStage job is compiled, the Designer (client) 
transfers the logic (developed on the client) to the Server. On execution, the IBM 
WebSphere QualityStage load modules perform the actual data engineering 
tasks such as investigate, standardize, matching, and survive. These load 
modules operate through control parameter statements that are passed to the 
modules during processing. Each IBM WebSphere QualityStage operation is 
referred to as a stage. Complex data engineering tasks can be performed by 
linking individual stages together in a job comprising multiple job steps or stages.

1.4  IBM WebSphere QualityStage main functions

IBM WebSphere QualityStage comes with customizable rules to prepare 
complex information about your business entities for a variety of transactional, 
operational, and analytical purposes. 

IBM WebSphere QualityStage automates the conversion of data into verified 
standard formats including the use of probabilistic matching, in which variables 
that are common to records (such as the given name, date of birth, or gender) 
are matched when unique identifiers are not available. 

IBM WebSphere QualityStage components include the Match Designer, for 
designing and testing match passes, and a set of data-cleansing operations 

Note: Using IBM WebSphere QualityStage in batch mode allows for the bulk 
processing of data. IBM WebSphere QualityStage jobs can also be published 
as Web services through the WebSphere Information Services Director 
component of IBM Information Server. For more information, see SOA 
Solutions Using IBM Information Server, SG24-7402.

 

 

 

 

12 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



called stages. Information is extracted from the source system and then 
measured, cleansed, enriched, consolidated, and loaded into the target system. 
At run time, data cleansing jobs typically consist of the following sequence of 
stages: 

� Standardize stage parses free-form or fixed-format columns into 
single-domain data elements to create a consistent representation of the 
input data. This stage ensures that each data element has the same content 
and format and also standardizes spelling formats and abbreviations.

� Match stages ensure data integrity by linking records from one or more data 
sources that correspond to the same customer, supplier, or other entity. 
Matching can be used to identify duplicate entities that are caused by data 
entry variations or account-oriented business practices. For example:

– Unduplicate Match jobs group records into sets (within a single data set) 
that have similar attributes. 

– Reference Match stage matches reference data to source data between 
two data sets. 

The probabilistic matching capability and dynamic weighting strategies of IBM 
WebSphere QualityStage help you to create high-quality, accurate data and 
identify core business information consistently, such as customer, location, 
and product throughout the enterprise. IBM WebSphere QualityStage 
standardizes and matches any type of information.

� Survive stage ensures that the best available data survives and is 
consequently prepared for the target correctly.

Note: The Investigate stage is generally used as a development tool to 
obtain complete visibility into the actual condition of data prior to 
developing the data cleansing process. However, this stage could 
potentially be part of the data cleansing job after standardization to 
determine the effectiveness of standardization. It could also be used for 
checks and audits. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 13



Business intelligence packages that are available with IBM WebSphere 
QualityStage provide data enrichment that is based on business rules. These 
rules can resolve issues with common data quality problems such as invalid 
address fields throughout multiple geographies. The following packages are 
available: 

� Worldwide Address Verification and Enhancement System (WAVES) matches 
address data against standard postal reference data that helps you verify 
address information for 233 countries and regions. 

� Multinational geocoding is used for spatial information management and 
location-based services by adding longitude, latitude, and census information 
to location data. 

� Postal certification rules provide certified address verification and 
enhancement to address fields to enable mailers to meet the local 
requirements to qualify for postal discounts.

By ensuring data quality, IBM WebSphere QualityStage reduces the time and 
cost to implement CRM, business intelligence, ERP, and other strategic 
customer-related IT initiatives.

Some of the scenarios for data cleansing include: 

� Obtaining one view of households 

Knowing that your customers (stored in different source systems) belong to 
the same household (share the same mailing address) can facilitate 
marketing and mail campaigns.

� Obtaining a consolidated view of an entity

Knowing the total quarterly sales from the prescriptions of one doctor can 
help pharmaceutical companies effectively market to them. This information 
needs to be extracted and consolidated from existing systems with different 
standards and formats, including information buried in free-form fields, 
incorrect data values, discrepancies between field metadata and actual data 
in the field, and duplicates. 

� Obtaining a single real-time view of a customer

Customer Service Representatives (CSR) and customers using self-service 
portals require a single view of all their health, dental, and benefit plans with 
the insurance company. Typically, these plans are implemented in different 
systems, and the data resides in different sources in different formats. 

IBM WebSphere QualityStage performs the preparation stage of enterprise data 
integration, often referred to as data cleansing. IBM WebSphere QualityStage 
takes advantage of the source systems analysis that is performed by IBM 
WebSphere Information Analyzer and supports the transformation functions of 

 

 

 

 

14 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



IBM WebSphere DataStage. Working together, these products automate what 
was previously a manual or neglected activity within a data integration 
effort—data quality assurance. 

1.5  IBM WebSphere QualityStage in a project context

The design and development of an IBM WebSphere QualityStage process 
should always fit within the context of a broader project.

A data re-engineering development effort should be started only after a definitive 
project is identified and detailed project requirements are developed through a 
detailed Data Quality Assessment (DQA) review as described in IBM WebSphere 
Information Analyzer and Data Quality Assessment, SG24-7508. The 
deliverables created at the end of a DQA are used to define the scope of the data 
re-engineering engagement and to guide the design and development phases. 
Any necessary changes or additions to the DQA requirements and high-level 
design need to be reviewed with the business users and project management to 
determine the impact on project scope.

A data re-engineering effort is structured around a standard methodology for 
conducting data conditioning, standardization, matching, enrichment, 
survivorship, and output formatting for a given project. The project business 
requirements and target platform need to be defined and documented in the 
preceding DQA. The Investigate Stage of IBM WebSphere QualityStage is 
typically used in this context to fill out specific gaps in the DQA.

A typical project addresses a specific business initiative such as the integration of 
multiple (operations-oriented) line-of-business systems into a consolidated 

Attention: Before you can perform the various functions that are provided by 
IBM WebSphere QualityStage, you must set up your system. This setup 
involves the following tasks:

� Creating and opening an IBM WebSphere QualityStage project as 
described in 1.10.1, “Create a project” on page 121.

� Importing metadata as described in 1.10.3, “Import table definitions” on 
page 126.

� Creating a parameter set object as described in 1.10.4, “Create a 
parameter set object” on page 130.

� Configuring the project, establishing connectivity to a data source, 
configuring system resources, and setting up security. Most of these tasks 
are described in 1.10, “Mailing list scenario” on page 117.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 15



master data system. The new data structures can allow for a cross-reference or 
single representation of the targeted data. Using a project structure, the design, 
development, testing, and implementation of a data re-engineering effort using 
IBM WebSphere QualityStage follows well-defined project methodology to 
ensure accuracy and completeness. For example, existing systems that use 
account or policy numbers as primary keys typically do not allow for an easy and 
complete identification of all accounts and policies for a single unique customer. 
To further complicate record linkage, these data structures usually have different 
field formats or data quality levels. To link related records effectively, the systems 
must be re-engineered to restructure the data for matching and loading to the 
new target database.

The design of the data re-engineering process needs to account for the data 
sources and their data quality considerations as well as the target data structure. 
The development effort follows the design by only applying those techniques that 
are required to ensure that the project goals are met. Testing of the developed 
process needs to ensure that the results meet defined project expectations 
according to an established test plan. Production implementation needs to 
address standard considerations for process deployment and execution, as well 
as post-implementation assessment of results and success.

The following methods can be used in the data re-engineering process to 
restructure the data. The methods are usually performed in the order listed:

1. Source access or extraction*3

2. Conditioning

3. Standardization

4. Address verification*

5. Matching

6. Group association*

7. Survivorship*

8. Data enrichment* 

9. Output formatting 

10.Auditing the load process

We describe each of these methods briefly in the following sections.

3  An asterisk (*) indicates optional methods. Data enrichment can take place prior to matching to add 
additional match fields (for example, a Dun and Bradstreet number for organization matching).

 

 

 

 

16 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1.5.1  Source access or extraction (optional)

An extract process might be needed from specific systems, depending on the 
type of data to integrate and re-engineer. Existing mainframe systems or 
production systems that require high-availability are examples where extraction 
is recommended. 

The extract process needs to pull all fields (as defined by the logical data model 
for the existing systems) to create an extract or staged file. This process should, 
when possible, ensure the removal of all binary or non-printable characters. Data 
extracts can be tagged with individual line of business identifiers. The extract 
procedure can be created and executed by the resources that are responsible for 
the maintenance of the source applications to ensure accurate data mapping. 
Whenever possible, a common input data format needs to be created to facilitate 
the input of additional data sources in the future.

As an ongoing process, records can be extracted either by:

� Comparing complete extracts to determine Add, Change, or Delete record 
types.

� Capture Add, Change, or Delete record types for each of the existing systems 
through existing fields and processes (that is, change date fields) or acquired 
third-party software.

� Some combination of these two methods.

Extraction is handled in IBM WebSphere QualityStage through standard 
connectivity stages. Such a discussion is beyond the scope of this book.

When possible, a common layout needs to be used for all input sources. This 
layout facilitates the introduction of new sources and simplifies future executions 
when some input sources might not produce an input file. These extract files can 
then be joined together easily for processing. 

Each extract file must contain a Source ID, usually one or two bytes, that uniquely 
identifies the source from which that input originated. If available, each input 
needs to also contain a unique source record key that can be used to trace a 
single record from the source system to the target data source. This source input 
key is important for quality assurance and audit tracking, cross-reference file 
creation, and for identifying Add, Change, or Delete records (if necessary). 

The extract process must also filter out rows and columns that are invalid or 
unnecessary for the matching and load requirements. When in doubt, however, 
extract a given row or column, and filter it out later. Changes to the extract files 
later in the development phase results in rework of the layout definitions, coding, 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 17



and testing. This rework can result in project timeline delays when the IBM 
WebSphere QualityStage development has begun.

Typically, only the most recent information for a given source key needs to be 
extracted. Transaction and history processing must be captured in the source 
systems and data warehouse and not introduced into the data re-engineering 
application. In general, you need to perform entity matching only on the most 
recent data available for all records, with prior record versions used only to 
identify add, change, or deleted records.

1.5.2  Conditioning

The conditioning process decomposes the input data to its lowest common 
denominators, based on specific data value occurrences. It then identifies and 
types the component data properly in terms of its business meaning and value. 

Data conditioning is performed on name, address, and other data elements that 
were determined through the DQA phase to contribute value to the entity 
integrity. Additional fields can also be created to condition some data for loading 
the target data structures only. These fields add value to the target data 
structures but are of no value to the matching process. The conditioning process 
can consist of multiple modular steps to identify and separate the input data or 
record into the following categories:

� Country of origin (U.S., Canada, U.K., and so forth.)

� Domain (Name, Address, Area)

� Separate domain-specific parsers (Name only, Address only, Area only, and 
so forth.)

The conditioning process is performed on each individual record and can be set 
up to run in multiple streams.

Conditioning utilizes a specific Standardize stage with the goal of decomposing 
complex data. For example, the pre-built Country rule set conditions name and 
address data based on country of origin.

1.5.3  Standardization

Standardization of the data removes anomalies and standardizes spellings, 
abbreviations, punctuation, and logical structures (domains). This process is 
performed after the conditioning process has determined the proper domain and 
parsed the data (if necessary) into its proper lowest common denominator. This 
timing is critical. For example, a value such as North can have multiple meanings 
and should be standardized only to N when it is identified as a directional value 

 

 

 

 

18 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



and not when it is determined to be a street name or the middle initial of a 
personal name. 

As a result, Standardization usually occurs in the domain-specific parsing 
procedures which also use the Standardize stage.

1.5.4  Address verification (optional)

An address verification routine is usually an address look-up that uses postal 
files as reference files to check and standardize mailing and street address 
information. It is recommended that any data re-engineering application integrate 
country-specific, postal look-up processing into the data re-engineering job 
stream. 

This optional process improves and enhances the quality of the address 
information for downstream entity matching and load. If this verification effort is 
targeted around discounted mailing, then it must use a software component that 
is certified for the targeted country, for example, CASS in the U.S., SERP for 
Canada, and DPID for Australia.

1.5.5  Matching

After standardization and conditioning are accomplished, development of the 
entity level processing (such as the creation of a unique client ID) also called the 
match processing, begins. The objective of match processing is the 
establishment of entity-level relationships (client, household, vendor, product, or 
parts) across all input records, generating each record’s appropriate logical 
relationships. Unique entity keys are created to allow the organization to create 
entity-oriented views in addition to their existing operational views. The matching 
process can be set up to run independently for each defined entity relationship 
and can also be run in multiple parallel streams, depending on business rules.

This processing utilizes the IBM WebSphere QualityStage Match stage to 
perform the match or record linkage.

1.5.6  Group association (optional)

When two separate match processes are created using different match criteria, 
there might be a need to consolidate the Group (entity) IDs that are assigned by 
these distinct processes. The group association process performs this function. It 
reads in a unique record key and two Group IDs (one from each entity match) 
and outputs the unique record key and a consolidated Group ID. This 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 19



consolidated Group ID also includes any additional associative matches between 
the two match sets.

There are differing techniques that can be applied for such group association, 
which include the Match stage but can use other Aggregation or Join stages.

1.5.7  Survivorship (optional)

The survivorship process creates a single representation of an entity across 
business lines with the best of breed data.

This process can be performed at:

� The record level
� The logical domain level (that is, Name, Address, Product, and so forth)
� The field level
� Any combination of these levels

By storing survivorship records in the target data store for each match process, a 
common institutional representation of data can be viewed across the 
organization. In storing the data in this fashion, each of the lines of business can 
access data or other lines of business data efficiently and easily.

This process utilizes the Survive stage.

1.5.8  Data enrichment (optional)

Occasionally, an organization needs to add additional information to some input 
records to improve the amount and quality of data that is available in the target 
data store. This can include:

� Geocoding information, such as latitude and longitude coordinates

� Data propagation of an input field/fields from one entity record to another 
matched entity record whose fields do not contain that same information

� Third-party entity identifier references 

This data enrichment might require the use of the Match stage or a Lookup stage 
to add the additional data.

 

 

 

 

20 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1.5.9  Output formatting

Finally, the resultant records need to be formatted for load to the target data 
store. This might require the creation of multiple load files, reformatting of parsed 
fields, creation of unique table keys, and other load related issues. As with the 
initial access or extraction, it utilizes standard connectivity or load stages. A 
discussion of this topic is beyond the scope of this book.

1.5.10  Auditing the load process

Use an investigation tool such as IBM WebSphere Information Analyzer to profile 
and verify that the values that are entered in each field match the data mapping 
models, metadata descriptions, and field sizes for the target data structures.

Also trace a sampling of the input records from the extraction file to the load files 
to ensure that all business requirements have been followed. 

Finally, check the referential integrity within and between load files, based on 
Entity IDs and primary key fields, to identify duplicate primary keys that are 
flagged by the database load process as table key violations. This duplication 
usually occurs on records that have joint owners that are broken out into multiple 
records. The input information about the records might have conflicts that can 
cause them to be identified as the same individual (such as having the same Tax 
ID). Data entry errors such as these need to be identified and corrected in the 
source systems, because the data meets the match criteria or definition of a 
unique entity. If the data entered shows this type of situation, the source systems 
must be corrected, or primary key violations are flagged when loading the 
database, causing unpredictable results and a rapid degradation of the quality of 
the database over time.

1.6  Investigate stage

Understanding your data is a necessary precursor to cleansing and 
consolidation. You can use a data profiling product such as IBM WebSphere 
Information Analyzer to perform a comprehensive analysis across many columns 
and tables to create a direct input into the cleansing and matching process by 
using shared metadata. The Investigate stage supports the initial level of column 
or domain analysis and extends it through the analysis of free-form text fields to 
create this input.

The Investigate stage shows the actual condition of data in existing sources and 
identifies and corrects data problems before they corrupt new systems. 
Investigation parses and analyzes free-form fields creating patterns to reveal field 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 21



formats, counts unique values, and classifies, or assigns a business meaning to 
each occurrence of a value within a field. The Investigate stage also allows users 
to validate field contents in a specific column or domain. The actual full-volume 
data files must be investigated to assure that as many data anomalies as 
possible are identified. The Investigate stage involves performing one or more of 
the following functions:

� Parsing
� Classifying
� Creation of Word or Pattern Distributions

Specific objectives of the investigation process include, but are not limited to the 
following:

� Investigate data values and anomalies to be considered for special handling 
during design or development. Any recommended special handling is 
documented in a Business Requirements Document. Examples include:

– Out of range, default (such as all nines in the telephone number) or unique 
values. 

– Free-form text that requires parsing to improve “addressability” to key 
components for optimal matching. 

– Values that do not match metadata labels and require new field definitions 
for matching and load format (such as DBA, C/O, Attention text, drivers 
license numbers, or other comment information in a name or address 
field).

– Values that overlap adjacent fields and thus require a re-alignment of field 
content. For example, name information or city, state, and postal code that 
extend into street and mailing address fields.

– Invalid formats that can cause conversion problems such as alphanumeric 
in character or numeric only fields.

– Blank or missing data. 

– Special character and punctuation handling.

� Discover additional tokens (key words) to add to the classification table, such 
as name prefixes, name suffixes, street types, unit types, and business words.

� Verify the usefulness of data fields for the purpose of entity matching (record 
linkage). For example, does a Tax ID field contain primarily blank or invalid 
values, making it an unreliable field to use in the identification of a unique 
customer?

� Validate business requirements or assumptions about the data. Results can 
lead to changes in the business requirements and can assist in driving the 
technical solution.

 

 

 

 

22 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



The Investigate stage takes a single input, which can be a link from any database 
connector that is supported by IBM WebSphere DataStage, from a flat file or data 
set or from any processing stage. Inputs to the Investigate stage can be fixed 
length or variable.

Use of investigation (or data profiling) is critical to assess how data can be used 
for further steps of standardization, matching, and survivorship or consolidation. 
Data that is used in these additional steps is stored in two types of 
fields—single-domain and multiple-domain.

During the investigation process, it is important to document fields that require 
parsing and standardization, standardization only, or no standardization at all. 
You must also consider whether data content will be used for matching, 
survivorship, pass-through (static data) or whether it will not be carried forward 
into the new system or target database.

� Static fields

– Can be used in the matching process.

– Might require some standardization of format and default or out of range 
values.

– Typically re-joined with re-engineered data at prior to matching or load 
formatting.

 Character Investigate is usually sufficient to evaluate.

� Single-domain fields

– Categorized as either Entity Identifiers or Entity Clarifiers:

• Entity Identifiers 

Examples include ZIP Code (U.S. postal code), Social Security 
Number (SSN), TIN, and telephone numbers. These can serve as 
critical match fields if their quality is high. These fields typically have a 
specific format (such as 9-digit numeric for SSN, or 
Alpha-Numeric-Alpha-Numeric-Alpha-Numeric for Canadian postal 
code).

Character Discrete Investigate is commonly used, with the mask set to 
all Cs.

• Entity Clarifiers 

Examples include name prefix, gender, and marital status. This type of 
field usually has a limited number of known values.

Character Discrete Investigate is commonly used, with the mask set to 
all Ts.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 23



– Typically used for a single purpose.

– Can exist in several common formats.

– No parsing is usually necessary.

– Can serve as strong blocking and match fields if quality is high.

– Standardize Stage usually only requires removal of special characters, 
creation of a common default value and format and concatenating data.

11.Multiple-domain fields

– Typically these are large free-form fields such as multiple Address fields.

– Comprised of multiple single-domain values, such as house number, 
street name, unit, and first name.

– Intelligent parsing is required on these fields for optimal matching.

– Can serve as good match fields and multiple-component blocking 
candidates.

– Standardization requires removal of most special characters and strong 
data typing.

– Occasionally contain business word interference, such as reference 
numbers, comments, and so forth.

– Can contain additional relationships such as Attn, C/O, DBA, and Trustee.

Word Investigate is commonly used for multi-domain fields. 

We describe the Character Investigate and Word Investigate options in the 
following sections.

1.6.1  Character Investigate option

The Character Investigate option parses a single-domain field (one that contains 
one data element or token, such as SSN, telephone number, date, or ZIP code) 
to analyze and classify data. Character investigation provides you with the option 
of investigating multiple columns individually (Character Discrete) or integrated 
as one unit of data (Character Concatenate). 

The investigation process generates a column frequency report that presents 
information about frequency values for a specific column.

� Character Discrete Investigate 

The Character Discrete Investigate analyzes multiple single-domain columns. 
This option allows you to investigate a large number of columns with little 
effort. A Character Discrete Investigate produces a column frequency report 
that treats each column as a separate token for frequency count and analysis. 

 

 

 

 

24 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Character Concatenate Investigate 

The Character Concatenate Investigate option performs cross-column 
correlations between multiple columns to determine relationships. With this 
option, you select two or more columns from anywhere in the record (the 
columns do not have to be contiguous) to be investigated as a single data 
column. To create the pattern analysis, the tokens are concatenated with no 
spaces between the tokens.

The Character Investigate process generates a column frequency report that 
presents information about frequency values for a specific column. A pattern 
report is prepared for all types of investigations and displays the count, 
percentage of data that matches this pattern, the generated pattern, and sample 
data. This output can be presented in a wide range of formats to conform to 
standard reporting tools.

For character investigations, you use column masks to select the characters that 
are included in the frequency count or pattern analysis and the characters that 
are displayed as part of samples in the pattern report. You apply a mask symbol 
to each character in the selected columns. You can use the following mask 
characters:

� Mask C
Displays the character and includes it in the frequency count and pattern 
analysis. Use the C column mask to inspect the values in your columns and to 
certify that false data does not appear in a column such as 99999 for a postal 
code or 111111111 for a national ID number. 

� Mask T
Displays the type of character4 and includes the character in the frequency 
count and pattern analysis. Use the T column mask when you want to inspect 
the type of data in a character position, for example 9-digit telephone 
numbers such as nnn-nnn-nnnn or (nnn)-nnn-nnnn. 

� Mask X
Excludes the character in the frequency count or the pattern analysis; 
however, it includes it in the sample data. Use the X column mask to include 
data from the column in the sample but not as a token or part of the token for 
investigation. 

For example, you set up an Investigate job to analyze the first two characters 
of a ZIP code5 to determine the frequency distribution based on a state (each 
state is defined by the first two characters of the ZIP code). You set the 
column mask for the ZIP code to CCXXX. The qsInvPattern column of the 

4  The character “n” for numeric, “a” for alpha, “(“ for parenthesis, “-” for hyphen, and “b” for blank.
5  For details on the structure of a ZIP code, refer to:

http://en.wikipedia.org/wiki/ZIP_Code

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 25

http://en.wikipedia.org/wiki/ZIP_Code


pattern report (such as that shown in Figure 1-9 on page 27) displays only the 
first two characters. The frequency count is based on the number of records 
in the file that start with the first two characters of the ZIP code. In the 
qsInvSample column of the pattern report (such as that shown in Figure 1-9 
on page 27), you see all five characters of the ZIP code.

You can also use the X column mask with the Character Concatenate option 
to specify one or more columns to appear as part of the sample only. From 
the previous example, you can also select the state columns setting the 
column mask to X for all characters. The pattern report displays the frequency 
counts for the first two characters of the ZIP code and the full five characters 
of the ZIP code along with the state in the sample column.

Figure 1-8 through Figure 1-13 on page 30 show examples of Character Discrete 
and Character Concatenate options: 

� Character Discrete option with C mask

Figure 1-8 shows the specification of the C mask for three columns:

– EMAIL
– PHONE
– PCONTACT (preferred method of contact)

Figure 1-9 on page 27 shows the corresponding report for this specification. 

Figure 1-8   Specification of the C mask for discrete columns 

 

 

 

 

26 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-9   Frequency distribution report for discrete columns and the C mask

A brief description of the report shown in Figure 1-9 follows:

– qsInvColumnName identifies the names of the column that is investigated.

– qsInvPattern displays the character and includes the character in the 
frequency count and pattern analysis. 

– qsInvSample shows one or more samples of the content of this column. 
The number to be displayed is configurable. In Figure 1-9, the maximum 
number of samples requested was one. 

– qsInvCount shows the actual number of occurrences of the value in the 
qsInvPattern column.

– qsInvPercent shows the percentage occurrences of the value in the 
qsInvPattern column to the total number of records on this file. 

Note: You can configure Investigate to specify the number of samples 
of source data to include in the report for each pattern. You can also 
skip patterns that appear infrequently by specifying a frequency cutoff 
level. Patterns with frequencies under the specified frequency cutoff 
level do not appear in the report. This configuration is not shown here.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 27



� Character Discrete option with T mask

Figure 1-10 shows the specification of the T mask for the same three 
columns:

– EMAIL
– PHONE
– PCONTACT

Figure 1-11 on page 29 shows the corresponding report for this specification.

Figure 1-10   Specification of the T mask for discrete columns 

 

 

 

 

28 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-11   Frequency distribution with discrete columns and the T mask

The only difference in Figure 1-11 from the explanation of the report shown in 
Figure 1-9 on page 27 is that column qsInvPattern displays the type of 
character. As before, this character is included in the frequency count and 
pattern analysis. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 29



� Character Concatenate option with mix of C, T, and X masks

Figure 1-12 shows the specification of a mix of the C, T, and X masks for the 
same three columns:

– EMAIL
– PHONE
– PCONTACT

The objective of this investigation is to determine whether the preferred 
method of contact (PCONTACT column) when specified (not null or blank) 
has the corresponding contact information available. For example, if the 
preferred contact is using the telephone, then the PHONE column cannot be 
blank or null. Figure 1-13 shows the corresponding report for this 
specification.

Figure 1-12   Specification of the T, C, and X masks for concatenated columns

Figure 1-13   Frequency distribution report with the T, C, and X masks for concatenated columns

 

 

 

 

30 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



You can interpret the qsInvPattern column in report in Figure 1-13 on page 30 
as follows. If the middle pattern is not blank, it indicates the following preferred 
contact information:

– If the value is e, it indicates that the preferred contact method is using 
e-mail. Therefore, you need to verify that the first character in the 
qsInvPattern column is an “a,” which indicates that the first character in the 
EMAIL column is an alphabetic character. We assume that this alphabetic 
character means that an e-mail address is present but that it does not 
indicate that the e-mail address is valid.

– If the value is p, it indicates that the preferred contact method is using a 
telephone. Therefore, you need to verify that the first character in the 
qsInvPattern column is a parenthesis “(”, which indicates that the first 
character in the PHONE column is a left parenthesis. We assume that this 
parenthesis means that a 9-digit telephone number corresponding to the 
general format “(nnn) nnn nnnn” is present but that it does not indicate that 
the telephone number is valid.

1.6.2  Word Investigate option

The Word Investigation option parses free-form data fields into individual tokens 
and analyzes them to create patterns. For example, to create the patterns in 
address data, the Word Investigation option uses a set of rules for classifying 
personal names, business names, and addresses. The Word Investigation option 
also provides frequency counts on the tokens.

The Investigate stage provides pre-built rule sets for investigating patterns on 
names and postal addresses for a number of different countries.6 For example, 
for the U.S., the Investigate stage parses the following components: 

� USPREP 

Name, address, and area data. 

� USNAME 

Individual and organization names.

� USADDR

Street and mailing addresses. 

Note: Character Concatenate Investigate is particularly useful to 
investigate the output of Standardize to assess how effectively the rule sets 
used in Standardize worked on the data.

6  For information about managing rule sets refer to IBM WebSphere QualityStage Version 8 User 
Guide, SC18-9922.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 31



� USAREA 

City, state, ZIP code, and so on. 

The test field “123 St. Virginia St.” is analyzed in the following way: 

1. Field parsing would break the address into the individual tokens of 123, St., 
Virginia, and St. 

2. Lexical analysis determines the business significance of each piece: 

a. 123 = number 

b. St. = street type 

c. Virginia = alpha 

d. St. = Street type

3. Context analysis identifies the various data structures and content as 123 St. 
Virginia, St. 

a. 123 = House number 

b. St. Virginia = Street address 

c. St. = Street type 

When you specify Word Investigate, you select the rule by which you want the 
columns investigated and then select one or more columns to examine. 

Word Investigate parses the free-form data column into individual elements or 
tokens, which is a word, a number, or a mixture separated by one or more spaces 
or special characters. The process compares each token with classified tokens in 
the Classification table for that rule set. (Example 1-1 on page 33 shows partial 
contents of the Classification table of the USPREP rule set.) If the token matches 
the word in the Classification table, Investigate assigns the class for that token to 
represent it in the pattern. For tokens that do not match any classified token, 
Investigate examines the pattern and assigns classes as shown in the Table 1-1 
on page 37.

Note: You can gain valuable insight by browsing the Classification tables to 
determine the classification codes, as well as the different literals supported 
such as ZQMIXAZQ and ZQNAMEZQ.

 

 

 

 

32 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Example 1-1   Classification table for the USPREP rule set

.......... 
;-------------------------------------------------------------------------------
; USPREP Classification Table                                                   
;-------------------------------------------------------------------------------
; Classification Legend                                                         
;-------------------------------------------------------------------------------
; B - Box Types                                                                 
; C - Common Words (AND, OF, THE, etc.)                                         
; D - Directionals                                                              
; E - Name Indicators (MR, MRS, JR, SR, CORP, INC, etc.)                        
; F - First Names                                                               
; I - Initials (E, N, S, W are not included)                                    
; M - Tokens with multiple semantics (CO, FL, DR, etc.)                         
; S - States (includes military and territories)                                
; T - Street Types (includes rural routes and Puerto Rican urbanizations)       
; U - Unit Types (includes floors and buildings)                                
;-------------------------------------------------------------------------------
; Domain Masks                                                                  
;-------------------------------------------------------------------------------
; A - ADDRESS (Reserved Class)                                                  
; N - NAME    (Reserved Class)                                                  
; R - AREA    (Reserved Class)                                                  
;-------------------------------------------------------------------------------
; Meta Data Delimiters                                                          
;-------------------------------------------------------------------------------
; For all delimiters, input overrides are applied first.                        
; ZQPUTNZQ: automatically defaults the entire field to the Name Domain.         
; ZQMIXNZQ: field overrides and field modifications are applied, then it checks 
;           the field for name, address, and area data (in that order).         
;           Any information that is not assigned a domain is defaulted to Name. 
; ZQNAMEZQ: field overrides and field modifications are applied, then it checks 
;           for common Name patterns.  If not found, it checks for Address and  
;           Area patterns.  If not found, the field is defaulted to Name.       
; ZQPUTAZQ: automatically defaults the entire field to the Address Domain.      
; ZQMIXAZQ: field overrides and field modifications are applied, then it checks 
;           the field for name, address, and area data (in that order).         
;           Any information that is not assigned a domain is defaulted to Addres
; ZQADDRZQ: field overrides and field modifications are applied, then it checks 
;           for common Address patterns.  If not found, it checks for Name and  
;           Area patterns.  If not found, the field is defaulted to Address.    
; ZQPUTRZQ: automatically defaults the entire field to the Area Domain.         
; ZQMIXRZQ: field overrides and field modifications are applied, then it checks 
;           the field for name, address, and area data (in that order).         

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 33



;           Any information that is not assigned a domain is defaulted to Area. 
; ZQAREAZQ: field overrides and field modifications are applied, then it checks 
;           for common Area patterns.  If not found, it checks for Name and     
;           Address patterns.  If not found, the field is defaulted to Area.    
;-------------------------------------------------------------------------------
ZQADDRZQ                 DELIMITER                A                             
ZQMIXAZQ                 DELIMITER                A                             
ZQPUTAZQ                 DELIMITER                A                             
ZQNAMEZQ                 DELIMITER                N                             
ZQMIXNZQ                 DELIMITER                N                             
ZQPUTNZQ                 DELIMITER                N                             
ZQAREAZQ                 DELIMITER                R                             
ZQMIXRZQ                 DELIMITER                R                             
ZQPUTRZQ                 DELIMITER                R                             
;-------------------------------------------------------------------------------
CALLER                   "PO BOX"                 B                             
DRAW                     "PO BOX"                 B                             
.......
PODRAWER                 "PO BOX"                 B                             
POST                     "PO BOX"                 B                             
APARTADO                 APARTADO                 B                             
BO                       BOX                      B                             
.......
BOX                      B                             
BXO                      BOX                      B                             
BUZON                    BUZON                    B                             
MSC                      MSC                      B                             
PMB                      PMB                      B                             
AND                      AND                      C                             
OF                       OF                       C                             
THE                      THE                      C                             
E                        E                        D                             
EAST                     E                        D                             
.......
NO                       N                        D                             
NORTE                    N                        D                             
.......
NOROESTE                 NW                       D                             
NORTHWEST                NW                       D 850                         
NW                       NW                       D                             
S                        S                        D                             
........
SUR                      S                        D                             
SE                       SE                       D                             
SOUTHEAST                SE                       D 850                         

 

 

 

 

34 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



SURESTE                  SE                       D                             
SOUTHWEST                SW                       D 850                         
SUROESTE                 SW                       D                             
SW                       SW                       D                             
OESTE                    W                        D                             
W                        W                        D                             
WEST                     W                        D                             
II                       GENERATION               E                             
.......
SNR                      GENERATION               E                             
SR                       GENERATION               E                             
ASOC                     ORGTYPE                  E                             
ASOCS                    ORGTYPE                  E                             
........
CLINIC                   ORGTYPE                  E                             
........
INCORPORATD              ORGTYPE                  E                             
........
UNIVERSITY               ORGTYPE                  E                             
........
ADMIRAL                  PREFIX                   E                             
ATTORNEY                 PREFIX                   E                             
.......
MISS                     PREFIX                   E                             
MR                       PREFIX                   E                             
MRS                      PREFIX                   E                             
.......
SHERIFF                  PREFIX                   E                             
.......
ATTENTION                QUALIFIER                E                             
.......
FOR                      QUALIFIER                E                             
AMUL                     SUFFIX                   E                             
.......
CUSTODIAN                SUFFIX                   E                             
.......
TTEES                    SUFFIX                   E                             
AARON                    AARON                    F                             
.......
CARLOS                   CARLOS                   F                             
CARMELA                  CARMELA                  F                             
.......
STEPHEN                  STEPHEN                  F                             
STEVE                    STEVE                    F                             
.......

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 35



YVONNE                   YVONNE                   F                             
ZACHARY                  ZACHARY                  F                             
.......
J                        J                        I                             
K                        K                        I                             
.......
Z                        Z                        I                             
.......
CENTRE                   CTR                      M                             
CNTER                    CTR                      M                             
CNTR                     CTR                      M                             
CTER                     CTR                      M                             
.......
AZ                       AZ                       S                             
CA                       CA                       S                             
.......
WV                       WV                       S                             
CR                       "COUNTY ROAD"            T                             
TSR                      "TOWNSHIP ROAD"          T                             
.......
BOULV                    BLVD                     T                             
BEND                     BND                      T                             
.......
WLS                      WLS                      T                             
CROSSING                 XING                     T 850                         
CRSSING                  XING                     T 850                         
.......
BLD                      BLDG                     U                             
BLDG                     BLDG                     U                             
.......
WAREHOUSE                WHS                      U 850                         
WHS                      WHS                      U                             
ONE                      1                        ^                             
TEN                      10                       ^                             
.......
FIVE                     5                        ^                             
NINE                     9                        ^                             

 

 

 

 

36 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Table 1-1   Class and description associated with a token 

Class Description

^ Numeric containing all digits, such as 1234

? Unknown token containing one or more words, such as CHERRY HILL

> Leading numeric containing numbers followed by one or more letters, such 
as 123A

< Leading alpha containing letters followed by one or more numbers, such as 
A3

@ Complex mix containing alpha and numeric characters that do not fit into 
either of the above classes, such as 123A45 and ABC345TR

0 Null

- Hyphen

\ Slash

& Ampersand

# Number sign

( Left parenthesis

) Right parenthesis

~ Special containing special characters that are not generally found in 
addresses, such as !, \, @, ~, %, and so forth

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 37



Word Investigate generates two reports as follows:

� Frequency word as shown in Figure 1-14 presents the most commonly 
occurring word values from columns that are analyzed for patterns.

– qsInvCount indicates the number of times this token was encountered 
across the entire input data.

– qsInvWord identifies the individual token or word value that is found inside 
the selected input columns.

– qsInvClassCode identifies the classification of the token that is based on 
the selected rule set classification table. Unclassified tokens, if selected, 
get a question mark “?” for alpha or a carat “^” for numeric.

Figure 1-14   Token (frequency word) report

 

 

 

 

38 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Frequency pattern as shown in Figure 1-15 is similar to the description 
corresponding to Figure 1-11 on page 29. 

Figure 1-15   Pattern (frequency pattern) report

1.7  Standardize stage

Standardizing data involves moving free-form data (columns that contain more 
than one data entry) into fixed columns and manipulating data to conform to 
standard conventions. The process identifies and corrects invalid values, 
standardizes spelling formats and abbreviations, and validates the format and 
content of the data.

The Standardize stage builds on the interpretation of the data during the 
Investigate stage. The Standardize stage uses the same prebuilt tables and rule 
sets that the Investigate stage used to investigate the data to standardize the 
data. Standardize reformats data from multiple systems and creates a consistent 

Note: As mentioned earlier with Character Investigate, you can also 
configure Word Investigate to specify the number of samples of source 
data to include in the report for each pattern. You can also skip patterns 
that appear infrequently by specifying a frequency cutoff level. Patterns 
with frequencies under the specified frequency cutoff level do not appear in 
the report. You can also choose how tokens appear in the report—for 
example, strip out spaces between unclassified words (concatenating them 
into one word) or include unclassified numeric tokens.

Attention: 1.10, “Mailing list scenario” on page 117 provides usage examples 
of both word and character investigations.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 39



data presentation with fixed and discrete columns, according to your company 
requirements. 

The Standardize stage processes the data with the following outcome: 

� Creates fixed-column, addressable data
� Facilitates effective matching 
� Enables output formatting

The Standardize stage uses the data content and placement within the record 
context to determine the meaning of each data element. To correctly parse and 
identify each element or token and place them in the appropriate column in the 
output file, the Standardize stage uses rule sets to support specific conditioning 
and standardization requirements. These can be standard rule sets that are 
designed to comply with the name (individual and business) and address 
conventions of a specific country. Alternatively, they can be custom rule sets to 
focus on challenges such as product or part descriptions, consistent metadata 
definitions, insurance claim data, or other industry specific challenges. The 
Standardize rule sets can assimilate the data and append additional information 
from the input data, such as gender. 1.7.1, “Standardize rule sets” on page 42 
provides further details on the Standardize stage rule sets.

These rule sets are the same as those used in the Investigate stage. You can run 
the rules as they are shipped, or you can customize them to process obscure 
data not covered by the standard rule sets. You can also create your own custom 
rule sets from scratch.

Standardize ensures that each data type has the same content and format. 
Standardized data is important for the following reasons:

� Effectively matches data

� Facilitates a consistent format for the output data 

The Standardize stage parses free-form and fixed-format columns into 
single-domain columns to create a consistent representation of the input data. 

� Free-form columns contain alphanumeric information of any length as long as 
it is less than or equal to the maximum column length defined for that column. 

� Fixed-format columns contain only one specific type of information, such as 
only numeric, character, or alphanumeric, and have a specific format. 

The following rules are examples of the types of rules that the Standardize stage 
might support depending on the rule set in use:

� Assign data to its appropriate metadata fields. Standardize ensures that the 
data within a specific field is being used for the business purpose defined in 
the metadata. For example, credit records might have a driver’s license 

 

 

 

 

40 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



number in the address line 1 field and a customer’s address in the address 
line 2 field. To synchronize data with its appropriate metadata field, the 
driver’s license number can be moved to a separate field for the driver’s 
licenses. 

� Decompose free-form fields into single component fields. For example, the 
customer’s address can be decomposed into House number, Street name, 
PO Box, Rural Route, and other smaller component fields.

� Identify new data fields based on the underlying data. New fields, that do not 
exist on input, such as Gender Flag, Individual/Business Record Indicator, or 
Nickname, can be populated by the application, based on table or file 
look-ups. 

� Break up records storing multiple entities. It might be necessary to create a 
separate record for each person or entity that is represented on a single input 
record (such as joint accounts). A separate record allows for a more complete 
linkage of all entities in the input files. 

� Exclude records that do not meet minimum criteria. Based on defined 
business rules, the application can be required to exclude or reject records 
that do not meet basic requirements (for example, records that do not contain 
a name or address).

The Standardize stage takes a single input, which can be a link from any 
database connector supported by IBM WebSphere DataStage, a flat file or data 
set, or any processing stage. It is not necessary to restrict the data to fixed-length 
columns. Standardize will accept all basic data types (non-vector or 
non-aggregate) other than binary. 

The Standardize stage has only one output link. This link can send the raw input 
and the standardized output to any other stage. The Standardize stage creates 
multiple columns that you can send along with the input columns to the output 
link. Any columns from the original input can be written to the output along with 
additional data created by the Standardize stage based on the input data (such 
as a SOUNDEX phonetic or NYSIIS codes). The Match stage and other stages 
can use the output from the Standardize stage—you can use any of the 
additional data for blocking and matching columns in Match stages (more on this 
in 1.8, “Match stage” on page 82).

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 41



Figure 1-16 shows the output of the Standardize stage using the domain-specific 
USNAME rule set. Some of the columns added by the Standardize stage shown 
in Figure 1-16 include NameType_USNAME, GenderCode_USNAME, 
NamePrefix_USNAME, FirstName_USNAME, MiddleName_USNAME, and 
PrimaryName_USNAME. The relevant tokens from the input file are moved to 
the appropriate domain column.

Figure 1-16   Partial list of columns added by the Standardize stage using the domain-specific USNAME rule 
set

1.7.1  Standardize rule sets

The Standardize stage has three categories of rule sets: 

� Domain Pre-processor

For a specific country, the Standardize stage identifies and assigns a data 
domain to the name, address, and area columns in each record. You can use 
the output from this file as the input to the country-appropriate 
Domain-Specific rule sets. 

There is one rule set for each country.

These rule sets evaluate the mixed-domain input from a file for a specific 
country. Domain-preprocessor rule sets follow a naming convention that 
starts with a country abbreviation and ends with prep (an abbreviation for 
preprocessor) such as USPREP for the U.S. and GBPREP for Great Britain. 

Attention: These rule sets do not perform standardization but parse the 
columns in each record and each token into one of the appropriate 
domain-specific column sets, which are Name, Area, or Address as shown 
in Figure 1-17 on page 43.

 

 

 

 

42 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-17   Domain pre-processor rule set USPREP output

Because input files are rarely domain-specific, these rule sets are critical 
when preparing a file for standardization. Columns can contain data that does 
not match their metadata description as shown in Table 1-2.

Table 1-2   Metadata description versus data content

Column sets and metadata labels do not necessarily provide hard information 
about data content as shown in Table 1-2, where the name (C/O Mary Doe) is 
included in the ADDR1 column. Preprocessing categorizes the input data into 
domain-specific column sets of Name, Address, and Area as shown in 

Metadata label Data content

NAME1 John Doe

NAME2 123 Main Street Apt. 456

ADDR1 C/O Mary Doe

ADDR2 Boston, MA 02111

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 43



Table 1-3. It shows the tokens from the various columns (NAME1, NAME2, 
ADDR1, and ADDR2) parsed and moved into the domain-specific columns of 
NAME (John Doe C/O Mary Doe), ADDRESS (123 Main Street Apt. 456), and 
AREA (Boston, MA 02111).

Table 1-3   Domain specific columns and their data content after preprocessing

The domain-preprocessor rule sets do not assume a data domain with a 
column position. You need to delimit every column or group of columns with 
literals as shown in the Standardize Rule Process windows in Figure 1-18 on 
page 45 and Figure 1-19 on page 45. These figures show the use of 
delimiters ZQNAMEZQ, ZQADDRZQ, and ZQMIXAZQ. 

Example 1-1 on page 33 shows the list of possible delimiters available with 
the USPREP rule set. They begin and end with the characters ZQ, such as 
ZQNAMEZQ, ZQADDRZQ, ZQAREAZQ, and ZQMIXAZQ.

Metadata label Data content

NAME John Doe C/O Mary Doe

ADDRESS 123 Main Street Apt. 456

AREA Boston, MA 02111 

Note: Conventions used in name and address vary from one country to the 
next so the domain-preprocessor is configured for a single country.

Important: The delimiter indicates the type of data that you are expecting 
to find in the column, based on metadata descriptions, investigation results 
(from the Investigate stage), or an informed guess.

 

 

 

 

44 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-18   Specifying delimiters for columns 1/2 

Figure 1-19   Specifying delimiters for columns 2/2

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 45



� Domain Specific

These rule sets evaluate the domain-specific input from a file for a specific 
country. There are three domain-specific rules sets for each country as 
follows: 

– Name including individual names, organization names, attention 
instructions, and secondary names. 

– Address including unit number, street name, type, and directionals. 

– Area including cities, states, region, and other locale information. 

This category creates consistent and industry-standard data storage 
structures, and matching structures such as blocking keys and primary match 
keys.

Figure 1-20 shows the specification of the USNAME rule set for the 
NameDomain_USPREP column (generated by the domain-preprocessor rule 
set) in the Standardize Rule Process window. 

Figure 1-20   Domain-specific USNAME rule set 

 

 

 

 

46 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Validation

The Validation rule sets are used to standardize common business data 
including Date, Email Address, Phone Number, and Taxpayer ID/Social 
Security Number. These rules are configured for U.S. formats.

The rule sets output two types of columns as follows:

– Business Intelligence columns which help focus on critical information 
contained within output data. For example, valid data (VD) and valid flag 
(VF) columns.

– Reporting/Error columns which provide details on the data value that fails 
validation and the reason code detailing the validation error. 

There are four rule sets as shown in Table 1-4 on page 48.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 47



Table 1-4   Validation rule sets for the U.S.

Rule Set Name Comments

VDATE Dates that include day, month, and year
The following information pertains to the VDATE validation rule set: 
� Punctuation, such as hyphens or slashes, are removed during the parsing step. 
� The rule set outputs two types of columns: Business Intelligence columns and 

Reporting/Error columns.
� There are no significant default Classification table entries used with this rule 

set. 
� The standard output format is CCYYMMDD.

There are formats for dates that are required for the input data. Expected input date 
formats include any of the following formats:
� mmddccyy (09211991)
� mmmddccyy (OCT021983)
� mmmdccyy (OCT21983)
� mmddccyy (04101986)
� mm/dd/ccyy (10/23/1960)
� m/d/ccyy (1/3/1960)
� mm/d/ccyy (10/3/1960)
� m/dd/ccyy (1/13/1960)
� mm-dd-ccyy (04-01-1960)
� m-d-ccyy (1-3-1960)
� mm-d-ccyy (10-3-1960)
� m-dd-ccyy (1-13-1960)
� ccyy-mm-dd (1990-10-22O)

Examples of the output string corresponding to a particular input format are as 
follows:
� Input format 1990-10-22; output result 19901022
� Input formation 1/13/1960; output result 19600113
� Input format OCT021983; output result 19831002

If a data value passes validation, this rule set populates the following two Business 
Intelligence column values:
� The valid date {VD} data column which is populated with the eight numeric bytes
� The valid flag {VF} field which is populated with the value T

If a data value fails validation, this rule set populates the Reporting Error fields 
“Invalid Data” (which has the invalid data value) and “Invalid Reason” which has a 
code such as IF (invalid input format), IM (invalid month), IT (invalid table such as a 
date of 11111111), MM (invalid numeric month), FB (invalid day of February—leap 
year), M0 (invalid day for months with 30 days), and M1 (invalid day for months with 
31 days).

 

 

 

 

48 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



VEMAIL The VEMAIL rule set identifies the format, components and completeness of e-mail 
addresses as follows:
� All e-mail addresses should have a user, domain, and top-level qualifier. 
� Punctuation such as hyphens (-), at signs (@), and periods (.) are used as key 

delimiters during the parsing step. 
� The default classification table for this rule set contains common domain (for 

instance, ORG, COM, EDU, GOV, and so forth.) and sub-domain qualifiers (for 
example, country and state codes).

The parsing parameters parse the address into multiple tokens (for example, the 
e-mail address John_Smith@abccorp.comas has three tokens: John_Smith, 
abccorp, and comas).a

If a data value is validated, this rule set populates the following Business Intelligence 
fields:
� User {US}
� Domain {DM}
� Top-level Qualifier {TL}
� URL {RL}

If a data value fails validation, this rule set outputs the Reporting Error fields 
“Unhandled Data” (contains the unhandled data value) and “Unhandled Patterns” 
(contains the unhandled pattern).

VPHONE The VPHONE rule set validates the value and standardizes the format of a U.S. 
telephone number. Punctuation such as hyphens (-) and parentheses ( ), are 
removed during the parsing step.
Input formats support include (617) 338-0300, (617) 338-0300 X316, and (617) 
338-0300 EXT 316. The hyphen, space, and parentheses are used to separate the 
data. After the data is parsed the hyphen, spaces, and parentheses are dropped.

If the data value passes validation, this rule set outputs the following Business 
Intelligence field values: 
� Valid Phone Number {VD} field which is populated with the numeric telephone 

number
� Phone Number Extension {VX} field which is populated with the extension 

number
� Valid flag {VF} field which is populated with T 
If the data value fails any one of the validation requirements the “Invalid Data” and 
the “Invalid Reason” fields are populated. Invalid Reason has a code such as IL 
(invalid length—main telephone without extension must be 7 or 10 bytes.), IT (invalid 
value), and IP (invalid pattern or format).

Rule Set Name Comments
 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 49



Figure 1-21 on page 51 through Figure 1-31 on page 59 show the use of the 
VPHONE and VTAXID rule sets against different data sources as follows:

� Figure 1-21 on page 51 shows the VPHONE_VTAXID_JOB that has the two 
Standardize stages (VPHONE and VTAXID) accessing the North American 
Bank’s (customer) contact information and driver information.

� Figure 1-22 on page 51 shows the Standardize Rule Process window with the 
VPHONE rule set for the selected column HOME_PHONE.

� Figure 1-23 on page 52 shows the Standardize Rule Process window with the 
VTAXID rule set for the selected column SSN.

� Figure 1-24 on page 52 shows the results of the execution of the 
VPHONE_VTAXID_JOB.

� Figure 1-25 on page 53 through Figure 1-27 on page 55 show the results of 
the execution of the VPHONE rule set indicating the last five rows (all having 
all nines) as having invalid data with a reason code of IT (invalid value).

� Figure 1-28 on page 56 through Figure 1-31 on page 59 show the results of 
the execution of the VTAXID rule set indicating that all the rows have valid 
social security numbers. 

VTAXID The VTAXID rule set validates the value and standardizes the format of a tax ID or 
national ID number as follows: 
Punctuation such as hyphens (-) are removed during the parsing step. 

There are no significant default Classification table entries used with this rule set.
If a data value passes the listed criteria then it is considered a valid value and outputs 
two Business Intelligence field values: 
� TAX_ID/SSN valid data {VD} field which is populated with the nine numeric 

bytes
� Valid flag {VF} field which is populated with the value T.

If the data value fails any one of the validation requirements the “Invalid Data” and 
the “Invalid Reason” fields are populated. Invalid Reason codes include IP (data 
value did not contain nine, and only nine, numeric characters), IT (data value was 
found on the Invalid Data table), and Z3 (first three numeric characters are all zeros).
This rule set does not check whether the SSN is actually valid. It only checks the validity of 
the format and structure of the number and some basic validation rules, such as no zeros in 
the first three digits.

a. The ampersand (@) and period (.) are used to separate the data. These separators are removed 
during the parsing process.

Rule Set Name Comments
 

 

 

 

50 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-21   Validation rule set 1/11

Figure 1-22   Validation rule set 2/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 51



Figure 1-23   Validation rule set 3/11

Figure 1-24   Validation rule set 4/11

 

 

 

 

52 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-25   Validation rule set 5/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 53



Figure 1-26   Validation rule set 6/11

 

 

 

 

54 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-27   Validation rule set 7/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 55



Figure 1-28   Validation rule set 8/11

 

 

 

 

56 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-29   Validation rule set 9/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 57



Figure 1-30   Validation rule set 10/11

 

 

 

 

58 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-31   Validation rule set 11/11

Attention: The rule sets that are provided with IBM WebSphere QualityStage 
are designed to provide optimum results. However, if the results are not 
satisfactory, you can modify rule set behavior using rule override tables. You 
can modify both the domain-preprocessor rule sets, as well as the 
Domain-specific rule sets. We discuss managing rule sets briefly in “Managing 
rule sets” on page 60. We provide examples of rule set overrides in 1.10, 
“Mailing list scenario” on page 117. 

You can also build custom rule sets for specific data. We do not cover that 
topic in this book.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 59



Figure 1-32 shows the Standardize Stage processing flow using the COUNTRY 
rule set (as described in “Country Rule Set” on page 81) in the Standardize stage 
to first identify the country codes associated with each record from a source that 
contains information from multiple countries. The Investigate stage (using the 
same COUNTRY rule set) is used to identify the various country codes involved. 
You then separate the records by country codes using the Filter stage.7 When 
filtered (U.S. records shown here), the Domain Pre-processor and 
Domain-Specific rule sets are used to standardize the U.S. records. The same 
workflow is representative of other countries used with the Standardize stage.

Figure 1-32   Standardize Stage processing flow

Managing rule sets
You apply rule sets in the Standardize stage or Investigate stage to determine 
how columns are parsed and classified into tokens. You can also apply rule sets 
for international stages such as Worldwide Address Verification and 
Enhancement System (WAVES) and Multinational Standardize Stage (MNS). 
With all of these stages, you can use rules management (that is modify existing 
rules and add new rules).

7  You can also use a Transformer stage to split an input source into multiple targets. 

Files with other country codes

Standardize Stage
(US Domain Pre-Processor Rule Set USPREP)

Standardize Stage
(Domain-specific Rule Sets

USNAME
USADDR
USAREA)

Output Records
(Include Name, Address, and Area

Single-domain data columns)

Input source
(US records)

Input source
(Multiple countries information)

Investigate Stage
(COUNTRY Rule Set)

Filter Stage 
(Separate files by country codes)

Standardize Stage
(COUNTRY Rule Set)

 

 

 

 

60 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



You can modify the following standardization rule sets: 

� Domain preprocessor
� Domain specific 
� Validation

After you modify or add a rule set, you can test it in rules management. When 
you modify or add a business rule set, you can test it to ensure that it defines the 
data cleansing business rule that you need. 

The topics that we discuss in this section are:

� Rule set files
� Rule set customization with override object types
� Selecting override object types to modify rule sets
� Standardization rule set tester
� Choosing the appropriate override method

Note: The information that you enter in override tables is applied to rule sets 
for a given project because rule sets are project specific. Provision All is 
required after an override for it to take effect.

Attention: You need to provision new, copied, or customized rule sets before 
you compile a job that uses them.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 61



Rule set files
The Rule Management window in Figure 1-33 shows the different parts that 
make up a rule set, including Overrides. 

Figure 1-33   Rule Management window

Rule sets include the following files:

� Classifications

The Classification Table is used in the standardization process to identify and 
classify key words such as titles, street name, street type, and directions. The 
Classification Table includes the name of the rule set and the classification 
legend. Click CLS in Figure 1-33 to view its contents. The partial contents of 
the Classification Table for the USPREP rule set is shown in Example 1-1 on 
page 33. As already mentioned, you can gain valuable insight by browsing the 
Classification tables to determine the classification codes, as well as the 
different literals supported such as ZQMIXAZQ and ZQNAMEZQ. 

 

 

 

 

62 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Dictionary

The Dictionary file defines the fields for the output of a particular rule set. The 
file contains a list of domain, matching, and reporting columns. Each column 
is identified by a two-character abbreviation, such as CN for City Name. Click 
DCT in Figure 1-33 on page 62 to view its contents. Example 1-2 shows the 
contents of the Dictionary Table for the USPREP rule set.

Example 1-2   Contents of the Dictionary table for the USPREP rule set

;;QualityStage v8.0
\FORMAT\ SORT=N
;------------------------------------------------------------------------------
; USPREP Dictionary File
;------------------------------------------------------------------------------
; Total Dictionary Length = 600
;------------------------------------------------------------------------------
; Domain Fields
;------------------------------------------------------------------------------
NameDomain  C 100 S NameDomain  ;0001-0100
AddressDomain  C 100 S AddressDomain  ;0101-0200
AreaDomain  C 100 S AreaDomain  ;0201-0300
;------------------------------------------------------------------------------
; Reporting Fields
;------------------------------------------------------------------------------
Field1Pattern  C 20 S Field1Pattern  ;0301-0320
Field2Pattern  C 20 S Field2Pattern  ;0321-0340
Field3Pattern  C 20 S Field3Pattern  ;0341-0360
Field4Pattern  C 20 S Field4Pattern  ;0361-0380
Field5Pattern  C 20 S Field5Pattern  ;0381-0400
Field6Pattern  C 20 S Field6Pattern  ;0401-0420
InputPattern  C 88 S InputPattern  ;0421-0508
OutboundPattern  C 88 S OutboundPattern  ;0509-0596
UserOverrideFlag  C 2 S UserOverrideFlag  ;0597-0598
CustomFlag  C 2 S CustomFlag  ;0599-0600

� Patterns

The Pattern-Action file consists of a series of patterns and associated actions. 
The patterns from an input file are processed in the order as they appear in 
the pattern-action file. The contents of the Patterns Table for the USPREP 
rule set is too large to be shown here. 

� Overrides

Click Overrides in the Rules Management window in Figure 1-33 on page 62 
to add, copy, edit, or delete overrides to rules sets. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 63



� Lookup Tables

Click Reference Tables in the Rules Management window in Figure 1-33 on 
page 62 to view information about the rule set. 

Rule set customization with override object types
Rule sets define the way that IBM WebSphere QualityStage processes the input 
data. You can extend their content by using override object types. 

The override object types let you do the following tasks:

� Add new rules to the repository.

� Create custom conditioning rules (that are stored in a separate folder). 

The preprocessor, domain-specific, and validation override object types include 
the rule set file names with three characters appended indicating each override 
object type. For example, the WAVES and MNS override object types include 
eight characters. The first two characters indicate the ISO country code 
abbreviation, the second two characters are “MN” for multinational, the third two 
characters are “AD” for address, and the last two characters indicate the override 
object type. 

When you first install IBM WebSphere QualityStage, the override object types 
are empty.

Selecting override object types to modify rule sets
In the Rules Management window as shown in Figure 1-33 on page 62, 
Overrides provides editing windows to customize rule sets for your business 
requirements. 

IBM WebSphere QualityStage provides five methods of rule set overrides as 
follows:

� Classification

You can modify the classification table of any rule set using the Designer 
client. Figure 1-34 on page 65 and Figure 1-35 on page 66 show the 
classification table override for the domain-specific USADDR rule set. 

 

 

 

 

64 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



In the Input Token field, type the word (AVEDUE) for which you want to 
override the classification as it appears in the input file. In the Standard Form 
field, type the standardized spelling (AVE) of the token.8 

From the Classification menu, select the one-character tag (T- Street Types) 
that indicates the class of the token word. In the Comparison Threshold field, 
type a value (850)9 that defines the degree of uncertainty to tolerate in the 
spelling of the token word. Click Add in Figure 1-34 to add the override to the 
pane at the bottom of the window as shown in Figure 1-35 on page 66.

After you create the override (and provision it), the next time you run the rule 
set, the word tokens are classified with the designations you specified and 
appear with the appropriate standard form.

Figure 1-34   Classification override of AVEDUE input token 1/2

8  Determined by browsing the Classification table
9  850 corresponds to allowing for one or two letter transformations depending upon the length of the 

word — other supported values are blanks, 700, 750 and 950

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 65



Figure 1-35   Classification override of AVEDUE input token 2/2

� Input and field pattern override for domain-preprocessor rule set

For the domain-preprocessor rule sets, the input pattern and column pattern 
overrides modify the override object (*.IPO) for the input pattern and the 
override object (*.CPO) for the column pattern.

The pattern overrides have the following characteristics: 

– With the input pattern override, you can specify token overrides that are 
based on the input pattern. The input pattern overrides take precedence 
over the pattern-action file. Input pattern overrides are specified for the 
entire input pattern.

– With the column pattern override, you can specify token overrides that are 
based on one column pattern. These overrides can be specified only for 
an entire column pattern.

The input pattern override process is similar to that described in Figure 1-42 
on page 74 through Figure 1-44 on page 75.

Note: Column pattern overrides work on columns named 
field1pattern_USPREP, field2pattern_USPREP, and so forth. The input 
pattern comprise the collection of all the individual field patterns.

 

 

 

 

66 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Input and field text override for domain-preprocessor rule set

For the domain-preprocessor rule sets, the input text and column text 
overrides modify the override object (*.ITO) for the input text and the override 
object (*.CTO) for the column text. 

The input and column text objects have the following characteristics: 

– With the input text override, you can specify token overrides that are based 
on all the input text. These overrides take precedence over the 
pattern-action file. Because they are more specific, input text overrides 
take precedence over input pattern overrides. Input text overrides are 
specified for the entire input text string. Partial string matching is not 
allowed. 

– With the column text override, you can specify token overrides that are 
based on the field strings. Because they are more specific, column text 
overrides also take precedence over column pattern overrides. You can 
specify column text overrides only for an entire column text string. You 
cannot match a partial string within a column.

You would add an override to the input text object if you wanted to change the 
domain from one kind to another. For example, assume an input text that has 
the following string:

ZQNAMEZQ JAMES MASON ZQADDRZQ LOS ANGELES

where ZQNAMEZQ is the name domain delimiter, and ZQADDRZQ is the 
address domain delimiter 

The domain-preprocessor override objects and their abbreviations let you 
specify your own custom rules. These objects are also accessible in the IBM 
WebSphere QualityStage interface. Table 1-5 describes the object types that 
override the standardize domain-preprocessor rule sets.

Table 1-5   Object types that override the standardize domain-preprocessor rule sets

Domain-preprocessor 
overrides

Object type abbreviation Example (U.S.)

Classification not applicable USPREP.CLS

Input pattern overrides IPO USPREP.IPO

Input text overrides ITO USPREP.ITO

Column pattern overrides CPO USPREP.CPO

Column text overrides CTO USPREP.CTO

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 67



Figure 1-36 shows the override code for each token as being “A” for address 
domain. You can override this input text to have the tokens “LOS” and 
“ANGELES” assigned to the area domain (override code “R”) as shown in 
Figure 1-37 on page 68. Click Add in Figure 1-37 to create the input text 
override as shown in Figure 1-38 on page 69.

You can then test this override as shown in Figure 1-39 on page 70 through 
Figure 1-41 on page 71. 

a. Select Overrides and click Test as shown in Figure 1-39 on page 70. 

b. Select the Name delimiter and type in JAMES MASON as input string, and 
select Area delimiter and type LOS ANGELES as input string as shown in 
Figure 1-40 on page 71. Click Test This String to view the results.

c. Figure 1-41 on page 71 shows the results of the test. The input pattern 
prior to the override is NF+A++ as highlighted. Because of the override, 
the output pattern is NNNARR, which shows that the override is working 
as designed. 

Figure 1-36   Input text override example 1/6

Figure 1-37   Input text override example 2/6

 

 

 

 

68 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-38   Input text override example 3/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 69



Figure 1-39   Input text override example 4/6

 

 

 

 

70 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-40   Input text override example 5/6

Figure 1-41   Input text override example 6/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 71



� Input and unhandled pattern override for domain-specific rule set

Input pattern and unhandled pattern overrides for domain-specific rule sets 
(such as USNAME) are used to modify the input pattern (*.IPO) and 
unhandled pattern (*.UPO) override objects. 

The pattern overrides have the following characteristics: 

– With the input pattern override, you can specify token overrides that are 
based on the input pattern. The input pattern overrides take precedence 
over the pattern-action file. Input pattern overrides are specified for the 
entire input pattern. 

– With the unhandled pattern override, you can specify token overrides that 
are based on the unhandled pattern. Unhandled pattern overrides work on 
tokens that are not totally or only partly processed by the pattern-action 
file. These overrides are specified only for an entire unhandled pattern. 
The overrides are not specified for partial pattern matching.

For example, assume that you had a field that contained the text 1234 SNELL 
Avenue that generated the pattern ^+T. Using input pattern overrides, you can 
designate this pattern to have the type and values as shown in Table 1-6. 

Table 1-6   Designation of pattern ^+T

The domain-specific override objects and their abbreviations let you specify 
your own custom conditioning rules. These objects are also accessible in the 
QualityStage interface. Table 1-7 describes the object types used to override 
the domain-specific rule sets.

Table 1-7   Object types that override the standardize domain-specific rule sets

Pattern token Type Value

^ House number Original

+ Street name Original

T Street type Standard

Domain-preprocessor 
overrides

Object type abbreviation Example (U.S.)

Classification not applicable USADDR.CLS

Input pattern overrides IPO USADDR.IPO

Input text overrides ITO USADDR.ITO

Unhandled pattern 
overrides

UPO USADDR.CPO

Unhandled text overrides UTO USADDR.CTO

 

 

 

 

72 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-42 on page 74 through Figure 1-44 on page 75 show the overriding 
of an input pattern “++” from an Unknown Alpha to street addresses. The first 
“+” is overridden with the Override Code of StreetName - StreetName10 as 
shown in Figure 1-42 on page 74. The second “+” is overridden with the 
Override Code of AddtionalAddress - AddtionalAddress11 as shown in 
Figure 1-43 on page 74. All additional tokens are moved to this field. 

Click Add to add the input pattern overrides as seen in the Override Summary 
in Figure 1-44 on page 75. 

10  StreetName in the Override Code classifies this token as a street name
11  AddtionalAddress in the Override Code classifies this token as an additional field

Note: The suffix 1 in the StreetName override code (StreetName1) is an 
action code. The Action Codes (0 to 8) are displayed in the Current Pattern 
List under the Override Code column. The codes are as follows:

0 Select Drop Current Token to drop the current token

1 Select Move Current and the Original Value and Leading space for 
the specified data type 

2 Select Move Current and the Standard Value and Leading space for 
the specified data type 

3 Select Move Current and Original Value and No leading space for the 
specified data type 

4 Select Move Current and Standard Value and No leading space for 
the specified data type 

5 Select Move All Remaining and Original Values and Leading space 
for the specified data type 

6 Select Move All Remaining and Standard Value and Leading space 
for the specified data type 

7 Select Move All Remaining and Original Values and No leading space 
for the specified data type 

8 Select Move All Remaining and Standard Values and No leading 
space for the specified data type

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 73



Figure 1-42   Input pattern override for domain-specific rule set 1/3 

Figure 1-43   Input pattern override for domain-specific rule set 2/3 

 

 

 

 

74 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-44   Input pattern override for domain-specific rule set 3/3

� Input and unhandled text override for domain-specific rule set

For the domain-specific rule sets, the input text and unhandled text overrides 
modify the override object (*.ITO) for input text and the override object 
(*.UTO) for unhandled text. 

The input and unhandled text objects have the following characteristics: 

– With the input text override, you can specify token overrides that are based 
on all the input text. These overrides take precedence over the 
pattern-action file. Because they are more specific, input text overrides 
take precedence over input pattern overrides. Input text overrides are 
specified for the entire input text string. Partial string matching is not 
allowed. 

– With the unhandled text override, you can specify rule overrides that are 
based on the unhandled text string. Unhandled text overrides work on 
tokens that are not totally or only partly processed by the pattern-action 
file. Because they are more specific, unhandled text overrides take 
precedence over unhandled pattern overrides. Unhandled text overrides 
can be specified only for the entire unhandled text string. Partial string 
matching is not allowed.

For example, assume that you had a field that contained the text 100 Summer 
Street Floor 15, and it contains two tokens (Street and Floor) that use 
standard values from the classification object. The remaining tokens (100, 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 75



Summer, and 15) are not associated with standard values from the 
classification object and use their original data values. 

The input text override process is somewhat similar to that described in 
Figure 1-36 on page 68 through Figure 1-41 on page 71.

Standardization rule set tester
The tester lets you test quickly a selected standardize rule set against a one-line 
test string (a single record) before you run the rule set against an entire file. 

This time-saving option is especially helpful when you plan to use a large input 
file. When you test the rule set, you can ensure that the resulting data file 
performs the way you expect. 

You can test domain-preprocessor rule sets, domain-specific rule sets, and 
validation rule sets with the tester.

Figure 1-39 on page 70 through Figure 1-41 on page 71 show an example of the 
rule set tester. 

Choosing the appropriate override method
Broad guidelines for choosing an appropriate override method are summarized in 
Table 1-8 on page 77. However, you need to evaluate these guidelines in the 
context of your organization’s specific requirements.

The general guidelines are as follows:

� Minimize the number of overrides required to achieve the desired result, so as 
to avoid the possibility of negative side effects on normal processing.

Another consideration is the impact of overrides on system performance. The 
more the number of overrides, the greater the impact on system performance. 

� Apply classification overrides to key words to provide additional context in a 
pattern. These overrides change the resulting pattern of an input string such 
that a pattern previously unrecognized can become recognizable and handled 
by the standardization pattern action rules. As a rule of thumb, apply these 
overrides to frequently occurring key tokens or to tokens to which you want to 
apply a standard value on output. Apply classification overrides before Pattern 
Overrides.

� Do not perform column pattern and column text overrides without expert 
assistance. 

Note: The tester is not available for WAVES and Multinational standardize rule 
sets.

 

 

 

 

76 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Table 1-8   Guidelines for choosing a particular override method

Override 
method

Considerations

Classification Can be used in the Investigate or Standardize stages. 
Use the classification override when you see an unclassified token that you know 
definitively belongs to one of the defined classes in the Classification table for that rule 
set. Doing so alters the input pattern and can increase the chance that the rule set can 
handle the input pattern. 
However, classifying all tokens in the input source is not the goal because this can have 
a detrimental effect overall. As the number of classification values increase, it might 
increase significantly the number of patterns necessary to handle the new 
classifications.
Use the classification override in the Domain Pre-processor rule set in the Investigate 
stage to ensure that all the words go into the correct name, address, and area domains. 
While other overrides such as input pattern can be performed in the Domain 
Pre-processor rule set in the Investigate stage, we recommend that you only perform 
input pattern overrides in the Standardize stage.

Input pattern 
override

Input pattern overrides should be used if the rule set does not handle the patterns to 
your satisfaction. Use this if you are not satisfied with the actions (or lack of it) done by 
the rule set, and would like to manage the string processing yourself. 
Input pattern overrides target all records that match the pattern being overridden. It 
matches the entire input pattern including any literals inserted. 
You must ensure that the records that map to a specific input pattern (that is being 
overridden) actually have the same underlying data format (type and sequence of 
tokens such as firstname, middlename, lastname). This can be determined by using the 
Investigate stage with the appropriate C, T, and X masks.
Input pattern override works well if a large number of records in the input source have 
the same input pattern. This input pattern can be determined through the Investigate 
stage using the T mask on the output of the Standardize stage.

Column 
pattern 
override

Column pattern override is the same as the input pattern override except that it 
operations on a portion (fields 1 through 6 in the Dictionary table of the rule set as shown 
in Example 1-2 on page 63) of the entire input pattern. 
Column pattern overrides work best if specific patterns are well contained in a segment 
of the data. You can use column pattern override to target a specific portion of an input 
string. In certain cases, this might help you perform fewer overrides. For example, a 
particular pattern to be overridden appears in field2 in a number of (entire) input 
patterns. Rather than override every the distinct input pattern in which this (subset) 
pattern in field2 appears, you can limit the override to field2 using Column pattern 
override. This is not generally recommended without expert assistance.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 77



1.7.2  WAVES, CASS, DPID, SERP, MNS, Geolocator, Country rule set

International addresses can be standardized using stages such as IBM 
WebSphere QualityStage Worldwide Address Verification and Enhancement 
System (WAVES), IBM WebSphere QualityStage DPID (Australian Government 
Verification), IBM WebSphere QualityStage SERP (Canadian Government 
Verification), and Multinational Standardize stage (MNS). 

These features are all separately priced features of IBM WebSphere 
QualityStage. 

We provide a brief description of these stages in this section.

WAVES
IBM WebSphere QualityStage Worldwide Address Verification and Enhancement 
System (WAVES) enables users to standardize, verify, and correct extensive, 
multinational address data against postal reference files for better data 
integration and customer communication worldwide.

The WAVES stage provides the following processing to the input data: 

� Corrects typographical and spelling errors in the input data. 

� Matches a corrected input address against an address in a country-specific 
postal reference file by using probabilistic matching. 

� Assigns the postal record data to the appropriate field in the output file and 
substitutes the erroneous and missing input data with the verified postal data. 
Appends the verified record to the original record.

Input text 
override

Input text override is similar to an input pattern override except that you specify the text 
string to be overridden, and you need to include the ZQ-delimiters in the text string. This 
will ensure that the override targets one and only one specific string. 
Input text override works well with text strings that do not fit standard classifications.
Examples of strings that are good candidates for input text override include DO NOT 
USE and UNKNOWN ADDRESS.
You can also use input text override to target specific text strings before they are handled 
by a general input pattern override, because input text overrides precede input pattern 
overrides.

Column text 
override

As in the case of input text override, column text override can be used to address 
common strings that are not easily classified. This is not generally recommended 
without expert assistance.

Override 
method

Considerations 

 

 

 

78 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Worldwide location data can be processed at three levels. Table 1-9 summarizes 
WAVES country support for standardization and verification.

Table 1-9   WAVES processing

IBM WebSphere QualityStage also has add on modules that provide certification 
solutions for the U.S. (CASS), Canada (SERP) and Australia (DPID):

� CASS

IBM WebSphere QualityStage CASS (Government Certified U.S. Address 
Correction) enables users to make changes or append information to ensure 
that addresses qualify for U.S. Postal Service (USPS) mail rate discounts. 
Certified by the USPS, it ensures the accuracy of critical U.S. address 
information in corporate databases. 

� SERP

IBM WebSphere QualityStage SERP (Canadian Government Verification) 
enables users to correct and validate information to ensure that addresses 
qualify for Canada Post mail rate discounts, which is recognized by Canada 
Post Corporation as meeting all requirements of its Software Evaluation and 
Recognition Program (SERP). 

Level Type Description City Level 
Countries Covered

Street Level 
Countries Covered

1 Standardization Identify, separate, and 
standardize the address

233 (WAVES) 71 (WAVES)

2 Verification Includes Level 1 + validate, 
correct, and fill missing 
values based on matching 
the input to an “authoritative” 
reference source

215 (WAVES) 70 (WAVES)

3 Certification Includes Level 1 + validate, 
correct, and format the 
output based on the 
reference data and 
mandated rules from a 
specific Government postal 
authority using software that 
has met their test criteria 
missing values based on 
matching the input to an 
“authoritative” reference 
source

� U.S. (CASS)
� CANADA 

(SERP)
� AUSTRALIA 

(DPID)

� U.S. (CASS)
� CANADA 

(SERP)
� AUSTRALIA 

(DPID)

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 79



� DPID

IBM WebSphere QualityStage DPID (Australian Government Verification) 
enables users to make changes or append the appropriate Delivery Point 
Identifier (DPID) to ensure addresses qualify for Australian Post mail rate 
discounts, which is certified by the Australian Post as meeting all 
requirements of its Address Matching Approval System (AMAS).

MNS
The Multinational Standardize stage (MNS) standardizes and verifies 
international address data. 

The MNS stage uses country names, abbreviations, or ISO country codes in the 
input file to apply country-appropriate standardization rules. 

Thus, you can standardize all the records without having to consolidate records 
from each country into separate files and to standardize the records using 
country-specific rule sets. 

For most countries, the MNS stage does the following tasks: 

� Separates street-level address information from city-level information 

� Assigns city, locality, province/state, postal code, and postal code add-on to 
separate fields 

� Assigns ISO country codes (2- and 3-byte versions) 

� Assigns city name phonetics with enhanced New York State Information and 
Intelligence Systems (NYSIIS) and reverse Soundex to match incorrectly 
spelled city names 

MNS stage standardizes address files for city and street data in one step.

Geolocator
IBM WebSphere QualityStage GeoLocator provides multinational geocoding for 
spatial information management and location-based services. It provides 
latitude, longitude, census tract and block information about addresses that 
allows users to build business intelligence and Internet applications that provide 
highly accurate location and location-based information.

 

 

 

 

80 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Country Rule Set
The country rule set is used to condition files for one country. The output file 
contains the country code and an identifier flag. 

The country rule set, named Country Group, prepares international input files for 
standardization at the individual country level. The rule set creates an output file 
in which the following columns are appended to the beginning of each input 
record: 

� A 2-byte ISO country code. The code is associated with the geographic origin 
of the record’s address and area information.

� An identifier flag. The values are: 

– Y indicates that the rule set identifies the country. 

– N indicates that the rule set cannot identify the country and uses the value 
of the default country delimiter.

Figure 1-45 shows a sample output file of a Country Rule Set with the 
ISOCountryCode and IdentifierFlag.

Figure 1-45   Output of Country Rule Set

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 81



After you create this output file, you can use a Filter (or Transformer) stage to 
create a file that contains only one country. You can use the file with a 
domain-preprocessing rule set for the appropriate country.

If the country rule set cannot identify the country of origin of a record, it uses the 
default country code value supplied as a literal. This delimiter consists of a 
default country code that you must define before you run the rule in a job. Use 
the country code that represents the majority of the records. 

The delimiter name is as follows: 

ZQ<two-character ISO code>ZQ 

For example, you use ZQUSZQ as a U.S. delimiter as shown in Figure 1-46. 

The ISO country codes list provides all the codes. This delimiter is inserted as a 
literal when you define the columns from the input file.

Figure 1-46   U.S. delimiter for country code

1.8  Match stage

Data matching finds records in a single data source or independent data sources 
that refer to the same entity (such as a person, organization, location, product, or 
material) even if there is no predetermined key.

 

 

 

 

82 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



To increase its usability and completeness, data can be consolidated or linked 
(matched) along any relationship, such as a common person, business, place, 
product, part, or event. You can also use matching to find duplicate entities that 
are caused by data entry violations or account-oriented business practices. 

During the data matching stage, IBM WebSphere QualityStage takes the 
following actions: 

� Identifies duplicate records (such as customers, suppliers, products, or parts) 
within one or more data sources 

� Provides householding for individuals (such as a family or group of individuals 
at a location) and householding for commercial entities (multiple businesses 
in the same location or different locations) 

� Enables the creation of match groups across data sources that might or might 
not have a predetermined key 

There are two types of match stage: 

� Unduplicate match locates and groups all similar records within a single input 
data source. This process identifies potential duplicate records, which might 
then be removed.

An example is the need to eliminate duplicates from a consolidation of mailing 
lists purchased from multiple sources.

The Unduplicate match stage accepts the following inputs:

– Source data from any parallel database, file or processing stage. Typically, 
the source is standardized data from the Standardize stage.

– Frequency information for that data as generated by the Match Frequency 
stage. This stage takes input from a database, file, or processing stage, 
and generates the frequency distribution of values for columns in the input 
data. Match frequency is described in detail in “Match Frequency Stage” 
on page 91. 

Match frequency results is used in computing “u” probabilities as 
described in “Matching step” on page 89. 

– Match specification to group and match the data. A Match specification 
provides details of blocking and matching columns for matching. Match 
specification is described in “Match Designer tool” on page 95. 

The Unduplicate match stage delivers up to four outputs as follows:

– Match contains master records
– Clerical has records that fall in the clerical range
– Duplicate contains records that are above the match cutoff
– Residual contains records that are not associated with any of the records

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 83



The Unduplicate match stage is covered in greater detail in “Unduplicate 
Match stage” on page 104.

� Reference Match identifies relationships among records in two data sources. 

An example of many-to-one matching is matching the ZIP codes in a 
customer file with the list of valid ZIP codes. More than one record in the 
customer file can have the same ZIP code in it.

The Reference match stage takes up to the following inputs:

– Source data from any parallel database, file or processing stage. Typically, 
the source is standardized data from the Standardize stage.

– Reference source against which the source data is matched

– Frequency information for that data as generated by the Match Frequency 
stage as described for the Unduplicate match stage. 

– Match specification to group and match the data as described for the 
Unduplicate match stage. 

The Reference match stage delivers up to six outputs as follows:

– Match contains matched records for both inputs

– Clerical has records that fall in the clerical range for both inputs

– Data Duplicate contains duplicates in the data source 

– Reference Duplicate contains duplicates in the reference source

– Data Residual contains records that are non-matches from the data input

– Reference Residual contains records that are non-matches from the 
reference input 

The Reference match stage is covered in greater detail in “Reference Match 
stage” on page 108.

Matching is a two-step process: first you block records and then you match them. 

Blocking step 
Blocking provides a method of limiting the number of pairs to examine. When you 
partition data sources into mutually-exclusive and exhaustive subsets and only 
search for matches within a subset, the process of matching becomes 
manageable. 

 

 

 

 

84 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Basic blocking concepts include: 

� Blocking partitions the sources into subsets that make computation feasible. 

� Block size is the single most important factor in match performance. 

� Blocks should be as small as possible without causing block overflows. 
Smaller blocks are more efficient than larger blocks during matching.

To understand the concept of blocking, consider a column that contains age data. 
If there are 100 possible ages, blocking partitions the source data into 100 
subsets. The first subset is all people with an age of zero, the next is people with 
an age of 1, and so on. These subsets are called blocks.

If the age values are uniformly distributed, 10 records out of the 1000-record 
source contain data for people of age 0 on each source, 10 records for people of 
age 1, and so on. 

The pairs of records to be compared are taken from records in the same block:

� The first block consists of all people of age 0 on each data source. This value 
is 10 times 10 or 100 record pairs. 

� The second block consists of all people on each data source with an age of 1. 

When the process is complete, you compared 100 (blocks) x 100 (pairs in a 
block) = 10 000 pairs, rather than the 1 000 000 record pairs that are required 
without blocking. 

You can also combine multiple blocking variables into a single block for a single 
pass. For example, blocking on age and gender divides the sources into sets of 
0-year-old males, 0-year-old females, 1-year-old males, 1-year-old females, and 
so on. 

Blocking creates a set of records that all have the same values in the blocking 
variables. Records in different blocks (which means they do not have the same 
values in the blocking variables) are classified as unmatched automatically. If you 
believe that the unmatched records might still include matches, then a second 
pass can be defined with the new blocking variables to look for matches in the 
newly constituted blocks. 

For example, if you run a match where age is the blocking variable, you can 
rematch any records that do not match using another blocking scheme, such as 
residential postal code. If a record does not match on age in the first pass, it has 
the possibility to match on the postal code in the second pass. Thus, only those 
cases that have errors in both the age and postal code columns are unmatched. 
You can then run a third pass with different blocking variables if you believe there 
are still matches that have not been identified. Errors on all three blocking 
variables are unlikely. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 85



Blocking strategies
Blocking strategies are used to limit the number of records to compare. 

Smaller blocks are many times more efficient than larger blocks. Use restrictive 
blocking schemes in the first pass with blocking variables (such as SSN) that are 
expected to match records definitively. Unmatched records can then be subject 
to less restrictive blocking variables such as first and last name. Thus 
progressively, fewer and fewer unmatched records can be subject to matching in 
subsequent passes that have less and less restrictive blocking variables. The 
reason for having multiple passes is to provide for cases where the data in the 
blocking variables is error-prone.12

The matcher computes composite weights for all pairs in the set. IBM 
WebSphere QualityStage then finds the mathematically optimal sets of matches 
and duplicates on each source. 

To do this, the matcher maintains a matrix of weights that can be optimized. This 
matrix is size limited so the number of records in a set is limited. If the matrix size 
is exceeded, all records in the set are skipped and must be handled by a 
subsequent matching pass. 

� Avoiding block overflow 

To avoid block overflow, the number of records to be compared in one block 
must not exceed system memory on the server and the total number of 
records on either source in one block must not exceed the block overflow 
setting. 

You can determine whether block overflow has occurred in the Match 
Designer tool’s Total Statistics panel as shown in Figure 1-47 on page 87. 
This information is provided for each match pass.

12  In other words, the data has a low degree of integrity.

Note: When large volumes of data are involved, a representative sample of 
data is typically used as input to Match Designer when developing the 
match specification. In such cases, there is no guarantee that block 
overflow will not occur when the full volume of data is input to Match 
Designer.

 

 

 

 

86 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-47   Block overflow 

For many-to-one runs, an overflow occurs only when more than 10 000 
reference source records are read in one block. 

For large sets, the matcher performs many more comparisons which reduces 
efficiency. Try to keep the block sizes as small as possible and compensate 
for errors in blocking by running multiple passes using different blocking 
variables.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 87



� Applying blocking variables 

The best blocking variables are those with the largest number of values 
possible and the highest reliability.13 Base a blocking strategy on the following 
principles: 

– Make blocking sets as small as possible. A good size is 10 to 20 records 
per source. Efficiency becomes quite poor when blocks exceed 100 
records per source. 

– Use multiple passes to define different sets. 

– Find easy matches quickly, then widen the net in your subsequent passes.

The following examples provide some considerations about setting up useful 
blocking strategies. For example: 

– Two data sources containing a date, given name, family name and gender:

• Pass 1: date and gender 
• Pass 2: Soundex of family name and first two characters of given name 
• Pass 3: Soundex of given name, year and month (from date) 

– Two data sources containing a date, last name, city, and postal code: 

• Pass 1: date and gender 
• Pass 2: postal code 
• Pass 3: Soundex of family name and first two characters of city 

– Two data sources containing national identity number, last name, first 
name, and birth date: 

• Pass 1: national identity number 
• Pass 2: birth date 
• Pass 3: Soundex of family name, birth year 

Each succeeding pass has diminishing returns. Three passes might not be 
worthwhile in terms of additional matches found. Notice how sometimes 
variables are taken whole (birth date) or divided into parts (birth year). Where 
necessary, this is accomplished by manufacturing the additional columns. 

For sources with limited information, a reverse Soundex code is often useful 
for blocking. The reverse Soundex is formed by looking at the name 
backwards and computing a Soundex. For example, the reverse of JONES 
would be SENOJ. Because the Soundex algorithm preserves the first letter, 
running a reverse Soundex accounts for errors at the beginning of names. 

Use your imagination to design good strategies. Remember to keep the first 
passes more restrictive than the later passes.

13  Reliability is defined as information whose validity is associated with a high degree of confidence.

 

 

 

 

88 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Matching step 
The match process only looks for matches in records that have the same values 
in the blocking columns.

After you create a block of records, Match stage compares columns that you 
specified as matching columns (in the Match specification) to determine the best 
match for a record. 

To determine whether a record is a match, the Match stage performs the 
following steps:

1. Calculates a weight for each comparison, according to the probability 
associated with each column. The Match stage uses two probabilities for 
each column: 

– The m probability reflects the error rate for the column. 

You set the probability that a column agrees provided that the record pair 
is a match. 

The m probability is one minus the error rate of the column. If a column in 
a sample of matched records disagrees 10% of the time, the m probability 
for this column is 1 - 0.1, or 0.9. The closer the m probability is to one, the 
more critical is a disagreement on the column. You can use a very high m 
probability to force columns that are very important to have a high penalty 
for disagreeing.

– The u probability is the likelihood that a column agrees at random 

If a u probability is high, the weight is low. The u probability is the 
probability that the column agrees, provided that the record pair does not 
match. The u probability is the probability that the column agrees at 
random. 

For example, the probability that gender agrees at random is 50% of the 
time. With a uniform distribution, you have four combinations in which 
gender agrees in two of the four, or a 0.5 u probability. If you assign a high 
u probability, a low weight is calculated when a column agrees. 

Important: Convert all missing values to nulls. Failure to do this creates 
large blocks. For example, if a national identity number were present in 
only half the records, but the missing values were reported as spaces 
instead of nulls, all of the blank numbers would form one large block, 
causing incorrect results and possible block overflow. Similarly, remove 
bogus values such as UNKNOWN from any variables that are used as 
blocking variables.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 89



During the match run, the Match stage calculates a u probability for each 
comparison using the frequency distribution statistics for the column, 
described in “Match Frequency Stage” on page 91. Usually your concern 
for u probability is to provide a base point between a rare event (1 out of 
the total # of records) and a common event (1 out of 2). A value of 0.1 or 
0.01 is a typical starting point. If you need to control the u probability (such 
as columns for an individual identification number, a national ID number, or 
a Patient Identification Number), specify the vartype to be NOFREQ which 
indicates that frequency distribution information should not be used by the 
Match stage.

2. Weights are used in the Match stage to determine by what percentage a 
column matches and to verify that the matches have a high degree of 
agreement. For each matching column, the Match stage computes a weight 
using the following equations:

– An agreement weight is computed when the comparison between a pair of 
columns agrees. 

log2(m probability / u probability) 

– A disagreement weight is computed when the comparison between the 
pair of columns disagrees. 

log2((1 - m probability)/(1 - u probability)) 

The higher the m-probability, the higher the disagreement weight will be for 
the field not matching because errors are relatively rare events; the lower the 
u probability the greater the potential weight for the comparison. Additionally, 
the calculated weight or penalty represents a maximum or minimum range of 
scoring. Specific match comparisons can generate a score within the range 
depending on the comparison used.

The Match stage adds the weights assigned to each column comparison and 
obtains a composite weight for the record. 

The Match stage then computes the composite weight as the sum of the 
agreement weight and the disagreement weight of each column. The higher 
the composite weight, the greater the agreement. 

3. In the Match specification, you can specify cutoff threshold as follows:

– Match Cutoff threshold 

When a record pair receives a composite weight greater than or equal to 
this weight, the pair is declared a match. 

– Clerical Cutoff threshold

When a record pair receives a composite weight greater than or equal to 
this weight and less than the match cutoff, the pair is marked for clerical 
review. This weight must be equal to or less than the match cutoff weight. 

 

 

 

 

90 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



If you do not want a clerical review, set the clerical cutoff equal to the 
match cutoff. 

– Duplicate threshold

The lowest weight that a record pair can have to be considered a 
duplicate. This cutoff weight is optional and must be higher than the match 
cutoff weight. 

This cutoff is only used with Reference Match and not with Unduplicate 
Match.

These thresholds are used to send the results of matching to the appropriate 
outputs. 

You use the Match Designer tool to set which columns are to be compared for the 
matching process. When the match specification is completed, you can use it in 
the Unduplicate Match stage, Reference Match stage, and Match Frequency 
stages. You can then apply the results from these match stages to the next stage 
of your project, such as Survive or for loading into a database.

The Match Frequency stage, Match Designer tool, Unduplicate Match stage, and 
Reference Match stage are described briefly in the following sections.

Match Frequency Stage 
The Match Frequency stage gives you direct control over the disposition of 
generated frequency data. This stage provides results that can be used by the 
Match Designer tool and match stages, but enables you to generate the 
frequency data independent of running the matches. You can generate frequency 
information by using any data that provides the fields that are needed by a 
match. Then you can let the generated frequency data flow into a match stage, 
store it for later use, or both.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 91



As mentioned earlier, the Match Frequency stage takes one input data file. This 
data file can be from one of the following places: 

� A link from a sample data set file for use in the Match Designer tool

� A link from any parallel database, file or processing stage that carries 
information you need for the following stages:

– An unduplicate match 
– The data source input of a reference match 
– The reference source input of a reference match 

The Match Frequency stage takes a single output link that carries four columns: 

� qsFreqVal 
� qsFreqCounts 
� qsFreqColumnID 
� qsFreqHeaderFlag 

The data (shown in Figure 1-48 on page 93 is not easily decipherable) in these 
columns provides the necessary information to give input to the Match Designer 
tool and to the Unduplication Match and Reference Match stages.

Attention: While you could conceivably take input directly from a Standardize 
stage and output it directly to a Match stage in the same IBM WebSphere 
QualityStage job, there are some potential problems with this approach as 
follows:

� Performance issues: Generating frequencies is time consuming. Instead, 
run the frequencies periodically (monthly), to support a nightly match run. 

� Not real time: Because the Match Frequency stage does not run in 
real-time mode, this stage is not real-time compatible. 

� Unrepresentative data: The data for any particular match run might not be 
representative. You want to build the frequencies on a representative data 
set.

It is better to build modular jobs.

Attention: We recommend that you standardize the input data before you use 
it with the Match Designer tool and the match stages. 

Note: You can link to the input or output of the Match Frequency stage from 
any parallel database and file stages, and most processing stages. 

 

 

 

 

92 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-48   Match Frequency stage output

When you are configuring the Match Frequency stage, you can choose from the 
following options: 

� Designate a match specification from the repository, so that frequency 
information is generated only for the match columns in the specification.

� Do not designate a match specification, thereby generating frequency 
information for all columns of the input. 

When multiple match specifications are defined for the same table, it is more 
efficient to generate a single match frequency output for all the columns in the 
table, and then use it in the different match stages.

� Increase the number of frequencies reported in the output. (The default is 
100.) You should increase this number if you are processing a large number 
of records.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 93



Figure 1-49   Saving table definition of the Match Frequency stage 1/3 

Figure 1-50   Saving table definition of the Match Frequency stage 2/3

 

 

 

 

94 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-51   Saving table definition of the Match Frequency stage 3/3

Match Designer tool
The Match Designer is a tool for creating a match specification. 

When you create the match specification, you can select from more than 25 
types of comparisons such as the such as CHAR (character comparisons), and 
UNCERT (character uncertainty comparisons). The comparisons are algorithms 
that are based on the type of data in the columns. Table 1-10 shows most the 
most common comparisons and where they are used.

Table 1-10   Common comparisons and where they are used

Common comparisons Where mostly used

CHAR (character 
comparison) character by 
character, left to right.

This is most useful to ensure a direct comparison, 
particular on code related fields such as Gender.

CNT_DIFF (count 
differences) tolerates a set 
number of key stroke errors 
(typically 1-2) on a prorated 
basis.

This is most commonly used with data such as 
telephone number or SSN where there is higher 
probability of key stroke issues.

DATE8 (basic tolerance of 
date errors) tolerates a set 
number of variations in days 
on a prorated basis.

This is most commonly used with data such as date of 
birth, date of encounter, and so forth where there is 
possibility of slight error in the day entered.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 95



You can use the Match Designer to create multiple match specifications that 
include one or more passes. Each pass is separately defined and is stored in the 
repository to be reused. 

MULT_UNCERT - (word 
uncertainty in single field) 
tolerates phonetic errors, 
transpositions, random 
insertion, deletion, and 
replacement of characters 
and words using a 
comparison threshold. 

This is the most common comparison for business 
names, arrays of identifiers, or other descriptive data 
where multiple words exist that can vary in position.

NAME_UNCERT - (shortest 
value character uncertainty) 
tolerates phonetic errors, 
transpositions, random 
insertion, deletion, and 
replacement of characters 
using a comparison threshold 
but only to a maximum of the 
shortest value length.

This is the standard comparison for personal names.

PREFIX - (shortest value 
character comparison) 
character by character, left to 
right to a maximum of the 
shortest value length

This is most useful to ensure matching of truncated 
data such as middle initial.

UNCERT - (character 
uncertainty) tolerates 
phonetic errors, 
transpositions, random 
insertion, deletion, and 
replacement of characters 
using a comparison threshold. 

This is the standard comparison for street names or 
other basic text data.

Attention: Within each pass of a match specification, you define the blocking 
fields, match commands, matching columns, match/clerical cutoff values, and 
m and u probabilities. Figure 1-52 on page 97 shows a panel that specifies the 
match column (GENDER), comparison type (CHAR - Character 
comparisons), and m (.9) and u (.01) probabilities chosen.

Common comparisons Where mostly used 

 

 

 

96 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-52   Match command example

You can run each pass on the complete source data or test data that is created 
from a representative subset of your production data and view the results in a 
variety of graphic displays. You can also use frequency information that is 
generated by the Match Frequency stage to help create your match 
specifications. 

Important: While you can use the actual data source as input to this utility, we 
recommend that you use a representative subset of the data reference source 
instead. This subset allows you to test your passes in the Match Designer (as 
described in “J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269) 
against a small sample of the data the match ultimately runs against.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 97



You create separate match specification for each type of match as follows:

� For Unduplicate Match, you can create a match specification that is one of the 
following types:

– Unduplicate (dependent) removes duplicates from match consideration in 
subsequent passes

– Unduplicate Independent includes all duplicates in subsequent passes

� For Reference Match, you can create a match specification that is one of the 
following types:

– One-to-One to create a two-file match specification based on a one-to-one 
relationship. In this match type, a record on the reference source can 
match only one data source record.

– Reference to create a two-file match specification based on a many-to-one 
relationship. 

There are multiple flavors of this type as follows:

• Many-to-One in which a record on the reference source can match 
many data source records. However, any one data source record can 
only match one reference source record.

For example, 101 Main St. on the data source matches to two records 
on the reference source: 101-199 Main St SW and 101-199 Main St 
SE. The first reference source record is the matched record and the 
other is disregarded.

• Many-to-one Multiple in which each reference source record having the 
same weight as the matched pair when it is scored against the data 
record is flagged as a duplicate record. Any one data source record 
might match more than one reference source record. 

For example, 101 Main St. on the data source matches to two records 
on the reference source: 101-199 Main St SW and 101-199 Main St 
SE. One reference source record is the matched record and the other 
is the duplicate. 

• Many-to-one Duplicates is similar to the Many-to-one Multiple option, 
except that additional reference source records that match to a level 
above the duplicate cutoff value are flagged as duplicates. Thus, 
records with lower weights than the match weight can be flagged as 
duplicates. 

For example, 101 Main St on the data source matches to three records 
on the reference source: 101-199 Main St SW, 101-199 Main St SE, 
and 101 Main Rd. One record gets 101-199 Main St SW as the match 
and both of the other addresses could be duplicates.

 

 

 

 

98 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



The inputs to the Match Designer tool are:

� Input data source which is usually a representative subset of the data or 
reference source

� Frequency information from the Match Frequency stage as described in 
“Match Frequency Stage” on page 91.

The output of the Match Designer tool is a test results database—you must 
provide the ODBC Data Source Name (DSN) of this test results database (on the 
client computer), and the user name and password for accessing it. 

The main area of the Match Designer is made up of two tabs:

� Compose tab

On the Compose tab, you design and fine-tune the match passes. You design 
the Match passes and add them to the Match job. You can add, delete, and 

Note: You can assign up to six variables to a column or columns (in the 
Configure Specification → Variables Special Handling window) to judge 
the column according to the definition of the variable that you select. 

For any match specification, you can assign a column a special treatment 
such as specifying that a disagreement on the column would cause the record 
pair automatically to be considered a non-match. You can assign a column 
more than one special treatment. A treatment applies to all passes for this 
match job.

The list of possible actions for a given column are:

� CRITICAL: A disagreement on the column causes the record pair 
automatically to be considered a non-match. 

� CRITICAL MISSINGOK: Missing values on one or both columns is 
acceptable; that is, the record pair is rejected automatically if there is a 
non-missing disagreement. 

� CLERICAL: A disagreement on the column causes the record pair 
automatically to be considered a clerical review case regardless of the 
weight. 

� CLERICAL MISSINGOK: A missing value should not cause the record pair 
being considered to be forced into clerical review, but a disagreement 
would. 

� NOFREQ: A frequency analysis is not run on the column. Used when a 
column has unique values, such as SSN. 

� CONCAT: Concatenates up to four columns to form one frequency count.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 99



modify Match passes in this section. For each Match pass, you can specify 
blocking fields, matching fields, cutoff weights, and view the weight histogram, 
data results, and Match pass statistics.

– The Match Type area is a kind of sandbox for designing jobs that displays 
the current Match job. In this area, you can rearrange the order in which 
the Match passes run in the Match job, add or remove passes, and create 
new passes. 

– The Match Pass Holding area is used to keep iterations of a particular 
pass definition or alternate approaches to a pass. The passes in the 
holding area do not run as part of the match job, but can be tested in 
isolation. You can add any of the Match passes in the holding area to the 
Match job by moving the Match pass to the Match Type area. Also, you 
can remove any of the Match passes from the Match job by moving it from 
the type area into the Match Pass Holding Area. Any pass, whether in the 
type or holding areas, can be test run. This approach lets you perform trial 
runs of different pass definitions without needing to lose alternate 
definitions. 

– The Blocking Columns area designates the fields that must match exactly 
for records to be in the same processing group for the match. The right 
pane shows the histogram and data sections when the run is complete. 
You can sort and search the data columns from the match results. 

– Cutoff values area identifies the match cutoff and clerical cutoff. 

Match cutoff verifies that any record pairs above the cutoff have a high 
probability of matching and those below the cutoff have a high probability 
of not being a match. 

The composite weights assigned to each record pair create a distribution 
of scores that range from very high positive to very high negative. 

• Within the distribution of positive values, define a value or cutoff at 
which any record pair receiving a weight equal to or greater than this 
cutoff is considered a match. 

This is referred to as the match cutoff. 
• Conversely, define a cutoff at which any record pair receiving a weight 

equal to or less than this cutoff is considered a non-match. Record 
pairs with weights that fall between these two cutoff values are 
considered clerical review cases. 

This is referred to as the clerical cutoff. 

Note: Set the clerical cutoff to less than zero and run the pass. Look at 
the resulting graph and adjust the settings according to your 
requirements.

 

 

 

 

100 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



If more than one record pair receives a composite weight higher than the 
match cutoff weight, those records are declared duplicates. 

The duplicate cutoff weight is optional and must be higher than the match 
cutoff weight. This cutoff is not used with the Unduplicate Match stage. 
The way in which duplicate records are handled is based on what type of 
matching you selected. 

Any record pair that falls below the clerical cutoff becomes a residual and 
is eligible for the next matching pass.

Figure 1-53 on page 102 and Figure 1-54 on page 103 show the options in 
the Compose tab. The data source is the output of the Standardize stage on 
CUSTOMER data. Two passes, CUSTOMER_NAME_ADDR and 
CUSTOMER_ZIP3 are defined in this CUSTOMER specification. This 
specification is an Unduplicate Match type.

– Figure 1-53 on page 102 shows the configuration of the first pass 
CUSTOMER_NAME_ADDR as follows:

• Blocking columns are MatchPrimaryWord1NYSIIS_USNAME, 
AddressType_USADDR, StreetNameNYSIIS_USADDR, and 
ZipCode_USAREA.

• Match columns include GENDER, MiddleName_USNAME, 
PrimaryName_USNAME, HouseNumberSuffix_USADDR, 
StreetPrefixDirectional_USADDR, and StreetName_USADDR.

• Clerical cutoff value is 2, while Match cutoff is 5.

• The test results in the right pane show the histogram of composite 
weights and the records in the individual blocks. Rows with the same 
SetID belong to the same block and is a unique id for each set of 
matched rows. Record Type identifies the type of match for the record 
within each SetID—XA identifies the master record in a set of records, 
DA is a duplicate record, CP is a clerical review record, and RA is a 
residual record.

Note: If you want the stage to do exact matching only, specify the blocking 
columns and not the matching columns. This results in all record pairs that 
agree on the blocking columns being declared matches or duplicates.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 101



Figure 1-53   Compose tab showing CUSTOMER_NAME_ADDR pass

– Figure 1-54 on page 103 shows the configuration of the first pass 
CUSTOMER_ZIP3 as follows:

• Blocking columns are ZIP3, AddressType_USADDR, and 
StreetNameNYSIIS_USADDR.

• Match columns include GENDER, MiddleName_USNAME, 
PrimaryName_USNAME, HouseNumberSuffix_USADDR, 
StreetPrefixDirectional_USADDR, and StreetName_USADDR.

• Clerical cutoff value is 2, while Match cutoff is 5. 

• The test results in the right pane show the histogram of composite 
weights and the records in the individual blocks. 

 

 

 

 

102 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-54   Compose tab showing CUSTOMER_ZIP3 pass

� Total statistics tab 

This tab provides statistical data in a graphical format for all the passes that 
run. 

The cumulative statistics are of value only if you test multiple passes 
consecutively, in the order that they appear in the match specification. The 
Total Statistics page displays the following information: 

– Cumulative statistics for the current runs of all passes in the match 
specification. 

– Individual statistics for the current run of each pass. 

– Charts that compare the statistics for the current run of all passes. 

Note: The Total Statistics page does not display information about passes 
in the Match Pass Holding Area.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 103



Figure 1-55 shows a bar chart that was built by using the results for pseudo 
matches, clerical pairs, and data residuals for each of the match passes 
CUSTOMER_NAME_ADDR and CUSTOMER_ZIP3. 

Figure 1-55   Total Statistics tab

Unduplicate Match stage
This stage locates and groups all similar records within a single input data 
source. This process identifies potential duplicate records, which might then be 
removed.

An example is the need to eliminate duplicates from a consolidation of mailing 
lists purchased from multiple sources. 

 

 

 

 

104 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



The Unduplicate Match stage accomplishes the following actions: 

� Categorizes all records with weights above the match cutoff as a set of 
duplicates. 

� Identifies a master record by selecting the record within the set that matches 
to itself with the highest weight. The master record is associated with its set of 
duplicates.

� Determines that records not part of a set of duplicates are residuals. The 
residuals and the master records are generally made available for the next 
pass. 

� Excludes duplicates in subsequent passes. However, you can choose the 
Independent match type (more later) if you want duplicates to be included in 
subsequent passes.

The output of the Unduplicate Match stage can include master records, 
duplicates above the match cutoff, clerical duplicates, and residuals. You can use 
this output as input to the Survive stage.

Unduplicate Match stage uses two match types as follows:

� Dependent: This match type is the default choice. With this match type, after 
the first pass, duplicates are removed from match consideration in 
subsequent passes. 

� Independent: With this match type, duplicates are included in subsequent 
passes. 

Across all passes, all records that match to any given record are also 
considered matched to each other. For example, if records A and B match in 
pass 1, records B and C match in pass 2, and records C and D match in pass 
3, then records A, B, C and D are matched to each other.

Note: Master records are always considered in subsequent passes.

Tip: Usually, you would choose Dependent match type, because you want 
duplicates removed from consideration so that they do not match to other 
records in subsequent passes.

However, the Independent option is useful in circumstances where you want to 
link people or organizations regardless of address. For example, you can link 
together all the locations where a doctor practices.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 105



Table 1-11 shows sample data to describe how to use the Independent match 
type option with the Unduplicate Match stage. The table shows four records that 
describe the same person. You require that all records concerning the same 
person match without regard to address.

Table 1-11   Sample data to demonstrate Dependent and Independent Match

The matching process using this data can yield different results depending on 
whether you choose the Dependent or Independent match type: 

� Dependent Match

The first pass blocks and matches on Name and Address. Records 1 and 2 
are considered a matched pair, while records 3 and 4 are considered 
residuals. 

If Record 2 (without the TaxID) is selected as the master, and Record 1 is 
considered a duplicate, then Record 1 is not available for the second pass. 

If the second pass blocks and matches on Name and TaxID, then only 
Records 3 and 4 match. The result is two groups of matched records: 
Records 1 and 2, and Records 3 and 4. 

� Independent Match 

The first pass results are the same as the Dependent Match. Records 1 and 2 
are considered a matched pair, and records 3 and 4 are considered residuals. 

If Record 2 (without the TaxID) is selected as the master record in the second 
pass, the duplicate record, Record 1, is also compared to the rest of the 
records. When you block on Name and TaxID, records 1, 3, and 4 match. 
Because Record 1 matched Record 2 in the first pass, the output is one group 
with all four records linked.

As mentioned earlier, the Unduplicate Match stage accepts the following inputs:

� Source data from any parallel database, file or processing stage. Typically, the 
source is standardized data from the Standardize stage.

� Frequency information for that data as generated by the Match Frequency 
stage as described in “Match Frequency Stage” on page 91. This stage takes 

Record Name Address Tax Identifier

1 William Nickson 123 Rodeo Drive 123456789

2 Bill Nixon 123 Rodeo Drive

3 B Nickson 978 Sunset Blvd. 123456789

4 Nickson 456 Western Ave. 123456789 

 

 

 

 

106 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



input from a database, file, or processing stage, and generates the frequency 
distribution of values for columns in the input data. 

� Match specification to group and match the data. A Match specification 
provides details of blocking and matching columns for matching as described 
in “Match Designer tool” on page 95. 

The Unduplicate match stage delivers up to four outputs as follows:

� Match contains master records. Figure 1-56 shows a report containing the 
merged match and duplicate records.

� Duplicate contains records that are above the match cutoff. Figure 1-56 
shows a report containing the merged match and duplicate records

Figure 1-56   Merged match and duplicate records

� Clerical has records that fall in the clerical range as shown in Figure 1-57 and 
Figure 1-58.

Figure 1-57   Clerical review records

Figure 1-58   Clerical review records

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 107



� Residual contains records that are not associated with any of the records as 
shown in Figure 1-59 and Figure 1-60.

Figure 1-59   Residual records 1/2

Figure 1-60   Residual records 2/2

Reference Match stage
The Reference Match stage identifies relationships among records. This match 
can group records that are being compared in different ways as follows:

� One-to-many matching

Identifies all records in one data source that correspond to a record for the 
same individual, event, household, or street address in a second data source. 
Only one record in the reference source can match one record in the data 
source because the matching applies to individual events. 

An example of one-to-many matching is finding the same individual (based on 
comparing social security numbers) in two different sources such as a 

 

 

 

 

108 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



department of motor vehicles (DMV) list and a voter registration list. There 
should be at most only one record matching on social security number in 
each list.

� Many-to-one matching 

Multiple records in the data file can match a single record in the reference file. 
For example, matching a transaction data source to a master data source 
allows many transactions for one person in the master data source.

An example of many-to-one matching is matching the ZIP codes in a 
customer file with the list of valid ZIP codes. More than one record in the 
customer file can have the same ZIP code in it.

When you configure the Reference Match stage, you select an existing 
Reference-type Match specification stored in the repository, select the match 
type, and select the match outputs as shown in Figure 1-61. 

Figure 1-61   Configure Reference Match stage

The Reference Match stage requires standardized data and reference data as 
source data, a reference match specification, and frequency information for both 
sources. Briefly, these inputs are: 

� Source data from any parallel database, file or processing stage. Typically, the 
source is standardized data from the Standardize stage.

� Reference source against which the source data is matched.

� Frequency information for that data as generated by the Match Frequency 
stage as described “Match Frequency Stage” on page 91. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 109



� Match specification to group and match the data as described for the “Match 
Designer tool” on page 95. 

The output of the Reference Match stage includes master records, clerical review 
records, duplicates, and residuals. You can use this output as input to the Survive 
stage. Briefly, the Reference Match stage delivers up to six outputs as follows:

� Match contains matched records for both inputs

� Clerical has records that fall in the clerical range for both inputs

� Data Duplicate contains duplicates in the data source 

� Reference Duplicate contains duplicates in the reference source

� Data Residual contains records that are non-matches from the data input

� Reference Residual contains records that are non-matches from the 
reference input 

These reports are similar to the corresponding ones in Figure 1-56 on page 107 
through Figure 1-60 on page 108. 

1.9  Survive stage

The Survive stage consolidates duplicate records, which creates a best-of-breed 
representation of the matched data. Survive consolidates duplicate records, 
creating the best representation of the match data so companies can use it to 
load a master data record, cross-populate all data sources, or both. 

During the Survive stage, IBM WebSphere QualityStage takes the following 
actions: 

� Replaces existing data with “better” data from other records based on user 
specified rules

� Supplies missing values in one record with values from other records on the 
same entity 

� Populates missing values in one record with values from corresponding 
records which have been identified as a group in the matching stage 

� Enriches existing data with external data

The Survive stage constructs column values from groups of related or duplicate 
records and stores the column values in the survived record (the best result) from 
each group. 

The Survive job is the last job in the IBM WebSphere QualityStage workflow and 
is usually run after the Unduplicate Match stage job. The output from the 

 

 

 

 

110 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Unduplicate Match stage, and in some cases the Reference Match stage, 
becomes the source data that you use for the Survive stage. 

The Survive stage requires one input source, which can be sourced from a 
database connector, flat file, data set, or another processing stage. If your input 
is the result of a match stage, you need to set up another stage (for example, a 
Funnel stage) to combine the master, duplicate records, and clerical reviewed 
duplicates into one input source. 

While it is not necessary to process the data through the match stages before 
you use the Survive stage, the source data must include related or duplicate 
groups of rows. Also, the data must be able to be sorted on one or more columns 
that identify each group. These columns are referred to as group keys. 
� To order the records, you sort on the group key or keys so that all records in a 

group are contiguous. The Survive stage sorts records automatically if the 
“Don’t Pre-sort Input” option is not selected in the Survive Stage window. 
However, the automatic sort provides no control over the order of the records 
within each group. To control the order within groups, you can presort the 
input by using the Sort stage.

� The Survive stage accepts all basic data types (non-vector, non-aggregate) 
other than binary. 

The Survive stage can have only one output link. This link can send output to any 
other stage. You specify which columns and column values from each group 
create the output record for the group. The output record can include an entire 
input record, or selected columns from the record, or selected columns from 
different records in the group. 

� You select column values based on rules for testing the columns. 

A rule contains a set of conditions and a list of one or more target columns. 
The rows are tested one by one in the order they appear within the match set. 
For each row tested, the values of the “test” row is updated. 

Rules are described in 1.9.1, “Survive rules” on page 112.

� To select a best candidate match, you can specify multiple columns such as 
the record creation date, data source from which the record originated, length 
of data in the column, and frequency of data in a group 

You set up and configure the Survive stage to create a survived record. You need 
to configure the Survive stage before you run a Survive job. Before you can add 
source data to the Survive stage, all input records must be combined into one 
input source.

When you configure the Survive stage, you choose simple rules that are provided 
in the New Rules window or you select the Complex Survive Expression® to 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 111



create your own custom rules. You use some or all of the columns from the 
source file, add a rule to each column, and apply the data. 

After the Survive stage processes the records to select the best record, this 
information is sent to the target file.

1.9.1  Survive rules

To consider a target as the best candidate for the output record requires a rule 
that comprises one or more targets and a TRUE conditional expression. A 
condition is made up of: 

� Column names 

� Constant or literal values 

� Operators that specify comparison or arithmetic operations 

The Survive stage evaluates the columns to the rule (simple or complex) and 
selects those that meet the conditions of the rule as best columns. The Survive 
stage reads the first record and evaluates the record according to any rule that 
you select. The evaluation process uses the following method: 

� If the first record has no best columns then the selected rule for the target 
record is evaluated against all the columns in the record. If a target record 
passes the test, its columns become best columns and a “b” appears in front 
of the column names—this is only visible when building the rule and not part 
of the evaluation process.

� Each subsequent record in the group is evaluated in relation to the current 
record. If a target record passes the test then its columns become the best 
columns and replace any existing best columns. If none of the current 
columns meets the conditions, the best columns remain unchanged. 

� After all records in the group are evaluated, the values that are designated as 
the best values are combined in the output record. Survive continues the 
process with the next records in the next group.

Note: You can create more than one rule for a target. In addition, you can use 
any input column for testing the condition. The column can be the target or 
another column that is not associated with the target. The last rule tested 
“true” determines the final value.

 

 

 

 

112 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



To apply survival rules to the input columns, the Survive stage includes: 

� A set of predefined Techniques (packaged survive expressions) shown in 
Table 1-12 from which you can select the desired technique. These 
techniques are sometimes referred to as simple survive rules.

Table 1-12   Techniques (commonly used survive rules) available 

You define a simple rule by specifying each of the following elements: 

– Target column or columns 

– Column to analyze 

– Technique to apply to the column that is being analyzed

The rule is defined for you depending on the Technique that you select.

Technique Pattern

Shortest Field SIZEOF(TRIM(c,”column”)) <= SIZEOF(TRIM(b.”column”))

Longest Field SIZEOF(TRIM(c,”column”)) >= SIZEOF(TRIM(b.”column”)) 

Most Frequent FREQUENCY

Most Frequent 
(non blank)

FREQUENCY (Skips missing values when counting most frequent)

Equals c.”column” = “DATA”

Not Equals c.”column” <> “DATA” 

Greater Than c.”column” >= “DATA” 

Less Than c.”column” <= “DATA” 

At Least One 1 (At least one record survives, regardless of other rules)

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 113



Figure 1-62 shows an example of a simple rule involving the Longest field 
technique.

Figure 1-62   Simple rule example

For example, assume that the Unduplicate Match stage identified three 
records shown in Table 1-13 as representing the same person using different 
variations of the name.

Table 1-13   Duplicates representing the same individual

The Survive stage constructs the best record using length analysis (Longest 
Field technique which corresponds to the pattern SIZEOF(TRIM(c,”column”)) 
>= SIZEOF(TRIM(b.”column”)) on the columns SALUTATION, FIRSTNME, 
MIDINIT, and LASTNAME, and using frequency analysis on the column 
Family Name, with the result as shown in Table 1-13.

Table 1-14   Best record output of the Survive Stage

Column Name 
qsMatchSetID

SALUTATION FIRSTNME MIDINIT LASTNAME

9 MR JON SMITH

9 J SMITHE

9 JOHN E SMITH

Column Name 
qsMatchSetID

SALUTATION FIRSTNME MIDINIT LASTNAME

9 MR JOHN E SMITHE

 

 

 

 

114 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� The Rule Expression Builder for creating your own complex expressions. The 
rules created by the Rule Expression Builder are also referred to as complex 
survive rules.

In the Rule Expression Builder, you define a rule by specifying each of the 
following elements: 

– A current record from the Columns list 

– One or both functions (SIZEOF and TRIM)

– An operator such as =, <>, <, >, +, -, *, /, %, AND, OR and NOT

– A best record from the Columns list 

– One or both functions

In a complex rule, you can use more than one column (other than the target 
itself) to define the rule for a target. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 115



Figure 1-63 shows a sample complex expression rule using the Rule 
Expression Builder.

Figure 1-63   Rule Expression Builder 

An example of a complex survive expression built by the Rule Expression 
Builder is shown in the Expression pane as follows:

FIRSTNME: (SIZEOF (TRIM c.FIRSTNME) >= 5) AND (SIZEOF (TRIM c.LASTNAME) > 0); 

This rule states to retain FIRSTNME of the current record if the column 
contains five or more characters and if LASTNAME has any contents. 

 

 

 

 

116 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



This rule is created by selecting FIRSTNME as the target and using the Rule 
Expression Builder to create the complex expression. Table 1-15 shows the 
number of characters in the three records in the first record group.

Table 1-15   Number of characters in each column in a record group

Table 1-15 shows the following:

– Record 1 has two characters in FIRSTNME and three characters in 
LASTNAME. This record fails the test, because FIRSTNME has less than 
five characters. 

– Record 2 has seven characters in FIRSTNME and five in LASTNAME. 
This record passes the conditions for the rule. The current FIRSTNME 
(from the second record) becomes the best column. 

– Record 3 has five characters in FIRSTNME and seven in LASTNAME and 
also passes the conditions. FIRSTNME from this record replaces the best 
value as the new best value. 

When you define multiple rules for the same target, the rule that appears later 
in the list of rules has precedence. For example, if you define two rules for the 
target LASTNAME, the record value that meets listed conditions for the 
second rule becomes the best value. If no target passes the second rule, the 
best values for the first rule become part of the output record.

1.10  Mailing list scenario

In this scenario, we use a real-world scenario to demonstrate a typical data 
cleansing processing flow using IBM WebSphere QualityStage. You can then 
extrapolate or customize this process flow to address the unique data cleansing 
requirements of your organization.

Our scenario assumes a hypothetical national department store named GOOD 
ALL. The store has a customer list of its credit card holders and wants to expand 
its customer base through promotional marketing of its products and GOOD ALL. 
It also wants to cleanse and enhance data of its existing customers. GOOD ALL 
wants to identify households (customers having the same home address) to 

Record LASTNAME FIRSTNME

1 3 2

2 5 7

3 7 5

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 117



reduce mailing costs by sending only one set of promotional or other materials to 
a single household.

To achieve this end, GOOD ALL purchases multiple mailing lists from different 
sources that includes demographic information such as household incomes and 
number of members in the household. 

To achieve the business objectives for GOOD ALL, the following tasks need to be 
performed:

1. Cleanse the credit card customer file (standardize, match, and remove 
duplicates). Also identify households. 

2. Cleanse the acquired mailing lists after merging them into a single file 
(standardize, match, and remove duplicates).

3. Match the cleansed mailing list with the cleansed credit card customer file to 
achieve the following objectives:

– Add demographic information to the credit card customers from the 
mailing list for matched customers to enhance it. 

– Generate a mailing list that is a merge of GOOD ALL’s credit card 
customers and prospects (names and addresses in the mailing list that do 
not overlap with credit card customers). 

After consulting with IBM WebSphere QualityStage specialists, GOOD ALL 
designs a series of steps to perform these tasks as follows:

� Figure 1-88 on page 141 shows the processing flow that is used for cleansing 
GOOD ALL’s credit card customer list and for determining household 
information.

� Figure 1-398 on page 341 shows the processing flow that is used for 
cleansing the mailing lists acquired from multiple data sources, enhancing 
GOOD ALL’s credit card customer list with information from the mailing list, 
and generating a consolidated mailing list for promotional mailing of its 
products and services.

 

 

 

 

118 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



IBM Information Server is a project-based development environment as shown in 
Figure 1-64. 

Figure 1-64   IBM Information Server development paradigm

All applications, operations and services are associated with a project as shown 
in Figure 1-64. Therefore, you first need to create a project before you can define 
any applications, operations, or services. A project is a collaborative environment 
that you use to design applications, services, and operations. All project 
information that you create is saved in the common metadata repository so that it 
can easily be shared among other IBM Information Server components. For our 
mailing list scenario, we created a project named PROJQSSAMP as described in 
1.10.1, “Create a project” on page 121.

Jobs define the sequence of steps that determine how IBM Information Server 
performs its work. After they are designed, jobs are compiled and run on the 
parallel processing engine. The engine runs functions such as connectivity, 
extraction, cleansing, transformation, and data loading based on the design of 
the job. The individual steps that make up a job are called stages. IBM 
Information Server offers dozens of prebuilt stages for performing most common 
data integration tasks such as sort, merge, join, filter, transform, lookup, 
aggregate, investigate, standardize, match, and survive. The stages include 
powerful components for high-performance access to relational databases for 
reading and loading, including parallel relational databases. IBM Information 
Server also provides a number of stage types for building and integrating custom 
stages.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 119



Using IBM WebSphere QualityStage involves designing, executing, managing 
and deploying, and administering IBM WebSphere DataStage jobs. Each time 
that a IBM WebSphere DataStage job is validated, run, or scheduled, you can set 
options to change parameters, override default limits for row processing, assign 
invocation IDs, and set tracing options. When you have a large number of jobs 
that run with the same parameters, it is more efficient to create a parameter set 
object once and have it reused by all the jobs. We created such an object named 
QSPARAMETERSET as described in 1.10.4, “Create a parameter set object” on 
page 130.

The jobs created for the mailing list scenario need to be stored in its own “object,” 
but the folder you choose to save it in is entirely up to you. The same applies to 
the table definitions that are required for the mailing list scenario. We describe 
this process in 1.10.2, “Create additional folders” on page 124.

Finally, you need to import table definitions for the credit card customer 
(CUSTOMER table in the QSSAMPLE database) and mailing list (MAILINGLIST 
table in the QSSAMPLE database) into the Designer Client as described in 
1.10.3, “Import table definitions” on page 126.

After creating the PROJQSSAMP project, creating the required folders, importing 
the table definitions, and creating the QSPARAMETERSET parameter set object, 
we designed and executed the tasks for implementing the GOOD ALL mailing list 
scenario as described in the following sections:

� 1.10.5, “Credit Card Customer cleansing” on page 135
� 1.10.6, “Mailing list cleansing” on page 334
� 1.10.7, “Enhance credit card customers” on page 437
� 1.10.8, “Generate mailing master with household for promotion mailing” on 

page 472.

Attention: In the following sections, to avoid overburdening you with 
excessive screen captures, we do not include all the panels through which you 
typically navigate to perform the desired function. Instead, we include select 
screen captures (and in some cases, just portions of these screen captures) 
that highlight the key items of interest, thereby skipping initial screen captures, 
as well as some intervening screen captures, in the process.

 

 

 

 

120 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1.10.1  Create a project

Figure 1-65 through Figure 1-70 on page 123 describe the steps to create the 
PROJQSSAMP project in IBM Information Server as follows: 

1. Launch the IBM WebSphere DataStage and QualityStage Administrator 
program by clicking Start → All Programs → IBM Information Server → 
IBM WebSphere DataStage and QualityStage Administrator as shown in 
Figure 1-65.

2. Attach to the DataStage server KAZAN.ITSOSJ.SANJOSE.IBM.COM at 
domain 9.43.86.77:9080 with user name (admin) and the appropriate 
password as shown in Figure 1-66 on page 122. Click OK.

3. Under the Projects tab, click Add to add a new project as shown in 
Figure 1-67 on page 122. 

4. Provide the Name (PROJQSSAMP) in Figure 1-68 on page 123 and click OK.

Figure 1-69 on page 123 and Figure 1-70 on page 123 show the successful 
creation of the PROJQSSAMP project. 

Figure 1-65   Create the PROJQSSAMP project 1/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 121



Figure 1-66   Create the PROJQSSAMP project 2/6

Figure 1-67   Create the PROJQSSAMP project 3/6

 

 

 

 

122 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-68   Create the PROJQSSAMP project 4/6

Figure 1-69   Create the PROJQSSAMP project 5/6

Figure 1-70   Create the PROJQSSAMP project 6/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 123



1.10.2  Create additional folders

In this section, we create folders in the Jobs and Table Definitions categories in 
the Designer Client repository tree in which we store jobs and imported table 
definitions that are required for the mailing list scenario. Figure 1-71 on page 125 
through Figure 1-74 on page 126 illustrate this process.

1. Launch the IBM WebSphere DataStage and QualityStage Designer14 
program by clicking Start → All Programs → IBM Information Server → 
IBM WebSphere DataStage and QualityStage Designer as shown in 
Figure 1-71 on page 125.

2. Attach to project PROJQSSAMP at domain 9.43.86.77:9080 with the user 
name (admin) and the appropriate password as shown in Figure 1-72 on 
page 125. Click OK.

3. Right-click the Jobs folder in the repository tree, select New → Folder as 
shown in Figure 1-73 on page 126. 

4. Create a folder PART01 and the subfolders CUSTOMER, MAILING_LIST, and 
PARAMETER_SET. Figure 1-74 on page 126 shows the resulting tree 
structure under the Jobs folder.

5. Additional folders (CUSTOMER and MAILING_LIST in the PlugIn folder and 
folder DSDB2) were created in the Table Definitions folder. We do not show 
this step here. 

14  Referred to Designer Client for the remainder of this book.

 

 

 

 

124 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-71   Create mailing list scenario folders 1/4

Figure 1-72   Create mailing list scenario folders 2/4

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 125



Figure 1-73   Create mailing list scenario folders 3/4

Figure 1-74   Create mailing list scenario folders 4/4

1.10.3  Import table definitions

In this section, we import the plug-in table definitions for the credit card customer 
(CUSTOMER table in the QSSAMPLE database) and mailing list 
(MAILING_LIST table in the QSSAMPLE database) into the Designer Client. 
This is shown in Figure 1-75 on page 127 through Figure 1-80 on page 130.

1. In the repository tree in the Designer Client, right-click the Table Definitions 
folder, select Import Table Definition → Plug-in Meta Data Definitions as 
shown in Figure 1-75 on page 127. 

2. Select the plug-in corresponding to IBM DB2 UDB access (DSDB2) and click 
OK as shown in Figure 1-76 on page 128. 

 

 

 

 

126 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



3. Provide the Server Name (QSSAMPLE) and user name and password to 
access it for the import details. Check the boxes Tables and Fully Qualified 
Table Names and click Next as shown in Figure 1-77 on page 128.

4. Select the DB2INST1.CUSTOMER and click Import as shown in Figure 1-78 
on page 129. The imported metadata definition of the 
DB2INST1.CUSTOMER table is reflected in the repository tree as shown in 
Figure 1-79 on page 129.

We do not show the import of the DB2INST1.MAILING_LIST metadata 
definition.

Figure 1-80 on page 130 shows the resulting tree structure under the Table 
Definitions folder.

Figure 1-75   Import plug-in metadata definitions 1/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 127



Figure 1-76   Import plug-in metadata definitions 2/6

Figure 1-77   Import plug-in metadata definitions 3/6

 

 

 

 

128 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-78   Import plug-in metadata definitions 4/6

Figure 1-79   Import plug-in metadata definitions 5/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 129



Figure 1-80   Import plug-in metadata definitions 6/6

1.10.4  Create a parameter set object

In this section, we explain how to create a parameter set object named 
QSPARAMETERSET to be reused in all the jobs used in GOOD ALL’s mailing list 
scenario. A parameter set contains the names and values of job parameters and 
can be referenced by one or more jobs. An environment variable can also be 
added to the parameter set. The benefits of using a parameter set object is that 
you can share job parameters across jobs, more easily deploy jobs across 
machines, more easily propagate a changed job parameter value, and use 
impact analysis to determine which jobs are using a parameter set. You can 
override the job parameters in a parameter set at run time. 

Figure 1-81 on page 131 through Figure 1-87 on page 134 describe some of the 
steps involved. To create a parameter set object, we followed these steps:

1. From the File menu, select New as shown in Figure 1-81 on page 131.

2. Select Parameter Set in the New window and click OK as shown in 
Figure 1-82 on page 132 to create such an object.

3. Provide the Parameter Set Name (QSPARAMETERSET) and a Short 
Description (Parameters shared across all jobs), and then select the 
Parameters tab as shown in Figure 1-83 on page 132.

 

 

 

 

130 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



4. Key in the Parameter name, Prompt, Type and Default Value parameters and 
click OK as shown in Figure 1-84 on page 133 and Figure 1-85 on page 133. 
In this window, we added path parameters and the CASS stage related 
parameters.

5. Save the parameter set object QSPARAMETERSET in the 
PARAMETER_SET in the Jobs folder as shown in Figure 1-86 on page 134.

The saved parameter set object QSPARAMETERSET is displayed in the 
repository tree as shown in Figure 1-87 on page 134.

Figure 1-81   Create a parameter set specification 1/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 131



Figure 1-82   Create a parameter set specification 2/7

Figure 1-83   Create a parameter set specification 3/7

 

 

 

 

132 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-84   Create a parameter set specification 4/7

Figure 1-85   Create a parameter set specification 5/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 133



Figure 1-86   Create a parameter set specification 6/7

Figure 1-87   Create a parameter set specification 7/7

 

 

 

 

134 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



1.10.5  Credit Card Customer cleansing 

Figure 1-88 on page 141 shows the processing flow and jobs that are used for 
cleansing GOOD ALL’s credit card customer list and for determining household 
information. 

We describe the steps briefly here:

1. Extract all the credit card customer data from the DB2 database and load it 
into a data set so as to isolate it from changes during analysis. Also 
pre-process it for analysis, which involves changing the default values to nulls 
for columns such as the telephone number.15

Job “J00_SRC_CUSTOMER” on page 142 performs this step. 

2. Split the customer records into two files—one with name/address fields and 
another for single domain fields such as telephone numbers and e-mail 
addresses. You split the customer records to allow processing of the single 
domain and text data in parallel by the QualityStage administrators and 
appropriate subject matter experts.

3. Analyze the credit card customer records’ addresses to determine the (ISO 
code) country using the COUNTRY rule set in the Standardize stage. 

Job “J01_STAN_COUNTRY” on page 168 performs this step.

15  If the content was (999) 999-9999 (user default), then insert a null value in the output.

Note: In this scenario, for convenience we chose to use all the columns in 
the input data for the both streams. Job “J01_STAN_COUNTRY” on 
page 168 for the name/address fields, and job “J00A_INV_CUSTOMER” 
on page 162 for the telephone numbers, e-mail, and preferred method 
contact.

In “J00A_INV_CUSTOMER” on page 162 job, we used the Investigate 
stage on non-text columns such as telephone number, e-mail, and 
preferred method of contact. We used character concatenate and 
character discrete with combinations of C, T, and X masks. The objective of 
this step was to validate some of the main non-text columns. Any errors 
detected can be resolved by modifying the source directly or by using IBM 
WebSphere QualityStage jobs to cleanse and modify the targets.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 135



4. Analyze the ISO codes that were generated by the previous step with the 
Investigate stage using character discrete with the C mask to obtain 
frequency distribution. This step identified whether the addresses in the credit 
card customer file belonged to more than one country and identified the 
codes of the countries in the addresses. In this case, all the addresses were 
U.S. addresses.

Job “J02_INVCC_ISCODE” on page 186 performs this step.

5. Use the Standardize stage with the domain-preprocessor rule set USPREP to 
move name and address data into Name, Address, and Area domains.

Job “J03_STAN_USPREP” on page 196 performs this step.

6. Use the Investigate stage using word investigate on the Name, Address, and 
Area domains to determine whether the domain-preprocessor USPREP rule 
set successfully parsed the tokens in the name/address fields into the correct 
domains. 

Job “J04_INVW_USPREP” on page 203 performs this step.

7. Perform a visual analysis of the token and pattern reports of the 
J04_INVW_USPREP step to determine if the parsing was successful. 

In our scenario, we found an error with the parsing, and so chose to perform a 
classification override for the USPREP rule set to fix the errors. 

Job “J03_Z_Override_And_After” on page 215 performs this step.

8. Repeat the steps in the “J03_STAN_USPREP” on page 196, 
“J04_INVW_USPREP” on page 203, and “J03_Z_Override_And_After” on 
page 215 steps until the name and address data is moved into the correct 
domain columns. 

9. After all the name and address data is moved to the correct domain buckets, 
use the CASS stage to validate, correct, and standardize the U.S. addresses 
in the Address domain. In our scenario, we also include a Transformer stage 
to add a second address line column to customer file because CASS requires 
two address lines as input for its processing.

Job “J05_CASS_USPREP” on page 219 performs this step.

Attention: You need to generally limit the overrides in the job 
“J03_Z_Override_And_After” on page 215 to simple classification 
overrides that move name and address data to the correct 
name/address/area domain buckets, rather than more complex pattern 
overrides.

 

 

 

 

136 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



10.Then, run the Investigate stage with character concatenate on the (address 
related columns) results of the job “J05_CASS_USPREP” on page 219 step 
to determine addresses not recognized by CASS (delivery point verification or 
DPV).

We also investigated the output of CASS using character concatenate (on 
CASS generated columns DPVMATCHFLAG_CASS16 and 
DPVCODE1_CASS17) using a C mask. A value of “A1” in the 
DPVCODE1_CASS field indicated a potential problem.

Job “J06_INVCC_CASS” on page 228 performs this step.

11.Standardize the name and address contents of the output of job 
“J05_CASS_USPREP” on page 219 using the domain-preprocessor 
USPREP rule set. Also add a column to the output that only had the first three 
characters of the ZIP code using a Transformer stage. In our scenario, this 
new column (ZIP3) is used as a blocking variable in the next matching stage. 

Job “J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234 preforms 
this step.

12.Standardize the name and address contents of the output of job 
“J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234 using the 
domain-specific USNAME (with column NameDomain_USPREP), USADDR 
(with column AddressDomain_USPREP) and USAREA (with column 
AreaDomain_USPREP) rule sets. Three separate processes were 
defined—one for each rule set.

Note: CASS is a separately priced module that requires installation of the 
CASS module.

Note: Due to a bug with handling nulls, we introduced a Transformer stage 
in our scenario to convert nulls to a space using column derivation.

16  Can have one of four values: Y, S, D, and N. A value of Y indicates that the complete address 
matches the ZIP code + 4 file and the delivery point is validated. A value of S indicates that the 
address has both primary and secondary components, but only the primary address matches (for 
example 23 MAIN ST, APT 10 matches to 23 MAIN ST but not to APT 10). A value of D indicates 
that the address is a default (for example, a high-rise building with no apartment indicated or a 
rural route without a box number). A value of N indicates that the address does not match.

17  A value of AA indicates that the input address matches the ZIP code + 4 table, and DPV 
processing is initiated. If the value is A1, the input address does not match the ZIP code + 4 table, 
and DPV processing is not initiated. All DPV indicators are spaces.

Note: Here again, we had to introduce a null handling Transformer stage to 
circumvent a bug.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 137



Job “J08_STAN_CUSTOMER_Domain_Specific” on page 241 performs this 
step.

13.Identify unhandled patterns and classifications in the 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241. In our scenario, 
we ran the Investigate stage with character concatenate using the C mask on 
the unhandled pattern column from the results of 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241. The columns 
investigated corresponded to the name, address, and area domains.

Job “J09_INVCC_STAN_CUSTOMER” on page 253 performs this step.

14.Because there are unhandled patterns (such as “++” and “+++”) in the 
address domain, create pattern overrides in the domain-specific USADDR 
rule set and re-run the “J08_STAN_CUSTOMER_Domain_Specific” on 
page 241 step.

Job “J09_Z_Override_And_After” on page 262 performs this step.

15.After the unhandled patterns are handled, proceed to generate frequency 
distribution on all the columns in the credit card customer file using the Match 
Frequency stage. The idea is to generate match frequency for all the columns 
so that it can be used with any match specification. 

Job “J10_MATCHFREQ_STAN_CUSTOMER” on page 266 performs this 
step. 

16.Generate a match specification for an Unduplicate match stage using as input 
the match frequency data created in the 
“J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269 step. The 
specification includes two passes: The first one blocking on name, address, 
and area and the second pass on the first three digits of the ZIP code.

Job “J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269 performs 
this step.

17.Determine if there were any duplicates in the credit card customer file by 
running the Unduplicate stage with the match specification and match 
frequency information that was created in steps 
“J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269 and 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266 respectively. The 
output is matched (merge of master and duplicates using a Funnel stage) 
records, records for clerical review, and residuals (records that do not match).

Job “J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282 performs this 
step.

 

 

 

 

138 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



18.Then create a single report of the matched credit card customers and the 
records in the clerical review records to enable a manual review of potential 
match records. 

Job “J12_CLERICAL_REVIEW_CUSTOMER” on page 290 performs this 
step. 

19.If a manual review of the report finds duplicates, then they have to be 
considered as part of the file that contains matched records. We do not show 
this step here.

20.Survive the best information from the set of duplicates using the SURVIVE 
stage. 

Job “J13_SURVIVE_CUSTOMER” on page 295 performs this step.

21.Create a clean master of credit card customers by merging the master, 
clerical review (with duplicates removed), and residual records into a 
sequential file using the FUNNEL stage.

Job “J14_CUSTOMER_MASTER” on page 303 performs this step.

22.Copy the contents of the sequential file that was created in the 
“J14_CUSTOMER_MASTER” on page 303 step into a data set, because a 
subsequent match specification that reads this data only accepts a data set 
as input.

Job “J14A_CUSTOMER_MASTER” on page 316 performs this step.

23.Generate frequency distribution on all the columns in the cleansed credit card 
customer file of the “J14A_CUSTOMER_MASTER” on page 316 step using 
the Match Frequency stage. Here again, the idea is to generate match 
frequency for all the columns so that it can be used with any match 
specification. 

Job “J15_FREQ_CUSTOMER_MASTER” on page 316 performed this step.

24.Generate a match specification for an Unduplicate match stage using as input 
the match frequency data that was created in the 
“J15_FREQ_CUSTOMER_MASTER” on page 316 job. The specification 
included two passes: The first pass blocks on the primary (last) name and a 
phonetic encoding (NYSIIS) of the address, and the second pass blocks on 
the five digit ZIP code and a phonetic encoding (NYSIIS) of the address. 

Note: In our scenario, we could not directly create the merged credit card 
customer file into a data set in the “J14_CUSTOMER_MASTER” on 
page 303 job due to a bug. Therefore, we had to circumvent the bug by first 
creating the sequential file and then copying its contents into a data set in a 
separate step.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 139



Job “J15_Undup_MatchSpec_CUSTOMER” on page 318 performs this step.

25.Determine whether there were duplicates in the credit card customers file 
using the Unduplicate stage with the match specification and match 
frequency information that was created in steps 
“J15_Undup_MatchSpec_CUSTOMER” on page 318 and 
“J15_FREQ_CUSTOMER_MASTER” on page 316 respectively. As before, 
the output is matched records (merge of master and duplicates using a 
Funnel stage), records for clerical review, and residuals (records that do not 
match).

Job “J16_UNDUP_IND_MATCH_CUSTOMER” on page 322 performs this 
step.

26.Create a clean master of credit card customers by merging the master and 
residual records into a data set using the FUNNEL stage. We added a 
household ID (using a Transformer stage) to these records in the output, with 
a value (qsMatchSetID) when a record belonged to a household and a zero 
when it did not belong to a household.

Job “J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” on page 327 
performs this step.

27.Generate frequency distribution on all the columns in the cleansed credit card 
customer file including household information of the 
“J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” on page 327 step using 
the Match Frequency stage. Here again, the idea is to generate match 
frequency for all the columns so that it can be used with any match 
specification. This is used in a later matching stage with mailing lists as 
described in 1.10.6, “Mailing list cleansing” on page 334.

Job “J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD” on page 332 
performs this step.

We describe these jobs in more detail in the following sections.

Note: We repeated the phonetic encoding (NYSIIS) of the address as a 
blocking variable in the second pass to reduce the potentially large block 
size that could arise out of choosing a blocking variable only involving the 
ZIP code. While it was not an issue in our data, it is likely to be an issue in 
a real-world environment.

Note: At this point, we now have a cleansed credit card customer file with 
household information.

 

 

 

 

140 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-88   Customer information cleanup process flow

J00_SRC_CUSTOMER

J01_STAN_COUNTRY

J02_INVCC_ISCODE

J03_STAN_USPREP

J04_INVW_USPREP

J06_INVCC_CASS

Data in 
correct 

domain?

J05_CASS_USPREP

J07_STAN_CUSTOMER_Domain_Preprocessor

Split 
other 

domain

J00A_INV_CUSTOMER

Fix dataFix data at 
source?

Y

Y

J08_STAN_CUSTOMER_Domain_Specific

J09_INVCC_STAN_CUSTOMER

J09_Z_Override_And_After

N Y
J10_Undup_MatchSpec_STAN_CUSTOMER

J11_UNDUP_DEP_MATCH_CUSTOMER

J12_CLERICAL_REVIEW_CUSTOMER

J13_SURVIVE_CUSTOMER

Everything 
handled? J10_MATCHFREQ_STAN_CUSTOMER

J03_Z_Override_And_After

CUSTOMER

J14_CUSTOMER_MASTER

J15_FREQ_CUSTOMER_MASTER

J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD

J17_CUSTOMER_MASTER_WITH_HOUSEHOLD

J16_UNDUP_IND_MATCH_CUSTOMER

MASTER
/w HHFix in 

QS flow
Incorporate in 

QS jobs

Inv other done

Y

N

N

Duplicate 
Clerical?

N
Y

Move into Master

J14A_CUSTOMER_MASTER

J15_Undup_MatchSpec_CUSTOMER

N

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 141



J00_SRC_CUSTOMER
As mentioned earlier, this step involves extracting credit card customer data from 
the DB2 database and loading it into a data set to isolate it from changes during 
analysis. 

Figure 1-89 on page 145 through Figure 1-127 on page 162 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task. A DB2 UDB API stage is used to access the data in the CUSTOMER table. 
Its rows are pre-processed to convert default values (such as (999) 999-9999) in 
the PHONE column to nulls using the Transformer stage. The transformed data is 
written to a data set. 

The steps are as follows:

1. From the File menu of the Designer Client, select New as shown in 
Figure 1-89 on page 145. 

2. From the New window, select the Jobs folder in the left pane and then select 
the Parallel Job icon in the right pane. Click OK as shown in Figure 1-90 on 
page 145.

3. Click View → Pallete to open the Pallete pane. Then from the Database 
section, select and drag the DB2 UDB stage icon onto the Designer canvas 
and drop it to the left of the canvas as shown in Figure 1-91 on page 146 and 
Figure 1-92 on page 146. 

4. Drag a Transformer stage icon from the Processing section, and drop it near 
the middle of the canvas as shown in Figure 1-93 on page 147. 

5. Add the Data Set icon from the File section to the right of the canvas as 
shown in Figure 1-94 on page 147.

6. Right-click the DB2 UDB API stage icon and drag a link to the Transformer 
stage icon and another from the Transformer stage icon to the Data Set 
stage icon as shown in Figure 1-95 on page 148 and Figure 1-96 on 
page 148.

7. Change the name of the stages to CUSTOMER_DATA (from 
DB2_UDB_API_0), RECODE_PHONE (from Transformer _1), and 
CUSTOMER (from Data_Set_2) by clicking the stage icon until a highlighted 
box displays around the name. Then type in the new name, and click outside 
the box to deselect it. We do not show this process here.

Also change the name of the links between the stages to IN (from DSLink3) 
and OUT (from DSLink4). To rename a link, right-click the particular generic 
link name (DSLinknn) and select Rename from the shortcut menu. A 
highlighted box displays around the default name. Type in the new name and 
then click outside the box to deselect it. We do not show this process here.

 

 

 

 

142 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



8. To configure the DB2 UDB stage, double click the CUSTOMER_DATA stage 
icon to view the Properties window as shown in Figure 1-97 on page 149. 

9. In the CUSTOMER_DATA - DSDB2PX stage window, provide details of the 
Server name (QSSAMPLE), User ID (db2inst1) and Password to connect to it. 
Let the Transaction Isolation default to Cursor Stability as shown in 
Figure 1-98 on page 149. 

10.Select the Output tab in Figure 1-98 on page 149 to view Figure 1-99 on 
page 149. For the Output name (IN) link, in the General tab, select Use SQL 
Builder tool from the Query Type drop-down list, and click SQL Builder to 
build the query to access the CUSTOMER table.

Figure 1-100 on page 150 through Figure 1-104 on page 152 describe the 
building of a query that retrieves all the columns in the CUSTOMER table. We 
do not intend to describe the navigation of the screens to build the SQL query. 

11.Configure the Transformer stage to replace default values with nulls as shown 
in Figure 1-105 on page 153. From the Transformer stage window, right-click 
the Input columns and choose Select All to highlight all the columns from the 
DB2 UDB API stage. Drag the selected columns to the Output link. You have 
now populated the Output pane and the Output metadata pane. We do not 
show this process here. 

To add derivations to the PHONE column, double click the Derivation area for 
the PHONE column to open the Expression Editor and type the following 
derivative:

If IN.PHONE =’(999) 999-9999’ Then ‘’ Else IN.PHONE

This derivative directs that a value of (999) 999-9999 be replaced with a null. 
If not, leave the value as is.

12.To configure the data set CUSTOMER object, right-click the Data Set stage 
icon and select Properties as shown in Figure 1-106 on page 153. 

13.In the CUSTOMER - Data Set window, expand Target under the Properties 
tab, select File = ?. You could directly type the path and file name for this 
object, but we chose to use the same path where the QSPARAMETERSET is 
stored. This is achieved by selecting Insert job parameter from the File 
drop-down list and then by typing QSPARAMETERSET.FILE_PATH that was 
defined in 1.10.4, “Create a parameter set object” on page 130. Then, enter 
the name of the file CUSTOMER.ds. This sequence of steps is shown in 
Figure 1-107 on page 154 through Figure 1-109 on page 154.

14.Select the Columns tab in Figure 1-109 on page 154 to view all the columns 
associated with the OUT link under the Properties tab as shown in 
Figure 1-110 on page 155. 

You can save this set of columns as a table definition by clicking Save in 
Figure 1-110 on page 155. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 143



Figure 1-111 on page 155 through Figure 1-113 on page 156 show the saving 
of this table definition as CUSTOMER_KEY in the folder path \Table 
Definitions\ PlugIn\DSDB2\CUSTOMER.

15.When all the stages have been configured, save this parallel job from the File 
menu by selecting Save As. Figure 1-186 on page 200 and Figure 1-115 on 
page 157 show saving this job as j00_SRC_CUSTOMER in the folder path 
\Jobs\Part01\CUSTOMER. 

16.After the j00_SRC_CUSTOMER job is saved, you can associate job 
parameters object QSPARAMETERSET with it as shown in Figure 1-116 on 
page 158 through Figure 1-118 on page 159.

a. Click the Job Properties icon as shown in Figure 1-116 on page 158.

b. In the \Jobs\PART01\CUSTOMER\j00_SRC_CUSTOMER - Job 
Properties window under the Parameters tab, click Add Parameter Set as 
shown in Figure 1-117 on page 158.

c. In the Open window, select the QSPARAMETERSET object that was 
created in 1.10.4, “Create a parameter set object” on page 130 and click 
OK. 

17.We can now compile the job by clicking the Compile icon as shown in 
Figure 1-119 on page 159. A successful compile status is shown in 
Figure 1-120 on page 159. 

18.To run the compiled job, click the Run icon as shown in Figure 1-121 on 
page 160. In the following j00_SRC_CUSTOMER - Job Run Options dialog 
window, you can choose to modify the job parameters for this execution. 
Select QSPARAMETERSET and click Run as shown in Figure 1-122 on 
page 160. When the execution is complete, the links between the stages turn 
green (if it ran without errors), and statistics about rows processed is 
displayed as shown in Figure 1-123 on page 160.

19.You can now view the rows in the CUSTOMER data set object by 
right-clicking that icon and selecting Properties as shown in Figure 1-124 on 
page 161. In the following CUSTOMER - Data Set window, select 
File=#QSPARAMETERSET.FILE_PATH#CUSTOMER.ds in the Target 
folder, and click View Data as shown in Figure 1-125 on page 161. At the 
prompt in the j00_SRC_CUSTOMER...CUSTOMER.OUT - Data Browser 
window, alter the Rows to display, or Skip count and click OK as shown in 
Figure 1-126 on page 161. The contents of the CUSTOMER Data Set object 
are shown in Figure 1-127 on page 162.

Now, proceed to “J01_STAN_COUNTRY” on page 168. 

 

 

 

 

144 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-89   Create the J00_SRC_CUSTOMER job 1/39

Figure 1-90   Create the J00_SRC_CUSTOMER job 2/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 145



Figure 1-91   Create the J00_SRC_CUSTOMER job 3/39

Figure 1-92   Create the J00_SRC_CUSTOMER job 4/39

 

 

 

 

146 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-93   Create the J00_SRC_CUSTOMER job 5/39

Figure 1-94   Create the J00_SRC_CUSTOMER job 6/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 147



Figure 1-95   Create the J00_SRC_CUSTOMER job 7/39

Figure 1-96   Create the J00_SRC_CUSTOMER job 8/39

 

 

 

 

148 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-97   Create the J00_SRC_CUSTOMER job 9/39

Figure 1-98   Create the J00_SRC_CUSTOMER job 10/39

Figure 1-99   Create the J00_SRC_CUSTOMER job 11/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 149



Figure 1-100   Create the J00_SRC_CUSTOMER job 12/39

 

 

 

 

150 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-101   Create the J00_SRC_CUSTOMER job 13/39

Figure 1-102   Create the J00_SRC_CUSTOMER job 14/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 151



Figure 1-103   Create the J00_SRC_CUSTOMER job 15/39

Figure 1-104   Create the J00_SRC_CUSTOMER job 16/39

 

 

 

 

152 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-105   Create the J00_SRC_CUSTOMER job 17/39

Figure 1-106   Create the J00_SRC_CUSTOMER job 18/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 153



Figure 1-107   Create the J00_SRC_CUSTOMER job 19/39

Figure 1-108   Create the J00_SRC_CUSTOMER job 20/39

Figure 1-109   Create the J00_SRC_CUSTOMER job 21/39

 

 

 

 

154 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-110   Create the J00_SRC_CUSTOMER job 22/39

Figure 1-111   Create the J00_SRC_CUSTOMER job 23/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 155



Figure 1-112   Create the J00_SRC_CUSTOMER job 24/39

Figure 1-113   Create the J00_SRC_CUSTOMER job 25/39

 

 

 

 

156 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-114   Create the J00_SRC_CUSTOMER job 26/39

Figure 1-115   Create the J00_SRC_CUSTOMER job 27/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 157



Figure 1-116   Create the J00_SRC_CUSTOMER job 28/39

Figure 1-117   Create the J00_SRC_CUSTOMER job 29/39

 

 

 

 

158 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-118   Create the J00_SRC_CUSTOMER job 30/39

Figure 1-119   Create the J00_SRC_CUSTOMER job 31/39

Figure 1-120   Create the J00_SRC_CUSTOMER job 32/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 159



Figure 1-121   Create the J00_SRC_CUSTOMER job 33/39

Figure 1-122   Create the J00_SRC_CUSTOMER job 34/39

Figure 1-123   Create the J00_SRC_CUSTOMER job 35/39

 

 

 

 

160 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-124   Create the J00_SRC_CUSTOMER job 36/39

Figure 1-125   Create the J00_SRC_CUSTOMER job 37/39

Figure 1-126   Create the J00_SRC_CUSTOMER job 38/39

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 161



Figure 1-127   Create the J00_SRC_CUSTOMER job 39/39

J00A_INV_CUSTOMER
In this step, we use the Investigate stage on non-text columns such as telephone 
number, e-mail, and preferred method of contact. We used character 
concatenate and character discrete with combinations of C, T, and X masks. The 
objective of this step is to validate some of the main non-text columns. Any errors 
detected are resolved by modifying the source directly or by using IBM 
WebSphere QualityStage jobs to cleanse and modify the targets.

Figure 1-128 on page 164 shows the various stages that are used in this job, 
including the data set that was created in “J00_SRC_CUSTOMER” on page 142, 
one COPY stage, three Investigate stages, and one Sequential File stage for 
each Investigate stage. We modified the names of the stages as shown, and this 
job used the same QSPARAMETERSET object that was created earlier.

Because the configuration of this job is very similar to that described in 
“J02_INVCC_ISCODE” on page 186, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 1-129 on page 164 shows the contents of the input file to the COPY 
stage and there on to the Investigate stages.

� Figure 1-130 on page 165 shows the character discrete investigate columns 
EMAIL, PHONE, and PCONTACT configured with the C mask.

 

 

 

 

162 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-134 on page 167 shows the report that was generated for this 
Investigate stage after compiling and running (Figure 1-133 on page 166) this 
job. 

� Figure 1-131 on page 165 shows the character discrete investigate columns 
EMAIL, PHONE, and PCONTACT configured with the T mask.

Figure 1-135 on page 168 shows the report that was generated for this 
Investigate stage after compiling and running this job.

� Figure 1-132 on page 166 shows the character concatenate investigate 
columns EMAIL, PHONE, and PCONTACT configured with a combination of 
C, T, and X masks. This Investigate stage reveals whether the business rule 
that states that the preferred method of contact (PCONTACT) needs a valid 
value (for example, if the preferred method of contact is through telephone, 
then a telephone number must be present).

Figure 1-136 on page 168 shows the report that was generated for this 
Investigate stage (sample size of 1) after compiling and running this job. The 
highlighted boxes show the rows that violate the business rule of having a 
value in the column that corresponds to the preferred method of contact. 

Note: You need to review these reports for validity and then correct them 
using data cleansing techniques. Time constraints during our testing 
prevented us from creating data cleansing jobs to do so. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 163



Figure 1-128   Create J00A_INV_CUSTOMER job 1/9

Figure 1-129   Create J00A_INV_CUSTOMER job 2/9 

 

 

 

 

164 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-130   Create J00A_INV_CUSTOMER job 3/9

Figure 1-131   Create J00A_INV_CUSTOMER job 4/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 165



Figure 1-132   Create J00A_INV_CUSTOMER job 5/9

Figure 1-133   Create J00A_INV_CUSTOMER job 6/9

 

 

 

 

166 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-134   Create J00A_INV_CUSTOMER job 7/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 167



Figure 1-135   Create J00A_INV_CUSTOMER job 8/9

Figure 1-136   Create J00A_INV_CUSTOMER job 9/9

J01_STAN_COUNTRY
This step involves analyzing the addresses on the credit card customer records 
to determine the (ISO code) country using the COUNTRY rule set in the 
Standardize stage. 

Figure 1-137 on page 171 through Figure 1-167 on page 186 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

 

 

 

 

168 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



The steps are as follows:

1. Figure 1-137 on page 171 shows the various stages that are used in this job, 
including the data set that was created in “J00_SRC_CUSTOMER” on 
page 142, a Standardize stage, and an output Data Set stage. This job uses 
the same QSPARAMETERSET object that was created earlier. 

2. Attach the input credit card customer data and load the metadata as follows:

a. Double-click the input Data_Set_0 stage and enter the location of the data 
set that was created in “J00_SRC_CUSTOMER” on page 142 as shown in 
Figure 1-138 on page 172. 

b. Select the Columns tab to define the column metadata for the selected 
output link (DSLINK3). You can enter column definitions by typing them in 
this tab, or you can load predefined columns definitions from the 
repository. We chose to load by clicking Load to load a table definition 
from the repository and populate the Columns tab as shown in 
Figure 1-139 on page 172. 

c. In the Table Definition window that opens, browse the repository tree for 
the table definition that you want to load. Select the table definition 
(CUSTOMER) in the tree, and click OK as shown in Figure 1-140 on 
page 173.

d. In the Select Columns window that opens, use the arrow buttons to move 
the columns that you want to load from the Available columns list to the 
Selected column list. In our case, we chose to load all the columns as 
shown in Figure 1-141 on page 173. Click OK to load the selected column 
definition into the Columns tab as shown in Figure 1-142 on page 174. 
Click OK to close the Data_Set_0 - Data Set window.

3. Then, modify the stage object names as follows:

– Data_Set_0 to CUSTOMER
– Standardize3 to STAN_COUNTRY
– Data_Set_1 to CUSTOMER_STAN_COUNTRY
– DSLink3 to IN
– DSLink4 to OUT

We do not show these steps here.

4. Next, configure the Standardize stage with the COUNTRY rule set as follows:

a. Right-click the STAN_COUNTRY Standardize stage object and select 
Properties as shown in Figure 1-143 on page 174.

b. In the Standardize Stage window, click New Process to open the 
Standardize Rule Process window as shown in Figure 1-144 on page 175. 

c. From the Standardize Rule Process window, click the  button to 
browse the available rule sets as shown in Figure 1-145 on page 175.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 169



d. In the Rule Sets window, expand the Standardization Rules folder 
(Figure 1-146 on page 176), and select the COUNTRY folder and 
COUNTRY (rule set) under the Other folder as shown in Figure 1-147 on 
page 176. Click OK. 

e. Right-click COUNTRY (rule set) and select Provision All as shown in 
Figure 1-148 on page 177. 

f. Figure 1-149 on page 177 and Figure 1-150 on page 177 show the 
progress and successful completion of the provisioning. Click OK in 
Figure 1-151 on page 178 to proceed to the Standardize Rule Process 
window.

g. In the Standardize Rule Process window that opens, key in the literal 
ZQUSZQ18 in the Literal field and move it to the Selected Columns list, 
and do the same for the ADDR column as shown in Figure 1-152 on 
page 178 and Figure 1-153 on page 179. Click OK.

h. Click Stage Properties in the STAN_COUNTRY - Standardize Stage 
window to map the Standardize stage output columns as shown in 
Figure 1-154 on page 179. 

i. Click the Mapping tab under Output in Figure 1-155 on page 180, and 
select all the columns in the left pane and copy them to the right pane. 
Click OK.

j. Click OK in Figure 1-156 on page 180 to complete the configuration of the 
Standardize stage.

5. Finally, configure the output CUSTOMER_STAN_COUNTRY data set object 
by right-clicking the icon and selecting Properties as shown in Figure 1-157 
on page 181. 

You need to map the Standardize stage output columns and save the table 
definition to the Table Definitions folder. This definition is used in a 
subsequent stage. Click the Columns tab in the STAN_CUSTOMER - Data 
Set window (Figure 1-158 on page 181) to view the Standardize stage output 
columns in Figure 1-159 on page 182. You can save this set of columns as a 
table definition by clicking Save in Figure 1-159 on page 182. 

Figure 1-160 on page 182 and Figure 1-161 on page 183 show the saving of 
this table definition as CUSTOMER_STAN_CNTRY in the folder path \Table 
Definitions\ PlugIn\DSDB2\CUSTOMER.

Note: You need to provision new, copied, or customized rule sets in the 
Designer client before you can compile a job that uses them. 

18  This literal indicates that the following columns mainly have U.S. addresses.

 

 

 

 

170 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



6. After saving, compiling, and running the job j01_STAN_COUNTRY, you view 
the results as shown in Figure 1-162 on page 183.

7. You can view the contents of the input data by right-clicking the CUSTOMER 
Data Set icon and selecting View IN data as shown in Figure 1-163 on 
page 184. Figure 1-164 on page 184 through Figure 1-165 on page 185 
shows the contents of this data set.

8. Similarly, you can view the contents of the CUSTOMER_STAN_COUNTRY 
data set object as shown in Figure 1-166 on page 185 through Figure 1-167 
on page 186. The report shows the two columns 
ISOCountryCode_COUNTRY and IdentifierFlag_COUNTRY added by the 
Standardize stage. It shows US for each row with the identifier flag of Y. 

Now, proceed to “J02_INVCC_ISCODE” on page 186. 

Figure 1-137   Create J01_STAN_COUNTRY job 1/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 171



Figure 1-138   Create J01_STAN_COUNTRY job 2/31

Figure 1-139   Create J01_STAN_COUNTRY job 3/31

 

 

 

 

172 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-140   Create J01_STAN_COUNTRY job 4/31

Figure 1-141   Create J01_STAN_COUNTRY job 5/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 173



Figure 1-142   Create J01_STAN_COUNTRY job 6/31

Figure 1-143   Create J01_STAN_COUNTRY job 7/31

 

 

 

 

174 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-144   Create J01_STAN_COUNTRY job 8/31

Figure 1-145   Create J01_STAN_COUNTRY job 9/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 175



Figure 1-146   Create J01_STAN_COUNTRY job 10/31

Figure 1-147   Create J01_STAN_COUNTRY job 11/31

 

 

 

 

176 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-148   Create J01_STAN_COUNTRY job 12/31

Figure 1-149   Create J01_STAN_COUNTRY job 13/31

Figure 1-150   Create J01_STAN_COUNTRY job 14/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 177



Figure 1-151   Create J01_STAN_COUNTRY job 15/31

Figure 1-152   Create J01_STAN_COUNTRY job 16/31

 

 

 

 

178 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-153   Create J01_STAN_COUNTRY job 17/31

Figure 1-154   Create J01_STAN_COUNTRY job 18/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 179



Figure 1-155   Create J01_STAN_COUNTRY job 19/31

Figure 1-156   Create J01_STAN_COUNTRY job 20/31

 

 

 

 

180 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-157   Create J01_STAN_COUNTRY job 21/31

Figure 1-158   Create J01_STAN_COUNTRY job 22/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 181



Figure 1-159   Create J01_STAN_COUNTRY job 23/31

Figure 1-160   Create J01_STAN_COUNTRY job 24/31

 

 

 

 

182 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-161   Create J01_STAN_COUNTRY job 25/31

Figure 1-162   Create J01_STAN_COUNTRY job 26/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 183



Figure 1-163   Create J01_STAN_COUNTRY job 27/31

Figure 1-164   Create J01_STAN_COUNTRY job 28/31

 

 

 

 

184 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-165   Create J01_STAN_COUNTRY job 29/31

Figure 1-166   Create J01_STAN_COUNTRY job 30/31

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 185



Figure 1-167   Create J01_STAN_COUNTRY job 31/31

J02_INVCC_ISCODE
In this job, we analyze the ISO codes that were generated by the 
“J01_STAN_COUNTRY” on page 168 job by the Investigate stage using 
character discrete with the C mask to obtain frequency distribution. This step 
identifies whether the addresses in the credit card customer file belong to more 
than one country and identifies the codes of the countries in the addresses. In 
this case, all the addresses are U.S. addresses.

Figure 1-168 on page 188 through Figure 1-181 on page 196 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-168 on page 188 shows the various stages that are used in this job, 
including the data set that was created in “J01_STAN_COUNTRY” on 
page 168, an Investigate stage, and an output Sequential File stage. We 
modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object that was created earlier.

2. Configure the input STAN_COUNTRY_COUNTRY data set with the table 
definition CUSTOMER_STAN_CNTRY that was saved in 
“J01_STAN_COUNTRY” on page 168. We do not repeat this process here 
because it is similar to the steps shown in Figure 1-138 on page 172 through 
Figure 1-142 on page 174.

 

 

 

 

186 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



3. Right-click the INV_CC_ISOCODE icon and select Properties to configure 
this stage as follows: 

a. Click Character Concatenate Investigate. The columns propagated from 
the input data set are shown in the Available Data Columns list. Select 
ISOCountryCode_Country column, and click Add to Selected Columns 
as shown in Figure 1-169 on page 188.

b. In the Mask Column Selection window, click All C for each of the three 
characters in this column as shown in Figure 1-170 on page 189 and 
Figure 1-171 on page 189. 

c. Repeat this process for the IdentifierFlag_COUNTRY column. We do not 
show this process here.

d. Figure 1-172 on page 190 shows the two columns that are selected with 
the C masks for each character.

e. Click Stage Properties in Figure 1-172 on page 190 and when the 
INV_CC_ISCODE - Investigate windows opens, select Mapping in the 
Output tab—the Output name is IN. Map all the columns in the Columns 
list to the IN list as shown in Figure 1-173 on page 191. Click OK.

4. Configure the output sequential file ISOCODE_REPORT object to sort the 
incoming records on descending sequence of the count of distinct values in 
the two concatenated character columns. The objective is to determine the 
predominant country addresses and identify the ISO codes that are present in 
the data. 

Figure 1-174 on page 191 through Figure 1-177 on page 193 show the 
configuration of the sequential file.

5. After saving, compiling, and running this job, the job statistics are shown in 
Figure 1-178 on page 194.

6. The contents of the data input to the Investigate stage is shown in 
Figure 1-179 on page 195 through Figure 1-180 on page 195.

7. The output of the Investigate stage that is written to the sequential file is 
shown in Figure 1-181 on page 196. It shows a single record with a 
concatenated value of US Y in 100% of the records. 

Now, proceed to “J03_STAN_USPREP” on page 196. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 187



Figure 1-168   Create J02_INVCC_CODE 1/14

Figure 1-169   Create J02_INVCC_CODE 2/14

 

 

 

 

188 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-170   Create J02_INVCC_CODE 3/14

Figure 1-171   Create J02_INVCC_CODE 4/14

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 189



Figure 1-172   Create J02_INVCC_CODE 5/14

 

 

 

 

190 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-173   Create J02_INVCC_CODE 6/14

Figure 1-174   Create J02_INVCC_CODE 7/14

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 191



Figure 1-175   Create J02_INVCC_CODE 8/14

Figure 1-176   Create J02_INVCC_CODE 9/14

 

 

 

 

192 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-177   Create J02_INVCC_CODE 10/14

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 193



Figure 1-178   Create J02_INVCC_CODE 11/14

 

 

 

 

194 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-179   Create J02_INVCC_CODE 12/14

Figure 1-180   Create J02_INVCC_CODE 13/14

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 195



Figure 1-181   Create J02_INVCC_CODE 14/14

J03_STAN_USPREP
After verifying that all the addresses are U.S. addresses, we use the Standardize 
stage with the domain-preprocessor rule set USPREP to move name and 
address data in the credit card customer file into Name, Address, and Area 
domains.

In this job, the output of the “J01_STAN_COUNTRY” on page 168 job is 
standardized by the Standardize stage using the domain preprocessor rule set 
USPREP, because all the addresses are U.S. addresses.

Figure 1-182 on page 198 through Figure 1-192 on page 203 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-182 on page 198 shows the various stages that are used in this job, 
including the data set that was created in “J01_STAN_COUNTRY” on 
page 168, a Standardize stage and an output Data Set stage. We modified 
the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object that was created earlier.

2. Configure the input STAN_COUNTRY data set with the table definition 
CUSTOMER_STAN_CNTRY that was saved in “J01_STAN_COUNTRY” on 
page 168. We do not repeat this process here because it is similar to the 
steps shown in Figure 1-138 on page 172 through Figure 1-142 on page 174.

3. Next, configure the Standardize stage with the domain preprocessor 
USPREP rule set as follows:

a. Right-click the USPREP_STAN Standardize stage object and select 
Properties as shown in Figure 1-183 on page 198.

b. In the Standardize Stage window, click New Process to open the 
Standardize Rule Process window. Then, click the  button to browse 

Note: If addresses from other countries existed in the credit card customer 
file, we would have split the file into as many sub-files as the number of 
country addresses that were detected and then processed each file separately 
using the appropriate country’s domain preprocessor rule set if available.

 

 

 

 

196 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



the available rule sets. We do not repeat this process here because we 
described it earlier in Figure 1-144 on page 175 through Figure 1-147 on 
page 176.

c. In the Rule Sets window, expand the Standardization Rules folder, scroll 
down, and select the USPREP folder and USPREP (rule set) under the 
USA folder as shown in Figure 1-184 on page 199. Right-click USPREP 
(rule set) and select Provision All. 

We do not show the progress and successful completion of the 
provisioning here, but it is similar to that shown in Figure 1-149 on 
page 177 and Figure 1-150 on page 177. 

d. In the Standardize Rule Process window, the Rule Set shows 
USPREP.SET. Insert literals ZQNAMEZQ19 and ZQMIXAZQ20 
interspersed by columns TITLE, FNAME, LNAME, and ADDR as shown in 
Figure 1-185 on page 199 and Figure 1-186 on page 200. Click OK.

e. Click Stage Properties in the USPREP_STAN - Standardize Stage 
window to map the Standardize stage output columns. Figure 1-187 on 
page 200 shows a partial list of the columns that are mapped. 

4. Finally, configure the output STAN_USPREP data set object with the column 
metadata shown in Figure 1-189 on page 201. You can save this set of 
columns as a table definition by clicking Save. 

This set of columns is saved as CUSTOMER_USPREP. We do not show this 
process here. 

5. After saving, compiling, and running this job j03_STAN_USPREP, you view 
the results as shown in Figure 1-188 on page 201.

6. The content of the input data set object STAN_COUNTRY is the same as 
shown in Figure 1-179 on page 195 through Figure 1-180 on page 195. 

19  When the ZQNAMEZQ literal is used, field overrides and field modifications are applied. It then 
checks for common Name patterns. If not found, it looks for Address and Area patterns. If not 
found, the field is defaulted to Name. 

20  When the ZQMIXAZQ literal is used, field overrides and field modifications are applied. It then 
looks the field for name, address, and area data (in that order). Any information that is not 
assigned a domain is defaulted to Address.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 197



7. The content of the STAN_USPREP is shown in Figure 1-190 on page 202 
through Figure 1-192 on page 203. 

The report shows the following:

– Columns NameDomain_USPREP (contains prefix, first name, last name, 
suffix tokens), AddressDomain_USPREP (contains apartment, street 
name and street type tokens), and AreaDomain_USPREP (contains state, 
ZIP code tokens) that were parsed from the input columns.

– InputPattern_USPREP and OutboundPattern_USPREP columns that 
contain the patterns generated after processing the name and address 
columns in the input file.

Now, proceed to “J04_INVW_USPREP” on page 203.

Figure 1-182   Create J03_STAN_USPREP job 1/11

Figure 1-183   Create J03_STAN_USPREP job 2/11

 

 

 

 

198 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-184   Create J03_STAN_USPREP job 3/11

Figure 1-185   Create J03_STAN_USPREP job 4/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 199



Figure 1-186   Create J03_STAN_USPREP job 5/11

Figure 1-187   Create J03_STAN_USPREP job 6/11

 

 

 

 

200 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-188   Create J03_STAN_USPREP job 7/11

Figure 1-189   Create J03_STAN_USPREP job 8/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 201



Figure 1-190   Create J03_STAN_USPREP job 9/11

Figure 1-191   Create J03_STAN_USPREP job 10/11

 

 

 

 

202 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-192   Create J03_STAN_USPREP job 11/11

J04_INVW_USPREP
In this job, we use the Investigate stage using word investigate on the USPREP 
generated Name, Address, and Area domains to determine whether the 
domain-preprocessor USPREP rule set successfully parsed the tokens in the 
name and address fields into the correct domains.

We analyze the credit card customer file containing the name, address, and area 
buckets that are generated by the “J03_STAN_USPREP” on page 196 job by the 
Investigate stage using word investigate and the domain-specific USNAME, 
USADDR and USAREA rule sets to determine the degree of success that is 
achieved by the Standardize stage in moving the tokens to the right domain 
buckets. 

Because a single Investigate stage can only have a single rule set associated 
with it, the credit card customer file needs to be split (using a Copy stage) and 
processed by three independent Investigate stages, with each stage using a 
particular domain-specific rule set. Both the pattern and token reports are 
generated in each Investigate stage.

Figure 1-193 on page 206 through Figure 1-210 on page 214 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 203



The steps are as follows:

1. Figure 1-193 on page 206 shows the various stages that are used in this job, 
including the data set that was created in “J03_STAN_USPREP” on 
page 196, a Copy stage, three Investigate stages that each use a different 
domain-specific rule set, and two sequential file stages (one each for the 
token report and pattern report) for each Investigate stage. The names of the 
stages are modified as shown, and this job uses the same 
QSPARAMETERSET object that was created earlier.

2. Configure the input STAN_USPREP data set with the table definition 
CUSTOMER_USPREP saved in “J03_STAN_USPREP” on page 196. We do 
not repeat this process here because it is similar to the steps shown in 
Figure 1-138 on page 172 through Figure 1-142 on page 174.

3. The Copy stage duplicates the source data and sends it to the three 
Investigate stages. The Copy stage also duplicates the metadata and sends 
the output metadata to the three Investigate stages. 

Configure the Copy stage as follows:

a. Right-click the COPY stage icon and select Properties as shown in 
Figure 1-194 on page 206.

b. In the COPY - Copy window, the Input tab and Columns tab shows the 
metadata that is propagated by the COPY stage. We do not show this 
process here.

c. In the same window, click the Output tab and then the Mapping tab. ¨ 
Mapping. Map the columns that display in the left Columns box to the right 
box as shown in Figure 1-195 on page 207. This applies to the link NAME 
in the Output name field. 

Selecting the correct output link assures that the data goes to the correct 
Investigate stage.

To copy the data from the Columns pane to the Name pane, simply drag 
and drop, or complete the following steps:

i. Place the cursor in the Columns pane, right-click, and choose Select 
All. 

ii. Then, choose Copy.

iii. Place the cursor in the Name pane, right-click, and choose Paste 
Column. The column metadata copies into the Name pane and lines 
show the columns linking from Columns to Name.

Repeat the process for Output name fields ADDRESS and AREA. 

 

 

 

 

204 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



4. Configure the INVNAME Investigate stage as follows:

a. Right-click that icon and select Properties as shown in Figure 1-196 on 
page 207.

b. Select the domain-specific USNAME rule set and provision it. We do not 
repeat this process here because it is similar to the process described in 
Figure 1-144 on page 175 through Figure 1-151 on page 178.

c. In the INVNAME - Investigate Stage, click Word Investigate. The Rule Set 
field shows USNAME.SET. The columns that are propagated from the 
input data set are shown in the Available Columns list. Select 
NameDomain_USPREP and move it to the Standard Columns pane using 
the  button as shown in Figure 1-197 on page 208. The Pattern 
Report and Token Report boxes are selected in the Output Dataset field.

d. Click Stage Properties in Figure 1-197 on page 208 and when the 
INVNAME - Investigate windows opens, select Mapping in the Output 
tab—the Output name is NP. Map all the columns in the Columns list to the 
NP list as shown in Figure 1-198 on page 208. This corresponds to the 
pattern report. Click OK.

e. Repeat the process for the Output name NT as shown in Figure 1-199 on 
page 209. This corresponds to the token report.

f. Configure the sequential files for the pattern (Figure 1-200 on page 209) 
and token (Figure 1-201 on page 210) reports.

5. Repeat the process for configuring the INVADDR Investigate stage. The 
AddressDomain_USPREP column is analyzed with the domain-specific 
USADDR rule set as shown in Figure 1-202 on page 210. 

6. Repeat the process for configuring the INVAREA Investigate stage. The 
AreaDomain_USPREP column is analyzed with the domain-specific USAREA 
rule set as shown in Figure 1-203 on page 211. 

7. After saving, compiling, and running this job, the contents of the output of 
each investigate stage are listed here:

a. The contents of the data input to the Investigate stage are shown in 
Figure 1-179 on page 195 through Figure 1-180 on page 195.

b. The outputs of the Investigate stage that are written to the sequential file 
are shown in Figure 1-204 on page 211 through Figure 1-210 on 
page 214. 

Attention: Ensure that the link ordering is set correctly so that the data 
is directed to the correct output path.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 205



After analyzing the results of this job, proceed to “J03_Z_Override_And_After” on 
page 215.

Figure 1-193   Create J04_INVW_USPREP job 1/18

Figure 1-194   Create J04_INVW_USPREP job 2/18

 

 

 

 

206 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-195   Create J04_INVW_USPREP job 3/18

Figure 1-196   Create J04_INVW_USPREP job 4/18

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 207



Figure 1-197   Create J04_INVW_USPREP job 5/18 

Figure 1-198   Create J04_INVW_USPREP job 6/18

 

 

 

 

208 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-199   Create J04_INVW_USPREP job 7/18

Figure 1-200   Create J04_INVW_USPREP job 8/18

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 209



Figure 1-201   Create J04_INVW_USPREP job 9/18 

Figure 1-202   Create J04_INVW_USPREP job 10/18

 

 

 

 

210 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-203   Create J04_INVW_USPREP job 11/18

Figure 1-204   Create J04_INVW_USPREP job 12/18

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 211



Figure 1-205   Create J04_INVW_USPREP job 13/18

Figure 1-206   Create J04_INVW_USPREP job 14/18

 

 

 

 

212 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-207   Create J04_INVW_USPREP job 15/18

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 213



Figure 1-208   Create J04_INVW_USPREP job 16/18

Figure 1-209   Create J04_INVW_USPREP job 17/18

Figure 1-210   Create J04_INVW_USPREP job 18/18

 

 

 

 

214 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



J03_Z_Override_And_After
In this job, we perform a visual analysis of the token and pattern reports of the 
“J04_INVW_USPREP” on page 203 step to determine if the parsing is 
successful. 

We find an error in the Area pattern report shown in Figure 1-209 on page 214. A 
single occurrence of the string “CALIFORNIA” is identified, and the city name is 
missing in the AreaDomain_USPREP column—this corresponds to the address 
of Anders Olson of 2050 NORTH FIRST STREET SAN JOSE CALIFORNIA 
95131 as shown in Figure 1-190 on page 202. We determine that the string 
CALIFORNIA refers to a state that should be abbreviated to CA. 

We choose to perform a classification override of the USPREP rule set for the 
token CALIFORNIA as shown in Figure 1-211 on page 216 through Figure 1-217 
on page 219.

The steps are as follows:

1. From the Designer client File menu, click Open as shown in Figure 1-211 on 
page 216.

2. In the Open window, expand Standardization Rules folder and click USPREP 
as shown in Figure 1-212 on page 216. 

3. In the Rules Management - USPREP.SET window, click Overrides to add an 
override for that rule set as shown in Figure 1-213 on page 217. 

4. In the Classification - USPREP window in Figure 1-214 on page 217 and 
Figure 1-215 on page 218, click the Classification tab. 

a. In the Input Token field, type the word for which you want to override the 
classification (CALIFORNIA in this case).

b. In the Standard Form field, type the standardized spelling of the token (CA 
in this case).

c. From the Classification menu, select the one-character tag that indicates 
the class of the token word (S for state in this case).

d. In the Comparison Threshold field, type a value that defines the degree of 
uncertainty to tolerate in the spelling of the token word (850 in this case).

e. Click Add to add the override to the pane at the bottom of the window as 
shown in Figure 1-216 on page 218. Click OK to close the window.

After you create the override, the next time you run the rule set, the word 
tokens are classified with the designations you specified and appear with the 
appropriate standard form. 

5. You need to provision this rule set after the changes as shown in Figure 1-217 
on page 219, and then compile and run the job (not shown here). The 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 215



override resulted in fixing the problem as seen in the Figure 1-218 on 
page 219 where the AreaDomain_USPREP domain bucket has the city and 
the state name correctly included.

Now, proceed to “J05_CASS_USPREP” on page 219.

Figure 1-211   Create J03_Z_Override_And_After job 1/7 

Figure 1-212   Create J03_Z_Override_And_After job 2/7

 

 

 

 

216 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-213   Create J03_Z_Override_And_After job 3/7

Figure 1-214   Create J03_Z_Override_And_After job 4/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 217



Figure 1-215   Create J03_Z_Override_And_After job 5/8

Figure 1-216   Create J03_Z_Override_And_After job 6/8

 

 

 

 

218 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-217   Create J03_Z_Override_And_After job 7/8

Figure 1-218   Create J03_Z_Override_And_After job 8/8

J05_CASS_USPREP
After all the name and address data is moved to the correct domain buckets, we 
use the CASS21 stage to validate, correct, and standardize the U.S. addresses in 
the Address domain and to write a Postal Service form 3553 to a file. We also 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 219



included a Transformer stage to add a second address line column to customer 
file because CASS requires two address lines as input for its processing.

Figure 1-219 on page 223 through Figure 1-228 on page 228 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-219 on page 223 shows the various stages that are used in this job, 
including the data set that was created in “J03_STAN_USPREP” on 
page 196, a Transformer stage, a CASS stage, and a Data Set stage. The 
names of the stages are modified as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

2. Configure the input STAN_USPREP data set with the table definition 
CUSTOMER_USPREP that was saved in “J03_STAN_USPREP” on 
page 196. We do not repeat this process here because it is similar to the 
steps shown in Figure 1-138 on page 172 through Figure 1-142 on page 174.

3. Configure the Transformer stage ADD_SPACE_FIELD to add an address line 
to the input file, because CASS expects two address lines in the input 
metadata and the credit card customer file only has one address line. Follow 
these steps:

a. Right-click the ADD_SAPCE_FIELD stage icon and click Properties as 
shown in Figure 1-220 on page 223.

b. In the ADD_SAPCE_FIELD - Transformer Stage window, select and copy 
all the columns from the OUT list to the TOUT list as shown in 
Figure 1-221 on page 224. 

c. To add a column to the output (TOUT), select the top row of the TOUT 
pane and right-click the first row and select Insert Row. Edit the SQL type, 
length, scale, and nullability to values as highlighted in Figure 1-221 on 

21  The standardization process within the QualityStage CASS stage corrects many defects in the 
mailing list input file. However, the closer your address data conforms to USPS guidelines, the 
more address matches you generate. According to the U.S. Postal Service, a complete address is 
one that has all the address elements necessary to allow an exact match with the current Postal 
Service format of ZIP code + 4, and city, state files. A standardized address has all the 
components completely spelled out or abbreviated using the Postal Service standard 
abbreviations or uses the abbreviations as shown in the current Postal Service ZIP code + 4 file. 
For more information about USPS address standards, see Postal Addressing Standards, 
Publication 28, published by the National Customer Support Center. The pub28.pdf document is 
available at:
http://pe.usps.gov/cpim/ftp/pubs/Pub28/

Note: As mentioned earlier, CASS is a separately priced module that requires 
installation of the CASS module. 

 

 

 

 

220 IBM WebSphere QualityStage Methodologies, Standardization, and Matching

http://pe.usps.gov/cpim/ftp/pubs/Pub28/


page 224. Click OK to complete the addition of the DUMMY_ADD_FIELD 
of character length 1 to serve as the second address line required by the 
CASS stage.

4. Configure the CASS stage by double-clicking the CASS stage icon to open 
the stage. On the Properties tab:

a. Select Address Line 1 under Input Address Columns. On the right side of 
the tab, a list of all columns in the input stage displays under Address Line 
1, which generally corresponds to the first line of a street address. 

b. From the list, select the column AddressDomain_USPREP that 
corresponds to the first address line in your data. 

c. Select DUMMY_ADD_FIELD as the column that corresponds to the 
Address Line 2.

d. Select City/State/ZIP combined and select Yes. Select 
AreaDomain_Area as the input column that contains the combined 
information. 

e. Add information for the USPSForm 3553 such as Company Name 
(#QSPARAMETERSET.CASS_COMPANY_NAME#), List Identifier 
(#QSPARAMETERSET.CASS_List_ID#), and Output File22 
(#QSPARAMETERSET_CASS_REPORT_PATH#CUSTOMER_CASS.rpt
#). Form 3553 is written to the output file when you run the job.

f. Under Reference Database, specify the Path 
(#QSPARAMETERSET.CASS_PATH#) of the location of the CASS 
database.

g. Next, map the output columns. In the CASS window, on the Output tab for 
the Output name (IN), click the Mapping tab. Copy all the columns in the 
left Columns pane as shown in Figure 1-223 on page 225. Click OK to 
save changes and close the CASS stage.

5. Configure the CASS_CUSTOMER Data Set stage, and after saving, 
compiling, and running this job (Figure 1-224 on page 226), review the 
contents of the output of the CASS stage. 

6. The contents of the data input to the CASS stage are shown in Figure 1-190 
on page 202 through Figure 1-192 on page 203.

22  The CASS results are written to an output data set during CASS processing. The results data set 
contains all the input record information.

Note: Figure 1-222 on page 225 shows the CASS stage properties at 
the end of configuration.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 221



7. The output of the CASS stage is shown in Figure 1-225 on page 226 through 
Figure 1-228 on page 228. 

The CASS results are written to an output data set during CASS processing. 
The results data set contains all the input record information. Those records 
where the address matched successfully to the CASS database also contain 
the footnotes and flags as a result of CASS processing. You can search the 
results file to identify unqualified addresses and correct where necessary.

The CASS stage standardizes all address records while processing records 
through DPV and LACSLink, if necessary. The standardize process that the 
CASS stage performs results in address records being matched to the USPS 
standard addresses. The following tasks are performed during the (CASS) 
standardize process: 

– Parses all input records and places components in specific match key 
columns 

– Expands city abbreviations, such as SF to San Francisco 

– Standardizes specific abbreviations, such as CONN to CT 

– Matches the standardized addresses against the USPS standard 
addresses that is contained in the IBM WebSphere QualityStage CASS 
data. Matching results are defined as follows: 

• If the address information matches, the CASS stage assigns CASS 
delivery data including ZIP Code, ZIP code + 4, delivery point, and 
carrier route. Delivery Point Verification (DPV) processes the ZIP code 
+ 4 information to ensure that it is a valid delivery point. 

• If the address information does not match, the CASS stage assigns 
CASS delivery data of ZIP code and carrier route only. DPV could not 
confirm the address as a valid delivery point. 

• If the record is also identified as a LACSLink record, then the CASS 
stage performs LACSLink processing. 

• If LACSLink processing returns a converted address, the converted 
address goes through DPV processing. 

• If a new LACSLink address is not produced, the address remains 
unchanged. 

The records that do not have an exact match in the USPS file can still be 
processed. The following guidelines are applied to those records: 

– For most unmatched columns, the columns for mailing name, street 
address, and city/state/ZIP are copied from the input record to the output 
record 

– For most unmatched records, if an input record does not match the USPS 
file, the output column for the four-digit ZIP code add-on, the carrier route 

 

 

 

 

222 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



number, and the delivery point code number are left blank in the output 
record 

– For an unmatched street address but with valid city and state or ZIP Code, 
if the street address does not match the USPS file, the address qualifies 
as a small town default.

Now, proceed to “J06_INVCC_CASS” on page 228.

Figure 1-219   Create J05_CASS_USPREP job 1/10

Figure 1-220   Create J05_CASS_USPREP job 2/10

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 223



Figure 1-221   Create J05_CASS_USPREP job 3/10

 

 

 

 

224 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-222   Create J05_CASS_USPREP job 4/10

Figure 1-223   Create J05_CASS_USPREP job 5/10

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 225



Figure 1-224   Create J05_CASS_USPREP job 6/10

Figure 1-225   Create J05_CASS_USPREP job 7/10

 

 

 

 

226 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-226   Create J05_CASS_USPREP job 8/10

Figure 1-227   Create J05_CASS_USPREP job 9/10

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 227



Figure 1-228   Create J05_CASS_USPREP job 10/10

J06_INVCC_CASS
In this job, we run the Investigate stage with character concatenate on the results 
of the job “J05_CASS_USPREP” on page 219 to determine addresses that are 
not recognized by CASS (delivery point verification or DPV). We investigate the 
output of CASS using character concatenate (on CASS generated columns 
DPVMATCHFLAG_CASS and DPVCODE1_CASS) using a C mask. A value of 
A1 in the DPVCODE1_CASS field indicated a potential problem.

Figure 1-229 on page 230 through Figure 1-240 on page 234 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-229 on page 230 shows the various stages that are used in this job, 
including the data set that was created in “J05_CASS_USPREP” on 
page 219, a Transformer stage for handling nulls, an Investigate stage, and an 
output Sequential File stage. We modified the names of the stages as shown, 
and this job uses the same QSPARAMETERSET object that was created 
earlier.

Note: Due to a bug with handling nulls, we introduced a Transformer stage to 
convert nulls to a space using column derivation.

 

 

 

 

228 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2. Configure the input CASS_CUSTOMER data set with the table definition 
CUSTOMER_CASS that was saved in “J05_CASS_USPREP” on page 219. 
We do not repeat this here because it is similar to the steps shown in 
Figure 1-138 on page 172 through Figure 1-142 on page 174.

3. Configure the HANDLE_NULL Transformer stage to convert nulls to spaces 
as follows:

a. Double-click the HANDLE_NULL stage icon, and when the 
HANDLE_NULL - Transformer Stage window opens, copy all the columns 
from the OUT left hand pane to the IN right hand pane.

b. Then select all rows in the right-hand pane, right-click it, and select 
Derivation Substitution as shown in Figure 1-230 on page 231. 

c. In the Expression Substitution window, select Whole expression in the 
Substitute field, and enter the following expression as shown in 
Figure 1-231 on page 231. 

If ISNULL($1) then “ else $1

Then, click OK. This derivative directs that if a value is null, then replace it 
with an empty string. 

4. A Confirm Action window opens. Click Yes To All to overwrite the expressions 
of all columns as shown in Figure 1-232 on page 231. The total number of 
expressions updated is shown in Figure 1-233 on page 232. Click OK.

5. Configure the INV_DPV_INFO Investigate stage by right-clicking the 
INV_DPV_INFO icon and selecting Properties in Figure 1-234 on page 232. 
Then, follow these steps: 

a. Click Character Concatenate Investigate. The columns propagated from 
the input data set are shown in the Available Data Columns list. Select the 
following columns:

• DPVMatchFlag_CASS with C mask
• DPVCode1_CASS with C mask
• Delivery AddressLine1_CASS with X mask
• City_CASS with X mask
• State_CASS with X mask
• Zip5_CASS with X mask

After adding these columns with these masks, click Stage Properties as 
shown in Figure 1-235 on page 232.

b. In the INV_DPV_INFO - Investigate windows opens, select Mapping in the 
Output tab—the Output name is IN. Map all the columns in the Columns 
list to the IN list as shown in Figure 1-236 on page 233. Click OK.

6. Configure the output sequential file CUSTOMER_CASS_REPORT object to 
sort the incoming records on descending sequence of the count of distinct 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 229



values in the concatenated character columns. The objective is to determine 
the predominant country addresses and identify the ISO codes present in the 
data. 

Figure 1-237 on page 233 shows the properties of the configured file. 

7. After saving, compiling, and running this job, the job statistics are shown in 
Figure 1-238 on page 234.

8. The contents of the data input to the Investigate stage are shown in 
Figure 1-225 on page 226 through Figure 1-228 on page 228.

9. The output of the Investigate stage that are written to the sequential file is 
shown in Figure 1-239 on page 234 and Figure 1-240 on page 234. It shows 
a count of two records with values A1 in the DPVMatchFlag_CASS and 
DPVCode1_CASS character concatenated columns.

As discussed in “J05_CASS_USPREP” on page 219, a value of A1 in the 
DPVCode1_CASS indicates an address that did not match. 

Based on the data in the qsInvSample column of the report (in Figure 1-239 
on page 234 and Figure 1-240 on page 234) and an analysis of the input file 
as reported in Figure 1-227 on page 227 and Figure 1-228 on page 228, two 
input addresses have a value of A1 in the DPVCode1_CASS indicator, which 
indicates that the address does not match a USPS standard address. These 
input addresses are as follows:

– BEL AIR AVEDUE
– BEL AIR

Now, proceed to “J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234.

Figure 1-229   Create J06_INVCC_CASS job 1/12

Note: AVEDUE is spelled incorrectly here. We will address this misspelling 
later with an override. The street number is either incorrect or missing and 
will need some other mechanism for resolution.

 

 

 

 

230 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-230   Create J06_INVCC_CASS job 2/12

Figure 1-231   Create J06_INVCC_CASS job 3/12

Figure 1-232   Create J06_INVCC_CASS job 4/12

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 231



Figure 1-233   Create J06_INVCC_CASS job 5/12

Figure 1-234   Create J06_INVCC_CASS job 6/12

Figure 1-235   Create J06_INVCC_CASS job 7/12

 

 

 

 

232 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-236   Create J06_INVCC_CASS job 8/12

Figure 1-237   Create J06_INVCC_CASS job 9/12

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 233



Figure 1-238   Create J06_INVCC_CASS job 10/12

Figure 1-239   Create J06_INVCC_CASS job 11/12

Figure 1-240   Create J06_INVCC_CASS job 12/12

J07_STAN_CUSTOMER_Domain_Preprocessor
In this job, we standardize the name and address contents of the output of job 
“J05_CASS_USPREP” on page 219 using the domain-preprocessor USPREP 
rule set. We also add a column to the output that only had the first three 
characters of the ZIP code using a Transformer stage. This new column (ZIP3) is 
used as a blocking variable in the following matching stage. 

After CASS validates and corrects the address fields but not the name fields, the 
Standardize stage is run again with the domain-preprocessor rule set USPREP 
on the name fields and CASS corrected address fields into Name, Address, and 
Area domains.

 

 

 

 

234 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-241 on page 236 through Figure 1-249 on page 241 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-241 on page 236 shows the various stages that are used in this job, 
including the data set that was created in “J05_CASS_USPREP” on 
page 219, a Standardize stage, a Transformer stage to add a column, and an 
output Data Set stage. We modified the names of the stages as shown, and 
this job uses the same QSPARAMETERSET object created earlier.

2. Configure the input CASS_CUSTOMER data set with the table definition that 
was saved in “J05_CASS_USPREP” on page 219. We do not repeat this 
process here because it is similar to the steps shown in Figure 1-138 on 
page 172 through Figure 1-142 on page 174.

3. Next, configure the Standardize stage with the domain preprocessor 
USPREP rule set as described here.

In the Standardize Rule Process window, the Rule Set shows USPREP.SET. 
Insert literals ZQNAMEZQ, ZQPUTAZQ23, and ZQPUTRZQ24 between 
columns TITLE, FNAME, LNAME, DeliveryAddressLine1_CASS, City_CASS, 
State_CASS, and Zip5_CASS in ADDR as shown in Figure 1-242 on 
page 237 through Figure 1-245 on page 238. 

The literal placement directs the following actions:

– Fields TITLE, FNAME and LNAME are to default to the Name domain

– Field DeliveryAddressLine1_CASS defaults to the Address domain

– Fields City_CASS, State_CASS, and Zip5_CASS defaults to the Area 
domain

4. Configure the ADD_ZIP3 Transformer stage to add a column that only 
contains the first three digits of the 5-digit ZIP5_CASS field. Figure 1-246 on 
page 239 shows the ADD_ZIP3 - Transformer Stage window with the addition 
of the new column ZIP3 to the output.

5. Finally, configure the output CUSTOMER_CASS_USPREP data set object. 
We do not repeat this process here.

Note: This process is somewhat similar to the configuration of the 
Standardize stage in “J03_STAN_USPREP” on page 196, except for 
differences in the columns input for processing. Therefore, we cover the 
differences here.

23  ZQPUTAZQ defaults the entire field to the Address Domain automatically.
24  ZQPUTRZQ defaults the entire field to the Area Domain automatically.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 235



6. After saving this job j07_STAN_CUSTOMER_Domain_Preprocessor, 
compiling and running it, you view the content of the 
CUSTOMER_CASS_USPREP data set object as shown in Figure 1-247 on 
page 240 through Figure 1-249 on page 241. 

As discussed before, this report shows the following:

– Columns NameDomain_USPREP (contains prefix, first name, last name, 
and suffix tokens), AddressDomain_USPREP (contains apartment, street 
name, and street type tokens), and AreaDomain_USPREP (contains state 
and ZIP code tokens) that were parsed from the input columns.

– InputPattern_USPREP and OutboundPattern_USPREP columns that 
contain the patterns that are generated after processing the name and 
address columns in the input file.

A visual analysis of the report shows no actionable items. In the real world, the 
volume of data would be too large to attempt a visual analysis of the report. 
Therefore, proceed to “J08_STAN_CUSTOMER_Domain_Specific” on page 241.

Figure 1-241   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 1/9

 

 

 

 

236 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-242   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 2/9

Figure 1-243   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 3/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 237



Figure 1-244   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 4/9

Figure 1-245   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 5/9

 

 

 

 

238 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-246   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 6/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 239



Figure 1-247   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 7/9

Figure 1-248   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 8/9

 

 

 

 

240 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-249   Create J07_STAN_CUSTOMER_Domain_Preprocessor job 9/9

J08_STAN_CUSTOMER_Domain_Specific
In this step, we standardize the name and address contents of the output of job 
“J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234 using the 
domain-specific USNAME (with column NameDomain_USPREP), USADDR 
(with column AddressDomain_USPREP) and USAREA (with column 
AreaDomain_USPREP) rule sets. Three separate processes are defined—one 
for each rule set.

Figure 1-250 on page 243 through Figure 1-271 on page 252 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-250 on page 243 shows the various stages that are used in this job, 
including the data set that was created in 
“J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234, a 
Standardize stage, a Transformer stage to handle nulls, an output Data Set 
stage. We modified the names of the stages as shown, and this job uses the 
same QSPARAMETERSET object that was created earlier.

Note: Here again, we had to introduce a null handling Transformer stage to 
circumvent a bug. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 241



2. Configure the input CUSTOMER_CASS_USPREP data set that was created 
in “J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234. We do not 
repeat this process here.

3. Next, configure the Standardize stage with the three domain specific rule 
sets: USNAME, USADDR, and USAREA. 

Because three rule sets are involved, you define three separate 
processes—one for each rule set. 

– Figure 1-251 on page 243 shows the USNAME rule set for the 
NameDomain_USPREP column

– Figure 1-252 on page 243 shows the USADDR rule set for the 
AddressDomain_USPREP column

– Figure 1-253 on page 244 shows the USAREA rule set for the 
AreaDomain_USPREP column 

Figure 1-254 on page 244 shows the three rules that are used in this 
Standardize job.

4. Configure the HANDLE_NULL Transformer stage to convert nulls to spaces 
similar that are described in “J06_INVCC_CASS” on page 228. Figure 1-255 
on page 244 shows the Derivation Substitution for each of the columns. 

5. Finally, configure the output STAN_CUSTOMER data set object. We do not 
repeat this process here.

6. After saving, compiling, and running this job 
j08_STAN_CUSTOMER_Domain_Specific, view the content of the 
STAN_CUSTOMER data set object as shown in Figure 1-269 on page 251 
through Figure 1-271 on page 252. 

This report shows Standardize Stage added columns such as 
FirstName_USNAME and PrimaryName_USNAME, InputPattern_USNAME, 
UnhandledPattern_USNAME, UnhandledData_USNAME, 
HouseNumber_USADDR, StreetName_USADDR, UnitType_USADDR, 
CityName_USAREA, ZipCode_USAREA, and CountryCode_USAREA. 

Now, proceed to that identifies any unhandled patterns and classifications by 
performing an investigate, as described in “J09_INVCC_STAN_CUSTOMER” on 
page 253.

Note: This process is somewhat similar to the configuration of the 
Standardize stage that we describe in “J03_STAN_USPREP” on page 196, 
except for differences in the columns input for processing. Therefore, we 
describe the differences here.

 

 

 

 

242 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-250   Create J08_STAN_CUSTOMER_Domain_Specific 1/22

Figure 1-251   Create J08_STAN_CUSTOMER_Domain_Specific 2/22

Figure 1-252   Create J08_STAN_CUSTOMER_Domain_Specific 3/22

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 243



Figure 1-253   Create J08_STAN_CUSTOMER_Domain_Specific 4/22

Figure 1-254   Create J08_STAN_CUSTOMER_Domain_Specific 5/22

Figure 1-255   Create J08_STAN_CUSTOMER_Domain_Specific 6/22

 

 

 

 

244 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-256   Create J08_STAN_CUSTOMER_Domain_Specific 7/22

Figure 1-257   Create J08_STAN_CUSTOMER_Domain_Specific 8/22

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 245



Figure 1-258   Create J08_STAN_CUSTOMER_Domain_Specific 9/22

Figure 1-259   Create J08_STAN_CUSTOMER_Domain_Specific 10/22

 

 

 

 

246 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-260   Create J08_STAN_CUSTOMER_Domain_Specific 11/22

Figure 1-261   Create J08_STAN_CUSTOMER_Domain_Specific 12/22

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 247



Figure 1-262   Create J08_STAN_CUSTOMER_Domain_Specific 13/22

Figure 1-263   Create J08_STAN_CUSTOMER_Domain_Specific 14/22

 

 

 

 

248 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-264   Create J08_STAN_CUSTOMER_Domain_Specific 15/22

Figure 1-265   Create J08_STAN_CUSTOMER_Domain_Specific 16/22

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 249



Figure 1-266   Create J08_STAN_CUSTOMER_Domain_Specific 17/22

Figure 1-267   Create J08_STAN_CUSTOMER_Domain_Specific 18/22

 

 

 

 

250 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-268   Create J08_STAN_CUSTOMER_Domain_Specific 19/22

Figure 1-269   Create J08_STAN_CUSTOMER_Domain_Specific 20/22

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 251



Figure 1-270   Create J08_STAN_CUSTOMER_Domain_Specific 21/22

Figure 1-271   Create J08_STAN_CUSTOMER_Domain_Specific 22/22

 

 

 

 

252 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



J09_INVCC_STAN_CUSTOMER
In this step, we investigate unhandled patterns in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241. We run the 
Investigate stage with character concatenate using the C mask on the unhandled 
pattern columns of J08_STAN_CUSTOMER_Domain_Specific—the columns 
that we investigated corresponded to the name, address, and area domains.

Because a single Investigate stage can only have a single rule set associated 
with it, we split the output data set of the 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241 job (using a Copy 
stage) and processed the data set by three independent Investigate stages, with 
each stage using a particular domain-specific rule set. The column frequency 
report was generated in each Investigate stage.

Figure 1-272 on page 255 through Figure 1-287 on page 262 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-272 on page 255 shows the various stages that are used in this job, 
including the data set that was created in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241, a Copy stage, 
three Investigate stages that each use a different domain-specific rule set, 
and two data set stages (one each for the token report and pattern report) for 
each Investigate stage. We modified the names of the stages as shown, and 
this job uses the same QSPARAMETERSET object created earlier.

2. Configure the input STAN_CUSTOMER data set. We do not repeat this 
process here because it is similar to the steps shown in Figure 1-138 on 
page 172 through Figure 1-142 on page 174.

3. The Copy stage duplicates the source data and sends it to the three 
Investigate stages. The Copy stage also duplicates the metadata and sends 
the output metadata to the three Investigate stages. 

a. Figure 1-273 on page 256 shows the mapping of columns for the link IN1 
to the INV01 (USNAME rule set) stage

b. Figure 1-274 on page 257 shows the mapping of columns for the link IN2 
to the INV02 (USADDR rule set) stage

c. Figure 1-275 on page 258 shows the mapping of columns for the link IN3 
to the INV01 (USAREA rule set) stage

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 253



4. Configure the INV01 Investigate stage with the USNAME rule set. 
Figure 1-276 on page 258 shows the columns selected for Character 
Concatenate Investigate. It includes the following columns:

– UnhandledPattern_USNAME with C mask
– InputPattern_USNAME with C mask
– UnhandledData_USNAME with X mask
– NameDomain_USPREP with X mask 

Configure the sequential file for the column frequency report. We do not 
repeat this process here because it is similar to Figure 1-174 on page 191 
through Figure 1-177 on page 193. 

5. Repeat the process for the INV02 Investigate stage with the USADDR rule set 
(Figure 1-277 on page 259) and INV03 Investigate stage with the USAREA 
rule set (Figure 1-278 on page 259) with the appropriate columns as shown.

6. After saving, compiling, and running this job, the contents of the output of 
each investigate stage are as follows: 

a. The contents of the data input to the Investigate stage are shown in 
Figure 1-269 on page 251 and Figure 1-271 on page 252.

b. The outputs of the Investigate stages that are written to the sequential file 
are shown in Figure 1-279 on page 260 through Figure 1-287 on 
page 262. 

i. The output of the INV01 Investigate stage in Figure 1-279 on page 260 
through Figure 1-281 on page 260 show that there are no unhandled 
patterns in the name domain.

ii. The output of the INV02 Investigate stage in Figure 1-282 on page 261 
through Figure 1-284 on page 261 show a total of two types of 
unhandled patterns for the address domain—one occurrences of the 
++ pattern (corresponding to the ++ input pattern), and one occurrence 
of the +++ pattern (corresponding to the +++ input pattern).

iii. The output of the INV03 Investigate stage in Figure 1-285 on page 261 
through Figure 1-287 on page 262 show that there are no unhandled 
patterns in the area domain.

Now, proceed to manage the unhandled patterns in the address domain, which 
are described in the next step, “J09_Z_Override_And_After” on page 262.

 

 

 

 

254 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-272   Create J09_INVCC_STAN_CUSTOMER 1/16

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 255



Figure 1-273   Create J09_INVCC_STAN_CUSTOMER 2/16

 

 

 

 

256 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-274   Create J09_INVCC_STAN_CUSTOMER 3/16

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 257



Figure 1-275   Create J09_INVCC_STAN_CUSTOMER 4/16

Figure 1-276   Create J09_INVCC_STAN_CUSTOMER 5/16

 

 

 

 

258 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-277   Create J09_INVCC_STAN_CUSTOMER 6/16

Figure 1-278   Create J09_INVCC_STAN_CUSTOMER 7/16

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 259



Figure 1-279   Create J09_INVCC_STAN_CUSTOMER 8/16

Figure 1-280   Create J09_INVCC_STAN_CUSTOMER 9/16

Figure 1-281   Create J09_INVCC_STAN_CUSTOMER 10/16

 

 

 

 

260 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-282   Create J09_INVCC_STAN_CUSTOMER 11/16

Figure 1-283   Create J09_INVCC_STAN_CUSTOMER 12/16

Figure 1-284   Create J09_INVCC_STAN_CUSTOMER 13/16

Figure 1-285   Create J09_INVCC_STAN_CUSTOMER 14/16

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 261



Figure 1-286   Create J09_INVCC_STAN_CUSTOMER 15/16

Figure 1-287   Create J09_INVCC_STAN_CUSTOMER 16/16

J09_Z_Override_And_After
Because we found unhandled patterns (such as ++ and +++) in the address 
domain, we create pattern overrides in the domain-specific USADDR rule set, 
and re-run the job “J08_STAN_CUSTOMER_Domain_Specific” on page 241. We 
also use a classification override for AVEDUE, which was discovered in 
“J06_INVCC_CASS” on page 228. 

Figure 1-288 on page 263 through Figure 1-293 on page 265 describe the main 
steps in performing the overrides

The steps are as follows: 

1. Expand the Standardization Rules folder in the Designer client repository tree 
and click the USADDR rule set to open the Rules Management - 
USADDR.SET window as shown in Figure 1-288 on page 263. Click 
Overrides to add an override for that rule set. 

2. In the Input Pattern - USADDR window shown in Figure 1-289 on page 264, 
the various fields for overriding the unhandled pattern ++ is shown. The first 
token + is marked with the StreetName override code, while the second token 
+ is marked with the AdditionalAddress override code as seen in the Current 
Pattern List. Additionally, the override directs the Original Value and Move All 
Remaining and Leading space to be moved to the target area. 

3. Click Add in Figure 1-289 on page 264 to add this override to the Override 
Summary as seen in Figure 1-290 on page 264. 

4. In the Classification - USADDR window shown in Figure 1-291 on page 265, 
the string AVEDUE is overridden (by entering it in the Input Token field) with the 
value AVE (by entering AVE in the Standard Form field), and assigned a 
classification of T (street type in the Classification field). The Comparison 
Threshold value chosen is 850.

 

 

 

 

262 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



5. Click Add in Figure 1-291 on page 265 to add this override to the Override 
Summary as seen in Figure 1-292 on page 265. 

6. After these overrides, jobs J08_STAN_CUSTOMER_Domain_Specific and 
J09_INVCC_STAN_CUSTOMER was rerun (after provisioning and compiling 
the jobs) to verify that the overrides resolved the problem. Figure 1-293 on 
page 265 shows the partial output report of the Investigate stage. It shows no 
unhandled patterns indicating that the overrides were successful.

Now, proceed to “J10_MATCHFREQ_STAN_CUSTOMER” on page 266.

Figure 1-288   J09_Z_Override_And_After job 1/6 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 263



Figure 1-289   J09_Z_Override_And_After job 2/6 

Figure 1-290   J09_Z_Override_And_After job 3/6 

 

 

 

 

264 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-291   J09_Z_Override_And_After job 4/6 

Figure 1-292   J09_Z_Override_And_After job 5/6 

Figure 1-293   J09_Z_Override_And_After job 6/6 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 265



J10_MATCHFREQ_STAN_CUSTOMER
After the unhandled patterns are handled, we proceed to generate frequency 
distribution on all the columns in the credit card customer file using the Match 
Frequency stage. The idea is to generate match frequency for all the columns so 
that it can be used with any match specification.

Figure 1-294 on page 267 through Figure 1-299 on page 269 describe the steps 
using Designer Client to build and execute the DataStage job to perform this 
task.

The steps are as follows:

1. Figure 1-294 on page 267 shows the various stages that are used in this job, 
including the data set that was created in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241, a Match 
Frequency stage, and a Sequential File stage. We modified the names of the 
stages as shown, and this job uses the same QSPARAMETERSET object 
created earlier.

2. Configure the input STAN_CUSTOMER data set. We do not repeat this 
process here because it is similar to the steps shown in Figure 1-138 on 
page 172 through Figure 1-142 on page 174.

3. The Match Frequency stage generates frequency information using any data 
that provides the columns needed by a match. The Match Frequency stage 
processes frequency data independently from executing a match. The output 
link of the stage carries four columns: qsFreqVal, qsFreqCounts, 
qsFreqColumnID, and qsFreqHeaderFlag.

Configure the Match Frequency stage as follows:

a. Right-click the MATCH_FREQUENCY stage icon and select Properties 
as shown in Figure 1-295 on page 267.

b. In the MATCH_FREQUENCY - Match Frequency Stage window that 
opens, select Do not use a Match Specification, and click Stage 
Properties as shown in Figure 1-296 on page 267.

c. From the Output tab, for the link IN (Output name) click the Mapping tab, 
and copy the columns in the left pane to the right pane as shown in 
Figure 1-297 on page 268. 

4. Configure the sequential file for the output of this stage. We do not repeat this 
process here because it is similar to that shown in Figure 1-174 on page 191 
through Figure 1-177 on page 193. 

5. After saving, compiling, and running this job (Figure 1-298 on page 268), the 
contents of the output of this stage are listed in Figure 1-299 on page 269. 
The interpretation of the format and content of this file is not documented.

 

 

 

 

266 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Now, proceed to “J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269.

Figure 1-294   J10_MATCHFREQ_STAN_CUSTOMER job 1/6

Figure 1-295   J10_MATCHFREQ_STAN_CUSTOMER job 2/6

Figure 1-296   J10_MATCHFREQ_STAN_CUSTOMER job 3/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 267



Figure 1-297   J10_MATCHFREQ_STAN_CUSTOMER job 4/6

Figure 1-298   J10_MATCHFREQ_STAN_CUSTOMER job 5/6

 

 

 

 

268 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-299   J10_MATCHFREQ_STAN_CUSTOMER job 6/6

J10_Undup_MatchSpec_STAN_CUSTOMER
In this step, we generate a match specification for an Unduplicate match stage 
using as input the match frequency data created in the 
“J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269 job. The 
specification included two passes: 

� The first pass blocks on name, address, and area.
� The second pass blocks on the first three digits of the ZIP code.

Figure 1-300 on page 271 through Figure 1-316 on page 282 describe the main 
steps using Designer Client to build and execute the Unduplicate Match 
Specification job. 

The main steps are as follows:

1. From the File menu of the Designer Client, click New. In the New window that 
opens, select the Match Specification icon, and click OK as shown in 
Figure 1-300 on page 271.

2. In the Match Designer - Specification window, select Unduplicate for the 
Match Type. Click the Define input for this Specification icon as shown in 
Figure 1-301 on page 272.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 269



3. In the Input Columns window that opens, click Load to open the Table 
Definitions window as shown in Figure 1-302 on page 272. 

4. In the Table Definitions window, navigate to the CUSTOMER_STAN table 
definition in the Table Definition folder structure, and click OK as shown in 
Figure 1-303 on page 273. 

5. The window closes and the columns display in the Input Columns window as 
shown in Figure 1-304 on page 273. 

6. Rename the default MyPass to CUSTOMER_NAME_ADDR as shown in 
Figure 1-305 on page 274 and Figure 1-306 on page 274.

7. Click Add in Blocking Columns section to add the blocking column 
MatchPrimaryWord1NYIIS_USNAME using character comparison as shown 
in Figure 1-306 on page 274 through Figure 1-309 on page 277. Additional 
blocking columns (not shown here) that we added were 
AddressType_USADDR, StreetNameNYIIS_USADDR, and 
ZipCode_USAREA.

8. To add Match Commands for the GENDER column, click Add in the Match 
Commands section as shown in Figure 1-310 on page 277. Additional match 
commands (not shown here) added were MiddleName_USNAME, 
PrimaryName_USNAME, HouseNumber_USADDR, 
StreetPrefixDirectional_USADDR, and StreetName_USADDR. 

9. Specify the Cutoff Values of 2 for Clerical and 5 for Match.

10.On the toolbar, click Configure Specification and select Test Environment 
to configure the Match specification to specify sample data, frequency 
information, and results database connection25 information as shown in 
Figure 1-311 on page 278. Click Update to save any changed settings.

11.Click Test All Passes in the toolbar as shown in Figure 1-312 on page 279. 
When the test runs are completed for all active passes, you can click any pass 
to view results as shown in Figure 1-313 on page 279.

12.Click the CUSTOMER_NAME_ADDR pass to view the results as shown in 
Figure 1-314 on page 280. 

In the Test Results pane, there are three matched blocks (as indicated by the 
unique SetID) with duplicates (DA), master records (XA), and clerical review 
(CP) records. The weights indicate whether the record is XA, DA, or CP within 
a block based on the Clerical and Match Cutoff Values.

13.Click the CUSTOMER_ZIP3 pass to view the results as shown in 
Figure 1-315 on page 281. The Test Results pane shows two matched blocks 
(as indicated by the unique SetID) with duplicates (DA), master records (XA), 
and clerical review (CP) records. 

25  It is an ODBC connection defined on the client computer.

 

 

 

 

270 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



14.To view the statistics of each of these passes, click the Pass Statistics tab in 
Figure 1-315 on page 281 to view the results in Figure 1-316 on page 282. 
This tab provides total statistics for all the passes as well as those related to 
each pass in the specification. You can also view the results graphically.

Of particular interest is the statistic OVERFLOW blocks—a non-zero value 
indicates the need to increase the block size or define more restrictive 
blocking columns.

The test of the match specification with the full volume of data appeared to 
deliver results that were accurate. We use this specification in an Unduplicate 
match stage, as described in “J11_UNDUP_DEP_MATCH_CUSTOMER” on 
page 282.

Figure 1-300   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 1/17

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 271



Figure 1-301   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 2/17

Figure 1-302   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 3/17

 

 

 

 

272 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-303   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 4/17

Figure 1-304   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 5/17

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 273



Figure 1-305   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 6/17

Figure 1-306   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 7/17

 

 

 

 

274 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-307   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 8/17 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 275



Figure 1-308   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 9/17

 

 

 

 

276 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-309   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 10/17

Figure 1-310   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 11/17

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 277



Figure 1-311   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 12/17

 

 

 

 

278 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-312   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 13/17

Figure 1-313   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 14/17

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 279



Figure 1-314   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 15/17

 

 

 

 

280 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-315   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 16/17

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 281



Figure 1-316   Create J10_Undup_MatchSpec_STAN_CUSTOMER job 17/17

J11_UNDUP_DEP_MATCH_CUSTOMER
In this step, we determine whether there are any duplicates in the credit card 
customer file by running the Unduplicate stage with the match specification and 
match frequency information created in job 
“J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269 and 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266 respectively. The output 
is matched (merge of master and duplicates using a Funnel stage) records, 
records for clerical review, and residuals (records that do not match).

Figure 1-317 on page 285 through Figure 1-331 on page 290 describe the main 
steps using Designer Client to build and execute the Unduplicate Match 
Specification job. 

 

 

 

 

282 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



The main steps are as follows:

1. Figure 1-317 on page 285 shows the various stages that are used in this job, 
including the data set that was created in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241, the match 
frequency Data Set created in “J10_MATCHFREQ_STAN_CUSTOMER” on 
page 266, an Unduplicate stage, and a Funnel stage to merge master and 
duplicate records. Three data sets are created:

– One data set contains the merged master and duplicates by the Funnel 
stage

– The other two data sets contain the clerical and residual records as the 
output of the Unduplicate stage. 

We modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

2. Configure the input STAN_CUSTOMER data set that was created in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241, and the input 
STAN_CUSTOMER_FREQ data set that was created in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266. We do not repeat this 
process here, because it is similar to earlier configurations.

3. Next, configure the UNDUP_DUP Unduplicate stage as follows:

a. Double-click the UNDUP_DUP stage icon and click the  Match 
Specification button. We do not show this process here.

b. From the Repository window, double-click the Match Specifications folder. 
Then, select and right-click CUSTOMER and as shown in Figure 1-318 on 
page 285. Select Provision All from the menu and click OK. You are 
attaching the Unduplicate Match specification that was created in 
“J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269. 

c. Check all the Match Outputs fields in the UNDUP_DEP - Unduplicate 
Match Stage shown in Figure 1-319 on page 286:

• Match sends matched (master) records as output data. 
• Clerical separates those records that require clerical review. 
• Duplicates include duplicate records that are above the match cutoff. 
• Residuals separate records that are not duplicates as residuals. 

Keep the default Dependent Match Type as highlighted—this directs it to 
remove duplicates after every pass. 

Click Stage Properties to configure link ordering on both the input and 
output links by clicking the Stage tab. (We do not show this process here.) 

d. In the UNDUP_DEP - Unduplicate Match window, under the Output tab for 
the MASTERS link (Output name field), click Mapping as shown in 
Figure 1-320 on page 286. Copy all the columns from Columns pane to 
the MASTERS pane.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 283



Repeat the process for the CLERICAL, DUPLICATE, and RESIDUAL links 
(Output name field). We do not repeat this process here.

4. Configure the FUNNEL stage by double-clicking the FUNNEL stage. Then, in 
the FUNNEL- Funnel window under the Output tab for the INMATCH link 
(Output name field), click Mapping as shown in Figure 1-321 on page 287. 
Copy all the columns from Columns pane to the INMATCH pane.

5. Next configure the three data set objects:

– CUSTOMER_UNDUP_DEP_MATCHES
– CUSTOMER_UNDUP_DEP_CLERICAL
– CUSTOMER_UNDUP_DEP_RESIDUALS

We do not repeat this process here.

6. After saving, compiling, and running this job 
j11_UNDUP_DEP_MATCH_CUSTOMER (Figure 1-322 on page 287), view 
the content of the three data set objects as shown in Figure 1-323 on 
page 288 through Figure 1-331 on page 290. 

Out of a total of 23 records in the input to this process:

– Six (6) records are masters and duplicates
– Three (3) records are for clerical review
– Remaining fourteen (14) records are residuals.

7. We do not repeat the process of saving of the data set metadata to Table 
Definitions here.

The next step is to create a single report that contains each clerical review record 
followed by the master record it relates to, so that the clerical reviewer is able to 
view record details next to each other, as described in 
“J12_CLERICAL_REVIEW_CUSTOMER” on page 290. 

 

 

 

 

284 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-317   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 1/15

Figure 1-318   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 2/15

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 285



Figure 1-319   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 3/15

Figure 1-320   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 4/15

 

 

 

 

286 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-321   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 5/15

Figure 1-322   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 6/15

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 287



Figure 1-323   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 7/15

Figure 1-324   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 8/15

Figure 1-325   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 9/15

Figure 1-326   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 10/15

Figure 1-327   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 11/15

 

 

 

 

288 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-328   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 12/15

Figure 1-329   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 13/15

Figure 1-330   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 14/15

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 289



Figure 1-331   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 15/15

J12_CLERICAL_REVIEW_CUSTOMER
In this step, we create a single report of the matched credit card customers’ file 
and the records in the clerical review file that was created in 
“J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282 to enable a manual 
review of potential match records.

We performed the following:

1. First, we merged the matched records data set 
(CUSTOMER_UNDUP_DEP_MATCHES) and clerical review records 
(CUSTOMER_CLERICAL_REVIEW) using a Funnel stage. 

2. Then, we removed duplicates from the matched records data set (because 
we had merged them using a Funnel stage in 
“J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282).

3. Finally, we joined the output of the previous two steps on the match set ID 
(qsMatchSetID column) to produce the desired report. 

Figure 1-332 on page 292 through Figure 1-339 on page 295 describe the main 
steps using Designer Client to perform this task. 

The main steps are as follows:

1. Figure 1-332 on page 292 shows the various stages that are used in this job, 
including three data sets that were created in 
“J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282, a Funnel stage, a 
Remove Duplicates stage, and a JOIN stage. Create one data set that 
contains the matched and clerical records organized for convenient manual 
review. We modified the names of the stages as shown, and this job uses the 
same QSPARAMETERSET object created earlier.

 

 

 

 

290 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2. Configure the three input data set objects that were created in 
“J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282:

– CUSTOMER_UNDUP_DEP_MATCHES
– CUSTOMER_UNDUP_DEP_CLERICALS
– CUSTOMER_UNDUP_DEP_CLERICALS_MASTER

We do not repeat this process here because this is a similar process to earlier 
configurations.

3. Configure the Funnel stage to merge the two inputs from 
CUSTOMER_UNDUP_DEP_MATCHES and 
CUSTOMER_UNDUP_DEP_CLERICALS data sets. We do not repeat this 
process here because this is a similar process to earlier configurations.

4. Configure the Remove Duplicates stage as follows:

a. Double-click the Remove_Duplicates_11 stage icon to open the 
Remove_Duplicates_11 - Remove Duplicates window. Under the Stage 
tab provide the Keys That Define Duplicates—qsMatchSetID in this case 
as shown in Figure 1-333 on page 293.

b. Click the Output tab, and for the JOINOUT link click the Mapping tab. Copy 
the column qsMatchSetID from the Columns pane to the JOINOUT pane 
as shown in Figure 1-334 on page 293. Click OK.

5. Configure the JOIN stage, which performs join operations on two or more 
data sets input to the stage and then outputs the resulting data set. The data 
sets input to the Join stage must be key partitioned and sorted to ensure that 
rows with the same key column values are located in the same partition and 
are processed by the same node. The main steps are as follows:

a. Double-click the JOIN stage icon and in the JOIN - Join window that opens 
select the Stage tab. In the Properties tab, provide the Join 
Keys—qsMatchSetID in this case as shown in Figure 1-335 on page 294.

b. Click the Output tab, and for the IN link click the Mapping tab. Copy all the 
columns from the Columns pane to the IN pane as shown in Figure 1-336 
on page 294. Click OK.

6. Configure the output data set object CUSTOMER_CLERICAL_REVIEW to 
store the results of the join. We do not repeat this process here because this 
is a similar process to earlier configurations.

7. After saving this job j12_CLERICAL_REVIEW_CUSTOMER, compiling and 
running it, you view the content of the output data set object 
CUSTOMER_CLERICAL_REVIEW as shown in Figure 1-337 on page 295 
through Figure 1-339 on page 295. 

This report shows three clerical review records (qsMatchType has value CP) 
immediately followed by one or more master records (qsMatchType has value 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 291



MP) that could match them. This method of organizing the records makes it 
more convenient for manual review.

8. Save the data set metadata to Table Definitions. We do not repeat this 
process here.

After clerical review is completed, you create a clean set of master and duplicate 
records and survive the best information into the master record using the 
SURVIVE stage, as described in the next step “J13_SURVIVE_CUSTOMER” on 
page 295.

Figure 1-332   Create J12_CLERICAL_REVIEW_CUSTOMER job 1/8

 

 

 

 

292 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-333   Create J12_CLERICAL_REVIEW_CUSTOMER job 2/8

Figure 1-334   Create J12_CLERICAL_REVIEW_CUSTOMER job 3/8

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 293



Figure 1-335   Create J12_CLERICAL_REVIEW_CUSTOMER job 4/8

Figure 1-336   Create J12_CLERICAL_REVIEW_CUSTOMER job 5/8

 

 

 

 

294 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-337   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 6/8

Figure 1-338   Create J11_UNDUP_DEP_MATCH_CUSTOMER job 7/8

Figure 1-339   Create J12_CLERICAL_REVIEW_CUSTOMER job 8/8

J13_SURVIVE_CUSTOMER
In this step, we survive the best information from the set of duplicates. The input 
to this step is the data set that contains matched and duplicated records that was 
created by the Funnel stage in “J11_UNDUP_DEP_MATCH_CUSTOMER” on 
page 282 or one that was modified after the clerical review step in 
“J12_CLERICAL_REVIEW_CUSTOMER” on page 290.

Figure 1-340 on page 297 through Figure 1-353 on page 303 describe the main 
steps using Designer Client to perform this task. 

The main steps are as follows:

1. Figure 1-340 on page 297 shows the various stages that are used in this job, 
including the input data set CUSTOMER_UNDUP_DEP_MATCHES that was 
created in “J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282, which 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 295



contains matched and duplicate records, a Survive stage, and an output data 
set containing the survived records. We modified the names of the stages as 
shown, and this job uses the same QSPARAMETERSET object that was 
created earlier.

2. Configure the input data set CUSTOMER_UNDUP_DEP_MATCHES. We do 
not repeat this process here because it is similar to earlier configurations.

3. Configure the SURVIVE stage. With the Survive stage, you test column 
values to ascertain which columns are the best candidates for that record. 
These columns are combined to become the output record for the group. In 
selecting a best candidate, you can specify to test the following column 
values:

– Record creation data
– Data source
– Length of data in a column
– Frequency of data in a group

You configure the SURVIVE stage with rules to compare the columns against 
a best case. 

To configure the SURVIVE stage:

a. Double-click the SURVIVE stage, and in the Copy_of_SURVIVE - Survive 
Stage window, click New Rule in Figure 1-341 on page 298 to open the 
Survive Rules Definition window. 

b. The SURVIVE stage requires a rule that contains one or more targets and 
a TRUE condition expression. Select AllColumns from Available Columns 
and click the  button to move AllColumns to the Target(s) column as 
shown in Figure 1-342 on page 298. 

c. From the Survive Rule (Pick one) area, click Analyze Column and select 
qsMatchType (as the target to which to compare other columns) from the 
drop-down menu. From the Technique field drop-down menu, click 
Equals. The rules syntax for the Equals technique is c."column" = 
"DATA". In the Data field, type MP and click OK as shown in Figure 1-342 on 
page 298. 

d. Repeat the process for the MatchFirstName_USNAME with the Most 
Frequent (non-blank) technique, MiddleName_USNAME with the Longest 
technique, and PrimaryName_USNAME with the Longest technique as 
shown in Figure 1-343 on page 298 through Figure 1-345 on page 299.

e. Create a complex survive expression by selecting it in the Survive Rules 
Definition window to open the Rule Expression Builder pane where you 
select columns, functions, and operations to build the expression as 
shown in Figure 1-346 on page 300. You can check the expression by 
clicking Check Expression. Click OK. 

 

 

 

 

296 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



f. View the rules that you added in the Survive Stage grid shown in 
Figure 1-347 on page 301. From the Select the group identification data 
column, choose the Selected Column qsMatchSetID from the list, and 
click OK.

g. Click Stage Properties in Figure 1-348 on page 301, and when the 
SURVIVE - Survive window opens, click the Output tab for the link IN 
(Output name field) and then the Mapping tab. Select the columns from 
the Columns pane and copy them to the Survived pane as shown in 
Figure 1-349 on page 302. Click OK.

4. Configure the output data set object CUSTOMER_SURVIVE_MP_DA to store 
the results of the Survive stage. We do not repeat this process here because 
it is similar to earlier configurations.

5. After saving this job j13_SURVIVE, compiling and running it (Figure 1-350 on 
page 302), view the content of the output data set object 
CUSTOMER_SURVIVE_MP_DA as shown in Figure 1-351 on page 302 
through Figure 1-353 on page 303. 

This report shows the master records with the survived information from the 
duplicates.

Now, proceed to “J14_CUSTOMER_MASTER” on page 303.

Figure 1-340   Create J13_SURVIVE_CUSTOMER job 1/14

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 297



Figure 1-341   Create J13_SURVIVE_CUSTOMER job 2/14

Figure 1-342   Create J13_SURVIVE_CUSTOMER job 3/14

Figure 1-343   Create J13_SURVIVE_CUSTOMER job 4/14

 

 

 

 

298 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-344   Create J13_SURVIVE_CUSTOMER job 5/14

Figure 1-345   Create J13_SURVIVE_CUSTOMER job 6/14

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 299



Figure 1-346   Create J13_SURVIVE_CUSTOMER job 7/14

 

 

 

 

300 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-347   Create J13_SURVIVE_CUSTOMER job 8/14

Figure 1-348   Create J13_SURVIVE_CUSTOMER job 9/14

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 301



Figure 1-349   Create J13_SURVIVE_CUSTOMER job 10/14

Figure 1-350   Create J13_SURVIVE_CUSTOMER job 11/14

Figure 1-351   Create J13_SURVIVE_CUSTOMER job 12/14

 

 

 

 

302 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-352   Create J13_SURVIVE_CUSTOMER job 13/14

Figure 1-353   Create J13_SURVIVE_CUSTOMER job 14/14

J14_CUSTOMER_MASTER 
In this step, we create a clean master of credit card customers (with duplicates 
eliminated) by merging the master, clerical review (with duplicates removed), and 
residual records into a sequential file using the FUNNEL stage. The records 
inserted into the sequential file are sorted in ascending order of the RECKEY 
column. Also, any null values in the input records are substituted with the string 
NULL.

All the inputs to a FUNNEL stage must have the same number of columns in 
order to do a union. The output of the Survive stage in 
“J13_SURVIVE_CUSTOMER” on page 295 and the outputs of the Unduplicate 
stage in “J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282 do not have 
the same number of columns. Therefore, you first need to identify the metadata 
and save as a table definition. Then, you use the same table definition for all the 
inputs.

Figure 1-354 on page 305 through Figure 1-373 on page 315 describe the main 
steps using Designer Client to perform this task. 

Note: We defined a sequential file as output rather than a data set because of 
a bug that produced incorrect results with a data set but not with a sequential 
file. A Match Specification stage to which the file is input only accepts data 
sets. Therefore, we introduced another intermediate step, 
J14A_CUSTOMER_MASTER, that copied the contents of the sequential file 
that is created here into a data set.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 303



The main steps are as follows:

1. Figure 1-354 on page 305 shows the various stages that are used in this job, 
including the input data sets CUSTOMER_SURVIVE_MP_DA (that was 
created in “J13_SURVIVE_CUSTOMER” on page 295, which contains 
survived records), CUSTOMER_UNDUP_DEP_CLERICALS, and 
CUSTOMER_UNDUP_DEP_RESIDUALS that was created in the 
“J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282, a FUNNEL stage, 
and an output data set containing the merged records from the input. We 
modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

2. Configure the input data set CUSTOMER_UNDUP_DEP_MATCHES data set 
as shown in Figure 1-355 on page 306 through Figure 1-362 on page 309:

a. Right-click the CUSTOMER_SURVIVE_MP_DA stage icon object and 
select Properties as shown in Figure 1-355 on page 306. 

b. In the CUSTOMER_SURVIVE_MP_DA - Data Set window, under the 
Output tab for the OUT1 link, click the Properties tab and type information 
about the path and name of the file as shown in Figure 1-356 on page 306. 
We do not repeat this process here because it is similar to earlier 
configurations.

c. Click the Columns tab and then select and delete the eight (8) “qs” 
columns as shown in Figure 1-357 on page 307. Confirm the deletion 
request by clicking Yes in the DataStage window as shown in Figure 1-358 
on page 307. 

d. Click Save to save a table definition with the name CUSTOMER_MASTER 
for the remaining columns as shown in Figure 1-359 on page 308 through 
Figure 1-361 on page 309.

3. Configure the input CUSTOMER_UNDUP_DEP_CLERICALS data set (link 
OUT2) using the table definition CUSTOMER_MASTER as shown in 
Figure 1-362 on page 309 through Figure 1-366 on page 311.

4. Repeat the process for the input CUSTOMER_UNDUP_DEP_RESIDUALS 
data set (link OUT3). We do not show this process here.

5. Configure the FUNNEL stage. Figure 1-367 on page 312 shows the FUNNEL 
- Funnel window with the mapping of all columns from the Columns pane to 
the IN pane. 

6. Next, configure the output sequential file:

a. Double-click the sequential file CUSTOMER_MASTER_SF icon object. In 
the CUSTOMER_MASTER_SF - Sequential File window that opens, 
under the Input tab for the IN link, click the Properties tab and type 
information about the path and name of the file as shown in Figure 1-368 
on page 312. 

 

 

 

 

304 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



b. Click the Partitioning tab, select Perform sort, select RECKEY, and sort in 
ascending sequence as shown in Figure 1-369 on page 313. This 
requests the data in the sequential file to be in that sequence.

c. Click the Format tab, select the Null field value to be NULL as shown in 
Figure 1-370 on page 314, which indicates that the string NULL is 
substituted in a column when that column contains a null value. Click OK.

7. After saving, compiling, and running this job j14_CUSTOMER_MASTER, 
view the content of the output data set object CUSTOMER_MASTER_SF as 
shown in Figure 1-371 on page 314 through Figure 1-373 on page 315. 

This report shows the cleansed credit card customer file with no duplicates. 

Now, proceed to “J14A_CUSTOMER_MASTER” on page 316.

Figure 1-354   Create J14_CUSTOMER_MASTER job 1/20

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 305



Figure 1-355   Create J14_CUSTOMER_MASTER job 2/20

Figure 1-356   Create J14_CUSTOMER_MASTER job 3/20

 

 

 

 

306 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-357   Create J14_CUSTOMER_MASTER job 4/20

Figure 1-358   Create J14_CUSTOMER_MASTER job 5/20

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 307



Figure 1-359   Create J14_CUSTOMER_MASTER job 6/20

Figure 1-360   Create J14_CUSTOMER_MASTER job 7/20

 

 

 

 

308 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-361   Create J14_CUSTOMER_MASTER job 8/20

Figure 1-362   Create J14_CUSTOMER_MASTER job 9/20

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 309



Figure 1-363   Create J14_CUSTOMER_MASTER job 10/20

Figure 1-364   Create J14_CUSTOMER_MASTER job 11/20

 

 

 

 

310 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-365   Create J14_CUSTOMER_MASTER job 12/20

Figure 1-366   Create J14_CUSTOMER_MASTER job 13/20

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 311



Figure 1-367   Create J14_CUSTOMER_MASTER job 14/20

Figure 1-368   Create J14_CUSTOMER_MASTER job 15/20

 

 

 

 

312 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-369   Create J14_CUSTOMER_MASTER job 16/20

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 313



Figure 1-370   Create J14_CUSTOMER_MASTER job 17/20

Figure 1-371   Create J14_CUSTOMER_MASTER job 18/20

 

 

 

 

314 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-372   Create J14_CUSTOMER_MASTER job 19/20

Figure 1-373   Create J14_CUSTOMER_MASTER job 20/20

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 315



J14A_CUSTOMER_MASTER
In this step, we copy the contents of the sequential file that was created in the 
“J14_CUSTOMER_MASTER” on page 303 job into a data set because a 
subsequent match specification that reads this data only accepts a data set as 
input.

Figure 1-374 shows the job that consists of an input sequential file CUSTOMER 
_MASTER_SF and an output data set CUSTOMER_MASTER—with no 
intervening stages.

We do not show the configuration of the input sequential file and the output data 
set here because it is similar to earlier configurations.

Now, proceed to “J15_FREQ_CUSTOMER_MASTER” on page 316.

Figure 1-374   Create J14A_CUSTOMER_MASTER 

J15_FREQ_CUSTOMER_MASTER
In this next step, we generate frequency distribution on all the columns in the 
cleansed credit card customer file of the job “J14A_CUSTOMER_MASTER” on 
page 316 using the Match Frequency stage. Here again, the idea is to generate 
match frequency for all the columns so that it can be used with any match 
specification. The output of this job is used in defining match specifications that 
are used for matching.

Figure 1-375 on page 317 shows the various stages that are used in this job, 
including the data set that was created in “J14A_CUSTOMER_MASTER” on 
page 316, a Match Frequency stage, and a Sequential File stage. We modified 
the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object that was created earlier.

 

 

 

 

316 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of this job is very similar to that described in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266, we do not repeat it here. 

The contents of the output of this stage (CUSTOMER_MASTER_FREQ) are 
listed in Figure 1-376 on page 318. We do not document the interpretation of the 
format and content of this file.

Now, proceed to “J15_Undup_MatchSpec_CUSTOMER” on page 318.

Figure 1-375   Create J15_FREQ_CUSTOMER_MASTER 1/2

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 317



Figure 1-376   Create J15_FREQ_CUSTOMER_MASTER 2/2

J15_Undup_MatchSpec_CUSTOMER
In this step, we generate a match specification for an Unduplicate match stage 
using as input the match frequency data that was created in the job 
“J15_FREQ_CUSTOMER_MASTER” on page 316. The specification included 
two passes:

� The first pass blocked on the primary (last) name and a phonetic encoding 
(NYSIIS) of the address.

� The second pass blocked on the five digit ZIP code and a phonetic encoding 
(NYSIIS) of the address. 

Note: We repeated the phonetic encoding (NYSIIS) of the address as a 
blocking variable in the second pass to reduce the potentially large block size 
that could arise out of choosing a blocking variable only involving the ZIP 
code. While it was not an issue in our data, it is likely to be an issue in a 
real-world environment. 

 

 

 

 

318 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the creation of this match specification is very similar to that described 
in “J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269, we do not repeat 
the steps that are involved here.

However, a summary of the passes are as follows:

� HOUSEHOLD_NAME_STREET pass (Figure 1-377 on page 320) with the 
blocking columns, match commands, cutoff values, and test results.

� CUSTOMER_HOUSEHOLD_ZIPCODE pass (Figure 1-378 on page 321) 
with the blocking columns, match commands, cutoff values, and test results.

� Total Statistics of the two passes in Figure 1-379 on page 322.

Of particular interest is the statistic OVERFLOW blocks—a non-zero value 
indicates the need to increase the block size or define more restrictive 
blocking columns.

The test of the CUSTOMER_HOUSEHOLD match specification with 
representative sample data appears to deliver results that are accurate. This 
specification can then be used in an Unduplicate match stage as described in 
“J16_UNDUP_IND_MATCH_CUSTOMER” on page 322.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 319



Figure 1-377   Create J15_Undup_MatchSpec_CUSTOMER job 1/3

 

 

 

 

320 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-378   Create J15_Undup_MatchSpec_CUSTOMER job 2/3

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 321



Figure 1-379   Create J15_Undup_MatchSpec_CUSTOMER job 3/3

J16_UNDUP_IND_MATCH_CUSTOMER
In this step, we determine whether there were duplicates in the credit card file 
using the Unduplicate stage with the match specification and match frequency 
information that was created in steps “J15_Undup_MatchSpec_CUSTOMER” on 
page 318 and “J15_FREQ_CUSTOMER_MASTER” on page 316 respectively. 
As before, the output is matched records (merge of master and duplicates using 
a Funnel stage), records for clerical review, and residuals (records that do not 
match).

Because the creation of this Unduplicate stage is very similar to that described in 
“J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282, we do not repeat the 
steps that are involved here. However, the key differences are as follows:

� Figure 1-380 on page 324 shows the various stages that are used in this job, 
including the data set that was created in “J14A_CUSTOMER_MASTER” on 
page 316, the match frequency data set that was created in 
“J15_FREQ_CUSTOMER_MASTER” on page 316, an Unduplicate stage, a 

 

 

 

 

322 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Funnel stage to merge master and duplicate records. Three data sets are 
created:

– One data set contain the merged master and duplicates by the Funnel 
stage

– The other data sets contain the clerical and residual records as the output 
of the Unduplicate stage. 

We modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

� In the UNDUP_IND - Unduplicate Match Stage window shown in 
Figure 1-381 on page 324, select the Match Specification 
CUSTOMER_HOUSEHOLD. Select the Match Type Independent in order to 
find groups of all records (for household information) across multiple match 
passes as described in Table 1-11 on page 106. 

� After saving, compiling, and running this job 
j16_UNDUP_IND_MATCH_CUSTOMER (Figure 1-382 on page 325 shows 
zero rows written to the CUSTOMER_UNDUP_IND_CLERICALS), view the 
content of the two data set objects as shown in Figure 1-383 on page 325 
through Figure 1-388 on page 327. 

Out of a total of 21 records in the input to this process:

– Nine (9) records are masters and duplicates
– Zero records (0) are for clerical review
– Remaining twelve (12) records are residuals

The next step is to create a single credit card customer file with household 
information, as described in 
“J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” on page 327.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 323



Figure 1-380   Create J16_UNDUP_IND_MATCH_CUSTOMER job 1/9

Figure 1-381   Create J16_UNDUP_IND_MATCH_CUSTOMER job 2/9

 

 

 

 

324 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-382   Create J16_UNDUP_IND_MATCH_CUSTOMER job 3/9

Figure 1-383   Create J16_UNDUP_IND_MATCH_CUSTOMER job 4/9

Figure 1-384   Create J16_UNDUP_IND_MATCH_CUSTOMER job 5/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 325



Figure 1-385   Create J16_UNDUP_IND_MATCH_CUSTOMER job 6/9

Figure 1-386   Create J16_UNDUP_IND_MATCH_CUSTOMER job 7/9

Figure 1-387   Create J16_UNDUP_IND_MATCH_CUSTOMER job 8/9

 

 

 

 

326 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-388   Create J16_UNDUP_IND_MATCH_CUSTOMER job 9/9

J17_CUSTOMER_MASTER_WITH_HOUSEHOLD
In this step, we create a clean master of credit card customers by merging the 
master and residual records into a data set using the FUNNEL stage. We add a 
household ID (using a Transformer stage) to these records in the output with a 
value (from the qsMatchSetID) when a record belongs to a household and a zero 
when it does not belong to a household.

Because the steps involved using the FUNNEL and Transformer stages that were 
covered earlier, we do not repeat the steps that are involved here. However, 
some of the key points of interest are as follows:

1. Figure 1-389 on page 328 shows the various stages that are used in this job, 
including the three input data sets (CUSTOMER_UNDUP_IND_MATCHES 
that was created in “J16_UNDUP_IND_MATCH_CUSTOMER” on page 322, 
CUSTOMER_UNDUP_IND_CLERICAL that was created in 
“J16_UNDUP_IND_MATCH_CUSTOMER” on page 322, and 
CUSTOMER_UNDUP_IND_RESIDUALS that was created in 
“J16_UNDUP_IND_MATCH_CUSTOMER” on page 322), two FUNNEL 
stages, two Transformer stages (each adds a household identifier), and an 
output Data Set stage. We modified the names of the stages as shown, and 
this job uses the same QSPARAMETERSET object created earlier.

2. The ADD_HOUSEHOLD_ID - Transformer Stage shows the addition of a 
column HOUSEHOLD_ID (Figure 1-390 on page 329), which has the value 
stored in the column qsMatchSetID in the Derivation Substitution column. 

3. The ADD_BLANK_HOUSEHOLD - Transformer Stage (Figure 1-391 on 
page 330) shows the addition of a column HOUSEHOLD_ID, which has the 
value zero in the Derivation Substitution column. 

4. After saving, compiling, and running this 
jobJ17_CUSTOMER_MASTER_WITH_HOUSEHOLD (Figure 1-392 on 
page 331), view the content of the 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 327



CUSTOMER_MASTER_WITH_HOUSEHOLD data set object as shown in 
Figure 1-393 on page 331 through Figure 1-395 on page 332. 

This report shows the cleansed credit card customer file with household 
information added.

Now, proceed to obtain match frequency information about all the columns of this 
file for use in subsequent matching stages, as described in 
“J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD” on page 332. 

Figure 1-389   Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 1/7

 

 

 

 

328 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-390   Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 2/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 329



Figure 1-391   Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 3/7

 

 

 

 

330 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-392   Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 4/7

Figure 1-393   Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 5/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 331



Figure 1-394   Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 6/7

Figure 1-395   Create J17_CUSTOMER_MASTER_WITH_HOUSEHOLD job 7/7

J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD
In this step, we generate frequency distribution on all the columns in the 
cleansed credit card customer file, including household information of the 

 

 

 

 

332 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



“J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” on page 327 job using the 
Match Frequency stage. Here again, the idea is to generate match frequency for 
all the columns so that it can be used with any match specification. This is used 
in a later matching stage with mailing lists as described in 1.10.6, “Mailing list 
cleansing” on page 334.

Figure 1-396 shows the various stages that are used in this job, including the 
data set that was created in “J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” 
on page 327, a Match Frequency stage, and a Sequential File stage. We 
modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

Because the configuration of this job is very similar to that described in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266, we do not repeat it here. 

The contents of the output of this stage 
(CUSTOMER_MASTER_WITH_HOUSEHOLD_FREQ) are listed in 
Figure 1-397 on page 334. We do not document the interpretation of the format 
and content of this file.

Now, proceed to “J10_REFERENCE_MatchSpec_MAILING_LIST” on page 413.

Figure 1-396   Create J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD 1/2

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 333



Figure 1-397   Create J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD 2/2

1.10.6  Mailing list cleansing

Figure 1-398 on page 341 shows the processing flow and jobs used for:

� Cleansing the merged mailing lists purchased from three different sources.

� Matching the cleansed mailing list with the cleansed credit card customer file 
to enhance it, as well as eliminate those records in the mailing list that already 
exist in the cleansed credit card customer file.

� Determining mailing list persons who belong to the same household to reduce 
mailing costs.

The steps briefly are:

1. We begin by extracting all the mailing list data from a DB2 database26 and 
loading it into a data set to isolate it from changes during analysis. We also 
pre-processed it for analysis, which involved changing default values to nulls 
for columns such as the telephone number.27

26  We had merged and loaded the purchased mailing lists into a DB2 database previously, and do 
not show this process here.

27  If the content was (999) 999-9999 (user default), then insert a null in the output.

 

 

 

 

334 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Job “J00_SRC_MAILING_LIST” on page 342 performs this step. 

2. We then split the mailing list records into two files: one with name and 
address fields and the another for single domain fields such as telephone 
numbers and e-mail addresses. The purpose of splitting the mailing list 
records is to allow processing of the single domain and text data in parallel by 
the QualityStage administrators and appropriate subject matter experts.

3. Next, we analyze the mailing list’s addresses to determine the (ISO code) 
country using the COUNTRY rule set in the Standardize stage. 

Job “J01_STAN_COUNTRY_M” on page 353 performs this step.

4. The ISO codes that are generated by the previous step are analyzed by the 
Investigate stage using character discrete with the C mask to obtain 
frequency distribution. This step identifies whether the addresses in the 
mailing list file belong to more than one country and identifies the codes of the 
countries in the addresses. In this case, all the addresses were U.S. 
addresses.

Job “J02_INVCC_ISOCODE_M” on page 358 performs this step.

5. We then use the Standardize stage with the domain-preprocessor rule set 
USPREP to move name and address data into Name, Address, and Area 
domains.

Job “J03_STAN_USPREP_M” on page 361 performs this step.

6. We then use the Investigate stage using word investigate on the Name, 
Address, and Area domains to determine whether the domain-preprocessor 
USPREP rule set parsed the tokens in the name and address fields into the 
correct domains successfully. 

Job “J04_INVW_USPREP_M” on page 366 performs this step.

Note: In this case, for convenience, we chose to use all the columns in the 
input data for the both streams. Job “J01_STAN_COUNTRY_M” on 
page 353 for the name and address fields and job 
“J00A_INV_MAILING_LIST” on page 347.

In the job “J00A_INV_MAILING_LIST” on page 347, we use the Investigate 
stage on non-text columns such as source (of the mailing list), home and 
cell phone numbers, and e-mail addresses. We used character 
concatenate and character discrete with combinations of C, T, and X 
masks. The objective of this step is to validate some of the main non-text 
columns. Any errors that are detected can be resolved by modifying the 
source directly or by using IBM WebSphere QualityStage jobs to cleanse 
and modify the targets. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 335



7. A visual analysis of the token and pattern reports of the 
“J04_INVW_USPREP_M” on page 366 job is performed to determine if the 
parsing was successful. 

We found certain errors with the parsing, and so chose to perform a 
classification override for the USPREP rule set to fix the errors. 

Job “J04_Z_After_Override” on page 373 performs this step.

8. The “J03_STAN_USPREP_M” on page 361, “J04_INVW_USPREP_M” on 
page 366, and “J04_Z_After_Override” on page 373 steps is repeated until 
the name and address data is moved into the correct domain columns. 

9. After all the name and address data is moved to the correct domain buckets, 
we use the CASS stage to validate, correct, and standardize the U.S. 
addresses in the Address domain. We also include a Transformer stage to 
add a second address line column to the mailing list file because CASS 
requires two address lines as input for its processing.

Job “J05_CASS_USPREP_M” on page 374 performs this step.

10.We then run the Investigate stage with character concatenate on the (address 
related columns) results of the job “J05_CASS_USPREP_M” on page 374 
step to determine investigate addresses that are not recognized by CASS 
(delivery point verification or DPV).

We also investigate using character concatenate (on CASS generated 
columns DPVMATCHFLAG_CASS and DPVCODE1_CASS) using a C mask, 
the output of CASS. A value of A1 in the DPVCODE1_CASS field indicates a 
potential problem.

Job “J06_INVCC_CASS_M” on page 379 performs this step.

11.The next step is to standardize the name and address contents of the output 
of job “J05_CASS_USPREP_M” on page 374 using the domain-preprocessor 
USPREP rule set. We also add a column to the output that only had the first 
three characters of the ZIP code using a Transformer stage. This new column 
(ZIP3) is used as a blocking variable in the following matching stage. 

Attention: Generally, the overrides in the job “J04_Z_After_Override” on 
page 373 steps should be limited to simple classification overrides that 
move name and address data to the correct name/address/area domain 
buckets, rather than more complex pattern overrides.

Note: Due to a bug with handling nulls, we introduced a Transformer stage 
to convert nulls to a space using column derivation.

 

 

 

 

336 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Job “J07_STAN_MAILING_LIST_Domain_Preprocessor” on page 383 
performs this step.

12.After reviewing the patterns that were generated in the 
“J07_STAN_MAILING_LIST_Domain_Preprocessor” on page 383 job, we 
find certain names not classified as first names (F). Therefore, we add them to 
the domain-specific rule set USNAME. We do not show this process here, it is 
similar to the process described in “Selecting override object types to modify 
rule sets” on page 64.

13.After the classification overrides for the names, in the next step, we 
standardize the name and address contents of the output of job 
“J07_STAN_MAILING_LIST_Domain_Preprocessor” on page 383 using the 
domain-specific USNAME (with column NameDomain_USPREP), USADDR 
(with column AddressDomain_USPREP) and USAREA (with column 
AreaDomain_USPREP) rule sets. Three separate processes are 
defined—one for each rule set.

Job “J08_STAN_MAILING_LIST_Domain_Specific” on page 390 performs 
this step.

14.The next step identifies unhandled patterns in the 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390 job. We run the 
Investigate stage with character concatenate using the C mask on the 
unhandled pattern column from the results of 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390—the columns 
investigated correspond to the name, address, and area domains.

Job “J09_INVCC_STAN_MAILING_LIST” on page 399 performs this step.

15.Because we find unhandled patterns (such as F,I) in the name domain, we 
create pattern overrides in the domain-specific USNAME rule set. We also 
find unhandled patterns in the address domain and create overrides in the 
domain-specific USADDR rule set. We then re-run the 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390 step.

Job “J09_INVCC_STAN_MAILING_LIST” on page 399 performs this step.

16.After the unhandled patterns are handled, we generate frequency distribution 
on all the columns in the mailing list file using the Match Frequency stage. 
The idea is to generate match frequency for all the columns so that it can be 
used with any match specification. 

Job “J10_MATCHFREQ_STAN_MAILING_LIST” on page 411 performs this 
step. 

Note: Here again, we had to introduce a null handling Transformer stage to 
circumvent a bug.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 337



17.The next step is to generate a match specification for a Reference match 
stage using as input the match frequency data that was created in the 
“J10_MATCHFREQ_STAN_MAILING_LIST” on page 411 job. The 
specification included a single pass based on the three digits ZIP code and 
the street name. 

Job “J10_REFERENCE_MatchSpec_MAILING_LIST” on page 413 performs 
this step.

18.The next step is to determine if there were any matches between the records 
in the credit card customer file and mailing list file by running the Reference 
stage, which required standardized data (from 
“J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” on page 327) and 
reference data (from “J08_STAN_MAILING_LIST_Domain_Specific” on 
page 390) as source data, a reference match specification (from 
“J10_REFERENCE_MatchSpec_MAILING_LIST” on page 413), and 
frequency information for both sources (from 
“J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD” on page 332 and 
“J10_MATCHFREQ_STAN_MAILING_LIST” on page 411). The output is 
matched records, records for clerical review, mailing list duplicates, credit card 
customer duplicates, mailing list residuals, and credit card customer 
residuals.

Job “J11_REFMATCH” on page 416 performs this step.

19.We then create a single report of the matched mailing list persons and the 
records in the clerical review records to enable a manual review of potential 
match records. 

Job “J12_CLERICAL_REPORT_MAILING_LIST” on page 430 performs this 
step. 

20.If a manual review of the report finds duplicates, theses duplicates must be 
considered as part of the file that contains matched records. We do not show 
this process here.

21.The next step is to enhance the information in the credit card customer file 
with information in the mailing list if appropriate, for example the middle name.

Job “J13_ENHANCE_CUSTOMER” on page 437 performs this step. 

22.The next step is to generate frequency distribution on all the columns in the 
residual mailing list file that was created in the “J11_REFMATCH” on 
page 416 step using the Match Frequency stage. Here again, the idea is to 
generate match frequency for all the columns so that it can be used with any 
match specification. 

Job “J14_MAILING_LIST_RESIDUAL_FREQ” on page 442 performs this 
step.

 

 

 

 

338 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



23.The next step is to generate a match specification for an Unduplicate match 
stage using as input the match frequency data that was created in the 
“J14_MAILING_LIST_RESIDUAL_FREQ” on page 442 job. The specification 
included two passes:

– The first pass blocks on a phonetic encoding (NYSIIS) of the primary (last) 
name, the address, phonetic encoding (NYSIIS) of the street name, and 
the ZIP code.

– The second pass blocks on the three digit ZIP code. 

Job “J14_UNDUP_DEP_MATCHSPEC_MAILING” on page 445 performs this 
step.

24.Next, we determine whether there were duplicates in the mailing list persons 
file using the Unduplicate stage with the match specification and match 
frequency information that was created in steps 
“J14_UNDUP_DEP_MATCHSPEC_MAILING” on page 445 and 
“J14_MAILING_LIST_RESIDUAL_FREQ” on page 442 respectively. As 
before, the output is matched records (merge of master and duplicates using 
a Funnel stage), records for clerical review, and residuals (records that do not 
match).

Job “J15_UNDUP_DEP_MATCH_MAILING” on page 449 performs this step.

25.We find no duplicates for clerical review. Therefore, the next step is to survive 
the best information from the set of duplicates in the matched records that 
were created in the “J15_UNDUP_DEP_MATCH_MAILING” on page 449 
step using the SURVIVE stage. 

Job “J16_SURVIVE_MAILING” on page 454 performs this step.

26.A clean master of mailing list persons is created by merging the master that 
was created in the “J16_SURVIVE_MAILING” on page 454 step and residual 
records that were created in the “J15_UNDUP_DEP_MATCH_MAILING” on 
page 449 step into a data set using the FUNNEL stage.

Job “J17_MAILING_MASTER” on page 458 performs this step.

27.In order to generate household information for the master mailing list persons 
that was created in the “J17_MAILING_MASTER” on page 458 step, we 
generate frequency distribution on all the columns in the master mailing list 
file using the Match Frequency stage. Here again, the idea is to generate 
match frequency for all the columns so that it can be used with any match 
specification. 

Job “J18_FREQ_MAILING_MASTER” on page 461 performs this step.

28.The next step is to generate a match specification for an Unduplicate match 
stage using as input the match frequency data that was created in the 
“J18_FREQ_MAILING_MASTER” on page 461 job. The specification 
included two passes:

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 339



– The first pass blocks on the primary (last) name and a phonetic encoding 
(NYSIIS) of the street name, and the ZIP code.

– The second pass blocks on the five digit ZIP code. 

Job “J18_UNDUP_IND_MATCHSPEC_MAILING” on page 464 performs this 
step.

29.Next, we determine whether there were duplicates in the mailing list persons 
file using the Unduplicate stage with the match specification and match 
frequency information that was created in steps 
“J18_UNDUP_IND_MATCHSPEC_MAILING” on page 464 and 
“J18_FREQ_MAILING_MASTER” on page 461 respectively. As before, the 
output is matched records (merge of master and duplicates using a Funnel 
stage), records for clerical review, and residuals (records that do not match).

Job “J19_UNDUP_IND_MATCH_MAILING” on page 468 performs this step.

30.A clean master of mailing list persons was created by merging the master and 
residual records that were generated in the 
“J19_UNDUP_IND_MATCH_MAILING” on page 468 step into a data set 
using the FUNNEL stage. We add a household ID (using a Transformer 
stage) to these records in the output with a value (qsMatchSetID) when a 
record belonged to a household and a zero when it did not belong to a 
household.

Job “J20_MAILING_MASTER_WITH_HOUSEHOLD” on page 473 performs 
this step.

These jobs are described in more detail in the following sections.

Note: After these steps, we now have a clean mailing list persons file with 
household information that can be used for promotional mailing at reduced 
mailing costs.

 

 

 

 

340 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-398   Mailing list cleanup and merge with Customer data process flow

J00_SRC_MAILING_LIST

JO1_STAN_COUNTRY_M

J02_INVCC_ISOCODE_M

J03_STAN_USPREP_M

J04_Z_Override_And_After

J06_INVCC_CASS_M

Data in correct 
domain?

J05_CASS_USPREP_M

J07_STAN_MAILING_LIST_Domain_Preprocessor

Split 
other 

domain

J00A_INV_MAILING_LIST

Fix 
data

Fix data at 
source? Y

Y

N

J08_STAN_MAILING_LIST_Domain_Specific

J09_Z_Override_And_After

N
Y

J10_REFERENCE_MatchSpec_MAILING_LIST

J11_REFMATCH

Everything 
handled?

J10_MATCHFREQ_STAN_MAILING_LIST

MAILING LIST

MASTER
/w HH

Fix in 
QS flow

Incorporate 
in QS jobs

Inv other done

Y

N

J04_INVW_USPREP_M

J09_INVCC_STAN_MAILING_LIST

J12_CLERICAL_REPORT_MAILING_LIST

J13_ENHANCE_CUSTOMER

J14_MAILING_LIST_RESIDUAL_FREQ

J15_UNDUP_DEP_MATCH_MAILING

J17_MAILING_MASTER

J14_UNDUP_DEP_MATCHSPEC_MAILING

J16_SURVIVE_MAILING

J18_FREQ_MAILING_MASTER

J19_UNDUP_IND_MATCH_MAILING

J18_UNDUP_IND_MATCHSPEC_MAILING

J20_MAILING_MASTER_WITH_HOUSEHOLD

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 341



J00_SRC_MAILING_LIST
As mentioned earlier, we begin by extracting all the mailing list data from a DB2 
database and loading it into a data set to isolate it from changes during analysis. 
We also pre-processed it for analysis, which involved changing default values to 
nulls for columns such as the telephone number.

Figure 1-399 shows the various stages that are used in this job, including a DB2 
UDB API stage that is used to access the data in the MAILING_LIST table. Its 
rows are pre-processed to convert default values (such as (999) 999-9999) in the 
PHONE column to nulls using the Transformer stage. The transformed data is 
written to a data set. We modify the names of the stages as shown, and this job 
uses the same QSPARAMETERSET object created earlier.

Because the configuration of this job is very similar to that described in 
“J00_SRC_CUSTOMER” on page 142, we do not repeat it here. However, some 
of the configurations of interest are as follows:

� Figure 1-400 on page 343 shows the generated SQL to retrieve all the rows in 
the MAILING_LIST table.

� Figure 1-401 on page 343 through Figure 1-404 on page 345 show the 
configuration of the Transformer Stage that pre-processes data that is 
retrieved from the MAILING_LIST table to replace user-defined default values 
in the CELL_PHONE, HOME_PHONE, and EMAIL columns to null. 

� After saving, compiling, and running the job, Figure 1-405 on page 345 shows 
the results of the execution.

� Figure 1-406 on page 346 and Figure 1-407 on page 347 show the 
pre-processed rows in the MAILING_LIST table. 

Now, proceed to “J01_STAN_COUNTRY_M” on page 353.

Figure 1-399   Create J00_SRC_MAILING_LIST job 1/9

 

 

 

 

342 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-400   Create J00_SRC_MAILING_LIST job 2/9

Figure 1-401   Create J00_SRC_MAILING_LIST job 3/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 343



Figure 1-402   Create J00_SRC_MAILING_LIST job 4/9

Figure 1-403   Create J00_SRC_MAILING_LIST job 5/9

 

 

 

 

344 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-404   Create J00_SRC_MAILING_LIST job 6/9

Figure 1-405   Create J00_SRC_MAILING_LIST job 7/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 345



Figure 1-406   Create J00_SRC_MAILING_LIST job 8/9

 

 

 

 

346 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-407   Create J00_SRC_MAILING_LIST job 9/9 

J00A_INV_MAILING_LIST
In this step, we use the Investigate stage on non-text columns such as source (of 
the mailing list), home and cell phone numbers, and e-mail addresses. We used 
character concatenate and character discrete with combinations of C, T, and X 
masks. The objective of this step is to validate some of the main non-text 
columns. Any errors that are detected can be resolved by modifying the source 
directly or using IBM WebSphere QualityStage jobs to cleanse and modify the 
targets.

Figure 1-408 on page 349 shows the various stages that are used in this job, 
including the data set that was created in “J00_SRC_MAILING_LIST” on 
page 342, one COPY stage, three Investigate stages, and one Sequential File 
stage for each Investigate stage. We modified the names of the stages as shown, 
and this job uses the same QSPARAMETERSET object that was created earlier.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 347



Because the configuration of this job is very similar to that described in 
“J02_INVCC_ISCODE” on page 186, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 1-409 on page 349 shows the character discrete investigate columns 
CELL_PHONE, EMAIL, and HOME_PHONE configured with the C mask.

Figure 1-413 on page 352 shows the report that is generated for this 
Investigate stage after compiling and running (Figure 1-412 on page 351) this 
job. 

� Figure 1-410 on page 350 shows the character discrete investigate columns 
CELL_PHONE, EMAIL, and HOME_PHONE configured with the T mask.

Figure 1-414 on page 352 shows the report that is generated for this 
Investigate stage after compiling and running this job.

� Figure 1-411 on page 350 shows the character concatenate investigate 
columns SOURCE, CELL_PHONE, EMAIL, and HOME_PHONE configured 
with a combination of C, T, and X masks. This investigate stage reveals the 
source (of the mailing list purchase) and the telephone and e-mail addresses 
that are provided by them.

Figure 1-415 on page 353 shows the report that is generated for this 
Investigate stage after compiling and running this job.

Note: You need to review these reports for validity and then correct them 
using data cleansing techniques. Time constraints during our testing 
prevented us from creating data cleansing jobs to do so. 

 

 

 

 

348 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-408   Create J00A_INV_MAILING_LIST job 1/8

Figure 1-409   Create J00A_INV_MAILING_LIST job 2/8

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 349



Figure 1-410   Create J00A_INV_MAILING_LIST job 3/8

Figure 1-411   Create J00A_INV_MAILING_LIST job 4/8

 

 

 

 

350 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-412   Create J00A_INV_MAILING_LIST job 5/8

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 351



Figure 1-413   Create J00A_INV_MAILING_LIST job 6/8

Figure 1-414   Create J00A_INV_MAILING_LIST job 7/8

 

 

 

 

352 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-415   Create J00A_INV_MAILING_LIST job 8/8

J01_STAN_COUNTRY_M
Next, we split the mailing list records that were created in the 
“J00_SRC_MAILING_LIST” on page 342 job into two files—one with name and 
address fields and another for single domain fields such as telephone numbers 
and e-mail addresses. As in the case of the credit card customer file cleansing, 
we do this to allow processing of the single domain and text data in parallel by 
the QualityStage administrators and appropriate subject matter experts.

In this step, we analyze the mailing list’s addresses to determine their (ISO code) 
country using the COUNTRY rule set in the Standardize stage. 

Figure 1-416 on page 354 shows the various stages that are used in this job, 
including the data set that was created in “J00_SRC_MAILING_LIST” on 
page 342, a Standardize stage, and an output Data Set stage. This job uses a 
QSPARAMETERSET object that is similar to the one described in 1.10.4, 
“Create a parameter set object” on page 130. We modified the names of the 
stages as shown, and this job uses the QSPARAMETERSET object that was 
created earlier.

Note: In this case, for convenience, we chose to use all the columns in the 
input data for the both streams. Job J01_STAN_COUNTRY_M (described 
here) for the name and address fields, and job “J00A_INV_MAILING_LIST” on 
page 347 for the source, home and cell phone numbers, and e-mail 
addresses. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 353



Because the configuration of this job is very similar to that described in 
“J01_STAN_COUNTRY” on page 168, we do not repeat it here. However, some 
of the configurations of interest are as follows:

� Figure 1-417 on page 355 and Figure 1-418 on page 355 show the 
Standardize Rule Process window with the configured COUNTRY rule set 
and the literal ZQUSZQ followed by the CITY, STATE and ZIP columns in the 
Selected Columns list. 

� After saving, compiling, and running the job, Figure 1-419 on page 356 shows 
the results of the execution.

� Figure 1-420 on page 357 and Figure 1-421 on page 358 shows a report with 
the two columns ISOCountryCode_COUNTRY and IdentifierFlag_COUNTRY 
added by the Standardize stage. It shows US for each row with the identifier 
flag of Y in all but two cases that had invalid state codes. It defaulted the 
country code to US because of the inclusion of the literal ZQUSZQ.

Now, proceed to “J02_INVCC_ISOCODE_M” on page 358.

Figure 1-416   Create J01_STAN_COUNTRY_M job 1/6

 

 

 

 

354 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-417   Create J01_STAN_COUNTRY_M job 2/6

Figure 1-418   Create J01_STAN_COUNTRY_M job 3/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 355



Figure 1-419   Create J01_STAN_COUNTRY_M job 4/6

 

 

 

 

356 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-420   Create J01_STAN_COUNTRY_M job 5/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 357



Figure 1-421   Create J01_STAN_COUNTRY_M job 6/6

J02_INVCC_ISOCODE_M
In this step, we analyze the ISO codes that were generated in the 
“J01_STAN_COUNTRY_M” on page 353 job by the Investigate stage using 
character discrete with the C mask to obtain frequency distribution. This step 
identifies whether the addresses in the mailing list file belong to more than one 
country and identifies the codes of the countries in the addresses. In this case, 
all the addresses are U.S. addresses.

Figure 1-422 on page 359 shows the various stages that are used in this job, 
including the data set that was created in “J01_STAN_COUNTRY_M” on 
page 353, an Investigate stage, and an output Sequential File stage. We 
modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object that was created earlier.

 

 

 

 

358 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of this job is very similar to that described in 
“J02_INVCC_ISCODE” on page 186, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 1-423 on page 360 shows the INV_CC_ISOCODE - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
ISOCountryCode_Country and IdentifierFlag_COUNTRY selected with the C 
masks for each character.

� After saving, compiling, and running this job, the job statistics are shown in 
Figure 1-424 on page 360.

� The output of the Investigate stage written to the sequential file is shown in 
Figure 1-425 on page 361. It shows two records:

– One record with a concatenated value of US Y in 93.5484% of the records

– Another record with a concatenated value of US N in 6.45161% of the 
records

Now, proceed to “J03_STAN_USPREP_M” on page 361.

Figure 1-422   Create J02_INVCC_ISOCODE_M job 1/4

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 359



Figure 1-423   Create J02_INVCC_ISOCODE_M job 2/4

Figure 1-424   Create J02_INVCC_ISOCODE_M job 3/4

 

 

 

 

360 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-425   Create J02_INVCC_ISOCODE_M job 4/4

J03_STAN_USPREP_M
In this step, we use the Standardize stage with the domain-preprocessor rule set 
USPREP to move name and address data into Name, Address, and Area 
domains.

Figure 1-426 on page 362 shows the various stages that are used in this job, 
including the data set that was created in “J01_STAN_COUNTRY_M” on 
page 353, a Standardize stage, and an output Data Set stage. We modified the 
names of the stages as shown, and this job uses the same QSPARAMETERSET 
object created earlier.

Because the configuration of this job is very similar to that described in 
“J03_STAN_USPREP” on page 196, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� The Standardize Rule Process windows of Figure 1-427 on page 362 and 
Figure 1-428 on page 363 show the USPREP rule set and the literals and 
columns selected for analysis. It shows the following selected literals and 
columns:

ZQNAMEZQ NAME ZQADDRZQ ADDRESS ZQAREAZQ CITY STATE ZIP

� After saving, compiling, and running this job, view the results as shown in 
Figure 1-429 on page 363.

� The content of the MAILING_LIST_STAN_USPREP data set is shown in 
Figure 1-430 on page 364 through Figure 1-432 on page 366. 

The report shows the following:

– Columns NameDomain_USPREP (contains prefix, first name, last name, 
suffix tokens), AddressDomain_USPREP (contains apartment, street 
name and street type tokens), and AreaDomain_USPREP (contains city, 
state, ZIP code tokens) that was parsed from the input columns.

– InputPattern_USPREP and OutboundPattern_USPREP columns that 
contain the patterns generated after processing the name and address 
columns in the input file.

Now, proceed to “J04_INVW_USPREP_M” on page 366.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 361



Figure 1-426   Create J03_STAN_USPREP_M job 1/7

Figure 1-427   Create J03_STAN_USPREP_M job 2/7

 

 

 

 

362 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-428   Create J03_STAN_USPREP_M job 3/7

Figure 1-429   Create J03_STAN_USPREP_M job 4/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 363



Figure 1-430   Create J03_STAN_USPREP_M job 5/7

 

 

 

 

364 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-431   Create J03_STAN_USPREP_M job 6/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 365



Figure 1-432   Create J03_STAN_USPREP_M job 7/7

J04_INVW_USPREP_M
In this step, we use the Investigate stage using word investigate on the Name, 
Address, and Area domains to determine whether the domain-preprocessor 
USPREP rule set parsed the tokens in the name and address fields into the 
correct domains successfully.

We analyze the mailing list file containing the name, address, and area buckets 
that were generated by the job “J03_STAN_USPREP_M” on page 361 by the 
Investigate stage using word investigate and the domain-specific USNAME, 
USADDR, and USAREA rule sets to determine the degree of success that is 
achieved by the Standardize stage to moving the tokens to the right buckets. 

Because a single Investigate stage can only have a single rule set associated 
with it, we need to split the mailing list file (using a Copy stage) and process it by 
three independent Investigate stages, with each stage using a particular 
domain-specific rule set. Both the pattern and token reports are generated in 
each Investigate stage.

Figure 1-433 on page 368 shows the various stages that are used in this job, 
including the data set that was created in “J03_STAN_USPREP_M” on 
page 361, a Copy stage, three Investigate stages that each use a different 

 

 

 

 

366 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



domain-specific rule set, and two sequential file stages (one each for the token 
report and pattern report) for each Investigate stage. We modified the names of 
the stages as shown, and this job uses the same QSPARAMETERSET object 
created earlier.

Because the configuration of this job is very similar to that described in 
“J04_INVW_USPREP” on page 203, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 1-434 on page 368 shows the INVNAME - Investigate Stage window 
using the USNAME rule set with the Word Investigate option. The selected 
column is NameDomain_USPREP.

� Figure 1-435 on page 369 shows the INVADDR - Investigate Stage window 
using the USADDR rule set with the Word Investigate option. The selected 
column is AddressDomain_USPREP.

� Figure 1-436 on page 369 shows the INVAREA - Investigate Stage window 
using the USAREA rule set with the Word Investigate option. The selected 
column is AreaDomain_USPREP.

� After saving, compiling, and running this job, the contents of the output of 
each investigate stage is listed here: 

� The outputs of the Investigate stage written to the sequential files are shown 
in Figure 1-438 on page 370 through Figure 1-443 on page 373. 

The reports show a number of tokens in the various reports not being 
recognized with proper classifications (code “?”). The patterns also appear to 
need overrides, but you can only be certain of this after the pattern action 
language has been invoked.

Now, proceed to “J03_Z_Override_And_After” on page 215.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 367



Figure 1-433   Create J04_INVW_USPREP_M job 1/11

Figure 1-434   Create J04_INVW_USPREP_M job 2/11

 

 

 

 

368 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-435   Create J04_INVW_USPREP_M job 3/11

Figure 1-436   Create J04_INVW_USPREP_M job 4/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 369



Figure 1-437   Create J04_INVW_USPREP_M job 5/11

Figure 1-438   Create J04_INVW_USPREP_M job 6/11

 

 

 

 

370 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-439   Create J04_INVW_USPREP_M job 7/11

Figure 1-440   Create J04_INVW_USPREP_M job 8/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 371



Figure 1-441   Create J04_INVW_USPREP_M job 9/11

Figure 1-442   Create J04_INVW_USPREP_M job 10/11

 

 

 

 

372 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-443   Create J04_INVW_USPREP_M job 11/11

J04_Z_After_Override
We perform a visual analysis of the token and pattern reports of the 
“J04_INVW_USPREP_M” on page 366 job to determine if the parsing was 
successful. 

In doing so, we find certain errors with the parsing, and so chose to perform a 
classification override for the USNAME rule set to fix the errors.

Because the override is similar to that described in “J03_Z_Override_And_After” 
on page 215, we do not repeat it here. Figure 1-444 on page 374 shows a 
Classification override of the USNAME rule set for the token ANDERS with a 
classification of F.

We repeat the steps described in jobs “J03_STAN_USPREP_M” on page 361, 
“J04_INVW_USPREP_M” on page 366, and “J04_Z_After_Override” on 
page 373 until the name and address data is moved into the correct domain 
columns. 

Now, proceed to “J05_CASS_USPREP_M” on page 374. 

Attention: As mentioned earlier in “J03_Z_Override_And_After” on page 215, 
overrides in this job generally should be limited to simple classification 
overrides that move name and address data to the correct name/address/area 
domain buckets, rather than more complex pattern overrides. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 373



Figure 1-444   Create J04_Z_After_Override 

J05_CASS_USPREP_M
After all the name and address data is moved to the correct domain buckets, we 
use the CASS stage to validate, correct, and standardize the U.S. addresses in 
the Address domain and to write a Postal Service form 3553 to a file. We also 
include a Transformer stage to add a second address line column to the mailing 
list file because CASS requires two address lines as input for its processing.

Figure 1-445 on page 375 shows the various stages that are used in this job, 
including the data set that was created in “J03_STAN_USPREP_M” on 
page 361, a Transformer stage, a CASS stage, and a Data Set stage. We 
modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object that was created earlier.

Because the configuration of this job is very similar to that described in 
“J05_CASS_USPREP” on page 219, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 1-446 on page 376 shows the ADD_SAPCE_FIELD - Transformer 
Stage window that describes the addition of the DUMMY_ADDRESS_FIELD 
of character length 1 to serve as the second address line that is required by 
the CASS stage.

� Figure 1-447 on page 376 shows the CASS stage configuration with details 
such as the assignment of columns to Address Line 1 and Address Line 2, 
and location of the output file and parameter set object.

� After saving, compiling, and running this job (Figure 1-448 on page 377), 
review the contents of the output of the CASS stage as shown in Figure 1-449 
on page 377 through Figure 1-451 on page 379. It shows validation errors 
with some addresses, as described in “J05_CASS_USPREP” on page 219.

 

 

 

 

374 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Now, proceed to “J06_INVCC_CASS_M” on page 379.

Figure 1-445   Create J05_CASS_USPREP_M job 1/7

Note: Generally, any data error should be presented for review by appropriate 
personnel as early as possible in the process. An A1 should be investigated 
and appropriate action taken.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 375



Figure 1-446   Create J05_CASS_USPREP_M job 2/7

Figure 1-447   Create J05_CASS_USPREP_M job 3/7

 

 

 

 

376 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-448   Create J05_CASS_USPREP_M job 4/7

Figure 1-449   Create J05_CASS_USPREP_M job 5/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 377



Figure 1-450   Create J05_CASS_USPREP_M job 6/7

 

 

 

 

378 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-451   Create J05_CASS_USPREP_M job 7/7

J06_INVCC_CASS_M
In this step, we then run the Investigate stage with character concatenate on the 
(address related columns) results of the job “J05_CASS_USPREP_M” on 
page 374 step to determine investigate addresses that are not recognized by 
CASS (delivery point verification or DPV).

We investigate using character concatenate (on CASS generated columns 
DPVMATCHFLAG_CASS and DPVCODE1_CASS) using a C mask, the output 
of CASS. A value of A1 in the DPVCODE1_CASS field indicates a potential 
problem.

Figure 1-452 on page 381 shows the various stages that are used in this job, 
including the data set that was created in “J05_CASS_USPREP_M” on 
page 374, a Transformer stage for handling nulls, an Investigate stage, and an 
output Sequential File stage. We modified the names of the stages as shown, 
and this job uses the same QSPARAMETERSET object created earlier.

Note: Due to a bug with handling nulls, we introduced a Transformer stage to 
convert nulls to a space using column derivation.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 379



Because the configuration of this job is very similar to that described in 
“J06_INVCC_CASS” on page 228, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 1-453 on page 381 shows the HANDLE NULL - Transformer Stage 
window with derivation substitution for all the columns with the following 
expression: 

If ISNULL(OUT.SOURCE) then “ else OUT.SOURCE

This derivative directs that if the column is null, then spaces are replaced by 
an empty string.

� Configure the INV_DPV_INFO Investigate stage by right-clicking the 
INV_DPV_INFO icon and selecting Properties in Figure 1-234 on page 232. 
Then, continue by clicking Character Concatenate Investigate. The 
columns propagated from the input data set are shown in the Available Data 
Columns list. Select the following columns:

– DPVMatchFlag_CASS with C mask
– DPVCode1_CASS with C mask
– Delivery_AddressLine1_CASS with X mask
– City_CASS with X mask
– State_CASS with X mask
– Zip5_CASS with X mask

After adding these columns with these masks, click Stage Properties as 
shown in Figure 1-235 on page 232. 

� After saving, compiling, and running this job (we do not show statistics), the 
output of the Investigate stage is shown in Figure 1-455 on page 382 through 
Figure 1-457 on page 383. It shows a count of six records with values A1 in 
the DPVMatchFlag_CASS and DPVCode1_CASS character concatenated 
columns. As discussed in “J05_CASS_USPREP” on page 219, a value of A1 
in the DPVCode1_CASS indicates an address that did not match. Using a 
sample of six and rerunning this job shows the relevant records that need 
further investigation.

Now, proceed to “J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234.

 

 

 

 

380 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-452   Create J06_INVCC_CASS_M job 1/6

Figure 1-453   Create J06_INVCC_CASS_M job 2/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 381



Figure 1-454   Create J06_INVCC_CASS_M job 3/6

Figure 1-455   Create J06_INVCC_CASS_M job 4/6

Figure 1-456   Create J06_INVCC_CASS_M job 5/6

 

 

 

 

382 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-457   Create J06_INVCC_CASS_M job 6/6

J07_STAN_MAILING_LIST_Domain_Preprocessor
In this step, we standardize the name and address contents of the output of job 
“J05_CASS_USPREP_M” on page 374 using the domain-preprocessor 
USPREP rule set. We also add a column to the output that only had the first 
three characters of the ZIP code using a Transformer stage. This new column 
(ZIP3) is used as a blocking variable in the next matching stage. 

After CASS validates and corrects the address fields but not the name fields, the 
Standardize stage is run again with the domain-preprocessor rule set USPREP 
on the name fields and CASS corrected address fields into Name, Address, and 
Area domains.

Figure 1-458 on page 384 shows the various stages that are used in this job, 
including the data set that was created in “J05_CASS_USPREP_M” on 
page 374, a Standardize stage, a Transformer stage to add a column, and an 
output Data Set stage. We modified the names of the stages as shown, and this 
job uses the same QSPARAMETERSET object created earlier.

Because the configuration of this job is very similar to that described in 
“J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234, we do not 
repeat it here. However, some of the configurations of interest are as follows:

� The Standardize Rule Process window in Figure 1-459 on page 385 through 
Figure 1-461 on page 385 show the domain preprocessor USPREP rule set 
with literals and selected columns as follows:

ZQNAMEZQ NAME ZQPUTAZQ DeliveryAddressLine1_CASS 
DeliveryAddressLine2_CASS ZQPUTRZQ City_CASS State_CASS Zip5_CASS

� The ADD_ZIP3 - Transformer Stage window in Figure 1-462 on page 386 
shows the addition of a ZIP3 column to the output that only contains the first 
three digits of the 5-digit ZIP5_CASS field. 

� After saving, compiling, and running this job (Figure 1-463 on page 387), view 
the content of output data set as shown in Figure 1-464 on page 388 through 
Figure 1-466 on page 390. 

As discussed before, this report shows:

– Columns NameDomain_USPREP (contains prefix, first name, last name, 
suffix tokens), AddressDomain_USPREP (contains apartment, street 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 383



name and street type tokens), and AreaDomain_USPREP (contains state, 
ZIP code tokens) that were parsed from the input columns.

– InputPattern_USPREP and OutboundPattern_USPREP columns that 
contain the patterns that were generated after processing the name and 
address columns in the input file.

A visual analysis of the report shows some problems with the 
AddressDomain_USPREP column that has the name of the city in it as shown in 
Figure 1-465 on page 389. In the real-world, the volume of data would be too 
large to attempt a visual analysis of the report. Therefore, proceed to 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390.

Figure 1-458   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 1/9

 

 

 

 

384 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-459   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 2/9

Figure 1-460   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 3/9

Figure 1-461   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 4/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 385



Figure 1-462   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 5/9

 

 

 

 

386 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-463   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 6/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 387



Figure 1-464   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 7/9

 

 

 

 

388 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-465   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 8/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 389



Figure 1-466   Create J07_STAN_MAILING_LIST_Domain_Preprocessor 9/9

J08_STAN_MAILING_LIST_Domain_Specific
In this step, we standardize the name and address contents of the output of job 
“J07_STAN_MAILING_LIST_Domain_Preprocessor” on page 383 using the 
domain-specific USNAME (with column NameDomain_USPREP), USADDR 
(with column AddressDomain_USPREP) and USAREA (with column 
AreaDomain_USPREP) rule sets. Three separate processes were defined—one 
for each rule set.

Figure 1-467 on page 392 shows the various stages that are used in this job, 
including the data set that was created in 
“J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234, a Standardize 
stage, a Transformer stage to handle nulls, and an output Data Set stage. We 
modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

Note: Here again, we had to introduce a null handling Transformer stage to 
circumvent a bug. 

 

 

 

 

390 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of this job is very similar to that described in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241, we do not repeat it 
here. However, some of the configurations of interest are as follows:

� Figure 1-468 on page 392 shows the Standardize Rule Process window with 
the USNAME rule set for the NameDomain_USPREP column. Figure 1-469 
on page 393 shows the Standardize Rule Process window with the USADDR 
rule set for the AddressDomain_USPREP column. Figure 1-470 on page 393 
shows the Standardize Rule Process window with the USAREA rule set for 
the AreaDomain_USPREP column. Figure 1-471 on page 393 shows the 
three rules that were used in this Standardize job.

� Figure 1-472 on page 394 shows the HANDLE_NULL Transformer Stage 
windows derivation substitution for all the columns with the following 
expression: 

If ISNULL(TIN.CountryCode_USAREA) then “ else TIN.CountryCode_USAREA

This derivative directs that if the column is null, then spaces is replaced by an 
empty string. 

� After saving, compiling, and running this job (Figure 1-473 on page 394), you 
view the content of the STAN_MAILING_LIST data set object as shown in 
Figure 1-474 on page 395 through Figure 1-478 on page 399. 

This report shows Standardize Stage added columns such as 
FirstName_USNAME and PrimaryName_USNAME, InputPattern_USNAME 
in Figure 1-475 on page 396; UnhandledPattern_USNAME, 
UnhandledData_USNAME and InputPattern_USNAME in Figure 1-476 on 
page 397; UnhandledPattern_USADDR, UnhandledData_USADDR and 
InputPattern_USADDR in Figure 1-477 on page 398, and 
UnhandledPattern_USAREA and UnhandledData_USAREA in Figure 1-478 
on page 399.

The next step is to identify any unhandled patterns and classifications by 
performing an investigate as described in “J09_INVCC_STAN_MAILING_LIST” 
on page 399. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 391



Figure 1-467   Create J08_STAN_MAILING_LIST_Domain_Specific 1/12

Figure 1-468   Create J08_STAN_MAILING_LIST_Domain_Specific 2/12

 

 

 

 

392 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-469   Create J08_STAN_MAILING_LIST_Domain_Specific 3/12

Figure 1-470   Create J08_STAN_MAILING_LIST_Domain_Specific 4/12

Figure 1-471   Create J08_STAN_MAILING_LIST_Domain_Specific 5/12

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 393



Figure 1-472   Create J08_STAN_MAILING_LIST_Domain_Specific 6/12

Figure 1-473   Create J08_STAN_MAILING_LIST_Domain_Specific 7/12

 

 

 

 

394 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-474   Create J08_STAN_MAILING_LIST_Domain_Specific 8/12

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 395



Figure 1-475   Create J08_STAN_MAILING_LIST_Domain_Specific 9/12 

 

 

 

 

396 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-476   Create J08_STAN_MAILING_LIST_Domain_Specific 10/12 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 397



Figure 1-477   Create J08_STAN_MAILING_LIST_Domain_Specific 11/12 

 

 

 

 

398 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-478   Create J08_STAN_MAILING_LIST_Domain_Specific 12/12

J09_INVCC_STAN_MAILING_LIST
In this step, we investigate unhandled patterns in 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390. We run the 
Investigate stage with character concatenate using the C mask on the unhandled 
pattern columns of “J08_STAN_MAILING_LIST_Domain_Specific” on page 390. 
The columns that are investigated correspond to the name, address, and area 
domains.

Because a single Investigate stage can only have a single rule set associated 
with it, we split the output data set of the 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390 job (using a Copy 
stage) and process it by three independent Investigate stages, with each stage 
using a particular domain-specific rule set. The column frequency report is 
generated in each Investigate stage.

Figure 1-479 on page 401 shows the various stages that are used in this job, 
including the data set that was created in 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390, a Copy stage, 
three Investigate stages that each use a different domain-specific rule set, and 
two data set stages (one each for the token report and pattern report) for each 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 399



Investigate stage. We modified the names of the stages as shown, and this job 
uses the same QSPARAMETERSET object created earlier.

Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. 
However, some of the configurations of interest are as follows:

� Figure 1-480 on page 401 shows the INV01 - Investigate Stage window with 
the USNAME rule set and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_USNAME with C mask
– InputPattern_USNAME with C mask
– UnhandledData_USNAME with X mask
– NameDomain_USPREP with X mask 

Click Advanced Options in the INV01 Investigate Stage window to set the 
number of samples that display. (We do not show this process here. The 
default is 1.)

� Repeat the process for the INV02 Investigate stage with the USADDR rule set 
(Figure 1-481 on page 402) and INV03 Investigate stage with the USAREA 
rule set (Figure 1-482 on page 402) with the appropriate columns as shown.

� After saving, compiling, and running this job (Figure 1-483 on page 403), the 
contents of the outputs of the Investigate stages that are written to the 
sequential file are shown in Figure 1-484 on page 404 through Figure 1-490 
on page 408. 

– The output of the INV01 Investigate stage in Figure 1-484 on page 404 
and Figure 1-486 on page 406 shows a total of two types of unhandled 
patterns in the name domain—five occurrences of the F,I pattern 
(corresponding to F,I in the input pattern) and three occurrences of the FS 
pattern (corresponding to F,II in the input pattern). 

– The output of the INV02 Investigate stage in Figure 1-487 on page 407 
and Figure 1-489 on page 408 show a total of three types of unhandled 
patterns for the address domain—four occurrences of the + pattern 
(corresponding to ^+T+ in the input pattern), one occurrence of the > 
pattern (corresponding to ^S+T in the input pattern), and one occurrence of 
the T+ pattern (corresponding to ^+TT+ in the input pattern).

– The output of the INV03 Investigate stage in Figure 1-490 on page 408 
shows that there were no unhandled patterns in the area domain.

You need to manage the unhandled patterns in the address domain as described 
in the step “J09_Z_Override_And_After” on page 408. 

 

 

 

 

400 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-479   Create J09_INVCC_STAN_MAILING_LIST job 1/12 

Figure 1-480   Create J09_INVCC_STAN_MAILING_LIST job 2/12 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 401



Figure 1-481   Create J09_INVCC_STAN_MAILING_LIST job 3/12

Figure 1-482   Create J09_INVCC_STAN_MAILING_LIST job 4/12

 

 

 

 

402 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-483   Create J09_INVCC_STAN_MAILING_LIST job 5/12

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 403



Figure 1-484   Create J09_INVCC_STAN_MAILING_LIST job 6/12

 

 

 

 

404 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-485   Create J09_INVCC_STAN_MAILING_LIST job 7/12

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 405



Figure 1-486   Create J09_INVCC_STAN_MAILING_LIST job 8/12

 

 

 

 

406 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-487   Create J09_INVCC_STAN_MAILING_LIST job 9/12

Figure 1-488   Create J09_INVCC_STAN_MAILING_LIST job 10/12

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 407



Figure 1-489   Create J09_INVCC_STAN_MAILING_LIST job 11/12

Figure 1-490   Create J09_INVCC_STAN_MAILING_LIST job 12/12

J09_Z_Override_And_After
Because we find unhandled patterns (such as F,I) in the name domain, we 
create pattern overrides in the domain-specific USNAME rule set. We also find 
unhandled patterns in the address domain and create overrides in the 
domain-specific USADDR rule set. 

 

 

 

 

408 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of overrides is described in 
“J09_Z_Override_And_After” on page 262, we do not repeat it here except for 
the following:

� Figure 1-491 that shows the input pattern F,I overridden for the USNAME 
rule set. It shows the Override Code for the F token as PrimaryName, the “,” 
token as AdditionalName, and the I token as FirstName.

� Figure 1-492 on page 410 that shows the Override Summary input patterns 
F,I and F,II with the appropriate Override Code for each token for the 
USNAME rule set.

� Figure 1-493 on page 410 that shows the Override Summary input patterns 
++ (from the overrides done in “J09_Z_Override_And_After” on page 262 in 
Figure 1-290 on page 264), >S+T, ^+T+, and ^+TT+ with the appropriate 
Override Code for each token for the USADDR rule set.

We then re-run the “J08_STAN_MAILING_LIST_Domain_Specific” on page 390 
step and confirm that there are no unhandled patterns. We do not show this 
process here.

Now, proceed to “J10_MATCHFREQ_STAN_MAILING_LIST” on page 411. 

Figure 1-491   Create J09_Z_After_Override 1/3

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 409



Figure 1-492   Create J09_Z_After_Override 2/3

Figure 1-493   Create J09_Z_After_Override 3/3

 

 

 

 

410 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



J10_MATCHFREQ_STAN_MAILING_LIST
After the unhandled patterns are handled, we generate frequency distribution on 
all the columns in the mailing list file using the Match Frequency stage. The idea 
is to generate match frequency for all the columns so that it can be used with any 
match specification. 

Figure 1-494 shows the various stages that are used in this job, including the 
data set that was created in “J08_STAN_MAILING_LIST_Domain_Specific” on 
page 390, a Match Frequency stage, and a Sequential File stage. We modified 
the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

Because the configuration of this job is very similar to that described in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266, we do not repeat it here. 
However, some of the configurations of interest are as follows:

� Figure 1-495 on page 412 shows the MATCH_FREQUENCY - Match 
Frequency Stage window with Match Specification of NONE.

� After saving, compiling, and running this job (Figure 1-496 on page 412), the 
contents of the output of this stage are listed in Figure 1-497 on page 413. We 
do not document the interpretation of the format and content of this file.

Now, proceed to “J10_REFERENCE_MatchSpec_MAILING_LIST” on page 413.

Figure 1-494   Create J10_MATCHFREQ_STAN_MAILING_LIST job 1/4

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 411



Figure 1-495   Create J10_MATCHFREQ_STAN_MAILING_LIST job 2/4

Figure 1-496   Create J10_MATCHFREQ_STAN_MAILING_LIST job 3/4

 

 

 

 

412 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-497   Create J10_MATCHFREQ_STAN_MAILING_LIST job 4/4

J10_REFERENCE_MatchSpec_MAILING_LIST
In this next step, we generate a match specification for a Reference match stage 
using as input the match frequency data that was created in the 
“J10_MATCHFREQ_STAN_MAILING_LIST” on page 411 job. The specification 
includes a single-pass based on the three digits ZIP code and the street name. 

Because the creation of a match specification is described in 
“J15_Undup_MatchSpec_CUSTOMER” on page 318, we do not repeat it here. 
However, in this case it is for a Reference Match Type and there are some 
differences as follows:

� Two data sets are specified as input for the Match Type is Reference, and four 
data sets are specified in the set up of the test environment.

� Figure 1-498 on page 415 shows the Blocking Columns (ZIP3 and 
StreetNameNYSIIS_USADDR), Match Commands, and Cutoff Values 
chosen for the REFMATCH_NAME_ADDR pass in the 
REFERENCE_MATCH specification. In the Test Results pane, there are a 
number of matched pairs as follows:

– MA and MB in the Record Type column indicate that they are A and B 
records of a matched pair.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 413



– CA and CB in the Record Type column indicate that they constitute a 
clerical review (borderline match) pair—none in Figure 1-498 on 
page 415. 

– DA and DB in the Record Type indicate a duplicate A or B record. These 
follow matched pairs or clerical cases—none in Figure 1-498 on page 415.

– UA and UB in the Record Type indicate unmatched records on the A file or 
the B file—none in Figure 1-498 on page 415.

An asterisk (*) displaying after a record type designation (such as MA) 
indicates that the match (or duplicate) was an exact match. This is indicated 
on reports and extracts as a flag value of X.

� Figure 1-499 on page 416 shows the statistics of this pass in tabular and 
graphical form. Here again, the OVERFLOW blocks statistic shows a zero 
value, which indicates a no buffer overflow condition.

The test of the match specification with the full volume of data appears to deliver 
results that are accurate. This specification is then used in a Reference match 
stage as described in the step “J11_REFMATCH” on page 416.

 

 

 

 

414 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-498   Create J10_REFERENCE_MatchSpec_MAILING_LIST 1/2

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 415



Figure 1-499   Create J10_REFERENCE_MatchSpec_MAILING_LIST 2/2

J11_REFMATCH
In this step, we determine if there were any matches between the records in the 
credit card customer file and mailing list file by running the Reference stage, 
which requires standardized data (from 
“J08_STAN_MAILING_LIST_Domain_Specific” on page 390) and reference data 
(from “J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” on page 327) as 
source data, a reference match specification (from 
“J10_REFERENCE_MatchSpec_MAILING_LIST” on page 413), and frequency 
information for both sources (from 
“J18_MATCHFREQ_CUSTOMER_WITH_HOUSEHOLD” on page 332 and 
“J10_MATCHFREQ_STAN_MAILING_LIST” on page 411). The output of the 
Reference Match stage includes master records, clerical review records, 
duplicates, and residuals. You can use this output as input to the Survive stage.

Figure 1-500 on page 419 through Figure 1-524 on page 430 describe the main 
steps using Designer Client to build and execute the Reference Match job. 

 

 

 

 

416 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



The main steps are as follows:

1. Figure 1-500 on page 419 shows the Reference Match stage that creates six 
data sets that contain:

– Matched records
– Clerical review records
– Mailing list duplicates
– Credit card customer duplicates
– Mailing list residuals
– Credit card residuals

We modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

2. Configure the four input data sets shown in Figure 1-500 on page 419. This 
process is similar to earlier configurations, thus we do not repeat it here.

3. Next, configure the REFERENCE_MATCH stage as follows:

a. Double-click the REFERENCE_MATCH stage icon and click the  
Match Specification button. We do not show this process here.

b. From the Repository window, double-click the Match Specifications folder 
and select REFERENCE_MATCH as the Reference Match specification 
that was created in “J10_REFERENCE_MatchSpec_MAILING_LIST” on 
page 413. We do not show this process here.

c. Check all the Match Outputs fields in the REFEREN CE_MATCH - 
Reference Match Stage shown in Figure 1-501 on page 419:

• Match sends matched (master) records for both inputs. 

• Clerical separates those records that require clerical review for both 
inputs. 

• Data Duplicates include duplicate records that in the data input. 

• Reference Duplicates include duplicate records in the reference input. 

• Data Residuals includes records that are not matched in the data input.

• Reference Residuals includes records that are not matched in the 
reference input. 

Click the Many-to-one Match Type, and click Stage Properties to 
configure link ordering.

d. The REFERENCE_MATCH - Reference Match window in Figure 1-502 on 
page 420 shows the input and output links in this stage. Click the Output 
tab.

e. For the MATCHED link (Output name field), click Mapping as shown in 
Figure 1-503 on page 420. Copy all the columns from Columns pane to 
the MATCHED pane.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 417



Repeat the process for the CLERICAL, MLDUPLICATE, CDUPLICATE, 
MLRESIDUAL, and CRESIDUAL links (Output name field). We do not 
repeat this process here.

4. Next, configure the six output data set objects. We do not repeat this process 
here.

5. After saving, compiling, and running this job j11_REFMATCH (Figure 1-509 
on page 424), view the content of the six data set objects as shown in 
Figure 1-510 on page 424 through Figure 1-524 on page 430. The input 
credit card customer master input had 21 records, while the mailing list input 
had 31 records. The output of the reference match stage is as follows:

– Matched records found are 8 as shown in Figure 1-510 on page 424 and 
Figure 1-511 on page 425.

– Clerical review records are 2 as shown in Figure 1-512 on page 425 and 
Figure 1-513 on page 425. 

– No duplicates are found relating to the mailing list.

– Credit card customer duplicate records found are 3 as shown in 
Figure 1-514 on page 425 and Figure 1-515 on page 425.

– Mailing list residuals has 21 records as shown in Figure 1-516 on 
page 426 and Figure 1-517 on page 426.

– Credit card customer residuals has 13 records as shown in Figure 1-518 
on page 427 and Figure 1-524 on page 430. This output is shown using 
the Data Set Management functionality.

6. Save the data set metadata to Table Definitions. We do not repeat this 
process here.

The next step is to create a single report that contains each clerical review record 
followed by the master record to which it relates so that the clerical reviewer is 
able to view record details next to each other. We described this step in 
“J12_CLERICAL_REPORT_MAILING_LIST” on page 430. 

 

 

 

 

418 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-500   Create J11_REFMATCH job 1/25

Figure 1-501   Create J11_REFMATCH job 2/25

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 419



Figure 1-502   Create J11_REFMATCH job 3/25

Figure 1-503   Create J11_REFMATCH job 4/25

 

 

 

 

420 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-504   Create J11_REFMATCH job 5/25

Figure 1-505   Create J11_REFMATCH job 6/25

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 421



Figure 1-506   Create J11_REFMATCH job 7/25

Figure 1-507   Create J11_REFMATCH job 8/25

 

 

 

 

422 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-508   Create J11_REFMATCH job 9/25 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 423



Figure 1-509   Create J11_REFMATCH job 10/25

Figure 1-510   Create J11_REFMATCH job 11/25

 

 

 

 

424 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-511   Create J11_REFMATCH job 12/25

Figure 1-512   Create J11_REFMATCH job 13/25

Figure 1-513   Create J11_REFMATCH job 14/25

Figure 1-514   Create J11_REFMATCH job 15/25

Figure 1-515   Create J11_REFMATCH job 16/25

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 425



Figure 1-516   Create J11_REFMATCH job 17/25

Figure 1-517   Create J11_REFMATCH job 18/25

 

 

 

 

426 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-518   Create J11_REFMATCH job 19/25

Figure 1-519   Create J11_REFMATCH job 20/25

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 427



Figure 1-520   Create J11_REFMATCH job 21/25

Figure 1-521   Create J11_REFMATCH job 22/25

 

 

 

 

428 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-522   Create J11_REFMATCH job 23/25

Figure 1-523   Create J11_REFMATCH job 24/25

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 429



Figure 1-524   Create J11_REFMATCH job 25/25

J12_CLERICAL_REPORT_MAILING_LIST
In this step, we create a single report of the matched mailing list persons and the 
records in the clerical review records to enable a manual review of potential 
match records. 

The format of the CLERICAL data set that was created in “J11_REFMATCH” on 
page 416 has the two records for clerical review that are concatenated together, 
which makes reviewing them difficult. In this step, we use a Transformer stage to 
split the single concatenated record into two records that we then merge using a 
Funnel stage so that they can be viewed more conveniently for manual review of 
potential match records.

Figure 1-525 on page 432 through Figure 1-535 on page 437 describe the main 
steps using Designer Client to perform this task. 

The main steps are as follows:

1. Figure 1-525 on page 432 shows the various stages that are used in this job, 
including the data set that was created in “J11_REFMATCH” on page 416, a 
Transformer stage, and a Funnel stage. One data set is created that contains 
the merged clerical review records organized for convenient manual review. 
We modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object that was created earlier.

 

 

 

 

430 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2. Configure the input CLERICAL data set. This is similar to earlier 
configurations, and we do not repeat the process here.

3. Configure the SPLIT_REC Transformer stage to split each record in the input 
data set into two records that correspond to:

– The record in the mailing list file
– The credit card customer

Figure 1-526 on page 433 shows the SPLIT_REC - Transformer Stage 
window that maps the mailing list portion of the input record to the 
MATCHED_MAILING_OUT output link with an added column with the literal 
Mailing. Figure 1-527 on page 434 shows the SPLIT_REC - Transformer 
Stage window that maps the credit card customer portion of the input record 
to the MATCHED_CUSTOMER_OUT output link with an added column with 
the literal “CUSTOMER”. The two literals distinguish the source of the two 
records to be reviewed.

4. Configure the Funnel stage to merge the two inputs from the SPLIT_REC 
Transformer stage output links. Because the configuration of the Funnel stage 
is described earlier, we do not repeat it here. Figure 1-528 on page 434 
through Figure 1-531 on page 436 show the configuration of this stage with 
the input and output links.

5. Configure the output data set object CLERICAL_REVIEW_REPORT to store 
the results of the merge. This is similar to earlier configurations, and we do 
not repeat this process here.

6. After saving, compiling, and running this job 
j12_CLERICAL_REPORT_MAILING_LIST (Figure 1-532 on page 436), you 
view the content of the output data set object CLERICAL_REVIEW_REPORT 
as shown in Figure 1-533 on page 437 through Figure 1-535 on page 437. 

This report shows four clerical review records (qsMatchType has value 
CP)—two pairs of mailing and credit card customer records. This method of 
organizing the records makes it more convenient for manual review. The 
report shows that the two pairs are actual duplicates.

7. Save the data set metadata to Table Definitions. We do not repeat the 
process here.

After clerical review is complete, we enhance the information in the credit card 
customer with information in the matched mailing list record as described in the 
step “J13_ENHANCE_CUSTOMER” on page 437. 

Note: We first created a complete set of matched records by merging the 
matched records created in “J11_REFMATCH” on page 416 with the clerical 
reviewed matches that were found to be matching. We do not show this 
process here.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 431



Figure 1-525   Create J12_CLERICAL_REPORT_MAILING_LIST 1/11

 

 

 

 

432 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-526   Create J12_CLERICAL_REPORT_MAILING_LIST 2/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 433



Figure 1-527   Create J12_CLERICAL_REPORT_MAILING_LIST 3/11

Figure 1-528   Create J12_CLERICAL_REPORT_MAILING_LIST 4/11

 

 

 

 

434 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-529   Create J12_CLERICAL_REPORT_MAILING_LIST 5/11

Figure 1-530   Create J12_CLERICAL_REPORT_MAILING_LIST 6/11

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 435



Figure 1-531   Create J12_CLERICAL_REPORT_MAILING_LIST 7/11

Figure 1-532   Create J12_CLERICAL_REPORT_MAILING_LIST 8/11

 

 

 

 

436 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-533   Create J12_CLERICAL_REPORT_MAILING_LIST 9/11

Figure 1-534   Create J12_CLERICAL_REPORT_MAILING_LIST 10/11

Figure 1-535   Create J12_CLERICAL_REPORT_MAILING_LIST 11/11

1.10.7  Enhance credit card customers

A manual review of the CLERICAL_REVIEW_REPORT finds duplicates that 
need to be considered as part of the file that contains matched records by 
merging them using a Funnel stage. We do not show this process here.

In this step, we enhance the information in the credit card customer file with 
middle name information in the mailing list portion of the matched record if it had 
a longer middle name. We use a Transformer stage to enhance the middle name 
in the credit card customer file.

J13_ENHANCE_CUSTOMER
Figure 1-536 on page 439 through Figure 1-542 on page 442 describe the main 
steps using Designer Client to perform this task. 

The main steps are as follows:

1. Figure 1-536 on page 439 shows the ENHANCE_CUSTOMER Transformer 
stage used in this job, including the MATCHED data set that was created in 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 437



“J11_REFMATCH” on page 416. One data set is created that contains the 
enhanced credit card customer information. We modified the names of the 
stages as shown, and this job uses the same QSPARAMETERSET object 
created earlier.

2. Configure the input MATCHED data set. This process is similar to earlier 
configurations, and we do not repeat this process here.

3. Configure the ENHANCE_CUSTOMER Transformer stage to update the 
middle name information in the credit card customer portion with that of the 
middle name in the mailing list portion if appropriate. Figure 1-537 on 
page 440 shows the ENHANCE_CUSTOMER - Transformer Stage window 
where the Derivation for the MiddleName_USNAME_REF column 
(corresponding to the middle name in the credit card customer portion) has 
logic to perform the update as follows:

if (Len(OUT.MiddleName_USNAME) > Len (OUT.MiddleName_USNAME_Ref)) 
then OUT.MiddleName_USNAME else OUT.MiddleName_USNAME_Ref

4. Configure the output data set object ENHANCED_CUSTOMER to store the 
enhanced credit card customer information. This process is similar to earlier 
configurations, and we do not repeat this process here.

5. After saving, compiling, and running this job j13_ENHANCE_CUSTOMER 
(Figure 1-538 on page 441), view the content of the output data set object 
ENHANCED_CUSTOMER as shown in Figure 1-538 on page 441 through 
Figure 1-542 on page 442. 

This report shows eight records—the same as the number of input records to 
the ENHANCE_CUSTOMER Transformer stage. 

6. Save the data set metadata to Table Definitions. We do not repeat this 
process here.

After you enhance credit card customer information, you generate match 
frequency information for the residual mailing list persons (those not matched 
with a person in the credit card customer file) as described in the step 
“J14_MAILING_LIST_RESIDUAL_FREQ” on page 442.

Note: To determine the records that were enhanced, you need to compare 
the input and output data sets. We do not show this process here.

 

 

 

 

438 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-536   Create J13_ENHANCE_CUSTOMER 1/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 439



Figure 1-537   Create J13_ENHANCE_CUSTOMER 2/7

 

 

 

 

440 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-538   Create J13_ENHANCE_CUSTOMER 3/7

Figure 1-539   Create J13_ENHANCE_CUSTOMER 4/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 441



Figure 1-540   Create J13_ENHANCE_CUSTOMER 5/7

Figure 1-541   Create J13_ENHANCE_CUSTOMER 6/7

Figure 1-542   Create J13_ENHANCE_CUSTOMER 7/7

J14_MAILING_LIST_RESIDUAL_FREQ
In this step, we generate frequency distribution on all the columns in the residual 
mailing list file that was created in the “J11_REFMATCH” on page 416 step using 
the Match Frequency stage. Here again, the idea is to generate match frequency 
for all the columns so that it can be used with any match specification. 

Note: If the clerical review records that are generated in “J11_REFMATCH” on 
page 416 are deemed to be residuals, then you need to merge them with the 
residuals. We do not show this process here.

 

 

 

 

442 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-543 through Figure 1-546 on page 445 describe the main steps using 
Designer Client to perform this task.

Figure 1-543 on page 443 shows the various stages that are used in this job, 
including the data set that was created in “J11_REFMATCH” on page 416, a 
Match Frequency stage, and an output Data Set stage. We modified the names 
of the stages as shown, and this job uses the same QSPARAMETERSET object 
created earlier.

Because the configuration of this job is very similar to that described in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266, we do not repeat it here. 
However, some of the configurations of interest are as follows:

� Figure 1-544 on page 444 shows the FREQUENCY - Match Frequency Stage 
window with Match Specification of NONE.

� After saving, compiling, and running this job (Figure 1-545 on page 444), the 
contents of the output of this stage are listed in Figure 1-546 on page 445. 
The interpretation of the format and content of this file is not documented.

Now, proceed to “J14_UNDUP_DEP_MATCHSPEC_MAILING” on page 445.

Figure 1-543   Create J14_MAILING_LIST_RESIDUAL_FREQ 1/4

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 443



Figure 1-544   Create J14_MAILING_LIST_RESIDUAL_FREQ 2/4

Figure 1-545   Create J14_MAILING_LIST_RESIDUAL_FREQ 3/4

 

 

 

 

444 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-546   Create J14_MAILING_LIST_RESIDUAL_FREQ 4/4

J14_UNDUP_DEP_MATCHSPEC_MAILING
In this step, we generate a match specification for an Unduplicate match stage 
using as input the match frequency data that was created in the job 
“J14_MAILING_LIST_RESIDUAL_FREQ” on page 442. The specification 
included two passes:

� The first pass blocks on a phonetic encoding (NYSIIS) of the primary (last) 
name, the address, phonetic encoding (NYSIIS) of the street name, and the 
ZIP code.

� The second pass blocks on the three digit ZIP code. 

Because the creation of this match specification is very similar to that described 
in “J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269, we do not repeat 
the steps here.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 445



A summary of the passes is follows:

� MAILING_NAME_ADDR pass (Figure 1-547 on page 447) with the blocking 
columns, match commands, cutoff values, and test results. The results show 
multiple master records (Record Type “XA”) and duplicates (Record Type DA).

� MAILING_ZIP3 pass (Figure 1-548 on page 448) with the blocking columns, 
match commands, cutoff values, and test results. The results show a single 
master record (Record Type XA) and duplicate (Record Type DA).

� Total Statistics of the two passes in Figure 1-549 on page 449. It shows the 
total number of Pseudo matches (5+1 for a total of 6).

Of particular interest is the statistic OVERFLOW blocks—a non-zero value 
indicates the need to increase the block size or define more restrictive 
blocking columns.

The test of the MAILING match specification with representative sample data 
appears to deliver results that are accurate. This specification can then be used 
in an Unduplicate match stage as described in the step 
“J15_UNDUP_DEP_MATCH_MAILING” on page 449.

 

 

 

 

446 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-547   Create J14_UNDUP_DEP_MATCHSPEC_MAILING 1/3

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 447



Figure 1-548   Create J14_UNDUP_DEP_MATCHSPEC_MAILING 2/3

 

 

 

 

448 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-549   Create J14_UNDUP_DEP_MATCHSPEC_MAILING 3/3

J15_UNDUP_DEP_MATCH_MAILING
Next, we determine whether there are duplicates in the mailing list persons file 
using the Unduplicate stage with the match specification and match frequency 
information that was created in steps 
“J14_UNDUP_DEP_MATCHSPEC_MAILING” on page 445 and 
“J14_MAILING_LIST_RESIDUAL_FREQ” on page 442 respectively. As before, 
the output is matched records (merge of master and duplicates using a Funnel 
stage), records for clerical review, and residuals (records that do not match).

Figure 1-550 on page 451 through Figure 1-558 on page 454 describe the main 
steps using Designer Client to perform this task.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 449



Figure 1-550 on page 451 shows the various stages that are used in this job, 
including the data set that was created in “J11_REFMATCH” on page 416, the 
match frequency data set that was created in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266, an Unduplicate stage, 
and a Funnel stage to merge master and duplicate records. Three data sets are 
created:

� One data set contains the merged master and duplicates by the Funnel stage.

� The other two data sets contain the clerical and residual records as the output 
of the Unduplicate stage. 

We modified the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

Because the creation of this Unduplicate stage Dependent Match Type is very 
similar to that described in “J11_UNDUP_DEP_MATCH_CUSTOMER” on 
page 282, we do not repeat the steps that are involved here. However, some of 
the configurations of interest are as follows:

� Figure 1-551 on page 451 shows the UNDUP_DEP - Unduplicate Match 
Stage window with all the Match Outputs checked, the Match Specification of 
MAILING, and the Match Type of Dependent. 

� After saving, compiling, and running this job 
j15_UNDUP_DEP_MATCH_MAILING (Figure 1-552 on page 452), view the 
content of the three data set objects as shown in Figure 1-553 on page 452 
through Figure 1-558 on page 454. 

Out of a total of 21 records in the input to this process:

– Thirteen (13) records are masters and duplicates. There are not in sorted 
order of qsMatchSetId.

– Zero (0) records are for clerical review.

– Remaining eight (8) records are residuals.

Because there are no records for clerical review, you next create a clean set of 
master and duplicate records and survive the best information into the master 
record using the SURVIVE stage as described in the step 
“J16_SURVIVE_MAILING” on page 454.

 

 

 

 

450 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-550   Create J15_UNDUP_DEP_MATCH_MAILING 1/9

Figure 1-551   Create J15_UNDUP_DEP_MATCH_MAILING 2/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 451



Figure 1-552   Create J15_UNDUP_DEP_MATCH_MAILING 3/9

Figure 1-553   Create J15_UNDUP_DEP_MATCH_MAILING 4/9

 

 

 

 

452 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-554   Create J15_UNDUP_DEP_MATCH_MAILING 5/9

Figure 1-555   Create J15_UNDUP_DEP_MATCH_MAILING 6/9

Figure 1-556   Create J15_UNDUP_DEP_MATCH_MAILING 7/9

Figure 1-557   Create J15_UNDUP_DEP_MATCH_MAILING 8/9

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 453



Figure 1-558   Create J15_UNDUP_DEP_MATCH_MAILING 9/9

J16_SURVIVE_MAILING
Because no duplicates are found for clerical review, in this step we survive the 
best information from the set of duplicates in the matched records that are 
created in the “J15_UNDUP_DEP_MATCH_MAILING” on page 449 step using 
the SURVIVE stage. 

Figure 1-559 on page 455 through Figure 1-564 on page 457 describe the main 
steps using Designer Client to perform this task. 

Figure 1-559 on page 455 shows the various stages that are used in this job, 
including the input data set MAILING_UNDUP_DEP_MATCHES that was 
created in “J15_UNDUP_DEP_MATCH_MAILING” on page 449 containing 
matched and duplicate records, a Survive stage, and an output data set 
containing the survived records. We modified the names of the stages as shown, 
and this job uses the same QSPARAMETERSET object created earlier.

Because the creation of this survive job is very similar to that described in 
“J13_SURVIVE_CUSTOMER” on page 295, we do not repeat the steps that are 
involved here. However, some of the configurations of interest are as follows: 

� Figure 1-560 on page 456 and Figure 1-561 on page 456 show the SURVIVE 
- Survive Stage windows with the survive rules involving the first name, 
middle name, and last name for the target master record (qsMatchType 
column has a value MP). It specifies the following rules:

– Choose the survivor for the MatchFirstName_USNAME to be the most 
frequent value of multiple occurrences.

– Choose the survivor for the MiddleName_USNAME to be the longest 
value of multiple occurrences.

– Choose the survivor for the PrimaryName_USNAME to be the longest 
value of multiple occurrences.

� After saving, compiling, and running this job j16_SURVIVE_MAILING 
(Figure 1-562 on page 457), you view the content of the output data set object 

 

 

 

 

454 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



MAILING_SURVIVE_MP_DA as shown in Figure 1-563 on page 457 through 
Figure 1-564 on page 457. 

This report shows the six master records with the survived information from 
the duplicates. 

Now, proceed to “J17_MAILING_MASTER” on page 458.

Figure 1-559   Create J16_SURVIVE_MAILING 1/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 455



Figure 1-560   Create J16_SURVIVE_MAILING 2/6

Figure 1-561   Create J16_SURVIVE_MAILING 3/6

 

 

 

 

456 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-562   Create J16_SURVIVE_MAILING 4/6

Figure 1-563   Create J16_SURVIVE_MAILING 5/6

Figure 1-564   Create J16_SURVIVE_MAILING 6/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 457



J17_MAILING_MASTER
In this step, we create a clean master of mailing list persons by merging the 
master that was created in the “J16_SURVIVE_MAILING” on page 454 step and 
residual records that were created in the “J15_UNDUP_DEP_MATCH_MAILING” 
on page 449 step into a data set using the FUNNEL stage.

Figure 1-565 on page 459 through Figure 1-569 on page 461 describe the main 
steps using Designer Client to perform this task. 

Figure 1-565 on page 459 shows the various stages that are used in this job, 
including the input data sets MAILING_SURVIVE_MP_DA (created in 
“J16_SURVIVE_MAILING” on page 454 containing survived records) and 
MAILING_UNDUP_DEP_RESIDUALS created in the 
“J15_UNDUP_DEP_MATCH_MAILING” on page 449, a FUNNEL stage, and an 
output data set containing the merged records from the input. We modified the 
names of the stages as shown, and this job uses the same QSPARAMETERSET 
object created earlier.

Because the creation of this survive job is very similar to that described in 
“J14_CUSTOMER_MASTER” on page 303, we do not repeat the steps that are 
involved here. However, some of the configurations of interest are as follows: 

� Figure 1-566 on page 459 and Figure 1-567 on page 460 show the FUNNEL - 
Funnel windows with the Continuous Funnel and the mapping of all columns 
from the Columns pane to the IN pane. 

� After saving, compiling, and running this job j17_MAILING_MASTER 
(Figure 1-568 on page 460), view the content of the output data set object 
MAILING_MASTER_SF as shown in Figure 1-569 on page 461. 

This report shows the cleansed mailing list file (14 records) that has no 
duplicates. 

Now, proceed to “J18_FREQ_MAILING_MASTER” on page 461. 

 

 

 

 

458 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-565   Create J17_MAILING_MASTER 1/5

Figure 1-566   Create J17_MAILING_MASTER 2/5

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 459



Figure 1-567   Create J17_MAILING_MASTER 3/5

Figure 1-568   Create J17_MAILING_MASTER 4/5

 

 

 

 

460 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-569   Create J17_MAILING_MASTER 5/5

J18_FREQ_MAILING_MASTER
To generate household information for the master mailing list persons that were 
created in the “J17_MAILING_MASTER” on page 458 step, we generate a 
frequency distribution on all the columns in the master mailing list file using the 
Match Frequency stage. Here again, the idea is to generate match frequency for 
all the columns so that it can be used with any match specification. 

Figure 1-570 on page 462 shows the various stages that are used in this job, 
including the data set that was created in “J17_MAILING_MASTER” on 
page 458, a Match Frequency stage, and a Data Set stage. We modified the 
names of the stages as shown, and this job uses the same QSPARAMETERSET 
object created earlier.

Because the configuration of this job is very similar to that described in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266, we do not repeat the 
process here. However, some of the configurations of interest are as follows:

� Figure 1-571 on page 462 shows the MATCH_FREQUENCY - Match 
Frequency Stage window with Match Specification of NONE.

� After saving, compiling, and running this job (Figure 1-572 on page 463), the 
contents of the output of this stage are listed in Figure 1-573 on page 464. We 
do not document the interpretation of the format and content of this file.

Now, proceed to “J18_UNDUP_IND_MATCHSPEC_MAILING” on page 464. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 461



Figure 1-570   Create J18_FREQ_MAILING_MASTER 1/4

Figure 1-571   Create J18_FREQ_MAILING_MASTER 2/4

 

 

 

 

462 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-572   Create J18_FREQ_MAILING_MASTER 3/4

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 463



Figure 1-573   Create J18_FREQ_MAILING_MASTER 4/4

J18_UNDUP_IND_MATCHSPEC_MAILING
In this step, we generate a match specification for an Unduplicate match stage 
using as input the match frequency data that was created in the 
“J18_FREQ_MAILING_MASTER” on page 461 job. The specification included 
two passes:

� The first pass blocks on the primary (last) name and a phonetic encoding 
(NYSIIS) of the street name.

� The second pass blocks on the five digit ZIP code and a phonetic encoding 
(NYSIIS) of the street name. 

Because the creation of a match specification is similar to that described in 
“J10_Undup_MatchSpec_STAN_CUSTOMER” on page 269, we do not repeat 
the process here. 

 

 

 

 

464 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



However, a summary of the passes is as follows:

� ML_HOUSEHOLD_NAME_STREET pass (Figure 1-574 on page 466) with 
the blocking columns, match commands, cutoff values, and test results. The 
Match Type was Unduplicate Independent because we need to group all the 
matching records for the purpose of identifying household information. No 
matching records are detected in this pass. 

� ML_CUSTOMER_HOUSEHOLD_ZIPCODE pass (Figure 1-575 on 
page 467) with the blocking columns, match commands, cutoff values, and 
test results. The results show a single master record (Record Type XA) and 
duplicate (Record Type DA).

� Total Statistics of the two passes in Figure 1-576 on page 468. It shows the 
total number of Pseudo matches (0+1 for a total of 1).

Of particular interest is the statistic OVERFLOW blocks—a non-zero value 
indicates the need to increase the block size or define more restrictive 
blocking columns.

The test of the MAILING_HOUSEHOLD match specification with representative 
sample data appears to deliver results that are accurate. You can then use this 
specification in an Unduplicate Independent match stage as described in the 
step “J19_UNDUP_IND_MATCH_MAILING” on page 468. 

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 465



Figure 1-574   Create J18_UNDUP_IND_MATCHSPEC_MAILING 1/3

 

 

 

 

466 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-575   Create J18_UNDUP_IND_MATCHSPEC_MAILING 2/3

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 467



Figure 1-576   Create J18_UNDUP_IND_MATCHSPEC_MAILING 3/3

J19_UNDUP_IND_MATCH_MAILING 
In this step, we determine whether there were duplicates in the mailing list 
persons file using the Unduplicate stage with the match specification and match 
frequency information that was created in steps 
“J18_UNDUP_IND_MATCHSPEC_MAILING” on page 464 and 
“J18_FREQ_MAILING_MASTER” on page 461 respectively. As before, the 
output is matched records (merge of master and duplicates using a Funnel 
stage), records for clerical review, and residuals (records that do not match).

 

 

 

 

468 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the creation of this Unduplicate stage is very similar to that described in 
“J11_UNDUP_DEP_MATCH_CUSTOMER” on page 282, we do not repeat the 
steps that are involved here. However, the key differences are as follows:

� Figure 1-577 on page 470 shows the various stages that are used in this job, 
including the data set that was created in “J17_MAILING_MASTER” on 
page 458, the match frequency data set that was created in 
“J18_UNDUP_IND_MATCHSPEC_MAILING” on page 464, an Unduplicate 
stage, and a Funnel stage to merge master and duplicate records. Three data 
sets are created:

– One data set contains the merged master and duplicates by the Funnel 
stage.

– The other data sets contain the clerical and residual records as the output 
of the Unduplicate stage. 

We modify the names of the stages as shown, and this job uses the same 
QSPARAMETERSET object created earlier.

� In the UNDUP_IND - Unduplicate Match Stage window shown in 
Figure 1-578 on page 470, select the Match Specification 
MAILING_HOUSEHOLD. Then, select the Match Type Independent in order 
to find groups of all records (for household information) across multiple match 
passes as described in Table 1-11 on page 106. 

7. After saving, compiling, and running this job 
j19_UNDUP_IND_MATCH_MAILING (Figure 1-579 on page 471—shows 
zero rows being written to the MAILING_UNDUP_IND_CLERICALS), view 
the content of the two data set objects as shown in Figure 1-580 on page 471 
through Figure 1-583 on page 472. 

Out of a total of 14 records in the input to this process:

– Two (2) records are masters and duplicates
– Zero (0) records are for clerical review
– Remaining twelve (12) records are residuals.

The next step is to create a single mailing list file with household information as 
described in “J20_MAILING_MASTER_WITH_HOUSEHOLD” on page 473.

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 469



Figure 1-577   Create J19_UNDUP_IND_MATCH_MAILING 1/7

Figure 1-578   Create J19_UNDUP_IND_MATCH_MAILING 2/7

 

 

 

 

470 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-579   Create J19_UNDUP_IND_MATCH_MAILING 3/7

Figure 1-580   Create J19_UNDUP_IND_MATCH_MAILING 4/7

Figure 1-581   Create J19_UNDUP_IND_MATCH_MAILING 5/7

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 471



Figure 1-582   Create J19_UNDUP_IND_MATCH_MAILING 6/7

Figure 1-583   Create J19_UNDUP_IND_MATCH_MAILING 7/7

1.10.8  Generate mailing master with household for promotion 
mailing

In this step, we generate a clean master of mailing list persons by merging the 
master and residual records that are generated in the 
“J19_UNDUP_IND_MATCH_MAILING” on page 468 step into a data set using 
the FUNNEL stage. We add a household ID (using a Transformer stage) to these 
records in the output with a value (qsMatchSetID) when a record belongs to a 
household and a zero when it does not belong to a household.

 

 

 

 

472 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



J20_MAILING_MASTER_WITH_HOUSEHOLD
Because this step is very similar to that described in 
“J17_CUSTOMER_MASTER_WITH_HOUSEHOLD” on page 327, we do not 
repeat those steps here. However, some of the key points of interest are as 
follows:

� Figure 1-584 on page 474 shows the various stages that are used in this job, 
including the two input data sets (MAILING_UNDUP_IND_MATCHES created 
in “J19_UNDUP_IND_MATCH_MAILING” on page 468 and 
MAILING_UNDUP_IND_RESIDUALS created in 
“J19_UNDUP_IND_MATCH_MAILING” on page 468), two Transformer 
stages (each adds a household identifier), one FUNNEL stage, and an output 
Data Set stage. We modified the names of the stages as shown, and this job 
uses the same QSPARAMETERSET object created earlier.

� The ADD_HOUSEHOLD_ID - Transformer Stage shows the addition of a 
column HOUSEHOLD_ID (Figure 1-585 on page 475) which has the value 
stored in the column qsMatchSetID in the Derivation Substitution column. 

� The ADD_BLANK_HOUSEHOLD - Transformer Stage (Figure 1-586 on 
page 476) shows the addition of a column HOUSEHOLD_ID, which has the 
value zero in the Derivation Substitution column. 

� After saving, compiling, and running this job 
J20_MAILING_MASTER_WITH_HOUSEHOLD (Figure 1-587 on page 477), 
view the content of the MAILING_MASTER_WITH_HOUSEHOLD data set 
object as shown in Figure 1-588 on page 477 and Figure 1-589 on page 478. 

This report shows the cleansed mailing list file with household information 
added. This file can then be used for promotional mailing

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 473



Figure 1-584   Create J20_MAILING_MASTER_WITH_HOUSEHOLD 1/6

 

 

 

 

474 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-585   Create J20_MAILING_MASTER_WITH_HOUSEHOLD 2/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 475



Figure 1-586   Create J20_MAILING_MASTER_WITH_HOUSEHOLD 3/6

 

 

 

 

476 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 1-587   Create J20_MAILING_MASTER_WITH_HOUSEHOLD 4/6

Figure 1-588   Create J20_MAILING_MASTER_WITH_HOUSEHOLD 5/6

 

 

 

 

 Chapter 1. IBM WebSphere QualityStage overview 477



Figure 1-589   Create J20_MAILING_MASTER_WITH_HOUSEHOLD 6/6

 

 

 

 

478 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Chapter 2. Financial services business 
scenario

In this chapter we describe a step-by-step approach to implementing IBM 
WebSphere QualityStage on a Red Hat Advanced Server Enterprise 4.0 platform 
using a typical financial services business scenario.

The topics covered include:

� Business requirement
� Environment configuration
� General approach
� Scope of this book
� Data integration scenario
� Post migration scenario 

2

Note: The scenario that we present in this chapter is based upon two fictitious 
financial institutions. In addition, the data that we present in our model is 
fictional also. Any resemblance to real institutions or data is totally 
coincidental.

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 479



2.1  Introduction

North American Bank provides core banking services such as savings, checking, 
and auto and home loans in North America and has significant market share in 
the eastern and midwest regions of the U.S. It additionally provides credit card 
and auto insurance services to its customer base. The primary IT platform of this 
bank is z/OS with DB2 and VSAM data sources.

Northern California Bank is a regional bank that provides core banking services 
such as savings, checking, and auto and home loans in the western region of the 
U.S. and has significant market share in that region. It also provides brokerage 
services to its customer base. The primary IT platform of this bank is AIX with 
DB2 UDB as the data source.

Seeking a synergistic relationship, the two banks entered into a merger with the 
intent of becoming a national bank by growing their individual customer bases, 
and upselling and cross selling each others products to their individual 
customers. 

The two banks expect there to be some overlap of customers or groups of 
customers (such as members of a single family), who when identified could be 
granted special status. However, the two customer bases are mostly expected to 
be non-overlapped. 

2.2  Business requirement 

With the objective of streamlining the combined IT operations of the two banks 
and taking advantage of the synergy of the products that are offered by the 
individual banks in the most expeditious manner, management made a business 
decision to implement the following strategy:

� Migrate the core services such as saving, checking, and auto and home 
loans, from the North American Bank system implementations to the those 
implemented by the Northern California Bank (generally considered to be 
superior in function and architecture). 

 

 

 

 

480 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Build a customer relationship management (CRM) system to take advantage 
quickly of the individual brokerage, credit card, and auto insurance 
businesses of each bank to upsell and cross-sell these products throughout 
the customer base. 

The CRM design is an “off-the-shelf” design that is customized to suit the 
particular requirements of the merged bank. It integrates information from the 
following sources with no changes in the interim to any of the existing 
systems:

– Core business services from both the Northern California Bank and the 
North American Bank

– Brokerage services from the Northern California Bank

– Credit card and auto insurance services from the North American Bank

� A decision on less essential services such as Human Resources systems in 
each bank is deferred until the completion of the migration and CRM system 
implementation. 

� The migration and CRM implementation efforts are to proceed in parallel with 
no dependency of one over the other. 

Therefore, the CRM system is designed to be sourced from the core services 
of the individual banks even as migration of these systems is occurring from 
one bank to the other. At the completion of migration of the core business 
services, it would be easy to have the CRM sourced entirely from the 
migrated system only.

Important: The general guideline when mismatches are found in the 
migration scenario, is to have the target system have the overriding 
authority and not be modified except in absolutely unavoidable situations. 
This guideline means ignoring data elements in the source that have no 
correspondence in the target, to truncate source data element content 
when the target data element’s precision is lesser than that of the source, 
and to accept coarser granularity data content values supported by the 
target where codes are involved. Judicious decisions involving minimal 
modifications to the target system should be the norm when mismatches 
are encountered.

Important: The general guideline during data integration is that when 
there are mismatches between the sources and the new CRM system, that 
the CRM system design be modified to accommodate the existing system 
functions that are considered essential. 

 

 

 

 

 Chapter 2. Financial services business scenario 481



The data models of the systems in our scenario are as follows:

� The data model of the North American Bank is shown in Figure 2-1 on 
page 483. The DDL and field in the VSAM file are shown in Example B-2 on 
page 897 and Example B-3 on page 903. 

� The data model of the Northern California Bank is shown in Figure 2-2 on 
page 484. The DDL is shown in Example B-1 on page 888. 

� The “off-the-shelf” data model of the CRM is shown in Figure 2-3 on 
page 485. The DDL is shown in Example B-4 on page 904.

 

 

 

 

482 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-1   Data model of the North American Bank

 

 

 

 

 Chapter 2. Financial services business scenario 483



Figure 2-2   Data model of the Northern California Bank

 

 

 

 

484 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-3   “Off-the-shelf” data model of the CRM

 

 

 

 

 Chapter 2. Financial services business scenario 485



2.3  Environment configuration

Figure 2-4 shows the configuration of the merged environment with the new 
CRM system. 

Figure 2-4   Merged banks’ environment configuration 

Figure 2-4 shows:

� A Red Hat Enterprise Linux 4 server (kazan.itsosj.sanjose.ibm.com — 
9.43.86.77) that has IBM Information Server and IBM WebSphere Information 
Analyzer installed. 

� A single IBM AIX 5.2 server (Jamaica.itsosj.sanjose.ibm.com — 9.43.86.55) 
runs the Northern California Bank’s IT systems, including the core services, 
brokerage services, and human resources services. DB2 V9.1 is used for the 
data sources.

Core services
(checking,

savings,
auto/home loans)

Brokerage
services

Northern California Bank
AIX operating system

DB2 UDB data sources
Jamaica.itsosj.sanjose.ibm.com

9.43.86.55

Human Resources
services

Customer Relationship Management (CRM)
AIX operating system

DB2 UDB platform

IBM Information Server
(Linux platform)

kazan.itsosj.sanjose.ibm.com
9.43.86.77

WebSphere Information Analyzer
Administrator and Users

Core services
(checking,

savings,
auto/home loans)

Credit card & auto insurance
services

North American Bank
z/OS operating system

DB2 & VSAM data sources
Wtsc59.itso.ibm.com

9.12.4.10

Human Resources
services

Migrate

Data Integration

 

 

 

 

486 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� A single z/OS image (wtsc59.itso.ibm.com — 9.12.4.10) that runs the North 
American Bank’s IT systems including the core services, credit card, auto 
insurance services, and human resources services. DB2 for z/OS V8 and 
VSAM is used for the data sources. WebSphere Information Integrator 
Classic Federation (IICF) V9.1 provides the connectivity from IBM 
WebSphere Information Analyzer to the VSAM data source and the DB2 API 
stage provides connectivity to DV2 for z/OS V8.

Attention: The CRM system is meant to be implemented on the IBM AIX 
5.2 server. In this publication, we do not actually build the CRM 
system—we merely take note of the CRM data model to ensure that it is 
capable of supporting the data content, data types, precision, and scale of 
the data to be integrated from the core services, credit card, auto insurance 
services, and brokerage services of the two banks.

Attention: Our configuration in Figure 2-4 is meant to represent the eclectic 
mix of operating systems and platforms that are typical of mergers between 
multiple organizations and describes how IBM Information Server and IBM 
WebSphere Information Analyzer integrate into such an environment. We are 
not making recommendations about how to configure your environment in this 
manner or that the configuration will deliver the scalability and performance 
requirements of your business solution.

 

 

 

 

 Chapter 2. Financial services business scenario 487



2.4  General approach

Figure 2-5 shows the recommended sequence of steps in a migration or data 
integration scenario. IBM WebSphere Information Analyzer plays the key role in 
the second step that involves identifying the differences (both structure and 
content) between the sources and targets. 

Figure 2-5   General approach 

We describe each of the steps shown in Figure 2-5 briefly in this section.

2.4.1  Step 1: General guidelines for the process

In a migration or a data integration effort, structural and content differences 
between the sources and targets will need to be resolved. Table 2-1 shows many 
of the commonly encountered differences and potential actions. These action are 
self-explanatory. 

We recommend that you define broad action guidelines for mismatches in critical 
and non-critical elements between the data sources and targets for the 
commonly encountered differences. Consequently, if unexpected differences are 

Step 4: Determine strategy & plan to execute the action

Step 3: Determine action in specific cases

Step 4b: Update strategy & plan

Step 5: Execute the plan

Verify whether 
conditions

have changed

Step 2: Identify differences between the sources and targets

Step 1: General guidelines for the process 

Step 6: Review success of the process

Step 4a: Determine action

Yes

No

 

 

 

 

488 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



subsequently discovered, you can focus your energies on addressing them in the 
inevitable time constrained circumstances of migration and data integration 
projects.

Table 2-1   Commonly encountered differences and potential actions

Commonly encountered differences Potential actions

Data elements in the source not found in the target � Add the data elements to the target; significant 
impact on target applications likely

� Ignore it; loss of function
� Combination of the above depending upon the 

data element 

Data type mismatch between the source and target 
data elements
� Compatible
� Incompatible
� Coarse to fine
� Fine to coarse

� Compatible
– Simple mapping

� Incompatible
– Use a cross reference table to map from the 

source data type to the target data type 
� Coarse to fine

– No action other than possible 
transformation 

� Fine to coarse
– Modify target definition to match fine 

granularity of the source; significant impact 
on target applications likely

– Transform with loss of granularity; loss of 
function

Precision, and scale mismatch between the source 
and the target data elements
� Coarse to fine
� Fine to coarse

� Coarse to fine
– No action other than possible 

transformation 
� Fine to coarse

– Modify target definition to match fine 
granularity of the source; significant impact 
on target applications likely

– Transform with loss of granularity; loss of 
function

Data elements in the target not found in the source, 
and target data element not nullable or has no 
default values

� Define default values in the target; some 
impact on target applications 

 

 

 

 

 Chapter 2. Financial services business scenario 489



2.4.2  Step 2: Identify differences between the sources and targets

Differences between the source and target can be determined as follows: 

� From active relational database catalogs, dictionaries, repositories, and other 
documentation that provide details about the metadata of the various data 
sources and targets. 

More often than not, metadata information stored in sources (other than the 
active relational database catalogs) tends to be out of date because it is not 
maintained regularly as systems evolve. 

� From an analysis of the data itself using tools such as IBM WebSphere 
Information Analyzer. Metadata is deduced from the data and presented to 
the data analyst for review and affirmation or denial of the deduction.

These are complementary approaches, essential to achieving a fuller 
understanding of how synchronized the definition of the metadata is with the data 
content. It also enables you to keep the metadata about data sources current, 
which is critical for building new systems that require data integration from 
existing systems.

Code mismatch between the source and the target 
data elements; for example, a salutation can be Mr, 
Mrs, Dr, Miss, and Ms, and source and target do not 
have corresponding codes
� Coarse to fine
� Fine to coarse 

� Coarse to fine
– Use transformation to perform the mapping

� Fine to coarse 
– Transform with loss of granularity; loss of 

function
– Modify target definition to match fine 

granularity of the source; significant impact 
on target applications likely

Multiple data elements in the source maps to a 
single data element in the target
� For example, an address

� Use transformation to perform the mapping
– Might require standardization software 

Single data element in the source maps to multiple 
data elements in the target
� For example, an address 

� Use transformation to perform the mapping 
– Might require standardization software 

Different character maps such as Unicode and 
ASCII

Transformation to perform the mapping

Commonly encountered differences Potential actions 

 

 

 

490 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



IBM WebSphere Information Analyzer identifies differences between the defined 
metadata for a data source and the inferences made from the actual data content 
in these data sources. 

Comparing independently generated IBM WebSphere Information Analyzer 
analyses of different data sources is beyond the scope of IBM WebSphere 
Information Analyzer and is likely a manual process. 

2.4.3  Step 3: Determine action in specific cases

After you compare the metadata and inferred metadata from the data content, 
you can choose to synchronize them with appropriate actions, such as modifying 
the metadata definitions, cleansing the data, or ignoring them at your own peril.

In the migration and data integration scenarios that we discuss in this chapter, we 
compare the metadata and data content between multiple data sources 
manually. Based on the identified differences with specific data elements, we 
choose the most acceptable action from the available options, some of which are 
described in Table 2-1 on page 489. 

2.4.4  Step 4: Determine strategy and plan to execute action

After you have chosen the action, you need to design the appropriate tools and 
procedures to effect the chosen action for each data element. This design will 
most likely involve the use of data cleansing tools (such as IBM WebSphere 
QualityStage), ETL1 tools (such as IBM WebSphere DataStage), data 
management and database tools (such as DB2 Data Warehouse Edition) where 
stored procedures or specific database functions are involved, and user-written 
code. 

The execution of the plan would most likely take an extended period of many 
hours or days. To ensure that migration or data integration occurs without 

Attention: We strongly recommend that tools such as IBM WebSphere 
Information Analyzer sharply focus analyses on data content in specific tables 
and columns based on metadata information obtained from active relational 
database catalogs, dictionaries, repositories, and other documentation. This 
will avoid unnecessary data analysis by data analysts of data that is not 
appropriate for such an analysis. An added benefit is limiting unnecessary and 
irrelevant processing that could consume valuable processing power that 
would be best consumed by other applications.

1  Extract, transform, and load

 

 

 

 

 Chapter 2. Financial services business scenario 491



disrupting the availability of the source applications, you will most likely 
synchronize the source and target in multiple phases. A snapshot of the source is 
initially bulk loaded into the target, followed by an incremental update of the 
target with changes occurring in the source during the bulk load. 

A well planned and rigorously tested set of procedures is essential for a smooth 
and successful migration or data integration project.

A discussion of this topic is beyond the scope of this book. However, it would be 
useful to note that IBM WebSphere Information Analyzer can play an active part 
in the rigorous testing of the process, which can occur at multiple points as 
follows:

� Assessment of extracted test data to ensure conformity to defined test and 
transformation objectives.

� Evaluation and comparison of outputs from the development process to 
ensure broad and quick review.

� Validation of test/QA output against test objectives, particularly for 
cross-domain comparison of source input to target output and proper data 
mapping.

� Review of target load files to ensure completeness, comprehensiveness, and 
consistency to expected results.

In all cases, IBM WebSphere Information Analyzer can facilitate this work by 
providing rapid insight into the data.

2.4.5  Step 5: Execute the plan

This step involves executing the plan that was designed in 2.4.4, “Step 4: 
Determine strategy and plan to execute action” on page 491. 

Important: The analysis of data can be expected to take several weeks given 
the fact that multiple personnel IT Data Analysts (DA) and subject matter 
experts (SME) are involved in ensuring data quality. Therefore, it is 
conceivable that changes could occur to the metadata and data content of the 
data sources and targets during this interval. Therefore, prior to executing the 
plan, you should check if structure or content changes have occurred. If so, 
you should determine its impact on the existing plan, update the strategy and 
plan if required, and test the revised plan before execution. 

 

 

 

 

492 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2.4.6  Step 6: Review success of the process

After the designed plan is executed, you need to verify that the process was 
successful by comparing the metadata and content in the sources and targets.

The process for doing this varies depending upon whether a migration2 or data 
integration3 was involved. 

A discussion of this topic is beyond the scope of this book.

2.5  Scope of this book

In this book, we assume that you have completed data profiling successfully and 
that you have performed an analysis of the results. We also assume that you 
have specified the actions to be taken when (metadata and content) differences 
between source and target are identified. When the differences are identified, 
appropriate actions to be taken are discussed and decided. For details on the 
data profiling activities and analyses performed, refer to IBM WebSphere 
Information Analyzer and Data Quality Assessment, SG24-7508. 

In this book, we describe a step-by-step approach to standardizing names and 
addresses that are involved in the data integration and post migration scenarios 
as follows:

� Data integration

After completing data profiling and analyses of North American Bank and 
Northern California Bank systems, the cleansing of unstructured fields that 
contain names and addresses and subsequent matching needs to be 
completed before the data can be integrated into the Customer Relationship 
Management (CRM) system using IBM WebSphere DataStage. 

In this book, we describe the steps that are involved in standardizing the 
names and addresses and matching records in order to eliminate duplicates 
as well as to establish relationships between customers to determine high 
and low value customers.

2  One-time activity
3  On-going activity, because data is fed continuously to the target and changes to both the metadata 

and data content occur at the sources

Note: The actual IBM WebSphere DataStage jobs to integrate cleansed 
data from the North American Bank and Northern California Bank systems 
into the CRM system using IBM WebSphere DataStage will be covered in 
an upcoming IBM Redbooks publication.

 

 

 

 

 Chapter 2. Financial services business scenario 493



� Post migration

After the migration of the core services of the North American Bank (z/OS 
platform) to that of the Northern California Bank (AIX), we show how to use 
IBM WebSphere QualityStage to cleanse names and addresses in the 
migrated system. 

This post migration step involves standardizing names and addresses and 
identifying potential duplicates.

2.6  Data integration of North American Bank and 
Northern California Bank systems

A business decision was made to integrate the core (savings, checking, and 
loans) and non-core services (credit card and auto insurance) of the North 
American Bank on the z/OS platform with the core (savings, checking, and loans) 
and non-core services (brokerage) of the Northern California Bank on the AIX 
platform into the CRM system. 

The CRM system provides an integrated view of all the customers in the merged 
bank, including details of the core services (such as checking, savings, and 
loans) and non-core services products (such as credit card or brokerage 
services) consumed. The objective of the CRM system is to upsell and cross sell 
the merged banks’ products and services to the customer base. The 
management of the products and services sold continues to be in the original 
source system. In other words, the systems that represent the core and non-core 
services remain in their existing environment and are merely referenced and 
invoked from the CRM system. Other details include:

� The CRM system does not contain any transactions from the core and 
non-core services of the North American Bank and the Northern California 
Bank.

� New data elements exist in the CRM data model that do not exist in the 
existing systems of the North American Bank and Northern California Bank. 

� Surrogate keys are used in the CRM—the keys in the existing systems are 
mapped to the surrogate keys. 

� Customers in the North American Bank might have core and non-core 
services accounts.

Note: The actual modification of the migrated system occurs using IBM 
WebSphere DataStage and will be covered in an upcoming IBM Redbooks 
publication. 

 

 

 

 

494 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Customers in the Northern California Bank might have core and non-core 
services accounts.

� There is some marginal overlap of customers in both the North American 
Bank and Northern California Bank.

Figure 2-6 on page 496 through Figure 2-8 on page 500 show the jobs that are 
used to cleanse and match name and address information in the North American 
Bank and Northern California Bank core and non-core services. It describes:

� North American Bank processing shown in Figure 2-6 on page 496

Name and address information in the North American Bank core and 
non-core services is spread across multiple tables such as CUSTOMER, 
CONTACT_INFO, and DRIVER. It also has two addresses: a home address 
and a work address.

– Name information primarily exists in the CUSTOMER and DRIVER tables.

– Address information primarily exists in the CONTACT_INFO (home and 
work addresses) and DRIVER (home address only) tables.

Note: The steps and jobs used to cleanse the North American Bank’s 
names and addresses are similar to those described in 1.10, “Mailing list 
scenario” on page 117. Therefore, we cross reference these steps as much 
as possible to avoid duplication. However, we do discuss any differences, 
such as configuration options and report highlights.

 

 

 

 

 Chapter 2. Financial services business scenario 495



Figure 2-6   Data integration cleansing tasks for North American Bank

j00_SRC_NAB

j01_STAN_COUNTRY_NAB

j02_INVCC_ISOCODE_NAB

j03_STAN_XXPREP_NAB

j04_INVCC_XXPREP_INPUT_PATTERN

j07_INVCC_CASS

Data in 
correct 

domain?

j06_XXPREP_CASS

j08_USPREP_CASS

Y
N

j09_STAN_CASS

j10a_INVCC_CUSTOMER_XXPREP_STAN

N

Y
Everything 
handled?

Split into US 
and CA addr

j03_STAN_XXPREP_NAB

j04_INVCC_XXPREP_INPUT_PATTERN

Data in 
correct 

domain?

N

j10d_INVCC_CONTACT_INFO_HOME_CA_USPREP_STAN

Everything 
handled?

j14_FUNNEL_NAB_DATA_FOR_CRM

Y

Y

N

J05a_INVW_CONTACT_INFO_HOME_CA_XXPREP

j09_STAN_CASS

j11_JOIN_NAM_NAME_AND_ADDR_DATA

j12_JOIN_NAB_WORK_AND_HOME

j13_PREPARE_NAB_DATA_FOR_FUNNEL

j13_PREPARE_NAB_DATA_FOR_FUNNEL

NAB

NAB

j05b_INVW_CONTACT_INFO_HOME_US_XXPREP

j05c_INVW_CONTACT_INFO_WORK_XXPREP

j05d_INVW_DRIVER_XXPREP

j05e_INVW_CUSTOMER_XXPREP

j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN

j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN

j10e_INVCC_DRIVER_CASS_USPREP_STAN

Override and 
provision

Override and 
provision

Override and 
provision

Override and 
provision

 

 

 

 

496 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Northern California Bank processing shown in Figure 2-7 on page 498

Name and address information in the Northern California Bank core and 
non-core services is spread across multiple tables such as BRANCH, 
CUSTOMER, and BCUSTOMER. The BRANCH table has the branch name 
and business address, while the CUSTOMER and BCUSTOMER tables have 
individual name and home addresses.

Note: The steps and jobs used to cleanse the Northern California Bank’s 
names and addresses are similar to those described in 1.10, “Mailing list 
scenario” on page 117. Therefore, we cross reference these steps as much 
as possible to avoid duplication. However, we do discuss any differences, 
such as configuration options and report highlights.

 

 

 

 

 Chapter 2. Financial services business scenario 497



Figure 2-7   Data integration cleansing tasks for Northern California Bank

j00_SRC_NCB

J01_STAN_COUNTRY_NCB

j02_INVCD_ISOCODE_NCB

j03_STAN_USPREP_NCB

j04_INVCC_USPREP_INPUT_PATTERN_NCB

j06_INVCC_CASS_NCB

Data in 
correct 

domain?

j05_CASS_USPREP_NCB

J07_PREP_CASS_NCB

Y

N

j08_STAN_CASS_NCB

j09a_INVCC_CUSTOMER_STAN_CASS_NCB

N

Y

j10_PREPARE_NCB_DATA_FOR_FUNNEL

j11_FUNNEL_NCB_DATA NCB

NCB

j09b_INVCC_BCUSTOMER_STAN_CASS_NCB

j09c_INVCC_BRANC_STAN_CASS_NCB

Override and 
provision

Override and 
provision

Everything 
handled

 

 

 

 

498 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� Matching North American Bank and Northern California Bank cleansed data 
and surviving the “best”4 data from these two banks into the CRM system as 
shown in Figure 2-8 on page 500

4  Table 2-2 on page 501, Table 2-3 on page 507, and Table 2-4 on page 507 highlight the differences 
between the various systems and the elements from which the “best” data should be derived. The 
information in this table was taken from IBM WebSphere Information Analyzer and Data Quality 
Assessment, SG24-7508.

Note: The steps and jobs used to integrate the information from the North 
American Bank and Northern California Bank into the CRM system are 
similar to those described in 1.10, “Mailing list scenario” on page 117. 
Therefore, we cross reference these steps as much as possible to avoid 
duplication. However, we do discuss any differences, such as configuration 
options and report highlights.

 

 

 

 

 Chapter 2. Financial services business scenario 499



Figure 2-8   Data integration into the CRM system 

j14a_MATCHSPEC

j15_UNDUP_CRM

j16_SURVIVE_CRM

j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL

j13_FUNNEL_NCB_NAB_CRM_DATA

j14_CRM_FREQUENCY

NAB NCB

j17_FUNNEL_UNDUP_RES_DATA

j18_CRM_DATA_TRANSFORM

UNDUP NAB AND NCB
 

 

 

 

500 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Table 2-2   Summary of differences between source and target and the action to be taken

North American Bank (NAB)
and 

Northern California Bank (NCB)
(source)

CRM system
(target)

Action to 
be taken

Column in the 
table

Metadata Data 
Content 
example

Column in the 
table

Metadata
Defined

Data 
Content 
exampleDefined Inferred

Best of 

— TITLE in CUSTOMER 
(NAB) 

— NAME in DRIVER 
(NAB)

— NAME in 
CUSTOMER (NCB)

— NAME in 
BCUSTOMER (NCB)

 

CHAR(3) 

VARCHAR(50)
 

CHAR(50)

VARCHAR(40)

 

CHAR(3) 

VARCHAR(28) 

CHAR(22)

VARCHAR(40)

 

MR. 

MR. JOHN DOE 

JON DOW 

 

DR. JOHN DOE

PREFIX in the 
CUSTOMER table

VARCHAR(10) DR. Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— FIRST_NAME in 
CUSTOMER (NAB) 

— NAME in DRIVER 
(NAB)

— NAME in 
CUSTOMER (NCB)

— NAME in 
BCUSTOMER (NCB)

 

VARCHAR(20) 

VARCHAR(50) 

CHAR(50)

VARCHAR(40)

 

VARCHAR(12) 

VARCHAR(28) 

CHAR(22)

VARCHAR(40)

 

MICHAEL 

MR. MIKE HUIS 

MR. MICHAEL 
HUIS

FIRSTNAME in the 
CUSTOMER table

VARCHAR(30) MICHAEL Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— NAME in DRIVER 
(NAB)

— NAME in 
CUSTOMER (NCB)

— NAME in 
BCUSTOMER (NCB)

— FIRST_NAME in 
CUSTOMER (NAB)

— LAST_NAME in 
CUSTOMER (NAB) 

 

VARCHAR(50) 

CHAR(50)

VARCHAR(40)

VARCHAR(20) 

VARCHAR(20) 

 

VARCHAR(28) 

CHAR(22)

VARCHAR(40)

VARCHAR(12) 

VARCHAR(16) 

 

MS. CHRISTINE 
JANE DAY 

CHRISTINE 
DAY 

MS. CHRISTINE 
J DAY

JOHN JACK 

JOSEPH 
WATSON 

MIDDLENAME in the 
CUSTOMER table 

VARCHAR(30) JANE Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— LAST_NAME in 
CUSTOMER (NAB) 

— NAME in DRIVER 
(NAB)

— NAME in 
CUSTOMER (NCB)

— NAME in 
BCUSTOMER (NCB)

 

VARCHAR(20) 

VARCHAR(50) 

CHAR(50)

VARCHAR(40)

 

VARCHAR(16) 

VARCHAR(28) 

CHAR(22)

VARCHAR(40)

 

PESCO 

JOSEPH 
PESCO 

LASTNAME in the 
CUSTOMER table 

VARCHAR(30) PESCO Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— GENDER in 
CUSTOMER (NAB) 

— GENDER in DRIVER 
(NAB)

— GENDER in 
CUSTOMER (NCB) 

 

CHAR(1) 

CHAR(1) 

CHAR(1)

 

CHAR(1) 

CHAR(1) 

CHAR(1)

 

M 

0

GENDER in the 
CUSTOMER table 

CHAR(1) M Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

 

 

 

 

 Chapter 2. Financial services business scenario 501



NATIONALITY in 
CUSTOMER (NAB) 

 
VARCHAR(20) 

 VARCHAR(2)  AU NATIONALITY in the 
CUSTOMER table 

VARCHAR(20) AU Direct mapping

TYPE in CUSTOMER 
(NCB)

CHAR(1) CHAR(1) P TYPE in the 
CUSTOMER table 

INTEGER 1 Map using 
CUSTOMERTY
PE reference 
table 

PREF_LANG in 
CUSTOMER (NCB)

CHAR(3) CHAR(3) ENG PREFLANG in the 
CUSTOMER table 

CHAR(3) ENG Map using 
ISO_LANGUAG
E reference table 

ADVISOR in 
CUSTOMER (NCB)

INT32 INT32 555110 ADVISOR in the 
CUSTOMER table 

INTEGER 555110 Map using 
EMPLOYEE 
table

PREFCONTACT in the 
CUSTOMER table 

INTEGER

Best of 

— HOME_ADDRESS in 
CONTACT_INFO (NAB) 

— ADDRESS in 
DRIVER (NAB)

— ADDR1 in 
CUSTOMER (NCB)

— ADDR2 in 
CUSTOMER (NCB)

— ADDR1 in 
BCUSTOMER (NCB)

— ADDR2 in 
BCUSTOMER (NCB)

 

VARCHAR(50) 

VARCHAR(50) 

CHAR(50)

CHAR(50)

VARCHAR(40)

VARCHAR(40)

 

VARCHAR(36) 

VARCHAR(36) 

CHAR(35)

CHAR(50)

CHAR(40)

CHAR(1)

 

63 KALINDA 
RD

63, KALINDA

HOMESTREET in the 
CUSTOMER table 

VARCHAR(30) 63, KALINDA 
ROAD

Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— HOME_ADDRESS in 
CONTACT_INFO (NAB) 

— CITY in DRIVER 
(NAB)

— CITY in CUSTOMER 
(NCB)

— CITY in 
BCUSTOMER (NCB)

 

VARCHAR(50) 

VARCHAR(40) 

CHAR(30)

VARCHAR(30)

 

VARCHAR(36) 

VARCHAR(7) 

CHAR(22)

VARCHAR(30) 

 

BRENTWOOD

BRENTWOOD 

 

HOMECITY in the 
CUSTOMER table 

VARCHAR(20) BRENTWOOD Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— HOME_ADDRESS in 
CONTACT_INFO (NAB) 

— STATE in DRIVER 
(NAB)

— ADDR1 in 
CUSTOMER (NCB)

— ADDR2 in 
CUSTOMER (NCB)

— ADDR1 in 
BCUSTOMER (NCB)

— ADDR2 in 
BCUSTOMER (NCB)

 

VARCHAR(50) 

CHAR(2) 

CHAR(50)

CHAR(50)

VARCHAR(40)

VARCHAR(40) 

 

VARCHAR(36) 

CHAR(2) 

CHAR(35)

CHAR(50)

VARCHAR(40)

VARCHAR(1) 

 

CALIFORNIA

 

CA

HOMESTATE in the 
CUSTOMER table 

CHAR(2) CA Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

North American Bank (NAB)
and 

Northern California Bank (NCB)
(source)

CRM system
(target)

Action to 
be taken 

 

 

 

502 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Best of 

— HOME_ZIP in 
CONTACT_INFO (NAB) 

— ZIP in DRIVER (NAB)

— ZIP in CUSTOMER 
(NCB)

— ZIP in BCUSTOMER 
(NCB)

 

CHAR(9) 

CHAR(9) 

CHAR(10)

CHAR(10)

 

CHAR(5) 

INT32 length 5 

INT32 length 5

INT32 length 5 

 

 

 

 

95123

HOMEZIP in the 
CUSTOMER table 

VARCHAR(10) 95123-4865 Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— COUNTRY in 
CUSTOMER (NCB)

— COUNTRY in 
BCUSTOMER (NCB)

 

CHAR(30) 

VARCHAR(30) 

 

CHAR(1) 

VARCHAR(1) 

 

 

 

HOMECOUNTRY in the 
CUSTOMER table 

VARCHAR(20) U.S.A. Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

 WORK_ADDRESS in 
CONTACT_INFO (NAB) 

 
VARCHAR(50) 

 

 VARCHAR(36) 
 

555 BAILEY 
AVENUE

WORKSTREET in the 
CUSTOMER table 

VARCHAR(30) 555 BAILEY 
AVE

Use IBM 
WebSphere 
QualityStage to 
standardize and 
map/transform 
this information 
to the target

WORK_ADDRESS in 
CONTACT_INFO (NAB) 

 
VARCHAR(50) 

 

 VARCHAR(36) 
 

 SAN JOSE WORKCITY in the 
CUSTOMER table 

VARCHAR(20) SAN JOSE Use IBM 
WebSphere 
QualityStage to 
standardize and 
map/transform 
this information 
to the target

WORK_ADDRESS in 
CONTACT_INFO (NAB) 

 
VARCHAR(50) 

 

 VARCHAR(36) 
 

 CALIFORNIA WORKSTATE in the 
CUSTOMER table 

CHAR(2) CA Use IBM 
WebSphere 
QualityStage to 
standardize and 
map/transform 
this information 
to the target

WORK_ZIP in 
CONTACT_INFO (NAB) 

 CHAR(9)  INT32 length 5  95123 WORKZIP in the 
CUSTOMER table 

VARCHAR(10) 95123-4865 Mapping with 
hyphen included

WORKCOUNTRY in the 
CUSTOMER table 

VARCHAR(20)

Best of 

— HOME_PHONE in 
CONTACT_INFO (NAB) 

— HOMEPHONE in 
CUSTOMER (NCB) 

 

CHAR(15) 

CHAR(15) 

 

INT64 length 10 

INT64 length 10

 

4085551234
 

HOMEPHONE in the 
CUSTOMER table 

VARCHAR(15) 408-5551234 Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— WORK_PHONE in 
CONTACT_INFO (NAB) 

— WORKPHONE in 
CUSTOMER (NCB) 

 

CHAR(15) 

CHAR(15) 

 

CHAR(10) 

CHAR(12) 

 

 

6505555678

WORKPHONE in the 
CUSTOMER table 

VARCHAR(20) 650-5555678 Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

North American Bank (NAB)
and 

Northern California Bank (NCB)
(source)

CRM system
(target)

Action to 
be taken 

 

 

 

 Chapter 2. Financial services business scenario 503



Best of 

— CELL_PHONE in 
CONTACT_INFO (NAB) 

—CELLPHONE in 
CUSTOMER (NCB) 

 

CHAR(15) 

CHAR(15) 

 

CHAR(10) 

CHAR(12) 

 

4155553456

CELLPHONE in the 
CUSTOMER table 

VARCHAR(15) 4155553456 Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

Best of 

— EMAIL in 
CUSTOMER (NCB) 

— EMAIL in 
BCUSTOMER (NCB) 

VARCHAR(50) 

VARCHAR(50) 

 

VARCHAR(5) 

VARCHAR(1) 

 

IADM 

EMAIL in the 
CUSTOMER table 

VARCHAR(20) IADM Use IBM 
WebSphere 
QualityStage to 
standardize, 
match, and 
survive the best 
source of this 
information and 
map/transform it 
to the target

RATING in the 
CUSTOMER table 

CHAR(5)

NABCHKASSETS in the 
CUSTOMER table 

DECIMAL(9,2)

NABSAVASSETS in the 
CUSTOMER table 

DECIMAL(9,2)

NABLOANINDICATOR 
in the CUSTOMER table 

CHAR(1)

INITIAL_VALUE in 
LOAN (NAB) 

 DECIMAL(9,2)  DECIMAL(8,2) 400000.00 NABLOANAMOUNT in 
the CUSTOMER table 

DECIMAL(9,2) 400000.00 Direct mapping

BALANCE in LOAN 
(NAB) 

 DECIMAL(9,2)  DECIMAL(8,2) 350000.00 NABLOANBALANCE in 
the CUSTOMER table 

DECIMAL(9,2) 350000.00 Direct mapping

RATES in LOAN (NAB)  DECIMAL(8,5)  DECIMAL(7,5) 6.35 NABLOANRATE in the 
CUSTOMER table 

DECIMAL(6,3) 6.35 Mapping with 
possible 
truncation. 
Should consider 
increasing 
precision and 
scale of target

NCBCHKASSETS in the 
CUSTOMER table 

DECIMAL(9,2)

NCBSAVASSETS in the 
CUSTOMER table 

DECIMAL(9,2)

NCBLOANINDICATOR 
in the CUSTOMER table 

CHAR(1)

INITIAL_LOAN_VALUE 
in LOAN (NCB) 

 CHAR(20) INT32 length 8 500000.00 NCBLOANAMOUNT in 
the CUSTOMER table 

DECIMAL(9,2) 500000.00 Mapping with 
data type 
transformation

BALANCE in LOAN 
(NCB) 

 CHAR(20) INT32 length 9 495000.00 NCBLOANBALANCE in 
the CUSTOMER table 

DECIMAL(9,2) 495000.00 Mapping with 
data type 
transformation

INTEREST_RATE in 
LOAN (NCB) 

 CHAR(20) SFLOAT length 
4

5.35 NCBLOANRATE in the 
CUSTOMER table 

DECIMAL(6,3) 5.35 Mapping with 
data type 
transformation

BROKINDICATOR in the 
CUSTOMER table 

CHAR(1)

North American Bank (NAB)
and 

Northern California Bank (NCB)
(source)

CRM system
(target)

Action to 
be taken 

 

 

 

504 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



BROKASSETS in the 
CUSTOMER table 

DECIMAL(9,2)

BROKMARGIN in the 
CUSTOMER table 

DECIMAL(9,2)

CCINDICATOR in the 
CUSTOMER table

CHAR(1)

LIMIT in CARD (NAB)  DECIMAL(9,2) DECIMAL(8,2) 21000.00 CCLIMIT in the 
CUSTOMER table

INTEGER 21000 Mapping with 
truncation of 
scale. Consider 
adding scale to 
the target

LIMIT_BALANCE in 
CARD (NAB) 

DECIMAL(9,2)  DECIMAL(8,2) 4971.50 CCBALANCE in the 
CUSTOMER table

DECIMAL(9,2) 4971.50 Direct mapping 

LIMIT_W_BALANCE in 
CARD (NAB) 

DECIMAL(9,2)  DECIMAL(8,2) 15029.50 Ignore this fields 
because it can 
be computed

CARINDICATOR in the 
CUSTOMER table

CHAR(1)

FULL_COVERAGE_IND 
in CAR_INSURANCE

CHAR(1) CHAR(1) N FULLCOVERIND in the 
CUSTOMER table

CHAR(1) N Direct mapping

INSURANCE_VALUE in 
CAR_INSURANCE

DECIMAL(9,2) DECIMAL(8,2) 1200.00 CARPREMIUMS in the 
CUSTOMER table

DECIMAL(6,2) 1200.00 Mapping with 
possible 
truncation. 
Consider 
increasing 
precision

END_DT in 
CAR_INSURANCE

DATE DATE 12/31/2007 CARENDDATE in the 
CUSTOMER table

DATE 12/31/2007 Direct mapping

CRMID in the 
CUSTKEYXREF table

INTEGER

CUSTOMER_ID in 
CUSTOMER (NAB)

INT32 INT16 length 4 1344 NABCOREID in the 
CUSTKEYXREF table 

INTEGER

DRIVER_ID in DRIVER 
(NAB)

INT32 INT16 length 4 338 NABNONCOREID in the 
CUSTKEYXREF table 

INTEGER Direct mapping. 
Note that this 
information can 
be used to get 
access to credit 
cards held by this 
individual using 
the 
CUSTKEYXREF 
table

ID in CUSTOMER (NCB) INT32 INT32 length 8 10001500 NCBCOREID in the 
CUSTKEYXREF table 

INTEGER 10001500 Direct mapping

ID in BCUSTOMER 
(NCB)

INT32 INT32 length 8 20001500 NBCNONCOREID in the 
CUSTKEYXREF table 

INTEGER 20001500 Direct mapping

ID in the 
CUSTOMERTYPE table

INTEGER To be generated 

DESCRIPTION in the 
CUSTOMERTYPE table

VARCHAR(50) PERSON To be generated

ID in the 
RELATIONTYPE table

INTEGER To be generated 

North American Bank (NAB)
and 

Northern California Bank (NCB)
(source)

CRM system
(target)

Action to 
be taken 

 

 

 

 Chapter 2. Financial services business scenario 505



DESCRIPTION in the 
RELATIONTYPE table

VARCHAR(50) IS SON OF To be generated 

ID in the 
ISO_LANGUAGE table

CHAR(3) ISO standard 
code

DESCRIPTION in the 
ISO_LANGUAGE table

VARCHAR(50) DANISH ISO standard 
description

ID in the 
CONTACTTYPE table

INTEGER To be generated 

DESCRIPTION in the 
CONTACTTYPE table

VARCHAR(50) MAILING 
ADDRESS

To be generated 

ID in the 
LINEOFBUSINESS table

INTEGER To be generated 

DESCRIPTION in the 
LINEOFBUSINESS table

VARCHAR(50) BROKERAGE To be generated 

ID in the ROLE table INTEGER To be generated 

DESCRIPTION in the 
ROLE table

VARCHAR(50) BENIFICIARY To be generated 

ID in the ITEM table INTEGER To be generated 

DESCRIPTION in the 
ITEM table

VARCHAR(50) INTEREST 
RATE

To be generated 

ID in BRANCH (NCB) INT32 INT8 length 2 12001500 ID in the BRANCH table INTEGER 12001500 Direct mapping

NAME in BRANCH 
(NCB)

CHAR(50) CHAR(28) SANTA 
TERESA

NAME in the BRANCH 
table

VARCHAR(50) SANTA 
TERESA

Direct mapping

FROMCUSTOMER in 
the 
CUSTOMERRELATION 
table

INTEGER To be generated 

TOCUSTOMER in the 
CUSTOMERRELATION 
table 

INTEGER To be generated 

RELATIONTYPE in the 
CUSTOMERRELATION 
table 

INTEGER To be generated 

ID in the CONTRACT 
table

INTEGER To be generated 

PRODUCT in the 
CONTRACT table 

INTEGER To be generated 

STATUS in the 
CONTRACT table 

INTEGER To be generated 

CREATED in the 
CONTRACT table 

TIMESTAMP To be generated 

UPDATED in the 
CONTRACT table

TIMESTAMP To be generated 

ID in the 
CONTRACTITEM table 

INTEGER To be generated 

CONTRACT in the 
CONTRACTITEM table 

INTEGER To be generated 

North American Bank (NAB)
and 

Northern California Bank (NCB)
(source)

CRM system
(target)

Action to 
be taken 

 

 

 

506 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Table 2-3   North American Bank information missing in the CRM data model 

Table 2-4   Northern California Bank information missing in the CRM data model 

The following sections describe the name and address cleansing, and data 
integration process:

� Cleansing North American Bank’s core and non-core services

ITEM in the 
CONTRACTITEM table 

INTEGER To be generated 

VALUE in the 
CONTRACTITEM table 

VARCHAR(30) To be generated 

ID in the 
CONTRACTROLE table 

INTEGER To be generated 

CUSTOMER in the 
CONTRACTROLE table 

INTEGER To be generated 

CONTRACT in the 
CONTRACTROLE table 

INTEGER To be generated 

ROLE in the 
CONTRACTROLE table 

INTEGER To be generated 

ID in EMPLOYEE (NCB) INT32 INT32 length 8 13001500 ID in the EMPLOYEE 
table 

INTEGER 13001500 Direct mapping

NAME in EMPLOYEE 
(NCB)

CHAR(50) CHAR(20) JEFFREY 
JONES

NAME in the 
EMPLOYEE table 

CHAR(50) JEFFREY 
JONES

Direct mapping

USERID in EMPLOYEE 
(NCB)

CHAR(8) CHAR(8) JJONES USERID in the 
EMPLOYEE table 

CHAR(8) JJONES Direct mapping

BRANCH in EMPLOYEE 
(NCB)

INT32 INT32 length 8 12001500 BRANCH in the 
EMPLOYEE table 

INTEGER 12001500 Direct mapping

BUSINESS in the 
EMPLOYEE table 

INTEGER To be generated 

North American Bank (NAB)
and 

Northern California Bank (NCB)
(source)

CRM system
(target)

Action to 
be taken

Data element Action to be taken

NICKNAME in CUSTOMER Ignore because it is not considered relevant to customer relationship management

CHURN_IND in CUSTOMER Include this information in the CRM data model

CREDIT_SCORE in CUSTOMER Include this information in the CRM data model

WORK_ADDRESS in BRANCH Ignore because the ID and NAME fields in the CRM data model as adequate to obtain this information

WORK_ZIP in BRANCH Ignore because the ID and NAME fields in the CRM data model as adequate to obtain this information

Data element Action to be taken

FAX IN CUSTOMER Include this information in the CRM data model

 

 

 

 

 Chapter 2. Financial services business scenario 507



� Cleansing Northern California Bank’s core and non-core services

� Matching and surviving Northern California Bank and Northern California 
Bank information

2.6.1  Cleansing North American Bank’s core and non-core services

Figure 2-6 on page 496 shows the processing flow and jobs that we used for 
cleansing name and addresses in North American Bank’s core and non-core 
services. 

We describe the steps briefly here:

1. We began by extracting all the CUSTOMER, CONTACT_INFO, and DRIVER 
data from the DB2 database and loading it into data sets to isolate it from 
changes during analysis. We also introduced a placeholder Transformer 
stage to provide for pre-processing the source for analysis such as changing 
default values to nulls. In this case however, no transforms were required. 

Job “j00_SRC_NAB” on page 512 performs this step. 

2. Next, we analyzed the addresses in appropriate data sets to determine the 
(ISO code) country using the COUNTRY rule set in the Standardize stage. 

Job “j01_STAN_COUNTRY_NAB” on page 518 performs this step.

3. We analyzed the ISO codes that were generated by the previous step by the 
Investigate stage using the character concatenate option with the C mask to 
obtain frequency distribution. This step identified whether the addresses in 
the appropriate data sets belonged to more than one country and identified 
the codes of the countries in the addresses. 

In this case, the home addresses in the CONTACT_INFO data set were a mix 
of U.S. and Canadian addresses, while the work addresses in the 
CONTACT_INFO data set were all U.S. addresses. The addresses in the 
DRIVER data set were all U.S. addresses.

Job “j02_INVCC_ISOCODE_NAB” on page 525 performs this step.

4. Then, we split the records in the CONTACT_INFO data set into two files—one 
that contains Canadian home addresses and the other that contains U.S. 
home addresses. We needed to split the records because different rule sets 

 

 

 

 

508 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



must be applied to process addresses of different countries. Then, we used 
the Standardize stage with the following domain-preprocessor rule sets to 
move name and address data into Name, Address, and Area domains:

– CAPREP for the Canadian home address records in the CONTACT_INFO 
data set

– USPREP for the name (CUSTOMER and DRIVER data) and address 
(home and work addresses in CONTACT_INFO, and home addresses in 
DRIVER) records

Job “j03_STAN_XXPREP_NAB” on page 530 performs this step.

5. We used the Investigate stage using the character concatenate option on the 
input patterns that were generated by the Standardize stage in the previous 
step to determine the degree of success that is achieved by the 
domain-preprocessor rule sets CAPREP and USPREP in parsing the tokens 
in the name and address fields into the correct domains.

A visual analysis of the pattern reports that were generated by the Investigate 
stage indicated a very large number of error input patterns. Therefore, we 
needed to define Input Pattern overrides and reran the Standardize jobs 
(“j03_STAN_XXPREP_NAB” on page 530) and the Investigate stage to 
confirm that the overrides had the desired effect. 

Job “j04_INVCC_XXPREP_INPUT_PATTERN” on page 541 performs this 
step.

6. After all the name and address data was moved to the correct domain 
buckets, we used the Investigate stage with the word investigate option to 
determine the effectiveness of token handling in the NAME, ADDRESS, and 
AREA domains. Potential Classification and Input Pattern overrides are 
identified at this point.

The following jobs perform these steps:

– “j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP” on page 572
– “j05b_INVW_CONTACT_INFO_HOME_US_XXPREP” on page 577
– “j05c_INVW_CONTACT_INFO_WORK_XXPREP” on page 584
– “j05d_INVW_DRIVER_XXPREP” on page 592
– “j05e_INVW_CUSTOMER_XXPREP” on page 603

7. For the records with U.S. home and work addresses, we used the CASS 
stage to validate, correct, and standardize the U.S. addresses in the Address 
domain. We included a Transformer stage to add a second address line 
column to customer file because CASS requires two address lines as input for 
its processing.

Note: CASS is a separately priced module that requires installation of the 
CASS module.

 

 

 

 

 Chapter 2. Financial services business scenario 509



Job “j06_XXPREP_CASS” on page 605 performs this step.

8. Then we ran the Investigate stage with character concatenate option on the 
(home address related columns in CONTACT_INFO and DRIVER) results of 
job “j06_XXPREP_CASS” on page 605 step to determine addresses that 
were not recognized by CASS (delivery point verification or DPV).

We investigated the generated columns DPVMATCHFLAG_CASS and 
DPVCODE1_CASS using a C mask. A value of A1 in the DPVCODE1_CASS 
field indicates a potential problem.

Job “j07_INVCC_CASS” on page 615 performs this step.

9. The next step was to standardize the name and address contents of the 
output of job “j06_XXPREP_CASS” on page 605 using the 
domain-preprocessor USPREP rule set. This step moves name, address, and 
area content from selected input columns to the NameDomain_USPREP, 
AddressDomain_USPREP, and AreaDomain_USPREP columns. We also 
added a column to the output that only had the first three characters of the 
ZIP code using a Transformer stage. This new column (ZIP3) was used as a 
blocking variable in an upcoming matching stage. 

Job “j08_USPREP_CASS” on page 619 performs this step.

10.In this step, we standardized the name and address contents of the output of 
jobs “j03_STAN_XXPREP_NAB” on page 530 and “j08_USPREP_CASS” on 
page 619 using the domain-specific rule sets USNAME (with column 
NameDomain_USPREP), USADDR (with column 
AddressDomain_USPREP), USAREA (with column AreaDomain_USPREP), 
CAADDR (with column AddressDomain_CAPREP), CAAREA (with column 
AreaDomain_CAPREP). Separate processes were defined—one for each 
rule set.

Job “j09_STAN_CASS” on page 631 performs this step.

Note: The Canadian home addresses in the CONTACT_INFO data set 
were not processed by SERP (which is the CASS equivalent) due to time 
constraints.

Note: Due to a bug with handling nulls, we introduced a Transformer stage 
to convert nulls to a space using column derivation.

Note: Here again, we had to introduce a null handling Transformer stage 
to circumvent a bug.

 

 

 

 

510 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



11.The next step identified unhandled patterns and classifications in the previous 
step. We ran a series of Investigate stage with the character concatenate 
option using the C mask on the unhandled pattern column from the results of 
“j09_STAN_CASS” on page 631. The columns that were investigated 
corresponded to the name, address, and area domains. Unhandled patterns 
were reviewed and classification and input pattern overrides were generated 
to rectify the problem. We then reran the Standardize stage with the overrides 
in place and verified using Investigate that all the unhandled patterns were 
resolved.

The following jobs perform these steps:

– “j10a_INVCC_CUSTOMER_XXPREP_STAN” on page 637
– “j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN” on 

page 640
– “j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN” on 

page 645 
– “j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN” on 

page 647
– “j10e_INVCC_DRIVER_CASS_USPREP_STAN” on page 652

12.After the unhandled patterns are handled, we reconstructed two files:

– One with the standardized name (CUSTOMER file) and standardized U.S. 
home address information (CONTACT_INFO)

– The other with the standardized name (CUSTOMER file) and standardized 
Canadian home address information (CONTACT_INFO) from the 
standardized output by joining them on the CUSTOMER_ID. 

We also renamed certain columns in the standardized work address file that 
are created in “j09_STAN_CASS” on page 631 to avoid column name 
conflicts in the upcoming job “j12_JOIN_NAB_WORK_AND_HOME” on 
page 674.

Job “j11_JOIN_NAB_NAME_AND_ADDR_DATA” on page 657 performs this 
step.

13.In the next step, we appended the work address information to the two files 
that are created in “j11_JOIN_NAB_NAME_AND_ADDR_DATA” on 
page 657. All the addresses in the work address were U.S. addresses. 

“j12_JOIN_NAB_WORK_AND_HOME” on page 674 performs this step.

14.At this point, we had two reconstructed files with standardized names and 
home and work addresses—one containing U.S. home addresses and the 
other containing Canadian home addresses. 

Now, we needed to merge these files with the standardized name and 
address file of the DRIVER to identify duplicates (with data from the Northern 
California Bank’s standardized name and addresses from their core and 

 

 

 

 

 Chapter 2. Financial services business scenario 511



non-core services as described in 2.6.2, “Cleansing Northern California 
Bank’s core and non-core services” on page 706) and survive the “best” data 
into the CRM system as described in 2.6.3, “Matching and surviving Northern 
California Bank and Northern California Bank information” on page 783.

Prior to merging the two files that are created in 
“j12_JOIN_NAB_WORK_AND_HOME” on page 674 with the standardized 
name and address DRIVER file that is created in “j09_STAN_CASS” on 
page 631, we needed to prepare the files for merging in the Funnel stage by 
ensuring that all the files have the same number of columns and same names 
of columns using a Transformer stage. 

Job “j13_PREPARE_NAB_DATA_FOR_FUNNEL” on page 687 performs this 
step. 

15.In this step, we actually merged the three files that were created in the 
“j13_PREPARE_NAB_DATA_FOR_FUNNEL” on page 687 step using the 
Funnel stage.

Job “j14_FUNNEL_NAB_DATA_FOR_CRM” on page 705 performs this step.

The output of this step was then included for matching and surviving the 
“best” data as described in 2.6.3, “Matching and surviving Northern California 
Bank and Northern California Bank information” on page 783.

We describe these jobs in more detail in the following sections.

j00_SRC_NAB
We begin by extracting all the CUSTOMER, CONTACT_INFO, and DRIVER data 
of the North American Bank from the DB2 database and loading it into data sets 
to isolate it from changes during analysis. We also introduce a placeholder 
Transformer stage to provide for pre-processing the source for analysis such as 
changing default values to nulls. 

Figure 2-9 on page 513 shows the various stages that were used in this job, 
including a DB2 UDB API stage that was used to access the data in the 
CUSTOMER, CONTACT_INFO, and DRIVER tables. In this case, however, no 
transforms were required. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J00_SRC_CUSTOMER” on page 142, we do not repeated the process here. 
However, some of the configurations of interest are as follows:

� Figure 2-10 on page 514 shows the generated SQL to retrieve all the rows in 
the CUSTOMER table. We do not show the SQL for CONTACT_INFO and 
DRIVER here.

� Figure 2-11 on page 515 shows the configuration of the Transformer Stage 
that mapped the columns retrieved from the CUSTOMER table directly to the 

 

 

 

 

512 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



output with no transforms. We do not show the corresponding configurations 
for CONTACT_INFO and DRIVER. 

� After saving, compiling, and running the job (not shown here), the results are 
shown in Figure 2-12 on page 516 through Figure 2-14 on page 518. The 
CUSTOMER, CONTACT_INFO, and DRIVER files all had 34 records. 

Now, proceed to “j01_STAN_COUNTRY_NAB” on page 518.

Figure 2-9   Create j00_SRC_NAB job 1/6 

 

 

 

 

 Chapter 2. Financial services business scenario 513



Figure 2-10   Create j00_SRC_NAB job 2/6

 

 

 

 

514 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-11   Create j00_SRC_NAB job 3/6

 

 

 

 

 Chapter 2. Financial services business scenario 515



Figure 2-12   Create j00_SRC_NAB job 4/6

 

 

 

 

516 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-13   Create j00_SRC_NAB job 5/6

 

 

 

 

 Chapter 2. Financial services business scenario 517



Figure 2-14   Create j00_SRC_NAB job 6/6

j01_STAN_COUNTRY_NAB
In this step, we analyze the addresses in appropriate data sets to determine the 
(ISO code) country using the COUNTRY rule set in the Standardize stage, which 
produces two additional columns ISOCountryCode_COUNTRY and 
IdentifierFlag_COUNTRY.

Figure 2-15 on page 520 shows the various stages that are used in this job, 
including the data sets that were created in “j00_SRC_NAB” on page 512, a 
Copy stage, three Standardize stages (one for each address field), and three 
output Data Set stages (one for each address field). The Copy stage is used to 
create two copies of the same input CONTACT_INFO file in order for separate 
Standardize stages to process the home address information (which can contain 
U.S. and foreign addresses) and work address (U.S. only). The DRIVER file only 
has a single address information. We modified the names of the stages as 
shown.

 

 

 

 

518 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of this job is very similar to that described in 
“J01_STAN_COUNTRY” on page 168, we do not repeat it here. However, some 
of the configurations of interest are as follows:

� Figure 2-16 on page 520 shows the Standardize Rule Process window with 
the configured COUNTRY rule set and the literal ZQUSZQ followed by the 
HOME_ADDRESS and HOME_ZIP columns of the CONTACT_INFO file in 
the Selected Columns list. 

� Figure 2-17 on page 521 shows the Standardize Rule Process window with 
the configured COUNTRY rule set and the literal ZQUSZQ followed by the 
WORK_ADDRESS and WORK_ZIP columns of the CONTACT_INFO file in 
the Selected Columns list. 

� Figure 2-18 on page 521 shows the Standardize Rule Process window with 
the configured COUNTRY rule set and the literal ZQUSZQ followed by the 
CITY, STATE and ZIP columns of the DRIVER file in the Selected Columns 
list. 

� After saving, compiling, and running the job, Figure 2-19 on page 522 shows 
the results of the execution.

� Figure 2-20 on page 523, Figure 2-21 on page 524, and Figure 2-22 on 
page 525 show the reports that are produced for the three sources. Because 
the volumes are small in this case, you can view these reports to see the 
distribution of country addresses. In the real word where large volumes of 
data are involved, you need to run Investigate to determine the countries 
detected as described in “j02_INVCC_ISOCODE_NAB” on page 525.

Now proceed to “j02_INVCC_ISOCODE_NAB” on page 525. 

 

 

 

 

 Chapter 2. Financial services business scenario 519



Figure 2-15   Create j01_STAN_COUNTRY_NAB 1/8

Figure 2-16   Create j01_STAN_COUNTRY_NAB 2/8

 

 

 

 

520 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-17   Create j01_STAN_COUNTRY_NAB 3/8

Figure 2-18   Create j01_STAN_COUNTRY_NAB 4/8 

 

 

 

 

 Chapter 2. Financial services business scenario 521



Figure 2-19   Create j01_STAN_COUNTRY_NAB 5/8 

 

 

 

 

522 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-20   Create j01_STAN_COUNTRY_NAB 6/8

 

 

 

 

 Chapter 2. Financial services business scenario 523



Figure 2-21   Create j01_STAN_COUNTRY_NAB 7/8

 

 

 

 

524 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-22   Create j01_STAN_COUNTRY_NAB 8/8

j02_INVCC_ISOCODE_NAB
We analyze the ISO codes that were generated by the previous step by the 
Investigate stage using the character concatenate option with the C mask to 
obtain frequency distribution. This step identifies whether the addresses in the 
appropriate data sets belongs to more than one country and identifies the codes 
of the countries in the addresses. 

In this case, the home addresses in the CONTACT_INFO data set are a mix of 
U.S. and Canadian addresses, while the work addresses in the CONTACT_INFO 
data set are all U.S. addresses. The addresses in the DRIVER data set are all 
U.S. addresses.

Figure 2-23 on page 527 shows the various stages that are used in this job, 
including the data sets that were created in “j01_STAN_COUNTRY_NAB” on 
page 518, an Investigate stage, and an output Sequential File stage for each of 
the input files. We modified the names of the stages as shown.

 

 

 

 

 Chapter 2. Financial services business scenario 525



Because the configuration of this job is very similar to that described in 
“J02_INVCC_ISCODE” on page 186, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-24 on page 527 shows the INV_CC_ISOCODE1 - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
ISOCountryCode_Country and IdentifierFlag_COUNTRY selected with the C 
masks for each character. The X masks are used for columns 
HOME_ADDRESS and HOME_ZIP.

� Figure 2-25 on page 528 shows the INV_CC_ISOCODE2 - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
ISOCountryCode_Country and IdentifierFlag_COUNTRY selected with the C 
masks for each character. The X masks are used for columns 
WORK_ADDRESS and WORK_ZIP.

� Figure 2-26 on page 528 shows the INV_CC_ISOCODE3 - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
ISOCountryCode_Country and IdentifierFlag_COUNTRY selected with the C 
masks for each character. The X masks are used for columns CITY, STATE, 
and ZIP.

� After saving, compiling, and running this job, the job statistics are shown in 
Figure 2-27 on page 529.

� The output of the Investigate stage written to the sequential files are shown in 
Figure 2-28 on page 529 through Figure 2-30 on page 530 as follows:

– Figure 2-28 on page 529 shows the CONTACT_INFO home address 
report with a concatenated value of US Y in 91.8919% of the records and a 
concatenated value of CA Y in 0.10811% of the records.

– Figure 2-29 on page 529 shows the CONTACT_INFO work address report 
with a concatenated value of US Y in 97.2973% of the records and a 
concatenated value of US N5 in 2.7027% of the records.

– Figure 2-30 on page 530 shows the DRIVER address report with a 
concatenated value of US Y in 100% of the records.

Now proceed to “j03_STAN_XXPREP_NAB” on page 530.

5  This means that the COUNTRY rule set could not determine the country and therefore took the 
default value of “US”.

 

 

 

 

526 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-23   Create j02_INVCC_ISOCODE_NAB 1/8

Figure 2-24   Create j02_INVCC_ISOCODE_NAB 2/8

 

 

 

 

 Chapter 2. Financial services business scenario 527



Figure 2-25   Create j02_INVCC_ISOCODE_NAB 3/8

Figure 2-26   Create j02_INVCC_ISOCODE_NAB 4/8 

 

 

 

 

528 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-27   Create j02_INVCC_ISOCODE_NAB 5/8

Figure 2-28   Create j02_INVCC_ISOCODE_NAB 6/8

Figure 2-29   Create j02_INVCC_ISOCODE_NAB 7/8

 

 

 

 

 Chapter 2. Financial services business scenario 529



Figure 2-30   Create j02_INVCD_ISOCODE_NAB 8/8

j03_STAN_XXPREP_NAB
We next split the records in the CONTACT_INFO data set into two files—one 
containing Canadian home addresses and the other containing U.S. home 
addresses. We need to split the records because different rule sets must be used 
to process addresses of different countries. We then use the Standardize stage 
with the following domain-preprocessor rule sets to move name and address 
data into Name, Address, and Area domains:

� CAPREP for the Canadian home address records in the CONTACT_INFO 
data set.

� USPREP for the name (CUSTOMER and DRIVER data) and address (home 
and work addresses in CONTACT_INFO and home addresses in DRIVER) 
records. 

Figure 2-31 on page 532 shows the various stages that are used in this job, 
including a Transformer stage to split the home addresses in the 
CONTACT_INFO file into U.S. and CA address records; Standardize stages for 
the (work addresses of) CONTACT_INFO, (name and address information of) 
DRIVER, and (name information of) CUSTOMER files; and one output Data Set 
stage for each Standardize stage. We modified the names of the stages as 
shown.

Because the configuration of this job is very similar to that described in 
“J03_STAN_USPREP” on page 196, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-32 on page 533 shows the FILTER_ISOCODE - Transformer Stage 
window which has the constraints TRIM(OUT.ISOCountryCode_COUNTRY) 
=’US’ and TRIM(OUT.ISOCountryCode_COUNTRY) =’CA’ to split the records 
based on the country code.

� The Standardize Rule Process windows of Figure 2-33 on page 534 through 
Figure 2-36 on page 535 show the USPREP and CAPREP rule sets and the 
literals and columns selected for analysis as follows:

– Figure 2-33 on page 534 shows the Standardize Rule Process window 
with the configured USPREP rule set, and the literal ZQMIXAZQ followed 
by the HOME_ADDRESS column, followed by the literal ZQAREAZQ 
followed by the HOME_ZIP column of the CONTACT_INFO file (containing 
only U.S. home addresses) in the Selected Columns list. 

 

 

 

 

530 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



– Figure 2-34 on page 534 shows the Standardize Rule Process window 
with the configured CAPREP rule set, and the literal ZQMIXAZQ followed 
by the HOME_ADDRESS column, followed by the literal ZQAREAZQ 
followed by the HOME_ZIP column of the CONTACT_INFO file (containing 
only CA home addresses) in the Selected Columns list.

– Figure 2-35 on page 535 shows the Standardize Rule Process window 
with the configured USPREP rule set, and the literal ZQMIXAZQ followed 
by the WORK_ADDRESS column, followed by the literal ZQAREAZQ 
followed by the WORK_ZIP column of the CONTACT_INFO file 
(containing only U.S. work addresses) in the Selected Columns list.

– Figure 2-36 on page 535 shows the Standardize Rule Process window 
with the configured USPREP rule set, and the literal ZQNAMEZQ followed 
by the NAME column, followed the literal ZQMIXAZQ followed by the 
ADDRESS column, followed by the literal ZQAREAZQ followed by the 
CITY, STATE, and ZIP columns of the DRIVER file (containing only U.S. 
work addresses) in the Selected Columns list. 

– Figure 2-37 on page 536 shows the Standardize Rule Process window 
with the configured USPREP rule set, and the literal ZQNAMEZQ followed 
by the TITLE, FIRST_NAME, and LAST_NAME columns of the 
CUSTOMER file (containing only U.S. work addresses) in the Selected 
Columns list.

� After saving, compiling, and running this job, view the results as shown in 
Figure 2-38 on page 537. 

� Figure 2-39 on page 538 through Figure 2-43 on page 541 show the contents 
of the standardized output for each of the five data sets. 

The partial reports show the columns NameDomain_USPREP (contains 
prefix, first name, last name, suffix tokens), AddressDomain_USPREP 
(contains apartment, street name and street type tokens), and 
AreaDomain_USPREP (contains city, state, ZIP code tokens) that were 
parsed from the input columns.

The AddressDomain_USPREP column shows city names in it (as 
highlighted), which indicates that the parsing of the input columns into the 
correct domain buckets was not totally successful. These problems need to 
be resolved after reviewing the input patterns that were generated by the 
Standardize stage. 

Now proceed to “j04_INVCC_XXPREP_INPUT_PATTERN” on page 541.

 

 

 

 

 Chapter 2. Financial services business scenario 531



Figure 2-31   Create j03_STAN_XXPREP_NAB 1/13

 

 

 

 

532 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-32   Create j03_STAN_XXPREP_NAB 2/13

 

 

 

 

 Chapter 2. Financial services business scenario 533



Figure 2-33   Create j03_STAN_XXPREP_NAB 3/13

Figure 2-34   Create j03_STAN_XXPREP_NAB 4/13

 

 

 

 

534 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-35   Create j03_STAN_XXPREP_NAB 5/13

Figure 2-36   Create j03_STAN_XXPREP_NAB 6/13

 

 

 

 

 Chapter 2. Financial services business scenario 535



Figure 2-37   Create j03_STAN_XXPREP_NAB 7/13

 

 

 

 

536 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-38   Create j03_STAN_XXPREP_NAB 8/13

 

 

 

 

 Chapter 2. Financial services business scenario 537



Figure 2-39   Create j03_STAN_XXPREP_NAB 9/13

Figure 2-40   Create j03_STAN_XXPREP_NAB 10/13

 

 

 

 

538 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-41   Create j03_STAN_XXPREP_NAB 11/13

 

 

 

 

 Chapter 2. Financial services business scenario 539



Figure 2-42   Create j03_STAN_XXPREP_NAB 12/13

 

 

 

 

540 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-43   Create j03_STAN_XXPREP_NAB 13/13

j04_INVCC_XXPREP_INPUT_PATTERN
We use the Investigate stage using the character concatenate option on the input 
patterns that were generated by the Standardize stages in the previous step to 
determine the degree of success that is achieved by the domain-preprocessor 
rule sets CAPREP and USPREP in parsing the tokens in the name and address 
fields into the correct domains.

Figure 2-44 on page 544 shows the various stages that are used in this job, 
including the five data sets that were created in “j03_STAN_XXPREP_NAB” on 
page 530, five Investigate stages, and five corresponding output Sequential File 
stages. We modified the names of the stages as shown.

 

 

 

 

 Chapter 2. Financial services business scenario 541



Because the configuration of this job is very similar to that described in 
“J02_INVCC_ISCODE” on page 186, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-45 on page 545 shows the INVESTIGATE_CC - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
InputPattern_USPREP with the C mask for each character and X masks on 
the AddressDomain_USPREP, AreaDomain_USPREP, 
OutboundPattern_USPREP, HOME_ADDRESS, and HOME_ZIP in the U.S. 
home addresses CONTACT_INFO file. 

� Figure 2-46 on page 545 shows the INVESTIGATE_CC2 - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
InputPattern_CAPREP with the C mask for each character and X masks on 
the AddressDomain_CAPREP, AreaDomain_CAPREP, 
OutboundPattern_CAPREP, HOME_ADDRESS, HOME_HONE, and 
HOME_ZIP in the Canadian home addresses CONTACT_INFO file. 

� Figure 2-47 on page 546 shows the INVESTIGATE_CC3 - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
InputPattern_USPREP_WORK with the C mask for each character and X 
masks on the AddressDomain_USPREP_WORK, 
AreaDomain_USPREP_WORK, OutboundPattern_USPREP_WORK, 
WORK_ADDRESS, WORK_PHONE, and WORK_ZIP in the U.S. work 
addresses CONTACT_INFO file. 

� Figure 2-48 on page 546 shows the INVESTIGATE_CC4 - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
InputPattern_USPREP with the C mask for each character and X masks on 
the NameDomain_USPREP, AddressDomain_USPREP, 
AreaDomain_USPREP, OutboundPattern_USPREP, NAME, and ADDRESS 
in the U.S. work addresses DRIVER file.

� Figure 2-49 on page 547 shows the INVESTIGATE_CC5 - Investigate Stage 
window with the Character Concatenate Investigate option and columns 
InputPattern_USPREP with the C mask for each character and X masks on 
the NameDomain_USPREP, and OutboundPattern_USPREP in the U.S. work 
addresses CUSTOMER file.

� After saving, compiling, and running this job, the job statistics are shown in 
Figure 2-50 on page 548. 

� The output of the Investigate stages written to the sequential files are shown 
in Figure 2-51 on page 549 through Figure 2-65 on page 558 as follows: 

– Figure 2-51 on page 549 through Figure 2-54 on page 550 show the 
report corresponding to the U.S. home addresses of the CONTACT_INFO 
file. It shows the input patterns that correspond to the erroneous parsing 

 

 

 

 

542 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



that left city names in the AddressDomain_USPREP column as 
highlighted. 

– Figure 2-55 on page 551 and Figure 2-56 on page 551 show the report 
corresponding to the Canadian home addresses of the CONTACT_INFO 
file. It shows the input patterns that correspond to the erroneous parsing 
that left city names in the AddressDomain_CAPREP column as 
highlighted. 

– Figure 2-57 on page 552 through Figure 2-59 on page 554 show the 
report corresponding to the U.S. work addresses of the CONTACT_INFO 
file. It shows the input patterns that correspond to the erroneous parsing 
that left city names in the AddressDomain_USPREP_WORK column as 
highlighted.

– Figure 2-60 on page 555 through Figure 2-63 on page 557 show the 
report corresponding to the U.S. addresses of the DRIVER file. It shows 
the input patterns that correspond to the erroneous parsing that left 
address details in the NameDomain_USPREP column as highlighted.

– Figure 2-64 on page 557 and Figure 2-65 on page 558 show the report 
corresponding to the names in the CUSTOMER file. All the names seem 
to have been properly passed. 

Given the number of erroneous input patterns, we define input pattern overrides 
for them in the USPREP rule set to generate the correct output (shown in 
Figure 2-66 on page 558 through Figure 2-75 on page 567) to generate the 
proper outbound patterns to move name/address data to the correct domain 
buckets. 

After provisioning the USPREP rule set (not shown here), we rerun 
the“j03_STAN_XXPREP_NAB” on page 530 and 
“j04_INVCC_XXPREP_INPUT_PATTERN” on page 541 to verify the success of 
the overrides as shown in Investigate reports Figure 2-78 on page 570 through 
Figure 2-81 on page 572. 

Now proceed to “j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP” on 
page 572. 

 

 

 

 

 Chapter 2. Financial services business scenario 543



Figure 2-44   Create j04_INVCC_XXPREP_INPUT_PATTERN 1/38

 

 

 

 

544 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-45   Create j04_INVCC_XXPREP_INPUT_PATTERN 2/38

Figure 2-46   Create j04_INVCC_XXPREP_INPUT_PATTERN 3/38

 

 

 

 

 Chapter 2. Financial services business scenario 545



Figure 2-47   Create j04_INVCC_XXPREP_INPUT_PATTERN 4/38

Figure 2-48   Create j04_INVCC_XXPREP_INPUT_PATTERN 5/38

 

 

 

 

546 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-49   Create j04_INVCC_XXPREP_INPUT_PATTERN 6/38

 

 

 

 

 Chapter 2. Financial services business scenario 547



Figure 2-50   Create j04_INVCC_XXPREP_INPUT_PATTERN 7/38

 

 

 

 

548 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-51   Create j04_INVCC_XXPREP_INPUT_PATTERN 8/38

Figure 2-52   Create j04_INVCC_XXPREP_INPUT_PATTERN 9/38

 

 

 

 

 Chapter 2. Financial services business scenario 549



Figure 2-53   Create j04_INVCC_XXPREP_INPUT_PATTERN 10/38

Figure 2-54   Create j04_INVCC_XXPREP_INPUT_PATTERN 11/38

 

 

 

 

550 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-55   Create j04_INVCC_XXPREP_INPUT_PATTERN 12/38

Figure 2-56   Create j04_INVCC_XXPREP_INPUT_PATTERN 13/38

 

 

 

 

 Chapter 2. Financial services business scenario 551



Figure 2-57   Create j04_INVCC_XXPREP_INPUT_PATTERN 14/38

 

 

 

 

552 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-58   Create j04_INVCC_XXPREP_INPUT_PATTERN 15/38

 

 

 

 

 Chapter 2. Financial services business scenario 553



Figure 2-59   Create j04_INVCC_XXPREP_INPUT_PATTERN 16/38

 

 

 

 

554 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-60   Create j04_INVCC_XXPREP_INPUT_PATTERN 17/38

 

 

 

 

 Chapter 2. Financial services business scenario 555



Figure 2-61   Create j04_INVCC_XXPREP_INPUT_PATTERN 18/38

Figure 2-62   Create j04_INVCC_XXPREP_INPUT_PATTERN 19/38

 

 

 

 

556 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-63   Create j04_INVCC_XXPREP_INPUT_PATTERN 20/38

Figure 2-64   Create j04_INVCC_XXPREP_INPUT_PATTERN 21/38

 

 

 

 

 Chapter 2. Financial services business scenario 557



Figure 2-65   Create j04_INVCC_XXPREP_INPUT_PATTERN 22/38

Figure 2-66   Create j04_INVCC_XXPREP_INPUT_PATTERN 23/38

 

 

 

 

558 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-67   Create j04_INVCC_XXPREP_INPUT_PATTERN 24/38

 

 

 

 

 Chapter 2. Financial services business scenario 559



Figure 2-68   Create j04_INVCC_XXPREP_INPUT_PATTERN 25/38

 

 

 

 

560 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-69   Create j04_INVCC_XXPREP_INPUT_PATTERN 26/38

 

 

 

 

 Chapter 2. Financial services business scenario 561



Figure 2-70   Create j04_INVCC_XXPREP_INPUT_PATTERN 27/38

 

 

 

 

562 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-71   Create j04_INVCC_XXPREP_INPUT_PATTERN 28/38

 

 

 

 

 Chapter 2. Financial services business scenario 563



Figure 2-72   Create j04_INVCC_XXPREP_INPUT_PATTERN 29/38

 

 

 

 

564 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-73   Create j04_INVCC_XXPREP_INPUT_PATTERN 30/38

 

 

 

 

 Chapter 2. Financial services business scenario 565



Figure 2-74   Create j04_INVCC_XXPREP_INPUT_PATTERN 31/38

 

 

 

 

566 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-75   Create j04_INVCC_XXPREP_INPUT_PATTERN 32/38

 

 

 

 

 Chapter 2. Financial services business scenario 567



Figure 2-76   Create j04_INVCC_XXPREP_INPUT_PATTERN 33/38

 

 

 

 

568 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-77   Create j04_INVCC_XXPREP_INPUT_PATTERN 34/38

 

 

 

 

 Chapter 2. Financial services business scenario 569



Figure 2-78   Create j04_INVCC_XXPREP_INPUT_PATTERN 35/38

Figure 2-79   Create j04_INVCC_XXPREP_INPUT_PATTERN 36/38

 

 

 

 

570 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-80   Create j04_INVCC_XXPREP_INPUT_PATTERN 37/38

 

 

 

 

 Chapter 2. Financial services business scenario 571



Figure 2-81   Create j04_INVCC_XXPREP_INPUT_PATTERN 38/38

j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP
After all the name and address data is moved to the correct domain buckets, we 
use the Investigate stage with the word investigate option to determine the 
effectiveness of token handling in the NAME, ADDRESS, and AREA domains. 
Potential Classification and Input Pattern overrides were identified at this point.

We analyze the CONTACT_INFO file with the Canadian home addresses 
containing the name, address, and area buckets that were generated by the 
“j03_STAN_XXPREP_NAB” on page 530 job by the Investigate stage using word 
investigate and the domain-specific USADDR and USAREA rule sets to 
determine the degree of success achieved by the rule sets in identifying the 
tokens correctly. 

Because a single Investigate stage can only have a single rule set associated 
with it, we needed to split the CONTACT_INFO file with the Canadian home 
addresses (using a Copy stage) and process the files by two independent 
Investigate stages, with each stage using a particular domain-specific rule set. 
Both the pattern and token reports are generated in each Investigate stage.

Figure 2-82 on page 574 shows the various stages that are used in this job, 
including the data set that was created in “j03_STAN_XXPREP_NAB” on 
page 530, a Copy stage, two Investigate stages that each use a different 

 

 

 

 

572 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



domain-specific rule set, and two sequential file stages (one each for the token 
report and pattern report) for each Investigate stage. We modified the names of 
the stages as shown.

Because the configuration of this job is very similar to that described in 
“J04_INVW_USPREP” on page 203, we do not repeated it here. However, some 
of the configurations of interest are as follows:

� Figure 2-83 on page 575 shows the INVADDR - Investigate Stage window 
using the USADDR rule set with the Word Investigate option. The selected 
column is AddressDomain_CAPREP.

� Figure 2-84 on page 575 shows the INVAREA - Investigate Stage window 
using the USAREA rule set with the Word Investigate option. The selected 
column is AreaDomain_CAPREP.

� After saving, compiling, and running this job (Figure 2-85 on page 576), the 
contents of the output of the Investigate stage are written to the sequential 
files shown in Figure 2-86 on page 576 through Figure 2-89 on page 577. 

The reports show a few tokens (such as PINE and Vancouver) in the various 
reports not being recognized with proper classifications (code ?). The 
patterns also appear to need overrides, but you can only be certain of this 
after the pattern action language is invoked. 

Proceed now to “j05b_INVW_CONTACT_INFO_HOME_US_XXPREP” on 
page 577.

 

 

 

 

 Chapter 2. Financial services business scenario 573



Figure 2-82   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 1/8

 

 

 

 

574 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-83   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 2/8

Figure 2-84   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 3/8

 

 

 

 

 Chapter 2. Financial services business scenario 575



Figure 2-85   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 4/8

Figure 2-86   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 5/8

 

 

 

 

576 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-87   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 6/8

Figure 2-88   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 7/8

Figure 2-89   Create j05a_INVW_CONTACT_INFO_HOME_CA_XXPREP 8/8

j05b_INVW_CONTACT_INFO_HOME_US_XXPREP
In this step, we analyze the CONTACT_INFO file with the U.S. home addresses 
containing the name, address, and area buckets that were generated by the 
“j03_STAN_XXPREP_NAB” on page 530 job by the Investigate stage using word 
investigate and the domain-specific USADDR and USAREA rule sets to 
determine the degree of success achieved by the Standardize stage in identifying 
the tokens correctly. 

Because a single Investigate stage can only have a single rule set associated 
with it, we split the CONTACT_INFO file with the U.S. home addresses (using a 
Copy stage) and process the files by two independent Investigate stages, with 
each stage using a particular domain-specific rule set. Both the pattern and 
token reports were generated in each Investigate stage.

Figure 2-90 on page 579 shows the various stages that are used in this job, 
including the data set that was created in “j03_STAN_XXPREP_NAB” on 
page 530, a Copy stage, two Investigate stages that each use a different 
domain-specific rule set, and two sequential file stages (one each for the token 
report and pattern report) for each Investigate stage. We modified the names of 
the stages as shown.

 

 

 

 

 Chapter 2. Financial services business scenario 577



Because the configuration of this job is very similar to that described in 
“J04_INVW_USPREP” on page 203, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-91 on page 580 shows the INVADDR - Investigate Stage window 
using the USADDR rule set with the Word Investigate option. The selected 
column is AddressDomain_USPREP.

� Figure 2-92 on page 580 shows the INVAREA - Investigate Stage window 
using the USAREA rule set with the Word Investigate option. The selected 
column is AreaDomain_USPREP.

� After saving, compiling, and running this job (Figure 2-93 on page 581), the 
contents of the output of Investigate stage are written to the sequential files 
shown in Figure 2-94 on page 582 through Figure 2-97 on page 584. 

The reports show a number of tokens in the various reports not being 
recognized with proper classifications (code ?). The patterns also appear to 
need overrides, but you can only be certain of this after the pattern action 
language is invoked. 

Proceed now to “j05c_INVW_CONTACT_INFO_WORK_XXPREP” on page 584. 

 

 

 

 

578 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-90   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 1/8

 

 

 

 

 Chapter 2. Financial services business scenario 579



Figure 2-91   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 2/8

Figure 2-92   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 3/8

 

 

 

 

580 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-93   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 4/8

 

 

 

 

 Chapter 2. Financial services business scenario 581



Figure 2-94   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 5/8

 

 

 

 

582 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-95   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 6/8

 

 

 

 

 Chapter 2. Financial services business scenario 583



Figure 2-96   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 7/8 

Figure 2-97   Create j05b_INVW_CONTACT_INFO_HOME_US_XXPREP 8/8

j05c_INVW_CONTACT_INFO_WORK_XXPREP
In this step, we analyze the CONTACT_INFO file with the U.S. work addresses 
containing the name, address, and area buckets generated by the 

 

 

 

 

584 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



“j03_STAN_XXPREP_NAB” on page 530 job by the Investigate stage using word 
investigate and the domain-specific USADDR and USAREA rule sets to 
determine the degree of success that is achieved by the rule sets in identifying 
the tokens correctly. 

Because a single Investigate stage can only have a single rule set associated 
with it, we copy the CONTACT_INFO file with the U.S. home addresses (using a 
Copy stage) and process the file by two independent Investigate stages, with 
each stage using a particular domain-specific rule set. Both the pattern and 
token reports are generated in each Investigate stage.

Figure 2-98 on page 586 shows the various stages that are used in this job, 
including the data set that was created in “j03_STAN_XXPREP_NAB” on 
page 530, a Copy stage, two Investigate stages that each use a different 
domain-specific rule set, and two sequential file stages (one each for the token 
report and pattern report) for each Investigate stage. We modified the names of 
the stages as shown. 

Because the configuration of this job is very similar to that described in 
“J04_INVW_USPREP” on page 203, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-99 on page 587 shows the INVADDR - Investigate Stage window 
using the USADDR rule set with the Word Investigate option. The selected 
column is AddressDomain_USPREP_WORK.

� Figure 2-100 on page 587 shows the INVAREA - Investigate Stage window 
using the USAREA rule set with the Word Investigate option. The selected 
column is AreaDomain_USPREP_WORK.

� After saving, compiling, and running this job (Figure 2-107 on page 594), the 
contents of the output of the Investigate stage are written to the sequential 
files shown in Figure 2-102 on page 589 through Figure 2-106 on page 592. 

The reports show a number of tokens in the various reports that are not 
recognized with proper classifications (code ?). 

Proceed to “j05d_INVW_DRIVER_XXPREP” on page 592.

 

 

 

 

 Chapter 2. Financial services business scenario 585



Figure 2-98   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 1/9

 

 

 

 

586 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-99   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 2/9

Figure 2-100   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 3/9

 

 

 

 

 Chapter 2. Financial services business scenario 587



Figure 2-101   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 4/9

 

 

 

 

588 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-102   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 5/9

 

 

 

 

 Chapter 2. Financial services business scenario 589



Figure 2-103   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 6/9

 

 

 

 

590 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-104   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 7/9

 

 

 

 

 Chapter 2. Financial services business scenario 591



Figure 2-105   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 8/9

Figure 2-106   Create j05c_INVW_CONTACT_INFO_WORK_XXPREP 9/9

j05d_INVW_DRIVER_XXPREP
In this step, we analyze the DRIVER file with the U.S. addresses containing the 
name, address, and area buckets that were generated by the 
“j03_STAN_XXPREP_NAB” on page 530 job by the Investigate stage using word 
investigate and the domain-specific USNAME, USADDR, and USAREA rule sets 

 

 

 

 

592 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



to determine the degree of success that is achieved by the rule sets in identifying 
the tokens correctly. 

Because a single Investigate stage can only have a single rule set associated 
with it, we split the DRIVER file with the U.S. addresses (using a Copy stage) and 
process the files by three independent Investigate stages, with each stage using 
a particular domain-specific rule set. Both the pattern and token reports are 
generated in each Investigate stage.

Figure 2-107 on page 594 shows the various stages that are used in this job, 
including the data set that was created in “j03_STAN_XXPREP_NAB” on 
page 530, a Copy stage, three Investigate stages that each use a different 
domain-specific rule set, and two sequential file stages (one each for the token 
report and pattern report) for each Investigate stage. We modified the names of 
the stages as shown. 

Because the configuration of this job is very similar to that described in 
“J04_INVW_USPREP” on page 203, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-108 on page 595 shows the INVNAME - Investigate Stage window 
using the USNAME rule set with the Word Investigate option. The selected 
column is NameDomain_USPREP.

The INVADDR - Investigate Stage and INVAREA - Investigate Stage windows 
are similar to those described in Figure 2-91 on page 580 and Figure 2-92 on 
page 580. We do not repeat them here.

� After saving, compiling, and running this job (Figure 2-109 on page 596), the 
contents of the output of the Investigate stage are written to the sequential 
files shown in Figure 2-110 on page 597 through Figure 2-116 on page 602. 

The reports show a number of tokens in the various reports not being 
recognized with proper classifications (code ?). 

Proceed now to “j05e_INVW_CUSTOMER_XXPREP” on page 603.

 

 

 

 

 Chapter 2. Financial services business scenario 593



Figure 2-107   Create j05d_INVW_DRIVER_XXPREP 1/10

 

 

 

 

594 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-108   Create j05d_INVW_DRIVER_XXPREP 2/10

 

 

 

 

 Chapter 2. Financial services business scenario 595



Figure 2-109   Create j05d_INVW_DRIVER_XXPREP 3/10

 

 

 

 

596 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-110   Create j05d_INVW_DRIVER_XXPREP 4/10

 

 

 

 

 Chapter 2. Financial services business scenario 597



Figure 2-111   Create j05d_INVW_DRIVER_XXPREP 5/10

 

 

 

 

598 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-112   Create j05d_INVW_DRIVER_XXPREP 6/10

 

 

 

 

 Chapter 2. Financial services business scenario 599



Figure 2-113   Create j05d_INVW_DRIVER_XXPREP 7/10

 

 

 

 

600 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-114   Create j05d_INVW_DRIVER_XXPREP 8/10

 

 

 

 

 Chapter 2. Financial services business scenario 601



Figure 2-115   Create j05d_INVW_DRIVER_XXPREP 9/10

Figure 2-116   Create j05d_INVW_DRIVER_XXPREP 10/10

 

 

 

 

602 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



j05e_INVW_CUSTOMER_XXPREP
In this step, we analyze the CUSTOMER file with the U.S. addresses containing 
the name, address, and area buckets that were generated by the 
“j03_STAN_XXPREP_NAB” on page 530 job by the Investigate stage using word 
investigate and the domain-specific USNAME rule set to determine the degree of 
success achieved by the rule set in identifying the tokens correctly. 

Figure 2-117 on page 603 shows the various stages in this job (as well as the 
statistics collected after compiling and running the job). It includes the data set 
that was created in “j03_STAN_XXPREP_NAB” on page 530 and one Investigate 
stage that uses the USNAME domain-specific rule set (because it only has name 
information and no address information), and two sequential file stages (one 
each for the token report and pattern report). We modified the names of the 
stages as shown.

Because the configuration of this job is very similar to that described in 
“J04_INVW_USPREP” on page 203, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� The outputs of the Investigate stage written to the sequential files are shown 
in Figure 2-118 on page 604 through Figure 2-119 on page 605. 

The reports show a few tokens in the various reports that are not recognized 
with proper classifications (code ?). 

Proceed now to “j06_XXPREP_CASS” on page 605.

Figure 2-117   Create j05e_INVW_CUSTOMER_XXPREP 1/3

 

 

 

 

 Chapter 2. Financial services business scenario 603



Figure 2-118   Create j05e_INVW_CUSTOMER_XXPREP 2/3

 

 

 

 

604 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-119   Create j05e_INVW_CUSTOMER_XXPREP 3/3

j06_XXPREP_CASS
For the records with U.S. home and work addresses, we use the CASS stage to 
validate, correct, and standardize the U.S. addresses in the Address domain. We 
include a Transformer stage to add a second address line column to customer file 
because CASS requires two address lines as input for its processing.

Figure 2-120 on page 606 shows the various stages that are used in this job, 
including the data sets that were created in “j03_STAN_XXPREP_NAB” on 
page 530, and a Transformer stage, a CASS stage, and a Data Set stage for 
each input data set. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J05_CASS_USPREP” on page 219, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-121 on page 607 shows the ADD_SPACE_FIELD - Transformer 
Stage window that describes the addition of the Space_Field of character 
length 1 to serve as the second address line required by the CASS stage.

� Figure 2-122 on page 607, Figure 2-123 on page 608, and Figure 2-124 on 
page 608 show the CASS stage configurations for each of the stages, with 
details such as the assignment of columns to Address Line 1 and Address 
Line 2 and the location of the output file.

� After saving, compiling, and running this job (Figure 2-125 on page 609), 
review the contents of the output of the CASS stage as shown in Figure 2-126 
on page 610 through Figure 2-131 on page 615. It shows validation errors 
with some addresses as described in “J05_CASS_USPREP” on page 219.

 

 

 

 

 Chapter 2. Financial services business scenario 605



Proceed now to “j07_INVCC_CASS” on page 615. 

Figure 2-120   Create j06_XXPREP_CASS 1/12

Note: Generally, you need to present any data error for review by appropriate 
personnel as early as possible in the process. An A1 should be investigated 
and appropriate action taken.

 

 

 

 

606 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-121   Create j06_XXPREP_CASS 2/12

Figure 2-122   Create j06_XXPREP_CASS 3/12

 

 

 

 

 Chapter 2. Financial services business scenario 607



Figure 2-123   Create j06_XXPREP_CASS 4/12

Figure 2-124   Create j06_XXPREP_CASS 5/12

 

 

 

 

608 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-125   Create j06_XXPREP_CASS 6/12

 

 

 

 

 Chapter 2. Financial services business scenario 609



Figure 2-126   Create j06_XXPREP_CASS 7/12

 

 

 

 

610 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-127   Create j06_XXPREP_CASS 8/12

 

 

 

 

 Chapter 2. Financial services business scenario 611



Figure 2-128   Create j06_XXPREP_CASS 9/12

 

 

 

 

612 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-129   Create j06_XXPREP_CASS 10/12

 

 

 

 

 Chapter 2. Financial services business scenario 613



Figure 2-130   Create j06_XXPREP_CASS 11/12

 

 

 

 

614 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-131   Create j06_XXPREP_CASS 12/12

j07_INVCC_CASS
We then run the Investigate stage with character concatenate option on the 
(home address related columns in CONTACT_INFO and DRIVER) results of job 
“j06_XXPREP_CASS” on page 605 step to determine addresses that are not 
recognized by CASS (delivery point verification or DPV).

We investigate using character concatenate (on CASS generated columns 
DPVMATCHFLAG_CASS and DPVCODE1_CASS) using a C mask, and X 
masks on the DeliveryAddressLine1_CASS, City_CASS, State_CASS, and 
Zip5_CASS columns. A value of A1 in the DPVCODE1_CASS field indicates a 
potential problem.

Note: Due to a bug with handling nulls, we introduced a Transformer stage to 
convert nulls to a space using column derivation.

 

 

 

 

 Chapter 2. Financial services business scenario 615



Figure 2-132 on page 617 shows the various stages that are used in this job, 
including the data sets that were created in “j06_XXPREP_CASS” on page 605, 
a Transformer stage for handling nulls, an Investigate stage, and an output 
Sequential File stage for each input data set. We modified the names of the 
stages as shown.

Because the configuration of this job is very similar to that described in 
“J06_INVCC_CASS” on page 228, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-133 on page 617 shows the configuration of the INV_DPV_INFO 
Investigate stage window with columns DPVMatchFlag_CASS and 
DPVCode1_CASS selected with the C masks for each character. The X 
masks are used for columns Delivery_AddressLine1_CASS,City_CASS, and 
Zip5_CASS. 

� After saving, compiling, and running this job (Figure 2-134 on page 618), the 
output of the Investigate stages are shown in Figure 2-135 on page 618 
through Figure 2-139 on page 621. It shows a a few records with values A1 in 
the DPVMatchFlag_CASS and DPVCode1_CASS character concatenated 
columns, indicating a potential problem that requires further investigation. 

Proceed now to “j08_USPREP_CASS” on page 619. 

 

 

 

 

616 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-132   Create j07_INVCC_CASS 1/7

Figure 2-133   Create j07_INVCC_CASS 2/7

 

 

 

 

 Chapter 2. Financial services business scenario 617



Figure 2-134   Create j07_INVCC_CASS 3/7

Figure 2-135   Create j07_INVCC_CASS 4/7

 

 

 

 

618 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-136   Create j07_INVCC_CASS 5/7

Figure 2-137   Create j07_INVCC_CASS 6/7

Figure 2-138   Create j07_INVCC_CASS 7/7

j08_USPREP_CASS
In this step, we standardize the name and address contents of the output of job 
“j06_XXPREP_CASS” on page 605 using the domain-preprocessor USPREP 
rule set. This parses and moves name, address, and area content from selected 

 

 

 

 

 Chapter 2. Financial services business scenario 619



input columns to the NameDomain_USPREP, AddressDomain_USPREP, and 
AreaDomain_USPREP columns. We also add a column to the output that only 
had the first three characters of the ZIP code using a Transformer stage. This 
new column (ZIP3) is used as a blocking variable in an upcoming matching 
stage. 

After CASS validates and corrects the address fields (but not the name fields), 
the Standardize stage is run again with the domain-preprocessor rule set 
USPREP on the name fields and CASS corrects address fields and the literals 
ZQPUTRZQ and ZQPUTAZQ.6

Figure 2-139 on page 621 shows the various stages that are used in this job, 
including the data sets that were created in “j06_XXPREP_CASS” on page 605, 
a Standardize stage, a Transformer stage to add a column, and an output Data 
Set stage for each of the input data sets. We modified the names of the stages as 
shown.

Because the configuration of this job is very similar to that described in 
“J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234, we do not 
repeat it here. However, some of the configurations of interest are as follows:

� The Standardize Rule Process windows in Figure 2-140 on page 622 and 
Figure 2-141 on page 622 show the domain preprocessor USPREP rule set 
with literals and selected columns as follows for the U.S. home addresses of 
the CONTACT_INFO file:

ZQPUTAZQ DeliveryAddressLine1_CASS DeliveryAddressLine2_CASS 
ZQPUTRZQ City_CASS State_CASS Zip5_CASS

� The ADD_ZIP3a - Transformer Stage windows in Figure 2-142 on page 623 
and Figure 2-143 on page 624 show the addition of a ZIP3 column to the 
output that only contains the first three digits of the 5-digit ZIP5_CASS field 
for the U.S. home addresses of the CONTACT_INFO file. 

� Because the configuration is somewhat similar for the U.S. work addresses of 
the CONTACT_INFO file and the U.S. addresses of the DRIVER file, we do 
not repeat it here. 

6  The literal ZQPUTAZQ defaults the entire field to the Address Domain automatically, while 
ZQPUTRZQ defaults the entire field to the Area Domain automatically. Example 1-1 on page 33 
has a brief overview of the available literals.

Note: The DRIVER file has the additional NAME field and, therefore, the 
Standardize Rule Process window has the following configuration:

ZQNAMEZQ NAME ZQPUTAZQ DeliveryAddressLine1_CASS 
DeliveryAddressLine2_CASS ZQPUTRZQ City_CASS State_CASS Zip5_CASS

 

 

 

 

620 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� After saving, compiling, and running this job (Figure 2-144 on page 625), you 
can view the content of output data set as shown in Figure 2-145 on page 626 
through Figure 2-150 on page 631. 

This report shows the columns NameDomain_USPREP (contains prefix, first 
name, last name, suffix tokens), AddressDomain_USPREP (contains 
apartment, street name and street type tokens), and AreaDomain_USPREP 
(contains state, ZIP code tokens) that were parsed from the input columns. 

Proceed now to “j09_STAN_CASS” on page 631.

Figure 2-139   Create j08_USPREP_CASS 1/12

 

 

 

 

 Chapter 2. Financial services business scenario 621



Figure 2-140   Create j08_USPREP_CASS 2/12

Figure 2-141   Create j08_USPREP_CASS 3/12

 

 

 

 

622 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-142   Create j08_USPREP_CASS 4/12

 

 

 

 

 Chapter 2. Financial services business scenario 623



Figure 2-143   Create j08_USPREP_CASS 5/12

 

 

 

 

624 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-144   Create j08_USPREP_CASS 6/12

 

 

 

 

 Chapter 2. Financial services business scenario 625



Figure 2-145   Create j08_USPREP_CASS 7/12

 

 

 

 

626 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-146   Create j08_USPREP_CASS 8/12

 

 

 

 

 Chapter 2. Financial services business scenario 627



Figure 2-147   Create j08_USPREP_CASS 9/12

 

 

 

 

628 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-148   Create j08_USPREP_CASS 10/12

 

 

 

 

 Chapter 2. Financial services business scenario 629



Figure 2-149   Create j08_USPREP_CASS 11/12

 

 

 

 

630 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-150   Create j08_USPREP_CASS 12/12

j09_STAN_CASS
In this step, we standardize the name and address contents of the output of jobs 
“j03_STAN_XXPREP_NAB” on page 530 and “j08_USPREP_CASS” on 
page 619 using the domain-specific rule sets USNAME (with column 
NameDomain_USPREP), USADDR (with column AddressDomain_USPREP), 
USAREA (with column AreaDomain_USPREP), CAADDR (with column 
AddressDomain_CAPREP), CAAREA (with column AreaDomain_CAPREP). 
Separate processes are defined—one for each address type, such as U.S. home 
addresses and Canadian home addresses.

Figure 2-151 on page 633 shows the various stages that are used in this job. It 
includes the data sets that were created in “j03_STAN_XXPREP_NAB” on 

Note: Here again, we had to introduce a null handling Transformer stage to 
circumvent a bug. 

 

 

 

 

 Chapter 2. Financial services business scenario 631



page 530 and “j08_USPREP_CASS” on page 619, a Standardize stage, a 
Transformer stage to handle nulls, and an output Data Set stage for each of the 
input data sets. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241, we do not repeat it 
here. However, some of the configurations of interest are as follows:

� Figure 2-152 on page 634 through Figure 2-156 on page 636 show the 
Standardize Stage window for each of the input data sets as follows:

– USNAME rule set for the NameDomain_USPREP column for the 
CUSTOMER file as shown in Figure 2-152 on page 634.

– USADDR and USAREA rule sets for the AddressDomain_USPREP and 
AreaDomain_USPREP columns respectively for the U.S. work addresses 
in the CONTACT_INFO file as shown in Figure 2-153 on page 634.

– USADDR and USAREA rule sets for the AddressDomain_USPREP and 
AreaDomain_USPREP columns respectively for the U.S. home addresses 
in the CONTACT_INFO file as shown in Figure 2-154 on page 635.

– CAADDR and CAAREA rule sets for the AddressDomain_CAPREP and 
AreaDomain_CAPREP columns respectively for the Canadian home 
addresses in the CONTACT_INFO file as shown in Figure 2-155 on 
page 635.

– USNAME, USADDR and USAREA rule sets for the 
NameDomain_USPREP, AddressDomain_USPREP and 
AreaDomain_USPREP columns respectively for the U.S. addresses in the 
DRIVER file as shown in Figure 2-156 on page 636.

� After saving, compiling, and running this job (Figure 2-157 on page 637), the 
standardized output is written to new columns such as:

– FirstName_USNAME and PrimaryName_USNAME
– InputPattern_USNAME
– UnhandledPattern_USNAME
– UnhandledData_USNAME
– InputPattern_USNAME
– UnhandledPattern_USADDR
– UnhandledData_USADDR
– InputPattern_USADDR
– UnhandledPattern_USAREA 
– UnhandledData_USAREA

Similar columns are added for the Canadian home addresses. We do not 
show these here.

 

 

 

 

632 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Proceed now to identify any unhandled patterns and classifications by 
performing an investigate as described in 
“j10a_INVCC_CUSTOMER_XXPREP_STAN” on page 637 through 
“j10e_INVCC_DRIVER_CASS_USPREP_STAN” on page 652.

Figure 2-151   Create j09_STAN_CASS 1/7

 

 

 

 

 Chapter 2. Financial services business scenario 633



Figure 2-152   Create j09_STAN_CASS 2/7

Figure 2-153   Create j09_STAN_CASS 3/7

 

 

 

 

634 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-154   Create j09_STAN_CASS 4/7

Figure 2-155   Create j09_STAN_CASS 5/7

 

 

 

 

 Chapter 2. Financial services business scenario 635



Figure 2-156   Create j09_STAN_CASS 6/7

 

 

 

 

636 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-157   Create j09_STAN_CASS 7/7

j10a_INVCC_CUSTOMER_XXPREP_STAN
In this step, we identify unhandled patterns and classifications in 
“j09_STAN_CASS” on page 631. We run a series of Investigate stage with the 
character concatenate option using the C mask on the unhandled pattern column 
and X masks on additional columns. The columns investigated corresponded to 
the name, address, and area domains. We review unhandled patterns and 
generate classification and input pattern overrides to rectify the problem. The 
Standardize stage is then rerun with the overrides in place and verified using 
Investigate that all the unhandled patterns are resolved.

 

 

 

 

 Chapter 2. Financial services business scenario 637



The following jobs perform these steps:

� “j10a_INVCC_CUSTOMER_XXPREP_STAN” on page 637
� “j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN” on 

page 640
� “j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN” on 

page 645
� “j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN” on page 647
� “j10e_INVCC_DRIVER_CASS_USPREP_STAN” on page 652

Figure 2-158 on page 639 shows the various stages that are used in this job. It 
includes the data set that was created in “j09_STAN_CASS” on page 631, an 
Investigate stage with the character concatenate option, and a sequential file for 
the column frequency report. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. 
However, some of the configurations of interest are as follows:

� Figure 2-159 on page 639 shows the INV1 - Investigate Stage window with 
the USNAME rule set, and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_USNAME with C mask
– UnhandledData_USNAME with X mask
– InputPattern_USNAME with X mask
– ExceptionData_USNAME with X mask 

� After saving, compiling, and running this job (Figure 2-160 on page 640), the 
contents of the output of the investigate stage shows no unhandled patterns 
in Figure 2-161 on page 640.

Proceed now to unhandled patterns in the address domain in 
“j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN” on page 640.

 

 

 

 

638 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-158   Create j10a_INVCC_CUSTOMER_XXPREP_STAN 1/4

Figure 2-159   Create j10a_INVCC_CUSTOMER_XXPREP_STAN 2/4

 

 

 

 

 Chapter 2. Financial services business scenario 639



Figure 2-160   Create j10a_INVCC_CUSTOMER_XXPREP_STAN 3/4

Figure 2-161   Create j10a_INVCC_CUSTOMER_XXPREP_STAN 4/4

j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN
In this step, we investigate the unhandled patterns of the U.S. work address 
CONTACT_INFO file that was created in “j09_STAN_CASS” on page 631. 

Because a single Investigate stage can only have a single rule set associated 
with it, we copy the output data set of “j09_STAN_CASS” on page 631 (using a 
Copy stage) and process the file by two independent Investigate stages, with 
each stage using a particular domain-specific rule set. The column frequency 
report is generated in each Investigate stage.

Figure 2-162 on page 642 shows the various stages that are used in this job. It 
includes the data set that was created in “j09_STAN_CASS” on page 631, a 
Copy stage, two Investigate stages that each use a different domain-specific rule 
set, and a sequential file for each Investigate stage. We modified the names of 
the stages as shown.

 

 

 

 

640 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. 
However, some of the configurations of interest are as follows: 

� Figure 2-163 on page 643 shows the INV1 - Investigate Stage window with 
the USADDR rule set, and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_USADDR with C mask
– UnhandledData_USADDR with X mask
– InputPattern_USADDR with X mask
– ExceptionData_USADDR with X mask 

� Figure 2-164 on page 643 shows the INV2 - Investigate Stage window with 
the USAREA rule set, and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_USAREA with C mask
– UnhandledData_USAREA with X mask
– InputPattern_USAREA with X mask
– ExceptionData_USAREA with X mask 

� After saving, compiling, and running this job (Figure 2-165 on page 644), the 
contents of the output of the investigate stages show no unhandled patterns 
in Figure 2-166 on page 644 and Figure 2-167 on page 644.

Proceed now to unhandled patterns in the address domain in 
“j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN” on 
page 645. 

 

 

 

 

 Chapter 2. Financial services business scenario 641



Figure 2-162   Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 1/6

 

 

 

 

642 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-163   Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 2/6

Figure 2-164   Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 3/6

 

 

 

 

 Chapter 2. Financial services business scenario 643



Figure 2-165   Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 4/6

Figure 2-166   Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 5/6

Figure 2-167   Create j10b_INVCC_CONTACT_INFO_WORK_CASS_USPREP_STAN 6/6

 

 

 

 

644 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN
In this step, we investigate the unhandled patterns of the U.S. home address file 
created in the “j09_STAN_CASS” on page 631 step. 

Because a single Investigate stage can only have a single rule set associated 
with it, we copy the output data set of the “j09_STAN_CASS” on page 631 job 
(using a Copy stage) and process it by two independent Investigate stages, with 
each stage using a particular domain-specific rule set. The column frequency 
report is generated in each Investigate stage.

Figure 2-168 on page 646 shows the various stages that are used in this job, 
including the data set that was created in “j09_STAN_CASS” on page 631, a 
Copy stage, two Investigate stages that each use a different domain-specific rule 
set, and a sequential file for each Investigate stage. We modified the names of 
the stages as shown.

Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. The 
configuration of the Investigate stages are similar to that described in 
Figure 2-163 on page 643 and Figure 2-164 on page 643 and also not repeated 
here. 

After saving, compiling, and running this job (Figure 2-168 on page 646), one 
unhandled pattern (^+DD) is identified as shown in Figure 2-169 on page 646. 

An Input Pattern override was generated for the unhandled pattern as shown in 
Figure 2-170 on page 647. We then reran the “j09_STAN_CASS” on page 631 
and “j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN” on 
page 645 jobs. Figure 2-171 on page 647 and Figure 2-172 on page 647 show 
no more unhandled patterns.

Proceed now to unhandled patterns in the address domain that must be 
managed in “j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN” on 
page 647. 

 

 

 

 

 Chapter 2. Financial services business scenario 645



Figure 2-168   Create j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 1/5

Figure 2-169   Create j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 2/5

 

 

 

 

646 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-170   Create j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 3/5

Figure 2-171   Create j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 4/5

Figure 2-172   Create j10c_INVCC_CONTACT_INFO_HOME_US_CASS_USPREP_STAN 5/5

j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN
In this step, we investigate the unhandled patterns of the Canadian home 
address file created in the “j09_STAN_CASS” on page 631 step. 

Because a single Investigate stage can only have a single rule set associated 
with it, we copy the output data set of the “j09_STAN_CASS” on page 631 job 
(using a Copy stage) and process it by two independent Investigate stages, with 
each stage using a particular domain-specific rule set. The column frequency 
report is generated in each Investigate stage.

 

 

 

 

 Chapter 2. Financial services business scenario 647



Figure 2-173 on page 649 shows the various stages that are used in this job, 
including the data set that was created in “j09_STAN_CASS” on page 631, a 
Copy stage, two Investigate stages that each use a different domain-specific rule 
set, and a sequential file for each Investigate stage. We modified the names of 
the stages as shown.

Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. 
However, some of the configurations of interest are as follows: 

� Figure 2-174 on page 649 shows the INV1 - Investigate Stage window with 
the CAADDR rule set, and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_CAADDR with C mask
– UnhandledData_CAADDR with X mask
– InputPattern_CAADDR with X mask
– AddressDomain_CAPREP with X mask 

� Figure 2-175 on page 650 shows the INV2 - Investigate Stage window with 
the CAAREA rule set, and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_CAADDR with C mask
– UnhandledData_CAADDR with X mask
– InputPattern_CAADDR with X mask
– AreaDomain_CAPREP with X mask 

� After saving, compiling, and running this job (Figure 2-176 on page 650), one 
unhandled pattern (^D^) is identified as shown in Figure 2-177 on page 651. 

An Input Pattern override is generated for the unhandled pattern as shown in 
Figure 2-179 on page 651. We then rerun the “j09_STAN_CASS” on 
page 631 and “j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN” 
on page 647 jobs. Figure 2-180 on page 651 shows no more unhandled 
patterns.

Proceed now to unhandled patterns in the name and address domains in 
“j10e_INVCC_DRIVER_CASS_USPREP_STAN” on page 652. 

 

 

 

 

648 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-173   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 1/8

Figure 2-174   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 2/8

 

 

 

 

 Chapter 2. Financial services business scenario 649



Figure 2-175   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 3/8

Figure 2-176   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 4/8

 

 

 

 

650 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-177   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 5/8

Figure 2-178   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 6/8

Figure 2-179   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 7/8

Figure 2-180   Create j10d_INVCC_CONTACT_INFO_HOME_CA_XXPREP_STAN 8/8

 

 

 

 

 Chapter 2. Financial services business scenario 651



j10e_INVCC_DRIVER_CASS_USPREP_STAN
In this step, we investigate the unhandled patterns of the name and U.S. 
addresses file that was created in the “j09_STAN_CASS” on page 631 step. 

Because a single Investigate stage can only have a single rule set associated 
with it, we copy the output data set of “j09_STAN_CASS” on page 631 (using a 
Copy stage) and process the file by three independent Investigate stages, with 
each stage using a particular domain-specific rule set. The column frequency 
report is generated in each Investigate stage.

Figure 2-181 on page 653 shows the various stages that are used in this job, 
including the data set that was created in “j09_STAN_CASS” on page 631, a 
Copy stage, three Investigate stages that each use a different domain-specific 
rule set, and a sequential file for each Investigate stage. We modified the names 
of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. 
However, some of the configurations of interest are as follows: 

� Figure 2-182 on page 654 shows the INV1 - Investigate Stage window with 
the USNAME rule set and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_USNAME with C mask
– UnhandledData_USNAME with X mask
– InputPattern_USNAME with X mask
– NameDomain_USPREP with X mask 

� Figure 2-183 on page 654 shows the INV2 - Investigate Stage window with 
the USAREA rule set and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_USAREA with C mask
– UnhandledData_USAREA with X mask
– InputPattern_USAREA with X mask
– AreaDomain_USPREP with X mask 

� Figure 2-184 on page 655 shows the INV3 - Investigate Stage window with 
the USADDR rule set and the columns selected for Character Concatenate 
Investigate as follows:

– UnhandledPattern_USADDR with C mask
– UnhandledData_USADDR with X mask
– InputPattern_USADDR with X mask
– AddressDomain_USPREP with X mask 

 

 

 

 

652 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� After saving, compiling, and running this job (Figure 2-185 on page 655), 
three unhandled patterns are identified as shown in Figure 2-186 on 
page 656. 

Input Classification and Input Pattern overrides are generated for the 
unhandled patterns as shown in Figure 2-187 on page 656 and Figure 2-188 
on page 657. We then rerun the “j09_STAN_CASS” on page 631 and 
“j10e_INVCC_DRIVER_CASS_USPREP_STAN” on page 652 jobs. 
Figure 2-189 on page 657 shows no more unhandled patterns.

Proceed now to “j11_JOIN_NAB_NAME_AND_ADDR_DATA” on page 657.

Figure 2-181   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 1/9

 

 

 

 

 Chapter 2. Financial services business scenario 653



Figure 2-182   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 2/9

Figure 2-183   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 3/9

 

 

 

 

654 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-184   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 4/9

Figure 2-185   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 5/9

 

 

 

 

 Chapter 2. Financial services business scenario 655



Figure 2-186   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 6/9

Figure 2-187   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 7/9

 

 

 

 

656 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-188   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 8/9

Figure 2-189   Create j10e_INVCC_DRIVER_CASS_USPREP_STAN 9/9

j11_JOIN_NAB_NAME_AND_ADDR_DATA
After the unhandled patterns are handled, we reconstruct two files as follows:

� Standardized name (CUSTOMER file) and standardized U.S. home address 
information (CONTACT_INFO) from the standardized output of the 
“j09_STAN_CASS” on page 631 step by joining them on the CUSTOMER_ID.

� Standardized name (CUSTOMER file) and standardized Canadian home 
address information (CONTACT_INFO) from the standardized output of the 
“j09_STAN_CASS” on page 631 step by joining them on the CUSTOMER_ID. 

These reconstructed files are required to survive the “best” data from the North 
American Bank’s core and non-core systems into the CRM system.

We also rename certain columns in the standardized work address file to avoid 
column name conflicts in the upcoming “j12_JOIN_NAB_WORK_AND_HOME” 
on page 674 job. 

 

 

 

 

 Chapter 2. Financial services business scenario 657



Figure 2-190 on page 659 shows the various stages that are used in this job. It 
includes the data sets that were created in “j09_STAN_CASS” on page 631, a 
Join stage, and an output Data Set stage for each Join stage. It also includes a 
Transformer stage to rename columns in the U.S. work address CONTACT_INFO 
file created in the “j09_STAN_CASS” on page 631 step. A rename of columns 
was required for this file so that there is no column name conflict when it is joined 
with another standardized file in the “j12_JOIN_NAB_WORK_AND_HOME” on 
page 674 step. We modified the names of the stages as shown.

Figure 2-191 on page 660 shows the Join1 - Join window, which indicates an 
inner join of the standardized name CUSTOMER file with and standardized U.S. 
home addresses customer CONTACT_INFO file on the CUSTOMER_ID column. 
With an inner join, records from input data sets whose key columns contain equal 
values to the output data set are transferred to the output. Records whose key 
columns do not contain equal values are dropped. The resulting columns from 
the mapping of the two input sources are shown in Figure 2-192 on page 661 
through Figure 2-194 on page 663.

Figure 2-195 on page 664 through Figure 2-198 on page 667 corresponds the 
inner join of the standardized name CUSTOMER file with and standardized 
Canadian home addresses customer CONTACT_INFO file on the 
CUSTOMER_ID column.

Figure 2-199 on page 668 through Figure 2-201 on page 670 show the 
RENAME_COLUMNS - Transformer Stage window, which renames some of the 
Standardize stage generated columns (such as HouseNumber_USADDR to 
HouseNumber_USADDR_WORK) to avoid name conflicts when this file is joined 
to the standardized customer name and U.S. home addresses customer 
CONTACT_INFO file. Figure 2-202 on page 671 through Figure 2-204 on 
page 673 show the metadata definitions of the output Data Set with the modified 
column names. 

Figure 2-205 on page 674 shows the results after compiling and running this job.

Proceed now to “j12_JOIN_NAB_WORK_AND_HOME” on page 674.

 

 

 

 

658 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-190   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 1/16

 

 

 

 

 Chapter 2. Financial services business scenario 659



Figure 2-191   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 2/16

 

 

 

 

660 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-192   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 3/16

 

 

 

 

 Chapter 2. Financial services business scenario 661



Figure 2-193   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 4/16

 

 

 

 

662 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-194   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 5/16 

 

 

 

 

 Chapter 2. Financial services business scenario 663



Figure 2-195   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 6/16

 

 

 

 

664 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-196   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 7/16

 

 

 

 

 Chapter 2. Financial services business scenario 665



Figure 2-197   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 8/16

 

 

 

 

666 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-198   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 9/16

 

 

 

 

 Chapter 2. Financial services business scenario 667



Figure 2-199   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 10/16

 

 

 

 

668 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-200   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 11/16

 

 

 

 

 Chapter 2. Financial services business scenario 669



Figure 2-201   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 12/16

 

 

 

 

670 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-202   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 13/16

 

 

 

 

 Chapter 2. Financial services business scenario 671



Figure 2-203   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 14/16

 

 

 

 

672 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-204   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 15/16

 

 

 

 

 Chapter 2. Financial services business scenario 673



Figure 2-205   Create j11_JOIN_NAB_NAME_AND_ADDR_DATA 16/16

j12_JOIN_NAB_WORK_AND_HOME
In this step, we append the customer’s standardized U.S. work address 
information to the two files that were created in the 
“j11_JOIN_NAB_NAME_AND_ADDR_DATA” on page 657 step. All the 
addresses in the work address are U.S. addresses. 

Figure 2-206 on page 676 shows the various stages that are used in this job. It 
includes the data sets that were created in 

 

 

 

 

674 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



“j11_JOIN_NAB_NAME_AND_ADDR_DATA” on page 657, a Join stage, and an 
output Data Set stage for each Join stage. We modified the names of the stages 
as shown.

Figure 2-207 on page 677 shows the Join2 - Join window, which indicates an 
inner join of the standardized name and U.S. work addresses customer 
CONTACT_INFO file (from the previous step) with the standardized name and 
U.S. home addresses customer CONTACT_INFO file. The metadata of the 
columns of the joined output is shown in Figure 2-208 on page 678 through 
Figure 2-211 on page 681.

Figure 2-212 on page 682 through Figure 2-216 on page 686 corresponds the 
inner join (JOIN3 - Join window) of the standardized name and U.S. work 
addresses customer CONTACT_INFO file (from the previous step) with the 
standardized name and Canadian home addresses customer CONTACT_INFO 
file. The metadata of the columns of the joined output is shown in Figure 2-213 
on page 683 through Figure 2-216 on page 686.

Figure 2-217 on page 687 shows the results after compiling and running this job. 

Proceed now to “j13_PREPARE_NAB_DATA_FOR_FUNNEL” on page 687.

 

 

 

 

 Chapter 2. Financial services business scenario 675



Figure 2-206   Create j12_JOIN_NAB_WORK_AND_HOME 1/12

 

 

 

 

676 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-207   Create j12_JOIN_NAB_WORK_AND_HOME 2/12

 

 

 

 

 Chapter 2. Financial services business scenario 677



Figure 2-208   Create j12_JOIN_NAB_WORK_AND_HOME 3/12

 

 

 

 

678 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-209   Create j12_JOIN_NAB_WORK_AND_HOME 4/12

 

 

 

 

 Chapter 2. Financial services business scenario 679



Figure 2-210   Create j12_JOIN_NAB_WORK_AND_HOME 5/12

 

 

 

 

680 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-211   Create j12_JOIN_NAB_WORK_AND_HOME 6/12

 

 

 

 

 Chapter 2. Financial services business scenario 681



Figure 2-212   Create j12_JOIN_NAB_WORK_AND_HOME 7/12

 

 

 

 

682 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-213   Create j12_JOIN_NAB_WORK_AND_HOME 8/12

 

 

 

 

 Chapter 2. Financial services business scenario 683



Figure 2-214   Create j12_JOIN_NAB_WORK_AND_HOME 9/12

 

 

 

 

684 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-215   Create j12_JOIN_NAB_WORK_AND_HOME 10/12

 

 

 

 

 Chapter 2. Financial services business scenario 685



Figure 2-216   Create j12_JOIN_NAB_WORK_AND_HOME 11/12

 

 

 

 

686 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-217   Create j12_JOIN_NAB_WORK_AND_HOME 12/12

j13_PREPARE_NAB_DATA_FOR_FUNNEL 
At this point, we have two reconstructed files with standardized names and home 
and work addresses—one containing U.S. home addresses and the other 
containing Canadian home addresses. We need to merge these files with the 
standardized name and address file of the DRIVER in order to identify duplicates 
(with data from the Northern California Bank’s standardized name and addresses 
from their core and non-core services as described in 2.6.2, “Cleansing Northern 
California Bank’s core and non-core services” on page 706) and to survive the 
“best” data into the CRM system as described in 2.6.3, “Matching and surviving 
Northern California Bank and Northern California Bank information” on 
page 783.

Prior to merging the two files that were created in 
“j12_JOIN_NAB_WORK_AND_HOME” on page 674 with the standardized name 

 

 

 

 

 Chapter 2. Financial services business scenario 687



and address DRIVER file that was created in “j09_STAN_CASS” on page 631, 
we need to prepare the files for merging in the Funnel stage by ensuring that all 
the files have the same number of columns and same names of columns using a 
Transformer stage. 

Figure 2-218 on page 689 shows the various stages that are used in this job. It 
includes the data sets that were created in 
“j12_JOIN_NAB_WORK_AND_HOME” on page 674 and “j09_STAN_CASS” on 
page 631, a Transformer stage, and an output Data Set stage for each 
Transformer stage. We modified the names of the stages as shown.

Figure 2-219 on page 690 through Figure 2-223 on page 694 show the 
PICK_COLUMNS2 - Transformer windows that pick the appropriate columns 
from the customer name, U.S. home addresses, and the U.S. work addresses file 
that was created in “j12_JOIN_NAB_WORK_AND_HOME” on page 674. Certain 
columns are renamed and replaced with an empty string as highlighted. Also, 
additional columns (that exist in the other files to be merged with such as 
ZIP3_WORK, NCB_CORE_ID and NCB_NON_CORE_ID) are added with empty 
string or other values as highlighted. 

Figure 2-224 on page 695 through Figure 2-228 on page 699 show the 
corresponding PICK_COLUMNS3 - Transformer windows that pick the 
appropriate columns from the customer name, Canadian home addresses, and 
the U.S. work addresses file that was created in 
“j12_JOIN_NAB_WORK_AND_HOME” on page 674. 

Figure 2-229 on page 700 through Figure 2-233 on page 704 show the 
corresponding PICK_COLUMNS4 - Transformer windows that pick the 
appropriate columns from the DRIVER name and address file that was created in 
“j09_STAN_CASS” on page 631. 

Figure 2-234 on page 705 shows the results after compiling and running this job. 

Proceed now to “j14_FUNNEL_NAB_DATA_FOR_CRM” on page 705.

 

 

 

 

688 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-218   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 1/17

 

 

 

 

 Chapter 2. Financial services business scenario 689



Figure 2-219   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 2/17

 

 

 

 

690 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-220   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 3/17

 

 

 

 

 Chapter 2. Financial services business scenario 691



Figure 2-221   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 4/17

 

 

 

 

692 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-222   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 5/17

 

 

 

 

 Chapter 2. Financial services business scenario 693



Figure 2-223   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 6/17

 

 

 

 

694 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-224   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 7/17

 

 

 

 

 Chapter 2. Financial services business scenario 695



Figure 2-225   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 8/17

 

 

 

 

696 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-226   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 9/17

 

 

 

 

 Chapter 2. Financial services business scenario 697



Figure 2-227   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 10/17

 

 

 

 

698 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-228   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 11/17

 

 

 

 

 Chapter 2. Financial services business scenario 699



Figure 2-229   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 12/17

 

 

 

 

700 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-230   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 13/17

 

 

 

 

 Chapter 2. Financial services business scenario 701



Figure 2-231   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 14/17

 

 

 

 

702 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-232   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 15/17

 

 

 

 

 Chapter 2. Financial services business scenario 703



Figure 2-233   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 16/17

 

 

 

 

704 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-234   Create j13_PREPARE_NAB_DATA_FOR_FUNNEL 17/17

j14_FUNNEL_NAB_DATA_FOR_CRM 
In this step, we merge the three files that were created in 
“j13_PREPARE_NAB_DATA_FOR_FUNNEL” on page 687 using the Funnel 
stage. The output of this step is then included for matching and surviving the 
“best” data as described in 2.6.3, “Matching and surviving Northern California 
Bank and Northern California Bank information” on page 783.

Figure 2-218 on page 689 shows the various stages that are used in this job. It 
includes the data sets that were created in 
“j13_PREPARE_NAB_DATA_FOR_FUNNEL” on page 687, a Funnel stage, and 
an output Data Set stage. We modified the stage names as shown. 

Because we have discuss these configurations previously, we do not repeat it 
here.

Figure 2-235 on page 706 shows the results after compiling and running this job. 

Proceed now to 2.6.3, “Matching and surviving Northern California Bank and 
Northern California Bank information” on page 783.

 

 

 

 

 Chapter 2. Financial services business scenario 705



Figure 2-235   Create j14_FUNNEL_NAB_DATA_FOR_CRM 

2.6.2  Cleansing Northern California Bank’s core and non-core 
services

Figure 2-7 on page 498 shows the processing flow and jobs that are used for 
cleansing name and addresses in Northern California Bank’s core and non-core 
services. 

We describe the steps briefly here:

1. We began by extracting all the CUSTOMER, BCUSTOMER, and BRANCH 
data from the DB2 database and loading it into data sets to isolate it from 
changes during analysis. We also introduced a Transformer stage to provide 
for pre-processing the source for analysis, such as trimming out any extra 
spaces in the name and address fields using the TRIM function and changing 
default values to nulls using the IsNull ..then..else function. 

Job “j00_SRC_NCB” on page 709 performs this step. 

 

 

 

 

706 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2. Next, we analyzed the addresses in appropriate data sets (CUSTOMER and 
BCUSTOMER) to determine their (ISO code) country using the COUNTRY 
rule set in the Standardize stage. 

Job “j01_STAN_COUNTRY_NCB” on page 719 performs this step.

3. The ISO codes that were generated by the previous step were analyzed by 
the Investigate stage using the character concatenate investigate option with 
the C mask to obtain frequency distribution. This step identified whether the 
addresses in the appropriate data sets belonged to more than one country, 
and identified the codes of the countries in the addresses. 

In this case, the addresses were all U.S. addresses. 

Job “j02_INVCD_ISOCODE_NCB” on page 726 performs this step.

4. Next, we used the Standardize stage with the USPREP domain-preprocessor 
rule set to move name and address data into Name, Address, and Area 
domains for the CUSTOMER and BCUSTOMER files. 

Job “j03_STAN_USPREP_NCB” on page 729 performs this step.

5. We then used the Investigate stage using the character concatenate 
investigate option on the input patterns generated by the Standardize stage in 
the previous step, to determine the degree of success achieved by the 
USPREP domain-preprocessor rule set in parsing the tokens in the 
name/address fields into the correct domains.

A visual analysis of the pattern reports that were generated by the Investigate 
stage indicated no errors in the movement of data to the name, address, and 
area domains. However, some spelling errors (such as 321 Curie Drivee of 
Torben Anderson) were detected, which we decided to defer addressing till 
after subsequent stages. We, therefore, proceeded to the next step, 
“j05_CASS_USPREP_NCB” on page 742. 

Job “j04_INVCC_USPREP_INPUT_PATTERN_NCB” on page 735 performs 
this step.

6. Next, we used the CASS stage to validate, correct, and standardize the U.S. 
addresses in the Address domain. We included a Transformer stage to add a 
second address line column to customer file because CASS requires two 
address lines as input for its processing.

Note: The CRM system has only the name of the BRANCH included in its 
data model (see Figure 2-3 on page 485). Because BRANCH was a very 
small file, we visually verified and corrected the name and address fields in 
the records without using IBM WebSphere QualityStage. 

 

 

 

 

 Chapter 2. Financial services business scenario 707



Job “j05_CASS_USPREP_NCB” on page 742 performs this step.

7. We then ran the Investigate stage with character concatenate option on the 
results of job “j05_CASS_USPREP_NCB” on page 742 step to determine 
addresses not recognized by CASS (delivery point verification or DPV).

We investigated the generated columns DPVMATCHFLAG_CASS and 
DPVCODE1_CASS using a C mask. A value of A1 in the DPVCODE1_CASS 
field indicated a potential problem.

Job “j06_INVCC_CASS_NCB” on page 752 performs this step.

8. The next step standardized the address contents of the output of job 
“j05_CASS_USPREP_NCB” on page 742 using the domain-preprocessor 
USPREP rule set. This parsed and moved the name, address, and area 
content from selected input columns to the AddressDomain_USPREP and 
AreaDomain_USPREP columns. We also added a column to the output that 
only had the first three characters of the ZIP code using a Transformer stage. 
This new column (ZIP3) was used as a blocking variable in an upcoming 
matching stage. 

Job “j07_PREP_CASS_NCB” on page 755 performs this step.

9. In this step, we standardized the name and address contents of the output of 
job “j07_PREP_CASS_NCB” on page 755 using the domain-specific rule sets 
USNAME (with column NameDomain_USPREP), USADDR (with column 
AddressDomain_USPREP), and USAREA (with column 
AreaDomain_USPREP). Separate processes were defined—one for each 
rule set.

Job “j08_STAN_CASS_NCB” on page 763 performs this step.

10.The next step identified unhandled patterns and classifications in the previous 
step in the CUSTOMER and BCUSTOMER files. We ran a series of 
Investigate stage with the character concatenate option using the C mask on 
the unhandled pattern column from the results of “j08_STAN_CASS_NCB” on 

Note: CASS is a separately priced module that requires installation of the 
CASS module.

Note: Due to a bug with handling nulls, we introduced a Transformer stage 
to convert nulls to a space using column derivation.

Note: Here again, we had to introduce a null handling Transformer stage 
to circumvent a bug.

 

 

 

 

708 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



page 763. The columns investigated corresponded to the name, address, and 
area domains. Unhandled patterns were reviewed and classification and input 
pattern overrides were generated to rectify the problem. The Standardize 
stage was then rerun with the overrides in place and verified using Investigate 
that all the unhandled patterns had been resolved.

Jobs “j09a_INVCC_CUSTOMER_STAN_CASS_NCB” on page 765 and 
“j09b_INVCC_BCUSTOMER_STAN_CASS_NCB” on page 771 perform 
these steps.

11.After the unhandled patterns were handled, we merged the standardized 
name and address file of the CUSTOMER and BCUSTOMER in order to 
identify duplicates (with data from the North American Bank’s standardized 
name and addresses from their core and non-core services as described in 
2.6.1, “Cleansing North American Bank’s core and non-core services” on 
page 508) and survive the “best” data into the CRM system as described in 
2.6.3, “Matching and surviving Northern California Bank and Northern 
California Bank information” on page 783.

Prior to merging the two files that were created in the 
“j08_STAN_CASS_NCB” on page 763 step, we needed to prepare the two 
files for merging in the Funnel stage by ensuring that all the files have the 
same number of columns and same names of columns using a Transformer 
stage. 

Job “j10_PREPARE_NCB_DATA_FOR_FUNNEL” on page 773 performs this 
step. 

12.In this step, we merged the two files that were created in the 
“j10_PREPARE_NCB_DATA_FOR_FUNNEL” on page 773 step using the 
Funnel stage.

Job “j11_FUNNEL_NCB_DATA” on page 782 performs this step.

The output of this step was then included for matching and surviving the 
“best” data as described in 2.6.3, “Matching and surviving Northern California 
Bank and Northern California Bank information” on page 783.

These jobs are described in more detail in the following sections.

j00_SRC_NCB
We begin by extracting all the CUSTOMER, BCUSTOMER, and BRANCH data 
from the DB2 database and loading it into data sets to isolate it from changes 
during analysis. We also introduce a Transformer stage to provide for 
pre-processing the source for analysis such as trimming out any extra spaces in 
the name and address fields using the TRIM function and changing default 
values to nulls using the IsNull ..then..else function.

 

 

 

 

 Chapter 2. Financial services business scenario 709



Figure 2-236 on page 711 shows the various stages that are used in this job, 
including a DB2 UDB API stage used to access the data in the CUSTOMER, 
BCUSTOMER, and BRANCH tables, a Transformer stage for every input table to 
remove blanks from name and address text fields, and an output Data Set stage 
for input table accessed. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J00_SRC_CUSTOMER” on page 142, we do not repeat it here. However, some 
of the configurations of interest are as follows:

� Figure 2-237 on page 712 shows the configuration of the TRIM_FIELDS - 
Transformer Stage that removes trailing blanks from name and address 
columns retrieved from the CUSTOMER table using the TRIMOUT function. 
We also replaced nulls in date fields (such as the UPDATED column) with a 
value of 1901-01-01 and moved all the input columns directly to the output. 
We do not show the corresponding configurations for BCUSTOMER and 
BRANCH here. 

� After saving, compiling, and running the job (not shown here), the results are 
shown in Figure 2-238 on page 713 through Figure 2-244 on page 719. The 
CUSTOMER file had 50 records, the BCUSTOMER file had 39 records, and 
the BRANCH file had 37 records. 

Proceed now to “j01_STAN_COUNTRY_NCB” on page 719.

 

 

 

 

710 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-236   Create j00_SRC_NCB 1/9

 

 

 

 

 Chapter 2. Financial services business scenario 711



Figure 2-237   Create j00_SRC_NCB 2/9

 

 

 

 

712 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-238   Create j00_SRC_NCB 3/9

 

 

 

 

 Chapter 2. Financial services business scenario 713



Figure 2-239   Create j00_SRC_NCB 4/9

 

 

 

 

714 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-240   Create j00_SRC_NCB 5/9

 

 

 

 

 Chapter 2. Financial services business scenario 715



Figure 2-241   Create j00_SRC_NCB 6/9

 

 

 

 

716 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-242   Create j00_SRC_NCB 7/9

 

 

 

 

 Chapter 2. Financial services business scenario 717



Figure 2-243   Create j00_SRC_NCB 8/9

 

 

 

 

718 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-244   Create j00_SRC_NCB 9/9

j01_STAN_COUNTRY_NCB
Next, we analyze the addresses in appropriate data sets (CUSTOMER and 
BCUSTOMER) to determine the (ISO code) country using the COUNTRY rule 
set in the Standardize stage. 

Figure 2-245 on page 720 shows the various stages that were used in this job. It 
includes the data sets that were created in “j00_SRC_NCB” on page 709, a 

Note: The CRM system only has the name of the BRANCH included in its 
data model (see Figure 2-3 on page 485). Because BRANCH was a very 
small file, we verified it visually and corrected the name and address fields in 
the records without using IBM WebSphere QualityStage. 

 

 

 

 

 Chapter 2. Financial services business scenario 719



Standardize stage and an output Data Set stage for each input Data Set. We 
modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J01_STAN_COUNTRY” on page 168, we do not repeat it here. However, some 
of the configurations of interest are as follows:

� Figure 2-246 on page 721 shows the Standardize Rule Process window with 
the configured COUNTRY rule set, and the literal ZQUSZQ followed by the 
CITY, ZIP, and COUNTRY columns of the CUSTOMER file in the Selected 
Columns list. 

� Figure 2-247 on page 721 shows the Standardize Rule Process window with 
the configured COUNTRY rule set, and the literal ZQUSZQ followed by the 
CITY, ZIP, and COUNTRY columns of the BCUSTOMER file in the Selected 
Columns list. 

� After saving, compiling, and running the job, Figure 2-248 on page 722 shows 
the results of the execution.

� Figure 2-249 on page 723 through Figure 2-252 on page 726 show the 
reports produced for the two sources. Because the volumes are small in this 
case, we can view these reports to see the distribution of country addresses. 
In the real word where large volumes of data are involved, you need to run 
Investigate to determine the countries detected as described in 
“j02_INVCD_ISOCODE_NCB” on page 726.

Proceed now to “j02_INVCD_ISOCODE_NCB” on page 726.

Figure 2-245   Create j01_STAN_COUNTRY_NCB 1/8

 

 

 

 

720 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-246   Create j01_STAN_COUNTRY_NCB 2/8

Figure 2-247   Create j01_STAN_COUNTRY_NCB 3/8

 

 

 

 

 Chapter 2. Financial services business scenario 721



Figure 2-248   Create j01_STAN_COUNTRY_NCB 4/8

 

 

 

 

722 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-249   Create j01_STAN_COUNTRY_NCB 5/8

 

 

 

 

 Chapter 2. Financial services business scenario 723



Figure 2-250   Create j01_STAN_COUNTRY_NCB 6/8

 

 

 

 

724 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-251   Create j01_STAN_COUNTRY_NCB 7/8

 

 

 

 

 Chapter 2. Financial services business scenario 725



Figure 2-252   Create j01_STAN_COUNTRY_NCB 8/8

j02_INVCD_ISOCODE_NCB
In this step, we analyze the ISO codes that were generated by the previous step 
by the Investigate stage using the character concatenate investigate option with 
the C mask to obtain frequency distribution. This step identifies whether the 
addresses in the appropriate data sets belonged to more than one country, and 
identifies the codes of the countries in the addresses. In this case, the addresses 
are all U.S. addresses. 

Figure 2-253 on page 727 shows the various stages that are used in this job. It 
includes the data sets that were created in “j01_STAN_COUNTRY_NCB” on 
page 719, an Investigate stage and an output Sequential File stage for each of 
the input files. We modified the names of the stages as shown.

 

 

 

 

726 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of this job is very similar to that described in 
“J02_INVCC_ISCODE” on page 186, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-254 on page 728 shows the INV_CC_ISOCODE1 - Investigate 
Stage window with the Character Concatenate Investigate option, and 
columns ISOCountryCode_Country and IdentifierFlag_COUNTRY selected 
with the C masks for each character. 

The configuration of the INV_CC_ISOCODE2 - Investigate Stage window for 
the BCUSTOMER file is similar to this investigate. We do not repeat it here.

� After saving, compiling, and running this job, the job statistics are shown in 
Figure 2-255 on page 728.

� The output of the Investigate stage written to the sequential files are shown in 
Figure 2-256 on page 728 and Figure 2-257 on page 729 as follows:

– Figure 2-256 on page 728 shows the CUSTOMER address report with a 
concatenated value of US Y in 100% of the records.

– Figure 2-257 on page 729 shows the BCUSTOMER address report with a 
concatenated value of US Y in 100% of the records.

Proceed now to “j03_STAN_USPREP_NCB” on page 729. 

Figure 2-253   Create j02_INVCD_ISOCODE_NCB 1/5

 

 

 

 

 Chapter 2. Financial services business scenario 727



Figure 2-254   Create j02_INVCD_ISOCODE_NCB 2/5

Figure 2-255   Create j02_INVCD_ISOCODE_NCB 3/5

Figure 2-256   Create j02_INVCD_ISOCODE_NCB 4/5

 

 

 

 

728 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-257   Create j02_INVCD_ISOCODE_NCB 5/5

j03_STAN_USPREP_NCB
In this step, we use the Standardize stage with the USPREP 
domain-preprocessor rule set to move name and address data into Name, 
Address, and Area domains for the CUSTOMER and BCUSTOMER files. 

Figure 2-258 on page 730 shows the various stages that are used in this job. It 
includes the data sets that were created in the “j01_STAN_COUNTRY_NCB” on 
page 719 step, one Standardize stage, and one output Data Set stage for each 
Standardize stage. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J03_STAN_USPREP” on page 196, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� The Standardize Rule Process windows of Figure 2-259 on page 730 and 
Figure 2-260 on page 731 show the USPREP rule set and the literals and 
columns selected for analysis. Figure 2-259 on page 730 and Figure 2-260 on 
page 731 show the Standardize Rule Process window with the configured 
USPREP rule set, and the following string in the Selected Columns list for the 
CUSTOMER file:

ZQNAMEZQ NAME ZQADDRZQ ADDR1 ADDR2 ZQAREAZQ CITY ZIP COUNTRY

The configuration of the Standardize Rule Process window for the 
BCUSTOMER file is similar, and we do not repeat it here.

� After saving, compiling, and running this job, view the results as shown in 
Figure 2-261 on page 731. 

� Figure 2-262 on page 732 through Figure 2-265 on page 735 show the 
contents of the standardized output for each data set. 

The partial reports show the columns Columns NameDomain_USPREP 
(contains prefix, first name, last name, suffix tokens), 
AddressDomain_USPREP (contains apartment, street name, and street type 
tokens), and AreaDomain_USPREP (contains city, state, and ZIP code 
tokens) that were parsed from the input columns.

Proceed now to “j04_INVCC_USPREP_INPUT_PATTERN_NCB” on page 735.

 

 

 

 

 Chapter 2. Financial services business scenario 729



Figure 2-258   Create j03_STAN_USPREP_NCB 1/8

Figure 2-259   Create j03_STAN_USPREP_NCB 2/8

 

 

 

 

730 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-260   Create j03_STAN_USPREP_NCB 3/8

Figure 2-261   Create j03_STAN_USPREP_NCB 4/8

 

 

 

 

 Chapter 2. Financial services business scenario 731



Figure 2-262   Create j03_STAN_USPREP_NCB 5/8

 

 

 

 

732 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-263   Create j03_STAN_USPREP_NCB 6/8

 

 

 

 

 Chapter 2. Financial services business scenario 733



Figure 2-264   Create j03_STAN_USPREP_NCB 7/8

 

 

 

 

734 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-265   Create j03_STAN_USPREP_NCB 8/8

j04_INVCC_USPREP_INPUT_PATTERN_NCB
We then use the Investigate stage using the character concatenate investigate 
option on the input patterns that were generated by the Standardize stage in the 
previous step to determine the degree of success achieved by the USPREP 
domain-preprocessor rule set in parsing the tokens in the name and address 
fields into the correct domains.

Figure 2-266 on page 737 shows the various stages that are used in this job. It 
includes the data sets that were created in “j03_STAN_USPREP_NCB” on 
page 729, one Investigate stage, and one output Sequential File stage for each 
Investigate stage. We modified the names of the stages as shown.

 

 

 

 

 Chapter 2. Financial services business scenario 735



Because the configuration of this job is very similar to that described in 
“J02_INVCC_ISCODE” on page 186, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-267 on page 737 and Figure 2-268 on page 738 show the 
INVESTIGATE_CC - Investigate Stage window with the Character 
Concatenate Investigate option, and columns InputPattern_USPREP with the 
C mask for each character and X masks on the NameDomain_USPREP, 
AddressDomain_USPREP, AreaDomain_USPREP, 
OutboundPattern_USPREP, NAME, ADDR1, ADDR2, CITY and ZIP columns 
in the CUSTOMER file. 

Because the configuration of the INVESTIGATE_CC2 - Investigate Stage 
window for the BCUSTOMER file is similar, we do not repeat it here.

� After saving, compiling, and running this job, the job statistics are shown in 
Figure 2-269 on page 738. 

� The output of the Investigate stages written to the sequential files are shown 
in Figure 2-270 on page 739 through Figure 2-273 on page 742 as follows: 

– Figure 2-270 on page 739 and Figure 2-271 on page 740 show the report 
corresponding to the name and address of the CUSTOMER file. The 
name and addresses seem to have been parsed correctly.

– Figure 2-272 on page 741 and Figure 2-273 on page 742 show the report 
corresponding to the name and address of the BCUSTOMER file. The 

A visual analysis of the pattern reports generated by the Investigate stage 
indicates no errors in the movement of data to the name, address, and area 
domains. However, some spelling errors (such as 321 Curie Drivee of Torben 
Anderson) are detected, which we decide to defer addressing till after 
subsequent stages. We, therefore, proceed to the next step, 
“j05_CASS_USPREP_NCB” on page 742. 

 

 

 

 

736 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-266   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 1/8

Figure 2-267   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 2/8

 

 

 

 

 Chapter 2. Financial services business scenario 737



Figure 2-268   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 3/8

Figure 2-269   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 4/8

 

 

 

 

738 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-270   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 5/8

 

 

 

 

 Chapter 2. Financial services business scenario 739



Figure 2-271   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 6/8

 

 

 

 

740 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-272   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 7/8

 

 

 

 

 Chapter 2. Financial services business scenario 741



Figure 2-273   Create j04_INVCC_USPREP_INPUT_PATTERN_NCB 8/8

j05_CASS_USPREP_NCB
In this step, we use the CASS stage to validate, correct, and standardize the U.S. 
addresses in the Address domain. We also include a Transformer stage to add a 
second address line column to customer file because CASS requires two 
address lines as input for its processing.

Figure 2-274 on page 743 shows the various stages that are used in this job. It 
includes the data sets that were created in “j03_STAN_USPREP_NCB” on 
page 729, a Transformer stage, a CASS stage, and a Data Set stage for each 
input data set. We modified the names of the stages as shown.

Note: As mentioned earlier, CASS is a separately priced module that requires 
installation of the CASS module. 

 

 

 

 

742 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the configuration of this job is very similar to that described in 
“J05_CASS_USPREP” on page 219, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-275 on page 744 shows the CASS stage configuration for the 
CUSTOMER file with details such as the assignment of columns to Address 
Line 1 and Address Line 2,and location of the output file.

The configuration of the CASS stage for the BCUSTOMER file is similar, and 
we do not repeat it here.

� After saving, compiling, and running this job (Figure 2-276 on page 744), 
review the contents of the output of the CASS stage as shown in Figure 2-277 
on page 745 through Figure 2-284 on page 752. It shows validation errors 
with some addresses as described in “J05_CASS_USPREP” on page 219.

Proceed now to “j06_INVCC_CASS_NCB” on page 752.

Figure 2-274   Create j05_CASS_USPREP_NCB 1/11

Note: As mentioned earlier, generally, any data error should be presented for 
review by appropriate personnel as early as possible in the process. An A1 
should be investigated and appropriate action taken.

 

 

 

 

 Chapter 2. Financial services business scenario 743



Figure 2-275   Create j05_CASS_USPREP_NCB 2/11

Figure 2-276   Create j05_CASS_USPREP_NCB 3/11

 

 

 

 

744 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-277   Create j05_CASS_USPREP_NCB 4/11

 

 

 

 

 Chapter 2. Financial services business scenario 745



Figure 2-278   Create j05_CASS_USPREP_NCB 5/11

 

 

 

 

746 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-279   Create j05_CASS_USPREP_NCB 6/11

 

 

 

 

 Chapter 2. Financial services business scenario 747



Figure 2-280   Create j05_CASS_USPREP_NCB 7/11

 

 

 

 

748 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-281   Create j05_CASS_USPREP_NCB 8/11

 

 

 

 

 Chapter 2. Financial services business scenario 749



Figure 2-282   Create j05_CASS_USPREP_NCB 9/11

 

 

 

 

750 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-283   Create j05_CASS_USPREP_NCB 10/11

 

 

 

 

 Chapter 2. Financial services business scenario 751



Figure 2-284   Create j05_CASS_USPREP_NCB 11/11

j06_INVCC_CASS_NCB
We then run the Investigate stage with character concatenate option on the 
results of job “j05_CASS_USPREP_NCB” on page 742 step to determine 
addresses that are not recognized by CASS (delivery point verification or DPV).

We investigate using character concatenate (on CASS generated columns 
DPVMATCHFLAG_CASS and DPVCODE1_CASS) using a C mask and X 
masks on the DeliveryAddressLine1_CASS, City_CASS, State_CASS, and 

Note: As mentioned earlier, due to a bug with handling nulls, we introduced a 
Transformer stage to convert nulls to a space using column derivation. 

 

 

 

 

752 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Zip5_CASS columns. A value of A1 in the DPVCODE1_CASS field indicates a 
potential problem.

Figure 2-285 shows the various stages that are used in this job. It includes the 
data sets that were created in “j05_CASS_USPREP_NCB” on page 742, a 
Transformer stage for handling nulls, an Investigate stage, and an output 
Sequential File stage for each input data set. We modified the names of the 
stages as shown.

Because the configuration of this job is very similar to that described in 
“J06_INVCC_CASS” on page 228, we do not repeat it here. However, some of 
the configurations of interest are as follows:

� Figure 2-286 on page 754 shows the configuration of the INV_DPV_INFO1 
Investigate stage window for the CUSTOMER file with columns 
DPVMatchFlag_CASS and DPVCode1_CASS selected with the C masks for 
each character. The X masks are used for columns 
Delivery_AddressLine1_CASS,City_CASS, State_CASS, and Zip5_CASS. 

The configuration of the INV_DPV_INFO2 Investigate stage window for the 
BCUSTOMER file is similar, and we do not repeat it here.

� After saving, compiling, and running this job (Figure 2-287 on page 754), the 
output of the Investigate stages are shown in Figure 2-288 on page 755 and 
Figure 2-289 on page 755. It shows a a few records with values A1 in the 
DPVMatchFlag_CASS and DPVCode1_CASS character concatenated 
columns, indicating a potential problem that required further investigation. 

Proceed now to “j07_PREP_CASS_NCB” on page 755. 

Figure 2-285   Create j06_INVCC_CASS_NCB 1/5

 

 

 

 

 Chapter 2. Financial services business scenario 753



Figure 2-286   Create j06_INVCC_CASS_NCB 2/5

Figure 2-287   Create j06_INVCC_CASS_NCB 3/5

 

 

 

 

754 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-288   Create j06_INVCC_CASS_NCB 4/5

Figure 2-289   Create j06_INVCC_CASS_NCB 5/5

j07_PREP_CASS_NCB
In this step, we standardize the address contents of the output of job 
“j05_CASS_USPREP_NCB” on page 742 using the domain-preprocessor 
USPREP rule set. This parsed and moved the address, as well as area content 
from selected input columns to the AddressDomain_USPREP and 
AreaDomain_USPREP columns. We also add a column to the output that only 
had the first three characters of the ZIP code using a Transformer stage. This 
new column (ZIP3) is used as a blocking variable in an upcoming matching 
stage. 

After CASS validates and corrects the address fields, we run the Standardize 
stage again with the domain-preprocessor rule set USPREP on the CASS 
corrected address fields using the literals7 ZQPUTRZQ and ZQPUTAZQ.

 

 

 

 

 Chapter 2. Financial services business scenario 755



Figure 2-290 on page 757 shows the various stages that are used in this job. It 
includes the data sets that were created in “j05_CASS_USPREP_NCB” on 
page 742, a Standardize stage, a Transformer stage to add a column, and an 
output Data Set stage for each of the input data sets. We modified the names of 
the stages as shown.

Because the configuration of this job is very similar to that described in 
“J07_STAN_CUSTOMER_Domain_Preprocessor” on page 234, we do not 
repeat it here. However, some of the configurations of interest are as follows:

� After saving, compiling, and running this job (Figure 2-290 on page 757), you 
can view the content of output data set as shown in Figure 2-291 on page 758 
through Figure 2-296 on page 763. 

This report shows the following:

– Columns AddressDomain_USPREP (contains apartment, street name, 
and street type tokens), and AreaDomain_USPREP (contains state and 
ZIP code tokens) that were parsed from the input columns.

– InputPattern_USPREP and OutboundPattern_USPREP columns that 
contain the patterns generated after processing the address columns in 
the input file.

A visual analysis of the report shows correct parsing of addresses into the 
AddressDomain_USPREP columns and Area_Domain_USPREP columns of the 
CUSTOMER and BCUSTOMER files. In the real-world, the volume of data would 
be too large to attempt a visual analysis of the report. 

Proceed now to “j08_STAN_CASS_NCB” on page 763.

7  The literal ZQPUTAZQ automatically defaults the entire field to the Address Domain, while 
ZQPUTRZQ automatically defaults the entire field to the Area Domain. Example 1-1 on page 33 
has a brief overview of the available literals.

 

 

 

 

756 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-290   Create j07_PREP_CASS_NCB 1/7

 

 

 

 

 Chapter 2. Financial services business scenario 757



Figure 2-291   Create j07_PREP_CASS_NCB 2/7

 

 

 

 

758 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-292   Create j07_PREP_CASS_NCB 3/7

 

 

 

 

 Chapter 2. Financial services business scenario 759



Figure 2-293   Create j07_PREP_CASS_NCB 4/7

 

 

 

 

760 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-294   Create j07_PREP_CASS_NCB 5/7

 

 

 

 

 Chapter 2. Financial services business scenario 761



Figure 2-295   Create j07_PREP_CASS_NCB 6/7

 

 

 

 

762 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-296   Create j07_PREP_CASS_NCB 7/7

j08_STAN_CASS_NCB
In this step, we standardize the name and address contents of the output of job 
“j07_PREP_CASS_NCB” on page 755 using the domain-specific rule sets 
USNAME (with column NameDomain_USPREP), USADDR (with column 
AddressDomain_USPREP), and USAREA (with column 
AreaDomain_USPREP). Separate processes are defined—one for each rule set.

Note: Here again, we had to introduce a null handling Transformer stage to 
circumvent a bug.

 

 

 

 

 Chapter 2. Financial services business scenario 763



Figure 2-297 shows the various stages that are used in this job. It includes the 
data sets that were created in “j07_PREP_CASS_NCB” on page 755, a 
Standardize stage, a Transformer stage to handle nulls, and an output Data Set 
stage for each of the input data sets. We modified the names of the stages as 
shown. 

Because the configuration of this job is very similar to that described in 
“J08_STAN_CUSTOMER_Domain_Specific” on page 241, we do not repeat it 
here. 

After saving, compiling, and running this job (Figure 2-297 on page 764), the 
standardized output is written to new columns such as:

� FirstName_USNAME and PrimaryName_USNAME
� InputPattern_USNAME
� UnhandledPattern_USNAME
� UnhandledData_USNAME
� InputPattern_USNAME
� UnhandledPattern_USADDR
� UnhandledData_USADDR
� InputPattern_USADDR
� UnhandledPattern_USAREA 
� d UnhandledData_USAREA

The next step identifies any unhandled patterns and classifications by performing 
an investigate as described in “j09a_INVCC_CUSTOMER_STAN_CASS_NCB” 
on page 765 through “j09b_INVCC_BCUSTOMER_STAN_CASS_NCB” on 
page 771.

Figure 2-297   Create j08_STAN_CASS_NCB 

 

 

 

 

764 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



j09a_INVCC_CUSTOMER_STAN_CASS_NCB
In this step, we identify unhandled patterns and classifications in the previous 
step in the CUSTOMER file. We run a series of Investigate stage with the 
character concatenate option using the C mask on the unhandled pattern column 
from the results of “j08_STAN_CASS_NCB” on page 763. The columns that we 
investigate corresponded to the name, address, and area domains. Unhandled 
patterns are reviewed and classification and input pattern overrides are 
generated to rectify the problem. We then rerun the Standardize stage with the 
overrides in place and verify using Investigate that all the unhandled patterns are 
resolved.

Figure 2-298 on page 766 shows the various stages that are used in this job. It 
includes the data set that was created in “j08_STAN_CASS_NCB” on page 763, 
an Investigate stage with the character concatenate option, and a sequential file 
for the column frequency report. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. 

After saving, compiling, and running this job (Figure 2-298 on page 766) on the 
CUSTOMER file, the contents of the output of the investigate stage shows 
unhandled patterns as follows:

� Unhandled address patterns in Figure 2-300 on page 766 and Figure 2-301 
on page 767.

An Input Pattern override was generated for the unhandled pattern as shown 
in Figure 2-303 on page 767 and Figure 2-304 on page 768. We then rerun 
the “j08_STAN_CASS_NCB” on page 763 and 
“j09a_INVCC_CUSTOMER_STAN_CASS_NCB” on page 765 jobs. 
Figure 2-305 on page 768 shows no more unhandled patterns relating to the 
address domain.

� Unhandled (or incorrectly handled) name patterns in Figure 2-306 on 
page 769 where PrimaryName_USNAME has some incorrect data (such as 
ANDERS OLSSON and ANDREAY PALEY).

A Classification override was generated for the unclassified firstname tokens 
as shown in Figure 2-307 on page 770. We then rerun the 
“j08_STAN_CASS_NCB” on page 763 and 
“j09a_INVCC_CUSTOMER_STAN_CASS_NCB” on page 765 jobs. 
Figure 2-308 on page 771 shows that everything is handled correctly. 

Proceed now to unhandled patterns in the address domain in 
“j09b_INVCC_BCUSTOMER_STAN_CASS_NCB” on page 771. 

 

 

 

 

 Chapter 2. Financial services business scenario 765



Figure 2-298   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 1/11

Figure 2-299   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 2/11

Figure 2-300   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 3/11

 

 

 

 

766 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-301   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 4/11

Figure 2-302   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 5/11

Figure 2-303   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 6/11

 

 

 

 

 Chapter 2. Financial services business scenario 767



Figure 2-304   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 7/11

Figure 2-305   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 8/11

 

 

 

 

768 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-306   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 9/11

 

 

 

 

 Chapter 2. Financial services business scenario 769



Figure 2-307   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 10/11

 

 

 

 

770 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-308   Create j09a_INVCC_CUSTOMER_STAN_CASS_NCB 11/11

j09b_INVCC_BCUSTOMER_STAN_CASS_NCB
In this step, we identify unhandled patterns and classifications in the previous 
step in the BCUSTOMER file. We run a series of Investigate stage with the 
character concatenate option using the C mask on the unhandled pattern column 
from the results of “j08_STAN_CASS_NCB” on page 763. The columns that we 

 

 

 

 

 Chapter 2. Financial services business scenario 771



investigated correspond to the name, address, and area domains. No unhandled 
patterns are detected. 

Figure 2-309 shows the various stages that are used in this job. It includes the 
data set that was created in “j08_STAN_CASS_NCB” on page 763, an 
Investigate stage with the character concatenate option, and a sequential file for 
the column frequency report. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J09_INVCC_STAN_CUSTOMER” on page 253, we do not repeat it here. 

After saving, compiling, and running this job (Figure 2-309 on page 772) on the 
BCUSTOMER file, the contents of the output of the investigate stage show no 
unhandled patterns as shown in Figure 2-310 on page 773 through Figure 2-312 
on page 773.

Proceed now to unhandled patterns in the address domain in 
“j09b_INVCC_BCUSTOMER_STAN_CASS_NCB” on page 771.

Figure 2-309   Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 1/4

 

 

 

 

772 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-310   Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 2/4

Figure 2-311   Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 3/4

Figure 2-312   Create j09b_INVCC_BCUSTOMER_STAN_CASS_NCB 4/4

j10_PREPARE_NCB_DATA_FOR_FUNNEL
After the unhandled patterns are handled, we need to merge the standardized 
name and address file of the CUSTOMER and BCUSTOMER in order to identify 
duplicates (with data from the North American Bank’s standardized name and 
addresses from their core and non-core services as described in 2.6.1, 
“Cleansing North American Bank’s core and non-core services” on page 508), 
and to survive the “best” data into the CRM system as described in 2.6.3, 
“Matching and surviving Northern California Bank and Northern California Bank 
information” on page 783.

Prior to merging the two files that were created in “j08_STAN_CASS_NCB” on 
page 763, we need to prepare the two files for merging in the Funnel stage by 
ensuring that all the files have the same number of columns and same names of 
columns using a Transformer stage. 

Figure 2-313 on page 774 shows the various stages that are used in this job. It 
includes the data sets that were created in “j08_STAN_CASS_NCB” on 
page 763, a Transformer stage, and an output Data Set stage for each 
Transformer stage. We modified the names of the stages as shown.

Figure 2-314 on page 775 through Figure 2-316 on page 777 show the 
PICK_COLUMNS1 - Transformer windows that pick the appropriate columns 
from the CUSTOMER file that was created in “j08_STAN_CASS_NCB” on 
page 763. Certain columns are added (that exist in the other files to be merged 

 

 

 

 

 Chapter 2. Financial services business scenario 773



with such as BANKID, NCB_CORE_ID and NCB_NON_CORE_ID) with an 
empty string or other value as highlighted. 

Figure 2-317 on page 778 through Figure 2-320 on page 781 show the 
corresponding PICK_COLUMNS2 - Transformer windows that pick the 
appropriate columns from the BCUSTOMER file that was created in 
“j08_STAN_CASS_NCB” on page 763. Here again, certain columns are added 
(such as HOMEPHONE and CELLPHONE) with an empty string or other value 
as highlighted.

After compiling and running this job (not shown here), proceed to the 
“j11_FUNNEL_NCB_DATA” on page 782 step.

Figure 2-313   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 1/8

 

 

 

 

774 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-314   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 2/8

 

 

 

 

 Chapter 2. Financial services business scenario 775



Figure 2-315   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 3/8

 

 

 

 

776 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-316   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 4/8

 

 

 

 

 Chapter 2. Financial services business scenario 777



Figure 2-317   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 5/8

 

 

 

 

778 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-318   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 6/8

 

 

 

 

 Chapter 2. Financial services business scenario 779



Figure 2-319   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 7/8

 

 

 

 

780 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-320   Create j10_PREPARE_NCB_DATA_FOR_FUNNEL 8/8

 

 

 

 

 Chapter 2. Financial services business scenario 781



j11_FUNNEL_NCB_DATA
In this step, we merge the two files that were created in 
“j10_PREPARE_NCB_DATA_FOR_FUNNEL” on page 773 using the Funnel 
stage. The output of this step is then included for matching and surviving the 
“best” data as described in 2.6.3, “Matching and surviving Northern California 
Bank and Northern California Bank information” on page 783.

Figure 2-321 on page 782 shows the various stages that are used in this job. It 
includes the data sets that were created in 
“j10_PREPARE_NCB_DATA_FOR_FUNNEL” on page 773, a Funnel stage, and 
an output Data Set stage. We modified the stage names as shown. 

Because we have described these configurations previously, we do not repeat 
them here.

Figure 2-321 shows the results after compiling and running this job. 

Proceed now to 2.6.3, “Matching and surviving Northern California Bank and 
Northern California Bank information” on page 783.

Figure 2-321   Create j11_FUNNEL_NCB_DATA 

 

 

 

 

782 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2.6.3  Matching and surviving Northern California Bank and Northern 
California Bank information

Figure 2-8 on page 500 shows the processing flow and jobs that are used for 
matching and surviving name and addresses from Northern California Bank’s 
core and non-core services and North American Bank’s core and non-core 
services into the CRM system. 

We describe the steps briefly here:

1. In order to survive the “best” name and address data from the Northern 
California Bank and North American Bank’s systems, we needed to merge 
the standardized name and address files created in steps 
“j14_FUNNEL_NAB_DATA_FOR_CRM” on page 705 and 
“j11_FUNNEL_NCB_DATA” on page 782 as described in 2.6.1, “Cleansing 
North American Bank’s core and non-core services” on page 508 and 2.6.2, 
“Cleansing Northern California Bank’s core and non-core services” on 
page 706 of the CUSTOMER respectively. 

Prior to merging these two files, we needed to prepare the two files for 
merging in the Funnel stage by ensuring that all the files have the same 
number of columns and same names of columns using a Transformer stage. 

Job “j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL” on page 785 
performs this step. 

2. In this step, we merges the two files that were created in the 
“j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL” on page 785 using the 
Funnel stage.

Job “j13_FUNNEL_NCB_NAB_CRM_DATA” on page 797 performs this step.

3. Prior to matching, we generated the frequency distribution on all the columns 
in the merged file of the previous step 
“j13_FUNNEL_NCB_NAB_CRM_DATA” on page 797 using the Match 
Frequency stage. Here again, the idea was to generate match frequency for 
all the columns so that it can be used with any match specification. 

Job “j14_CRM_FREQUENCY” on page 798 performs this step.

4. Next, we generated a match specification for an Unduplicate match stage 
using as input the match frequency data created in the 
“j14_CRM_FREQUENCY” on page 798 job. The specification included a 
single pass that blocked on two phonetic encoding (NYSIIS) columns 
MatchFirstNameNYSIIS_USNAME, MatchPrimaryWord1NYSIIS_USNAME, 
and the 3-digit ZIP code column ZIP3_HOME corresponding to the home 
address. 

 

 

 

 

 Chapter 2. Financial services business scenario 783



Job “j14a_MATCHSPEC” on page 801 performs this step.

5. Next, we determined whether there were duplicates in the merged records of 
the North American Bank and Northern California Bank’s core and non-core 
services customers, using the Unduplicate stage with the match specification 
and match frequency information that is created in steps “j14a_MATCHSPEC” 
on page 801 and “j14_CRM_FREQUENCY” on page 798 respectively. As 
before, the output was matched records (merge of master and duplicates 
using a Funnel stage), records for clerical review, and residuals (records that 
do not match).

Job “j15_UNDUP_CRM” on page 809 performs this step.

6. The next step was to survive the “best” information from the set of matched 
records created in the “j15_UNDUP_CRM” on page 809 step using the 
SURVIVE stage. We introduced a Transformer stage to add a column 
DPVCode_num that contained the recoded value of the contents of the 
DPVCode1_CASS column—if the column contained AA, to put a 1 in the 
DPVCode_num column, otherwise put a 0. This was done to circumvent a 
bug in the Survive Rule Builder that had problems comparing string content 
but that is not numeric content.

Job “j16_SURVIVE_CRM” on page 814 performs this step.

7. Next, we merged the survived records from the “j16_SURVIVE_CRM” on 
page 814 step with the residual records that were created in the 
“j15_UNDUP_CRM” on page 809 step using a Funnel stage. The information 
from these merged files was required to update the CRM system.

Job “j17_FUNNEL_UNDUP_RES_DATA” on page 829 performs this step.

8. The output of the “j17_FUNNEL_UNDUP_RES_DATA” on page 829 step 
needed to be transformed prior to using it for updating the relevant address 
columns in the CRM system. Two Transformer stages performed these 
functions. The output of this step contained data to update the CRM system 
with the “best” information from the North American Bank and Northern 
California Bank’s core and non-core systems. 

Job “j18_CRM_DATA_TRANSFORM” on page 833 performs this step.

Note: The work address only appears in the North American Bank’s core 
services and, therefore, requires no matching and survive. Therefore, the 
ZIP code of the work address is not relevant here.

 

 

 

 

784 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



We describe these jobs in more detail in the following sections.

j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL
To survive the “best” name and address data from the Northern California Bank 
and North American Bank’s systems, we need to merge the standardized name 
and address files that were created in “j14_FUNNEL_NAB_DATA_FOR_CRM” 
on page 705 and “j11_FUNNEL_NCB_DATA” on page 782 (as described in 
2.6.1, “Cleansing North American Bank’s core and non-core services” on 
page 508 and 2.6.2, “Cleansing Northern California Bank’s core and non-core 
services” on page 706).

Prior to merging these two files, we need to prepare the two files for merging in 
the Funnel stage by ensuring that all the files have the same number of columns 
and same names of columns using a Transformer stage. 

Figure 2-322 on page 786 shows the various stages that are used in this job. It 
includes the data sets that were created in 
“j14_FUNNEL_NAB_DATA_FOR_CRM” on page 705 and 
“j11_FUNNEL_NCB_DATA” on page 782, a Transformer stage, and an output 
Data Set stage for each Transformer stage. We modified the names of the stages 
as shown.

Figure 2-323 on page 787 through Figure 2-327 on page 791 show the 
PICK_COLUMNS1 - Transformer windows that pick the appropriate columns 
from the Northern California Bank name and address file that was created in 
“j11_FUNNEL_NCB_DATA” on page 782. Certain columns are renamed and 
others are added with an empty string as highlighted. 

Figure 2-328 on page 792 through Figure 2-332 on page 796 show the 
corresponding PICK_COLUMNS2 - Transformer windows that pick the 
appropriate columns from the North American Bank name and addresses file 
created in the “j14_FUNNEL_NAB_DATA_FOR_CRM” on page 705 step. Here 
again, certain columns are renamed and others are added with an empty string 
as highlighted.

After compiling and running this job (Figure 2-333 on page 797), proceed to 
“j13_FUNNEL_NCB_NAB_CRM_DATA” on page 797.

Note: We do not show the actual update of the CRM system tables using 
this file. The IBM WebSphere DataStage jobs that are used to perform this 
update are described in IBM InfoSphere DataStage Data Flow and Job 
Design, SG24-7576.

 

 

 

 

 Chapter 2. Financial services business scenario 785



Figure 2-322   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 1/12

 

 

 

 

786 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-323   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 2/12

 

 

 

 

 Chapter 2. Financial services business scenario 787



Figure 2-324   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 3/12

 

 

 

 

788 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-325   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 4/12

 

 

 

 

 Chapter 2. Financial services business scenario 789



Figure 2-326   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 5/12

 

 

 

 

790 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-327   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 6/12

 

 

 

 

 Chapter 2. Financial services business scenario 791



Figure 2-328   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 7/12

 

 

 

 

792 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-329   Create J11_funnel_ncb_data 8/12

 

 

 

 

 Chapter 2. Financial services business scenario 793



Figure 2-330   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 9/12

 

 

 

 

794 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-331   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 10/12

 

 

 

 

 Chapter 2. Financial services business scenario 795



Figure 2-332   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 11/12

 

 

 

 

796 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-333   Create j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL 12/12

j13_FUNNEL_NCB_NAB_CRM_DATA
In this step, we merge the two files that were created in 
“j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL” on page 785 using the 
Funnel stage.

Figure 2-334 on page 798 shows the various stages that are used in this job. It 
includes the data sets that were created in 
“j12_PREPARE_NCB_NAB_DATA_FOR_FUNNEL” on page 785, a Funnel 
stage, a Transformer stage to handle nulls, and an output Data Set stage. We 
modified the stage names as shown. 

Because we have discussed such configurations previously, we do not repeat 
them here.

Figure 2-334 on page 798 shows the results after compiling and running this job. 

Proceed now to “j14_CRM_FREQUENCY” on page 798.

 

 

 

 

 Chapter 2. Financial services business scenario 797



Figure 2-334   Create j13_FUNNEL_NCB_NAB_CRM_DATA 

j14_CRM_FREQUENCY
Prior to matching, we generate the frequency distribution on all the columns in 
the merged file in the previous step ““j13_FUNNEL_NCB_NAB_CRM_DATA” on 
page 797” using the Match Frequency stage. Here again, the idea is to generate 
match frequency for all the columns so that it can be used with any match 
specification.

Figure 2-335 on page 799 shows the various stages that are used in this job, 
including the data set that was created in 
“j13_FUNNEL_NCB_NAB_CRM_DATA” on page 797, a Match Frequency stage, 
and an output Data Set stage. We modified the names of the stages as shown.

Because the configuration of this job is very similar to that described in 
“J10_MATCHFREQ_STAN_CUSTOMER” on page 266, we do not repeat it here. 

After saving, compiling, and running this job (Figure 2-335 on page 799), the 
contents of the output of this stage are listed in Figure 2-336 on page 800 and 
Figure 2-337 on page 801. We do not document the interpretation of the format 
and content of this file.

Proceed to “j14a_MATCHSPEC” on page 801. 

 

 

 

 

798 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-335   Create j14_CRM_FREQUENCY 1/3

 

 

 

 

 Chapter 2. Financial services business scenario 799



Figure 2-336   Create j14_CRM_FREQUENCY 2/3

 

 

 

 

800 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-337   Create j14_CRM_FREQUENCY 3/3

j14a_MATCHSPEC
Next, we generate a match specification for an Unduplicate match stage using as 
input the match frequency data created in the “j14_CRM_FREQUENCY” on 
page 798 job. The specification included a single pass that blocked on a two 

 

 

 

 

 Chapter 2. Financial services business scenario 801



phonetic encoding (NYSIIS) columns MatchFirstNameNYSIIS_USNAME, 
MatchPrimaryWord1NYSIIS_USNAME, and the 3-digit ZIP code column 
ZIP3_HOME corresponding to the home address.

Because the creation of a match specification is described in 
“J15_Undup_MatchSpec_CUSTOMER” on page 318, we do not repeat it here. 

Figure 2-338 on page 803 through Figure 2-344 on page 809 show the 
configuration of the match specification with the Blocking Columns, Match 
Commands, and Cutoff Values. It also shows the Test Results of the execution of 
the CRM_PASS1 pass. The Pass Statistics are not shown here.

The test of the match specification with the full volume of data appeared to 
deliver results that were accurate. This specification was then used in a 
Unduplicate match stage as described in “j15_UNDUP_CRM” on page 809.

Note: The work address only appears in the North American Bank’s core 
services and therefore requires no matching and survive. Therefore, the ZIP 
code of the work address is not relevant here.

 

 

 

 

802 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-338   Create j14a_MATCHSPEC 1/7

 

 

 

 

 Chapter 2. Financial services business scenario 803



Figure 2-339   Create j14a_MATCHSPEC 2/7

 

 

 

 

804 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-340   Create j14a_MATCHSPEC 3/7

 

 

 

 

 Chapter 2. Financial services business scenario 805



Figure 2-341   Create j14a_MATCHSPEC 4/7

 

 

 

 

806 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-342   Create j14a_MATCHSPEC 5/7

 

 

 

 

 Chapter 2. Financial services business scenario 807



Figure 2-343   Create j14a_MATCHSPEC 6/7

 

 

 

 

808 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-344   Create j14a_MATCHSPEC 7/7

j15_UNDUP_CRM
Next, we determine whether there were duplicates in the merged records of the 
North American Bank and Northern California Bank’s core and non-core services 
customers, using the Unduplicate stage with the match specification and match 
frequency information that was created in “j14a_MATCHSPEC” on page 801 and 
“j14_CRM_FREQUENCY” on page 798, respectively. As before, the output is 
matched records (merge of master and duplicates using a Funnel stage), records 
for clerical review, and residuals (records that do not match).

 

 

 

 

 Chapter 2. Financial services business scenario 809



Figure 2-345 on page 811 shows the various stages that are used in this job. It 
includes the data set that was created in “j13_FUNNEL_NCB_NAB_CRM_DATA” 
on page 797, the match frequency Data Set created in 
“j14_CRM_FREQUENCY” on page 798, an Unduplicate stage, and a Funnel 
stage to merge master and duplicate records. Three data sets are created:

� One data set contains the merged master and duplicates by the Funnel stage.

� The other data sets contain the clerical and residual records as the output of 
the Unduplicate stage.

We modified the names of the stages as shown.

Because the creation of this Unduplicate stage Dependent Match Type is very 
similar to that described in “J11_UNDUP_DEP_MATCH_CUSTOMER” on 
page 282, we do not repeat the steps involved here. 

After saving, compiling, and running this job (Figure 2-345 on page 811), you 
view the content of the three data set objects as shown in Figure 2-346 on 
page 812 through Figure 2-349 on page 814. 

Out of a total of 160 records in the input to this process:

� 149 records were masters and duplicates. There are not in sorted order of 
qsMatchSetId.

� Zero (0) records were for clerical review.

� Remaining eleven 11 records were residuals.

Because there were no records for clerical review, a clean set of master and 
duplicate records is created, and the “best” information is survived into the 
master record using the SURVIVE stage as described in “j16_SURVIVE_CRM” 
on page 814. 

 

 

 

 

810 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-345   Create j15_UNDUP_CRM 1/5

 

 

 

 

 Chapter 2. Financial services business scenario 811



Figure 2-346   Create j15_UNDUP_CRM 2/5

 

 

 

 

812 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-347   Create j15_UNDUP_CRM 3/5

 

 

 

 

 Chapter 2. Financial services business scenario 813



Figure 2-348   Create j15_UNDUP_CRM 4/5

Figure 2-349   Create j15_UNDUP_CRM 5/5

j16_SURVIVE_CRM
The next step is to survive the “best” information from the set of matched records 
that were created in the “j15_UNDUP_CRM” on page 809 step using the 
SURVIVE stage. We introduce a Transformer stage to add a column 
DPVCode_num that contains the recoded value of the contents of the 
DPVCode1_CASS column—if the column contained AA, to put a 1 in the 
DPVCode_num column, otherwise put a 0. This was done to circumvent a bug in 
the Survive Rule Builder that had problems comparing string content, but not 
numeric content.

Figure 2-350 on page 815 shows the various stages that are used in this job. It 
includes the input data set that was created in “j15_UNDUP_CRM” on page 809 
containing matched and duplicate records, a Transformer stage to recode the 
DPVCode1_CASS column, a Survive stage, and an output data set containing 
the survived records. We modified the names of the stages as shown.

 

 

 

 

814 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Because the creation of this survive job is very similar to that described in 
“J13_SURVIVE_CUSTOMER” on page 295, we do not repeat the steps involved 
here. However, some of the configurations of interest are as follows: 

� Figure 2-351 on page 816 shows the Transformer stage that recodes the 
contents of the DPVCode1_CASS column into a new column DPVCode_num 
for the reasons mentioned earlier.

� Figure 2-352 on page 817 through Figure 2-370 on page 826 show the 
SURVIVE - Survive Stage windows with the survive rules involving all the 
fields that exist in multiple records that need to be mapped to the CRM 
system. 

– The DPVCode rule specifies that if the same customer has an address 
that is not DPV verified by CASS and an address that is DPV verified, then 
the DPV verified address should be accepted.

We could have fixed the address that is not DPV verified, but chose to use 
this method to demonstrate the use the information generated by CASS in 
the survive process.

– The survive rules of the ID columns such as NCB_NONCORE_ID allows 
the collection of ids from all the rows in each match set. This enables us to 
determine the tables in which this customer exists, which provides a 
holistic view of this customer’s relationship with the bank.

� After saving, compiling, and running this job (Figure 2-371 on page 826), view 
the content of the output as shown in Figure 2-372 on page 827 through 
Figure 2-374 on page 829. 

This report shows the 67 master records with the survived information from 
the duplicates.

Proceed now to “j17_FUNNEL_UNDUP_RES_DATA” on page 829.

Figure 2-350   Create j16_SURVIVE_CRM 1/25

 

 

 

 

 Chapter 2. Financial services business scenario 815



Figure 2-351   Create j16_SURVIVE_CRM 2/25

 

 

 

 

816 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-352   Create j16_SURVIVE_CRM 3/25

Figure 2-353   Create j16_SURVIVE_CRM 4/25

 

 

 

 

 Chapter 2. Financial services business scenario 817



Figure 2-354   Create j16_SURVIVE_CRM 5/25

Figure 2-355   Create j16_SURVIVE_CRM 6/25

 

 

 

 

818 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-356   Create j16_SURVIVE_CRM 7/25

Figure 2-357   Create j16_SURVIVE_CRM 8/25

 

 

 

 

 Chapter 2. Financial services business scenario 819



Figure 2-358   Create j16_SURVIVE_CRM 9/25

Figure 2-359   Create j16_SURVIVE_CRM 10/25

 

 

 

 

820 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-360   Create j16_SURVIVE_CRM 11/25

Figure 2-361   Create j16_SURVIVE_CRM 12/25

 

 

 

 

 Chapter 2. Financial services business scenario 821



Figure 2-362   Create j16_SURVIVE_CRM 13/25

Figure 2-363   Create j16_SURVIVE_CRM 14/25

 

 

 

 

822 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-364   Create j16_SURVIVE_CRM 15/25

Figure 2-365   Create j16_SURVIVE_CRM 16/25

 

 

 

 

 Chapter 2. Financial services business scenario 823



Figure 2-366   Create j16_SURVIVE_CRM 17/25

Figure 2-367   Create j16_SURVIVE_CRM 18/25

 

 

 

 

824 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-368   Create j16_SURVIVE_CRM 19/25

Figure 2-369   Create j16_SURVIVE_CRM 20/25

 

 

 

 

 Chapter 2. Financial services business scenario 825



Figure 2-370   Create j16_SURVIVE_CRM 21/25

Figure 2-371   Create j16_SURVIVE_CRM 22/25

 

 

 

 

826 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-372   Create j16_SURVIVE_CRM 23/25

 

 

 

 

 Chapter 2. Financial services business scenario 827



Figure 2-373   Create j16_SURVIVE_CRM 24/25

 

 

 

 

828 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-374   Create j16_SURVIVE_CRM 25/25

j17_FUNNEL_UNDUP_RES_DATA
Next, we merged the survived records from “j16_SURVIVE_CRM” on page 814 
with the residual records that were created in “j15_UNDUP_CRM” on page 809 
using a Funnel stage. The information from these merged files is required to 
update the CRM system.

Figure 2-375 on page 830 shows the various stages that are used in this job. It 
includes the data sets that were created in the“j15_UNDUP_CRM” on page 809 
and “j16_SURVIVE_CRM” on page 814, a Funnel stage, and an output Data Set 
stage. We modified the stage names as shown. 

Because we have discussed these configurations previously, we do not repeat 
them here.

Figure 2-375 on page 830 shows the results after compiling and running this job. 
The output data set object contents (78 records) are shown in Figure 2-376 on 
page 831 through Figure 2-377 on page 832.

Proceed now to “j18_CRM_DATA_TRANSFORM” on page 833.

 

 

 

 

 Chapter 2. Financial services business scenario 829



Figure 2-375   Create j17_FUNNEL_UNDUP_RES_DATA 1/4

 

 

 

 

830 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-376   Create j17_FUNNEL_UNDUP_RES_DATA 2/4

 

 

 

 

 Chapter 2. Financial services business scenario 831



Figure 2-377   Create j17_FUNNEL_UNDUP_RES_DATA 3/4

 

 

 

 

832 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-378   Create j17_FUNNEL_UNDUP_RES_DATA 4/4

j18_CRM_DATA_TRANSFORM
We need to transform the output of the “j17_FUNNEL_UNDUP_RES_DATA” on 
page 829 step prior to using it for updating the relevant address columns in the 
CRM system. Two Transformer stages performed these functions. The output of 
this step contained data to update the CRM system with the “best” information 
from the North American Bank and Northern California Bank’s core and non-core 
systems.

Figure 2-379 on page 835 shows the various stages that are used in this job. It 
includes the data set that was created in the 
“j17_FUNNEL_UNDUP_RES_DATA” on page 829 step, two Transformer stages, 

 

 

 

 

 Chapter 2. Financial services business scenario 833



a Funnel stage, and an output Data Set stage. We modified the stage names as 
shown. 

The two Transformer stages are described here briefly:

� In the ADD_LEADING_SPACE - Transformer Stage windows in Figure 2-380 
on page 836 and Figure 2-381 on page 837 a leading space is added to the 
components of the standardized address that will eventually need to be 
concatenated together to update the corresponding column. For example, the 
following standardized columns need to be concatenated together to update 
the corresponding HOMESTREET column in the CUSTOMER table in the 
CRM system:

– HouseNumberSuffix_USADDR_HOME
– StreetPrefixDirectional_USADDR_HOME
– StreetPrefixType_USADDR_HOME
– StreetName_USADDR_HOME 

For legibility after concatenation, we need to add a leading space to these 
standardized columns. This is performed in this stage. 

� In the PICK_AND_CONCATENATE - Transformer Stage windows in 
Figure 2-382 on page 838 through Figure 2-387 on page 843 the appropriate 
columns are mapped to the columns defined in the CRM system. In particular, 
the HOMESTREET and WORKSTREET columns in the CUSTOMER table of 
the CRM system require a concatenation of data from multiple columns as 
shown in Figure 2-386 on page 842 and Figure 2-387 on page 843.

Figure 2-388 on page 844 shows the results after compiling and running this job. 
The output data set object contents are shown in Figure 2-389 on page 845 
through Figure 2-392 on page 848. This information contains the “best” 
information from the North American Bank and Northern California Bank’s core 
and non-core systems to update the CRM system.

Note: We do not show the actual update of the CRM system tables using this 
file. The IBM WebSphere DataStage jobs that are used to perform this update 
are described in IBM InfoSphere DataStage Data Flow and Job Design, 
SG24-7576. 

 

 

 

 

834 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-379   Create j18_CRM_DATA_TRANSFORM 1/14

 

 

 

 

 Chapter 2. Financial services business scenario 835



Figure 2-380   Create j18_CRM_DATA_TRANSFORM 2/14

 

 

 

 

836 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-381   Create j18_CRM_DATA_TRANSFORM 3/14

 

 

 

 

 Chapter 2. Financial services business scenario 837



Figure 2-382   Create j18_CRM_DATA_TRANSFORM 4/14

 

 

 

 

838 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-383   Create j18_CRM_DATA_TRANSFORM 5/14

 

 

 

 

 Chapter 2. Financial services business scenario 839



Figure 2-384   Create j18_CRM_DATA_TRANSFORM 6/14

 

 

 

 

840 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-385   Create j18_CRM_DATA_TRANSFORM 7/14

 

 

 

 

 Chapter 2. Financial services business scenario 841



Figure 2-386   Create j18_CRM_DATA_TRANSFORM 8/14

 

 

 

 

842 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-387   Create j18_CRM_DATA_TRANSFORM 9/14

 

 

 

 

 Chapter 2. Financial services business scenario 843



Figure 2-388   Create j18_CRM_DATA_TRANSFORM 10/14

 

 

 

 

844 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-389   Create j18_CRM_DATA_TRANSFORM 11/14

 

 

 

 

 Chapter 2. Financial services business scenario 845



Figure 2-390   Create j18_CRM_DATA_TRANSFORM 12/14

 

 

 

 

846 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure 2-391   Create j18_CRM_DATA_TRANSFORM 13/14

 

 

 

 

 Chapter 2. Financial services business scenario 847



Figure 2-392   Create j18_CRM_DATA_TRANSFORM 14/14

2.7  Post migration from North American Bank systems’ 
to Northern California Bank

As described in the 2.2, “Business requirement” on page 480, migration of the 
North American Bank’s core services systems to that of the Northern California 
Bank occurs in parallel with data integration that builds the CRM system. To 
expedite the process, we assume that the migration occurs before attempting to 
cleanse the data in the migrated Northern California Bank’s core services 
systems.

 

 

 

 

848 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Table 2-5 and Table 2-6 on page 852 is a summary of differences between the 
source North American Bank’s core services systems and the target Northern 
California Bank’s core services systems. These differences were identified in 
IBM WebSphere Information Analyzer and Data Quality Assessment, 
SG24-7508. The actual IBM WebSphere DataStage jobs that are used to migrate 
the data are discussed in IBM InfoSphere DataStage Data Flow and Job Design, 
SG24-7576. 

Given that we do not have a migrated system, we describe the steps that are 
involved in cleansing the data in the migrated system using the jobs created in 
the data integration scenario in 2.6, “Data integration of North American Bank 
and Northern California Bank systems” on page 494. This is described in 2.7.1, 
“Cleansing names and addresses, matching, and surviving data in the migrated 
system” on page 854. 

Table 2-5   Summary of differences between source and target core services and the action to be taken

North American Bank (source) Northern California Bank (target) Action 
to be 
taken

Column in 
the table

Metadata Data 
Content 
example

Column in 
the table

Metadata
Defined

Data 
Content 
exampleDefined Inferred

CUSTOMER_ID in 
CUSTOMER

INT32 INT16 4079 ID in CUSTOMER INT32 10003828 Generate new 
keys for the 
records in the 
source in the 
target. 
If required, 
create a cross 
reference table 
to map the 
source keys to 
the target keys 
until the 
transition of 
account 
numbers is fully 
achieved

ACCOUNT_ID in 
ACCOUNT

INT32 INT16 216 ID in ACCOUNT INT32 11001500 Generate new 
keys for the 
records in the 
source in the 
target. 
Create a cross 
reference table 
to map the 
source keys to 
the target keys 
until the 
transition of 
account 
numbers is fully 
achieved

 

 

 

 

 Chapter 2. Financial services business scenario 849



ACCOUNT_ID,LOAN_I
D in LOAN

(INT32, INT32) (INT16, INT16) (3295,2197) LOAN_ID in LOAN INT32 11001500 Generate new 
keys for the 
records in the 
source in the 
target. 
Create a cross 
reference table 
to map the 
source keys to 
the target keys 
until the 
transition of 
account 
numbers is fully 
achieved 

ACCOUNT_ID,LOAN_I
D,TRANSACTION_ID in 
LOAN_TRANSACTION

(INT32,INT32, 
INT32)

(INT16, INT16, 
INT32)

(152,102,13767) ACCOUNT, UPDATED 
in TRANSACTION

(INTEGER, 
TIMESTAMP)

(11001583, 
2005-11-19 
11:28:29.745877)

Generate new 
keys for the 
records in the 
source in the 
target. 
Create a cross 
reference table 
to map the 
source keys to 
the target keys 
until the 
transition of 
account 
numbers is fully 
achieved 

ACCOUNT_ID, 
TRANSACTION_ID in 
TRANSACTION

(INT32,INT32) (INT16,INT32) (100,27397) ACCOUNT, UPDATED 
in TRANSACTION

(INT32, 
TIMESTAMP)

(11001583, 
2005-11-19 
11:28:29.745877)

Generate new 
keys for the 
records in the 
source in the 
target. 
Create a cross 
reference table 
to map the 
source keys to 
the target keys 
until the 
transition of 
account 
numbers is fully 
achieved 

BRANCH_ID in 
BRANCH

INT32 INT8 51 ID in BRANCH INT32 12001536 Generate new 
keys for the 
records in the 
source in the 
target. 
If necessary, 
create a cross 
reference table 
to map the 
source keys to 
the target keys 
until the 
transition of 
account 
numbers is fully 
achieved 

GENDER_IND in 
CUSTOMER

CHAR(1) CHAR(1) F GENDER in 
CUSTOMER

CHAR(1) 1 Transform the 
values from the 
source to the 
target. 

LEVEL_CD in 
CUSTOMER

CHAR(2) CHAR(2) SL CLASS in CUSTOMER INT32 7 Map with data 
type 
transformation

North American Bank (source) Northern California Bank (target) Action 
to be 
taken

 

 

 

 

850 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



TITLE in CUSTOMER CHAR(3) CHAR(2) MS NAME in CUSTOMER CHAR(50) Jazmine Fisher Map the TITLE, 
FIRST_NAME 
and 
LAST_NAME 
columns in the 
source into the 
NAME column 
in the target

FIRST_NAME in 
CUSTOMER

VARCHAR(20) CHAR(12) SHAYLA NAME in CUSTOMER CHAR(50) Jazmine Fisher 

LAST_NAME in 
CUSTOMER

VARCHAR(20) CHAR(16) VAN DER ZIJDEN NAME in CUSTOMER CHAR(50) Jazmine Fisher

HOME_ADDRESS in 
CONTACT_INFO

VARCHAR(50) VARCHAR(36) 1301 Evans 
Avenue, San 
Francisco, CA

ADDR1 in CUSTOMER VARCHAR(50) 397 CHISANA 
STREET

Direct mapping

HOME_ZIP in 
CONTACT_INFO

CHAR(9) INT32 length 5 94124 ZIP in CUSTOMER CHAR(10) 90028 Transform by 
including a 
hyphen

HOME_PHONE in 
CONTACT_INFO

CHAR(15) INT64 length 10 8005553717 HOMEPHONE in 
CUSTOMER

CHAR(15) 517-555-1385 Map and 
include hyphen

WORK_PHONE in 
CONTACT_INFO

CHAR(15) CHAR(10) 8145553731,NA WORKPHONE in 
CUSTOMER

CHAR(15) 000-000-0000 Map and 
include hyphen 

CELL_PHONE in 
CONTACT_INFO

CHAR(15) CHAR(10) 8175553734 CELLPHONE in 
CUSTOMER

CHAR(15) 517-555-4641 Map and 
include hyphen 

TYPE_IND in 
ACCOUNT

CHAR(1) CHAR(1) C TYPE in ACCOUNT CHAR(2) SS Transform the 
values from the 
source to the 
target. 

RATES in LOAN DECIMAL(8,5) DECIMAL (7,5) 2.15 INTEREST_RATE in 
LOAN

CHAR(20) 19.75 Map with data 
type 
transformation

INITIAL_VALUE in 
LOAN

DECIMAL(9,2) DECIMAL(8,2) 1000 INITIAL_LOAN_VALUE 
in LOAN

CHAR(20) 100000 Map with data 
type 
transformation 

LATE_FEE in LOAN DECIMAL(9,2) DECIMAL(6,2) 100 LATE_FEE in LOAN CHAR(20) 50 Map with data 
type 
transformation

LATE_RATE in LOAN DECIMAL(8,5) DECIMAL(7,5) 5.123 LATE_INTEREST_RAT
E in LOAN

CHAR(20) 10 Map with data 
type 
transformation

BALANCE in LOAN DECIMAL(9,2) DECIMAL(8,2) 500 BALANCE in LOAN CHAR(20) 75000 Map with data 
type 
transformation 

TRANS_TYPE_CD in 
LOAN_TRANSACTION

CHAR(2) CHAR(2) D CODE in 
TRANSACTION

CHAR(1) C Transform the 
values from the 
source to the 
target. 

AMOUNT in 
LOAN_TRANSACTION

DECIMAL(9,2) DECIMAL(8,2) 400.00 BALANCE in 
TRANSACTION

CHAR(20) 300 Map with data 
type 
transformation 

TRANS_TYPE_CD in 
TRANSACTION

CHAR(2) CHAR(2) D CODE in 
TRANSACTION

CHAR(1) C Transform the 
values from the 
source to the 
target. 

AMOUNT in 
TRANSACTION

DECIMAL(9,2) DECIMAL(7,2) 400.00 BALANCE in 
TRANSACTION

CHAR(20) 300 Map with data 
type 
transformation 

TRANS_TYPE_CD in 
TRANSACTION_TYPE_
REF

CHAR(2) CHAR(2) D CODE in 
TRANSACTION

CHAR(1) C Transform the 
values from the 
source to the 
target. 

North American Bank (source) Northern California Bank (target) Action 
to be 
taken

 

 

 

 

 Chapter 2. Financial services business scenario 851



Table 2-6   Missing information in source or target bank relating to core services and action to be taken

LEVEL_CD in 
LEVEL_REF

CHAR(2) CHAR(2) PL Ignore this 
column 
because it is 
part of a 
reference table

North American Bank (source) Northern California Bank (target) Action 
to be 
taken

Data element North American Bank 
(source)

Northern California Bank 
(target)

Action to be taken

Customer’s 
preferred language 
for interaction

Not defined ISO code
(PREF_LANG column in the 
CUSTOMER table defined 
as NOT NULL WITH 
DEFAULT ‘ENG’)

No action because 
default will be 
applied

Currency of 
deposits

Not defined ISO code
(CURRENCY column in the 
ACCOUNT and 
PORTFOLIO tables defined 
as nullable; 
CURRENCY column in the 
ACCTYPE table defined as 
NOT NULL WITH DEFAULT 
‘ ‘)

No action because 
null or default will 
be applied

Country Not defined ISO code
(COUNTRY column in the 
BRANCH table defined as 
nullable;
CTRY2, CTRY3, and 
CTRYN columns in the 
COUNTRY lookup table 
defined as NOT NULL)

No action because 
null or default will 
be applied for the 
COUNTRY column 
in the BRANCH 
table.
CTRY2, CTRY3, 
and CTRYN 
columns are in the 
COUNTRY lookup 
table and need no 
action

Nationality Free text field
(NATIONALITY column in 
the CUSTOMER table)

Not defined Ignore this field 
during migration

 

 

 

 

852 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Nickname Free text field
(NICKNAME column in the 
CUSTOMER table)

Not defined Ignore this field 
during migration

Credit score Free text field
(CREDIT_SCORE column 
in the CUSTOMER table)

Not defined Ignore this field 
during migration

Churn indicator CHAR(1)
(CHURN_IND column in the 
CUSTOMER table)

Not defined Ignore this field 
during migration

Automatic debit 
indicator

CHAR(1)
(AUTOMAT_DEBIT_IND 
column in the LOAN table)

Not defined Ignore this field 
during migration 

Work address Free text field
(WORK_ADDRESS column 
in the CONTACT_INFO 
table)

Not defined Ignore this field 
during migration

Work ZIP code Free text field
(WORK_ZIP column in the 
CONTACT_INFO table)

Not defined Ignore this field 
during migration

Account fee 
frequency

Not defined Y for yearly, M for monthly, 
and C per check
(FEEFRQ column in the 
ACCTYPE table defined as 
nullable)

No action 

City Not defined Separate field
(CITY column in the 
CUSTOMER table defined 
as NOT NULL)

CITY column in the 
CUSTOMER table 
will have to be 
populated by 
extracting this 
information from 
the 
HOME_ADDRESS
column in the 
CONTACT_INFO 
table in the North 
American Bank 
core services

Data element North American Bank 
(source)

Northern California Bank 
(target)

Action to be taken 

 

 

 

 Chapter 2. Financial services business scenario 853



2.7.1  Cleansing names and addresses, matching, and surviving data 
in the migrated system

We need to process the migrated data in the DB2 tables using many of the same 
steps described in 2.6.2, “Cleansing Northern California Bank’s core and 
non-core services” on page 706 and 2.6.3, “Matching and surviving Northern 
California Bank and Northern California Bank information” on page 783. 
Specifically, the migrated data can be cleansed, matched (identification of 
duplicates), and survived as follows:

1. The migrated data should be processed by jobs “j00_SRC_NCB” on 
page 709 through “j11_FUNNEL_NCB_DATA” on page 782. This results in a 
merged file of the CUSTOMER and BCUSTOMER files that contains 
standardized name and address information.

Customer type Not defined “P” for person, “O” for 
organization
(TYPE column in the 
CUSTOMER table defined 
as NOT NULL WITH 
DEFAULT ‘-’)

No action because 
default will be 
applied

Employee 
information

Defined Defined Not going to 
migrate the HR 
system.

Various amounts � DECIMAL(9,2) 
(BALANCE in 
ACCOUNT)

� DECIMAL(9,2) 
(MIN_AMOUNT in 
ACCOUNT)

� DECIMAL(9,2) 
(OVERDRAFT in 
ACCOUNT)

� DECIMAL(9,2) 
(OVERDRAFT_LIMIT in 
ACCOUNT)

� DECIMAL(8,5) 
(OVERDRAFT_RATE in 
ACCOUNT)

� DECIMAL(9,2) 
(OVERDRAFT_FEE in 
ACCOUNT)

Modify target 
system with the 
correct data type, 
precision and 
scale. Significant 
impact.

Data element North American Bank 
(source)

Northern California Bank 
(target)

Action to be taken 

 

 

 

854 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



2. This merged file should then be processed by jobs “j14_CRM_FREQUENCY” 
on page 798 through “j17_FUNNEL_UNDUP_RES_DATA” on page 829 to 
get a cleansed file of migrated data. 

A set of IBM WebSphere DataStage jobs then needs to be developed to 
update Northern California Bank’s systems from the file that was created in 
the “j17_FUNNEL_UNDUP_RES_DATA” on page 829 job. This task is 
described in IBM InfoSphere DataStage Data Flow and Job Design, 
SG24-7576.

 

 

 

 

 Chapter 2. Financial services business scenario 855



 

 

 

 

856 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Appendix A. IBM Information Server 
overview

In this chapter we provide an overview of IBM Information Server architecture 
and processing flow. 

We cover the following topics:

� Introduction
� IBM Information Server architecture
� Configuration flow
� Runtime flow

A
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 857



A.1  Introduction 

Over the years, most organizations have made significant investments in 
enterprise resource planning, customer relationship management, and supply 
chain management packages in addition to their home grown applications. This 
has resulted in larger amounts of data being captured about their businesses. To 
turn all this data into consistent, timely, and accurate information for 
decision-making requires an effective means of integrating information. Statutory 
compliance requirements such as Basel II and Sarbanes-Oxley place additional 
demands for consistent, complete, and trustworthy information.

IBM Information Server addresses these critical information integration 
requirements of consistent, complete, and trustworthy information with a 
comprehensive, unified foundation for enterprise information architectures, 
capable of scaling to meet any information volume requirement so that 
companies can deliver business results faster and with higher quality results for 
all the following initiatives:

� Business intelligence

IBM Information Server makes it easier to develop a unified view of the 
business for better decisions. It helps you understand existing data sources, 
cleanse, correct, and standardize information, and load analytical views that 
can be reused throughout the enterprise.

� Master data management

IBM Information Server simplifies the development of authoritative master 
data by showing where and how information is stored across source systems. 
It also consolidates disparate data into a single, reliable record, cleanses and 
standardizes information, removes duplicates, and links records together 
across systems. This master record can be loaded into operational data 
stores, data warehouses, or master data applications such as WebSphere 
Customer Center and WebSphere Product Center. The record can also be 
assembled, completely or partially, on demand.

� Infrastructure rationalization

IBM Information Server aids in reducing operating costs by showing 
relationships between systems and by defining migration rules to consolidate 
instances or move data from obsolete systems. Data cleansing and matching 
ensure high-quality data in the new system.

� Business transformation

IBM Information Server can speed development and increase business agility 
by providing reusable information services that can be plugged into 
applications, business processes, and portals. These standards-based 

 

 

 

 

858 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



information services are maintained centrally by information specialists but 
are widely accessible throughout the enterprise.

� Risk and compliance

IBM Information Server helps improve visibility and data governance by 
enabling complete, authoritative views of information with proof of lineage and 
quality. These views can be made widely available and reusable as shared 
services, while the rules inherent in them are maintained centrally.

IBM Information Server combines the technologies of key information integration 
functions within the IBM Information Integration Solutions portfolio into a single 
unified platform that enables companies to understand, cleanse, transform, 
move, and deliver trustworthy and context-rich information as shown in 
Figure A-1 on page 861. 

IBM Information Server includes the following product modules:

� IBM WebSphere DataStage

It enables organizations to design data flows that extract information from 
multiple source systems, transform it in ways that make it more valuable, and 
then deliver it to one or more target databases or applications.

� IBM WebSphere QualityStage

Designed to help organizations understand and improve the overall quality of 
their data assets, WebSphere QualityStage provides advanced features to 
help investigate, repair, consolidate, and validate heterogeneous data within 
an integration workflow. 

� IBM WebSphere Federation Server

It enables applications to access and integrate diverse data and content 
sources as though they were a single resource—regardless of where the 
information resides—while retaining the autonomy and integrity of the 
heterogeneous data and content sources. This enabling technology is 
transparent, heterogeneous, and extensible, and provides high function and 
high performance.

� IBM WebSphere Information Services Director

IBM Information Server provides a unified mechanism for publishing and 
managing shared service-oriented architecture (SOA) services across data 
quality, data transformation, and federation functions, allowing information 
specialists to easily deploy services for any information integration task and 
consistently manage them. This enables developers to take data integration 
logic built using IBM Information Server and publish it as an always on 
service—in minutes. The common services also include the metadata 
services, which provide standard service-oriented access and analysis of 
metadata across the platform.

 

 

 

 

 Appendix A. IBM Information Server overview 859



� IBM WebSphere Information Analyzer

IBM WebSphere Information Analyzer profiles and analyzes data so that you 
can deliver trusted information to your users. It can automatically scan 
samples of your data to determine their quality and structure. This analysis 
aids you in understanding the inputs to your integration process, ranging from 
individual fields to high-level data entities. Information analysis also enables 
you to correct problems with structure or validity before they affect your 
project. While analysis of source data is a critical first step in any integration 
project, you must continually monitor the quality of the data. IBM WebSphere 
Information Analyzer enables you to treat profiling and analysis as an ongoing 
process and create business metrics that you can run and track over time.

� IBM WebSphere Business Glossary

IBM Information Server provides a Web-based tool that enables business 
analysts and subject-matter experts to create, manage, and share a common 
enterprise vocabulary and classification system. WebSphere Business 
Glossary functionality is powered by and actively connected to WebSphere 
Metadata Server. This enables users to link business terms to more technical 
artifacts managed by WebSphere Metadata Server. The Metadata Server 
also enables sharing of the business terms by IBM Rational® Data Architect 
and WebSphere Information Analyzer, creating a common set of semantic 
tags for reuse by data modelers, data analysts, business analysts, and end 
users.

� IBM WebSphere Metadata Server

IBM Information Server provides the next-generation metadata repository that 
is fully integrated and common across all product modules, including 
WebSphere Information Analyzer, WebSphere QualityStage, WebSphere 
DataStage, and WebSphere Business Glossary. The metadata services 
infrastructure of IBM Information Server is designed to allow metadata to be 
more easily managed, accessed by those who need it, and shared across 
heterogeneous technologies through an SOA.

� IBM WebSphere DataStage MVS™ Edition

IBM Information Server brings data transformation capabilities to the 
mainframe with its WebSphere DataStage MVS Edition product module. 
WebSphere DataStage MVS Edition consolidates, collects, and centralizes 
information from various systems and mainframes using native execution, 
from a single design environment.

Note: For complete details about these product modules, refer to the 
documentation in the Web site:

http://www.ibm.com/software/data/integration/info_server/

 

 

 

 

860 IBM WebSphere QualityStage Methodologies, Standardization, and Matching

http://www.ibm.com/software/data/integration/info_server/


A number of companion products support IBM Information Server, such as 
Rational Data Architect and WebSphere Replication Server Event Publisher.

A.2  IBM Information Server architecture 

IBM Information Server provides a unified architecture that works with all types of 
information integration as shown in Figure A-1. A unified user interface, common 
services, key integration functions (understand, cleanse, transform and move, 
and deliver), unified parallel processing, and unified metadata are at the core of 
the architecture.

Figure A-1   IBM Information Server architecture

The architecture is service oriented, enabling IBM Information Server to work 
within an organization’s evolving enterprise SOAs. An SOA also connects the 
individual product modules of IBM Information Server. By eliminating duplication 

DevelopersSubject Matter Experts Data AnalystsBusiness Users Architects DBAs

Analysis
Interface

Web Admin
Interface

Development
Interface

UNIFIED USER INTERFACE

UNIFIED
METADATA
WebSphere
Metadata

Server

Design

Operational

COMMON CONNECTIVITY

Structured, Unstructured, Applications, Mainframe

COMMON SERVICES

Metadata
Services

Security
Services

Logging &
Reporting
Services

Unified
Service

Deployment
(WebSphere
Information

Services
Director)

User
community

UNIFIED PARALLEL PROCESSING

Synchronize, virtualize, 
and move information 

for in-line delivery

WebSphere Federation Server

DELIVER

Discover, model 
and govern information
structure and content

WebSphere Information Analyzer
WebSphere Business Glossary

UNDERSTAND

Standardize, merge
and correct 
information

WebSphere QualityStage

CLEANSE

Combine and restructure 
information 

for new users

WebSphere DataStage

TRANSFORM & MOVE

 

 

 

 

 Appendix A. IBM Information Server overview 861



of functions, the architecture efficiently uses resources and reduces the amount 
of development and administrative effort that are required to deploy an 
integration solution.

In this section, we describe each of the following components of the architecture 
briefly:

� Unified user interface
� Common services
� Key integration functions
� Unified parallel processing
� Unified metadata
� Common connectivity
� Client application access to services

A.2.1  Unified user interface

The unified user interface enables an organization’s entire user community of 
business users, subject matter experts, architects, data analysts, developers, 
and database administrators (DBAs) to collaborate, administer, and query 
information within the enterprise. A security infrastructure ensures that users are 
permitted to access information and perform tasks for which they are authorized.

The face of IBM Information Server is a common graphical interface and tool 
framework. Shared interfaces such as the IBM Information Server console and 
Web console provide a common look and feel, visual controls, and user 
experience across products. Common functions such as catalog browsing, 
metadata import, query, and data browsing all expose underlying common 
services in a uniform way. IBM Information Center provides rich client interfaces 
for highly detailed development work and thin clients that run in Web browsers 
for administration. Application programming interfaces (APIs) support a variety of 
interface styles that include standard request-reply, service-oriented, 
event-driven, and scheduled task invocation.

The three broad user interface categories are the analysis interface, 
development interface, and Web Admin interface as shown in Figure A-1 on 
page 861. 

A.2.2  Common services

IBM Information Server is built entirely on a set of shared services that centralize 
core tasks across the platform. These include administrative tasks such as 
unified service deployment, security, user administration, logging, and reporting. 

 

 

 

 

862 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



The common services provides flexible, configurable interconnections among the 
many parts of the architecture

Shared services allow these tasks to be managed and controlled in one place, 
regardless of which product module is being used. The common services also 
include the metadata services, which provide standard service-oriented access 
and analysis of metadata across the platform. In addition, the common services 
layer manages how services are deployed from any of the product functions, 
allowing cleansing and transformation rules or federated queries to be published 
as shared services within an SOA, using a consistent and easy-to-use 
mechanism.

The common services layer is deployed on J2EE™-compliant application servers 
such as IBM WebSphere Application Server. 

IBM Information Server products can access four general categories of service 
such as design, execution, metadata, and unified service deployment as follows:

A.2.2.1   Design services 
Design services help developers create function-specific services that can also 
be shared. For example, WebSphere Information Analyzer calls a column 
analyzer service that was created for enterprise data analysis but can be 
integrated with other parts of IBM Information Server because it exhibits common 
SOA characteristics. 

A.2.2.2   Execution services
Execution services include logging, scheduling, monitoring, reporting, security, 
and Web framework. 

� Log services help you manage logs across all of the IBM Information Server 
suite components. The Web console shown in Figure A-2 on page 864 
provides a central place to view logs and resolve problems. Logs are stored in 
the common repository, and each IBM Information Server suite component 
defines relevant logging categories. You can configure which categories of 
logging messages are saved in the repository. Log views are saved queries 
that an administrator can create to help with common tasks. For example, you 
might want to display all of the errors in DataStage jobs that ran in the past 24 
hours. Logging is organized by server components. The Web console 
displays default and active configurations for each component.

Attention: Today, common services are consumed exclusively by the various 
components of IBM Information Server. These common services are currently 
not exposed as public SOA services, and therefore cannot be invoked by 
applications or tools.

 

 

 

 

 Appendix A. IBM Information Server overview 863



Figure A-2   Web console for setting up logs

� Scheduling services help plan and track activities such as logging and 
reporting, and suite component tasks such data monitoring and trending. 
Schedules are maintained using the IBM Information Server console shown in 
Figure A-3 on page 865, which helps you define schedules, view their status, 
history, and forecast, and purge them from the system.

 

 

 

 

864 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure A-3   Web console scheduling view creation

� Reporting services manage run time and administrative aspects of reporting 
for IBM Information Server. You can create product-specific reports for 
WebSphere DataStage, WebSphere QualityStage, and WebSphere 
Information Analyzer, and cross-product reports for logging, monitoring, 
scheduling, and security services. All reporting tasks are set up and run from 
a single interface, the IBM Information Server Web console. You can retrieve 
and view reports and schedule reports to run at a specific time and frequency. 
You define reports by choosing from a set of predefined parameters and 
templates as shown in Figure A-4 on page 866. You can specify a history 
policy that determines how the report will be archived and when it expires. 
Reports can be formatted as HTML, PDF, or Microsoft Word documents.

 

 

 

 

 Appendix A. IBM Information Server overview 865



Figure A-4   Web console logging report creation

� Security services support role-based authentication of users, access-control 
services, and encryption that complies with many privacy and security 
regulations. The Web console shown in Figure A-5 on page 867 helps 
administrators add users, groups, and roles and lets administrators browse, 
create, delete, and update operations within Information Server. Directory 
services act as a central authority that can authenticate resources and 
manage identities and relationships among identities. You can base 
directories on IBM Information Server’s own internal directory or on external 
directories that are based on LDAP, Microsoft’s Active Directory®, or UNIX®. 
Users only use one credential to access all the components of Information 

 

 

 

 

866 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Server. A set of credentials is stored for each user to provide single sign-on to 
the products registered with the domain.

Figure A-5   Web console to administer users and groups

A.2.2.3   Metadata services 
Metadata services enable metadata to be shared “live” across tools so that 
changes made in one IBM Information Server product are instantly visible across 
all of the product modules. Metadata services are tightly integrated with the 
common repository and are packaged in WebSphere Metadata Server. You can 
also exchange metadata with external tools by using metadata services.

Note: A white paper is currently being developed to provide guidelines 
about implementing authentication, access control, and encryption security 
within an IBM Information Server environment. A reference to this white 
paper will be provided here when it becomes publicly available.

 

 

 

 

 Appendix A. IBM Information Server overview 867



The major metadata services components of IBM Information Server are 
WebSphere Business Glossary, WebSphere Metadata Server, and WebSphere 
MetaBrokers and bridges.

� WebSphere Business Glossary is a Web-based application that provides a 
business-oriented view into the data integration environment. By using 
WebSphere Business Glossary, you can view and update business 
descriptions and access technical metadata. Metadata is best managed by 
business analysts who understand the meaning and importance of the 
information assets to the business. Designed for collaborative authoring, 
WebSphere Business Glossary gives users the ability to share insights and 
experiences about data. It provides users with the following information about 
data resources: 

– Business meaning and descriptions of data 
– Stewardship of data and processes 
– Standard business hierarchies 
– Approved terms

WebSphere Business Glossary is organized and searchable according to the 
semantics that are defined by a controlled vocabulary, which you can create 
using the Web console.

� WebSphere Metadata Server provides a variety of services to other 
components of IBM Information Server: 

– Metadata access 
– Metadata integration 
– Metadata import and export 
– Impact analysis 
– Search and query

WebSphere Metadata Server provides a common repository with facilities 
that are capable of sourcing, sharing, storing, and reconciling a 
comprehensive spectrum of metadata including business metadata and 
technical metadata as follows: 

– Business metadata provides business context for information technology 
assets and adds business meaning to the artifacts that are created and 
managed by other IT applications. Business metadata includes controlled 
vocabularies, taxonomies, stewardship, examples, and business 
definitions. 

– Technical metadata provides details about source and target systems, 
their table and field structures, attributes, derivations, and dependencies. 
Technical metadata also includes details about profiling, quality, and ETL 
processes, projects, and users.

 

 

 

 

868 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



� WebSphere MetaBrokers and bridges provide semantic model mapping 
technology that allows metadata to be shared among applications for all 
products that are used in the data integration life cycle: 

– Data modeling or case tools 
– Business intelligence applications 
– Data marts and data warehouses 
– Enterprise applications 
– Data integration tools

These components can be used to establish common data definitions across 
business and IT functions:

� Drive consistency throughout the data integration life cycle 
� Deliver business-oriented and IT-oriented reporting 
� Provide enterprise visibility for change management 
� Easily extend to new, existing, and homegrown metadata sources

A.2.2.4   Unified service deployment 
IBM Information Server provides an SOA infrastructure that exposes data 
transformation processes,1 federated queries,2 and database stored procedures 
as a set of shared services and operations. This is performed by using a 
consistent and intuitive graphical interface, and managed after publication using 
the same user interface. 

IBM Information Server provides standard service-oriented interfaces for 
enterprise data integration. The built-in integration logic of IBM Information 
Server can easily be encapsulated as service objects that are embedded in user 
applications. These service objects have the following characteristics:

� Always on

By definition, the services are always running and waiting for requests. This 
ability removes the overhead of batch startup and shutdown and enables 
services to respond instantaneously to requests. 

� Scalable

The services distribute request processing and stop and start jobs across 
multiple WebSphere DataStage servers, enabling high performance with 
large, unpredictable volumes of requests. 

� Standards-based

The services are based on open standards and can easily be invoked by 
standards-based technologies including Web Services Description Language 

1  Created from new or existing WebSphere DataStage or WebSphere QualityStage jobs
2  Created by WebSphere Federation Server

 

 

 

 

 Appendix A. IBM Information Server overview 869



(WSDL), enterprise application integration (EAI), and enterprise service bus 
(ESB) platforms, applications, and portals. 

� Manageable

Monitoring services coordinate timely reporting of system performance data.

� Flexible

You can invoke the services by using multiple mechanisms (bindings) and 
choose from many options for using the services. 

� Reliable and highly available 

If any WebSphere DataStage server becomes unavailable, it routes service 
requests to a different server in the pool. 

� Reusable

The services publish their own metadata, enabling them to be found and 
called across any network. 

� High performance

Load balancing and the underlying parallel processing capabilities of IBM 
Information Server create high performance for any type of data payload.

A data integration service is created by designing the data integration process 
logic in IBM Information Server and publishing it as a service. These services 
can then be accessed by external projects and technologies. 

WebSphere Information Services Director provides a foundation for information 
services by allowing you to leverage the other components of IBM Information 
Server for understanding, cleansing, and transforming information and deploying 
those integration tasks as consistent and reusable information services. 

WebSphere Information Services Director provides an integrated environment 
for designing services that enables you to rapidly deploy integration logic as 
services without assuming extensive development skills. With a simple, 
wizard-driven interface, in a few minutes you can attach a specific binding and 
deploy a reusable integration service. WebSphere Information Services Director 
also provides these features: 

� Administrator services for cataloging and registering services. 

� Shared reporting and security services. 

� A metadata services layer that promotes reuse of the information services by 
actually defining what the service does and what information it delivers.

 

 

 

 

870 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



A.2.3  Key integration functions

We describe the four key integration functions shown in Figure A-1 on page 861 
briefly here:

� Understand your data

IBM Information Server helps you to automatically discover, define, and 
model information content and structure and understand and analyze the 
meaning, relationships, and lineage of information. By automating data 
profiling and data-quality auditing within systems, organizations can achieve 
the following goals: 

– Understand data sources and relationships 
– Eliminate the risk of using or proliferating bad data 
– Improve productivity through automation 
– Take advantage of existing IT investments

IBM Information Server makes it easier for businesses to collaborate across 
roles. Data analysts can use analysis and reporting functionality, generating 
integration specifications and business rules that they can monitor over time. 
Subject matter experts can use Web-based tools to define, annotate, and 
report on fields of business data. A common metadata foundation makes it 
easier for different types of users to create and manage metadata by using 
tools that are optimized for their roles. 

The upcoming WebSphere Information Analyzer product module will provide 
this functionality.

� Cleanse your information

IBM Information Server supports information quality and consistency by 
standardizing, validating, matching, and merging data. It can certify and 
enrich common data elements, use trusted data such as postal records for 
name and address information, and match records across or within data 
sources. IBM Information Server allows a single record to survive from the 
best information across sources for each unique entity, helping you to create a 
single, comprehensive, and accurate view of information across source 
systems. 

The WebSphere QualityStage product module currently provides this 
functionality.

� Transform your data into information and move 

IBM Information Server transforms and enriches information to ensure that it 
is in the proper context for new uses. Hundreds of prebuilt transformation 
functions combine, restructure, and aggregate information. 

Transformation functionality is broad and flexible, to meet the requirements of 
varied integration scenarios. For example, IBM Information Server provides 

 

 

 

 

 Appendix A. IBM Information Server overview 871



inline validation and transformation of complex data types such as U.S. 
Health Insurance Portability and Accountability Act (HIPAA), along with 
high-speed joins and sorts of heterogeneous data. IBM Information Server 
also provides high-volume, complex data transformation and movement 
functionality that can be used for standalone extract/transform/load (ETL) 
scenarios, or as a real-time data processing engine for applications or 
processes. 

The WebSphere DataStage product modules currently provide this 
functionality. 

� Deliver your information

IBM Information Server provides the ability to virtualize, synchronize, or move 
information to the people, processes, or applications that need it. Information 
can be delivered through federation or time-based or event-based 
processing, moved in large bulk volumes from location to location, or 
accessed in place when it cannot be consolidated. IBM Information Server 
provides direct, native access to a wide variety of information sources, both 
mainframe and distributed. It provides access to databases, files, services 
and packaged applications, and to content repositories and collaboration 
systems. Companion products allow high-speed replication, synchronization 
and distribution across databases, change data capture, and event-based 
publishing of information.

The WebSphere Federation Server product module currently provides this 
functionality.

A.2.4  Unified parallel processing

Much of the work that IBM Information Server does takes place within the parallel 
processing engine. The engine handles data processing needs as diverse as 
performing analysis of large databases for WebSphere Information Analyzer, 
data cleansing for WebSphere QualityStage, and complex transformations for 
WebSphere DataStage. This parallel processing engine is designed to deliver:

� Parallelism and pipelining to complete increasing volumes of work in 
decreasing time windows. 

– Data partitioning is an approach to parallelism that involves breaking the 
record set into partitions, or subsets of records. Data partitioning generally 
provides linear increases in application performance.

IBM Information Server automatically partitions data based on the type of 
partition that the stage requires. In a well-designed, scalable architecture, 
the developer does not need to be concerned about the number of 
partitions that will run, the ability to increase the number of partitions, or 
re-partitioning data.

 

 

 

 

872 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



– Data pipelining is the process of pulling records from the source system 
and moving them through the sequence of processing functions that are 
defined in the data-flow (the job). Because records are flowing through the 
pipeline, they can be processed without writing the records to disk,

� Scalability by adding hardware (for example, processors or nodes in a grid) 
with no changes to the data integration design. 

� Optimized database, file, and queue processing to handle large files that 
cannot fit in memory all at once or with large numbers of small files.

A.2.5  Unified metadata

IBM Information Server is built on a unified metadata infrastructure that enables 
shared understanding between business and technical domains. This 
infrastructure reduces development time and provides a persistent record that 
can improve confidence in information. 

All functions of IBM Information Server share the same metamodel, making it 
easier for different roles and functions to collaborate. A common metadata 
repository provides persistent storage for all IBM Information Server product 
modules. All of the products depend on the repository to navigate, query, and 
update metadata. 

The repository contains two kinds of metadata: 

� Dynamic metadata that includes design-time information. 

� Operational metadata that includes performance monitoring, audit and log 
data, and data profiling sample data.

Because the repository is shared by all product modules, profiling information 
that is created by WebSphere Information Analyzer is instantly available to users 
of WebSphere DataStage and QualityStage, for example.The repository is a 
J2EE application that uses a standard relational database such as IBM DB2, 
Oracle®, or SQL Server® for persistence (DB2 is provided with IBM Information 
Server). These databases provide backup, administration, scalability, parallel 
access, transactions, and concurrent access.

Note: The dynamic parallelization of all potential service implementations is 
an objective of this architecture.

 

 

 

 

 Appendix A. IBM Information Server overview 873



A.2.6  Common connectivity

IBM Information Server connects to information sources whether they are 
structured, unstructured, on the mainframe, or applications. 

Metadata-driven connectivity is shared across the product modules, and 
connection objects are reusable across functions. Connectors provide 
design-time importing of metadata, data browsing and sampling, run-time 
dynamic metadata access, error handling, as well as high functionality and high 
performance run-time data access. 

Prebuilt interfaces for packaged applications called Packs provide adapters to 
SAP, Siebel®, Oracle, and others, enabling integration with enterprise 
applications and associated reporting and analytical systems.

A.2.7  Client application access to services

After an information service is enabled by IBM Information Server, any enterprise 
application, .Net or Java™ developer, Microsoft Office, or integration software 
can invoke the service by using a binding protocol such as SOAP over HTTP or 
EJB™.

Figure A-6 on page 875 shows how IBM Information Server information services 
participate in the SOA Reference Architecture. Briefly:

� An information service (blue dots) can access content systems and data 
systems, while other (non IBM Information Server) services (pink dots) can 
access applications and registry services. Applications will most likely access 
data or content using “proprietary” APIs. 

� Information services can be invoked by other (non IBM Information Server) 
services.

� Business processes can invoke information services and other (non IBM 
Information Server) services.

� Service consumers can invoke information services, business processes, or 
other (non IBM Information Server) services directly or indirectly.

The Enterprise Service Bus (ESB) layer enables the integration of services 
through the introduction of a reliable set of capabilities such as intelligent routing, 
protocol mediation, and other transformation mechanisms. An ESB provides a 
location independent mechanism for integration.

 

 

 

 

874 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure A-6   Information Services in the SOA Reference Architecture

A service-ready data integration job accepts requests from client applications, 
mapping request data to:

� Input rows and passing them to the underlying jobs in the case of DataStage 
and QualityStage jobs.

� Input parameters that are executed against a federated database in the case 
of a federated query or stored procedure. 

A job instance can include database access (federated queries), transformations 
(DataStage jobs), data standardization and matching (QualityStage jobs), and 
other data integration tasks (database stored procedures) that are supplied by 
IBM Information Server.

The design of a real-time job determines whether it is always running or runs 
once to completion. All jobs that are exposed as services process requests on a 
24-hour basis. 

Infrastructure and Management for SOA

Services
(Application & 
Information)

Operational 
Systems
(Application & 
Information Assets)

People
(Service consumers)

Business 
Process

Connectivity (Enterprise Service Bus)

Web Device

Data
Systems

Registry
Services

Application Application

Content
Systems

Collaboration

External

SOA Governance and Lifecycle Management

 

 

 

 

 Appendix A. IBM Information Server overview 875



The SOA infrastructure supports three job topologies for different load and work 
style requirements, which relates specifically to DataStage and QualityStage 
jobs, and not to federated queries or stored procedures: 

� Batch jobs 

This topology uses new or existing batch jobs that are exposed as services. A 
batch job starts on demand. Each service request starts one instance of the 
job that runs to completion. This job typically initiates a batch process from a 
real-time process that does not need direct feedback on the results. This 
topology is tailored for processing bulk data sets and is capable of accepting 
job parameters as input arguments. 

� Batch jobs with a Service Output stage 

This topology uses an existing batch job and adds an output stage. The 
Service Output stage is the exit point from the job, returning one or more rows 
to the client application as a service response. These jobs typically initiate a 
batch process from a real-time process that requires feedback or data from 
the results. This topology is designed to process large data sets and can 
accept job parameters as input arguments.

� Jobs with a Service Input stage and Service Output stage

This topology uses both a Service Input stage and a Service Output stage. 
The Service Input stage is the entry point to a job, accepting one or more 
rows during a service request. These jobs are always running. This topology 
is typically used to process high volumes of smaller transactions where 
response time is important. It is tailored to process many small requests 
rather than a few large requests. 

Current restriction: Client applications can only access IBM Information 
Server services in synchronous mode, where the model requires feedback to 
be received for any request made before the client application can proceed to 
its next course of action. IBM Information Server services that are long 
running tasks (batch jobs and batch jobs with service output stage topologies) 
or tasks where no feedback is returned to the requestor (batch jobs topology) 
need special handling if the client application is to avoid “waiting.” Such 
topology jobs must be redesigned to return feedback to the requestor as soon 
as the request has been processed, and the client application will have to be 
designed to check on the status of the job at some later point in time. An 
upcoming release will provide asynchronous support with JMS binding.

 

 

 

 

876 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



A.3  Configuration flow

This section describes the processing flow involved when configuring a service. 

Multiple steps are involved in configuring a service before it can become the 
target of a client application invocation.

There is a hierarchy of containers when defining an information service— 
Project → Application → Service → Operation. This is reflected in the main 
steps in creating an SOA service using IBM Information Server shown in 
Figure A-7.

Figure A-7   Steps in creating SOA services

A.3.1  Step 1a: Create connection to an Information Server provider

An information provider is both the server that contains functions that you can 
expose as services and the functions themselves, such as WebSphere 
DataStage and WebSphere QualityStage jobs, database stored procedures, or 
federated SQL queries. 

Before an SOA service can be generated for a function, the information provider 
must be enabled using WebSphere Information Services Director. 

Step1b: Create a project

Step1a:  Create connection to an Information Server provider

Step1g: Optionally export service to WSRR

Step1c: Create an application

Step1f: Test deployed SOA services

Step1e: Deploy SOA services

Step1d: Generate SOA services

 

 

 

 

 Appendix A. IBM Information Server overview 877



There are two types of Information Server providers—a “DataStage and 
QualityStage” type for DataStage and QualityStage jobs, and a “DB2 or 
Federation Server” type for database stored procedures and federated queries. 

A.3.2  Step 1b: Create a project

A project is a collaborative environment that you use to design applications, 
services, and operations. All project information that you create is saved in the 
common metadata repository so that it can easily be shared among other IBM 
Information Server components. You can export a project to back up your work or 
share work with other IBM Information Server users. The export file includes 
applications, services, operations, and binding information.

Therefore, you must create a project first. 

A.3.3  Step 1c: Create an application

An application is a container for a set of services and operations. An application 
contains one or more services that you want to deploy together as an Enterprise 
Archive (EAR) file on an application server. 

All design-time activity occurs in the context of applications: 

� Creating services and operations 

� Describing how message payloads and transport protocols are used to 
expose a service 

� Attaching a reference provider, such as a WebSphere DataStage job or an 
SQL query, to an operation

You can also export services from an application before it is deployed and import 
the services into another application.

Therefore, you must create an application in the project created. 

A.3.4  Step 1d: Generate SOA services 

An information service exposes results from processing by information providers 
such as DataStage servers and federated servers. A deployed service runs on 
an application server and processes requests from service client applications. 

An information service is a collection of operations that are selected from jobs, 
federated queries, or other information providers. You can group operations in 
the same information service or design them in separate services. You create an 

 

 

 

 

878 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



information service for a set of operations that you want to deploy together. You 
also specify the bindings (SOAP over HTTP or EJB) for the service.

As mentioned earlier, an information service is associated with a particular 
application.

A.3.5  Step 1e: Deploy SOA services 

After the information service is generated, it must be deployed. You deploy an 
application on WebSphere Application Server to enable the information services 
that are contained in the application to receive service requests. You can exclude 
one or more services, bindings, and operations from the deployment, change 
runtime properties such as minimum number of job instances, or, for WebSphere 
DataStage jobs, set constant values for job parameters. WebSphere Information 
Services Director deploys the Enterprise Archive (EAR) file on the application 
server. 

A.3.6  Step 1f: Test deployed SOA services 

After deployment, we strongly recommend that you test the deployed information 
service before making it available to client applications. 

A.3.7  Step 1g: Optionally export service to IBM WebSphere Service 
Registry Repository

The WebSphere Server Registry and Repository is a separate entity from IBM 
Information Server that can serve as the master metadata repository (not related 
in any way to the IBM Information Server metadata repository mentioned earlier) 
for service descriptions. As the integration point for service metadata, 
WebSphere Server Registry and Repository establishes a central point for 
finding and managing service metadata acquired from a number of sources, 
including service application deployments and other service metadata and 
endpoint registries and repositories, such as UDDI. It is where service metadata 
that is scattered across an enterprise is brought together to provide a single, 
comprehensive description of a service. After that happens, visibility is 
controlled, versions are managed, proposed changes are analyzed and 

Note: WebSphere Service Registry and Repository is not a pre-requisite for 
IBM Information Server, nor is it mandatory for SOA. If your organization has 
implemented a WebSphere Server Registry and Repository, you can choose 
to export the IBM Information Server service you generated to it. 

 

 

 

 

 Appendix A. IBM Information Server overview 879



communicated, usage is monitored and other parts of the SOA foundation can 
access service metadata with the confidence that they have found the copy of 
record. 

In this context, WebSphere Server Registry and Repository handles the 
metadata management aspects of operational services and provides the system 
of record of these metadata artifacts—the place where anybody looking for a 
catalog of all services deployed in or used by the enterprise would go first. The 
WebSphere Server Registry and Repository provides registry functions 
supporting publication of metadata about services, their capabilities, 
requirements, and semantics of services that enable service consumers to find 
services or to analyze their relationships. 

A.4  Runtime flow

This section provides an overview of the runtime flow associated with processing 
an invocation of an IBM Information Server service by a client application.

A brief overview of the service artifacts is covered before describing the flow of a 
request through the system.

A.4.1  Service artifacts

Every IBM Information Server service generated by WebSphere Information 
Services Director is generated as an EJB session bean (Service Session Bean in 
Figure A-8 on page 881) regardless of whether the function is a DataStage job, 
QualityStage job, database stored procedure, or federated query. After the 
service session bean has been generated, additional artifacts are created 
depending upon whether SOAP over HTTP or EJB binding is requested for the 
service:

� With SOAP over HTTP binding, a router servlet and facade session bean is 
generated. The servlet invokes the facade session bean that in turn invokes 
the service session bean.

� With EJB binding, a facade session bean is generated that invokes the 
service session bean. 

 

 

 

 

880 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Figure A-8   Partial contents of IBM Information Server application EAR file

The service session bean is packaged into an svcs.jar file along with other files 
as shown in Example A-1. 

Example: A-1   The svcs.jar file contents

AccountService.class
AccountServiceBean.class
AccountServiceForWSDL.class
AccountServiceHome.class
AccountServiceRemote.class
ejb-jar.xml
ibm-ejb-jar-bnd.xmi
Manifest.mf
Response.class
RTIServiceEJBBase.class

Note: The .jar and .war files shown in Example A-1 through Example A-4 
relate to the creation of an information service named AccountService with 
SOAP over HTTP and EJB bindings in the BrokerageApp application within 
the A2ZProject.

JCA API

Handler 
instance…Handler 

Pool
Handler 
instance

ISF Agent

Structured, Unstructured, Applications, Mainframe

Agent framework

Façade Session Bean

Façade
Session Bean
EJB binding

Service
Session Bean

Router servlet provides
SOAP over HTTP binding

application.xml

“Remote” EIS Server

soapbinding.jar

svcs.jar

ejbbinding.jar
soaprouter.war

<application>.ear

WebSphere Application Server 

SOA-deployment.xml

 

 

 

 

 Appendix A. IBM Information Server overview 881



The router servlet is packaged into a soaprouter.war file along with other files as 
shown in Example A-2.

Example: A-2   The soaprouter.war file contents

ibm-web-bnd.xml
ibm-web-ext.xml
Manifest.mf
web.xml

The facade session bean is packaged into a soapbinding.jar file along with other 
files as shown in Example A-3.

Example: A-3   The soapbinding.jar file contents

AccountService.wsdl
AccountService_mapping.xml
AccountServiceSOAPBindingBean.class
ejb-jar.xml
ibm-ejb-jar-bnd.xmi
ibm-webservices-bnd.xmi
ibm-webservices-ext.xmi
Manifest.mf
webservices.xml

The facade session bean is packaged into an ejbbinding.jar file along with other 
files as shown in Example A-4.

Example: A-4   The ejbbinding.jar file contents

AccountServiceBean.class
ejb-jar.xml
ibm-ejb-jar-bnd.xmi
Manifest.mf

All these .jar files along with a soa-deployment.xml descriptor (shown in 
Example A-5 on page 883 as including both SOAP over HTTP and EJB 
bindings), and application.xml (Example A-7 on page 884) descriptor are 
packaged into A2ZBrokerageApp.ear file (shown in Example A-6 on page 884) 
that eventually gets deployed on the WebSphere Application Server (associated 
with IBM Information Server) by WebSphere Information Services Director.

 

 

 

 

882 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Example: A-5   The soa-deployment.xml descriptor

<?xml version="1.0" ?> 
- <soa-descriptor name="A2ZBrokerageApp">
- <service-descriptor name="AccountService" type="value">
- <description>
- <![CDATA[ Service for opening accounts
  ]]> 
  </description>
- <entry-point>
  <home>com.ibm.isd.A2ZBrokerageApp.AccountService.server.AccountServiceHome</home> 
  <remote>com.ibm.isd.A2ZBrokerageApp.AccountService.server.AccountServiceRemote</remote>
<ejb-class>com.ibm.isd.A2ZBrokerageApp.AccountService.server.impl.AccountServiceBean</ejb-class> 

  <business>com.ibm.isd.A2ZBrokerageApp.AccountService.AccountService</business> 
  </entry-point>
- <j2ee-descriptor reference="true">
  <jndi-name>ascential/rti/A2ZBrokerageApp/AccountService</jndi-name> 
  <ejb-name>com.ibm.isd.A2ZBrokerageApp.AccountService.AccountService</ejb-name> 
  <bean-type value="stateless" /> 
  </j2ee-descriptor>
  <category>/RTI</category> 
  <initialization jndiName="" priority="1" /> 
  <allowable-binding>EJB</allowable-binding> 
- <binding name="EJB">
  <property name="BeanDescription" value="" /> 
  <property name="JNDIName" value="ejb/A2ZBrokerageApp/AccountService" /> 
  <property name="Package" value="com.ibm.isd.A2ZBrokerageApp.AccountService.ejb" /> 
  </binding>
  <allowable-binding>SOAPHttp</allowable-binding> 
- <binding name="SOAPHttp">
  <property name="Package" value="com.ibm.isd.A2ZBrokerageApp.AccountService" /> 
  <property name="TargetNameSpace" 
value="http://AccountService.A2ZBrokerageApp.isd.ibm.com/soapoverhttp/" /> 
  <property name="UriRoot" value="wisd" /> 
  <property name="WSDLClass" 
value="com.ibm.isd.A2ZBrokerageApp.AccountService.AccountServiceForWSDL" /> 
  <property name="SOAPStyle" value="DOCLIT" /> 
  <property name="SOAPAction" value="NONE" /> 

Important: We strongly recommend that you do not modify the various 
descriptors in the IBM Information Server <application>.ear file that is 
generated by WebSphere Information Services Director and attempt to deploy 
it in WebSphere Application Server using other tools. The results can be 
unpredictable.

 

 

 

 

 Appendix A. IBM Information Server overview 883



  </binding>
  </service-descriptor>
  </soa-descriptor>

Example: A-6   BrokerageApp.ear file 

A2ZBrokerageApp_client.jar
application.xml
ejbbinding.jar
Manifest.mf
soa-deployment.xml
soapbinding.jar
soaprouter.war
svcs.jar 

Example: A-7   Information Server application.xml

<?xml version="1.0" encoding="UTF-8" ?> 
- <application xmlns="http://java.sun.com/xml/ns/j2ee" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="Application_ID" 
version="1.4" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 
http://java.sun.com/xml/ns/j2ee/application_1_4.xsd">
  <display-name>A2ZBrokerageApp</display-name> 
- <module>
  <ejb>svcs.jar</ejb> 
  </module>
- <module>
- <web>
  <web-uri>soaprouter.war</web-uri> 
  <context-root>/wisd/A2ZBrokerageApp</context-root> 
  </web>
  </module>
- <module>
  <ejb>soapbinding.jar</ejb> 
  </module>
- <module>
  <ejb>ejbbinding.jar</ejb> 
  </module>
  </application>

 

 

 

 

884 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



A.4.2  Flow of a request

A request for an IBM Information Server service can be invoked using SOAP over 
HTTP binding or EJB binding. 

With SOAP over HTTP binding, an incoming request from a remote client is 
de-serialized by the WebSphere Application Server SOAP stack (associated with 
IBM Information Server) and passed to the IBM Information Server and 
Information Services Framework as follows:

1. Invokes the router servlet with the interface parameters. 

2. The router servlet then invokes the facade session bean

3. Facade session bean invokes the service session bean using EJB binding. 

4. The service session bean connects to the Information Services Framework 
(ISF) Agent3 using the Agent framework using a J2EE Connector 
Architecture4 (JCA) API to send a request to the back-end system and obtain 
a response. 

The ISF Agent provides a framework for sending requests from the IBM 
Information Server to remote (ISF) clients (where the ISF Agent is located) 
without the need for a full J2EE Application Server at each client location. The 
ISF Agent utilizes a plug-in architecture to allow different types of requests to 

3  There is one ISF Agent associated with a DataStage server or Federation Server. If both DataStage 
server and Federation Server are installed on a server, only a single ISF Agent is installed on that 
server. An ISF Agent can be configured to access only one IBM Information Server. This 
architecture allows DataStage and Federation servers to be installed on servers distinct from where 
IBM Information Server is installed. A discussion of configuring IBM Information Server with 
multiple ISF Agents is beyond the scope of this publication.

4  The J2EE Connector Architecture specifies a standard architecture for accessing resources in 
diverse Enterprise Information Systems (EIS) such as ERP systems, mainframe transaction 
processing systems, existing applications and non-relational database systems. The Connector 
Architecture defines a common interface (using the JCA API) between application servers and EIS 
systems, implemented in EIS specific resource adapters. A resource adapter is a system library 
specific to an EIS system such as SAP, and provides connectivity to that EIS via the JCA API. It is 
somewhat similar to a JDBC™ driver. The interface between the resource adapter and the EIS is 
typically specific to the underlying EIS. A Connector Architecture compliant resource adapter works 
with any J2EE server. A single resource adapter is provided with IBM Information Server that 
handles both the DataStage/QualityStage data source, and database stored procedure/federated 
query.

Note: As shown in Figure A-8 on page 881, the Agent Framework, ISF 
Agent and back-end data sources reside on a logically “remote” EIS server, 
which means that these components can be located physically on a 
separate server or co-located on the same server as the IBM Information 
Server. 

 

 

 

 

 Appendix A. IBM Information Server overview 885



be passed from the IBM Information Server. The ISF Agent framework also 
provides load balancing and pooling of resources. 

The code that processes a request in the ISF Agent is called a Handler. Each 
ISF Agent can be configured to support multiple different Handlers at the 
same time. Currently, there are two handlers: 

– A DataStage/QualityStage handler
– A database stored procedure and federated query handler. 

The ISF Agent framework takes care of routing requests and returning any 
responses. The clients (service session bean in our case) of the ISF Agent 
use the Java Connection Architecture (JCA) to send data. This consists of 
obtaining a Connection in much the same way that a JDBC Connection is 
obtained.

5. As each request arrives, the ISF Agent framework selects an instance of the 
requested Handler to process it. It does that by requesting a Handler instance 
from the handler pool. The handler pool in turn can decide to create a new 
instance or reuse an existing instance. 

6. The Handler instance then processes the request and returns a response.

With EJB binding, an application such as a servlet or JSP™ invoke the facade 
session bean directly which invokes the service session bean. Thereafter, the 
processing is be identical to that of SOAP over HTTP. 

 

 

 

 

886 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Appendix B. Code and scripts used in the 
financial services business 
scenario 

In this appendix we document some of the code and scripts that are used in the 
migration and data integration business scenarios. 

B
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 887



B.1  Introduction 

This appendix documents some of the code and scripts used in the migration 
and data integration business scenarios. as follows:

� Example B-1 on page 888 shows the DDL for creating the tables in the 
Northern California Bank data model.

� Example B-2 on page 897 and Example B-3 on page 903 show the DDL for 
creating the tables in the North American Bank data model and VSAM file 
definition respectively.

� Example B-4 on page 904 shows the DDL for creating the tables in the CRM 
data model. 

Example: B-1   Fields in the tables in the Northern California Bank data model

-- This CLP file was created using DB2LOOK Version 9.1
-- Timestamp: Tue Sep 11 11:32:35 CDT 2007
-- Database Name: REDBANK        
-- Database Manager Version: DB2/AIX64 Version 9.1.3       
-- Database Codepage: 1252
-- Database Collating Sequence is: UNIQUE
CONNECT TO REDBANK; 
------------------------------------------------
-- DDL Statements for table "DB2INST1"."ACCTYPE"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."ACCTYPE"  (

  "TYPE" CHAR(2) NOT NULL , 
  "DESCRIP" CHAR(50) NOT NULL , 
  "INTR" INTEGER , 
  "FEE" CHAR(20) , 
  "FEEFRQ" CHAR(1) , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL , 
  "CURRENCY" CHAR(3) NOT NULL WITH DEFAULT '' )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."ACCTYPE" 
ALTER TABLE "DB2INST1"."ACCTYPE" 

ADD CONSTRAINT "ACCTYPE_PK" PRIMARY KEY
("TYPE"); 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."CURRENCY"
------------------------------------------------ 

CREATE TABLE "DB2INST1"."CURRENCY"  (
  "CURRENCY" CHAR(3) NOT NULL , 

 

 

 

 

888 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



  "CTRY" VARCHAR(30) NOT NULL , 
  "NAME" VARCHAR(30) NOT NULL , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL WITH DEFAULT 'USER5555' )   
 IN "USERSPACE1" ; 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."COUNTRY"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."COUNTRY"  (

  "COUNTRY" VARCHAR(30) NOT NULL , 
  "CTRY2" CHAR(2) NOT NULL , 
  "CTRY3" CHAR(3) NOT NULL , 
  "CTRYN" CHAR(3) NOT NULL , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL WITH DEFAULT 'USER5555' )   
 IN "USERSPACE1" ; 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."LANGUAGES"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."LANGUAGES"  (

  "LAN3" CHAR(3) NOT NULL , 
  "LANGUAGE" VARCHAR(30) NOT NULL , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL WITH DEFAULT 'USER5555' )   
 IN "USERSPACE1" ; 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."BACCOUNT"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."BACCOUNT"  (

  "ID" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (  
    START WITH +21001500  
    INCREMENT BY +1  
    MINVALUE +21001500  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  
     ) , 
  "TYPE" CHAR(2) NOT NULL , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL )   
 IN "USERSPACE1" ; 

ALTER TABLE "DB2INST1"."BACCOUNT" ALTER COLUMN "ID" RESTART WITH 
21001539; 
------------------------------------------------
-- DDL Statements for table "DB2INST1"."BROKERAGE"

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 889



------------------------------------------------ 
CREATE TABLE "DB2INST1"."BROKERAGE"  (

  "OWNER" INTEGER NOT NULL , 
  "ACCOUNT" INTEGER NOT NULL , 
  "PORTFOLIO" INTEGER NOT NULL , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL )   
 IN "USERSPACE1" ; 

-- DDL Statements for indexes on Table "DB2INST1"."BROKERAGE"

CREATE INDEX "DB2INST1"."XBROKERAGE" ON "DB2INST1"."BROKERAGE" 
("OWNER" ASC,
 "ACCOUNT" ASC,
 "PORTFOLIO" ASC)
PCTFREE 10 

ALLOW REVERSE SCANS; 
------------------------------------------------
-- DDL Statements for table "DB2INST1"."BRANCH"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."BRANCH"  (

  "ID" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (  
    START WITH +12001500  
    INCREMENT BY +1  
    MINVALUE +12001500  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  
     ) , 
  "NAME" CHAR(50) NOT NULL , 
  "ADDR1" CHAR(50) NOT NULL , 
  "ADDR2" CHAR(50) , 
  "CITY" CHAR(30) NOT NULL , 
  "ZIP" CHAR(10) NOT NULL , 
  "COUNTRY" CHAR(3) , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."BRANCH" 
ALTER TABLE "DB2INST1"."BRANCH" 

ADD CONSTRAINT "BRANCH_PK" PRIMARY KEY
("ID"); 

ALTER TABLE "DB2INST1"."BRANCH" ALTER COLUMN "ID" RESTART WITH 
12001559; 
------------------------------------------------
-- DDL Statements for table "DB2INST1"."CUSTOMER"

 

 

 

 

890 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



------------------------------------------------ 
CREATE TABLE "DB2INST1"."CUSTOMER"  (

  "ID" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (  
    START WITH +10001500  
    INCREMENT BY +1  
    MINVALUE +10001500  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  
     ) , 
  "NAME" CHAR(50) NOT NULL , 
  "ADDR1" CHAR(50) NOT NULL , 
  "ADDR2" CHAR(50) , 
  "CITY" CHAR(30) NOT NULL , 
  "ZIP" CHAR(10) NOT NULL , 
  "COUNTRY" CHAR(30) , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL , 
  "BRANCH" INTEGER , 
  "ADVISOR" INTEGER , 
  "HOMEPHONE" CHAR(15) , 
  "CELLPHONE" CHAR(15) , 
  "WORKPHONE" CHAR(15) , 
  "FAX" CHAR(15) , 
  "EMAIL" VARCHAR(50) , 
  "TYPE" CHAR(1) NOT NULL WITH DEFAULT '-' , 
  "CLASS" INTEGER NOT NULL WITH DEFAULT 0 , 
  "GENDER" CHAR(1) NOT NULL WITH DEFAULT '-' , 
  "PREF_LANG" CHAR(3) NOT NULL WITH DEFAULT 'ENG' )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."CUSTOMER" 
ALTER TABLE "DB2INST1"."CUSTOMER" 

ADD CONSTRAINT "CUSTOMER_PK" PRIMARY KEY
("ID"); 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."EMPLOYEE"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."EMPLOYEE"  (

  "ID" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (  
    START WITH +13001500  
    INCREMENT BY +1  
    MINVALUE +13001500  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 891



     ) , 
  "NAME" CHAR(50) NOT NULL , 
  "USERID" CHAR(8) , 
  "BRANCH" INTEGER , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL )   
 IN "USERSPACE1" ; 

-- DDL Statements for indexes on Table "DB2INST1"."EMPLOYEE" 
CREATE INDEX "DB2INST1"."IEMPLOYEE1" ON "DB2INST1"."EMPLOYEE" 

("ID" ASC)
PCTFREE 10 

ALLOW REVERSE SCANS;
-- DDL Statements for primary key on Table "DB2INST1"."EMPLOYEE" 
ALTER TABLE "DB2INST1"."EMPLOYEE" 

ADD CONSTRAINT "EMPLOYEE_PK" PRIMARY KEY
("ID");

ALTER TABLE "DB2INST1"."EMPLOYEE" ALTER COLUMN "ID" RESTART WITH 
13001979; 
------------------------------------------------
-- DDL Statements for table "DB2INST1"."ACCOUNT"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."ACCOUNT"  (

  "ID" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (  
    START WITH +11001500  
    INCREMENT BY +1  
    MINVALUE +11001500  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  
     ) , 
  "OWNER" INTEGER NOT NULL , 
  "TYPE" CHAR(2) NOT NULL , 
  "SEC_OWNER" INTEGER , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL , 
  "CURRENCY" CHAR(3) )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."ACCOUNT" 
ALTER TABLE "DB2INST1"."ACCOUNT" 

ADD CONSTRAINT "ACCOUNT_PK" PRIMARY KEY
("ID"); 

-- DDL Statements for indexes on Table "DB2INST1"."ACCOUNT" 
CREATE INDEX "DB2INST1"."IACCOUNT2" ON "DB2INST1"."ACCOUNT" 

("ID" ASC,
 "OWNER" ASC,

 

 

 

 

892 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



 "TYPE" ASC)
PCTFREE 10 

ALLOW REVERSE SCANS;
ALTER TABLE "DB2INST1"."ACCOUNT" ALTER COLUMN "ID" RESTART WITH 
11027739; 
------------------------------------------------
-- DDL Statements for table "DB2INST1"."COLLATERAL"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."COLLATERAL"  (

  "ACCOUNT" INTEGER NOT NULL , 
  "TYPE" CHAR(2) NOT NULL , 
  "STATUS" CHAR(1) NOT NULL , 
  "EST_VAL" CHAR(20) NOT NULL , 
  "DESC" VARCHAR(200) NOT NULL , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."COLLATERAL" 
ALTER TABLE "DB2INST1"."COLLATERAL" 

ADD CONSTRAINT "COLLATERAL_PK" PRIMARY KEY
("ACCOUNT",
 "UPDATED"); 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."TRANSACTION"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."TRANSACTION"  (

  "ACCOUNT" INTEGER NOT NULL , 
  "DESCR" CHAR(50) NOT NULL , 
  "CODE" CHAR(1) NOT NULL , 
  "CHANGE" CHAR(20) NOT NULL , 
  "BALANCE" CHAR(20) NOT NULL , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) NOT NULL )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."TRANSACTION" 
ALTER TABLE "DB2INST1"."TRANSACTION" 

ADD CONSTRAINT "TRANSACTION_PK" PRIMARY KEY
("ACCOUNT",
 "UPDATED"); 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."BCUSTOMER"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."BCUSTOMER"  (

  "ID" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (  
    START WITH +20001500  

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 893



    INCREMENT BY +1  
    MINVALUE +20001500  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  
     ) , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT CURRENT TIMESTAMP , 
  "BY" CHAR(8) NOT NULL , 
  "BRANCH" INTEGER , 
  "ADVISOR" INTEGER , 
  "NAME" VARCHAR(40) NOT NULL , 
  "ADDR1" VARCHAR(40) NOT NULL , 
  "ADDR2" VARCHAR(40) , 
  "CITY" VARCHAR(30) NOT NULL , 
  "ZIP" CHAR(10) NOT NULL , 
  "COUNTRY" VARCHAR(30) , 
  "EMAIL" VARCHAR(50) , 
  "BANKID" INTEGER )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."BCUSTOMER" 
ALTER TABLE "DB2INST1"."BCUSTOMER" 

ADD CONSTRAINT "BCUSTOMER_PK" PRIMARY KEY
("ID"); 

-- DDL Statements for indexes on Table "DB2INST1"."BCUSTOMER" 
CREATE INDEX "DB2INST1"."BCUSTOMER_PK" ON "DB2INST1"."BCUSTOMER" 

("ID" ASC,
 "UPDATED" ASC)
ALLOW REVERSE SCANS; 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."PORTFOLIO"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."PORTFOLIO"  (

  "ID" INTEGER NOT NULL GENERATED BY DEFAULT AS IDENTITY (  
    START WITH +22001500  
    INCREMENT BY +1  
    MINVALUE +22001500  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  
     ) , 
  "NAME" VARCHAR(40) NOT NULL , 
  "SYMBOL" CHAR(8) NOT NULL , 
  "ORDERED" DATE NOT NULL , 
  "PURCHASED" DATE , 
  "SELL_BY_DATE" DATE , 

 

 

 

 

894 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



  "SELL_BY_PRICE" CHAR(10) , 
  "SIZE" CHAR(20) NOT NULL , 
  "QUANTITY" CHAR(20) NOT NULL , 
  "PRICE" CHAR(20) , 
  "UPDATED" TIMESTAMP NOT NULL WITH DEFAULT  , 
  "BY" CHAR(8) , 
  "CURRENCY" CHAR(3) )   
 IN "USERSPACE1" ; 

-- DDL Statements for indexes on Table "DB2INST1"."PORTFOLIO" 
CREATE INDEX "DB2INST1"."XPORTFOLIO" ON "DB2INST1"."PORTFOLIO" 

("ID" ASC,
 "UPDATED" ASC)
PCTFREE 10 

ALLOW REVERSE SCANS;
ALTER TABLE "DB2INST1"."PORTFOLIO" ALTER COLUMN "ID" RESTART WITH 
22028339; 

------------------------------------------------
-- DDL Statements for table "DB2INST1"."LOAN"
------------------------------------------------ 
CREATE TABLE "DB2INST1"."LOAN"  (

  "LOAN_ID" INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (  
    START WITH +1  
    INCREMENT BY +1  
    MINVALUE +1  
    MAXVALUE +2147483647  
    NO CYCLE  
    CACHE 20  
     ) , 
  "ACCOUNT_ID" INTEGER NOT NULL , 
  "DESCRIPTION" CHAR(50) , 
  "INTEREST_RATE" CHAR(20) , 
  "INITIAL_LOAN_VALUE" CHAR(20) , 
  "OPENING_FEE" CHAR(20) , 
  "LATE_FEE" CHAR(20) , 
  "LATE_INTEREST_RATE" CHAR(20) , 
  "BALANCE" CHAR(20) )   
 IN "USERSPACE1" ; 

-- DDL Statements for primary key on Table "DB2INST1"."LOAN" 
ALTER TABLE "DB2INST1"."LOAN" 

ADD PRIMARY KEY
("LOAN_ID");

-- DDL Statements for foreign keys on Table "DB2INST1"."CUSTOMER" 
ALTER TABLE "DB2INST1"."CUSTOMER" 

ADD CONSTRAINT "ADVISOR_FK" FOREIGN KEY

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 895



("ADVISOR")
REFERENCES "DB2INST1"."EMPLOYEE"

("ID")
ON DELETE NO ACTION
ON UPDATE NO ACTION; 

ALTER TABLE "DB2INST1"."CUSTOMER" 
ADD CONSTRAINT "BRANCH_FK" FOREIGN KEY

("BRANCH")
REFERENCES "DB2INST1"."BRANCH"

("ID")
ON DELETE NO ACTION
ON UPDATE NO ACTION; 

-- DDL Statements for foreign keys on Table "DB2INST1"."EMPLOYEE" 
ALTER TABLE "DB2INST1"."EMPLOYEE" 

ADD CONSTRAINT "CC1185467343863" FOREIGN KEY
("BRANCH")

REFERENCES "DB2INST1"."BRANCH"
("ID")

ON DELETE NO ACTION
ON UPDATE NO ACTION; 

-- DDL Statements for foreign keys on Table "DB2INST1"."ACCOUNT" 
ALTER TABLE "DB2INST1"."ACCOUNT" 

ADD CONSTRAINT "ACCOUNTOWNER_FK" FOREIGN KEY
("OWNER")

REFERENCES "DB2INST1"."CUSTOMER"
("ID")

ON DELETE NO ACTION
ON UPDATE NO ACTION; 

ALTER TABLE "DB2INST1"."ACCOUNT" 
ADD CONSTRAINT "ACCOUNTTYPE_FK" FOREIGN KEY

("TYPE")
REFERENCES "DB2INST1"."ACCTYPE"

("TYPE")
ON DELETE NO ACTION
ON UPDATE NO ACTION; 

-- DDL Statements for foreign keys on Table "DB2INST1"."COLLATERAL" 
ALTER TABLE "DB2INST1"."COLLATERAL" 

ADD CONSTRAINT "COLLATERAL_FK" FOREIGN KEY
("ACCOUNT")

REFERENCES "DB2INST1"."ACCOUNT"
("ID")

ON DELETE NO ACTION
ON UPDATE NO ACTION; 

-- DDL Statements for foreign keys on Table "DB2INST1"."TRANSACTION" 
ALTER TABLE "DB2INST1"."TRANSACTION" 

 

 

 

 

896 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



ADD CONSTRAINT "ACCOUNT_FK" FOREIGN KEY
("ACCOUNT")

REFERENCES "DB2INST1"."ACCOUNT"
("ID")

ON DELETE NO ACTION
ON UPDATE NO ACTION; 

-- DDL Statements for foreign keys on Table "DB2INST1"."LOAN" 
ALTER TABLE "DB2INST1"."LOAN" 

ADD CONSTRAINT "SQL070911112510600" FOREIGN KEY
("ACCOUNT_ID")

REFERENCES "DB2INST1"."ACCOUNT"
("ID")

ON DELETE NO ACTION
ON UPDATE NO ACTION;

Example: B-2   Fields in the tables in the North American Bank data model

-- This CLP file was created using DB2LOOK Version 9.1
-- Timestamp: 13-09-2007 14:27:14
-- Database Name: DB8A           
-- Database Manager Version: DB2 Version 8.1.5             
-- Database Codepage: 1208 
------------------------------------------------
-- DDL Statements for table "SG247508"."ACCOUNT"
------------------------------------------------ 
CREATE TABLE "SG247508"."ACCOUNT" 

(
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "BRANCH_ID"  INTEGER NOT NULL ,
 "ACTIVE_IND"  CHAR(1) ,
 "BALANCE"  DECIMAL(9,2) ,
 "MIN_AMOUNT"  DECIMAL(9,2) ,
 "OVERDRAF"  DECIMAL(9,2) ,
 "OVERDRAF_LIMIT"  DECIMAL(9,2) ,
 "OVERDRAF_RATE"  DECIMAL(8,5) ,
 "OVERDRAF_FEE"  DECIMAL(9,2) ,
 "TYPE_IND"  CHAR(1) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKACCOUNT" ON "SG247508"."ACCOUNT" 
( "ACCOUNT_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."BRANCH"
------------------------------------------------ 

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 897



CREATE TABLE "SG247508"."BRANCH" 
(
 "BRANCH_ID"  INTEGER NOT NULL ,
 "BRANCH_DESCRIPTION"  CHAR(18) ,
 "WORK_ADDRESS"  CHAR(18) ,
 "WORK_ZIP"  CHAR(18) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKBRANCH" ON "SG247508"."BRANCH" 
( "BRANCH_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."CARD"
------------------------------------------------ 
CREATE TABLE "SG247508"."CARD" 

(
 "CARD_ID"  CHAR(16)  NOT NULL ,
 "PIN"  CHAR(4) ,
 "EXPIRE_DT"  TIMESTAMP ,
 "CARD_TYPE_CD"  CHAR(2)  NOT NULL ,
 "LEVEL_CD"  CHAR(2)  NOT NULL ,
 "CUSTOMER_ID"  INTEGER NOT NULL ,
 "CARD_CUST_NAME"  CHAR(18) ,
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "LIMIT"  DECIMAL(9,2) ,
 "WITHDRAW_LIMIT"  DECIMAL(9,2) ,
 "SECURITY_NUM"  CHAR(4) ,
 "LIMIT_BALANCE"  DECIMAL(9,2) ,
 "LIMIT_W_BALANCE"  DECIMAL(9,2) ,
 "FLAG_IND"  CHAR(1) ,
 "INTL_IND"  CHAR(1) ,
 "AUTOMAT_DEBIT_IND"  CHAR(1) ,
 "REWARDS_IND"  CHAR(1) ,
 "REWARDS_NUM"  VARCHAR(20) ,
 "REWARDS_CD"  CHAR(3) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKCARD" ON "SG247508"."CARD" 
( "CARD_ID" ASC,    "CARD_TYPE_CD" ASC,    "CUSTOMER_ID" ASC,    

"ACCOUNT_ID" ASC); 
------------------------------------------------
-- DDL Statements for table "SG247508"."CARD_TRANSACTION"
------------------------------------------------ 
CREATE TABLE "SG247508"."CARD_TRANSACTION" 

(
 "CARD_ID"  CHAR(16)  NOT NULL ,
 "CARD_TYPE_CD"  CHAR(2)  NOT NULL ,
 "CUSTOMER_ID"  INTEGER NOT NULL ,

 

 

 

 

898 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "TRANSACTION_ID"  INTEGER NOT NULL ,
 "DESCRIPTION"  VARCHAR(20) ,
 "TRANSACTION_DT"  TIMESTAMP ,
 "VENDOR_NAME"  VARCHAR(50) ,
 "VENDOR_ID"  INTEGER,
 "INTL_IND"  CHAR(1) ,
 "AMOUNT"  DECIMAL(9,2) ,
 "TRANS_TYPE_CD"  CHAR(2)  NOT NULL ,
 "CUST_REFUSAL_IND"  CHAR(1) ,
 "LOCAL_CURRENCY_AMOUNT"  DECIMAL(9,2) ,
 "EXCHANGE_CURR_USED"  DECIMAL(9,2) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKCARDTRANS" ON 
"SG247508"."CARD_TRANSACTION" 

( "CARD_ID" ASC,    "CARD_TYPE_CD" ASC,    "CUSTOMER_ID" ASC,    
"ACCOUNT_ID" ASC,    "TRANSACTION_ID" ASC); 
------------------------------------------------
-- DDL Statements for table "SG247508"."CARD_TYPE_REF"
------------------------------------------------ 
CREATE TABLE "SG247508"."CARD_TYPE_REF" 

(
 "CARD_TYPE_CD"  CHAR(2)  NOT NULL ,
 "DESCIPTION"  VARCHAR(20) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKCARDREF" ON "SG247508"."CARD_TYPE_REF" 
( "CARD_TYPE_CD" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."CAR_INSURANCE"
------------------------------------------------ 
CREATE TABLE "SG247508"."CAR_INSURANCE" 

(
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "INSURANCE_ID"  INTEGER NOT NULL ,
 "CAR_PLATE"  CHAR(10) ,
 "START_DT"  DATE,
 "END_DT"  DATE,
 "CAR_VALUE"  DECIMAL(9,2) ,
 "CLAIM_VALUE"  DECIMAL(9,2) ,
 "FULL_COVERAGE_IND"  CHAR(1) ,
 "THIRD_COVERAGE_LIMIT"  DECIMAL(9,2) ,
 "INSURANCE_COVERAGE"  DECIMAL(9,2) ,
 "INSURANCE_VALUE"  DECIMAL(9,2) ,
 "AUTOMAT_DEBIT_IND"  CHAR(1) 
); 

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 899



CREATE UNIQUE INDEX "NALUR1"."PKCARINS" ON "SG247508"."CAR_INSURANCE" 
( "ACCOUNT_ID" ASC,    "INSURANCE_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."CONTACT_INFO"
------------------------------------------------ 
CREATE TABLE "SG247508"."CONTACT_INFO" 

(
 "CUSTOMER_ID"  INTEGER NOT NULL ,
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "WORK_PHONE"  CHAR(15) ,
 "CELL_PHONE"  CHAR(15) ,
 "HOME_PHONE"  CHAR(15) ,
 "HOME_ADDRESS"  VARCHAR(50) ,
 "HOME_ZIP"  CHAR(9) ,
 "WORK_ADDRESS"  VARCHAR(50) ,
 "WORK_ZIP"  CHAR(9) ,
 "PREF_LANG"  CHAR(3)  NOT NULL  WITH DEFAULT 'ENG'
); 

CREATE UNIQUE INDEX "NALUR1"."PKCUSTINFO" ON "SG247508"."CONTACT_INFO" 
( "CUSTOMER_ID" ASC,    "ACCOUNT_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."CUSTOMER"
------------------------------------------------ 
CREATE TABLE "SG247508"."CUSTOMER" 

(
 "CUSTOMER_ID"  INTEGER NOT NULL ,
 "TITLE"  CHAR(3) ,
 "FIRST_NAME"  VARCHAR(20) ,
 "LAST_NAME"  VARCHAR(20) ,
 "GENDER_IND"  CHAR(1) ,
 "USERID"  VARCHAR(8) ,
 "PASSWORD"  VARCHAR(20) ,
 "CHURN_IND"  CHAR(1)  NOT NULL  WITH DEFAULT,
 "LEVEL_CD"  CHAR(2)  NOT NULL  WITH DEFAULT,
 "NICKNAME"  VARCHAR(20) ,
 "CREDIT_SCORE"  CHAR(18) ,
 "NATIONALITY"  VARCHAR(20) 
);

CREATE UNIQUE INDEX "NALUR1"."PKCUSTOMER" ON "SG247508"."CUSTOMER" 
( "CUSTOMER_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."CUST_ACC"
------------------------------------------------ 

 

 

 

 

900 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



CREATE TABLE "SG247508"."CUST_ACC" 
(
 "CUSTOMER_ID"  INTEGER NOT NULL ,
 "ACCOUNT_ID"  INTEGER NOT NULL 
); 

CREATE INDEX "SG247508"."IXCUSTAC2" ON "SG247508"."CUST_ACC" 
( "ACCOUNT_ID" ASC); 

CREATE INDEX "SG247508"."IXCUSTACC" ON "SG247508"."CUST_ACC" 
( "CUSTOMER_ID" ASC); 

CREATE UNIQUE INDEX "NALUR1"."PKCUST_ACC" ON "SG247508"."CUST_ACC" 
( "CUSTOMER_ID" ASC,    "ACCOUNT_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."DRIVER"
------------------------------------------------ 
CREATE TABLE "SG247508"."DRIVER" 

(
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "INSURANCE_ID"  INTEGER NOT NULL ,
 "DRIVER_ID"  INTEGER NOT NULL ,
 "NAME"  VARCHAR(50) ,
 "SSN"  CHAR(11) ,
 "BIRTH_DT"  DATE,
 "GENDER"  CHAR(1) ,
 "START_DRIVING"  DATE,
 "ADDRESS"  VARCHAR(50) ,
 "CITY"  VARCHAR(40) ,
 "STATE"  CHAR(2) ,
 "ZIP"  CHAR(9) ,
 "CORRECTIVE_LENSES_IND"  CHAR(1) ,
 "HAIR_COLOR"  VARCHAR(10) ,
 "HEIGHT"  VARCHAR(10) ,
 "WEIGHT"  VARCHAR(10) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKDRIVER" ON "SG247508"."DRIVER" 
( "ACCOUNT_ID" ASC,    "INSURANCE_ID" ASC,    "DRIVER_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."LEVEL_REF"
------------------------------------------------ 
CREATE TABLE "SG247508"."LEVEL_REF" 

(
 "LEVEL_CD"  CHAR(2)  NOT NULL ,
 "DESCRIPTON"  VARCHAR(20) 
); 

------------------------------------------------
-- DDL Statements for table "SG247508"."LOAN"

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 901



------------------------------------------------ 
CREATE TABLE "SG247508"."LOAN" 

(
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "LOAN_ID"  INTEGER NOT NULL ,
 "DESCRIPTION"  VARCHAR(20) ,
 "RATES"  DECIMAL(8,5) ,
 "INITIAL_VALUE"  DECIMAL(9,2) ,
 "LATE_FEE"  DECIMAL(9,2) ,
 "LATE_RATE"  DECIMAL(8,5) ,
 "BALANCE"  DECIMAL(9,2) ,
 "AUTOMAT_DEBIT_IND"  CHAR(1) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKLOAN" ON "SG247508"."LOAN" 
( "ACCOUNT_ID" ASC,    "LOAN_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."LOAN_TRANSACTION"
------------------------------------------------ 
CREATE TABLE "SG247508"."LOAN_TRANSACTION" 

(
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "LOAN_ID"  INTEGER NOT NULL ,
 "TRANSACTION_ID"  INTEGER NOT NULL ,
 "DESCRIPTION"  VARCHAR(20) ,
 "TRANSACTION_DT"  TIMESTAMP ,
 "AMOUNT"  DECIMAL(9,2) ,
 "TRANS_TYPE_CD"  CHAR(2)  NOT NULL 
);

CREATE UNIQUE INDEX "NALUR1"."PKLOAN_TRANS" ON 
"SG247508"."LOAN_TRANSACTION" 

( "ACCOUNT_ID" ASC,    "LOAN_ID" ASC,    "TRANSACTION_ID" ASC); 
------------------------------------------------
-- DDL Statements for table "SG247508"."REWARD_REF"
------------------------------------------------ 
CREATE TABLE "SG247508"."REWARD_REF" 

(
 "REWARDS_CD"  CHAR(3)  NOT NULL ,
 "DESCRIPTION"  VARCHAR(50) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKREWARD" ON "SG247508"."REWARD_REF" 
( "REWARDS_CD" ASC);

------------------------------------------------
-- DDL Statements for table "SG247508"."TRANSACTION"
------------------------------------------------ 

 

 

 

 

902 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



CREATE TABLE "SG247508"."TRANSACTION" 
(
 "ACCOUNT_ID"  INTEGER NOT NULL ,
 "TRANSACTION_ID"  INTEGER NOT NULL ,
 "TRANSACTION_DT"  TIMESTAMP ,
 "TRANS_TYPE_CD"  CHAR(2)  NOT NULL ,
 "DESCRIPTION"  VARCHAR(20) ,
 "AMOUNT"  DECIMAL(9,2) ,
 "PAID_TO"  CHAR(18) 
); 

CREATE UNIQUE INDEX "NALUR1"."PKTRANSA" ON "SG247508"."TRANSACTION" 
( "ACCOUNT_ID" ASC,    "TRANSACTION_ID" ASC); 

------------------------------------------------
-- DDL Statements for table "SG247508"."TRANSACTION_TYPE_REF"
------------------------------------------------ 
CREATE TABLE "SG247508"."TRANSACTION_TYPE_REF" 

(
 "TRANS_TYPE_CD"  CHAR(2)  NOT NULL ,
 "DESCRIPTION"  VARCHAR(20) 
); 

Example: B-3   VSAM file containing EMPLOYEE records

CREATE TABLE "CAC"."EMPLOYEE" DBTYPE VSAM 
DS "CAC.VSAM.EMPLOYEE"
(
"EMPNAME" SOURCE DEFINITION

DATAMAP OFFSET 0 LENGTH 21
DATATYPE C
USE AS CHAR(21),

"DEPTNAME" SOURCE DEFINITION
DATAMAP OFFSET 47 LENGTH 18
DATATYPE C
USE AS CHAR(18),

"EMPNO" SOURCE DEFINITION
DATAMAP OFFSET 72 LENGTH 8
DATATYPE C
USE AS CHAR(8)); 

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 903



Example: B-4   Fields in the tables in the CRM data model

--ISO code for languages
create table nabncb.iso_language (
       id            char(3) not null,
       name          varchar(30) not null,
       primary key(id)
       );
-- Home address, work address, home phone, call phone, e-mail
create table nabncb.contacttype (
       id            integer not null,
       description   varchar(50) not null,
       primary key(id)
       );
-- Commercial banking, incurance, brokerage
create table nabncb.lineofbusiness (
       id            integer not null,
       description   varchar(50) not null,
       primary key(id)
       );
-- Cross reference between CRM and other core and non-core systems
create table nabncb.custkeyxref (
       crmid            integer not null,
       nabcoreid        integer,
       nabnoncoreid     integer,
       ncbcoreid        integer,
       ncbnoncoreid     integer,
       primary key(crmid)
       );
-- Person, organization
create table nabncb.customertype (
       id            integer not null,
       description   varchar(50) not null,
       primary key(id)
       );
-- Account owner, beneficiary, stakeholder, insurer
create table nabncb.role (
       id            integer not null,
       description   varchar(50) not null,
       primary key(id)
       );
-- Currency, information on collateral for loans etc.
create table nabncb.item (
       id            integer not null,
       description   varchar(50) not null,

 

 

 

 

904 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



       primary key(id)
       );
-- Types of relationships between customers; member of same household,
-- owner of business
create table nabncb.relationtype (
       id            integer not null,
       description   varchar(50) not null,
       primary key(id)
       );
-- Branch information
create table nabncb.branch (
      id        integer not null,
      name      char(50) not null,
      primary key (id)
      );
-- Employee information
create table nabncb.employee (
      id        integer not null,
      name      char(50) not null,
      userid    char(8) not null,
      branch    integer not null,
      business  integer not null,
      primary key (id),
      foreign key (branch) references nabncb.branch (id),
      foreign key (business) references nabncb.lineofbusiness (id)
      );
-- Customer information. Rating from one to five stars, the more the
-- better
create table nabncb.customer (
       id              integer not null,
       prefix          varchar (10) not null,
       firstname       varchar(30) not null,
       middlename      varchar(30),
       lastname        varchar(30) not null,
       gender           char(1),
       nationality     varchar(20) not null,
       "TYPE"                  integer not null,
       preflang        CHAR(3) not null,
       advisor         integer,
       prefcontact     integer not null,
       homeStreet      varchar(30) not null,
       homeCity        varchar(20) not null,
       homeZip         varchar(10),
       homeCountry     varchar (20),
       workStreet      varchar(30) not null,

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 905



       workCity        varchar(20) not null,
       workZip         varchar(10),
       workCountry     varchar (20),
       homephone       varchar(15),
       workphone       varchar (20),
       cellphone       varchar(15),
       email           varchar (20),
       rating          char(5) not null,
       nabchkassets            decimal (9,2),
       nabsavassets            decimal (9,2),
       nabloanindicator        char(1) not null,
       nabloanamount           decimal (9,2),
       nabloanbalance          decimal (9,2),
       nabloanrate             decimal (6,3),
       ncbchkassets            decimal (9,2),
       ncbsavassets            decimal (9,2),
       ncbloanindicator        char(1) not null,
       ncbloanamount           decimal (9,2),
       ncbloanbalance          decimal (9,2),
       ncbloanrate             decimal (6,3),
       Brokindicator   char(1) not null,
       Brokassets      decimal (9,2),
       Brokmargin      decimal (9,2),
       CCindicator     char(1) not null,
       CClimit         integer,
       CCbalance                                       decimal (9,2),
       Carindicator    char(1) not null,
       Fullcoverind    char(1) not null,
       Carpremiums           decimal (6,2),
       Carenddate      date,
       primary key(id),
       foreign key (Advisor) references nabncb.employee (id),
       foreign key ("TYPE") references nabncb.contacttype (id),
       foreign key (preflang) references nabncb.iso_language (id),
       foreign key ("TYPE") references nabncb.customertype (id)
       );
-- Register relationship between customers; member of same household,
-- owner of business
create table nabncb.customerrelation (
       fromcustomer    integer not null,
       relationtype    integer not null,
       tocustomer      integer not null,
       primary key (fromcustomer,relationtype,tocustomer),
       foreign key (fromcustomer) references nabncb.customer (id),
       foreign key (relationtype) references nabncb.relationtype (id),

 

 

 

 

906 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



       foreign key (tocustomer) references nabncb.customer (id)
       );
-- Savings account, checkings account, car loan, home loan etc.
create table nabncb.product (
       id            integer not null,
       description   varchar(50) not null,
       business      integer not null,
       primary key(id),
       foreign key (business) references nabncb.lineofbusiness (id)
       );
-- Instance of a product related to one or more customers through
-- customerrole
create table nabncb.contract (
       id          integer not null,
       product     integer not null,
       status      integer not null,
       created     timestamp not null with default,
       updated     timestamp,
       primary key (id),
       foreign key (product) references nabncb. product (id)
       );
-- Additional information related to a specific contract e.g. currency
create table nabncb.contractitem (
       id          integer not null,
       contract    integer not null,
       item        integer not null,
       "value"       varchar(30) not null,
       primary key (id),
       foreign key (contract) references nabncb.contract (id),
       foreign key (item) references nabncb.item (id)
       );
-- Identifies the customer's role e.g. account owner, beneficiary,
-- stakeholder
create table nabncb.contractrole (
       id          integer not null,
       customer    integer not null,
       contract    integer not null,
       role        integer not null,
       primary key (id),
       foreign key (customer) references nabncb.customer (id),
       foreign key (contract) references nabncb.contract (id),
       foreign key (role) references nabncb.role (id)
       ); 

 

 

 

 

 Appendix B. Code and scripts used in the financial services business scenario 907



 

 

 

 

908 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Appendix C. Additional material

This book refers to additional material that you can download from the Internet as 
described in this appendix. 

Locating the Web material

The Web material associated with this book is available in softcopy on the 
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247546

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with 
the IBM Redbooks form number, SG247546.

C
 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 909

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


Using the Web material

The additional Web material that accompanies this book includes the following 
files:

File name Description
SG247546.zip Compressed Code Samples

How to use the Web material

Create a subdirectory (folder) on your workstation, and decompress the contents 
of the Web material zipped file into this folder. 

 

 

 

 

910 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Related publications

We consider the publications that we list in this section particularly suitable for a 
more detailed discussion of the topics that we cover in this book.

IBM Redbooks publications

For information about ordering these publications, see “How to get IBM 
Redbooks publications” on page 912. Note that some of the documents 
referenced here might be available in softcopy only. 

� SOA Solutions Using IBM Information Server, SG24-7402

� IBM WebSphere Information Analyzer and Data Quality Assessment, 
SG24-7508 

� IBM InfoSphere DataStage Data Flow and Job Design, SG24-7576

Other publications

These publications are also relevant as further information sources:

� IBM WebSphere QualityStage Version 8 User Guide, SC18-9922

� IBM WebSphere QualityStage Version 8 WebSphere QualityStage Tutorial, 
SC18-9925

� IBM WebSphere QualityStage Version 8 Pattern-Action Reference, 
SC18-9926

� IBM WebSphere QualityStage Module for CASS Guide to IBM WebSphere 
QualityStage Module for CASS, SC19-1225

� IBM Information Server Version 8: Information Server Introduction, 
SC19-1049

� IBM Information Server - Delivering information you can trust, IBM U.S. 
Announcement 206-308 dated 12 December 2006

� IBM Information Server Version 8: IBM Information Server Planning, 
Installation, and Configuration Guide, GC19-1048

� IBM Information Server Version 8.0.1 IBM Information Server Administration 
Guide, SC19-9929

 

 

 

 

© Copyright IBM Corp. 2008. All rights reserved. 911



� IBM Information Server Version 8: Information Server Reporting Guide, 
SC19-1162

� IBM Information Server Quick Start Guide

� IBM Information Server — Delivers next generation data profiling analysis 
and monitoring through the new IBM WebSphere Information Analyzer 
module, IBM U.S. Announcement 207-043 dated 13 March 2007

� IBM Information Management Software Profiling: Take the first step toward 
assuring data quality, December 2006, IMW11808-USEN-00.

� WebSphere Information Analyzer Version 8.0.1 WebSphere Information 
Analyzer User Guide, SC18-9902

Online resources

The following Web site is also relevant as a further information source:

� IBM Information Server information center

http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp 

How to get IBM Redbooks publications

You can search for, view, or download Redbooks, Redpapers, Technotes, draft 
publications and Additional materials, as well as order hardcopy Redbooks, at 
this Web site: 

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 

 

 

 

912 IBM WebSphere QualityStage Methodologies, Standardization, and Matching

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://publib.boulder.ibm.com/infocenter/iisinfsv/v8r0/index.jsp


Index

Symbols
.Net   874
“C” column mask   25
“m” probability   89, 96
“T” column mask   25
“u” probability   89, 96
“X” column mask   25

A
A2Z Financial Services Inc.

Business requirement   480
access-control services   866
Address Matching Approval System   80
Address Verification   19
Address verification   7
address verification   11
administrative tasks   862
Agent framework   885–886
Aggregation   20
agreement weight   90
AMAS   80
analysis interface   862
application.xml descriptor   882
architects   862

B
Basel II   858
Batch jobs   876
binding information   878
block overflow

avoiding   86
block overflows   85
block size   85
blocking columns   89
blocking concepts   85
blocking partitions   85
blocking strategies   86
blocking strategy principles   88
blocking variables

applying   88
Brokerage services   481
buried information   5

 

 

 

© Copyright IBM Corp. 2008. All rights reserved.
business intelligence   858
Business metadata   868
business metrics   860
Business Requirements Document   22
business rules   14, 41
business transformation   858
business users   862

C
CASS   19, 78–79
catalog browsing   862
change data capture   872
CHAR   95
Character Discrete Investigate   23
Character Investigate   23, 39
classification override   77
Classification Table   62
Classification table   32–33
classification table   22
Classifications   62
Classifying   22
Cleanse your information   871
cleansing   870
clerical   110
clerical cutoff   100
Clerical Cutoff threshold   90
client application   880
Client application access to services   874
client applications   875–876
CNT_DIFF   95
collaborative authoring   868
column frequency report   24
column pattern override   66
column text override   67
Common connectivity   874
common connectors   11
common metadata foundation   871
common metadata repository   873, 878
common repository   11, 863, 868
common services   10, 859, 862
Commonly encountered differences and potential 
actions   489
components   878

 

 913



Compose tab   99
composite weight   90
composite weights   100
Configuration flow   877

Step1a
Create connection to an Information Server 
provider   877

Step1b
Create a project   878

Step1c
Create an application   878

Step1d
Generate SOA services, deploy and test   
878–879

Step1e
Optionally export service to WSRR   879

Connectors   874
Core business services   481
COUNTRY   60
Country   78
Country Rule Set   81
Creation of Word or Pattern Distributions   22
Credit card and auto insurance services   481
CRM   481

data model   482
cross-column correlations   25
CSR   14
custom rule sets   40
customer relationship management   481
Customer Service Representatives   14
customizable rules   12

D
Data Analysts   492, 862
data browsing   862
data cleansing   11–12, 14, 858
data conditioning   18
data content and placement   40
data discovery   3
data duplicates   110
data engineering   12
data enrichment   14, 20
data governance   859
Data Integration   491
data integration effort   15
data integration logic   859
Data integration of North American Bank and North-
ern California Bank systems   494

data integration service   870
data integration tasks   875
data mapping models   21
data matching   82
data myopia   5
Data partitioning   872
Data pipelining   873
data profiling   3, 21, 23, 871
data quality   2, 859

quantitative definition   2
Data Quality Assessment   15
data quality assurance   15
data quality functions   7
data redundancy   6
data re-engineering   6, 15–16, 18–19
data residual   110
data standardization   875
data structures   16, 18
data surprises   4
data transformation   859
data transformation processes   869
database administrators   862
data-quality auditing   871
DATE8   95
DBAs   862
delimiter   44
Deliver your information   872
Dependent Match   106
deploy   879
Design services   863
Designer   12, 64
developers   862
development interface   862
Dictionary   63
directionals   18
disagreement weight   90
Domain Pre-processor   42, 60
Domain preprocessor   61
Domain Specific   46
Domain specific   61
domain-preprocessor   66–67
Domain-preprocessor overrides

Classification   67
Column pattern overrides   67
Column text overrides   67
Input pattern overrides   67
Input text overrides   67

Domain-Specific   60
domain-specific override objects   72

 

 

 

 

914 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



DPID   19, 78, 80
DQA   15, 18
duplicate cutoff   101
Duplicate threshold   91
Dynamic metadata   873

E
EAI   870
EAR   878
EIS   885
EIS server   885
EJB binding   880, 885
EJB session bean   880
ejbbinding.jar file   882
encryption   866
enterprise application integration   870
enterprise data stores   4
enterprise service bus   870
Entity Clarifiers   23
Entity Identifiers   23
entity matching   22
ESB   870
event-based publishing   872
event-driven   862
Execution services   863
extract process   17

F
facade session bean   880, 882, 885
federated queries   863, 869, 875, 877
federation functions   859
Filter Stage   82
Financial services business scenario   479

Business requirement   480
Cleansing Northern California Bank’s core and 
non-core services   706

j00_SRC_NCB   709
j01_STAN_COUNTRY_NCB   719
j02_INVCD_ISOCODE_NCB   726
j03_STAN_USPREP_NCB   729
j04_INVCC_USPREP_INPUT_PATTERN_
NCB   735
j05_CASS_USPREP_NCB   742
j06_INVCC_CASS_NCB   752
j07_PREP_CASS_NCB   755
j08_STAN_CASS_NCB   763
j09a_INVCC_CUSTOMER_STAN_CASS_
NCB   765

j09b_INVCC_BCUSTOMER_STAN_CASS_
NCB   771
j10_PREPARE_NCB_DATA_FOR_FUNNE
L   773
j11_FUNNEL_NCB_DATA   782

Data integration   493
Data integration of North American Bank and 
Northern California Bank systems   494

Cleansing North American Bank’s core and 
non-core services   508
j00_SRC_NAB   512
j01_STAN_COUNTRY_NAB   518
j02_INVCC_ISOCODE_NAB   525
j03_STAN_XXPREP_NAB   530
j04_INVCC_XXPREP_INPUT_PATTERN   
541
j05a_INVW_CONTACT_INFO_HOME_CA_
XXPREP   572
j05b_INVW_CONTACT_INFO_HOME_US_
XXPREP   577
j05c_INVW_CONTACT_INFO_WORK_XXP
REP   584
j05d_INVW_DRIVER_XXPREP   592
j05e_INVW_CUSTOMER_XXPREP   603
j06_XXPREP_CASS   605
j07_INVCC_CASS   615
j08_USPREP_CASS   619
j09_STAN_CASS   631
j10a_INVCC_CUSTOMER_XXPREP_STA
N   637
j10b_INVCC_CONTACT_INFO_WORK_CA
SS_USPREP_STAN   640
j10c_INVCC_CONTACT_INFO_HOME_US
_CASS_USPREP_STAN   645
j10d_INVCC_CONTACT_INFO_HOME_CA
_XXPREP_STAN   647
j10e_INVCC_DRIVER_CASS_USPREP_S
TAN   652
j11_JOIN_NAB_NAME_AND_ADDR_DATA   
657
j12_JOIN_NAB_WORK_AND_HOME   674
j13_PREPARE_NAB_DATA_FOR_FUNNE
L   687
j14_FUNNEL_NAB_DATA_FOR_CRM   705

Environment configuration   486
General approach   488

Step 1
General guidelines for the process   488

Step 2

 

 

 

 

 Index 915



Identify differences between the 
source(s) & target(s)   490

Step 3
Determine action in specific cases   491

Step 4
Determine strategy & plan to execute ac-
tion   491

Step 5
Execute the plan   492

Step 6
Review success of the process   493

Matching and surviving Northern California Bank 
and Northern California Bank information   783

j12_PREPARE_NCB_NAB_DATA_FOR_F
UNNEL   785
j14_CRM_FREQUENCY   798
j14a_MATCHSPEC   801
j15_UNDUP_CRM   809
j16_SURVIVE_CRM   814
j17_FUNNEL_UNDUP_RES_DATA   829
j18_CRM_DATA_TRANSFORM   833
jj13_FUNNEL_NCB_NAB_CRM_DATA   
797

Post migration   494
Post migration from North American Bank sys-
tems’ to Northern California Bank   848

Cleansing names and addresses, matching, 
and surviving data in the migrated system   
854

Scope of this book   493
fixed-format columns   40
Flow of a request   885
free-form columns   7
free-form fields   14, 31, 41
free-form text   7, 21–22, 32, 40
frequency count   26, 29
frequency cutoff level   39
frequency distribution   25, 83
frequency information   83, 91, 93, 109

G
GBPREP   42
Geolocator   78, 80
Global Name Recognition   8
GOOD ALL   117
Group Association   19
guidelines choosing override method

Classification   77

Column pattern override   77
Column text override   78
Input pattern override   77
Input text override   78

H
Handler   886
Handler instance   886
handler pool   886
Health Insurance Portability and Accountability Act   
872
HIPAA   872

I
IBM Information Server

Common connectors   11
Common parallel processing engine   11
Common repository   11
Common services   10
Unified user interface   10

IBM Information Server architecture   861
IBM Information Server platform   9
IBM WebSphere DataStage   491
IBM WebSphere Information Analyzer   3, 14, 21
IBM WebSphere QualityStage   3, 491

main functions   12
project context   15

Address Verification   19
Auditing the load process   21
Conditioning   18
Data enrichment   20
Group Association   19
Matching   19
Output formatting   21
Source access or extraction   17
Standardization   18
Survivorship   20

set up your system   15
IBM WebSphere QualityStage architecture   9
IBM WebSphere QualityStage Designer   9
IBM WebSphere QualityStage overview   4

Data myopia   5
Data surprises in individual fields   4
Information buried in free-form fields   5
Lack of information standards   4
Redundancy within individual tables   6

IBM WebSphere QualityStage scenarios
Obtaining a consolidated view of an entity   14

 

 

 

 

916 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Obtaining a single real-time view of a customer   
14
Obtaining one view of households   14

IBM® WebSphere® DataStage®   3
Independent Match   106
information providers   878
information service   878
Information Services Framework   885
information standards   4
infrastructure rationalization   858
input and column text   67
input and unhandled text objects   75
input pattern override   66, 72
input text object   67
input text override   67, 75
integration workflow   859
Investigate   11, 13, 15, 39
Investigate Stage   77

Character Concatenate Investigate   25
Character Concatenate option with mix of “C”, 
“T”, and “X” masks   30
Character Discrete Investigate   23
Character Discrete option with “C” mask   26
Character Discrete option with “T” mask   28
Character Investigate   23
Character Investigate option   24
Classifying   22
column frequency report   24
Creation of Word or Pattern Distributions   22
Mask “C”   25
Mask “T”   25
Mask “X”   25
Parsing   22
Word Investigate   24, 38
Word Investigate option   31

Investigate stage   21
Investigation   3, 7
investigation   21, 23
ISF   885
ISF Agent   885
ISO country code   64, 80–82

J
J2EE application   873
J2EE Connector Architecture   885
J2EE-compliant   863
Java™ developer   874
JCA   885–886

Join   20
JSP   886

L
LDAP   866
load balancing   870
Log services   863
logging   863
Lookup   20

M
Mailing list scenario   117

Create a parameter set object   130
Create a project   121
Create additional folders   124
Credit Card Customer cleansing   135
Enhance credit card customers   437
Generate mailing master with household for pro-
motion mailing   472
household information   135
Import table definitions   126
J00_SRC_CUSTOMER   142
J00_SRC_MAILING_LIST   342
J00A_INV_CUSTOMER   162
J00A_INV_MAILING_LIST   347
J01_STAN_COUNTRY   168
J01_STAN_COUNTRY_M   353
J02_INVCC_ISCODE   186
J02_INVCC_ISOCODE_M   358
J03_STAN_USPREP   196
J03_STAN_USPREP_M   361
J03_Z_Override_And_After   215
J04_INVW_USPREP   203
J04_INVW_USPREP_M   366
J04_Z_After_Override   373
J05_CASS_USPREP   219
J05_CASS_USPREP_M   374
J06_INVCC_CASS   228
J06_INVCC_CASS_M   379
J07_STAN_CUSTOMER_Domain_Preprocess
or   234
J07_STAN_MAILING_LIST_Domain_Preproce
ssor   383
J08_STAN_CUSTOMER_Domain_Specific   
241
J08_STAN_MAILING_LIST_Domain_Specific   
390
J09_INVCC_STAN_CUSTOMER   253

 

 

 

 

 Index 917



J09_INVCC_STAN_MAILING_LIST   399
J09_Z_Override_And_After   262, 408
J10_MATCHFREQ_STAN_CUSTOMER   266
J10_MATCHFREQ_STAN_MAILING_LIST   
411
J10_REFERENCE_MatchSpec_MAILING_LIS
T   413
J10_Undup_MatchSpec_STAN_CUSTOMER   
269
J11_REFMATCH   416
J11_UNDUP_DEP_MATCH_CUSTOMER   282
J12_CLERICAL_REPORT_MAILING_LIST   
430
J12_CLERICAL_REVIEW_CUSTOMER   290
J13_ENHANCE_CUSTOMER   437
J13_SURVIVE_CUSTOMER   295
J14_CUSTOMER_MASTER   303
J14_MAILING_LIST_RESIDUAL_FREQ   442
J14_UNDUP_DEP_MATCHSPEC_MAILING   
445
J14A_CUSTOMER_MASTER   316
J15_FREQ_CUSTOMER_MASTER   316
J15_UNDUP_DEP_MATCH_MAILING   449
J15_Undup_MatchSpec_CUSTOMER   318
J16_SURVIVE_MAILING   454
J16_UNDUP_IND_MATCH_CUSTOMER   322
J17_CUSTOMER_MASTER_WITH_HOUSEH
OLD   327
J17_MAILING_MASTER   458
J18_FREQ_MAILING_MASTER   461
J18_MATCHFREQ_CUSTOMER_WITH_HOU
SEHOLD   332
J18_UNDUP_IND_MATCHSPEC_MAILING   
464
J19_UNDUP_IND_MATCH_MAILING   468
J20_MAILING_MASTER_WITH_HOUSEHOLD   
473
Mailing list cleansing   334
mailing lists   118
PROJQSSAMP project   120

Managing rule sets   60
many-to-One   98
many-to-one duplicates   98
many-to-one matching   84, 109
many-to-one multiple   98
master data management   858
master data system   16
master metadata repository   879
master records   105

Match   12–13, 19–20, 41, 92, 100
match cutoff   100
Match Cutoff threshold   90
Match Designer   12, 86, 91–92, 95

Compose tab   99
Blocking Columns area   100
Cutoff values area   100
Match Type area   100

Total statistics tab   103
Match Frequency   83, 91, 106
Match Frequency Stage   91–92, 97

configuring   93
Match Pass Holding Area   100
Match specification   83, 90, 107, 109
match specification   93, 95–96
Match Stage   82

Reference
Clerical   84
Data Duplicate   84
Data Residual   84
Match   84
Reference Duplicate   84
Reference Residual   84

Reference Match   84
Unduplicate

Clerical   83
Duplicate   83
Match   83
Residual   83

Unduplicate match   83
Matching   3, 19, 23

“m” probability   89
agreement weight   90
Blocking step   84
Blocking strategies   86
composite weight   90
disagreement weight   90
Matching step   89
whether a record is a match   89

matching   106
matching process

Dependent Match   106
Independent Match   106

matching rules   8
metadata   10, 14, 21, 40, 491
metadata import   862
metadata management   880
Metadata services   863, 867
metadata services layer   870

 

 

 

 

918 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



Microsoft’s Active Directory®   866
migration   491
Missing information in source or target bank relating 
to core services and action to be taken   852
MNS   60, 64, 78, 80
MULT_UNCERT   96
Multinational geocoding   14
Multinational Standardize Stage   60, 80
multiple blocking variables   85
multiple-domain   23
Multiple-Domain Fields   24

N
NAME_UNCERT   96
New York State Information and Intelligence Sys-
tems   80
North American Bank   480

data model   482
Northern California Bank   480

data model   482
NYSIIS   80
NYSIIS codes   41

O
Object types that override the standardize do-
main-preprocessor rule sets   67
one-to-many matching   108
one-to-one   98
Operational metadata   873
Output formatting   21
Overrides   63

P
parallel processing engine   11, 872
Parsing   22, 24
pattern analysis   25, 29
pattern overrides   72
Patterns Table   63
pipelining   872
Postal certification rules   14
PREFIX   96
Probabilistic Record Linkage   7
profiling   860, 873
PROJQSSAMP project   121

Q
QSPARAMETERSET   130

R
Rational® Data Architect   860
Record linkage   7
record linkage   19, 22
Redbooks Web site   912

Contact us   xl
reference duplicate   110
Reference Match   13, 91, 98

Many-to-One   98
Many-to-one Duplicates   98
Many-to-one Multiple   98
One-to-One   98
Reference   98

Reference Match Stage   108
Clerical   110
Data Duplicate   110
Data Residual   110
Many-to-one matching   109
Match   110
One-to-many matching   108
Reference Duplicate   110
Reference Residual   110

reference provider   878
reference residual   110
Reference Tables   64
referential integrity   21
Reporting services   865
repository   11
reverse Soundex   80, 88
role-based authentication   866
router servlet   880, 882, 885
Rule Expression Builder   115
rule override tables   59
rule set

overrides
Choosing the appropriate override method   
76
Classification   64
Input and field pattern override for do-
main-preprocessor rule set   66
Input and field text override   67
Input and unhandled pattern override for do-
main-specific rule set   72
Input and unhandled text override for do-
main-specific rule set   75

Rule set customization with override object types   
64
Rule set files   62

Classifications   62

 

 

 

 

 Index 919



Dictionary   63
Lookup Tables   64
Overrides   63
Patterns   63

rule sets   31, 39–40
COUNTRY   60
domain-preprocessor   59
domain-specific   75
Managing   60
USADDR   31
USAREA   32
USNAME   31
USPREP   31, 63

Runtime flow   880

S
Sarbanes-Oxley   858
scheduling   863
Scheduling services   864
security   862
security infrastructure   862
Security services   866, 870
Selecting override object types to modify rule sets   
64
SERP   19, 78–79
Service artifacts   880
Service Input stage   876
Service Output stage   876
service session bean   880–881, 885–886
service-oriented   862
service-ready data integration   875
services-oriented vision   9
shared services   862, 869
single sign-on   867
single-domain   23
single-domain columns   7
Single-Domain fields   23
SME   492
SOA   859–860
SOA foundation   880
SOA infrastructure   869, 876
SOA service   863, 877
soa-deployment.xml descriptor   882
SOAP over HTTP   880
SOAP over HTTP binding   885
soapbinding.jar file   882
soaprouter.war file   882
Soundex   80, 88

SOUNDEX phonetic   41
standard connectivity stages   17
standard methodology   15
standard request-reply   862
Standardization   3, 7, 18, 23
Standardization rule set tester   76
Standardize   11, 13, 18, 41, 92, 109
Standardize rule sets   42
Standardize Stage   24, 77
Standardize stage   39
Static fields   23
statutory compliance   858
Step 1

General guidelines for the process   488
Step 2

Identify differences between the source(s) & tar-
get(s)   490

Step 3
Determine action in specific cases   491

Step 4
Determine strategy & plan to execute action   
491

Step 5
Execute the plan   492

Step 6
Review success of the process   493

Step1a
Create connection to an Information Server pro-
vider   877

stored procedures   869, 875, 877
subject matter experts   492, 862
Summary of differences between source and target 
and the action to be taken   501
Summary of differences between source and target 
core services and the action to be taken   849
Survive   12–13, 20, 91
Survive rules   112
Survive Stage   110

“Don’t Pre-sort Input” option   111
complex survive expression   116
Rule Expression Builder   115
simple rule   114

Survivorship   3, 8, 20, 23
svcs.jar file   881
synchronization   872

T
Technical metadata   868

 

 

 

 

920 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



tokens   7, 22, 25, 31–32, 39
Class and description   37

topologies   876
Total statistics tab   103
Transform your data into information and move   871
Transformer Stage   82

U
UDDI   879
UNCERT   95–96
Understand your data   871
Unduplicate Match   13, 91, 98, 101

Unduplicate (dependent)   98
Unduplicate Independent   98

Unduplicate Match Stage   104
Dependent   105
Independent   105

unhandled pattern override   72
unhandled text override   75
Unified metadata   873
Unified parallel processing   872
Unified service deployment   869
Unified user interface   862
unified user interface   10
UNIX®   866
USADDR   31, 64
USAREA   32
USNAME   31, 42
USPREP   31, 42, 62

V
Validation   47, 61
Validation rule sets   48
VDATE   48
VEMAIL   49
VPHONE   49
VTAXID   50

W
WAVES   14, 60, 64, 78
Web Admin interface   862
Web Services Description Language   869
WebSphere Business Glossary   860, 868
WebSphere DataStage   859, 872, 877
WebSphere DataStage MVS™ Edition   860
WebSphere Federation Server   859
WebSphere Information Analyzer   860, 863, 871

WebSphere Information Services Director   12, 859, 
870, 883
WebSphere MetaBrokers   868–869
WebSphere Metadata Server   860, 868
WebSphere QualityStage   859, 871, 877
WebSphere Service Registry and Repository   879
whitepaper   867
Word Investigate   24, 38–39
Word Investigation option   31
Worldwide Address Verification and Enhancement   
60
Worldwide Address Verification and Enhancement 
System   14, 78
WSDL   870
WSRR   879

Z
ZQADDRZQ   44
ZQAREAZQ   44
ZQMIXAZQ   32, 44
ZQNAMEZQ   32, 44
ZQUSZQ   82

 

 

 

 

 Index 921



 

 

 

 

922 IBM WebSphere QualityStage Methodologies, Standardization, and Matching



(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

IBM
 W

ebSphere QualityStage 
M

ethodologies, Standardization, 
and M

atching

 

 

 

 



 

 

 

 



 

 

 

 



®

SG24-7546-00 ISBN 0738431206

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

®

IBM WebSphere QualityStage 
Methodologies, Standardization, 
and Matching

IBM WebSphere 
QualityStage 
architecture 

Merger and 
acquisition business 
scenario

IBM Information 
Server overview

IBM WebSphere QualityStage provides data cleansing 
capabilities to help ensure quality and consistency by 
standardizing, validating, matching, and merging information to 
create comprehensive and authoritative information for multiple 
uses.

IBM Information Server is a revolutionary software platform that 
helps organizations derive more value from the complex 
heterogeneous information that is spread across their systems. 
It enables organizations to integrate disparate data and deliver 
trusted information wherever and whenever needed, in line and 
in context, to specific people, applications, and processes. 

This IBM Redbooks publication documents the procedures for 
implementing IBM WebSphere QualityStage and related 
technologies using a typical merger and acquisition financial 
services business scenario. The scenario covers all dimensions 
of data cleansing, standardization, and matching rules, job 
design and deployment through a data integration life cycle.

The book offers a step-by-step approach to implementing IBM 
WebSphere QualityStage on Red Hat Enterprise Linux 4.0 
platform accessing information that is stored on IBM z/OS and 
IBM AIX platforms. If you are an IT architect, Information 
Management specialist, or Information Integration specialist 
who is responsible for developing IBM WebSphere QualityStage 
on a Red Hat Enterprise Linux 4.0 platform, you will find the 
information in this book helpful.

Back cover
 

 

 

 

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. IBM WebSphere QualityStage overview
	1.1 Introduction
	1.2 IBM WebSphere QualityStage overview
	1.3 IBM WebSphere QualityStage architecture
	1.4 IBM WebSphere QualityStage main functions
	1.5 IBM WebSphere QualityStage in a project context
	1.5.1 Source access or extraction (optional)
	1.5.2 Conditioning
	1.5.3 Standardization
	1.5.4 Address verification (optional)
	1.5.5 Matching
	1.5.6 Group association (optional)
	1.5.7 Survivorship (optional)
	1.5.8 Data enrichment (optional)
	1.5.9 Output formatting
	1.5.10 Auditing the load process

	1.6 Investigate stage
	1.6.1 Character Investigate option
	1.6.2 Word Investigate option

	1.7 Standardize stage
	1.7.1 Standardize rule sets
	1.7.2 WAVES, CASS, DPID, SERP, MNS, Geolocator, Country rule set

	1.8 Match stage
	1.9 Survive stage
	1.9.1 Survive rules

	1.10 Mailing list scenario
	1.10.1 Create a project
	1.10.2 Create additional folders
	1.10.3 Import table definitions
	1.10.4 Create a parameter set object
	1.10.5 Credit Card Customer cleansing
	1.10.6 Mailing list cleansing
	1.10.7 Enhance credit card customers
	1.10.8 Generate mailing master with household for promotion mailing


	Chapter 2. Financial services business scenario
	2.1 Introduction
	2.2 Business requirement
	2.3 Environment configuration
	2.4 General approach
	2.4.1 Step 1: General guidelines for the process
	2.4.2 Step 2: Identify differences between the sources and targets
	2.4.3 Step 3: Determine action in specific cases
	2.4.4 Step 4: Determine strategy and plan to execute action
	2.4.5 Step 5: Execute the plan
	2.4.6 Step 6: Review success of the process

	2.5 Scope of this book
	2.6 Data integration of North American Bank and Northern California Bank systems
	2.6.1 Cleansing North American Bank’s core and non-core services
	2.6.2 Cleansing Northern California Bank’s core and non-core services
	2.6.3 Matching and surviving Northern California Bank and Northern California Bank information

	2.7 Post migration from North American Bank systems’ to Northern California Bank
	2.7.1 Cleansing names and addresses, matching, and surviving data in the migrated system


	Appendix A. IBM Information Server overview
	A.1 Introduction
	A.2 IBM Information Server architecture
	A.2.1 Unified user interface
	A.2.2 Common services
	A.2.3 Key integration functions
	A.2.4 Unified parallel processing
	A.2.5 Unified metadata
	A.2.6 Common connectivity
	A.2.7 Client application access to services

	A.3 Configuration flow
	A.3.1 Step 1a: Create connection to an Information Server provider
	A.3.2 Step 1b: Create a project
	A.3.3 Step 1c: Create an application
	A.3.4 Step 1d: Generate SOA services
	A.3.5 Step 1e: Deploy SOA services
	A.3.6 Step 1f: Test deployed SOA services
	A.3.7 Step 1g: Optionally export service to IBM WebSphere Service Registry Repository

	A.4 Runtime flow
	A.4.1 Service artifacts
	A.4.2 Flow of a request


	Appendix B. Code and scripts used in the financial services business scenario
	B.1 Introduction

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material


	Related publications
	IBM Redbooks publications
	Other publications
	Online resources
	How to get IBM Redbooks publications
	Help from IBM

	Index
	Back cover

