

ibm.com/redbooks

Patterns: SOA Design Using
WebSphere Message Broker
and WebSphere ESB

Rufus Credle
Jonathan Adams

Kim Clark
Yun Peng Ge

Hatcher Jeter
Joao Lopes

Samir Nasser
Kailash Peri

ESB implementation options for
maturing SOA

Enhance your knowledge of IBM
ESB products

Learn how to enable your
environment with ESB
patterns

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: SOA Design Using WebSphere Message
Broker and WebSphere ESB

July 2007

International Technical Support Organization

SG24-7369-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2007)

This edition applies to WebSphere Application Server 6.1, WebSphere DataPower, WebSphere
Enterprise Service Bus 6.0.2, and WebSphere Message Broker 6.0.0.3.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this book . xii
Become a published author . xv
Comments welcome. xv

Chapter 1. Introduction . 1
1.1 Document structure . 3
1.2 Related IBM Redbooks publications . 4

Part 1. Concepts, patterns, and products. 7

Chapter 2. Introduction to SOA and ESB . 9
2.1 Service-oriented architecture overview . 10

2.1.1 Definition of a service-oriented architecture 10
2.1.2 Challenges and drivers for SOA . 12
2.1.3 Why SOA now. 16
2.1.4 SOA approach for building a solution . 20

2.2 Getting started with SOA. 21
2.2.1 SOA adoption . 21
2.2.2 IBM SOA entry points . 22
2.2.3 IBM SOA Foundation . 24
2.2.4 IBM SOA Foundation and Patterns for e-business 24

2.3 Web services and SOA . 25
2.3.1 Web services technologies . 25
2.3.2 Web services and SOA . 29

2.4 The enterprise service bus . 30
2.4.1 The role of an enterprise service bus . 33

2.5 ESB capabilities and decision attributes . 34
2.5.1 ESB capabilities . 34
2.5.2 Softer attributes. 37

Chapter 3. Product descriptions . 41
3.1 Primary products discussed in this book . 42

3.1.1 IBM WebSphere Enterprise Service Bus V6. 42
3.1.2 IBM WebSphere Message Broker V6 . 43
3.1.3 IBM WebSphere MQ V6.0. 43

© Copyright IBM Corp. 2007. All rights reserved. iii

3.1.4 DataPower . 44
3.1.5 WebSphere Service Registry and Repository. 44
3.1.6 WebSphere Adapters . 45
3.1.7 WebSphere Partner Gateway . 45
3.1.8 WebSphere Transformation Extender for Message Broker 46

3.2 Related products . 46
3.2.1 WebSphere Process Server . 47
3.2.2 TFIM/TAM . 47
3.2.3 IT CAM for SOA . 48

Part 2. Product capabilities in relation to SOA and ESB . 51

Chapter 4. ESB runtime patterns and product mappings 53
4.1 ESB runtime topologies. 54

4.1.1 ESB runtime pattern . 54
4.1.2 ESB runtime pattern product mapping . 60
4.1.3 Exposed ESB Gateway composite pattern . 62
4.1.4 Exposed ESB Gateway product mapping . 64

4.2 Multiple ESBs within an organization . 65
4.2.1 Multiple ESBs . 66
4.2.2 ESB topology patterns . 69
4.2.3 Handling policy with ESB Gateways and Service Registries 71
4.2.4 Patterns for multiple governance zones . 73

Chapter 5. WebSphere Enterprise Service Bus . 81
5.1 Product overview. 82
5.2 Key terms in WebSphere Enterprise Service Bus. 84
5.3 Structure of WebSphere Enterprise Service Bus 85

5.3.1 Mediations, service consumers, and service providers. 85
5.3.2 Mediation modules . 86
5.3.3 Mediation flow components. 88
5.3.4 Mediation flows . 89
5.3.5 Mediation primitives . 90

5.4 Related technologies. 92
5.4.1 Service message objects . 92
5.4.2 WebSphere Enterprise Service Bus bindings 95
5.4.3 Quality of service. 96
5.4.4 Common event infrastructure . 102

5.5 WebSphere ESB V6.0.2 release notes . 103

Chapter 6. WebSphere Message Broker in SOA. 105
6.1 WebSphere Message Broker overview . 106

6.1.1 Product positioning . 106
6.1.2 WebSphere Message Broker runtime architecture 107

iv Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

6.2 WebSphere Message Broker as enterprise service bus 109
6.2.1 Service virtualization . 110
6.2.2 Transport protocol support and conversion. 110
6.2.3 Message models and transformation . 112
6.2.4 Dynamic message routing. 120
6.2.5 Custom mediation support . 124
6.2.6 Interaction pattern support . 126
6.2.7 Integration with other enterprise information systems. 132
6.2.8 Quality of service (QoS) support . 133
6.2.9 Service Registry access . 133
6.2.10 Ease of administration. 134

6.3 Web service support in WebSphere Message Broker. 135
6.3.1 Choose the message domain for SOAP . 135
6.3.2 Processing SOAP messages . 138
6.3.3 WSDL support. 146
6.3.4 Web service transport capabilities . 148
6.3.5 Java Message Service (JMS) transport . 155

6.4 Using message flows for mediation. 157
6.4.1 Service Registry lookup . 159

6.5 Security considerations . 159
6.5.1 WebSphere Message Broker security. 160
6.5.2 Web services security . 161

6.6 Transaction considerations . 162
6.6.1 Message flow transaction . 163

Chapter 7. WebSphere DataPower appliances in SOA 165
7.1 DataPower overview . 166

7.1.1 Key SOA features . 168
7.2 Roles for DataPower in an SOA environment . 172

7.2.1 XML firewall. 173
7.2.2 ESB Gateway . 174
7.2.3 Hierarchical ESB Gateways . 174
7.2.4 Adapter Connector . 175
7.2.5 XML Acceleration . 175

7.3 Combining DataPower with a registry . 176
7.4 DataPower appliance models . 177

Chapter 8. ESB design options . 181
8.1 WebSphere ESB-based architecture . 183

8.1.1 Platforms support . 184
8.1.2 WebSphere ESB-based candidate environment. 185
8.1.3 Data Format Transformation . 186
8.1.4 Protocol Transformation . 194

 Contents v

8.1.5 Virtualization of Service. 198
8.1.6 Dynamic routing . 200
8.1.7 Inter-communication . 202
8.1.8 Resiliency . 202
8.1.9 Qualities of service . 209

8.2 WebSphere Message Broker-based ESB architecture 212
8.2.1 Platforms support . 213
8.2.2 WebSphere Message Broker-based ESB candidate environment . 213
8.2.3 Message modeling . 215
8.2.4 Data Format Transformation . 215
8.2.5 Protocol transformation . 220
8.2.6 Virtualization of service . 221
8.2.7 Dynamic routing . 222
8.2.8 Inter-communication . 227
8.2.9 Resiliency . 227
8.2.10 Qualities of service . 235
8.2.11 WebSphere ESB-WebSphere Message Broker inter-communication

237
8.2.12 WebSphere Message Broker-WebSphere ESB HTTP secure

communication . 238

Part 3. Physical scenarios . 241

Chapter 9. Scenario: using WebSphere ESB and WebSphere Message
Broker in combination . 243

9.1 Design guidelines . 244
9.1.1 Business scenario . 245

9.2 WebSphere Message Broker . 250
9.2.1 Message flow descriptions . 252
9.2.2 Existing back-end manufacturer application 259

9.3 Runtime guidelines for ESB based on WebSphere Message Broker . . . 261
9.3.1 Configure WebSphere MQ environment . 261
9.3.2 Connect the toolkit to the configuration manager 263
9.3.3 Create execution groups . 264
9.3.4 Create and deploy broker archive files . 265

9.4 ESB based on WebSphere ESB . 269
9.4.1 WebSphere Integration Developer to WebSphere Enterprise Service

Bus connection . 269
9.4.2 Runtime artifacts . 271

9.5 Scenario 1: WebSphere ESB to WebSphere Message Broker interaction
using SOAP over HTTP . 276

9.6 Scenario 2: WebSphere ESB to WebSphere Message Broker interaction
using MQJMS . 284

vi Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

9.7 Scenario 3: WebSphere ESB to WebSphere Message Broker interaction
using MQ XML . 294

9.8 Scenario 4: WebSphere Message Broker to WebSphere ESB interaction
using MQ XML . 304

9.9 Testing the scenarios . 313
9.10 Runtime guidelines for back-end existing manufacturer applications . . 315
9.11 Testing the application . 316

Chapter 10. Scenario: DataPower in an SOA . 323
10.1 Scenario 1: Build Web Service gateway using DataPower 324
10.2 Scenario 2: Basic authentication mechanism provided by DataPower . 334
10.3 How to create a Domain . 349

Appendix A. Java node source code . 353

Appendix B. Sample instructions . 371
WebSphere Message Broker message flows . 372

Appendix C. Additional material . 377
Locating the Web material . 377
Using the Web material . 377

How to use the Web material . 378

Related publications . 379
IBM Redbooks . 379
How to get IBM Redbooks . 379
Help from IBM . 380

Index . 381

 Contents vii

viii Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
developerWorks®
z/OS®
zSeries®
AIX®
BladeCenter®
Component Business Model™
CICS®
DataPower®
Domino®

DB2 Universal Database™
DB2®
Everyplace®
HACMP™
IBM®
IMS™
Lotus®
MQSeries®
MVS™
Rational Unified Process®

Rational®
Redbooks®
RUP®
S/370™
SupportPac™
System x™
System z™
Tivoli Enterprise™
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

BAPI, SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

EJB, Java, JDBC, JRE, JVM, J2EE, J2SE, Solaris, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Preface

The Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying e-business applications.
This IBM® Redbooks® publication focuses on the use of the WebSphere
Enterprise Service Bus and WebSphere Message Broker together to form an
enterprise service bus (ESB) implemented in a service-oriented architecture
(SOA).

This book discusses patterns for integrating WebSphere Enterprise Service Bus
and WebSphere Message Broker and includes a scenario to help you design,
develop, and deploy these products.

This book is designed to assist customers that are approaching the use of both
advanced and basic ESB products from typically messaging and J2EE™ worlds,
but are not quite sure when each is appropriate.

© Copyright IBM Corp. 2007. All rights reserved. xi

The team that wrote this book
This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Poughkeepsie Center.

Figure 1 The team from bottom left to right: Kim Clark, Ge Yun Peng, Rufus Credle,
Kailash Peri, Samir Nasser, Joao Lopes, Hatcher Jeter (Jonathan Adams not pictured)

Rufus Credle is a Certified Consulting IT Specialist at the ITSO, Raleigh Center.
In his role as Project Leader, he conducts residencies and develops IBM
Redbooks about network operating systems, ERP solutions, voice technology,
high availability and clustering solutions, Web application servers, pervasive
computing, IBM and OEM e-business applications, IBM System x™, System x,
and IBM BladeCenter®. Rufus' various positions during his IBM career have
included assignments in administration and asset management, systems
engineering, sales and marketing, and IT services. He holds a BS degree in
business management from Saint Augustine's College. Rufus has been
employed at IBM for 27 years.

Jonathan Adams is an IBM Distinguished Engineer. He has been an IT architect
with IBM for 38 years. For the last ten years he has been focused on developing

xii Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

a pattern language that allows an architect to describe a complex solution as a
composite of coarse-grained patterns, to provide a powerful solution
decomposition technique for enabling business transformation, and to provide
the basis for a tooling approach for developing IT solutions based upon proven
patterns and industry best practice. Since September 1998, he has been working
in the SWG Technical Strategy organization leading the definition and
development of the Patterns for e-business. These patterns have been built by
teaming across all of the major IBM divisions. The resultant patterns are being
used by IBM personnel, customers, and Business Partners to help reduce risk
and increase speed to market on many e-business solution developments.

Kim Clark is an IT Specialist working in the UK and has been working in the IT
industry for 13 years. He was a technical lead on some of the first
implementations of the SOA Foundation products, and presents regularly on
SOA design. He holds a degree in Physics from the University of London.

Yun Peng Ge is an IT Specialist with the technical sales support team supporting
mainframe WebSphere® products to customers in China. He has a bachelor’s
degree in computer science from Fudan University in Shanghai. His area of
expertise includes CICS® TS, WebSphere Message Broker, J2EE, and z/OS®.
He is currently engaged in several SOA transformation projects in China.

Hatcher Jeter is a consulting IT professional with over 22 years of experience in
a wide variety of computer disciplines, ranging from MVS™ on S/370™
Mainframes using SNA networks, to PCs on LAN/WAN networks, to the current
Internet e-business environments of WebSphere MQ, WebSphere Message
Broker on UNIX®, Intel®, and z/OS. He has had extensive training and
experience on multiple operating systems such as MVS, z\OS, Intel, and UNIX
and has excellent debugging and problem-solving skills. Since 1998, Hatcher
has been focusing on the WebSphere MQ product, where he has developed a
strong skill set. Recently, he has gained experience in WebSphere Message
Broker. His present expertise is in the areas of z/OS and Distributed Platforms
WebSphere MQ and WebSphere Message Broker installation, customization,
problem determination, and connecting to applications (IMS™ and CICS) on
z-Series mainframes.

Joao Lopes is an Application Architect working in the Service Innovation at IBM.
He is part of the Architectural CoC for SOA in Brazil and has been working on
some of the first implementations of SOA release products. As a Java™
developer, prior to J2EE, he continues to participate in Open Sources
development in ASF and also SourgeForge.net initiatives regarding OSOA
projects like SCA and SDO for Java and C++. He holds a degree in Physics.

Samir Nasser is a Certified IT Consultant in the USA. He has over 10 years of
experience in the IT integration area. He holds a BS degree in Physics, a BS
degree in Electronics Engineering from UNC Charlotte, and an MS degree in

 Preface xiii

Materials Science and Engineering from NC State University. His areas of
expertise include SOA, J2EE, and the family of WebSphere products.

Kailash Peri is a Software Engineer in the AIM division of IBM. He is currently
working in L2 support for WebSphere Message Broker and WebSphere Service
Registry and Repository products. Kailash Peri has been working with IBM since
2002. He has 20 years of experience designing and developing large-scale
software applications using C++ and Java. His current responsibilities include
resolving customer issues related to Message Broker. Kailash holds a Bachelor’s
Degree in Science from Andhra University, India.

Thanks to the following people for their contributions to this project:

Tamikia Barrow, Carolyn Briscoe, and Margaret Ticknor
International Technical Support Organization, Poughkeepsie Center

Jonathan Adams, Patterns for e-business leadership and architecture
IBM United Kingdom

Kyle Brown, Distinguished Engineer
IBM Research Triangle Park

Rick Robinson, Architecture Services, IBM EMEA WebSphere Lab Services
IBM United Kingdom

Ben Thompson, Senior IT Specialist, Pan-IOT Software Lab Services
IBM United Kingdom

Sung-Ik Son, DataPower®, IBM Software Services for WebSphere, WebSphere
Enablement
IBM Research Triangle Park

Jerry Denmam, Global Business Services, Executive IT Architect (Certified) -
Enterprise Integration - Distribution Sector
IBM Orlando

Brian Petrini, IBM Software Group, Application and Integration Middleware
Software
IBM San Diego

Prasad Imandi, Team Lead, WebSphere ESB L2 team
IBM Research Triangle Park

Anthony O'Dowd, IBM Senior Technical Staff Member
IBM United Kingdom

xiv Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Scott Simmons, IBM Software Group, Worldwide Sales
IBM Boulder

Greg Flurry, IBM Software Group, Application and Integration Middleware
Software, SOA Advanced Technology
IBM Austin

Marc-Thomas Schmidt, IBM Software Group, Application and Integration
Middleware Software, Distinguished Engineer
IBM Somers

Rachel Reinitz, IBM Software Group, Application and Integration Middleware
Software, Distinguished Engineer
IBM Mountainview

IBM Redbooks team for WebSphere Service Registry and
RepositoryWebSphere Service Registry and Repository Handbook, SG24-7386,
who provided the WSRR scenarios and guidance on WSRR connectivity with
other WebSphere products

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbooks
publication dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You'll have the opportunity to team
with IBM technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review book form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xvi Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

Service-oriented architecture (SOA) is a long-term goal. It takes time to mature
the enterprise infrastructure into a state where its core business capabilities are
exposed for re-use and yet remain flexible.

In the course of that maturing process, the enterprise service bus (ESB) at the
core of the SOA is not static. It grows and changes in complexity and coverage
over time. Although enterprise service bus is an industry standard term for an
architectural pattern, the implementation will be different for every company.
Their starting points will be different in terms of their existing back end systems,
their current integration maturity, and the levels of autonomy between different
domains of the organization. We need to be able to introduce new features to the
pattern without compromising the existing implementation.

This book focuses on SOA design from the point of view of the enterprise service
bus. Specifically, we look inside the ESB pattern to see what technologies are
involved, and how they are combined.

We look at some key issues regarding ESBs in a maturing service-oriented
architecture:

� How do you strengthen an existing ESB? How do you augment the pattern to
cater for future demands? How do integration technologies combine?

� What do ESBs look like in very large enterprises where there are multiple
domains of control? How do you connect multiple ESBs? What is the
difference between multiple ESBs and multiple technologies within an ESB?

1

© Copyright IBM Corp. 2007. All rights reserved. 1

� What are the latest advances in IBM technology in relation to the ESB
pattern? How should these new features and products be used? What might I
expect in future releases?

Although we build on a number of IBM Redbooks publications that have come
before this one, we aim to bring the technology discussions up to date with the
current product versions.

This book encompasses details on significant new releases of several of the key
products. Many features have been introduced to the product range specifically
with SOA in mind. This book explains how these features should be incorporated
into ESB patterns and demonstrates some of the new features in the practical
scenarios.

The principle products in the enterprise service bus review are:

� WebSphere Enterprise Service Bus V6.0.2
� WebSphere Message Broker V6.0.0.3

We also discuss products that are significant in the augmentation of an ESB:

� WebSphere DataPower SOA AppliancesV3.6
� WebSphere Enterprise Service Bus V6.0.2
� WebSphere Partner Gateway V6.0
� WebSphere Transformation Extender V8.1
� WebSphere Transformation Extender for Message Broker V8.1

2 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

1.1 Document structure

This book is organized into three parts, as shown in Figure 1-1 on page 4. Each
part has its own introduction discussing what will be found in the individual
chapters.

� Part 1, “Concepts, patterns, and products” on page 7, introduces the
background concepts, such as service-oriented architecture (SOA) and
enterprise service bus (ESB), and provides brief descriptions of the key
products discussed in this book.

� Part 2, “Product capabilities in relation to SOA and ESB” on page 51,
introduces the runtime patterns of an ESB initially as a technology agnostic
pattern, then mapped to specific technologies. It then introduces the issues
surrounding multiple ESBs within an organization. Each of the products is
addressed individually, highlighting its specific contributions to a
service-oriented architecture. Finally, there is a detailed chapter comparing,
contrasting, and combining ESB and the related technologies.

� Part 3, “Physical scenarios” on page 241, offers practical scenarios with
step-by-step instructions showing how to use some of the key SOA-oriented
features of the main products.

 Chapter 1. Introduction 3

Figure 1-1 An overview of the document structure

1.2 Related IBM Redbooks publications

The following IBM Redbooks publications form the foundation on which this book
is written:

� Patterns: Integrating Enterprise Service Buses in a Service-Oriented
Architecture, SG24-6773

Introduces the core patterns involved in combining enterprise service buses
including scenarios with WebSphere Message Broker and WebSphere
Application Server. WebSphere Enterprise Service Bus and DataPower were
not available at the time.

Part1:
Concepts,
Patterns &
Products

Part 2:
Product capabilities
in relation to SOA and ESB

Part 3:
Physical Scenarios

Chapter 1:
Introduction

Chapter 5:
WebSphere Enterprise

Service Bus in SOA

Chapter 6:
WebSphere Message Broker

in SOA

Chapter 7:
WebSphere DataPower

Appliances in SOA

Chapter 8:
WebSphere Service Registry

and Repository

Chapter 3:
Product Definitions

Chapter 2:
Introduction to SOA and ESB

Chapter 4:
ESB Runtime Patterns and

Product Mappings

Chapter x:
Scenarios Overview

Scenarios:
Using WESB and WMB in

combination
Scenarios:

Extending an ESB with WSRR
Scenarios:

DataPower in an SOA

Chapter 9:
ESB Design Guidelines

4 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

Prepares an ESB based scenario using WebSphere Enterprise Service Bus
and WebSphere Message Broker, amongst other products.

� Getting Started with WebSphere Enterprise Service Bus, SG24-7212

An introduction to the WebSphere Enterprise Service Bus product reviewing
all of the key functions.

� WebSphere Message BrokerWebSphere Message Broker Basics,
SG24-7137

� Enabling SOA using WebSphere Messaging, SG24-7163

Comparative cover of both WebSphere Enterprise Service Bus and
WebSphere Message Broker individually. Brief coverage of their combined
use.

� Patterns: Extended Enterprise SOA and Web Services, SG24-71355

Discusses SOA scenarios specifically in the context of Web services.
WebSphere Enterprise Service Bus was not available at the time of writing.

� Patterns: Implementing an SOA using an Enterprise Service Bus, SG24-6346

Covers the theoretical aspects of ESB in detail. Written before the emergence
of many of the SOA Foundation products.

 Chapter 1. Introduction 5

http://www.redbooks.ibm.com/abstracts/sg247228.html?Open
http://www.redbooks.ibm.com/abstracts/sg247212.html
http://www.redbooks.ibm.com/abstracts/sg247137.html
http://www.redbooks.ibm.com/abstracts/sg247163.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg246346.html?Open

6 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Part 1 Concepts,
patterns, and
products

In this part of the book we discuss concepts, patterns, and products.

Part 1

© Copyright IBM Corp. 2007. All rights reserved. 7

8 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 2. Introduction to SOA and
ESB

Since an understanding of service-oriented architecture is fundamental to this
book, this chapter offers a brief explanation of the key concepts, with specific
emphasis on the enterprise service bus pattern.

2

© Copyright IBM Corp. 2007. All rights reserved. 9

2.1 Service-oriented architecture overview
This section includes an overview for a service-oriented architecture (SOA). First,
we define the key terms and components used to describe an SOA. Second, we
review the key challenges and drivers for SOA. Third, we highlight the reasons
why SOA is the right choice now. Lastly, we describe an example scenario for
building a solution using an SOA approach.

2.1.1 Definition of a service-oriented architecture
Figure 2-1 highlights the key terms used to describe a service-oriented
architecture.

Figure 2-1 Definition of key terms for a service-oriented architecture

A service is representative of a repeatable business task. Services are used to
encapsulate the functional units of an application by providing an interface that is
well defined and implementation independent. Services can be invoked
(consumed) by other services or client applications.

Service orientation defines a method of integrating business applications and
processes as linked services.

Service-oriented architecture (SOA) can be different things to different people
depending on the person’s role and context (business, architecture,
implementation, operational). From a business perspective, SOA defines a set of
business services composed to capture the business design that the enterprise
wants to expose internally, as well as its customers and partners. From an

... a service?

A repeatable business
task. For example,

check customer credit;
open a new account.

... service oriented
architecture (SOA)?

An IT architectural
style that supports
service orientation.

... service orientation?

A way of integrating your
business as linked

services and the
outcomes that they bring.

... a composition
application?

A set of related and
integrated services that

support a business
process built on an SOA.

10 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

architecture perspective, SOA is an architectural style that supports service
orientation. At an implementation level, SOA is fulfilled using a standards-based
infrastructure, programming model, and technologies such as Web services.
From an operational perspective, SOA includes a set of agreements between
service consumers and providers that specify the quality of service, as well as
reporting on the key business and IT metrics.

A composite application is a set of related and integrated services that support a
business process built on an SOA.

Basic components of an SOA
At the most basic level, an SOA consists of the following three components:

� Service provider
� Service consumer
� Service Registry

Each component can also act as one of the two other components. For instance,
if a service provider needs additional information that it can only acquire from
another service, it acts as a service consumer. Figure 2-2 shows the operations
each component can perform.

Figure 2-2 SOA components and operations

The service provider creates a service and in some cases publishes its interface
and access information to a Service Registry.

Service
Consumer

Service
Provider

Service
Registry

Publish1Discover2

Invoke3

- Flight Reservation
- Car Hire
- Hotel Booking
- Mortgage Lending
- Office Supplies

Application-A
- Travel Agent
- Retail Bank
- Publishing House

Application-B
- Airline/Car Rental/Hotel Chain
- Mortgage Specialist/Investment Banks
- Office Supplies Company

Request/Response

 Chapter 2. Introduction to SOA and ESB 11

Each provider must decide which services to expose, evaluate trade-offs
between security and easy availability, and determine how to price the services
or determine how to exploit the value of the services if they are free. The provider
also has to decide in which category the service should be listed, and what sort
of trading partner agreements are required to use the service.

The Service Registry is responsible for making the service interface and
implementation access information available to service consumers.

The implementers of a Service Registry must consider the scope with which the
registry will be implemented. For example, there are public service registries
available over the Internet to an unrestricted audience, as well as private service
registries that are only accessible to users within a company-wide intranet.

The service consumer locates (discovers) entries in the Service Registry and
then binds to the service provider in order to invoke the defined service.

2.1.2 Challenges and drivers for SOA
In March 2006, IBM commissioned a Global CEO survey and found that 78% of
CEOs surveyed believe that integrating business and technology is fundamental
for innovation. Another key finding from this survey was that only one in ten
CEOs believes his or her organization has the ability to be very responsive to
changing market conditions.

As noted from the survey, businesses need the ability to integrate business and
technology rapidly to achieve their business objectives. Businesses also have a
strong desire to leverage the investment of existing business applications and
systems without a complete and costly rewrite. There are many schemes that
exist today to integrate systems within and between enterprises. In most cases
these solutions are proprietary, not easily adaptable, and not responsive to rapid
changes needed by the business.

There is a growing demand for an architecture and technologies that support the
connection or sharing of resources and data in a very flexible and industry-
standard manner. There is a need to further structure large applications into
building blocks that can be reused and composed into business processes.

A shift towards a service-oriented approach standardizes the interaction with
applications and business processes, and allows for more flexibility in the
process. By adopting an SOA approach, existing application functionality can be
turned into reusable services that can be consumed by a new set of client
applications and users. SOA brings the flexibility vital to realizing innovation and
desired outcomes of business.

12 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Business requirements and drivers for SOA
Figure 2-3 highlights the common elements of a business that require flexible
integration.

Figure 2-3 Business requirements

Here we summarize the common business drivers that require rapid and flexible
integration of IT systems:

� Support an agile business model.

The marketplace can be very dynamic and competitive. There is a great need
to have a business model and IT architecture that can rapidly change to
support the business model and its objectives.

Tip: The alignment of IT with business goals can be summarized as
collaborative business and IT decision-making that ensures the following:

� IT investments are made based on business objectives.

� IT service delivery provides a business result.

� Business priorities are assessed with IT capabilities and limitations in
mind.

Finance Manufac-
turing

Distri-
bution Retail Telecom Govern-

ment
Industry
Solutions

. . .

Suppliers &
DistributorsCustomers

EmployeesBusiness Integration (Inter- and Intra-Enterprise)

Infrastructure

Customer
Relationship
Management

Enterprise
Resource
Planning

Project
Lifecycle

Management

Value
Chain

Management

 Chapter 2. Introduction to SOA and ESB 13

� Reduce cycle time and costs.

Eliminate duplicate systems by reusing existing applications. This has the
effect of reducing the time required to integrate systems, reducing cost, and
simplifying the skill set required to implement the solution.

When applying these concepts to external business processes, enterprises
can move from costly manual transactions to automated transactions with
suppliers.

� Simplify integration across the enterprise.

Many existing IT systems can be inhibitors to change. They are too complex
and, as a result, inflexible. Also, existing integration includes multiple
technologies and point-to-point integration, which is often inflexible. The need
to simplify integration is essential, especially considering the challenges
raised from events such as business mergers and acquisitions.

� Achieve better IT use and return on investment.

Return on investment (ROI) is a comparison of profit earned or lost for the
investment with the amount invested. The investment in IT should facilitate
the business objective and help the business achieve the targeted ROI.

Greater need for a flexible architecture
There are many possible reasons that a flexible business model is needed, such
as business transformation, business process outsourcing, mergers, and
acquisitions. SOA provides a flexible IT infrastructure and on demand operating
environment to support the initiatives of a flexible business model.

For the purposes of comparison with SOA, we highlight the integration
deficiencies of monolithic (silos) and component-based architectures. Next, we
describe the flexibility gained by using an SOA approach.

Historically, business applications were built with a monolithic purpose (silos).
While this kind of architecture can be effective, it is often very difficult to change
and integrate with other applications within the enterprise and between
enterprises (custom-coded connections required).

14 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

For example, a monolithic business application must periodically synchronize
inventory information, as you can see in Figure 2-4. In this approach, pricing
information for each Web order is inserted differently based on the application
structure. Lastly, there is no common customer or inventory database to be
shared across the enterprise, or flexibility in the business processes.

Figure 2-4 Monolithic business application (silos)

Although component-based application architecture does define services as
units of business logic, there are some inherit problems with this approach. The
flow of control is bound into the service logic. The transformation of data formats
is also bound to the service logic. There is tight coupling between the services,
as seen in Figure 2-5, thus making this application integration architecture.

Figure 2-5 Component-based application

Sales Orders &
Supply ChainWeb Orders

Pricing

Inventory

Sales
Orders

Shipments

Customers
Pricing

Web Orders

 Chapter 2. Introduction to SOA and ESB 15

When using an SOA approach (see Figure 2-6), the services are defined as units
of business logic separated from the flow of control and routing, and the data
transformation and protocol transformation. This approach provides loose
coupling, thus making this approach much more flexible for integration.

Figure 2-6 SOA-based application

2.1.3 Why SOA now
In the previous section we explained how a service-oriented architecture
provides the flexibility to align you IT with your business goals. In this section we
explain why SOA is the right choice now. When there is a shift in architecture, it is
important to understand why a shift is needed, and evaluate the maturity level of
the architecture that supports adoption.

We highlight the following key reasons why SOA is the right choice now:

� Business driving a shift in IT
� Enables flexibility of both IT and business
� Open standards and platforms
� Best practices
� Software for SOA

Inventory

Sales
OrdersShipments

CustomersPricing

Web Orders

16 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Business driving a shift in IT
Table 2-1 provides a summary of business needs that are driving a shift in IT
from function-oriented to process-oriented and service-oriented to achieve
flexibility.

Table 2-1 Shift in IT driven by business

Enables flexibility of both IT and business
SOA enables flexibility of both IT and business through flexible connectivity of
business services:

� Represent applications or data as a service with a standardized interface.

� Enable applications as services to exchange structured information
(messages, documents, and other business objects).

� Mediate the message exchange through an enterprise service bus (ESB).

� Provide on-ramps to the bus for existing applications and systems.

From function-oriented To process and service-oriented

Build for permanence. Build to change.

One long development cycle. Incremental development cycle.

Application silos. Orchestrated solutions that work together.

Tightly coupled. Loosely coupled.

Structure applications using components
and objects.

Structure applications using services.

Known implementation. Implementation abstraction.

 Chapter 2. Introduction to SOA and ESB 17

Open standards and platforms
Another key reason that SOA is the right choice for your enterprise is that it is
based on open standards and platforms, as summarized in Figure 2-7. These
open standards are widely adopted across the industry.

Figure 2-7 Summary of SOA open standards and platforms

IBM continues to be a leader in SOA-based technologies, products, and
solutions. IBM is a key partner in helping define the specifications and
technologies used to implement an SOA, such as Web services, Service
Component Architecture (SCA), and Service Data Objects (SDO).

Best practices
Best practices are used to deliver a particular outcome by leveraging the
knowledge learned from experience. Best practices include methodologies,
techniques, guidelines, and patterns. By leveraging the knowledge captured in
best practices listed here, your project can be run with less problems and be
deployed more rapidly.

Best practices in use today are:

� SOA adoption

The SOA adoption process provides guidelines that assist in developing a
road map towards a successful migration to an SOA.

Note: Many of the best practices listed in this section are described in greater
detail in Chapter 4, “Best practices for SOA,” in Patterns: SOA Foundation
Service Creation Scenario, SG24-7240.

IBM is the #1
commercial supporter

Open Operating
System Choice Includes Linux

IBM contributed technology to
J2EE & helped form the
Apache Software Foundation

Open Application
Server J2EE and Apache

IBM led or co-led the creation
of SOAP, WSDL, UDDI,
WS-Security, BPEL4WS …

Open Application
Integration Web Services

IBM donated $40M of
initial technology

Open Development
Integration Platform Eclipse

18 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.redbooks.ibm.com/abstracts/sg247240.html?Open
http://www.redbooks.ibm.com/abstracts/sg247240.html?Open

� SOA Governance

SOA Governance helps clients extend the planned SOA across the enterprise
in a controlled manner.

� Methodology

A well-established set of methodologies can help to break down complex
problems into smaller and more manageable pieces that are easier to analyze
and, therefore, develop solutions. Example methodologies include the
Component Business Model™ (CBM), IBM Service Integration Maturity
Model (SIMM), Rational® Unified Process® (RUP®), and Service-Oriented
Modeling and Architecture (SOMA).

� Process modeling

Process modeling is used to define business processes. A processes flow is a
sequence of tasks and decision elements with multiple branches, linked by
connectors.

� Model-driven development

Model-driven development is a style of software development where the
primary software artifacts are models from which code and other artifacts are
generated. A model is a description of a system from a particular perspective,
omitting irrelevant detail so that the characteristics of interest are more clear.

� Reference architecture

A reference architecture provides the underlying architecture components
used to overcome the initial problems of finding an architecture with which to
begin. The most notable reference architecture for SOA is the IBM SOA
Foundation.

� Patterns

As a general principle, starting from the beginning, each time should be
avoided. The use of patterns is one specific form of capturing and reusing
reoccurring design elements. For example, the Patterns for e-business
include reusable architecture and implementation assets used to accelerate
the creation of a solution design and implementation.

Software for SOA
The marketplace offers many software choices for SOA. IBM is the market leader
in providing mature software and solutions for SOA. For detailed information
about the SOA software and solutions provided by IBM, refer to “SOA Foundation
scenarios” in Patterns: SOA Foundation Service Creation Scenario, SG24-7240.

 Chapter 2. Introduction to SOA and ESB 19

http://www.redbooks.ibm.com/abstracts/sg247240.html?Open
http://www.redbooks.ibm.com/abstracts/sg247240.html?Open

2.1.4 SOA approach for building a solution
This section includes an example SOA approach for building a solution. In this
example, the company wants to implement a new business process to support
customers who are placing orders from an Internet Web site.

The company has existing retail, warehouse, and billing systems, as seen in
Figure 2-8. The company would like to build new business processes by reusing
the functionality provided by the existing systems rather than having to write new
applications or new proprietary interfaces to the existing systems.

Figure 2-8 Service-oriented approach to building systems

If the company has already adopted an SOA approach, it will have defined the
interfaces to its existing systems in terms of the functions or services that they
offer in support of building business processes. The defined interfaces make
building the new system Web front end very simple. The company simply needs
to develop an application that invokes (consumes) services to complete the new
business process.

By using an SOA approach, companies are able to build horizontal business
processes that integrate systems, people, and processes from across the
enterprise quickly and easily in response to changing business needs.

Business
Process

Bill
Customer

Defined
Services

Receive
Order

Service

Customer
Billing

Service

Fulfill
Order

Service
Restock
Service

IT
Systems

Web
Application

Retail
System

CRM
Warehouse

System

Receive
Order

Fulfill
Order Restock

20 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

2.2 Getting started with SOA
In this section we explore the question of how to get started with SOA from both
a business and an architectural perspective.

2.2.1 SOA adoption
SOA adoption provides an iterative and incremental process, and guidelines that
assist in developing a road map towards a successful migration to SOA. As seen
in Figure 2-9, the SOA adoption process begins by defining the scope of possible
projects that fit the criteria for being a good fit for a service-oriented architecture.

Figure 2-9 SOA adoption process

There are two primary perspectives, strategic vision and project plan. The
strategic vision perspective describes the business and IT statement of direction,
which can be used as a guideline for decision making, organizational buy-in, and
standards adoption. The project plan perspective (or tactical perspective) refers
to implementation projects to meet immediate needs of the current business
drivers.

Defining the strategic vision starts with assessing the current business maturity
across multiple dimensions including business, methodology, and technical. The
IBM Service Integration Maturity Model (SIMM) can be used to help in this

 Chapter 2. Introduction to SOA and ESB 21

assessment. If you are more comfortable with starting with a self assessment,
you can use the IBM online SOA Assessment Tool:

http://www.ibm.com/software/solutions/soa/soaassessment/index.html

After the assessment has been performed, the business must establish targets
for where they want to be. This includes documenting important goals and
metrics for transition across the maturity dimensions. In addition, it is important to
have regular checkpoints to reassess the vision.

2.2.2 IBM SOA entry points
As seen in Figure 2-10, SOA connects people, processes, and information. To
help customers get started with SOA, IBM has defined three core business-
centric starting points (people, processes, and information), and two IT-centric
starting points (connectivity and reuse). These are known as the SOA entry
points.

Figure 2-10 SOA connects people, processes, and information

Note: Refer to “SOA Adoption” in Patterns: SOA Foundation Service Creation
Scenario, SG24-7240, for more detailed information.

22 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.redbooks.ibm.com/abstracts/sg247240.html?Open
http://www.ibm.com/software/solutions/soa/soaassessment/index.html

Through business-centric SOA, companies can tie IT projects to their business
needs directly by addressing the companies’ immediate pain points.

� People: productivity through collaboration

Improve people productivity by aggregating views that deliver information and
interaction in the context of a business process. This enables human and
process interaction with consistent levels of service.

Start by building a view of a key business process by aggregating information
to help people make better decisions. The next steps are tighter management
of performance with alert-driven dashboards that link to more processes.

� Process: business process management for continuos innovation

Deploy innovative business models quickly with reusable and optimized
processes to adapt the enterprise to changing opportunities and threats.

Start by modeling an under-performing process, remove bottlenecks, then
simulate and deploy the optimized process. Next create flexible linkages
between multiple processes across the enterprise and outside the firewall to
suppliers and partners. Then monitor the process to measure and track
performance.

� Information: delivering information as a service

Improve business insight and reduce risk with trusted information services
delivered in-line and in context.

Start by discovering and understanding information sources, relationships,
and the business context. The next steps are to expand the volume and scope
of the information delivered as a service across internal and external
processes.

The IT-centric entry points to help the enterprise integrate the business-centric
SOA entry points are as follows:

� Connectivity: underlying connectivity to enable business-centric SOA

Connectivity has always been a key requirement. SOA brings new levels of
flexibility. As well as acting as a building block for additional SOA initiatives,
connectivity provided through SOA has distinct, standalone value.

� Reuse: creating flexible, service-based business applications

Cut costs, reduce cycle times, and expand access to core applications
through reuse. Analysts estimate that it is up to five times less expensive to
reuse existing applications than to write new applications.

Use portfolio management to consider which assets you need to run your
company. Identify high-value existing IT assets and service-enable them for
reuse. Satisfy remaining business needs by creating new services. Finally,

 Chapter 2. Introduction to SOA and ESB 23

create a Service Registry and repository to provide centralized access and
control of these reusable services.

2.2.3 IBM SOA Foundation
The IBM SOA Foundation is an integrated, open standards based set of IBM
software, best practices, and patterns to provide you with the architecture
knowledge to get started with SOA. The key elements of the IBM SOA
Foundation are the SOA life cycle (model, assemble, deploy, manage), reference
architecture, programming model, and SOA scenarios.

The SOA Foundation scenarios (or simply SOA scenarios) are representative of
common scenarios of use of IBM products and solutions for SOA engagements.
The SOA scenarios quickly communicate the business value, architecture, and
IBM open standards-based software used within the SOA scenario. The concept
of realizations are used to provide more specific solution patterns and IBM
product mappings within the SOA scenarios.

The SOA scenarios can be used as a reference architecture implementation
(starting point) to accelerate the SOA architecture and implementation of your
scenario. The SOA scenarios can be implemented using an incremental SOA
adoption approach, whereby a customer can incrementally add elements of other
SOA scenarios to the environment to achieve their business objectives.

2.2.4 IBM SOA Foundation and Patterns for e-business
The IBM SOA Foundation is a reference architecture used to build new (or
extend existing) applications and business processes. The IBM SOA Foundation
includes an integration architecture, best practices, patterns, and SOA scenarios
to help simplify the packaging and use of IBM open standards-based software.

The IBM Patterns for e-business and are a group of proven, reusable assets that
can be used to increase the speed of developing and deploying On Demand
business applications. The Patterns for e-business approach enables architects
to implement successful e-business solutions through the reuse of components
and solution elements from proven successful experiences.

Using a combined SOA process identified by IBM, both the SOA Foundation and
Patterns for e-business can be used to help select the appropriate architecture

Note: Refer to Chapter 2, “IBM SOA Foundation,” in Patterns: SOA
Foundation Service Creation Scenario, SG24-7240, for more detailed
information.

24 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.redbooks.ibm.com/abstracts/sg247240.html?Open

and products to build ESB solutions. WebSphere Enterprise Service Bus and
WebSphere Message Broker both fit into the Service Connectivity SOA scenario.

Consult the following resources for more information:

� IBM SOA Foundation and the Service Connectivity SOA scenario

– Patterns: SOA Foundation Service Creation Scenario, SG24-7240

– Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� IBM Patterns for e-business

http://www.ibm.com/developerworks/patterns

2.3 Web services and SOA
This section describes the core technologies of Web services, as well as how
Web services are used to implement an SOA.

2.3.1 Web services technologies
Web services technology is a collection of standards (or emerging standards)
that can be used to implement an SOA. Web services technology is
vendor-neutral and platform-neutral, interoperable, and supported by many
vendors today.

Web services are self-contained, modular applications, that can be described,
published, located, and invoked over networks. Web services encapsulate
business functions ranging from a simple request-reply to full business process
interactions. The services can be new or wrap around existing applications.

Core elements
The following are the core technologies used for Web services:

� Extensible Markup Language (XML)

XML is the markup language that underlies most of the specifications used for
Web services. XML is a generic language that can be used to describe the
content in a structured way, separated from its presentation to a specific
device.

Note: For more detailed information about Web services, we recommend that
you read WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461.

 Chapter 2. Introduction to SOA and ESB 25

http://www.ibm.com/developerworks/patterns

� Simple Object Access Protocol (SOAP)

SOAP is a specification for the exchange of structured XML-based messages
between the service provider, service consumer, and Service Registry,
consisting of three parts:

– The format of a SOAP message is an envelope containing zero or more
headers and exactly one body. The envelope is the top element of the XML
document, providing a container for control information, the addressee of a
message, and the message itself. Headers contain control information
such as quality-of-service attributes. The body contains the message
identification and its parameters.

– Encoding rules are used for expressing instances of application-defined
data types. SOAP defines a programming language independent data
type schema based on an XML Schema Descriptor (XSD), plus encoding
rules for all data types defined to this model.

– RPC representation is the convention for representing remote procedure
calls (RPC) and responses.

SOAP, in principle, is a protocol-independent transport. Consequently, it can
potentially be used in combination with a variety of protocols such as HTTP,
JMS, SMTP, or FTP. Currently, the most common way of exchanging SOAP
messages is through HTTP, which is also the only protocol supported by WS-I
Basic Profile 1.0.

� Web services Description Language (WSDL)

WSDL is an XML-based interface and implementation description language.
A WSDL document contains the following main elements:

– Types is the container for data type definitions using a type system such as
an XML Schema.

– An abstract, typed definition of the data being communicated, a message
can have one or more typed parts.

– A port type is an abstract set of one or more operations supported by one
or more ports.

– An operation is an abstract description of an action supported by the
service that defines the input and output message and optional fault
message.

– The binding is a concrete protocol and data format specification for a
particular port type. The binding information contains the protocol name,
the invocation style, a service ID, and the encoding for each operation.

– The service is a collection of related ports.

– The port is a single endpoint, an aggregation of a binding and a network
address.

26 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� Universal Description, Discovery, and Integration (UDDI)

UDDI is both a client-side API and a SOAP-based server implementation that
can be used to store and retrieve information about service providers and
Web services.

Standards
Figure 2-11 displays a stacked view of Web services technologies. Most of the
technologies displayed have been standardized. Since interoperability is a key
goal of Web services, an open industry organization known as the Web services
Interoperability Organization (WS-I) has been created to allow interested parties
such as IBM and Microsoft® to work together to maximize interoperability
between Web services implementations. For more information about WS-I, visit
their Web site:

http://ws-i.org

Figure 2-11 Stack view of Web services technology

Note: Web services standards are evolving at a rapid pace. For the most
current information, we recommend that you reference the Web services
standards information online at sites such as IBM developerWorks®:

http://www.ibm.com/developerworks/webservices/standards/

WS-Policy

WS-Security
family of

specifications

UDDI

Other protocols
Other services

Business Process Execution Language (BPEL)

WSDL

SOAP, SOAP Attachments

XML, XML Infoset

Transports

WS-Coordination

WS-Transactions

WS-Reliable
Messaging

WS-Distributed
Management

Description
and Discovery

Messaging
and Encoding

Transport

Quality
of Service

Business
Processes

 Chapter 2. Introduction to SOA and ESB 27

http://ws-i.org
http://ws-i.org
http://www.ibm.com/developerworks/webservices/standards/

Web services for J2EE
Web services for J2EE V1.1 (WSEE) support is included in the J2EE V1.4
specification, which is used by WebSphere Application Server V6. The Java API
for XML-based RPC (JAX-RPC) provides the programming model for
SOAP-based applications by abstracting the runtime details and providing
mapping services between Java and WSDL.

Exposing Web services
The port component is a fundamental part of a Web service used to define the
programming model artifacts that make the Web service portable. The
programming model includes:

� A WSDL definition provides the description of a Web service.

� The service endpoint interface (SEI) defines the operations of the Web
service.

� A service implementation bean implements the SEI methods to provide the
business logic of the Web service.

� The security role references provide instance-level security checks across
different modules.

From a server programming model perspective, there are primarily two types of
J2EE application artifacts exposed as Web services (service provider):

� Stateless session EJB™ (EJB container)

� JAX-RPC servlet-based service that invokes a Java Bean, known as a service
endpoint (Web container)

There are three principal approaches to generating a Web service, depending on
the elements that are used to start the creation of the service:

� An existing application is used to generate the Web service, which includes a
service wrapper used to expose application functionality. This is known as the
bottom-up approach.

� An existing service definition WSDL is used to generate a new application for
a specific programming language and model. This is known as the top-down
approach.

� An existing group of already generated Web services provides a new
combination of functionality (multiple services). Composing a new Web
service in this way might include the use of workflow technologies.

Invoking Web services
The J2EE client container provides the WSEE run time used by a Web services
client application, to access and invoke Web service methods. The J2EE client
container is responsible for the JNDI name to service implementation mapping.

28 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

From a client application programming perspective, there are three mechanisms
used to invoke a Web service (service consumer) from the Web service client
application:

� A static stub is created before being deployed to the runtime environment.
This requires complete knowledge of the WSDL.

� A dynamic proxy class is created during run time. Only a partial WSDL
definition is required (port type and bindings).

� A dynamic invocation interface does not require WSDL knowledge. The
signature or service name is unknown until run time.

The task to build or generate a Web service client (service consumer) depends
on the methods of how the client is binding to a Web service server. The client
uses a local service stub or proxy to access the remote server and service. The
WSDL document is used to generate or set up the particular stub or proxy. The
stub or proxy knows at request time how to invoke the Web service based on the
binding information.

2.3.2 Web services and SOA
Web services technology is a collection of standards (or emerging standards)
that can be used to implement a service-oriented architecture (SOA). That is not
to say that Web services and SOA are intrinsically linked, because they can be
implemented separately.

In fact, many significant SOAs are proprietary or customized implementations
that are based on reliable messaging and Enterprise Application Integration
middleware (for example, IBM WebSphere MQ and IBM WebSphere Business
Integration Message Broker) do not use Web services technologies. Also, most
existing Web services implementations consist of point-to-point integrations that
address a limited set of business functions between a defined set of cooperating
partners.

The logical links between Web services and SOA are:

� Web services provide an open-standard model for creating explicit,
implementation-independent descriptions of service interfaces.

� Web services provide communication mechanisms that are
location-transparent and interoperable.

Web services are evolving, through Business Process Execution Language for
Web services (WS-BPEL), document-style SOAP, and Web services Definition
Language (WSDL), to support the implementation of well-designed services that
encapsulate and model reusable function in a flexible manner.

 Chapter 2. Introduction to SOA and ESB 29

2.4 The enterprise service bus

One of the first questions we often encounter is “What is an enterprise service
bus?” The favorite answer is “It depends.” This is due to the overloading of the
term. You must understand the context of the question before the answer is
apparent. The enterprise service bus is both a physical instantiation of an
element of the IBM SOA Foundation and a design pattern that is widely accepted
throughout the industry.

An ESB runtime pattern has been identified and detailed in 4.1.1, “ESB runtime
pattern” on page 54.

Figure 2-12 illustrates the IBM Patterns for e-business ESB Pattern.

Figure 2-12 ESB Pattern

Service Requesters

Enterprise

ESB

Zone: ESB

Service Providers

O
utbound

The Service
Requester-specific
invocation protocol

An ESB Namespace
name is used over
these connections

The ESB Namespace
name has been mapped
to an outbound port
address

The outbound port
maps the messge to
meet the Service
Provider's
requirements

This maps all the
ESB Namespace
names to their
endpoints

A single
administration
infrastructure

A B C

D E F

Inbound
P

ort 1

P
ort 2

P
ort 3

P
ort 1

P
ort 2

P
ort 3

Inbound

Inbound

O
utbound

O
utbound

Hub

ESB Namespace
Directory

Administration
Services

O
utbound

30 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

There are a few key differences between this design pattern and previous design
patterns (for example, hub-and-spoke). The ESB design pattern has specific
components that are not a part of previous integration design patterns. For
example, most EAI design patterns did not show a namespace directory. A
namespace could be simply described as a prefix on an object’s name to make it
unique to a particular domain of use. Two objects can have the same name as
long as their name spaces are different. It is also important to note that an ESB is
under the control of a single administrative services infrastructure.

In Figure 2-13 the ESB is depicted as a logical component in a service-oriented
architecture. It acts as the mediator between the service consumers and service
providers. The service providers and service consumers never interact directly.
They always use the ESB as a mediator. The ESB provides services to resolve
differences in protocol and format, and decouples the service consumer from the
service provider.

Figure 2-13 ESB and SOA

Tip: For more information about IBM Patterns for e-business go to:

http://www.ibm.com/developerworks/patterns

Infrastructure components
for service-oriented
architecture

Internal
Service

Providers

ESB Gateway

Business
Service

Choreography

Business Service
Registry

ESB Namespace
Directory

ESB Hub

Routing, transformation,
mediations, security, and so forth

External
Service

Providers

Internal
Service

Requesters

External
Service

Requesters

 Chapter 2. Introduction to SOA and ESB 31

http://www.ibm.com/developerworks/patterns

The ESB Hub is a software package. IBM currently offers two ESB products that
serve two different markets. WebSphere ESB is built on proven messaging and
Web services technologies, and it provides standards-based Web services
connectivity and XML data transformation. WebSphere Message Broker is an
Exposed ESB Gateway product that provides universal connectivity (including
Web services) and any-to-any data transformation. See Figure 2-14.

Figure 2-14 IBM ESB products

As you can see, the ESB is a powerful addition to an enterprise integration
architecture. It enables faster, simpler, and more flexible integration, which allows
your integration to respond at the speed of the business. It also shrinks the
number of interfaces and improves the reusability of interface components to cut
cycle time from design to deployment.

...then all you may require is an ESB
focused on standards-based service
integration

...then you may require a more advanced ESB
focused on the integration of services with
existing non-services assets.

Hotel
Availability

Service

Flight
Availability

Service

Book
Hotel

Service

Book
Car

Service

Hotel
Availability

Service

Flight
Availability
Application

Book
Hotel

Application

Book
Car

Application

Travel
Reservation

Process

Check
Traveler
Service

Check
Credit

Service

Book
Flight

Service

Travel
Reservation

Process

Check
Traveler

Application

Check
Credit

Application

Book
Flight

Application

Enterprise Service Bus ADVANCED Enterprise Service Bus

1 2
If all of your applications
conform to the Web Services
standards...

If not all of your applications
conform to the Web Services
standards...

Tip: More information about IBM ESB can be found here:

http://www-306.ibm.com/software/info/middleware/applications/index.jsp

Tip: Additional reading material on ESB patterns and products, and how they
fit into a service-oriented architecture can be found at:

http://www-128.ibm.com/developerworks/architecture/application.html

32 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/info/middleware/applications/index.jsp
http://www-128.ibm.com/developerworks/architecture/application.html
http://www-128.ibm.com/developerworks/architecture/application.html

2.4.1 The role of an enterprise service bus
An ESB introduces features that can improve responsiveness, customer service,
transaction time, and partner interactions. An ESB provides capabilities that
enhance both direct connection between applications and routing requests
among applications.

An ESB supports the concepts of SOA implementation by:

� Decoupling the consumer’s view of a service from the implementation of a
service

� Decoupling technical aspects of service interactions

� Integrating and managing services in the enterprise

Decoupling the consumer’s view of a service from the actual implementation
greatly increases the flexibility of the architecture. It allows the substitution of one
service provider for another (for example, because another provider offers the
same services for lower cost or with higher standards) without the consumer
being aware of the change or without the need to alter the architecture to support
the substitution.

This decoupling is better achieved by having the consumers and providers
interact through an intermediary. Intermediaries publish services to consumers.
The consumer binds to the intermediary to access the service, with no direct
coupling to the actual provider of the service. The intermediary maps the request
to the location of the real service implementation.

In an SOA, services are described as being loosely coupled. However, at
implementation time, there is no way to loosely couple a service or any other
interaction between systems. The systems must have some common
understanding to conduct an interaction. Instead, to achieve the benefits of loose
coupling, consideration should be given to how to couple or decouple various
aspects of service interactions, such as the platform and language in which
services are implemented, the communication protocols used to invoke services,
and the data formats used to exchange input and output data between service
consumers and providers.

Further decoupling can be achieved by handling some of the technical aspects of
transactions outside of applications. This could apply aspects of interactions
such as:

� How service interactions are secured

� How the integrity of business transactions and data are maintained (for
example, through reliable messaging, the use of transaction monitors, or
compensation techniques)

 Chapter 2. Introduction to SOA and ESB 33

� How the invocation of alternative service providers is handled in the event that
the default provider is unavailable

The role of the ESB is to fulfill these needs by providing functions such as:

� Map service requests from one protocol and address to another.

� Transform data formats.

� Support a variety of security and transactional models between service
consumers and service providers and recognize that consumers and
providers might support or require different models.

� Aggregate or disaggregate service requests and responses.

� Support communication protocols between multiple platforms with
appropriate qualities of service.

Provide messaging capabilities such as message correlation and
publish/subscribe to support different messaging models such as events and
asynchronous request/response.

2.5 ESB capabilities and decision attributes

The capabilities that drive the implementation of an ESB infrastructure are
described in Patterns: Implementing an SOA using an Enterprise Service Bus in
WebSphere Application Server V6, SG24-6494.

2.5.1 ESB capabilities
The following sections describe various characteristics of an ESB.

Communication
An ESB must supply a communication layer to support service interactions. It
should support communication through a variety of protocols. It should provide
underlying support for message and event-oriented middleware and integrate
with existing HTTP infrastructure and other enterprise application integration
(EAI) technologies. An ESB should be able to route between all of these
communication technologies through a consistent naming and administration
model.

Particularly in an integrated ESB scenario, the additional ESB must be able to
support service interactions provided by the original ESB over one or more
available protocols.

34 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Service interaction
An ESB must support SOA concepts for the use of interfaces and support
declaration service operations and quality-of-service requirements.

An ESB should also support service messaging models consistent with those
interfaces and be capable of transmitting the required interaction context, such
as security, transaction, or message correlation information.

Integration
An ESB should support linking to a variety of systems that do not directly support
service-style interactions so that a variety of services can be offered in a
heterogeneous environment.

This includes systems, packaged applications, and other EAI technologies.
Integration technologies might be protocols (for example, JDBC™, FTP, EDI) or
adapters such as the J2EE Connector Architecture resource adapters or
WebSphere Business Integration Adapters. It also includes service client
invocation through client APIs for various languages (Java, C+, C#) and
platforms (J2EE, Microsoft, .NET), CORBA, and RMI.

Management
As with any other infrastructure component, an ESB must have administration
capabilities to enable it to be managed and monitored and so to provide a point
of control over service addressing and naming. In addition, it should be capable
of integration into systems management software.

Quality of service
An ESB may be required to support service interactions that require different
qualities of service to protect the integrity of data mediated through those
interactions. This may involve transactional support, compensation, and levels of
delivery assurance. These features should be variable and driven by service
interface definitions.

Integration
As additional integration capabilities could be supported, the ESB should be
capable of connectivity to a wide range of different service providers, using
adapters and EAI middleware. They should be capable of data enrichment to
alter the service request content and destination on route, and map an incoming
service request to one or more service providers.

 Chapter 2. Introduction to SOA and ESB 35

Security
An ESB should ensure that the integrity and confidentiality of the services that
they carry are maintained. They should integrate with the existing security
infrastructures to address the essential security functions such as:

� Identification and authentication
� Access controls
� Confidentiality
� Data integrity
� Security management and administration
� Disaster recovery and contingency planning
� Incident reporting

Additionally, the ESB should integrate with the overall management and
monitoring of the security infrastructure. The ESB may provide security either
directly or by integrating with other security components such as authentication,
authorization, and directory components.

Service level
An ESB should mediate interactions between systems supporting specific
performance, availability, and other requirements. They should offer a variety of
techniques and capabilities to meet these requirements.

An ESB should provide support that enables technical and business service level
agreements to be monitored and enforced.

Message processing
An ESB must be capable of integrating message, object, and data models
between the application components of an SOA. It should also be able to make
decisions such as routing based on content of service messages, in particular
when the services are defined on an integrated ESB.

An ESB should have a mediation model that enables message processing to be
customized. The model should also allow sequencing of infrastructure services
(for example, security logging and monitoring) around business services
invocations.

Mediations can be located close to consumers, providers, or anywhere in the
ESB infrastructure transparent to consumers and providers. Mediations can also
be chained. An ESB should be able to validate content and format.

Modeling
An ESB should support the increasing array of cross-industry and vertical
standards in both the XML and Web services spaces.

36 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

It should support custom message and data models. It should also support the
use of development tooling and be capable of identifying different models for
internal and external services and processes.

Infrastructure intelligence
An ESB should be capable of evolving toward a more autonomic, on demand
infrastructure. It should allow business rules and policies to affect ESB function,
and it should support pattern recognition.

Management and autonomic
In addition to basic management capabilities, the ESB should also support the
migration to autonomic and On Demand infrastructure by supporting metering
and billing, self-healing, and dynamic routing, and react to events to
self-configure, heal, and optimize.

2.5.2 Softer attributes
The minimum and extended ESB capabilities enable the making of an informed
decision for adding an additional enterprise service bus to an existing ESB
infrastructure, and the technology to use. However, the decision criteria for this
technology should not be restricted to these minimum and extended capabilities.
In many situations there will be a list of softer attributes that will shape the
decision, and these are shown in Table 2-2.

Table 2-2 Softer attributes for an additional ESB

Attribute Description

Existing ESB technology What ESB technology is deployed today?

Maturity of existing ESB
implementation

� How long has the existing ESB been deployed?
� How much investment has been made in its overall

capability?
� How well is the ESB delivering its non-functional

attributes, for example:
– Performance
– Reliability
– Serviceability

ESB strategy What is the strategy for the following ESB attributes:
� Single administration
� Single namespace/naming
� Single security
� Governance

Capabilities of existing
ESB

How well does the existing ESB implement the minimum
(and extended) ESB capabilities?

 Chapter 2. Introduction to SOA and ESB 37

The following section describes in more detail the additional softer attributes
introduced in Table 2-2 on page 37 that must be considered for adding an
additional ESB to an existing infrastructure.

Existing ESB technology
It is important to understand which products and version numbers are used to
implement the existing ESB infrastructure. This is not an actual attribute that will
affect the decision for the additional ESB technology. However, no decision can
be made without this fundamental piece of information, as it may be required in
further commercial discussions with its vendor and for understanding its
minimum and extended capabilities. This is very important and should not be
overlooked because version n+1 of the existing ESB may have additional
capabilities when compared with version n.

Maturity of existing ESB implementation
The enterprise may have implemented the latest and greatest version of an ESB,
but how long has it been in production and how is it performing in terms of
functional and non-functional requirements? Understanding this may have a
bearing on whether an additional ESB is implemented or whether the existing
infrastructure is extended or replaced.

Established ESB example
Many enterprises will have already deployed an environment that displays all of
the minimum requirements for an existing ESB (for example, using WebSphere
Business Integration Message Broker).

The existing environment might have been deployed for a number of years and
had a considerable investment in its overall capability within the enterprise. If we
assume that it is delivering satisfactory service then it is reasonable to conclude
that this ESB will be retained and the additional ESB will have to integrate with it.

ESB technology
allegiance

Are there any historical or commercial allegiances to a
specific ESB technology?

Enterprise integration
strategy

What is the overall integration strategy within the enterprise?
� Single/dual vendor
� Analyst ratings

Programming model What strategic programming models and tools are used in
the enterprise?

Hardware and operating
system

What is the current ESB deployed on?
What is the enterprise strategy for the hardware and
operating system?

Attribute Description

38 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Non-functioning ESB example
We can take an alternative view, where the existing ESB displays the following
characteristics:

� Has only been deployed for a relatively short period of time
� Has a small number of providers and consumers
� Is delivering a marginal level of service

This example may guide us down a number of different paths:

� Making additional investment in the existing ESB to bring its level of service
and capability up to the required level. And then:

– Extending it to include the requirement for the additional ESB. Therefore,
no new, additional ESB is required at all.

– Adding the additional ESB to it for reasons of governance or any other
capability reason, as discussed in 2.5, “ESB capabilities and decision
attributes” on page 34.

� Replacing the existing ESB with the new ESB technology so that it consumes
the capabilities of the existing ESB. The existing ESB is removed from the
enterprise infrastructure.

Capabilities of existing ESB
How well does the existing ESB implement the minimum and extended ESB
capabilities?

� If the existing ESB implements the minimum capabilities for an ESB and
potentially some of the extended capabilities, then it is likely that this ESB will
be retained and the new ESB added alongside.

� However, if the existing ESB does not provide capabilities beyond the
minimum ESB capabilities it may be reasonable to choose a new, additional
ESB that has strong ESB capabilities and to integrate the two ESBs together
using one of the patterns described in this book. This is a realistic situation,
as many enterprises may have implemented ESB-style capabilities using
older technologies that have little investment, and which therefore are unable
to grow to meet the requirements of a fully fledged ESB.

ESB technology allegiance
Many enterprises have an allegiance to a particular vendor or technology.
Irrespective of the merits of a particular technology solution for the additional
ESB, the historical or commercial allegiance to the existing ESB vendor may be
so strong that the decision might have little regard for the strength of other
technologies.

 Chapter 2. Introduction to SOA and ESB 39

Enterprise integration strategy
The enterprise integration strategy for the organization could have a considerable
bearing on the selection of the additional ESB technology. For example:

� Some enterprises are moving to policies where they are reducing the number
of core IT vendors.

� Others are continuing on a best-of-breed IT selection policy.

� Finally, some enterprises have a policy for building middleware solutions
versus buying Commercial Off The Shelf (COTS) software, commonly known
as build versus buy.

Therefore, the enterprise integration strategy could dictate what type of additional
ESB technology is chosen and implemented, irrespective of the capabilities and
wider decision criteria.

Programming model
The programming model and development tools used by an enterprise could also
have a strong bearing on the implementation choice made for an additional ESB
within the enterprise.

For example, a J2EE-centric organization might lean more toward making a
WebSphere Application Server service integration bus decision because of the
similarities of the programming model for application and mediation
development, while organizations using a longer-established programming
model (for example, using COBOL as the programming model and its associated
programming model) might decide that WebSphere Business Integration
Message Broker has a tighter fit to their programming practices.

Additionally, an organization geared toward Web services might choose to
implement their additional ESB using WebSphere Application Server because of
the associated tooling capabilities of Rational Application Developer. In
particular, they may use the Rational Application Developer wizards to build Web
services components from existing J2EE components and vice versa.

Hardware and operating system
We must not forget that the underlying hardware and operating system
infrastructure could have a bearing on the additional ESB decision. For example,
the enterprise may have a strategy for deploying new infrastructure deployments
on Linux®, or more specifically on particular versions of Linux. These
prerequisite statements might preclude specific additional ESB technologies.

40 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 3. Product descriptions

This chapter describes products that are discussed and used throughout this
book for both development and runtime activities. These products are:

� IBM WebSphere Enterprise Service Bus V6

� IBM WebSphere Message Broker V6

� IBM WebSphere MQ V6

� IBM WebSphere DataPower

� IBM WebSphere Service Registry and Repository

� IBM WebSphere Adapters

� IBM WebSphere Partner Gateway V6.0

� IBM WebSphere Transformation Extender

� IBM WebSphere Process Server

� IBM Tivoli® Federated Identify Management (FIM) and Tivoli Access
Manager

� IBM Tivoli Composite Application Manager for SOA

3

© Copyright IBM Corp. 2007. All rights reserved. 41

3.1 Primary products discussed in this book
This section describes products that are discussed and used throughout this
book for runtime functionality.

3.1.1 IBM WebSphere Enterprise Service Bus V6
WebSphere Enterprise Service Bus is a new product designed to provide an
ESB for IT environments built around open standards and SOA. It delivers robust
and easy-to use-functionality built on the proven messaging and Web services
technologies of WebSphere Application Server. It is aimed at businesses looking
for Web services based connectivity and service-oriented integration.

WebSphere Enterprise Service Bus provides the following features:

� Provides Web services connectivity, JMS messaging, and service-oriented
integration by including support for:

– SOAP/HTTP
– SOAP/JMS
– WSDL V1.1
– UDDI V3.0

� Provides support for building an ESB with integration logic such as:

– Protocol conversion for messages received over HTTP, JMS, and IIOP

– Format transformation between XML, SOAP, and JMS message
standards, and many more when used with adapters

– Mediation capabilities, including pre-built mediations for the following
functions:

• Message logging

• Flow of business events

• Use of WebSphere Adapters to capture and disseminate business
events

We should mention that WebSphere Integration Developer (WID) is a common
tool for building SOA-based integration solutions across WebSphere Process
Server, WebSphere ESB, and WebSphere Adapters.

You can find more information about IBM WebSphere Enterprise Service Bus at:

http://www.ibm.com/software/integration/wsesb/

42 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.ibm.com/software/integration/wsesb/
http://www-306.ibm.com/software/integration/wid/about/?S_CMP=rnav

3.1.2 IBM WebSphere Message Broker V6
WebSphere Message Broker incorporates WebSphere Event Broker and
extends its function to provide a message broker solution driven by business
rules. Messages are formed, routed, and transformed according to the rules
defined by an easy-to-use graphical user interface (GUI).

Diverse applications can exchange information in dissimilar forms, with brokers
handling the processing required for the information to arrive in the right place in
the correct format, according to the rules that you have defined. The applications
do not need to know anything except their own conventions and requirements.

Applications also have much greater flexibility in selecting which messages they
want to receive, because they can specify a topic filter or a content-based filter,
or both, to control the messages that are made available to them.

WebSphere Message Broker provides a framework that supports supplied, basic
functions along with user-defined enhancements to enable rapid construction
and modification of business processing rules that are applied to messages in
the system.

You can find more information at:

http://www.ibm.com/software/integration/wbimessagebroker

3.1.3 IBM WebSphere MQ V6.0
IBM WebSphere MQ provides assured once-only delivery of messages across
more than 35 industry platforms using a variety of communications protocols.
The transportation of message data through a network is made possible through
the use of a network of WebSphere MQ queue managers. Each queue manager
hosts local queues that are containers used to store messages. Through remote
queue definitions and message channels, data can be transported to its
destination queue manager.

To use the services of a WebSphere MQ transport layer, an application must
make a connection to a WebSphere MQ queue manager, the services of which
enable it to receive (get) messages from local queues or send (put) messages to
any queue on any queue manager. The application’s connection can be made
directly (where the queue manager runs locally to the application) or as a client
(to a queue manager that is accessible over a network).

 Chapter 3. Product descriptions 43

http://www.ibm.com/software/integration/wbimessagebroker

Dynamic workload distribution is another important feature of WebSphere MQ.
This feature shares the workload among a group of queue managers that are
part of the same cluster. This enables WebSphere MQ to balance the workload
across available resources automatically and provide hot standby capabilities if a
system component fails. This is a critical feature for companies that need to
maintain round-the-clock availability.

WebSphere MQ supports a variety of application programming interfaces
(including MQI, AMI, and JMS), which provide support for several programming
languages as well as point-to-point and publish/subscribe communication
models. In addition to support for application programming, WebSphere MQ
provides several connectors and gateways to a variety of other products, such as
Microsoft Exchange, Lotus® Domino®, SAP/R3, CICS, and IMS, to name just a
few.

You can find more information about IBM WebSphere MQ at:

http://www.ibm.com/software/ts/mqseries

3.1.4 DataPower

IBM WebSphere DataPower SOA Appliancesrepresent an important element in
the holistic IBM approach to service-oriented architecture (SOA). IBM SOA
appliances are purpose-built, easy-to-deploy network devices that simplify, help
secure, and accelerate your XML and Web services deployments while
extending your SOA infrastructure. These new appliances offer an innovative,
pragmatic approach to harness the power of SOA while simultaneously enabling
you to leverage the value of your existing application, security, and networking
infrastructure investments.

� WebSphere DataPower Integration Appliance XI50
� WebSphere DataPower XML Security Gateway XS40
� WebSphere DataPower XML Accelerator XA35

http://www-306.ibm.com/software/integration/datapower/index.html?S_TACT
=102A9W01&S_CMP=campaign

3.1.5 WebSphere Service Registry and Repository

WebSphere Service Registry and Repository is an industrial-strength tool that
helps you achieve more business value from your SOA by enabling better
management and governance of your services. Through its robust registry and
repository capabilities and its tight integration with IBM SOA Foundation,
WebSphere Service Registry and Repository can be an essential foundational
component of your SOA implementation.

44 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/integration/datapower/index.html?S_TACT=102A9W01&S_CMP=campaign
http://www.ibm.com/software/ts/mqseries

The WebSphere Service Registry and Repository system enables you to store,
access, and manage information about the services (commonly referred to as
service metadata) in your SOA. This information is used to select, invoke,
govern, and reuse services as part of a successful SOA.

You can use WebSphere Service Registry and Repository to store information
about services in your systems, or in other organizations’ systems, that you
already use, that you plan to use, or that you want to be aware of. For example,
an application can check with WebSphere Service Registry and Repository just
before it invokes a service to locate the most appropriate service that satisfies its
functional and performance needs. This capability helps make your SOA
deployment more dynamic and more adaptable to changing business conditions.

You can find more information about WebSphere Service Registry and
Repository at:

http://www-306.ibm.com/common/ssi/rep_ca/0/897/ENUS206-230/ENUS206-230.PDF

http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html?Open

3.1.6 WebSphere Adapters

IBM WebSphere Adapters allow you to quickly and easily create integrated
processes that exchange information between Enterprise Resource Planning,
Human Resources, Customer Relationship Management, and supply chain
systems. The adapters service-enable your applications by connecting them to
the Enterprise Service Bus, which powers your service-oriented architecture:

http://www-306.ibm.com/software/integration/wbiadapters/

3.1.7 WebSphere Partner Gateway

WebSphere Partner Gateway V6.0 extends process integration beyond the
enterprise, providing a consolidated business-to-business (B2B) gateway to
lower the costs of B2B integration. It integrates external processes and partner
communities with internal processes and infrastructures, combining extensive
partner profile management capabilities with a simple, reliable, and secure
exchange for B2B messages.

WebSphere Partner Gateway is the re-branded, follow-on version to WebSphere
Business Integration Connect V4.2, carrying forward all of its capabilities.

WebSphere Partner Gateway enables a single unified B2B partner management
environment that supports traditional EDI and XML-based message data and
protocols, such as AS1, AS2, and RosettaNet, for B2B integration.

 Chapter 3. Product descriptions 45

http://www-306.ibm.com/common/ssi/rep_ca/0/897/ENUS206-230/ENUS206-230.PDF
http://www-306.ibm.com/software/integration/wbiadapters/
http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html?Open

Transforming your business with WebSphere Partner Gateway lets your business
become more responsive to demand. It becomes an enterprise whose business
processes are integrated end-to-end across the company and with key partners,
suppliers, and customers so that they can respond rapidly to changes in
customer demand, market opportunity, or external threat. For more information
see:

http://www-306.ibm.com/common/ssi/rep_ca/8/897/ENUS205-158/ENUS205-158.PDF

3.1.8 WebSphere Transformation Extender for Message Broker

WebSphere Transformation Extender is a leading universal transformation
engine, ready to be deployed in any infrastructure to integrate data across the
enterprise. This transaction-oriented solution automates the transformation and
validation of high-volume and complex data without the need for hand coding.

WebSphere Transformation Extender is the develop once, deploy anywhere
solution for data transformation.

WebSphere Transformation Extender delivers:

� Consistent data transformation across the enterprise, independent of data
structure, data location, infrastructure, and operating environment

� Reduced application development and maintenance costs with increased
application deployment speed by reusing transformation assets

� Increased application quality by working in a code-free environment for
transformation and validation of highly complex data

� Faster standards compliance and improved data quality with automated data
validation using industry and regulatory standards

� Multiple execution options to support right-time, right-style transformation —
batch, real time, or embedded

� Standards-based transaction support for unique industry transformation
requirements such as X-12, EDIFACT, HIPAA, HL7, SWIFT, and NCPDP

For more information see:

http://www-306.ibm.com/software/integration/wdatastagetx/index.html

3.2 Related products

In this section we mention those products related to our primary products that are
used for runtime functionality.

46 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/integration/wdatastagetx/index.html
http://www-306.ibm.com/common/ssi/rep_ca/8/897/ENUS205-158/ENUS205-158.PDF

3.2.1 WebSphere Process Server

WebSphere Process Server is at the very heart of your business process
management solutions. It ensures that the processes you design in WebSphere
Business Modeler or WebSphere Integration Developer are executed
consistently, reliably, securely, and with transactional integrity. Built on open
standards, it deploys and executes processes that orchestrate services (people,
information, systems, and trading partners) within your SOA or non-SOA
infrastructure. When combined with the power of WebSphere Business Monitor,
processes can be optimized to meet changing business requirements, giving the
business a competitive advantage. WebSphere Process Server is built upon, and
contains, the WebSphere ESB functionality. For more information see:

http://www-306.ibm.com/common/ssi/rep_ca/4/897/ENUS206-244/ENUS206-244.PDF

http://www-306.ibm.com/common/ssi/rep_ca/3/897/ENUS206-243/ENUS206-243.PDF

3.2.2 TFIM/TAM

IBM Tivoli Federated Identity Management (FIM) provides a simple, loosely
coupled model for managing identity and access to resources that span
companies or security domains. Rather than replicate identity and security
administration at both companies, Tivoli Federated Identity Manager provides a
simple model for managing identities and providing them with access to
information and services in a trusted fashion. For companies deploying
service-oriented architecture and Web services, FIM provides policy-based
integrated security management for federated Web services. The foundation of
FIM is trust, integrity, and privacy of data.

On this foundation, organizations can share identity and policy data about users
and services. The sharing of trusted identities and policies is the key to delivering
a richer experience for users navigating between federation sites. Trust enables
companies to loosely couple their disparate identity management systems.

A federated model simplifies administration and enables companies to extend
identity and access management to third-party users and third-party services.
For more information see:

http://www-306.ibm.com/software/tivoli/products/federated-identity-mgr/

IBM Tivoli Access Manager for Business Integration is a multi-platform security
management solution for IBM WebSphere MQ that upgrades the native security
services of IBM WebSphere MQ to those provided by IBM WebSphere MQ
Extended Security Edition. It provides application-level data protection for

 Chapter 3. Product descriptions 47

http://www-306.ibm.com/common/ssi/rep_ca/4/897/ENUS206-244/ENUS206-244.PDF
http://www-306.ibm.com/common/ssi/rep_ca/3/897/ENUS206-243/ENUS206-243.PDF
http://www-306.ibm.com/software/tivoli/products/federated-identity-mgr/

WebSphere MQ-based applications, without the need to modify or even
recompile them.

Application-level data protection differs from link level or channel level data
protection in that the integrity and confidentiality of messages can be
demonstrated, not just while messages are in transit from system to system, but
also while they were under the control of WebSphere MQ itself (for example,
resident in a queue). This is critical for customers using WebSphere MQ to
process personally identifiable information or other types of sensitive data, such
as high value financial transactions.

IBM Tivoli Access Manager for Business Integration Host Edition provides
extended security services for mainframe applications using WebSphere MQ for
z/OS. Unless noted otherwise, equivalent features are available on both the
mainframe and non-mainframe environments.

http://www-306.ibm.com/software/tivoli/products/access-mgr-bus-
integration/

3.2.3 IT CAM for SOA

IBM Tivoli Composite Application Manager for SOA (ITCAM for SOA) will
monitor, manage, and control SOAs deployed using a wide range of IBM and
third-party systems, helping you to:

� Proactively recognize and quickly isolate Web service performance problems.

� Verify that Web services are available and performing to specification.

� Alert you when Web service performance is degraded.

� Perform automated service mediation (for example, to reject or re-route
certain requests during periods of heavy load).

� Report results against committed service levels.

� Visualize service flows, end-to-end, as they cross the enterprise.

� Pinpoint source of service bottlenecks.

� Understand the impact of service problems on business processes.

ITCAM for SOA includes the Web services Navigator, a plug-in to IBM Rational
and other Eclipse-based tools, which provides a deep understanding of service
flows, patterns, and relationships to developers and architects using operational
data from Tivoli Data Warehouse. Eclipse is an award-winning, open source
platform for the construction of powerful software development tools and rich
desktop applications.

48 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/tivoli/products/access-mgr-bus-integration/

ITCAM for SOA is a core component of the IBM SOA Foundation, an integrated
and open set of software, best practices, patterns, and skills resources to get you
started with service-oriented architectures. Visit the IBM SOA Web site for more
details.

ITCAM for SOA is an integral part of the IBM IT Service Management (ITSM)
solutions that are designed to help deliver services based upon a framework of
best practices. For more details see:

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr
-soa/

 Chapter 3. Product descriptions 49

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/

50 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Part 2 Product
capabilities in
relation to SOA
and ESB

In this part we discuss each of the core ESB technologies. We discuss the
specific capabilities that they have in a service-oriented architecture, how they
relate to one another, and how they relate to other technologies within the suite.

Part 2

© Copyright IBM Corp. 2007. All rights reserved. 51

This part contains:

� Chapter 4, “ESB runtime patterns and product mappings” on page 53,
discusses the principle topologies of the ESB pattern and maps out the
placement of the key products that are discussed throughout the remainder of
the document.

� Chapter 5, “WebSphere Enterprise Service Bus” on page 81, introduces
WebSphere Enterprise Service Bus, the J2EE-based enterprise service bus
hub.

� Chapter 6, “WebSphere Message Broker in SOA” on page 105, introduces
WebSphere Message Broker, the advanced enterprise service bus hub with
extensive integration capabilities.

� Chapter 7, “WebSphere DataPower appliances in SOA” on page 165,
introduces the WebSphere DataPower appliances, discussing where in the
enterprise service bus pattern they can be used to greatest effect.

� Chapter 8, “ESB design options” on page 181, assesses various
configurations of the above products.

52 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 4. ESB runtime patterns and
product mappings

This chapter looks at the topology of simple and advanced ESB configurations,
mapping the integration requirements to actual products. Specifically, it
addresses the following:

� Typical topologies and product mappings for a single ESB with a range of
integration requirements

� Complex topologies where there are multiple ESBs present within an
organization

4

© Copyright IBM Corp. 2007. All rights reserved. 53

4.1 ESB runtime topologies

Initially, we discuss the makeup of an individual ESB. It is important to remember
here that an ESB is first and foremost an architectural pattern. An ESB may be
spread across several nodes within the physical topology for clustering reasons,
and there may be more than one product required to fulfil all integration needs.

We start with the simplest possible ESB configuration, and then gradually build
up to a more complex ESB configuration based on typical requirements.

4.1.1 ESB runtime pattern

Earlier, we discussed the purpose of an ESB in 2.4, “The enterprise service bus”
on page 30. Now lets take a more detailed at the ESB pattern itself.

54 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 4-1 shows the core logical components within an ESB, and Figure 4-2 on
page 60 shows an appropriate product mapping.

Figure 4-1 ESB runtime pattern level 2

This basic topology leverages the nodes with their associated responsibilities, as
described in the following sections.

App server/services node
These nodes represent applications that request a service from the ESB or
provide a service to the ESB. These applications can be implemented in any
technology as long as they are able to interact using one of the protocols and
messaging models that is supported by the ESB.

Hub node
This node supports the key ESB functions and, therefore, fulfills a large part of
the ESB capabilities, and is described in some detail here. The node has a
fundamental service integration role and should be able to support various styles

Enterprise

Zone: Enterprise Service Bus

HubHub

Hub

<Service Consumer>

<Service Provider>

<Service Provider>

Service
Registry

Connector

<Service Provider>

Connector

Connector

ESB
Gateway

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

Present but not necessarily
dynamically invoked

Enterprise

Zone: Enterprise Service Bus

HubHub

Hub

<Service Consumer>

<Service Provider>

<Service Provider>

Service
Registry

Connector

<Service Provider>

Connector

Connector

ESB
Gateway

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

Present but not necessarily
dynamically invoked

 Chapter 4. ESB runtime patterns and product mappings 55

of interaction. Every ESB Zone requires an implicit or explicit ESB Gateway
where aspect-oriented services are applied (for example, logging, security, and
so on). The precise deliniation between the ESB Gateway and the Hub is
described in more detail in 4.1.3, “Exposed ESB Gateway composite pattern” on
page 62. For this simple topology the Hub node is assumed to include this ESB
Gateway role.

The minimum set of functions that this node should support are:

� Routing and brokerage

This function removes the need for applications to know anything about the
bus topology or its traversal. If the request that a consumer initiates is sent to
one provider, then it is classed as routing. If there is more than one recipient,
then it is performing the broker pattern.

� Namespace translation

A namespace in this context is defined as a collection of data representations
specific to a particular domain.

Services will be exposed using a namespace or data model that is
appropriate at the enterprise level, aiming for a consistent representation of
data across services. This data model should be arrived at based on
top-down analysis of the enterprise’s core business functions, and will almost
certainly be different from the namespaces of the back-end systems.

A mapping or translation between these two different data representations is
performed by the ESB. This de-coupling is critical to allow implementations of
services to change over time.

It is particularly important to differentiate namespace translation, which is the
mapping between two different logical data models, from data parsing, where
data is extracted from data encodings or data formats such as fixed width,
delimited, EBCDIC, and XML. This data parsing has nothing to do with
namespace translation, and although it might be provided by the Hub node for
some cases, it may often be pushed down into the connector adapter nodes.

� Service virtualization

Service virtualization complements routing to provide location transparency
and supports service substitution. Service endpoint addresses (the
addresses of the actual provider of the service) are transparent to the service
consumer and can be transformed by the node. The node obtains the service
endpoint address from the Service Registry.

� Messaging styles

The node should support an appropriate variety of messaging styles. The
most common are request/response, fire and forget, events,
publish/subscribe, and so on.

56 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� Transport protocols

The node should support at least one transport that is or can be made widely
available, such as HTTP/S. The node can provide protocol transformation. If a
protocol transformation is required that is not supported by the node, then a
specific connector can be used to perform the transformation.

� Service interface definition

Services should have a formal definition, ideally in an industry-standard
format, such as WSDL.

� Service messaging model

The node should support at least one model, preferably using common
standards such as SOAP/XML.

In addition to these capabilities, the node can support more advanced
capabilities, such as:

� Integration

Additional integration services that may be provided include service mapping
data enrichment.

� Quality of service

These services can include transaction management (for example, ACID
properties, compensation, or WS-Transaction), various assured delivery
paradigms (such as WS-ReliableMessaging), or support for Enterprise
Application Integration middleware.

� Message processing

The node can support more advanced message processing capabilities such
as encoded logic, content-based logic, message and data transformations,
message/service aggregation and correlation, validation, intermediaries,
object identity mapping, service/message aggregation, and store and
forward.

� Modeling

The node can support more advanced modeling capabilities such as object
modeling, common business object models, data format libraries, public
versus private models for business-to-business integration, and development
and deployment tooling.

� Service level

Service-level indicators might have to be measured, particularly in an
enterprise mission-critical environment. The key indicators are availability and
performance, which includes response time, throughput, and capacity.

 Chapter 4. ESB runtime patterns and product mappings 57

� Infrastructure intelligence

More advanced infrastructure capabilities can be provided. These include:

– Business rules
– Policy-driven behavior, particularly for service levels
– Security and quality of service capabilities (WS-Policy)

� Administration

An ESB should be controlled by a single administration infrastructure. This is
not shown separately on the diagram, but is typically separated from the
runtime ESB node itself.

This node provides administration services that, at a minimum, should
support service addressing and naming. Other core capabilities of this node
are ESB configuration, service provisioning and registration, .ogging,
metering, monitoring, integration with systems management, and
administration tooling.

More advanced administration features that can be provided by this node
include self-monitoring and self-management.

� Security

In a mission-critical environment and, depending on the confidentiality,
integrity, and availability requirements of the applications, the node should
support security capabilities such as authentication, authorization,
non-repudiation, confidentiality, and security standards, such as Kerberos and
WS-Security.

Service Registry
The role of the Service Registry is to provide details of services that are available
to perform business functions identified within a taxonomy. In its simplest form,
the ESB Hub contains its own repository. This makes sense to a limited extent
since the ESB is the central point through which all services are invoked.

However, it quickly becomes apparent that there are much wider uses for a
registry that extend far beyond the reach of the ESB. For example, it is valuable
to trace, and indeed govern, the life cycle of services from their inception rather
than only have knowledge of them once they have reached production.

It is therefore relevant to separate this capability from the ESB.

From the ESBs point of view, a Service Registry could provide the following
capabilities:

� Uploading of service metadata (for example, publishing of services so that
other clients may make use of them)

58 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� Access to the registry at development time for data such as service interfaces
and endpoints

� Searchable access to the registry at run time for information such as dynamic
endpoints and policy

� Enables the components within the ESB pattern to dynamically respond to
changes in the desired use and administration of services

The link to the Hub node from the Service Registry is dotted to show that
dynamic lookup in the Service Registry at run time is still the exception rather
than the rule.

The importance of the registry becomes even more apparent when the service
infrastructure progresses to contain more than one integration product and more
than one ESB (4.2, “Multiple ESBs within an organization” on page 65).

Connectors
Connectors can be separated into two different types: path connectors and
Adapter Connectors.

Path connectors specify a protocol, data representation, and transport
mechanism used to connect two systems together. The assumption here is that
both sides are using the same protocol (for example, HTTP) and have agreed on
the same wire format (for example, XML), and both have access to the same
transport mechanism. A transport mechanism could be as wide as the Internet,
or a simple as an area of shared storage.

In some cases, nothing more than a path connector is needed to connect
between two systems since they share the same protocol, data format, and
transport mechanism. An example would be two systems connecting via
XML/HTTP over the Internet or an intranet.

Often in pattern diagrams, path connectors are not shown explicitly as a node,
and are simply represented by a link optionally showing the protocol and format.

An Adapter Connector is concerned with enabling logical connectivity by bridging
the gap between the context schema and protocols used by the source and
target applications (in this case, between the service consumer/providers and the
ESB).

The Adapter Connector is responsible for hiding the complexities of connectivity,
protocol, and back-end data representation. Any Application Programming
Interface (AP|) required to talk to the system, and complexities such as
connection pooling, flow control, batching of transactions, keep-alive heartbeat
signals, and status health checks should be encapsulated in the Adapter
Connector.

 Chapter 4. ESB runtime patterns and product mappings 59

Any parsing of incoming data or formatting of outgoing data should be taken care
of by the Adapter Connector so that business events are presented to the hub in
a standard form, immediately usable by the tooling of the hub. Equally, the
enterprise service bus can pass business data to the adapter without
understanding the subtleties of the back end system.

The Adapter Connector is not, however, aware of how the data will be moved —
in other words what the transport mechanism will be — and this is where the path
connector comes in, and often an Adapter Connector implicitly includes a path
connector.

4.1.2 ESB runtime pattern product mapping

Figure 4-2 shows an example mapping of products to the ESB runtime pattern.

Figure 4-2 ESB runtime pattern level 2 product mappings

Enterprise

Zone: Enterprise Service Bus

HubHub

Hub

<Service Consumer>

<Service Provider>

<Service Provider>

Service
Registry

Connector

<Service Provider>

Connector

ESB
Gateway

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

WebSphere
Application
Server V6

CICS Transaction Server
with CICS Transaction

Gateway Daemon

Websphere
Application Server V6

WebSphere Service
Registry and

Repository V6.0.1

SAP

WebSphere
Adapter for SAP

V6.0.2

J2C Resource Adapter
for CICS (part of

Websphere Enterprise
Service Bus V6.0.2)

SOAP/JMS

SOAP/HTTP

WebSphere
Enterprise

Service Bus
V6.0.2

Present but not necessarily
dynamically invoked

Enterprise

Zone: Enterprise Service Bus

HubHub

Hub

<Service Consumer>

<Service Provider>

<Service Provider>

Service
Registry

Connector

<Service Provider>

Connector

ESB
Gateway

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

WebSphere
Application
Server V6

CICS Transaction Server
with CICS Transaction

Gateway Daemon

Websphere
Application Server V6

WebSphere Service
Registry and

Repository V6.0.1

SAP

WebSphere
Adapter for SAP

V6.0.2

J2C Resource Adapter
for CICS (part of

Websphere Enterprise
Service Bus V6.0.2)

SOAP/JMS

SOAP/HTTP

WebSphere
Enterprise

Service Bus
V6.0.2

WebSphere
Enterprise

Service Bus
V6.0.2

Present but not necessarily
dynamically invoked

60 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

App server/services node
Services can be implemented in a variety of technologies and can be
custom-developed, enterprise applications, such as those typically implemented
in CICS Transaction Server, IMS Transaction Manager, and software packages.

This node also applies to J2EE application servers such as WebSphere
Application Server, which provide an enterprise grade container service
implementation.

Hub node
WebSphere Enterprise Service Bus is targeted specifically at the capabilities of
this node, and exhibits several of the capabilities noted above. In particular, it
provides an implicit ESB Gateway capability within the product. The product has
a strong focus on providing a clear mechanism for exposing SOA services. It
provides visual tooling for the key aspects of tasks such as routing, mapping,
interface definition, and discovery. Transport protocols, quality of service, and
many other administration functions can all be configured rather than resorting to
code. More information about WebSphere Enterprise Service Bus can be found
in Chapter 5, “WebSphere Enterprise Service Bus” on page 81.

The product mapping shows WebSphere Enterprise Service Bus, but
WebSphere Message Broker is an equally valid choice here, and would be
chosen over WebSphere Enterprise Service Bus when advanced connectivity
and performance characteristics are required. The key features of WebSphere
Message Broker are discussed in Chapter 6, “WebSphere Message Broker in
SOA” on page 105.

Service Registry
WebSphere Service Registry and Repository is designed specifically to address
the needs of a registry for a service-oriented architecture. It addresses a variety
of mechanisms for uploading, managing, and retrieving metadata regarding
enterprise services. A more detailed discussion on the capabilities of
WebSphere Service Registry and Repository is given in WebSphere Service
Registry and Repository Handbook, SG24-7386.

Adapter Connectors
A suite of WebSphere Adapters is available covering standard technologies and
packages. This book focuses on connectivity to back-end systems. More details
on various adapters can be found in Chapter 8, “ESB design options” on
page 181.

 Chapter 4. ESB runtime patterns and product mappings 61

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386.html?Open

4.1.3 Exposed ESB Gateway composite pattern

In 4.1.1, “ESB runtime pattern” on page 54, we described the minimum topology
required to provide an ESB. Now we look at how this basic topology could be
extended to provide services across a larger, more complex enterprise, or indeed
beyond the walls of the enterprise itself.

Figure 4-3 shows the topology of an Exposed ESB Gateway composite pattern,
which adds access to and from external parties over the basic pattern.

Figure 4-3 Exposed ESB Gateway composite pattern

Most of the nodes in Figure 4-3 have already been described in 4.1.1, “ESB
runtime pattern” on page 54. Only new nodes, or nodes that are performing an
extended function, are described below.

Hub
The Hub node in this Exposed ESB Gateway composite pattern may have a
more extensive integration role, having a richer set of integration capabilities,

Enterprise Secure Zone
Internet

Zone
Demilitarized

Zone

Zone: Enterprise Service Bus

<Service Provider>

<Service Provider>

<Service Provider>

Connector

Connector App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
ServicesConnector

HubHub

Hub
D

om
ai

n
Fi

re
w

al
l

<Service Consumer>

App Server/
Services

Service
Registry

ESB
Gateway

App Server/
Services

<Service Provider>

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

May be in the Hub
or a separate product

Present but not necessarily
dynamically invoked

Enterprise Secure Zone
Internet

Zone
Demilitarized

Zone

Zone: Enterprise Service Bus

<Service Provider>

<Service Provider>

<Service Provider>

Connector

Connector App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
ServicesConnector

HubHub

Hub
D

om
ai

n
Fi

re
w

al
l

<Service Consumer>

App Server/
Services

Service
Registry

ESB
Gateway

App Server/
Services

<Service Provider>

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

May be in the Hub
or a separate product

Present but not necessarily
dynamically invoked

62 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

including built-in capabilities to understand industry standard data meta models,
and sophisticated data parsing capabilities.

ESB Gateway
The ESB Gateway functions in the ESB runtime pattern were handled by the
ESB Hub node. In the Exposed ESB Gateway composite pattern, it may be
valuable to separate out this functionality into a separate node for reasons of
security, and new options for scalability.

The ESB Gateway acts as a proxy to provide controlled access to the ESB. A
principal use of the ESB Gateway is to expose services in a consistent fashion.
This node allows generic actions to be defined and performed on all calls to
services such as logging, auditing, monitoring, security, and threat protection.

It is likely that in large enterprises the benefits of this protection and consistency
may well be just as valid even within the enterprise. As services start to be used
by other domains of the organization that have different governance, it will be
appropriate to treat these domains as external parties. In this situation service
consumers within the organization will also call services via the ESB Gateway.

The ESB Gateway talks to the Service Registry at run time to gather information
about the location of appropriate implementations of services, and also for policy
to be applied to the service requests in terms of security and auditing, for
example.

 Chapter 4. ESB runtime patterns and product mappings 63

4.1.4 Exposed ESB Gateway product mapping

Figure 4-4 shows an example product mapping for the Exposed ESB Gateway
composite pattern.

Figure 4-4 Exposed ESB Gateway composite pattern product mapping

Hub
As with the ESB runtime pattern, the choice between WebSphere Enterprise
Service Bus and WebSphere Message Broker is based on the integration
capabilities required. Which product to use, and whether there is a need for both
products is discussed in Chapter 8, “ESB design options” on page 181.

ESB Gateway
It is important to separate the ESB Gateway capabilities at least from a design
point of view, even if they are still being provided by the same product as the ESB
Hub. As such, both WebSphere Enterprise Service Bus and WebSphere
Message Broker can perform the function of the ESB Gateway. However,
WebSphere DataPower appliances, and specifically the XI50 and XS40, which
specialize in security and Web Service proxy capabilities, should also be

Enterprise Secure Zone
Internet

Zone
Demilitarized

Zone

Zone: Enterprise Service Bus

<Service Provider>

<Service Provider>

<Service Provider>

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

HubHub

Hub

D
om

ai
n

Fi
re

w
al

l

<Service Consumer>

App Server/
Services

Service
Registry

ESB
Gateway

App Server/
Services

<Service Provider>

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

May be in the Hub
or a separate product

WebSphere Application
Server V6

WebSphere Service
Registry and

Repository V6.0.1

SAP

WebSphere
Adapter for
SAP V6.0.2

WebSphere MQ

WebSphere
Application

Server

SOAP/HTTP

CICS Transaction
Server + CICS MQ

Bridge
WebSphere

Message
Broker

V6.0.0.3

Present but not necessarily
dynamically invoked

Enterprise Secure Zone
Internet

Zone
Demilitarized

Zone

Zone: Enterprise Service Bus

<Service Provider>

<Service Provider>

<Service Provider>

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

HubHub

Hub

D
om

ai
n

Fi
re

w
al

l

<Service Consumer>

App Server/
Services

Service
Registry

ESB
Gateway

App Server/
Services

<Service Provider>

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

May be in the Hub
or a separate product

WebSphere Application
Server V6

WebSphere Service
Registry and

Repository V6.0.1

SAP

WebSphere
Adapter for
SAP V6.0.2

WebSphere MQ

WebSphere
Application

Server

SOAP/HTTP

CICS Transaction
Server + CICS MQ

Bridge
WebSphere

Message
Broker

V6.0.0.3

WebSphere
Message

Broker
V6.0.0.3

Present but not necessarily
dynamically invoked

64 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

investigated for this role. These appliances parse, transform, and route XML at
wire speed; add significant levels of threat protection; significantly reduce the
CPU and memory overhead of the XML processing on the ESB Hub; and are
described in Chapter 7, “WebSphere DataPower appliances in SOA” on
page 165.

4.2 Multiple ESBs within an organization

In this section we discuss the issues surrounding environments that have more
than one ESB present. This topic can, however, easily be misinterpreted. Let us
first make a clear distinction between two very different design problems, the
second of which is the focus of the rest of this section:

� Multiple hub technologies within an ESB

This is where two hub technologies are coupled together within a single ESB.
The combination of two technologies gives this single ESB a wider breadth of
capabilities. For example, WebSphere Enterprise Service Bus might be used
as the main entry point for all services, handling basic routing functionality
and access to back-end systems via JCA adapters. However, when the
back-end systems use more complex industry standard formats or are more
reliant on sophisticated MQ features for integration, WebSphere Enterprise
Service Bus might route the request through WebSphere Message Broker. So
more than one hub technology is used, but we are only dealing with one ESB.
Another way of looking at this is using one ESB technology as the main entry
point and using a second ESB technology to provide additional protocol and
data adapter options. While a perfectly valid design, this is not the focus of
this current section.

� Multiple ESBs

This is where several ESB initiatives have been implemented separately and
unrelated, perhaps by different departments. This is very likely to occur when
an enterprise has an ESB already, and acquires another company that also
has its own implementation of an ESB. It can even happen within a single
company when two different departments or domains independently go
ahead and create ESBs for their own domain. Each domain provides a
self-contained Enterprise Service Bus, owning its own namespaces, providing
its own capabilities for monitoring, auditing, clustering, and so on. In this
situation we are not dealing with simply a combination of technologies, but
more a combination of separate ESB initiatives with different governance,
funding, and strategy. This is covered in the remainder of this section and in
Patterns: Integrating Enterprise Service Buses in a Service-Oriented
Architecture, SG24-67730.

 Chapter 4. ESB runtime patterns and product mappings 65

4.2.1 Multiple ESBs

The intent of the ESB is to facilitate integration across the entire enterprise,
hence the name enterprise service bus. A single controlling entrypoint for all
services (for example, a single ESB) must surely be the optimum solution? Well,
not necessarily.

There are several reasons, technical and organizational, which we discuss in this
section.

Reasons for multiple ESBs
Reasons for implementing multiple ESB implementations in a single organization
include:

� Multiple governance bodies
� Funding models
� Alignment by organizational unit
� Geography
� Business strategy
� Multiple ESB technologies

The following sections describe these reasons in more detail.

Multiple governance bodies
Multiple enterprise governance bodies can (and often do) result in multiple ESBs.
It is often politically easier to implement multiple ESBs that align with the multiple
governance bodies than to design and implement a common solution. Each
governance body will define the boundary of its ESB and use the techniques in
this book to integrate them.

In the Patterns for e-business terminology, these governance boundaries are
called zones, and they define the scope of control over architecture and
implementation. Every component in a zone, ESB, or application is under the
same governance body.

This raises the next logical question, “Why more than one governance body?”
There are many answers.

Multiple governance bodies can be the result of growth through mergers and
acquisitions. This may be temporary during a transition period or it may be a
permanent choice. It is not uncommon to find multiple CIO and CTO positions
within an enterprise that has grown this way.

Some enterprises use a franchise or co-operative business model. These
enterprises are very likely to have multiple governance bodies. The franchisees
remain autonomous and yet must exchange data with the corporate entity. Each

66 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

has independent IT organizations, but they may share common infrastructure,
such as wide area networks or an entire data center.

Government regulatory requirements may force an enterprise to have multiple
governance bodies. An enterprise that deals with both civilian and military
customers may be required to maintain mandatory separation between the two
parts of the business for security reasons.

Funding models
How an enterprise funds projects can lead to multiple ESBs. If the enterprise
does not manage the funding and governance from a central point the ESB
implementations will be fragmented and disjointed.

If the technology funding is at the project level then the project team may design
and deploy an ESB as part of that project’s funding. The project may be
something as large as a new ERP system with dozens of endpoints and several
hundred interfaces or as small as a single line-of-business application with just a
handful of endpoints. The ESB boundary is synonymous with the project
boundary.

This is not an optimal way to fund integration projects or to design and deploy an
ESB. This will lead to a proliferation of ESBs that are tailored to the specific
needs of an individual project. Enterprise integration, which includes ESBs, is
best funded at the enterprise level.

Alignment by organizational unit
Enterprises are often organized by brands or lines of business, and even
combinations of these. In some cases there is a central governance body, but in
many others the IT governance follows the organizational alignment of the
enterprise.

Multiple organizational units in the same enterprise can have unique integration
requirements. A highly diverse enterprise is likely to have highly diverse integration
requirements. The unique integration needs may be based on the diversity of
products and services they deliver to their customers. An enterprise that offers
both manufactured goods and business financing may want to implement multiple
ESBs based on the unique requirements of each business unit.

There can be differences in the form of government regulations that exist in one
region but not another. For example, security and privacy laws differ from nation
to nation and even between regions in the same nation. There may be multiple
ESBs to ensure compliance with these regulations.

Government regulations may affect one enterprise organization unit but not
another. An example is if an enterprise is engaged in healthcare but has a wholly

 Chapter 4. ESB runtime patterns and product mappings 67

owned medical device manufacturing subsidiary. In the USA, the ESB for medical
device manufacturing would require Food and Drug Administration 21 CFR Part
11 certification. The initial and on-going costs of certifying the ESB components
needed for the healthcare organizational unit would not have a business benefit.

As said earlier, it is always best to have a single ESB, but the time and cost to
build in the flexibility to accommodate all possible requirements for all
organizational units may make the business case for the ESB more difficult to
justify.

Geography
Geography can influence the decision to have multiple ESBs. It may be
impractical to manage a single ESB across geographic boundaries. This is
especially true when there is low bandwidth or unreliable communications
between geographies. It can make more sense to manage them separately and
use the techniques in this book to create links between them.

The architecture of an ESB supports components distributed across
geographies. The problem arises with system management capabilities across
geographies. Low bandwidth and intermittent communications can be challenges
to managing a single global ESB.

Business strategy
The architecture of the ESB should be heavily influenced by the guiding principles
of the business. Different parts of the business may adopt different guiding
principles, which would lead to different architectural decisions for the ESB.

For example, one business unit may be in a fast-moving but high-margin industry
where the agility to adapt is more important than cost. Another business unit in
the same enterprise may be in a commodity business with low margins and very
stable processes. In the former a highly flexible but more costly solution would be
more desirable. In the latter the lowest integration cost would be more desirable
than a highly flexible but more expensive solution.

ESB architecture is a series of trade-offs between cost, schedule, and quality. If
all business units can agree to a common set of trade-offs then a single ESB is
possible. If consensus is not possible, the ESB architecture is likely to mimic the
lack of consensus.

Multiple ESB technologies
The technology in use by one vendor to implement an ESB may not be
interoperable with the technology from other vendors. An enterprise may not
have the ability or desire to choose a single vendor technology platform to

68 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

implement the ESB architecture. There are a number of reasons why an
enterprise may have multiple ESB technologies in the same governance zone.

Many application packages are bundled with ESB technology. Trying to remove
and re-implement the bundled solution would be costly and is not likely to have a
very good business case. In these cases an enterprise would end up with
multiple ESB technologies that may not be interoperable.

Some enterprises do not wish to be overly dependent on a single vendor’s
technology. In these cases multiple ESB technologies will be intentionally
introduced. In these cases it would be wise to ensure that the selected
technologies are interoperable to ease integration.

Conclusion
A single ESB, if it satisfies the needs of the enterprise, will of course be simpler
to sustain, but there are many reasons why this may not be practical. Each
enterprise must look at the above strategic and tactical issues to determine
whether one or several ESBs will be required. This should be examined on a
periodic basis to determine whether the original decision remains the best one,
and whether ESBs can reasonably be merged, or maybe even should be split. If
you require more than one ESB, the remainder of this chapter will be of help, as it
discusses some of the issues you may face.

4.2.2 ESB topology patterns

As noted in the previous section, for an organization of significant size or
complexity, the simplistic ESB patterns shown above are just the first steps on
the road to a full SOA. New challenges soon arise where departments have
grown their SOA independently from one another, or when trying to integrate new
departments following an acquisition such that more than one ESB exists within
the enterprise.

 Chapter 4. ESB runtime patterns and product mappings 69

Figure 4-5 shows the typical progression of topologies as the complexity
increases, or arguably as the SOA matures.

Figure 4-5 ESB topology patterns

These are:

� Independent ESBs

This represents the situation where one or more independent ESBs are
present in the organization, as discussed throughout 4.1, “ESB runtime
topologies” on page 54.

� Directly connected ESBs

This is used where services are provided and managed by a line of business
but made available enterprise-wide. This topology soon suffers from the same
issues as would be present with point-to-point integration, especially when
the number of ESBs goes beyond two. The ESBs have to know where the
other ESBs are, and we are back to the basic problem of maintaining multiple

1.Independent
ESBs

2.Directly
connected ESBs

3.Brokered
ESBs

4.Federated
ESBs

Registry Enterprise Registry Consumer/Provider ESB

1.Independent
ESBs

2.Directly
connected ESBs

3.Brokered
ESBs

4.Federated
ESBs

Registry Enterprise Registry Consumer/Provider ESBConsumer/ProviderConsumer/Provider ESBESB

70 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

interfaces that the ESBs were introduced to avoid. The introduction of a
common Service Registry improves the situation, but does not centralize any
of the core capabilities such as monitoring and auditing.

� Brokered ESBs

These introduce a broker or gateway that selectively exposes services to
partners in other domains. The gateway regulates sharing among multiple
ESB installations that each manage their own namespace. Departments
develop and manage their own services, but share a few of them, or
selectively access services provided across the enterprise. The broker or
gateway ESB does not provide connectivity to back-end systems and focuses
more on aspects such as routing, namespace transformation, security, and
monitoring. If we look back to the topology of the Exposed ESB Gateway, as
described in 4.1.3, “Exposed ESB Gateway composite pattern” on page 62,
you will see the similarity between the ESB Gateway and the brokering ESB
in this multiple ESB topology. Effectively, the Exposed ESB Gateway product
pattern had already separated out the gateway functionality, and this
capability can then be shared across multiple ESBs as the entry point to the
SOA.

� Federated ESBs

This is an extension to the Brokered ESB with the key difference that
consumers can talk directly to the central hub. Effectively, one master ESB to
which several dependent ESBs are federated. Service consumers and
providers connect to the master or to a dependent ESB to access services
throughout the network. This is used by organizations that want to federate a
set of moderately autonomous departments under the umbrella of a
supervising department. The Federated ESB recognizes that there will be
some composite services or business processes that choreograph services
from multiple ESBs. These processes cannot therefore live within any one
ESB’s domain and must make their requests at the level of the federated bus.

These patterns are described in more detail in Patterns: Integrating Enterprise
Service Buses in a Service-Oriented Architecture, SG24-67730, but for now it is
sufficient to understand the different ways that ESBs can be combined and
connected such that we can go on to discuss what effect this has on the
administration of policies across the ESBs.

4.2.3 Handling policy with ESB Gateways and Service Registries

Multiple ESBs arise ultimately as a result of different domains of governance.
Whether that be differing governance over the technology or political divisions
within an organization, the one common factor is that the policy imposed by each
domain is different. Each domain will have its own requirements and standards to
which they expect all services to comply.

 Chapter 4. ESB runtime patterns and product mappings 71

Examples of policies that are relevant to be applied to services are:

� System monitoring
� Logging and traceability
� Auditing
� Security
� Data protection
� Performance
� Service level agreements (SLAs)
� Service virtualization
� Usage statistics

Service-oriented architecture give us an opportunity to implement at least some
of these policies in a single place, rather than embed them into the
heterogeneous back-end technologies.

In an environment with a single relatively simplistic ESB we will most probably
only be dealing with a single, or at least small, set of policy rules. In this
circumstance it may be reasonable to implement the policy directly in the ESB
since this is the single point through which all services will be passed. However, it
is worth taking a moment to discuss a more appropriate separation of
responsibilities that will better centralize the administration of services and will
provide better scalability as the service architecture grows. Specifically, we
discuss the use of the ESB Gateway and the Service Registry to assist with the
implementation and administration of policy.

The Exposed ESB Gateway runtime pattern shown in Figure 4-3 on page 62
allows for the ESB Gateway node to be either implicitly part of the Hub node or
defined explicitly as a separate node from the Hub. The ESB Gateway is the
single standard external entrypoint to the Hub and is therefore the ideal place to
implement generic external policies.

When we have multiple ESBs, and therefore several different governance
domains and policies, the benefits of this separation of responsibility become
clear. The ESB Gateway allows us to introduce a new ESB Hub to the
environment and centralize the administration of policy.

The Exposed ESB Gateway patterns also separate the Service Registry from the
ESB Hub. This is because the service definition stretches beyond the ESB. It will
be used at development time, by monitoring tools, and at various other times
during the life cycle of the service. The policies discussed above may be relevant
to more then just the ESB, so it is reasonable to assume that these should also
be stored outside the ESB in the Service Registry alongside the service
definition, further centralizing the administration of the service-oriented
architecture.

72 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The configuration in the registry can be used to dynamically apply different
policies to any of the services, controlling everything from who has access to
them through to how they are logged, audited, and monitored. Policies can be
re-used in order to apply policy by domain or to provide categorizations of
services.

Now we have established that policy can be administered more effectively and
made available to a broader range of uses if its metadata is moved out into a
separate service repository. We have also seen that the function of the ESB
Gateway is broadly to provide access to services while implementing those
policies. Now we are in a position to consider how we can handle the variations in
policy required to support a complex multiple-ESB scenario with many
governance domains.

4.2.4 Patterns for multiple governance zones

In Figure 4-5 on page 70 we saw that there were a number of ways to organize
multiple ESBs within an organization. These separate ESBs typically belong to
different zones of governance with different policy requirements. We now revisit
some of those topologies in more detail and consider how the multiple runtime
policies that we have discussed above should be managed.

The three main multiple ESB topologies from Figure 4-5 on page 70 are:

� Directly connected ESBs
� Brokered ESBs
� Federated ESBs

We look at each of the topologies in turn, offering two possible implementations
of the Brokered ESBs, and establish how this affects the positioning of registries
and gateways within the topology.

Note: Governance is a huge topic reaching far beyond simply the
administration of runtime policies discussed here. A wider discussion of the
reach of governance in relation to service-oriented architecture can be found
in WebSphere Service Registry and RepositoryWebSphere Service Registry
and Repository Handbook, SG24-7386.

 Chapter 4. ESB runtime patterns and product mappings 73

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386.html?Open

Directly connected ESBs
Figure 4-6 shows the directly connected ESBs topology where the ESB in domain
1 simply treats the service in domain 2 as another back-end system. Domain 2
continues to own the service and implement its policy and registry definition.

Figure 4-6 Directly connected ESBs

Pros:

� Relatively simple to configure. The domain 2 service is likely to be exposed in
a suitable standard format for easy consumption by the domain 1 ESB.

� Complete decoupling. Neither domain is aware that there is an inter-ESB
interaction taking place.

� Local services consumers in domain 2 continue as before since policy is still
implemented by the domain 2 ESB.

Cons:

� A copy of at least part of domain 2’s service definition must copied into the
domain 1 repository. This will have to be done explicitly for each individual

Domain 1

Zone: ESB

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Service
Registry

Hub A

ESB
Gateway

Domain 1

Zone: ESB

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Service
Registry

Hub A

ESB
Gateway

74 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

service exposed in this way. It becomes difficult to have a centralized view of
the service catalogue.

� The service is likely to suffer from the costs of implementing policy in both
domain 1 and domain 2. In addition to this policy overhead, the request is
traversing twice the number of hubs and gateways necessary.

� We are effectively performing point-to-point integration between ESBs. This
has the same issues as point-to-point between applications — as the number
of ESBs increases, the number of interactions grows exponentially.

Brokered ESBs
For Brokered ESBs, one ESB is chosen to act as a master domain or broker
through which all interactions traverse when they need to make use of a service
in another domain. The two key options for this configuration are explored in
Figure 4-7 and Figure 4-8 on page 77.

Figure 4-7 shows the most obvious pattern where domain 1 has been chosen as
the master domain. Consumers from other domains such as domain 3 always
use domain 1 to get to services that are outside their domain, rather than
creating a further connection from their own ESB.

Figure 4-7 Brokered ESBs

Domain 3

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 1

Zone: ESB

Service
Registry

Hub A

ESB
Gateway

Domain 3

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 3

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 1

Zone: ESB

Service
Registry

Hub A

ESB
Gateway

 Chapter 4. ESB runtime patterns and product mappings 75

Pros:

� Domain 1’s registry now represents a catalogue of all the services available in
the enterprise.

� If service endpoint details change, they only need to be altered in domain 1.

� Local services consumers in domain 2 continue as before since policy is still
implemented by the domain 2 ESB.

Cons:

� Domain 1’s registry has satellite copies of parts of it’s catalogue spread out
among the other ESBs, leading to extra maintenance effort, and opportunities
for erroneous configuration.

� We have the overhead of going through three sets of hubs and gateways, and
no doubt implementing repeated policies. Now this is probably slightly unfair,
since in reality communication would most probably only need to go via the
three gateways, with minimal transformation, and then through just the one
hub at the end of the chain to reach the provider.

76 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 4-8 shows the Brokered ESB’s variation 1. Here we show a more realistic
Brokered ESB topology. Note that some domains such as Domain 3 may not
have an ESB and so they would call the domain 1 gateway directly. We also show
that domain 1 will most probably also provide services itself, and will have
consumers of those and other services.

Figure 4-8 Brokered ESBs variation 1

Domain 3

App Server/
Services

<Service Consumer>

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 1

Zone: ESB

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

Service
Registry

Hub A

ESB
Gateway

Domain 3

App Server/
Services

<Service Consumer>

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 2

Zone: ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Domain 1

Zone: ESB

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

Service
Registry

Hub A

ESB
Gateway

 Chapter 4. ESB runtime patterns and product mappings 77

Federated ESBs
At the heart of this final pattern is the concept that each of the domain’s ESBs
are autonomous, and yet they all have a knowledge of the wider enterprise-level
services. Figure 4-9 shows a possible topology for federated ESBs in which any
consumer can call services in any domain without necessarily having set up the
communication paths in advance.

Figure 4-9 Federated ESBs

There are some key capabilities that would need to be in place for this pattern to
be possible:

� Peer-to-peer lookup or replication facilities between registries

� Standardization of protocols used between ESB Gateways and Hubs

� Trusted channels for intra-ESB traffic between domains

� Standardization of policy attributes

Domain 2

Domain 1

Zone: ESB

Enterprise Zone

Zone: ESB

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>
ESB

Gateway

App Server/
Services

<Service Provider>
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Provider>

Service
Registry

Service
Registry

Registry federation or replication

Registry federation or replication

Hub
A

Hub
B

ESB
Gateway

Domain 2

Domain 1

Domain 2

Domain 1

Zone: ESB

Enterprise Zone

Zone: ESB

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider>

App Server/
Services

<Service Consumer>
ESB

Gateway

App Server/
Services

<Service Provider>
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Provider>

Service
Registry

Service
Registry

Service
Registry

Service
Registry

Registry federation or replication

Registry federation or replication

Hub
A

Hub
B

ESB
Gateway

78 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� Capability of all ESB Gateways to be able to retrieve and use service
information at run time

� Capability of all ESB Gateways to perform service agnostic policy based on
dynamically retrieved policy metadata

� Policy executed to create the same ultimate effect regardless of the gateway
implementing the policy

The peer-to-peer relationship is made possible by the fact that the domains’
registries have knowledge of one another and are able to look up or replicate
endpoint information for services that are outside of their domain.

For this pattern to work, there must be some level of agreement at the enterprise
level about what protocols and interaction types are allowable between ESB
Gateways and Hubs, and there need to be suitable channels opened up across
domain boundaries to allow service calls to pass. The two ESB zones represent
a set of nodes that communicate with an agreed upon set of protocols over
trusted channels.

An interesting good part of the fact that we have so rigidly defined the ESB
Gateway to Hub protocols is that if an application provides a suitable interface
already, it could in theory directly publish itself in the registry as an endpoint. In
other words, the application may not need to be connected to a Hub in order to
be exposed to the enterprise. It can then be called directly by the ESB Gateways
using the same standard protocols used to converse with Hubs. Consumers of
the service are already decoupled from future change to the endpoint by virtue of
the fact that they call the ESB Gateway and will draw any changes to the service
endpoint from the registry at run time.

Pros:

� Provides a highly scalable architecture for distributed enterprise service
buses.

� Service endpoints can be made available to the enterprise by being added to
any domain and by publishing them to the local registry with appropriate
enterprise-level policy.

Tip: This peer-to-peer registry lookup capability is similar to the model used
by the Domain Name System (DNS) used on the Internet to look up IP
addresses based on host names. Such queries ripple through a chain of DNS
servers in a hierarchical fashion, enabling matches to any host name to be
found regardless of which DNS server you initially connected to. In this case
we are looking for a particular service and its endpoint details based on a set
of service criteria, but the principle is largely the same.

 Chapter 4. ESB runtime patterns and product mappings 79

� Service consumers do not have to directly make cross-domain requests.

� New domains can be added with minimal configuration to existing domains.

� The standardization on ESB Gateway to Hub protocols and interaction types
allows new services (conforming to those protocols) to be published without
hub configuration.

� No double hops are required to go through unnecessary gateways and hubs.

Cons:

� Significant requirements on maturation of service architecture

� Standardization in some areas required across the enterprise

� Complex requirements on gateways and hub nodes

� Domains must meet a minimum criteria to take part

80 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 5. WebSphere Enterprise
Service Bus

This chapter provides an introduction to WebSphere Enterprise Service Bus, its
runtime architecture, development environment, and related concepts and
products. We discuss these with a specific focus on their place in a
service-oriented architecture.

For a detailed description of WebSphere Enterprise Service Bus refer to Getting
Started with WebSphere Enterprise Service BusGetting Started with WebSphere
Enterprise Service Bus V6, SG24-7212.

Section 5.5, “WebSphere ESB V6.0.2 release notes” on page 103, highlights the
enhancements in v6.0.2 of WebSphere ESB.

5

© Copyright IBM Corp. 2007. All rights reserved. 81

5.1 Product overview
WebSphere Enterprise Service Bus delivers an Enterprise Service Bus (ESB)
infrastructure to enable connecting applications that have standards-based
interfaces (typically a Web service interface described in a WSDL file). It provides
mechanisms to process request and response messages from service
consumers and service providers that connect to the ESB.

WebSphere Enterprise Service Bus is the mediation layer that runs on top of the
transport layer within WebSphere Application Server. As such, WebSphere
Enterprise Service Bus provides prebuilt mediation functions and easy-to-use
tools to enable rapid construction and implementation of an ESB as a value-add
on top of WebSphere Application Server.

Figure 5-1 gives an overview of WebSphere Enterprise Service Bus, the
components in the product, and the features and functions that are associated
with the product.

Figure 5-1 WebSphere Enterprise Service Bus at a glance

WebSphere Enterprise Service Bus leverages WebSphere Application Server
Network Deployment qualities of service, with its clustering, failover, scalability,
security, and a built-in messaging provider. Along with these qualities,

WebSphere Enterprise Service Bus

Mediation
Function

Custom
Mediation

XSLT Message
Logger

Message
Router

DB
Lookup

WebSphere Application Server
Tivoli Access Manager

Edge Components UDDI
DB2 Universal Database

Web Services Gateway
SOAP/
HTTP

SOAP/
JMS WS-* UDDI

Registry 3.0 SMO SDO

SCA

MQ
Interoperability

JMS 1.1 C++
Client

.Net
Client

Java and C/C++
Web Services

Client

WebSphere
Integration
Developer

WebSphere
Adapter
Support

Clients:Messaging:

Web
Services:

SCA
Programming
Model:

82 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

WebSphere Enterprise Service Bus includes a number of key WebSphere
Application Server related features, including UDDI as a Service Registry, the
Web services gateway, Tivoli Access Manager, DB2® Universal Database™, and
Edge components.

WebSphere Enterprise Service Bus adds the following value to the application
server:

� Provides built-in mediation functions, which can be used to create integration
logic for connectivity.

� The SCA programming model supports rapid development of mediation flow
components.

� WebSphere Integration Developer is an easy-to-use tool that supports
WebSphere Enterprise Service Bus.

� Leveraging WebSphere Application Server, WebSphere Enterprise Service
Bus offers JMS messaging and WebSphere MQ interoperability for
messaging, as well as a comprehensive clients package for connectivity.

� Offers support for J2EE Connector Architecture based WebSphere Adapters.

To implement an SOA properly, it is necessary to have a single invocation model
and a single data model. Service Component Architecture (SCA) is this
invocation model — every integration component is described through an
interface. These services can then be assembled in a component assembly
editor, thus enabling a very flexible and encapsulated solution.

WebSphere Enterprise Service Bus introduces a new component type to the
SCA model — the mediation flow component. From the perspective of the SCA,
a mediation flow component is not different from any other service component.

Business objects are the universal data description. They are used as data
objects are passed between services and are based on the Service Data Object
(SDO) standard. In WebSphere Enterprise Service Bus, a special type of SDO is
introduced, the Service Message Object (SMO).

Also part of the infrastructure is the Common Event Infrastructure (CEI), which is
the foundation for monitoring applications. IBM uses this infrastructure
throughout its product portfolio, and monitoring products from Tivoli as well as
WebSphere Business Monitor exploit it. The event definition (Common Business
Event) is standardized through the OASIS standards body so that other
companies as well as customers can use the same infrastructure to monitor their
environment.

 Chapter 5. WebSphere Enterprise Service Bus 83

5.2 Key terms in WebSphere Enterprise Service Bus
Table 5-1 summarizes the key terms in the context of WebSphere Enterprise
Service Bus that are introduced in this chapter.

Table 5-1 Key terms relating to WebSphere Enterprise Service Bus

Term Explanation

Mediation A service request interception by an ESB that typically centralizes logic
such as routing, transformation, and data handling.

Mediation module The basic building block in WebSphere Enterprise Service Bus for
creating mediations.

Export Exposes the interfaces of a mediation module and contains the
bindings.

Stand-alone reference The external publishing of an interface for SCA clients only (without a
WSDL description).

Import Represents the service providers that are invoked by a mediation
module.

Binding The protocols and transports that are assigned to exports and imports.

Mediation flow component The container for mediation logic inside a mediation module that
provides interfaces and that uses references.

Interface Define access points and are defined using WSDL.

Operation Represent interactions that can be 1-way (only input parameters) and
2-way (input and output parameters).

Partner reference The declaration of the referenced interfaces of an mediation flow
component.

Wire An association between components inside a mediation module and
exports/imports/stand-alone references.

Mediation flow The processing steps that are defined for each interface in the form of
a request flow and usually a response flow.

Mediation primitive Units of message processing inside a mediation flow that provide
different terminals.

Service message object (SMO) A data object that represents the context, the content, and the header
information of an application message that is created during a
mediation flow.

Business object Data type definitions (specified in XML schema) that can be used for
input/output parameters.

84 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

5.3 Structure of WebSphere Enterprise Service Bus
This section explores the structure of WebSphere Enterprise Service Bus by
working through the different layers of the product architecture in a top-down
manner.

5.3.1 Mediations, service consumers, and service providers
A service interaction in SOA defines both service consumers and service
providers. The role of WebSphere Enterprise Service Bus is to intercept the
requests of service consumers and fulfill additional tasks in mediations in order
to support loose coupling. When the mediation completes, the relevant service
providers should be invoked. The mediation tasks include:

� Centralizing the routing logic so that service providers can be exchanged
transparently

� Performing tasks like protocol translation and transport mapping

� Acting as a facade in order to provide different interfaces between service
consumers and providers

� Adding logic to provide tasks such as logging

As shown in Figure 5-2, mediations customize the protocol and the details of a
request and also modify the results of the reply.

Figure 5-2 Enterprise Service Bus and mediations

 Chapter 5. WebSphere Enterprise Service Bus 85

WebSphere Enterprise Service Bus can interconnect a variety of different
service consumers and providers using standard protocols including:

� JMS
� SOAP over HTTP (for Web services)
� SOAP over JMS (for Web services)
� MQ

For back-end applications (such as SAP®) several IBM WebSphere Adapters
(based on JCA) are available.

WebSphere Enterprise Service Bus supports diverse messaging interaction
models to meet your requirements, including the following models:

� One-way interactions
� Request-reply
� Publish/subscribe

5.3.2 Mediation modules
The mediation module is a new type of SCA component that can process or
mediate service interactions. As illustrated in Figure 5-3, the mediation module is
externalized or made available through an export, which specifies the interfaces
that are exposed. These interfaces are defined in a WSDL document.
Stand-alone references provide the externalized interface only for SCA clients.
They do not define a WSDL document. Instead, they specify the interface
declaration in Java (called a reference).

Figure 5-3 Mediation modules

86 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The mediation module typically invokes other service providers. These providers
are declared with the creation of an import, which represents an external service
to be invoked.

For each export and import, an interface needs to be specified. Each interface
has multiple operations, which in turn can have multiple input and output
parameters that are associated with either simple data types or business objects.
A one-way operation has only input parameters.

Every export and import has to be associated with a binding. A binding identifies
a specific type of invocation for a service consumer or provider. WebSphere
Enterprise Service Bus supports several bindings:

� JMS binding leveraging the JMS V1.1 that is delivered in WebSphere
Application Server V6 using the service integration bus

� Web services using SOAP/HTTP and SOAP/JMS

� JCA-compliant WebSphere Adapters

� SCA bindings, which are the default bindings that are used for communication
between SCA modules

� Enterprise Java Beans (EJBs), which are only valid for import bindings

Finally, data types (business objects) and interfaces can be defined on the
module level, but they can also be defined and referenced in libraries in order to
centralize them.

Note: Wiring of SCA components can been done either at development
time within WebSphere Integration Developer or administrators can modify
those bindings dynamically using the WebSphere Enterprise Service Bus
administrative console to rewire component interactions (see “Changing
bindings” in Getting Started with WebSphere Enterprise Service Bus V6,
SG24-7212.).

 Chapter 5. WebSphere Enterprise Service Bus 87

http://www.redbooks.ibm.com/abstracts/sg247212.html?Open

5.3.3 Mediation flow components
Inside a mediation module there can be one mediation flow component.
Mediation flow components offer one or more interfaces and use one or more
partner references. Both get resolved, assigning them to exports or imports via
wires, as shown in Figure 5-4.

Figure 5-4 Mediation flow component

In addition to the mediation flow component inside a mediation module, one or
more Java components can be created using custom mediation implementations.

Important: You should not try to compare the notions and semantics of
components and interfaces of the Java programming language with the ones
in the WebSphere Enterprise Service Bus model, because this is not
applicable in several cases.

Restriction: WebSphere Integration Developer does not stop you from
creating more than one mediation flow component per mediation module, but
only one is allowed (as described in the product documentation). Therefore,
there is a one-to-one relationship between a mediation module and a
mediation flow component.

88 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

5.3.4 Mediation flows
Mediation flows (Figure 5-5) contain the high-level mediation logic. Thus, the
different processing steps of a request are declared in a graphical way. In
WebSphere Enterprise Service Bus, the processing of requests is separated
from the processing of responses. Therefore, we distinguish between a request
flow and a response flow. In both directions, logic can be added or modifications
can be applied.

Figure 5-5 Mediation flows

Mediation flows consist of a sequence of processing steps that are executed
when an input message is received. A request flow begins with a single input for
the source operation and can have multiple callouts. If a message is to be
returned to the source directly after processing, it can be wired to an input
response in the request flow. If fault messages are defined in the source
operation, an input fault is also created.

A response flow begins with one or more callout responses and ends with a
single input response (and optionally a callout fault). Both a request flow and a

Note: Mediation flows need to be defined for every operation that gets
exposed via an export of a mediation module. For those operations that do not
need any additional functionality to the wrapped interface, you wire them from
input-to-input response.

 Chapter 5. WebSphere Enterprise Service Bus 89

response flow are associated with a mediation flow. The request flow can map
data to a correlation context and the transient context.

In terms of the actual data, WebSphere Enterprise Service Bus introduces the
Service Message Object (SMO). SMO is a special kind of a service data object
that represents the content of an application message as it passes through a
mediation flow component. As well as the payload in the body, it contains context
and header information, which can be accessed and acted upon inside the
mediation flows.

5.3.5 Mediation primitives
Mediation primitives (Figure 5-6) are the smallest building blocks in WebSphere
Enterprise Service Bus. They are wired and configured inside mediation flows.
They let you change the format, content, or target of service requests; log
messages; do database lookups; and so forth.

Figure 5-6 Mediation primitives (in the complete overview)

Mediation primitives are the smallest unit in WebSphere ESB that are used for
developing mediation flows. Each primitive contains terminals that can be wired
to build the mediation logic. The following table lists the primitive nodes that are
available with WebSphere ESB V6.0.2

90 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Table 5-2 Primitive nodes available with WebSphere ESB V6.0.2

Mediation primitives Symbol Description

Message Logger Logs a copy of a message to a
database for future retrieval or
audit. The integration developer
can customize the primitive by,
for example, naming the
database.

Message Filter To filter messages selectively
forwarding them on to output
terminals based on a simple
condition expression.

Database Lookup To access information in a
database and store it in the
message.

XSLT To manipulate or transform
messages using XSL
transformation.

Stop To stop a path in the flow without
generating an exception.

Fail To stop a path in the flow and
generate an exception.

Custom For custom processing of a
message. Uses a custom SCA
Java component for custom
message processing.

Event Emitter Emit CBE Events from within a
mediation flow.

Message Element Setter Facilitate data changes in
mediation flow. SMOs can be
updated without custom coding
and without having to define
XML → XML maps.

Endpoint Lookup Can be configured to search for
service endpoints using various
selection criteria. Uses
WebSphere Service Registry
and Repository as the registry.

 Chapter 5. WebSphere Enterprise Service Bus 91

5.4 Related technologies
This section explores some of the accompanying features of WebSphere
Enterprise Service Bus in more detail.

5.4.1 Service message objects
Messages can come from a variety of sources, so the payload has to be able to
carry a number of different types of messages. Mediation primitives need to be
able to operate on these messages, and service message objects (SMOs)
represent the common representation that is needed.

The types of messages that are handled by WebSphere Enterprise Service Bus
include:

� SDO data object
� SDO data graph
� SCA component invocation message (request, reply, or exception)
� SOAP message
� JMS message

The SMO model is extensible so it can support other message types in the
future, such as COBOL structures. SMO extends SDO with additional information
to support the needs of a messaging subsystem.

SMO structure
All SMOs have the same basic structure, defined by an XML schema. An SMO
has three major sections:

� The body contains the application data (payload) of the message, particularly
the input or output values of an operation.

� The headers contain the information relevant to the protocol used to send the
message.

� The context covers the data specific to the logic of a flow or failure
information.

Figure 5-7 shows a sample SMO when calling the stock quote sample that is
provided with the WebSphere Enterprise Service Bus.

92 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 5-7 Sample SMO

Data section
The data that is carried in the SMO body is the operation that is defined by the
interface specification and the inputs/outputs/faults that are specified in the
message parts set in the business object definition (Figure 5-8).

Figure 5-8 Content of the SMO body

 Chapter 5. WebSphere Enterprise Service Bus 93

Context section
The context includes the correlation and transient context information.
Correlation is used to maintain data across a request/response flow, while
transient maintains data only in one direction. Both of these contexts are used to
pass application data between mediation primitives. They are described as
business objects, which contain XML schema that are described data objects
and that are specified on the mediation flows input node properties.

The context also includes the failInfo, which is added to the SMO when a fault
terminal flow is used. The information that is provided includes the failureString
(nature of the failure), origin (mediation primitive in which the failure occurred),
invocationPath (the flow taken through the mediation), and predecessor
(previous failure).

Header section
The header section of a SMO contains the following supplemental information:

� SMOHeader: information about the message (message identifier, SMO
version)

� JMSHeader: used when there is a JMS import or export binding

� SOAPHeader: used when there is a Web services import or export binding

� SOAPFaultInfo: contains information about SOAP faults

� Properties[]: arbitrary list of name value pairs (for example, JMS user
properties)

SMO manipulation
During the execution of mediation flows, the active mediation primitives can
access and manipulate the SMO. There are three different ways to access
SMOs:

� XPath V1.0 expressions

The primary mechanism that is used by all mediation primitives.

� XSL stylesheets

Used by the XSLT mediation primitive, and are the common way to modify the
SMO type within a flow. These can also be used to modify the SMO without
changing the type (using XSLT function and logical processing with XSL
choose statements).

� Java code

Using the Custom Mediation primitive, you can access the SMO either using
the generic DataObject APIs (commonj.sdo.DataObject, which is loosely
typed) or the SMO APIs (com.ibm.websphere.sibx.smobo, strongly typed).

94 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

5.4.2 WebSphere Enterprise Service Bus bindings
Bindings identify a specific type of invocation for a service consumer or provider.
Bindings can be applied to mediation module imports or exports. Exports let a
mediation module offer a service to consumers. They define interactions
between SCA modules and service consumers. Export bindings define the
specific way that an SCA module is accessed by others.

Imports let a mediation module access external services (services that are
outside the SCA module) in a transparent manner. Imports define interactions
between SCA modules and service providers. Import bindings define the specific
way that an external service is accessed.

WebSphere Enterprise Service Bus supports the following bindings:

� Web service binding

Using a Web service binding on an export, it exposes the module as a Web
service. To invoke an external Web service, an import with a Web service
binding is used. This binding always uses SOAP messages, and two
transports are available:

– SOAP/HTTP
– SOAP/JMS

� SCA binding

SCA bindings connect SCA modules with each other. This is the default
binding.

� WebSphere Adapter binding

– WebSphere Adapters enable interaction with Enterprise Information
Systems (EIS).

– The Enterprise Service Discovery tool can be used to create import and
exports representing applications on EIS systems. To use EIS bindings a
resource adapter is needed.

� Java Message Service (JMS) V1.1 binding

– JMS can exploit various transport types, including TCP/IP and HTTP(S).

– There are predefined JMS bindings that support JMS text messages
containing Business Object (BO) XML. The predefined JMS bindings also
support JMS object messages containing serialized Java Business
Objects.

– You can use JMS custom bindings to support other types of JMS
messages. However, custom bindings require some coding to translate the
message.

 Chapter 5. WebSphere Enterprise Service Bus 95

– If you want a module to receive a JMS message from a queue or topic, you
need to use an export with a JMS binding. If you want a module to send a
JMS message, you use an import with a JMS binding.

� EJB bindings (only for imports)

An import component can have a stateless session EJB binding.

5.4.3 Quality of service
Qualifiers in SCA allow developers to place quality of service requirements on
the SCA run time. There are several different categories of qualifiers available in
SCA:

� Security
� Transactions (with ActivitySessions as a special type)
� Reliable messaging

Each qualifier has a particular scope within the Service Component Definition
Language (SCDL) specification for a SCA component where the qualifier can be
added (interface, implementation, partner reference).

For example, some qualifiers can be specified at the partner reference level,
while others might only be valid at the interfaces or implementation level.
Figure 5-9 shows the conceptual model for SCA service qualifiers.

Note: The publish/subscribe interaction model can be applied in
WebSphere Enterprise Service Bus using the JMS binding.

96 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 5-9 SCA quality of service qualifier model

In the following subsections we briefly describe the various qualifiers that are
available, and the valid scope for each will be examined.

Security
In WebSphere Integration Developer you specify security attributes for mediation
flow components in the properties view at the boundaries and the
implementation of an component.

Partner
Reference
Qualifier

Interface
Qualifier

Implementation
Qualifier

 Chapter 5. WebSphere Enterprise Service Bus 97

At the interface level you can define the permission for every operation
(Figure 5-10). At the mediation flow component implementation level you can
define under which identity the component gets executed (initiating a role
change), as shown in Figure 5-11 on page 99.

Figure 5-10 Security permission qualifier on interfaces

Use the security permission qualifier to specify a role, which is a semantic
grouping of permissions that a given type of user must have to use an operation
in an interface. The identity of the caller must have this role in order to be
permitted to call the interface or operation. If no security permission is specified,
then no permissions are checked and all callers are permitted to call the interface
or operation.

98 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The security identity qualifier is a privilege specification that you can use to
provide a logical name for the identity under which the implementation executes
at run time (Figure 5-11). An implementation has to be created for this qualifier to
be specified. If this qualifier is not specified, then the implementation executes
under the identity of its caller. Alternatively, it is executed under the hosting
container’s identity if no caller identity is present. Roles are associated with the
identity and the roles dictate whether the implementation is authorized to invoke
other components.

Figure 5-11 Security identity qualifier for mediation components

Depending on the bindings you have created, WebSphere Enterprise Service
Bus will generate the relevant J2EE artifacts. In order to integrate remote clients
(for example, using the Web service security specifications) with the J2EE
application infrastructure, a proper distributed security infrastructure needs to be
built. For additional information about securing Web services, see WebSphere
Version 6 Web Services Handbook Development and Deployment, SG24-6461.

 Chapter 5. WebSphere Enterprise Service Bus 99

Activity sessions
This qualifier determines whether the components processing will be executed
under an activity session, which provides an alternate unit-of-work scope to the
one provided by global transaction contexts. An activity session context can have
a longer lifetime global transaction context and can encapsulate global
transactions.

You can specify the activity session qualifier at all three levels:

� Interface level

Can optionally join a propagated (client) activity session.

� Implementation level

For the implementation, the qualifier specifies whether the component can
run under an established activity session. The default is that if an activity
session has been propagated from the client, the runtime environment will
dispatch methods from the component in the activity session. Otherwise, the
component will not run under any activity session.

� Partner reference level

By default, activity session context is always propagated to a target
component when it is invoked using the synchronous programming model. If
the client does not want a target component to federate with the client’s
activity session, further qualification of the partner reference is required using
the suspend activity session qualifier.

Transactions
This qualifier determines the logical unit of work that the component processing
executes. For a logical unit of work, all of the data modifications made during a
transaction are either committed together as a unit or rolled back as a unit.

� On an interface level, the join transaction qualifier determines whether the
hosting container will join any propagated transaction.

Note: Activity sessions are an extension of J2EE that were introduced with
WebSphere Application Server V5. For more information see:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.
websphere.base.doc/info/aes/ae/welc6tech_as.html

100 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welc6tech_as.html

� On a implementation level, the transaction qualifier can be set to global
(where multiple resource managers are required), local (default) (running in a
local transaction), or any (dispatching the global transaction context if
existent).

� For a partner reference, you can specify the Suspend transaction qualifier,
which can be set to false (so the synchronous invocations run completely
within any global transaction) and true (where synchronous invocations occur
outside any client global transaction).

In addition, the asynchronous invocation determines whether asynchronous
invocations should occur as part of any client transaction. When set to call
(default), the asynchronous invocations using the partner reference occur
immediately, while with commit the partner reference is transacted as part of any
client global transaction or extended local transaction, which postpones the
availability of the request.

Asynchronous reliability
To support asynchronous invocation of components, asynchronous reliability
qualifiers can be specified for the partner reference only. They take effect when
asynchronous programming calls are used by the client to invoke a service. The
reliability qualifier specifications are:

� Reliability

The reliability qualifier determines the quality of an asynchronous message
delivery. In general, better performance usually means less reliable message
delivery. With an assured specification, the client application cannot tolerate
the loss of a request or response message. With a best effort specification,
the client application can tolerate the possible loss of the request or response
message.

� Request expiration (milliseconds)

Request expiration is the length of time after which an asynchronous request
will be discarded if it has not been delivered, beginning from the time when
the request is issued. Zero denotes an indefinite expiration.

� Response expiration (milliseconds)

Response expiration is the length of time that the runtime environment must
retain an asynchronous response or provide a callback, beginning from the
time when the request is issued. Zero denotes an indefinite expiration.

Note: The different combinations of the interface and implementation
qualifiers define the behavior for the target component. Not all
combinations are allowed.

 Chapter 5. WebSphere Enterprise Service Bus 101

5.4.4 Common event infrastructure
The common event infrastructure CEI is a core component of WebSphere
Enterprise Service Bus leveraged from WebSphere Application Server and
provides facilities for the runtime environment to persistently store and retrieve
events from different programming environments. This section briefly introduces
the basic event-related concepts:

� Common Event Infrastructure (CEI)
� Common Base Events (CBE)

Common Event Infrastructure
In WebSphere Enterprise Service Bus, the CEI is used to provide basic event
management services, such as event generation, transmission, persistence, and
consumption. CEI was developed to address industry-wide problems in
exchanging events between incompatible systems, many of which employed
different event infrastructures, event formats, and data stores.

Common Base Event
Although CEI provides an infrastructure for event management, it does not define
the format of events. This is defined by the Common Base Event specification,
which provides a standard XML-based format for business events, system
events, and performance information. Application developers and administrators
can use the Common Base Event specification for structuring and developing
event types.

The key concept in the Common Base Event model is the situation, which is any
occurrence that happens anywhere in the computing system, such as a user
login or a scheduled server shutdown. The Common Base Event model defines a
set of standard situation types, such as StartSituation and CreateSituation, that
accommodate most of the situations that might arise.

In the Common Base Event model, an event is a structured notification that
reports information related to a situation. An event reports three kinds of
information:

� The situation that has occurred

� The identity of the affected component

� The identity of the component that is reporting the situation, which might be
the same as the affected component

In the WebSphere Integration Developer editors the specification of event
monitoring is based on the operation level.

102 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

5.5 WebSphere ESB V6.0.2 release notes

At the time of writing, Version 6.0.2 of WebSphere ESB introduced a number of
key features. This section discusses what was introduced in that release and
notes where these features have been demonstrated in the practical scenarios
later in the book.

� Administrative configuration

– Administrative configuration of endpoints: Administrators can modify the
definition of a service endpoint, removing the need for a code/test cycle for
purely configuration changes.

– Administrative configuration of meditations: Administrators can
dynamically change the behavior of a running mediation. Selected
properties of mediations can be exposed to the administrative interface to
allow them to be changed at run time.

– Dynamic endpoint selection: Endpoints can be changed programmatically,
based on a value contained in a message, the time of the day, by looking
up an endpoint definition from a registry, or any other predetermined
parameters.

� Dynamic configuration

– Integration with WebSphere Service Registry and Repository allows
WebSphere ESB to use metadata from the registry and repository to
govern its behavior and help ensure that runtime changes are governed by
approved policies.

– New dynamic endpoint lookup primitive: The administrator can query
service endpoint information from WebSphere Service Registry and
Repository with the dynamic endpoint lookup primitive without
redevelopment and deployment.

– ITCAM for SOA feeds service performance information to WebSphere
Service Registry and Repository, giving WebSphere ESB better control for
its dynamic selection of service endpoints.

� Simplified and reduced time to market

– Bundled technology adapters via WebSphere Integration Developer
packaging.

– Increased business activity management (BAM) flexibility: With the
common event infrastructure (CEI) primitive so that you can define and
feed events into WebSphere Business Monitor.

� Usability improvements

– Message element setter: Allows you to set values in a message element,
without creating message transformation code.

 Chapter 5. WebSphere Enterprise Service Bus 103

– Remote access to DB2 artifacts on System z™ from a distributed
environment.

– Support for IBM DB2 on z/OS as a remote database management system
(DBMS).

– Provides new samples to facilitate the development of custom data
bindings (datahandler support).

– Delivers simplified server configuration using the WebSphere Application
Server Network Deployment console for clusters and multiple cells.

� Additional platform support

Provides additional platform support for Solaris™ 10 (SPARC and x86-64),
HP-UX 11i2 (PA-RISC), SUSE Linux Enterprise Server 10, Red Hat
Enterprise Linux 4, and Linux on zSeries® (64-bit).

� New bindings

– WebSphere MQ JMS binding provides faster and simpler access to
WebSphere MQ JMS based assets.

– WebSphere MQ native binding support provides easier and faster
integration with WebSphere Message Broker and WebSphere MQ.

� Performance

Significantly improved performance.

The scenarios later in this book show examples of the WebSphere Registry and
Repository lookup, dynamic endpoints, and the MQ and JMS MQ bindings.

104 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 6. WebSphere Message Broker
in SOA

This chapter discusses how to design a WebSphere Message Broker
implementation as an Enterprise Service Bus in a service-oriented architecture
and how WebSphere Message Broker provides support for Web service.

6

© Copyright IBM Corp. 2007. All rights reserved. 105

6.1 WebSphere Message Broker overview

This section provides an overview for WebSphere Message Broker V6. This book
is based on the latest version of the WebSphere Message Broker run time at the
time of writing, which is 6.0.0.3, and the latest WebSphere Message Broker
toolkit version, which is 6.0.0.2.

6.1.1 Product positioning

Generally speaking, WebSphere Message Broker is a broker engine that can
perform message transforming and routing from different participants to different
destinations based on user-defined rules, so that diverse applications can
exchange information in dissimilar forms, with brokers handling the processing
required for the information to arrive at the right place in the correct format.

Unlike a process server, WebSphere Message Broker is not a good place to
store long-running business process states and choreograph different business
processes. In fact, WebSphere Message Broker provides a connectivity layer for
process engines that choreograph the flow of activities between services. It is
WebSphere Message Broker’s responsibility to deliver service requests,
rerouting or transforming them if appropriate.

Similarly, WebSphere Message Broker is also not a good place to implement
business logic. It is a bad idea to encapsulate business logic inside the message
flow. While WebSphere Message Broker has the ability to route and transform a
message based on business rules and values, the real, complex business logic
should be put into an application server like a CICS transaction server or
WebSphere Application Server.

One of the WebSphere Message Broker’s strengths is its powerful capability for
parsing different formats of messages coming from different channels or
protocols, manipulating the message, and serializing the message in different
wire formats and protocols. WebSphere Message Broker is flexible enough to
support different messaging paradigms like synchronous and asynchronous
behavior, different message interaction patterns like fire-and-forget,
request-reply, publish-subscribe, and its aggregation capability.

106 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

6.1.2 WebSphere Message Broker runtime architecture

WebSphere Message Broker consists of a development environment in which
message flows and message sets are designed and developed, and a runtime
environment in which the message flows execute. Figure 6-1 shows an overview
of the runtime architecture.

Figure 6-1 Overview of WebSphere Message Broker architecture

Let us take a brief look at each runtime component.

Broker
The broker is a set of application processes that host and run message flows.
When a message arrives at the broker from a business application, the broker
processes the message before passing it on to one or more other business

WebSphere Message Broker

Message Brokers Toolkit

Repository

Optional User
Name Server

Broker
Domain

Broker

M
es

sa
ge

Fl
ow

M
es

sa
ge

S
et

s

Application

Application

Application

Application

Configuration
Manager

Administrator

Message flow
developer

 Chapter 6. WebSphere Message Broker in SOA 107

applications. The broker routes, transforms, and manipulates messages
according to the logic defined in their message flow applications.

Each broker uses a database to keep the broker’s configuration information and
the message sets together with message flows deployed to it, which will be
loaded at the start time.

Execution group
Execution groups enable message flows within the broker to be grouped
together. Each broker contains a default execution group. Additional execution
groups can be created as long as they are given unique names within the broker.

Each execution group is a separate operating system process and, therefore, the
contents of an execution group remain separate from the contents of other
execution groups within the same broker. This can be useful for isolating pieces
of information for security because the message flows execute in separate
address spaces or as unique processes.

Message flow applications are deployed to a specific execution group. To
enhance performance, you can deploy additional message flow instances to an
execution group. That means that there will be more threads available in the
execution group to process the incoming message at run time.

Configuration manager
The Configuration Manager is the interface between the Message Brokers Toolkit
and the brokers in the broker domain. The Configuration Manager stores
configuration details for the broker domain in an internal repository, providing a
central store for resources in the broker domain.

The Configuration Manager is responsible for deploying message flow
applications to the brokers. The Configuration Manager also reports back on the
progress of the deployment and on the status of the broker. When the Message
Brokers Toolkit connects to the Configuration Manager, the status of the brokers
in the domain is derived from the configuration information stored in the
Configuration Manager’s internal repository.

User name server
A user name server is an optional component that is required only when
publish/subscribe message flow applications are running, and where extra
security is required for applications to be able to publish or subscribe to topics.

The user name server provides authentication for topic-level security for users
and groups that are performing publish/subscribe operations.

108 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Broker domain
Brokers are grouped together in broker domains. A broker domain contains one
or more brokers and a single Configuration Manager. It can also contain a user
name server. The components in a broker domain can exist on multiple machines
and operating systems, and are connected together with WebSphere MQ
channels. A broker belongs to only one broker domain.

6.2 WebSphere Message Broker as enterprise service
bus

SOA defines an approach to reuse and extend current application assets in a
very flexible way. This is done by separating the service interface and the service
implementation. Each application that provides business logic is exposed as a
service. For example, the create customer account service might be a CICS
transaction, while a customer balance query is served by a J2EE application
running on WebSphere Application Server. By creating a standard interface for
these applications, their business logic becomes available for reuse in many
business process applications.

To enable these applications to talk using the same language is not easy to do.
Older applications may use technology that is completely different from current
technology.

An ESB provides virtualization and management of service interactions between
communicating participants. It not only provides the connection layer between
the service provider and service consumer, but it also helps with the translation
between two participants trying to interact with different protocols. An ESB can
locate the service providers for a service and route the request to the most
suitable provider, eliminating the need for the service consumer to know where
the provider is.

WebSphere Message Broker provides Exposed ESB Gateway capabilities,
including:

� Service virtualization
� Transport protocol support and conversion
� Message models and transformation
� Dynamic message routing
� Custom mediation support

Note: For more information about WebSphere Message Broker, refer to the
WebSphere Message Broker Web page and WebSphere Message Broker
Basics, SG24-7137.

 Chapter 6. WebSphere Message Broker in SOA 109

http://www.redbooks.ibm.com/abstracts/sg247137.html?Open
http://www-306.ibm.com/software/integration/wbimessagebroker/
http://www-306.ibm.com/software/integration/wbimessagebroker/

� Interaction pattern support
� Integration with other enterprise information systems
� Quality of service (QoS) support
� Service Registry access
� Ease of administration

6.2.1 Service virtualization

Service virtualization is a core functionality of an ESB. The service requestor,
both in its application logic and deployment, does not need to be aware of the
realization of the service provider. The service requestor does not need to be
concerned about the programming language the service provider is written in, its
runtime platform, its network address, its communication protocol, or even
whether there is a service provider implementation available. The requestor only
has the responsibility of connecting to the bus and placing the request.

WebSphere Message Broker uses message flows to accept incoming requests
using different formats, protocols, and communication channels. It can determine
the destination for the request, convert the request if necessary, and then send
the request to the service provider.

The service provider takes the request from WebSphere Message Broker (the
bus) in its native format, processes the request, and sends the reply back to the
bus, which sends the response to the service requester. The provider does not
need to know the origin or format of the request.

6.2.2 Transport protocol support and conversion

The use of an ESB eliminates the need for the service requester and service
provider to use the same transportation protocol.

WebSphere Message Broker provides support for a variety of transport protocols
for both inbound and outbound connectivity that extends the reach, scope, and
scale of the ESB to mobile and handheld devices, along with embedded devices
such as sensors or actuators.

The transports supported by WebSphere Message Broker include:

� WebSphere MQ Enterprise Transport

Used by WebSphere MQ. This transport supports WebSphere MQ
applications that connect to WebSphere Message Broker to benefit from
message routing and transformation options.

The message flow nodes for this transport include MQInput, MQOutput,
MQReply, and Publication.

110 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� WebSphere MQ Mobile Transport

This is used exclusively by WebSphere MQ Everyplace® clients.

� WebSphere MQ Multicast Transport

This is used predominantly for the publish/subscribe model. The nodes
provided to support this protocol are Real-timeInput,
Real-timeOptimizedFlow, and Publication.

� WebSphere MQ Real-time Transport

This is a lightweight protocol optimized for use with non-persistent
messaging. It is used exclusively by JMS clients and provides high levels of
scalability and message throughput.

The nodes provided to support this protocol are Real-timeOptimizedFlow,
Real-timeInput, and Publication.

� WebSphere MQ Telemetry Transport

This is used by specialized applications on small footprint devices that require
a low-bandwidth communication, typically for remote data acquisition and
process control.

The nodes provided to support this protocol are SCADAInput, Publication,
and SCADAOutput.

� WebSphere MQ Web services Transport

This is used for messages in XML. This uses the standardized HTTP protocol
running over TCP/IP. HTTP and HTTPS are the most commonly used
protocols over the Internet and intranets. Many firewalls on the Internet are
configured to only allow HTTP/HTTPS packets to flow through. For the same
reason SOAP over HTTP(S) is the most widely used transportation for Web
services.

The nodes provided to support this protocol are HTTPInput, HTTPReply, and
HTTPRequest.

� WebSphere Broker JMS Transport

This is used to send and receive JMS messages that conform to the Java
Message Service Specification Version 1.1. By providing native JMS
interoperability, WebSphere Message Broker can act as a bridge between any
combination of JMS providers, enabling seamless interaction with other
vendors’ message platforms.

The nodes provided to support this protocol are JMSInput and JMSOutput.
The MQJMSTranform and JMSMQTranform nodes can be used to transform
the protocol between MQ and JMS, bringing even greater flexibility.

WebSphere Message Broker can even support flat files, VSAM files, QSAM files,
CICS EXCI, TCP/IP Socket, FTP and SCADA based telemetry protocols. These

 Chapter 6. WebSphere Message Broker in SOA 111

can also be considered different transportation protocols for delivering
messages.

WebSphere Message Broker also supports the WBI Adapters. These adapters
provide support for other transport protocols and, for the purpose of this
document, are classed as protocol bridges.

Furthermore, WebSphere Message Broker interacts with WebSphere
Transformation Extender for Message Broker, which provides an additional set of
connectors, and with WebSphere Message Broker File Extender, which brings
support for file access to WebSphere Message Broker.

6.2.3 Message models and transformation

Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed upon by the sender and the receiver.
Applications typically use a combination of messages, including those that are
defined by the following structures or standards:

� C and COBOL data structures
� Industry standards such as SWIFT or EDIFACT
� XML DTD or schema

You can model a wide variety of the message formats that can be understood by
WebSphere Message Broker message flows. When the message format is
known, the broker can parse an incoming message bit stream and convert it into
a logical message tree for manipulation by a message flow. After the message
has been processed by the message flow, the broker converts the message tree
back into a message bit stream.

112 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Here is an overview how a message bit-stream is parsed when it reaches the
input node of a message flow. The message is constructed as a logic tree
structure and in preparation for processing by the message flow. Finally, the
message is flattened again and sent out to the outside world.

Figure 6-2 Message model and transformation overview

WebSphere Message Broker typically supplies a range of parsers to parse and
write message formats. Some message formats are self-defining and can be
parsed without reference to a model. An example of a self-defining message
format is XML. In XML the message itself contains metadata as well as data
values, enabling an XML parser to understand an XML message even if no
model is available. Most message formats, however, are not self-defining. As
examples, a binary message originating from a COBOL program and a SWIFT
formatted text message do not contain sufficient metadata to enable a parser to
understand the message. The parser must have access to a model that
describes the message to parse it correctly.

Input Whatever Nodes Output

Input node reads
bit-stream

Node accesses logical
message tree

Output node writes
bit-stream

Parser invoked
(on demand)

bit-stream tree

Parser invoked
(in reverse)

tree bit-stream

Parser
associated with

bit-stream

 Chapter 6. WebSphere Message Broker in SOA 113

To speed up creation of message models, importers are provided that take
metadata such as C header files, COBOL copybooks, XML Schema and DTDs,
and WSDL files and create message models from that metadata. Alternatively,
IBM has pre-built models for common industry standard message formats such
as SWIFT, EDIFACT, X12, FIX, HL7, TLOG, and so on.

Figure 6-3 Message modeling support in WebSphere Message Broker

Table 6-1 lists the message domains that WebSphere Message Broker supports.

Table 6-1 WebSphere Message Broker supported message domain

Message Set

HTML
Docs

WMQI 2.1
Message set

XML
DTD

XML
Schema C header COBOL

copybook WSDL

Migration
utility Importers

Message Set
Editor

Message Definition
Editor

Message Category
Editor

Model
Validator

messageSet.mset
file

.mxsd
files

.category
files

Generators

XML
Schema

XML
application

WSDL

Web Services
client

Message
Dictionary

WebSphere
Message Broker

W
eb

S
ph

er
e

M
es

sa
ge

 B
ro

ke
rs

 T
oo

lk
it

Repository

TDS

Message model General usage

MRM For modeling a wide range of messages including XML,
fixed-format binary, and formatted text, MRM can also be
used to handle JMS byteMessage and textMessage
accepted by JMSInput node.

114 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

With WebSphere Transformation Extender for Message Broker, WebSphere
Message Broker extends its capability with enhanced data format processing and
support for industry standard data formats.

Once the inbound message has been constructed as an internal logic tree
structure, WebSphere Message Broker provides different ways to process it:

� Validate node

Use the validate node to check that the message that arrives on its input
terminal is as expected using the message template properties such as
message domain, message set, and message type. You can also check that
the content of the message is correct by selecting message validation.

The checks that can be performed depend on the domain of the message.
See Table 6-2.

Table 6-2 Validation types

You can use the validate node to confirm that a message has the correct
message template properties and valid content before allowing the message

XMLNSC, XMLNS, or
XML

For messages conforming to the W3C XML standard,
including XML over JMS textMessage.

JMSMap or
JMSStream

For messages produced by the WebSphere MQ
implementation of the Java Messaging Service standard,
JMSInput node will reformat the JMS MapMessage and
StreamMessage to XML.

IDOC For messages in SAP IDoc format.

MIME For handling multipart MIME messages such as SOAP with
attachments or RosettaNet.

BLOB The BLOB message domain includes all messages with
content that cannot be interpreted and subdivided into
smaller sections of information.

Check Domain

Check message domain All domains

Check message set MRM and IDOC only

Check message type MRM only

Validate message body MRM and IDOC only

Message model General usage

 Chapter 6. WebSphere Message Broker in SOA 115

into the rest of the flow. This means that subsequent nodes can rely upon the
message being correct without doing their own error checking.

� Compute node

Use the Compute node to construct one or more new output messages.
These output messages might be created by modifying the information that is
provided in the input message, or the output messages might be created
using only new information, which might (or might not) be taken from a
database. Elements of the input message (for example, headers, header
fields, and body data), its associated environment, and its exception list can
be used to create the new output message.

You specify how the new messages are created by coding ESQL in the
message flow ESQL resource file. Extended Structured Query Language
(ESQL) is a programming language defined by WebSphere Message Broker
to define and manipulate data in any message model within a message flow.
You can both create and modify the components of the message using ESQL
expressions, and can refer to elements of both the input message and data
from an external database. An expression can use arithmetic operators, text
operators (for example, concatenation), logical operators, and other built-in
functions.

Use the Compute node to:

– Build a new message using a set of assignment statements.
– Copy messages between parsers.
– Convert messages from one code set to another.
– Transform messages from one format to another.

You define the ESQL statements in a module associated with this node in the
ESQL .esql file associated with this message flow. You must create this file to
complete the definition of the message flow. Example 6-1 is a sample
skeleton of the ESQL procedure.

Example 6-1 An ESQL skeleton for the Compute node

CREATE COMPUTE MODULE SampleFlow_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- CALL CopyMessageHeaders();
-- CALL CopyEntireMessage();
RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER;
DECLARE J INTEGER;
SET I = 1;

116 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

END WHILE;
END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

� Java Compute node

The Java Compute node is a new general-purpose programmable node. It is
based on J2SE™ 1.5 and supports XPath 1.0 to query on all four message
trees in the message assembly. You can also use the Configuration Manager
Proxy API to perform administrative tasks on the broker.

You can examine an incoming message in any domain and, navigating the
message tree, optionally create a new copy of the message to make a change
on it. Depending on its content, you can propagate the message to one of the
node's two output terminals. The node behaves in a similar way to a Filter
node, but uses Java instead of ESQL to decide which output terminal to use.
Or you can create and build a new output message that is totally independent
of the input message.

Database support is also provided via two routes. You can use the standard
JDBC type 4 non-XA driver to access the database, or you can use the
MbSQLStatement API to access a database that actually uses the ODBC
driver under the cover, with the full transaction support.

The Java code that is used by the node is stored in an Eclipse Java project,
and full IDE support of Eclipse Java Development Tools (JDT) is supplied for
the development. Full debugging support is provided by utilizing Eclipse Java
debugger integrated with the Message Flow Visual Debugger.

Example 6-2 provides the code skeleton for a Java Compute node.

Example 6-2 Code skeleton for Java Compute node

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.*;

public class SamplelNode extends MbJavaComputeNode {

public void evaluate(MbMessageAssembly assembly) throws MbException
{

 Chapter 6. WebSphere Message Broker in SOA 117

MbOutputTerminal out = getOutputTerminal("out");
MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage message = assembly.getMessage();
// --
// Add user code below

// End of user code
// --

// The following should only be changed
// if not propagating message to the 'out' terminal
out.propagate(assembly);

}
}

� Mapping node

Use the Mapping node to construct one or more new messages and populate
them with new information, with modified information from the input message,
or with information taken from a database. You can modify elements of the
message body data, its associated environment, and its exception list.

Use the Mapping node to:

– Build a new message.
– Copy messages between parsers.
– Transform a message from one format to another.

118 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The components of the output message can be defined using mappings that
are based on elements of both the input message and data from an external
database. You create the mappings associated with this node in the mapping
file associated with this node by mapping inputs (message or database) to
outputs. You can optionally modify the assignments made by these mappings
using supplied or user-defined functions and procedures. For example, you
can convert a string value to uppercase when you assign it to the message
output field.

Figure 6-4 Image of the mapping editor

The Mapping node provides a graphical interface for users with limited
programming skills to manipulate messages, but provides less flexibility than
the Compute node or Java Compute node. There is a very nice graphical
debugger to debug the maps in run time. The Mapping node will generate
ESQL at deployment time.

The source and target must be defined by a database schema or MRM
message set definition. The mapping node cannot operate on other message
domains. This support is expected to expand in future releases.

 Chapter 6. WebSphere Message Broker in SOA 119

� XMLTransformation node

XMLTransformation uses eXtensible Stylesheet Language for Transformations
(XSLT) to transform an XML message to another format (which may or may
not be XML) according to the rules provided by an eXtensible Stylesheet
Language (XSL) style sheet.

Figure 6-5 XMLTransformation node overview

The XMLTransformation node will be generated as Java at deployment time.
WebSphere Message Broker V6 supports compiled stylesheets, which
improves the performance of the transformation.

The XMLTransformation nodes depend on the inbound being XML. It does not
have to be in one of the XML domains, but it must be a well-formed XML
bitstream. The output will be in the BLOB domain.

� WebSphere Transformation Extender for Message Broker

Refer to 3.1.8, “WebSphere Transformation Extender for Message Broker” on
page 46.

6.2.4 Dynamic message routing

In a service-oriented architecture, an ESB should have the capability to decide
the message destination dynamically, thus providing the location transparency of
services. With WebSphere Message Broker, the routing can be based on
message header or content, or based on customer-defined policy.

WebSphere Message Broker can access the message header attributes at run
time, making it possible to carry the routing information in the message header
like MQRFH2 or MQMD, and route the message based on the header
information.

It is worth mentioning here that in WebSphere Message Broker V6, one of the
significant ESQL enhancements is the new data types: ROW and SHARED.
These are very useful if the solution is designed to route the message to different

MQInput XML Transformation MQOutput

Stylesheet

XML bitstream
Transformed
data (XML or

BLOB)

120 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

destinations by looking up a rule table. Usually our approach is to save the rule
table in a database so that it is accessible to all the message flows. However, a
better alternative in Version 6 is to use the SHARED ROW variable
(Example 6-3). You can set up the lookup table in memory, where it can be
shared by all threads of the message flow instances. Memory access also avoids
the overhead of accessing a database for each incoming message.

Example 6-3 Code snippet: usage of shared long-live memory cache in ESQL

-- A shared variable table that can be used by instances of a flow
declare CacheQueueTable SHARED ROW;
-- User code to setup the CacheQueueTable and extract routing criteria
......
-- Get destination dynamically from the in-memory cache tables
SET OutputLocalEnvironment.Destination.MQDestinationList.DestinationData[]
=
(SELECT S.QUEUE_MANAGER as queueManagerName,

S.QUEUE_NAME as queueName
FROM CacheQueueTable.DestinationData[] as S
WHERE S.VARIABLE2 = Variable2 and

S.VARIABLE3 = Variable3
);

Several decision-making nodes are supplied to enhance the routing mechanism:

� Filter node

Use the Filter node to route a message according to message content. You
define the route by coding a filter expression in ESQL. You can include
elements of the input message or message properties in the filter expression.
You can also use data held in an external database to complete the
expression. The output terminal to which the message is routed depends on
whether the expression evaluates to true, false, or unknown.

� FlowOrder node

Use the FlowOrder node to control the order in which a message is processed
by a message flow. The input message is propagated to the first output
terminal, and the sequence of nodes connected to this terminal processes the
message. When that message processing is complete, control returns to the
FlowOrder node. If the message processing completes successfully, the input
message is propagated to the second output terminal and the sequence of
nodes connected to this terminal processes the message.

Note: For more information about the SHARED ROW data type, refer to the
product information center and also the message routing sample in the
sample gallery.

 Chapter 6. WebSphere Message Broker in SOA 121

� Label node and RouteToLabel node

Use the Label node in combination with a RouteToLabel node to dynamically
determine the route that a message takes through the message flow. The
RouteToLabel node interrogates the LocalEnvironment of the message to
determine the identifier of the Label node to which the message must next be
routed.

Another common scenario is to use these nodes together with the
WebSphere Service Registry and Repository plug-in node to provide dynamic
routing capability base on the service location from the service repository.

� TimeoutControl node and TimeoutNotification node

The TimeoutControl node receives an input message that contains a time-out
request, validates the request, stores the message, and propagates the
message without any changes to the next node in the message flow.
Example 6-4 shows a sample time-out request message in XML.

Example 6-4 A sample timeout request message in XML

<TimeoutRequest>
 <Action>SET | CANCEL</Action>
 <Identifier>String (arbitrary, only alphanumerics)</Identifier>
 <StartDate>String (TODAY | yyyy-mm-dd)</StartDate>
 <StartTime>String (NOW | hh:mm:ss)</StartTime>
 <Interval>Integer (seconds)</Interval>
 <Count>Integer (greater than zero or -1)</Count>
 <IgnoreMissed>TRUE | FALSE</IgnoreMissed>
 <AllowOverwrite>TRUE | FALSE</AllowOverwrite>
 </TimeoutRequest>

The TimeoutNotification node is an input node that can be used in one of two
ways:

– Paired with one or more TimeoutControl nodes

The TimeoutNotification node processes timeout request messages that
are set by the TimeoutControl nodes with which it is paired, and
propagates copies of the messages (or selected fragments of the
messages) to the next node in the message flow.

– Standalone

Generated messages are propagated to the next node in the message
flow at time intervals that are specified in the configuration of this node.
You can accomplish automatic time outs with a single Timeout Notification
node running in automatic mode. You must provide an interval in seconds
as a configuration parameter to determine the period between adjacent
flow invocations.

122 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Use of automatic time outs is great for implementing time-based event-driven
activities (for example, a heartbeat flow used to monitor the status of a system
or a maintenance flow used to archive a database). You can also use both
nodes to implement event-driven Service Level Agreements (SLAs), that is, to
check that a certain event has occurred after a required time. Otherwise start
performing the exception processing.

� Validate node

You can use the validate node to ensure that the message is routed
appropriately through the message flow. For example, you can configure it to
direct a message that requests stock purchases through a different route from
that required for a message that requests stock sales.

� XML Validator node

The XML Validator node provided by SupportPac™ IA9A validates an XML
message against an XML schema. If the message conforms to the schema,
the message is passed to the Out terminal unchanged. However, if errors are
encountered, these are added to the environment tree, and passed to the
invalid terminal, along with the unchanged message. The XML Validator node
checks the bitstream of a message, as opposed to the logical structure, and
therefore supports any message format (for example, XML, XMLNS, BLOB,
and so on). Configurable parameters are supplied to allow the schema
defined in the XML document to be overridden, and can be set either via the
node properties or at run time, by the use of Environment/LocalEnvironment
variables.

This SupportPac could be used as part of a Web services message flow if
there is a requirement to validate incoming or outgoing XML messages
against schemas. The ability to validate against a different schema for each
message enables the node to be used in situations where there are a large
variety of messages passing through the flow. For instance, if the broker is
acting as a Web services intermediary, several types of messages could be
validated by one message flow using this node.

It is also useful when the content of a schema changes frequently, such as
during application development stages, as no re-deploy of the message flow
is required to use the changed schema.

In summary, routing and transformation logic can be performed in WebSphere
Message Broker versus in the applications, enabling you to achieve separation of
concerns. The endpoint applications contain the business logic that applies the
business processing rules that are important to your enterprise, while operations

Note: For more information about message routing nodes and capability, refer
to the WebSphere Message Broke information center.

 Chapter 6. WebSphere Message Broker in SOA 123

such as protocol and message transformation or routing are contained solely
within the WebSphere Message Broker environment, making your IT
infrastructure much more flexible.

6.2.5 Custom mediation support

WebSphere Message Broker supports customized mediation capability through
the use of the following built-in or SupportPac nodes:

� Database nodes

The database nodes can be used to enrich messages at run time from an
ODBC data source or to perform operation on database data. These nodes
provide a flexible interface with a wide range of functions. You can specify
transaction behavior in the message flow specifying whether changes are
committed immediately or after the entire message flow is successful.

Figure 6-6 Built-in database-related nodes

� File and dataset related nodes

WebSphere Message Broker provides a set of SupportPac nodes that can be
used to enrich messages or used as logging facilities for monitoring purpose.

– QSAM dataset adapter

The QSAM dataset adapter nodes provided in SupportPac IA11 can be
used to operate on the QSAM (for example, sequential dataset on the
mainframe).

Figure 6-7 QSAM dataset related nodes

124 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

– VSAM dataset adapter nodes

The VSAM dataset adapter is provided in SupportPac IA13 can be used to
operate VSAM dataset on the mainframe.

Figure 6-8 VSAM dataset related nodes

– WebSphere Message Broker File Extender

This provides a set of nodes for the WebSphere Message Broker V6 to
provide capabilities into the domain of files, allowing users to natively
exploit huge amounts of information from the broker that many enterprises
store in flat files on distributed platforms.

� Other supplied nodes

An LDAP plug-in node provided by SupportPac IA08 can be used to perform
an LDAP lookup using certain parameters in the message, and then to enrich
the message using the result from the LDAP server. You can also use the
Sendmail node provided by SupportPac IA07 to construct and send e-mail
using the content in an XML message.

� Custom extensions

WebSphere Message Broker provides extensive APIs to allow users to write
custom extensions to perform customer mediation and message model
handling. These include:

– Writing user-defined nodes in Java
– Writing user-defined nodes and parsers in C

Note: For more information about WebSphere Message Broker File
Extender, refer to the product page:

http://www-306.ibm.com/software/integration/wbimessagebroker/file
extender/v5/index.html

Note: For more information about how to write a custom extension for
WebSphere Message Broker, refer to the “Developing user-defined
extensions” chapter in the WebSphere Message Broker information center.

 Chapter 6. WebSphere Message Broker in SOA 125

http://www-306.ibm.com/software/integration/wbimessagebroker/fileextender/v5/index.html

6.2.6 Interaction pattern support

When two or more participants interact with others, they always fall into one or
more of these interaction patterns:

� One-way interaction
� Request-response
� Aggregation
� Publish/subscribe (pub/sub)

One-way interaction
Fire-and-forget is one common scenario in asynchronous mode. The sender
sends the notification to the receiver, and that is all. The sender does not need to
wait for the reply to continue his job. For example, the broker in the airline control
system periodically sends the latest flight information to a portlet application to
display on the Web site.

Figure 6-9 Sequence diagram for one-way interaction pattern

Sometimes when necessary, the receiver needs to send feedback or a response
to the sender. In this situation, the requester must implement an event handler to
capture the response when it comes back asynchronously and to correlate each
response with the corresponding request.

126 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

WebSphere Message Broker supports asynchronous service interaction using
MQ or JMS transportation. It also supports one-way Web services using SOAP
over HTTP 1.1 as a service requester and service provider. The requester does
not need to wait for a valid SOAP reply, but a simple 200 or 202 HTTP response
status code is the indicator that the request has been accepted by the HTTP
layer. Figure 6-10 is a simple example.

Figure 6-10 Sample message flow for asynchronous interaction pattern

In the example, the entire flow acts as a Web service provider that only accepts
requests that come in to the MQ queue. Within the flow, it sends two Web service
requests using an MQOutput node and an HTTPRequest node without waiting
for the reply. However, as HTTP is a synchronous protocol, the HTTPRequest
waits for a quick 202-Accept or 200-OK empty HTTP reply from the one-way
service provider. The HTTPRequest node treats the 200 series status codes as a
success and the response is routed to the out terminal of the node.

Request-response
This is possibly the most widely used scenario in an asynchronous or
synchronous mode. When it is synchronous, the requester sends the request to
the receiver or server application, waits for the reply, and then goes on with its
work. The requester must wait for the reply or feedback. In no reply is received
after a certain period of time, a time-out exception will be raised to handle the
error. For example, the customer submits a balance query command on the ATM
and waits for the reply from the core-banking CICS system.

Figure 6-11 Sequence diagram for request-response interaction pattern

 Chapter 6. WebSphere Message Broker in SOA 127

WebSphere Message Broker provides options for synchronous interaction both
as a requester and a provider over a variety of transport protocols. Figure 6-12
shows a sample of a request-response implementation with WebSphere
Message Broker.

Figure 6-12 Sample message flow for synchronous interaction pattern

In this message flow, WebSphere Message Broker is itself a Web service
provider over the MQ transportation protocol. It also acts as a Web service
requester within the flow twice, once over HTTP and a second time over MQ. All
interactions are synchronous.

Aggregation
Aggregation is the generation and fan-out of related requests derived from a
single input message and the fan-in of the corresponding replies to produce a
single aggregated reply message. For example, a customer places an order from
the Internet. The broker constructs several independent requests to all of the
suppliers involved in fulfilling the order, and then consolidates the results into one
response to the customer about the estimated delivery time.

Figure 6-13 Sequence diagram for aggregation interaction pattern

Several aggregation nodes are supplied to provide this capability. They are:

� AggregateControl node
� AggregateRequest node
� AggregateReply node

128 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

A general scenario, shown in Figure 6-14, contains a request fan-out message
flow and a response fan-in message flow.

Figure 6-14 Aggregation request fan-out message flow

 Chapter 6. WebSphere Message Broker in SOA 129

When a composite request comes in and arrives at the AGGR_SAMPLE_IN
input node, it is manipulated and decomposed into four separate requests that
are sent to different services to get fulfilled. Some control information about the
aggregation is saved in the local environment by the AggregationControl node
and AggregateRequests node. This information is necessary for aggregating the
replies by the AggregateReply node in the fan-in message flow below.

Figure 6-15 Aggregation reply fan-in message flow

Once the requests are sent to their corresponding service provider, the
AggregateReply node keeps track of the responses. After all replies come back
to the AGGR_SAMPLE_REPLY input node (within the specified time-out period),
control is passed to the BuildReply node to construct the final composite reply
message, which is sent back to the service requester.

In WebSphere Message Broker V6, the aggregate nodes are based on MQ store
for aggregation status. Database tables are no longer required to keep track of
the aggregation state, thus improving the aggregation performance.

Publish/subscribe (pub/sub)
Publish/subscribe involves the sending of data by one application to any number
of receivers. This introduces a much more complex relationship between the
sender and the receiver, where there is an abstraction between them so that they
are unaware of each other. This abstraction layer is usually provided by a broker

Note: For more information about aggregation nodes, refer to Aggregation
Sample in the Sample Gallery of WebSphere Message Broker Toolkit.

130 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

service, which manages incoming data (publications) from sending applications
(publishers) and matches them to interested receivers (subscribers). The broker
then forwards the data to the registered subscribers.

Figure 6-16 Sequence diagram for pub/sub interaction pattern

The correlation between publishers and subscribers is defined by using topics,
which are contained in a hierarchical arbitrary namespace (that is, application
defined). Subscribers register interest in a topic (or topics) with the broker, and
publishers publish messages using those topics. The names of topics usually
relate to the information carried within them. The broker routes publications on
particular topics to all those subscribers that have registered an interest in those
topics.

For example, a broker publishes the stock price for different companies using
different topics, one per company. Users only subscribe to the topic that
corresponds to the company they are interested in. The users receive a notice
when information arrives on the topic.

In a WebSphere Message Broker scenario, typically a publish/subscribe system
has more than one publisher and more than one subscriber, and often more than
one broker. An application can be both a publisher and a subscriber. The
publisher application generates a message that it wants to publish and defines
the topic of the message. A message flow running in the broker retrieves the
message from its input node and passes the message to a Publication node for
distribution to all subscribers that have registered an interest in the topic. A user
name server is provided to achieve the security control on topics.

The input node might be one of the following built-in nodes:

� An MQInput node, which represents a WebSphere MQ queue

� A Real-timeInput node, which receives messages from a JMS application
using WebSphere MQ Real-time Transport

� SCADAInput, which represents a SCADA input port

 Chapter 6. WebSphere Message Broker in SOA 131

A subscriber registers a request for a publication by specifying one of the
following items:

� The topics of the published messages that it is interested in.

� The subscription point from which it wants to receive publications.

� The content filter that should be applied to the published message.

� The name of the queue (known as the subscriber queue) on which
publications that match the criteria selected should be placed. This can be the
name of a cluster queue so that publications can be distributed to clustered
subscribers.

6.2.7 Integration with other enterprise information systems

An ESB should have the capability to interact with the existing enterprise
information systems within the enterprise. There are many adapters available for
interaction with other components within the environment, in particular off the
shelf applications like Siebel®, PeopleSoft®, SAP R/3®, and also IBM enterprise
environments, for example, CICS Transaction Server and IMS.

WebSphere Message Broker supports integration with WebSphere Business
Integration Adapters (JMS based) to interact with existing enterprise information
system.

WebSphere Message Broker also provides the CICSRequest node
in SupportPac IA12 to synchronously execute CICS programs from
a message flow. The node takes an input message tree and
executes a CICS External Call Interface (EXCI) request.

By configuring the properties of the CICSRequest node, you specify the
communication area (known as COMMAREA) and the CICS program name used
in the CICS EXCI request. The COMMAREA returned is placed in the message
tree. The location of the sent COMMAREA in the input message tree and the
returned COMMAREA in the output message tree may be specified by properties
of the node.

Other CICS control parameters are also specified by properties of the node, for
example, the CICS user ID, program name and transaction identifier to be used.

Errors in the CICS programs, or in the EXCI interface, are reported back to the
message flow and may optionally be directed to an error terminal or result in a
failure.

The CICSRequest node is supported only by brokers running on a z/OS system.

132 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

6.2.8 Quality of service (QoS) support

From an architecture point of view, an ESB should only provide capability to
support service virtualization, but there are always a lot of quality of service
issues affecting an ESB. Some important QoS aspects relevant to an ESB are:

� Authentication and authorization
� Non-repudiation and confidentiality
� Transactions
� Various assured delivery paradigms
� Performance and throughput
� High availability
� Logging, metering, and monitoring
� Integration to systems management and administration tooling

More information related to security and transaction features provided by
WebSphere Message Broker are discussed in 6.5, “Security considerations” on
page 159, and 6.6, “Transaction considerations” on page 162.

6.2.9 Service Registry access

As the number of services in SOA infrastructures increases, it becomes
increasingly important to have a system of services that can do the following:

� Find and publish services.
� Manage service life cycle.
� Support policy-driven service interactions.
� Change notification.
� Central service metadata repository.

A Service Registry manages the service metadata, enabling selection,
invocation, management, governance, and reuse of services leading to a
successful SOA. As the service backbone in a SOA architecture, the ESB should
have the full ability to access the Service Registry in the enterprise.

SupportPac IA9L is provided to enable WebSphere Message Broker to access
WebSphere Service Registry and Repository from within the message flow, thus
providing service location transparence capability and flexible service
deployment and management.

Note: For more information about WebSphere Message Broker support on
integrating with WebSphere Service Registry and Repository, refer to the
WebSphere Service Registry and RepositoryWebSphere Service Registry
and Repository Handbook, SG24-7386.

 Chapter 6. WebSphere Message Broker in SOA 133

http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html?Open

6.2.10 Ease of administration

An ESB should be easy to manage. WebSphere Message Broker includes the
Message Brokers Toolkit, an administration tool that provides both development
and runtime administration capabilities. See Figure 6-17.

Figure 6-17 Message Brokers Toolkit

In addition to using the graphical interface of the Message Brokers Toolkit, you
also have the following options:

� SupportPac IS02: WebSphere Message Broker Administrator Explorer
Plug-in for MQ Explorer

This SupportPac enables the WebSphere MQ Explorer to perform some
common WebSphere Message Broker administrative tasks from within the
MQ Explorer without installing the Message Brokers Toolkit, but provides a
more friendly user interface than the command line.

134 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

For more information see:

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24012457&loc=en
_US&cs=utf-8?=en

� Configuration Manager Proxy API

The Configuration Manager Proxy (CMP) is an application programming
interface that your applications can use to control broker domains through a
remote interface to the Configuration Manager. More information about the
CMP can be found in the WebSphere Message Broker Information Center at:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/topic/com.ibm
.etools.mft.doc/ae20620_.htm

6.3 Web service support in WebSphere Message Broker

WebSphere Message Broker, as a universal message hub, supports many Web
service standards. With WebSphere Message Broker, you can develop message
flows to work with SOAP messages over any of the supported transports,
including HTTP or HTTPS, JMS, or WebSphere MQ transportation.

6.3.1 Choose the message domain for SOAP

Because SOAP is an XML message format, your message flow would use one of
the message domains XMLNS, XMLNSC, or MRM. If your Web service uses
SOAP with attachments, you would have to use the MIME domain. Both SOAP
1.1 and 1.2. are supported by WebSphere Message Broker V6.

MRM domain
In previous versions of WebSphere Message Broker, the term MRM, short for
Message Repository Manager, represented the component of the Configuration
Manager that managed message set definitions in the message repository. In
Version 6.0, there is no Message Repository Manager. In V6, MRM is just a
name for a message domain. MRM can be used for modeling a wide range of
messages. Its features includes:

� Support for modeling messages from applications written in C, COBOL, PL/I,
and other languages, using the Custom Wire Format (CWF) physical format.
This support includes the ability to create a message model directly from a C
header file or COBOL copybook.

� Support for modeling XML messages, including those that exploit XML
namespaces, using the XML Wire Format (XML) physical format. This
support includes the ability to create a message model directly from an XML
DTD or XML schema file.

 Chapter 6. WebSphere Message Broker in SOA 135

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/topic/com.ibm.etools.mft.doc/ae20620_.htm
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24012457&loc=en_US&cs=utf-8?=en

� Support for modeling formatted text messages, perhaps with field content
identified by tags or separated by specific delimiters or both, using the Tagged
Delimited String Format (TDS) physical format. This includes industry
standards such as HL7, SWIFT, EDIFACT, and X12.

� Easy transformation from one physical format to another. For example, a
model can be created by importing a C header file, and the equivalent XML
schema can be generated for use by a different application.

� The MRM domain comes with a specialized parser that is used by runtime
products such as WebSphere Message Broker. Once you have completed
your message set, you generate a message dictionary, which is deployed to
the runtime product. The MRM parser then uses the dictionary to parse and
write messages that are defined within that message set.

� The MRM parser can perform runtime validation of messages against the
deployed dictionary.

XML domains
The XML domains can be used for modeling messages conforming to the W3C
XML standard.

� XMLNSC domain

This domain may be used for any XML message, including those that use
XML namespaces. The accompanying parser uses XML4C under the cover
and reduces the amount of memory taken up by the logical message tree
created from the parsed message. Its default behavior is to discard
non-significant whitespace and mixed content, comments, processing
instructions, and embedded DTDs, though controls are provided to retain
mixed content, comments, and processing instructions if desired.

� XMLNS domain

If the XMLNSC domain does not meet your requirements, use this
namespace-aware domain.

� XML domain

This domain is not namespace aware and is provided for compatibility with
earlier releases of WebSphere Message Broker.

MIME domain - SOAP with attachments
SOAP with attachments is the W3C standard for Web services that need to
incorporate attachments such as image data in their messages. It is based on
multipart MIME, in which a message consists of a number of parts, each of a
defined type and delimited by a boundary string. The first part is typically a
regular SOAP (XML) message and refers to the other parts (the attachments),
which may contain any type of data (encoded if necessary).

136 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The broker provides a new MIME domain and parser. The MIME document
format and the corresponding logical tree are described in the online help. The
payload for each part is held as BLOB data. Canned message definitions support
ESQL content assist for MIME when creating message flows. You select the
appropriate message definition and import it into a message set using the New
Message Definition File wizard and the IBM Supplied Messages option.

Typically you would create a message flow using the MIME domain to parse the
outer level MIME envelope and then further parse the resulting parts in ESQL or
using a ResetContentDescriptor node. For example, you might use the MRM
XML parser to parse the first part of the message as SOAP.

The MIME domain that is implemented in WebSphere Message Broker does not
support the full MIME standard, but it does support the MIME formats in use in
message-based applications, including SOAP with Attachments and RosettaNet.

Which message domain to choose
Choose the domain that best fits your messaging needs:

� If your messages are in XML, use either the XML Wire Format in the MRM
domain or use the XMLNS or XMLNSC domains. Usually, you will find that the
MRM domain offers more flexibility, for the following reasons:

– You can generate a message dictionary for use by the MRM parser in
WebSphere Message Broker. This enables the MRM parser to interpret
the data in an XML message in an advanced manner. For example:

• The dictionary indicates the real data type of a field in the message,
instead of always treating it as a character string.

• The MRM parser can validate XML messages against the dictionary.

• Base64 binary data can be automatically decoded.

• Date and time information can be extracted from a data value using a
specified format string.

– You have extra control over the rendering of your data. For example, you
might have a data field that is rendered as an XML element in one
message, and as an XML attribute in another message. Or you could have
a data field that is known by a particular name in one message, and a
different name in another message. This advanced rendering can be
specified using MRM XML Wire Format properties.

– You can share a common logical message structure between physical
formats. For example, if you have a message that is created by a COBOL
application, you can use an MRM XML Wire Format to easily and quickly
define the equivalent XML message.

 Chapter 6. WebSphere Message Broker in SOA 137

� If none of the above reasons is your concern and you really need a better
performance or less memory consumption, use XMLNSC.

� Never use the XML domain for new message flows. The XML domain is only
supplied to provide compatibility.

� If your messages come from an application written in a language such as C,
COBOL, or PL/I, or consist of fixed-format binary data (possibly including
null-terminated strings), use the Custom Wire Format in the MRM domain.

� If your messages consist of formatted text, perhaps with field content
identified by tags or separated by specific delimiters or both, use the Tagged
Delimited String Format in the MRM domain.

� If you use JMS messages, use either the XML domain or one of the JMS
domains.

� If your message has multiple parts or uses SOAP attachment, use MIME
message domain.

Alternatively, you can specify your own domain. You would typically do this if you
were using WebSphere Message Broker and had written a user-defined parser
to parse your messages instead of using the MRM or XML parsers.

6.3.2 Processing SOAP messages

SOAP consists of a standard XML message wrapper, called an envelope, that
embeds payload data within the header and body elements. Example 6-5 shows
a simple SOAP message. Typically the business data appears in the mandatory
body element and collateral information (transaction IDs, security tokens, and so
on) appear in the optional header element. A simple SOAP message is shown in
Example 6-5.

Example 6-5 SOAP example

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2001/12/soap-envelope">

<env:Header>
<!-Set of headers processed before Body -->

</env:Header>
<env:Body xmlns:m="http://www.18m.com/salary">

<m:GetSalary>
<m:EmpSerial>902688</m:EmpSerial>
<m:DeptCode>ZSW</m:DeptCode>

</m:GetSalary>
</env:Body>

</soap:Envelope>

138 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The SOAP envelope has its own namespace. The WS-I recommends that the
application-specific data that occurs in the SOAP body and header are also
namespace-qualified.

In this section, we provide several approaches to modelling the data in the SOAP
envelope, including the header and payload message in the envelope body, so
the message can be accessed and manipulated in a message flow.

When importing WSDL into a message set project, a wizard will help you
generate the message model for the SOAP message, but you will find that the
entire SOAP body becomes a wildcard element and the internal structure is
invisible in the message model (see Figure 6-18). Using the wildcard element is
to ensure that at least the SOAP structure can be extracted correctly even if the
data in the SOAP body does not match the message definition perfectly.
However, this brings us a lot of difficulties when manipulating the SOAP
message.

Figure 6-18 SOAP envelope body is a wildcard element in the message tree

There are two ways to make the internal structure available, as discussed next.

Accessing the SOAP body using a submap
This approach creates a submap in the Mapping node editor to map the wildcard
message to a message definition somewhere else in the message set.

 Chapter 6. WebSphere Message Broker in SOA 139

A new submap can be created by selecting Create New Submap from the
context menu of the wildcard mapping element (Figure 6-19).

Figure 6-19 Create submap on wildcard element in SOAP message

140 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Then select the concrete item to replace the source wildcard (Figure 6-20).

Figure 6-20 Wildcard Specification Wizard

Then you can do the specific mapping in the submap editor. Using this approach
you can perform the mapping on the inside structure of the SOAP body.

Modelling SOAP envelope using message definition linking
A second approach is to link the body of the message definition to the whole
SOAP message definition.

 Chapter 6. WebSphere Message Broker in SOA 141

To do this, open the SOAP message definition file by double-clicking it. The
SOAP body is a wildcard element in the message definition (Figure 6-21).

Figure 6-21 The SOAP body is a wildcard message in the message definition

Select the Properties tab at the bottom of the message definition editor, and
import or include the body message definition file into the SOAP message
definition (Figure 6-22). Use import if the two messages are not in the same
namespace. Use include if they are in the same namespace.

Figure 6-22 Import other message definition to the SOAP message definition

142 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Select the message definition file for the SOAP body (Figure 6-23).

Figure 6-23 This is the SOAP body message definition file

Once the import is complete, return to the Overview tab of the message definition
editor and add the body message under the SOAP body wildcard element.

 Chapter 6. WebSphere Message Broker in SOA 143

Right-click the message in the body and select Add Message from the pop-up
menu (Figure 6-24).

Figure 6-24 Add imported message to the SOAP body

Select the concrete message from the drop-down box.

Figure 6-25 Select the concrete message, which is the SOAP body

144 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Now the message definition is complete and both the SOAP header and the
SOAP body can be manipulated, allowing you to use any mediation capability to
operate on any part of the SOAP message.

Figure 6-26 The internal structure of the SOAP body is revealed

You must make sure that the incoming SOAP body message matches the
definition. Otherwise a validation exception will occur.

Using SOAPExtract and SOAPEnvelop nodes
If you are not interested in the SOAP header information, SupportPac IA9O is
exactly what you want. WebSphere Message Broker V6.0 Fixpack 3 is needed to
provide runtime support for these two nodes.

Figure 6-27 SOAPEnvelope node and SOAPExtract node

The new SOAPExtract and SOAPEnvelope nodes are message-processing
nodes for use within a message flow. Their aim is to simplify the processing of
SOAP messages in two respects:

� First, they allow the flow developer to remove or add SOAP envelopes from a
SOAP message at either default or user-specified locations. This makes it
possible to just deal with the SOAP message payload (child of body).

 Chapter 6. WebSphere Message Broker in SOA 145

� Second, the SOAPExtract node allows routing of different SOAP operations to
different parts of the message flow, making it easier to handle specific types
of SOAP requests without explicit programming logic.

The most common scenarios using these SOAP envelope processing nodes are
as follows:

� As a Web service requester

This flow may receives a simple XML input message on an MQInput node,
and passes it through a SOAPEnvelope node to create a new SOAP envelop
and add it to the message. Then it is passed to a HTTPRequest node, which
calls a Web service URI. When the message returns back to this flow it is
passed to a SOAPExtract node, which removes the SOAP envelope from the
message for simplified processing. It then passes to a Compute node, which
removes the HTTP headers, creates an MQMD, and copies across the
payload. The output message is then routed to the MQOutput node.

Figure 6-28 Use SOAP nodes to construct a SOAP envelope and call a Web service

� As a Web service provider

This flow can be called by a Web service client. The message is received on
the URL of the HTTPInput node and passed to the SOAPExtract node, which
removes the SOAP envelop for simplified processing and stores it in the
LocalEnvironment. It is then passed to a Java Compute node, which
generates an output message by some business logic. This is then passed to
a SOAPEnvelope node, which adds the SOAP envelope stored earlier in the
Local Environment to the message. Finally, the message is passed to the
HTTPReply node, and the message returns back to the requester client.

Figure 6-29 Use SOAP nodes to make the message flow a Web service provider

6.3.3 WSDL support

The format of the SOAP messages exchanged between a Web service client and
a Web service provider is described using WSDL.

146 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

WebSphere Message Broker V6 supports WSDL 1.1. Using the Message
Brokers Toolkit, you can import WSDL using the WSDL Importer to create a
broker message model. A message model can help you develop your message
flows and offers runtime validation if your flow uses the MRM domain. You can
also generate a WSDL definition from an existing message model using the
WSDL Generator. A WSDL editor is provided for editing WSDL files.

The mapping between the WSDL message definitions and the broker message
model depends on the WSDL style, document, or Remote Procedure Call (RPC).
In the case of RPC-style WSDL, additional messages are generated based on
the WSDL operation names.

Message Broker Toolkit V6.0.2 will support the drag-and-drop operation of a
WSDL file to automatically generate the nodes for the processing flow. If the
message flow is the Web service provider, it will generate HTTPInput and
HTTPOutput nodes linked with the SOAPEnvelope and SOAPExtract nodes. If
the message flow is the Web service requestor it will generate the corresponding
HTTPRequest node linked with SOAP processing nodes.

Generating and importing WSDL
In WebSphere Message Broker V6, the WSDL generator offers a range of
generation options: single and multiple file formats, and document-literal and
RPC-literal WSDL styles.

You invoke the WSDL Generator as the New WSDL Definition wizard. The WSDL
Generator wizard lets you generate a WSDL definition from a message model.
WSDL generation is driven using message categories, and you need to create a
message category for each WSDL operation in your Web service:

� For document-style WSDL, the messages you include in your category
definitions will be the payload messages expected in your SOAP documents
at run time.

� For RPC-style WSDL, the payload of your SOAP body is based on the
category name itself (the WSDL operation), and the messages you include in
your category definitions define the names of its parameters.

Where possible, use document-style WSDL to improve interoperability.

The enhanced importer of WSDL in the Message Brokers Toolkit can accept a
variety of WSDL document styles, as mentioned above. Before importing the
WSDL to your message set project, you must make sure that a XML physical
format layer has been added to your message set and the namespace support
has been enabled.

 Chapter 6. WebSphere Message Broker in SOA 147

In order to improve Web services interoperability, you should avoid unnecessary
customization of the XML physical format layer for messages participating in
Web services processes. Any required SOAP envelope and SOAP encoding
message definitions are automatically added to your message set during the
import. If required, you can also import these manually via the New Message
Definition File wizard by selecting the new IBM-supplied message option.

WS-I compliance validation for WSDL
The W3C standards for Web services allow for more than one interpretation, and
the Web services Interoperability Organization (WS-I) introduced a separate
standard called the Basic Profile to tighten up their use to improve Web service
interoperability. For example, the WS-I Basic Profile does not allow the use of
SOAP encoding, even though this is often seen in practice.

The WS-I Validator can be used to check your WSDL definitions against the
Basic Profile. The validator can be run either manually against a specific WSDL
resource in the workbench, or automatically when generating or importing a
WSDL definition. You are able to set the validation failure action to either ignore,
warn, or error.

6.3.4 Web service transport capabilities

The transport protocol for the Web service SOAP data in WebSphere Message
Broker can vary. The most widely used protocols for Web service transport are
HTTP, MQ, and JMS.

HTTP or HTTPS
The HTTP nodes are shown in Figure 6-30.

Figure 6-30 Built-in HTTP nodes

The HTTPInput and HTTPOutput nodes along with the SOAP handling technique
can be used to make a message flow that provides an HTTP Web service
endpoint to the outside world.

The HTTPRequest node can send a request out and wait for the reply. This can
be used in a message flow to call a Web service and enrich the message with the
response from the Web service provider.

148 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

In WebSphere Message Broker V6, the HTTP nodes have been enhanced to
support HTTP 1.0, HTTP 1.1 (default port is 7080), and HTTPS (default port is
7083).

HTTP 1.1 provides capabilities such as chunked encoding and persistent
connections, which allows multiple requests to be sent using the same TCP
connection. This is especially important in the context of HTTPS. HTTPS
supports SSLv3, SSLv2, and TLS protocol. You can specify the SSL ciphers to
be used for the secure connection.

In the HTTPRequest node, you can specify the method for the request, GET or
POST. You can use the message domain MRM with XML, XMLNS, or XMLNSC
on HTTP nodes to handle the SOAP data. Note that these are general
capabilities since V5.

Figure 6-31 HTTPS support and certificates

WebSphere Message Broker includes a Java Runtime Environment (JRE™) that
supplies a keystore manipulation program, which is called keytool. To allow
HTTPInput and HTTPReply nodes to interact with the requester using the
HTTPS protocol, you must generate a testing certificate using keytool. For
production, you need to purchase an official certificate from a certificate
organization.

Example 6-6 shows a sample of using the keytool to generate a key store file and
test certificate.

Example 6-6 Commands to generate a testing purpose certificate

C:\IBM\MQSI\6.0\jre\bin>keytool -genkey -keypass <password> -keystore
<keystore_filename> -alias certalias
Enter keystore password: <password>
What is your first and last name?
 [Unknown]: YUNPENG GE
What is the name of your organizational unit?

cacerts

keystore

Message Broker

Outgoing HTTPS request needs to import suitable
certificate into cacerts

To accept incoming HTTPS request, need to generate
or import a certificate in the keystore

 Chapter 6. WebSphere Message Broker in SOA 149

 [Unknown]: IBM SWG
What is the name of your organization?
 [Unknown]: IBM CHINA
What is the name of your City or Locality?
 [Unknown]: CHINA
What is the name of your State or Province?
 [Unknown]: SHANGHAI
What is the two-letter country code for this unit?
 [Unknown]: CN
Is CN=YUNPENG GE, OU=IBM SWG, O=IBM CHINA, L=CHINA, ST=SHANGHAI, C=CN
correct? (type "yes" or "no") [no]: yes

The next step is to enable and configure SSL in WebSphere Message Broker.
The commands are shown in Example 6-7. The sample assumes that
WebSphere Message Broker is installed on a Windows® platform, but the steps
are almost identical for other platforms.

Example 6-7 Command to enable and configure SSL in WebSphere Message Broker

C:\IBM\MQSI\6.0\jre\bin>mqsichangeproperties WBRK6_DEFAULT_BROKER -b
httplistener -o HTTPListener -n enableSSLConnector -v true
BIP8071I: Successful command completion.

C:\IBM\MQSI\6.0\jre\bin>mqsichangeproperties WBRK6_DEFAULT_BROKER -b
httplistener -o HTTPSConnector -n keystoreFile -v <keystore_filename>
BIP8071I: Successful command completion.

C:\IBM\MQSI\6.0\jre\bin>mqsichangeproperties WBRK6_DEFAULT_BROKER -b
httplistener -o HTTPSConnector -n keystorePass -v <password>
BIP8071I: Successful command completion.

C:\IBM\MQSI\6.0\jre\bin>mqsichangeproperties WBRK6_DEFAULT_BROKER -b
httplistener -o HTTPSConnector -n port -v <SSL_port>
BIP8071I: Successful command completion.

Now you can create a message flow using an SSL-enabled HTTPInput node to
accept an incoming HTTPS request on the port you specified.

150 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 6-32 shows how SSL is enabled on an HTTPInput node.

Figure 6-32 Enable HTTPS on an HTTPInput node

 Chapter 6. WebSphere Message Broker in SOA 151

If your message flow acts as a client to send an HTTPS request through the
HTTPRequest node, you must locate a suitable certificate for the remote Web
service and import it into the cacerts file of your WebSphere Message Broker,
usually located at %MQSI_FILEPATH%\jre\lib\security. The commands used to
import the certificate are shown in Example 6-8.

Example 6-8 Commands to import certificate into the cacerts file

C:\IBM\MQSI\6.0\jre\bin>keytool -import -alias <key_alias> -file
<cert_filename> -keystore ../lib/security/cacerts -keypass changeit
Enter keystore password: changeit
Owner: CN=YUNPENG GE, OU=IBM SWG, O=IBM CHINA, L=CHINA, ST=SHANGHAI,
C=CN
Issuer: CN=YUNPENG GE, OU=IBM SWG, O=IBM CHINA, L=CHINA, ST=SHANGHAI,
C=CN
Serial number: 4576e4dd
Valid from: 12/6/06 10:42 AM until: 3/6/07 10:42 AM
Certificate fingerprints:

MD5: BD:02:29:7C:59:35:1C:BE:CD:54:D4:2D:EF:AA:A3:F4
SHA1: 7C:73:95:4A:BD:4E:C2:87:81:84:39:3A:46:9F:20:0F:DE:69:47:7C

Trust this certificate? [no]: yes
Certificate was added to keystore

MQ transport
Using WebSphere MQ as a transport provides a simple way to implement an
asynchronous Web service pattern. In some cases, using an MQ transport rather
than HTTP can improve client response time because the client does not wait for
a HTTP 200 or 202 response from the service provider. The MQ transport is also
more reliable thanks to the assured delivery provided by WebSphere MQ.

Figure 6-33 Part of built-in MQ nodes

Use the MQInput node to receive messages from clients that connect to the
broker using the MQ transport, and from clients that use the MQI and AMI
application programming interfaces. The MQInput node receives message input
to a message flow from a WebSphere MQ message queue defined on the

Note: The default password for cacerts file is changeit. You should change this
password as soon as possible by using the keytool utility.

152 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

broker's queue manager. The node uses MQGET to read a message from a
specified queue, and establishes the processing environment for the message. If
appropriate, you can define the input queue as a WebSphere MQ clustered
queue or shared queue.

Message flows that handle messages that are received across WebSphere MQ
connections must always start with an MQInput node. You can set the properties
of the MQInput node to control the way that messages are received, by causing
appropriate MQGET options to be set. For example, you can indicate that a
message is to be processed under transaction control. You can also request that
data conversion is performed on receipt of every input message.

Use the MQOutput node to send messages to clients that connect to the broker
using the MQ transport and that use the MQI and AMI application programming
interfaces. The MQOutput node delivers an output message from a message
flow to a WebSphere MQ queue. The node uses MQPUT to put the message to
the destination queue or queues that you specify. You can configure the
MQOutput node to put a message to a specific WebSphere MQ queue defined
on any queue manager accessible by the broker's queue manager, or to the
destinations identified in the LocalEnvironment (also known as the
DestinationList) associated with the message.

 Chapter 6. WebSphere Message Broker in SOA 153

For message flows working directly with WebSphere MQ, a new MQGet node
enables messages to be retrieved midway through a message flow, providing a
convenient way for a message flow to invoke a Web service over the WebSphere
MQ transport and then receive the response within the same flow. A sample
usage for enriching the message using MQGet node in the middle of the
message flow is shown in Figure 6-34.

Figure 6-34 A sample usage of enriching the message using MQGet node

InputRoot

Properties MQMD XML

A

B

OutputRoot

Properties MQMD XML

A

B

ResultRoot

Properties MQMD XML

C

D

C

D

copyMessage=”copyEntireMessage”
generateMode=”message”
outputDataLocation=”OutputRoot.XML.A”
resultDataLocation=”ResultRoot.XML.C”

154 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

6.3.5 Java Message Service (JMS) transport

WebSphere Message Broker V6 introduces JMSInput and JMSOutput nodes,
enabling a message flow to send messages to and receive messages from JMS
destinations. These nodes behave like JMS clients and work with the
WebSphere MQ JMS provider, WebSphere Application Server V6 service
integration bus, and any other JMS provider that conforms to JMS Specification
V1.1.

Figure 6-35 Built-in JMS nodes

 Chapter 6. WebSphere Message Broker in SOA 155

The exchange of JMS messages is achieved by using the JMSInput and the
JMSOutput nodes. These two nodes allow a message flow to receive messages
from JMS destinations or to send messages to JMS destinations. These
destinations are accessible through connection to a JMS provider. After the
message is received, the JMSInput node will populate a message tree with the
format shown in Figure 6-36, and the message payload can be parsed and
manipulated using a different message domain and parser.

Figure 6-36 Representation of messages across the JMS Transport

Two transformation nodes allow the JMSInput and JMSOutput nodes to
inter-operate with nodes that expect a propagated message to contain an MQMD
(and RFH2) header. These nodes are the JMSMQTransform node and the
MQJMSTransform node.

The JMSMQTransform node takes the output of the JMSInput node, which is in
native JMS format, and produces a message that can be handled by an
MQOutput node, which is in MQ JMS format.

One of:

BLOB
XML
XMLNS
XMLNSC
MRM
jms.map
jms.stream
MIME
IDOC

Payload
Type JMSXUserID

JMSXApplD
JMSXDeliveryCount
JMSXGroupID
JMSXGroupSeq

Message
_MetaData

Standard
_Properties

JMSDestination
JMSDeliveryMode
JMSExpiration
JMSPriority
JMSTimeStamp
JMSMessageID
JMSCorrelationID
JMSReplyTo
JMSType
JMSRedelivered

Header
_Values

Variable by
Application

Application
_Properties

Variable by
JMS Provider
All begin with
JMS_<Vendor Name>

Provider
_Properties

Properties Body
(last child of root)

Root

JMS Transport

Transport_Folders

156 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The MQJMSTransform node transforms a message with an MQMD (and RFH2)
header into a message that is expected by the JMSOutput node. See the
transform diagram in Figure 6-37.

Figure 6-37 Mapping between native JMS message and a MQ JMS message

6.4 Using message flows for mediation

A message flow in WebSphere Message Broker is not the appropriate place to
implement business logic in the form of a Web service. This is better done in an
application server such as WebSphere Application Server.

JMS Message
Tree

MQMD / RFH2
Message Tree

Header

Properties

Data Buffer

MQMD

Data

Map

Copy

RFH2

User Data

 Chapter 6. WebSphere Message Broker in SOA 157

When using WebSphere Message Broker as an ESB, message flows can front
the Web service to perform additional processing or routing. Ways to use the
Web services capabilities of WebSphere Message Broker to mediate messages
as they pass through the ESB include:

� Using a message flow as a Web service requester, invoking existing Web
services from a message flow (Figure 6-38)

Figure 6-38 Outline of WebSphere Message Broker as service requester

� Acting as an intermediary to providing a new interface or adding some value
to an existing Web service (Figure 6-39)

Figure 6-39 Outline of WebSphere Message Broker as intermediary

158 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� Implementing a Web service interface to an existing application (such as an
MQ-enabled application) (Figure 6-40)

Figure 6-40 Outline of WebSphere Message Broker as wrapper

6.4.1 Service Registry lookup

To gain an understanding of Service Registry lookup and review an associated
scenario to this topic, refer to 16.8.5 of the WebSphere Service Registry and
Repository Handbook, SG24-7386:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html

6.5 Security considerations

There are many aspects to be considered before implementing WebSphere
Message Broker. For example:

� Is security in the communications infrastructure acceptable, for example, in
the use of Secure Socket Layer mutual authentication between EAI
middleware servers, or in the use of the HTTPS protocol?

� Is individual, point-to-point security acceptable between participating
systems, or is an end-to-end model required? For example, is there a need to
propagate client identity through intermediate systems such as brokers to the
end providers of service implementations?

� Is security in the application layer acceptable? For example, can the client
code perform basic HTTP authentication with a user ID and password, or can
it pass such information to the service as application data?

 Chapter 6. WebSphere Message Broker in SOA 159

http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html

� Is compliance to a security standard security, such as Kerberos or
WS-Security, required?

In this section, we discuss the security options that are provided by WebSphere
Message Broker.

6.5.1 WebSphere Message Broker security

This section discusses areas of security that are important in the development
and execution of message flows.

Authorization for configuration tasks
Authorization is the process of granting or denying access to a system resource.
For WebSphere Message Broker, authorization consists of controlling who has
permission to access WebSphere Message Broker resources and ensuring that
users who attempt to work with those resources have the necessary
authorization to do so.

For more information about this subject refer to:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic
=/com.ibm.etools.mft.doc/ab00025_.htm

Authorization to access runtime resources
Runtime resources are objects that exist at run time in the broker domain. Each
runtime object has an Access Control List (ACL), which determines which users
and groups can access the object. The ACL entries for an object can permit a
user or group to view the object or view and modify the object from the
workbench, the command line, or using the Configuration Manager Proxy (CMP).

Use topic-based security to control which applications in your publish/subscribe
system can access information about which topics. For each topic to which you
want to restrict access, you can specify which principals (user IDs and groups of
user IDs) can publish to the topic, and which principals can subscribe to the
topic. You can also specify which principals can request persistent delivery of
messages.

For more information about enabling topic-based security, refer to the InfoCenter
chapter “Enabling topic-based security.”

Note: These questions represent the aspects that should be considered in the
ESB solution, but some of these questions usually do not have an answer. It
highly depends on the environment and enterprise architecture.

160 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.etools.mft.doc/ab00025_.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.etools.mft.doc/ab00025_.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.etools.mft.doc/ab00025_.htm

Communication security
You can use the WebSphere MQ channel security exit to ensure that the
participant on the other end of the channel is genuine, or that the communication
between the Message Brokers Toolkit and the Configuration Manager is secure.
Alternatively, you can use SSL when communicating between the Configuration
Manager Proxy and the Configuration Manager.

For an overview of security exits, refer to the section “Channel security exit
programs” in the WebSphere MQ Intercommunication manual. Visit the following
Web site:

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibi
n/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658700

6.5.2 Web services security

New standards and applications for Web services security are being continually
developed and deployed, making it a dynamically changing area. Web services
security as of today can be achieved at two levels:

� Security at the transport level

Transport security addresses the non-functional requirement that the
communication between a customer and his business partner should not be
able to be viewed by a third party as it travels on the Internet.

Security at the transport level uses the built-in security features of transport
technologies like HTTP, IBM WebSphere MQ, and so on. WebSphere
Message Broker now supports SSL authentication for the HTTP nodes.

This section discuss the security of Web service transportation, and the
WebSphere Message Broker provides three types of transportation for the
Web service: HTTP, MQ, and JMS. But JMS standard does not contain
security suggestions, so only HTTP and MQ are discussed here.

Messages using WebSphere MQ transport or JMS Message over MQ can be
secured by the MQ channel secure facility. For more information about MQ
channel security, refer to WebSphere MQ Security manual at:

http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658801

� Security at the SOAP or messaging level

This level is currently being extensively researched and specifications are
being developed by groups like W3C or OASIS. This involves usage of digital
signatures, certificates, and so on at the XML document level.

One of the examples would be WS-Security. Generally speaking,
WS-Security is a W3C standard and defines how a Web service message can

 Chapter 6. WebSphere Message Broker in SOA 161

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658801
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34658700

be encrypted and decrypted at the SOAP message level to address the
requirements of message non-repudiation and avoid messages from being
tampered with.

From the product design point of view, WebSphere Message Broker as an
ESB is not the right place to implement WS-Security functionality. However,
WebSphere Message Broker is able to deliver the SOAP message with
security credentials to its destination.

6.6 Transaction considerations

Transactions are a fundamental concept in building reliable distributed
applications. A transaction is a mechanism to insure all the participants in an
application achieve a mutually agreed upon outcome. Traditionally, transactions
have held the following properties, collectively referred to as ACID:

� Atomicity: If successful, then all of the operations happen, and if
unsuccessful, then none of the operations happen.

� Consistency: The application performs valid state transitions at completion.

� Isolation: The effects of the operations are not shared outside the transaction
until it completes successfully.

� Durability: Once a transaction successfully completes, the changes survive
failure.

A message flow consists of the multiple nodes that each perform a function, for
example:

� An input queue
� The message flow
� Some update to database tables
� One or more output queues

In any specific application, especially a critical application, we want the message
flow to be transactional. That is, all of the elements in the message flow should
work in coordination. For example, if an update database operation fails at the
last step, the message flow should have the capability to roll back all of the
changes done in the flow before the database update. In this context, this is a
global transaction that involves multiple resource managers, typically (but not
limited to) JMS resources and database resources.

WebSphere Message Broker supports global transactions. It is possible to be
selective as to which resources are included within the message flow’s
transaction and which are a part of their own transaction. Complex transaction
processing, where parts of a message flow can be isolated within separate

162 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

transactions, can also be implemented in WebSphere Message Broker. There is
also the ability to have try/catch blocks of mediation processing.

6.6.1 Message flow transaction

Message flows support two transaction styles:

� Coordinated message flows ensure that all updates to resources are
committed or rolled back together within a single transaction.

� Uncoordinated message flows allow updates to resources to occur
independently. The updates are not affected by the overall success or failure
of the flow.

Coordinated message flows
A message flow that includes interaction with an external database or other
recoverable resource can be configured so that all of its processing is
coordinated within a single global transaction. This coordination ensures that
either all processing is successfully completed, or no processing is completed.
The transaction is committed (if all processing is successful) or rolled back (if at
least one part of the processing is unsuccessful). This means that all affected
resources (queues, databases, and so on) are maintained in a consistent state,
and that data integrity is preserved.

Updates made by a coordinated flow are committed when the flow successfully
completes processing the input message. The updates are backed out if the
following are true:

� Any node within the flow throws an exception that is not caught by a node
other than the input node.

� The input node’s catch terminal is not connected.

To configure a message flow as coordinated, set the coordinated property on the
message flow.

For some input nodes (such as MQInput) or SCADA nodes, you can set the
transaction mode property on the nodes in the flow to automatic. This means that
messages will be part of the global transaction, and the flow marked as
transactional if the input message is persistent, and uncoordinated if the input
message is not persistent. Subsequent nodes in the flow that set the transaction
mode property to Automatic are included in the global transaction if the flow was
marked transactional by the input node.

Transaction coordination of message flows is provided on distributed platforms
by WebSphere MQ and on z/OS systems by RRS. Message flows are always

 Chapter 6. WebSphere Message Broker in SOA 163

globally coordinated on z/OS, regardless of whether the message flow’s
coordinated property is specified as coordinated.

Using a Java Compute node
Special attention must be paid when using a Java Compute node to perform a
database-related operation. If you use a JDBC type 4 driver to access the
database, the transaction is not supported, because the Java Compute node
only supports a non-XA type JDBC driver. However, you can use a
MbSQLStatement API to operate database tables, which fully supports
transactions.

If you catch the exceptions thrown by the broker in a Java Compute node, which
is inherit from MbException, you probably need to re-throw the exception.
Otherwise, the message is lost and the transaction is not rolled back. Generally, it
is not necessary to catch the exception in the Java Compute node.

Uncoordinated message flows
Uncoordinated flows are flows for which the Coordinated property is not set.
Updates to resources used by a uncoordinated flow are managed by the
separate resource managers. Some resource managers, such as WebSphere
MQSeries, allow updates to be made non-transactionally, or as part of a
resource-specific transaction. Other resource managers, such as database
managers, always use a resource-specific transaction. A resource-specific
transaction is a transaction whose scope is limited to the resources owned by a
single resource manager, such as a database or queue manager.

Resource-specific transactions are typically used only when there is just one type
of recoverable resource used in a flow. (An example of such a flow is one that
contains an MQInput and an MQOutput node, but that does not access any
databases.) Resource-specific transactions should not be used when there is
more than one resource and data integrity must be maintained.

Updates made to a resource accessed non-transactionally are committed
immediately. An MQInput node configured to be non-transactional removes
messages from the queue immediately, and if the flow fails the messages are
lost.

Some input nodes (such as MQInput) or SCADA nodes can be part of a
transaction, depending on the persistence of the input message, by setting the
transaction mode to automatic. Messages are made part of the transaction, and
the flow marked as transactional, if the input message is persistent, and
non-transactional if the message is not persistent.

164 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 7. WebSphere DataPower
appliances in SOA

This chapter explains how DataPower appliances can be used within an SOA
environment. The chapter is organized into the following topics:

� An overview of DataPower appliances, noting their SOA-related features

� Roles for DataPower appliances within the ESB patterns discussed earlier in
the book

� Combining DataPower appliances with a registry

� Descriptions of each of the DataPower appliance models

See Chapter 10, “Scenario: DataPower in an SOA” on page 323.

7

© Copyright IBM Corp. 2007. All rights reserved. 165

7.1 DataPower overview

In this section we take a moment to discuss the capabilities of the DataPower
appliances.

What the DataPower SOA Appliances are
IBM SOA appliances are purpose-built, easy-to-deploy network devices (shown
in Figure 7-1) that simplify, help secure, and accelerate XML and Web services
deployments while extending an SOA infrastructure.

Figure 7-1 DataPower appliances

The IBM WebSphere DataPower SOA Appliancesfamily contains 1U (1.75-inch
thick) rack-mountable network devices that deliver the following:

� Enhanced security

An easy-to-install and easy-to-maintain network appliance that can satisfy
both application and network operational groups, supporting current and
emerging security standards, as well as XML Web services standards
out-of-the-box. Key support includes, but is not limited to, the XML/SOAP
firewall, field-level XML security, data validation, XML Web services access
control, service virtualization, and SSL acceleration.

� Simplicity

Common message transformation, integration, and routing functions in a
network device, helping to cut operational costs, reduce complexity, and
improve performance.

� Acceleration

Drop-in solution that can streamline XML and Web service deployments,
helping lower total cost of ownership and accelerate return on your assets, as
you continue to move to SOA. SOA appliances are purpose-built hardware

XA35 XML Accelerator

XS40 XML Security Gateway

XI50 Integration Appliance

166 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

devices capable of offloading overtaxed servers by processing XML, Web
services, and other message format at wirespeed.

In summary, the IBM WebSphere DataPower SOA Appliancesoffer:

� 1U (1.75-inch thick) rack-mountable, purpose-built network appliances

� XML/SOAP firewalling, field-level XML security, data validation, XML Web
services access control, and service virtualization

� Lightweight and protocol-independent message brokering, integrated
message-level security and fine-grained access control, and the ability to
bridge mission-critical transaction networks to SOAs and ESBs

� High performance, multi-step, wirespeed message processing, including
XML, XSLT, XPath, and XSD

� Centralized Web services policy and service-level management

� WS-* standard support, such as WS-Security, SAML 1.0/1.1/2.0, portions of
Liberty Alliance protocol, WS-Federation, WS-Trust, XKMS, Radius, XML
Digital Signature, XML-Encryption, WSDM, WS-SecureConversation, SOAP,
WSDL, UDDI, and others

� Transport layer flexibility, which supports HTTP/HTTPS, MQ, SSL, FTP, and
others

� Scalable, wirespeed, any-to-any message transformation, such as arbitrary
binary, flat text, and XML messages, which include COBOL Copybook,
CORBA, CICS, ISO 8583, ASN.1, EDI, and others

There are three types of DataPower appliance available, each building on the
features of the last:

� IBM WebSphere DataPower XML Accelerator XA35

Accelerates common types of XML processing by offloading this processing
from servers and networks. It can perform XML parsing, XML Schema
validation, XPath routing, Extensible Stylesheet Language Transformations
(XSLT), XML compression, and other essential XML processing with
wirespeed XML performance.

� IBM WebSphere DataPower XML Security Gateway XS40

Provides a security-enforcement point for XML and Web services
transactions, including encryption, firewall filtering, digital signatures, schema
validation, WS-Security, XML access control, XPath and detailed logging.

� IBM WebSphere DataPower Integration Appliance XI50

Transport-independent transformations between binary, flat text files, and
XML message formats. Visual tools are used to describe data formats, create
mappings between different formats, and define message choreography. This

 Chapter 7. WebSphere DataPower appliances in SOA 167

appliance can transform binary, flat-text, and other non-XML messages to
help offer an innovative solution for security-rich XML enablement, enterprise
message buses, and mainframe connectivity.

For more details on each of the appliance types see 7.4, “DataPower appliance
models” on page 177.

For full product information about IBM WebSphere DataPower SOA Appliances
see:

http://www-306.ibm.com/software/integration/datapower/index.html

7.1.1 Key SOA features

The key SOA features are listed in this section.

XML Acceleration
Extensible Markup Language (XML) has proven to be a great force in the
software industry, and all the more so with the current focus on SOA and the
related increased adoption of Web services. We need XML for our SOA, but we
do not want to spend our precious CPU cycles looking after it, or our design time
deciding how to implement standard mechanisms for validation, encryption,
translation. It is time to push the XML processing down onto the firmware, and
focus our applications on doing actual business logic.

XML’s flexible, self-describing, language-independent format makes decoupling
partner systems much easier. However, the heavy reliance on XML for data
transfer between services also presents some problems. For example, XML can
result in lengthy message payloads and large amounts of overhead for schema
validation and parsing. The processing overhead of dealing with XML can tax
application servers and middleware infrastructure, drastically decreasing
performance.

The evolution of network infrastructure has seen an increasing trend toward
replacing general purpose software systems with dedicated hardware for
increased performance. In this same way, there is an evolution towards using
dedicated hardware for performing repetitive XML tasks such as parsing, schema
validation, and XML Stylesheet Language (XSL) translation.

Service protocols based on XML also lack any inherent built-in security
mechanisms. SOAP over HTTP passes potentially sensitive data in plain text
over the network. While there have been emerging standards such as
WS-Security to help deal with security concerns, implementing these standards
further drains computing resources on critical servers.

168 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/integration/datapower/index.html

DataPower SOA Appliances from IBM help address the performance and
security needs of enterprise-level SOA architectures by off-loading the XML
processing onto dedicated hardware, freeing the CPU resources of application
servers and middleware platforms to provide higher service throughput.
DataPower SOA Appliances provide a range of features including:

� XML/SOAP firewall filtering based on message content, headers, or other
network variables

� Incoming/outgoing data validation

� Schema validation

� XML security, access control, authentication, and authorization

� Integration with various security and monitoring products such as IBM Tivoli
Enterprise™ Monitoring, Tivoli Access Manager, Netegrity SiteMinder, and so
on

The performance advantages of DataPower appliances are often close to
seventy times higher than when using general purpose systems alone. When
digital signature checking and message encryption/decryption take place, there
is a great deal of overhead in processing messages. The XML appliance can
off-load this processing from application servers onto dedicated hardware
capable of performing these tasks in a fraction of the time.

XML Protection
Traditional firewalls only protect traffic at the Internet Protocol (IP) level. Web
services effectively tunnel through this layer via standard HTTP(S) and expose
the organization’s applications to completely new threats. We need to ensure that
only valid requests for valid services from genuine clients get inside the
enterprise boundary. Essentially, we need an XML firewall.

The seriousness of these new threats should not be understated. The following
developerWorks article clearly defines the breadth and seriousness of different
attacks that are possible to any service exposed using XML:

http://www-128.ibm.com/developerworks/websphere/techjournal/0603_col_hines
/0603_col_hines.html

The article concludes with the following comments:

To truly harden a system using Web services, you need to perform several
important security steps (recommended by Gartner and others), including:

– Inspect messages for well-formedness.

– Validate schema.

– Verify digital signatures.

 Chapter 7. WebSphere DataPower appliances in SOA 169

http://www-128.ibm.com/developerworks/websphere/techjournal/0603_col_hines/0603_col_hines.html

– Sign messages.

– Implement service virtualization to mask internal resources via XML
transformation and routing.

– Encrypt data at the field level.

Systems hosting Web services, particularly public Internet-facing ones,
should seriously consider the case for hardened gateway devices acting as
XML firewalls to protect your systems from XML threats.

DataPower appliances address all of the above issues and more, creating a
robust XML firewall for the enterprise. Examples are given below.

DataPower appliances introduce sophisticated checks on the incoming XML
including the following:

� XML Threat Protection
� Single Message XML Denial of Service Protection
� Multiple Message XML Denial of Service Protection
� Message Tampering Protection
� Protocol Threat Protection
� XML Virus Protection
� Dictionary Attack Protection

Security
Protection from XML threats, as described in the previous section, is clearly only
one way in which enterprise systems need to be protected. DataPower
appliances provide a sophisticated set of security capabilities, a selection of
which are noted below:

� XML Web services access control: DataPower appliances support a variety of
access control mechanisms, including WS-Security, WS-Trust, X.509, SAML,
SSL, LDAP, RADIUS, and simple client/URL maps. They can control access
rights by rejecting unsigned messages and verifying signatures within SAML
assertions.

� Authentication and authorization: Appliances directly support IBM Tivoli
Federated Identity Manager (TFIM) with capabilities such as mapping
identities for downstream access and IBM Tivoli Access Manager retrieve
authorization.

� Field level message security: DataPower appliances can selectively share
information through encryption/decryption and signing/verification of entire
messages or of individual XML fields. These granular and conditional security
policies can be based on nearly any variable, including content, IP address,
host name, or other user-defined filters.

170 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Service virtualization
This is when services are found to be sufficiently re-usable that they deserve to
be promoted to enterprise-level services. Users of the enterprise services expect
to be decoupled from the implementation of the service in at least the following
ways:

� Routing: The hosting of a service is likely to change over time as demands for
its availability and resilience increase. Its URL, and possibly even its hosting
server, may change. In a mature SOA, there may even be more than one
implementation of the service, that must be chosen between at run time.
Clients of the service should remain unaffected by these changes. DataPower
appliances allow configuration of a Web services proxy, decoupling the client
completely from the implementation. Adjustments and translations can be
made to all relevant metadata of the service from URL re-writing through to
WS-Addressing and HTTP header manipulation. Routing information can be
supplied in a variety of different ways, including direct configuration, setting
routing data as part of a transformation, and database or registry lookups.

� Data model and namespace: Wherever possible, enterprise services should
aim to expose a standardized data model. This model may, and arguably
should, be different from that of the actual implementation of the service such
that changes to the service do not effect the clients of the service. DataPower
Appliances allow wire-speed translation of data models using XSLT,
completely decoupling the client from the implementation.

� Versioning: The above two capabilities can be brought together to assist with
issues such as service versioning. Clients need to be insulated from version
changes to a service interface. In an SOA we cannot always assume that we
can notify all users of a service if the interface needs to change. So we need
to retain the existing interface as well as provide the new one. Rather than
maintain several versions of the implementation of the service, however,
DataPower can translate between the old and new URLs, host names, data
models, headers, and any other relevant metadata.

Protocol switching
Services can be exposed using different formats from the ones in which they are
implemented. Furthermore, they can be exposed using several different
protocols at once to support a wide range of clients.

� Protocols. Services can be exposed and called using any combination of the
typical protocols used for passing SOAP messages in an SOA, such as HTTP,
HTTPS, and JMS. Direct communication with WebSphere MQ is also
supported.

� Any-to-any transformation engine: If the enterprise’s standard protocols reach
beyond the commonly accepted Web services data formats, appliances can
parse and transform arbitrary binary, flat text, and XML messages, including

 Chapter 7. WebSphere DataPower appliances in SOA 171

EDI, COBOL Copybook, ISO 8583, CSV, ASN.1, and ebXML. Unlike
approaches based on custom programming, DataPower's patented DataGlue
technology uses a fully declarative, metadata-based approach.

Monitoring and management
DataPower appliances offer a number of different mechanisms for monitoring the
traffic through the devise, from the very low level of XML statistics up to the
service level management.

� Statistics: real-time visibility into critical XML statistics such as throughput,
transaction counts, errors, and other processing statistics. Data network-level
analysis is provided, and includes server health information and traffic
statistics, as well as management and configuration data.

� Remote management: supports SNMP, script-based configuration, and
remote logging to integrate seamlessly with leading management software.

� Web services management/service level management: support for Web
services Distributed Management (WSDM); Universal Description, Discovery,
and Integration (UDDI); Web services Description Language (WSDL);
Dynamic Discovery; and broad support for Service Level Management
configurations.

� Integration with various monitoring products such as IBM Tivoli Enterprise
Monitoring and Netegrity SiteMinder.

7.2 Roles for DataPower in an SOA environment

Now that we have a clear picture of the capabilities of the DataPower appliance,
let us look back at the ESB pattern where DataPower appliances are best placed.
The key roles are:

� XML firewall
� ESB Gateway
� Gateway to multiple ESBs
� Back-end resource gateway
� XML Accelerator

They are described in more detail in the following sections.

172 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 7-2 shows our product mapping first described in 4.1.3, “Exposed ESB
Gateway composite pattern” on page 62. Here, the two primary roles for
DataPower appliances in an SOA are shown — the XML firewall and the ESB
Gateway. These and other roles for the appliance are described below.

Figure 7-2 Roles for DataPower within an ESB

7.2.1 XML firewall

As discussed in 4.1.3, “Exposed ESB Gateway composite pattern” on page 62,
an XML firewall should protect the applications, and indeed the Enterprise
Service Bus, from threats by:

� Blocking XML attacks before they hit critical systems
� Shielding direct access to the internal systems
� Providing the most up-to-date security features for the SOA medium

The DataPower XS40 is most appropriately suited to this role, offering the XML
threat protection, service virtualization, security, and encryption features
described in 7.1.1, “Key SOA features” on page 168.

The above capabilities are handled at wire speed, adding minimal latency to the
requests through the firewall.

Enterprise Secure
Zone

Internet
Zone

Demilitarized
Zone

Zone: Enterprise Service Bus

<Service Consumer>

<Service Provider>

App Server/
Services

HubHub

D
om

ai
n

Fi
re

w
al

l

Service
Registry

App Server/
Services

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

Hub

<Service Consumer>

App Server/
Services

ESB
Gateway

May be in the Hub
or a separate product

DataPower XI50 as an
“ESB Gateway”

DataPower XS40 as an
“XML Firewall”

Connector

DataPower XA35 as an
“XML Accelerator”

DataPower XI50 as a
“Adapter Connector”

<Service Provider>

Present but not necessarily
dynamically invoked

Enterprise Secure
Zone

Internet
Zone

Demilitarized
Zone

Zone: Enterprise Service Bus

<Service Consumer>

<Service Provider>

App Server/
Services

HubHub

D
om

ai
n

Fi
re

w
al

l

Service
Registry

App Server/
Services

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

Hub

<Service Consumer>

App Server/
Services

ESB
Gateway

May be in the Hub
or a separate product

DataPower XI50 as an
“ESB Gateway”

DataPower XI50 as an
“ESB Gateway”

DataPower XS40 as an
“XML Firewall”

DataPower XS40 as an
“XML Firewall”

DataPower XS40 as an
“XML Firewall”

ConnectorConnector

DataPower XA35 as an
“XML Accelerator”

DataPower XA35 as an
“XML Accelerator”

DataPower XA35 as an
“XML Accelerator”

DataPower XI50 as a
“Adapter Connector”
DataPower XI50 as a
“Adapter Connector”
DataPower XI50 as a
“Adapter Connector”

<Service Provider>

Present but not necessarily
dynamically invoked

 Chapter 7. WebSphere DataPower appliances in SOA 173

7.2.2 ESB Gateway

As discussed in 4.1.3, “Exposed ESB Gateway composite pattern” on page 62,
an ESB Gateway acts as a proxy to provide controlled access to the ESB Hub
node.

Products that perform the role of the ESB Hub often exhibit some of the
capabilities of an ESB Gateway themselves, but many of these capabilities are
extremely CPU intensive.

Use of a DataPower appliance such as the XI50 allows offloading of this
processing to a device specifically designed to perform security, encryption, XML
validation, and transformation at wire speed, leaving the ESB Hub to focus on the
business of mediating protocols, formats, and back-end specific considerations.

The most likely mechanism of connectivity between the DataPower appliance
and the ESB Hub would be HTTP(S), but it should be noted that the XI50 can
also work with JMS messages. It can talk to both WebSphere MQ and
WebSphere Platform Messaging as JMS messaging providers.

Separation of this ESB Gateway to a separate dedicated node is also the first
step on the way to handling more complex ESB scenarios that inevitably arise
where more than one ESB Hub or when more than one ESB Hub technology
comes into play, as discussed in the next section on Hierarchical Gateways.

7.2.3 Hierarchical ESB Gateways

A logical extension of the ESB Gateway usage above is to have a hierarchy of
ESB Gateways. In this scenario, multiple gateways are used to administer groups
of services, each owning access to a particular set of the services available in the
enterprise. Each of these will have different policies associated with its services
for generic aspects such as security, auditing, monitoring, and so on.

These multiple gateways do not necessarily imply multiple appliances. All of
these different logical gateways could be handled by a single DataPower
appliance by making use of the fact that DataPower provides a concept of
domains. Each domain can provide access to its own set of services, and the
domains are separately administrable using a typical role-based administration
mechanism.

The DataPower XI50 is ideally suited to making use of its security features to
control access to given domains and restrict access to the underlying ESB Hubs,
also adding the ability to implement common policies across a given domain, and
integration capabilities to provide the required communication protocols for each
of the hubs.

174 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

7.2.4 Adapter Connector

If could be argued that a DataPower appliance such as the XI50 with its
integration capabilities could be used as an integration hub in its own right, and in
certain constrained scenarios this might be appropriate, but we need to
understand the appropriate scope for this usage and, as we will see, it is more
accurately described as a dedicated Adapter Connector.

The XI50 has integration capabilities allowing it to communicate over messaging
protocols as well as HTTP, with support for back-end data formats such as
COBOL Copybooks. This makes it a possible candidate for providing secure
virtualized access to back-end resources such as mainframes, where the specific
integration capabilities align well with the integration needs. The appliance can
act in a dedicated role to provide access to a specific set of back-end systems,
using its high-performance characteristics and security to protect the investment
in the system. However, this is not the same capability as a full ESB Hub, and we
should be clear about the difference.

Ultimately, an ESB Hub would need to have a rich and extensible suite of
integration capabilities, including a persistent messaging environment, the ability
to initiate and co-ordinate XA transactions, a general purpose programming
environment, and a wide range of technology, application, and package adapters.
This is where products such as WebSphere Enterprise Service Bus and
WebSphere Message Broker fit in. In a typical case the ESB will have grown up
around these ESB Hub products and DataPower will then be introduced to play
the specific roles to which it is well suited.

7.2.5 XML Acceleration

Finally, we discuss the more fundamental use of the DataPower appliance. It is
possible to make use of the appliance purely to offload XML processing from an
application server. Here we would have recognized that a particular application
was highly reliant on parsing, transformation, or encryption of XML. Here the
XA35 can be used as an extension of the application server, providing wire
speed XML processing capabilities.

The reason this role has been discussed last is because typically when high
reliance on XML processing is found in an application, it usually points to a need
to extend or re-align the architecture introducing the appliance in one of the
previous roles discussed. Adding XML acceleration to an application may simply
be perpetuating an architecture that is reaching its natural limits rather than
resolving the core problem.

 Chapter 7. WebSphere DataPower appliances in SOA 175

7.3 Combining DataPower with a registry

DataPower’s clear fit for gateway style use in the ESB pattern means that it
becomes the single entrypoint for service requests. This is the primary place to
perform service virtualization and impose common policies on the services of the
enterprise. Those common policies and information concerning where services
are to be found can be configured directly into the gateway, but they are really
part of the wider cataloging of services for the enterprise. It would be preferable if
the gateway simply acted upon the policies set at enterprise level. This is just one
of the reasons why there is a need for a Service Registry.

With the introduction of the WebSphere Service Registry and Repository
product, all of the related products in the SOA Foundation suite are being
upgraded to include mechanisms to contact the registry at run time or interact
with the registry during configuration time. We can expect a similar set of registry
connectivity features in DataPower to those that we are seeing introduced into
the other key products such as WebSphere Enterprise Service Bus and
WebSphere Message Broker.

Examples of themes in registry usage that may be relevant to DataPower
appliances follow, noting to which roles (as defined in 7.2, “Roles for DataPower
in an SOA environment” on page 172) these are most applicable:

� Validation

Access to schemas for validation of XML messages at configuration time.
This is principally relevant to the XML firewall role for DataPower appliances,
but potentially also to the ESB Gateway.

� Service virtualization

Access to the registry at run time in order to acquire the actual endpoint
based on a logical profile for the service. This is particularly applicable when
DataPower appliances are used in the role of an ESB Gateway.

� Policy

Runtime and configuration time access to policies such as WS-Policy from the
registry. This could be for either the XML firewall or for the ESB Gateway
roles, with different types of policy information being relevant to each. This is
also particularly relevant to the Gateway to Multiple ESBs role, where layers
of ESB Gateways each have a policy.

� Availability/performance

Runtime access to data-enabling choices between implementations of
services based on their availability and performance characteristics. This is
particularly relevant to the ESB Gateway role.

� Namespace translation

176 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Access to standard transformations between known namespaces, most
probably provided as xslt files. This is particularly relevant to the ESB
Gateway pattern where routing between different versions of a service may
be required to seamlessly support old clients against new implementations of
a service. This could also be relevant where services are promoted up the
gateway hierarchy and need to conform to different object/namespace
structures.

The reach of the registry is much wider than this alone. More details on
WebSphere Service Registry and Repository can be found at:

http://www-306.ibm.com/common/ssi/rep_ca/0/897/ENUS206-230/ENUS206-230.PDF

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386
.html?Open.

7.4 DataPower appliance models

Below is a more detailed description of each of the three models of WebSphere
DataPower appliances.

IBM WebSphere DataPower XML Security Gateway XS40
This appliance provides a security-enforcement point for XML and Web services
transactions, including encryption, firewall filtering, digital signatures, schema
validation, WS-Security, XML access control, XPath, and detailed logging, and
includes:

� An XML/SOAP firewall: The DataPower XML Security Gateway XS40 filters
traffic at wirespeed, based on information from layers 2 through 7 of the
protocol stack; from field-level message content; and SOAP envelopes to IP
address, port/host name, payload size, or other metadata. Filters can be
predefined with easy point-and-click XPath filtering GUI, and automatically
uploaded to change security policies based on the time of day or other
triggers.

� XML/SOAP data validation: With its unique ability to perform XML Schema
validation as well as message validation, at wirespeed, the XS40 ensures that
incoming and outgoing XML documents are legitimate and properly
structured. This protects against threats such as XML Denial of Service
(XDoS) attacks, buffer overflows, or vulnerabilities created by deliberately or
inadvertently malformed XML documents.

� Field level message security: The XS40 selectively shares information
through encryption/decryption and signing/verification of entire messages or
of individual XML fields. These granular and conditional security policies can

 Chapter 7. WebSphere DataPower appliances in SOA 177

http://www-306.ibm.com/common/ssi/rep_ca/0/897/ENUS206-230/ENUS206-230.PDF
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247386.html?Open

be based on nearly any variable, including content, IP address, host name, or
other user-defined filters.

� XML Web services access control: The XS40 supports a variety of access
control mechanisms, including WS-Security, WS-Trust, X.509, SAML, SSL,
LDAP, RADIUS, and simple client/URL maps. The XS40 can control access
rights by rejecting unsigned messages and verifying signatures within SAML
assertions.

� Service virtualization: XML Web services require companies to link partners
to resources without leaking information about their location or configuration.
With the combined power of URL rewriting, high-performance XSL
transforms, and XML/SOAP routing, the XS40 can transparently map a rich
set of services to protected back-end resources with high performance.

� Centralized policy management: The XS40's wirespeed performance enables
enterprises to centralize security functions in a single drop-in device that can
enhance security and help reduce on-going maintenance costs. Simple
firewall functionality can be configured via a GUI and can be running in
minutes. Using the power of XSLT, the XS40 can also create sophisticated
security and routing rules. Because the XS40 works with leading Policy
Managers, it is an ideal policy execution engine for securing next-generation
applications. Manageable locally or remotely, the XS40 supports SNMP,
script-based configuration, and remote logging to integrate seamlessly with
leading management software.

� Web services management/service level management: With support for Web
services Distributed Management (WSDM); Universal Description, Discovery,
and Integration (UDDI); Web services Description Language (WSDL);
Dynamic Discovery; and broad support for Service Level Management
configurations, the XS40 natively offers a robust Web services management
framework for the efficient management of distributed Web service endpoints
and proxies in heterogeneous SOA environments, as well as SLM alerts and
logging, and pull and enforce policies, which helps enable broad integration
support for third-party management systems and unified dashboards, in
addition to robust support and enforcement for governance frameworks and
policies.

IBM WebSphere DataPower Integration Appliance XI50
This appliance provides transport-independent transformations between binary,
flat text files and XML message formats. Visual tools are used to describe data
formats, create mappings between different formats, and define message
choreography. This appliance can transform binary, flat-text, and other non-XML
messages to help offer an innovative solution for security-rich XML enablement,
enterprise message buses, and mainframe connectivity.

178 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� Any-to-any Transformation Engine: XI50 can parse and transform arbitrary
binary, flat text, and XML messages, including EDI, COBOL Copybook, ISO
8583, CSV, ASN.1, and ebXML. Unlike approaches based on custom
programming, DataPower's patented DataGlue technology uses a fully
declarative, metadata-based approach.

� Integrated Message Level Security: XI50 includes mature message-level
security and access control functionality. Messages can be filtered, validated,
encrypted, and signed, helping to provide more secure enablement of
high-value applications. Supported technologies include WS-Security,
WS-Trust, SAML, and LDAP.

� Lightweight Message Brokering.

� Sophisticated multi-step message routing, filtering, and processing.

� Multiple synchronous and asynchronous transport protocols.

� Detailed logging and audit trail, including non-repudiation support.

IBM WebSphere DataPower XML Accelerator XA35
This product can help speed common types of XML processing by offloading this
processing from servers and networks. It can perform XML parsing, XML
Schema validation, XPath routing, Extensible Stylesheet Language
Transformations (XSLT), XML compression, and other essential XML processing
with wirespeed XML performance.

� Unmatched performance: DataPower's purpose-built message processing
engine can deliver wirespeed performance for both XML to XML and XML to
HTML transformations with increased throughput and decreased latency.

� Ease of use: The self-learning XA35 provides drop-in acceleration with
virtually no changes to the network or application software. No proprietary
schemas, coding, or APIs are required to install or manage the device, and it
supports popular XML Integrated Development Environments (IDEs) to help
reduce the number of hours spent in the development and debugging of XML
applications.

� Helps reduce infrastructure costs: Unlike simple content switches that only
redirect business documents, the DataPower XML Accelerator XA35 fully
parses, processes, and transforms XML with wirespeed performance and
scalability to help reduce the need for stacks of servers. The XA35 also
supports accelerated SSL processing to help further lessen the load on
server software.

� Helps cut development costs: The XA35 can enable multiple applications to
leverage a single, uniformed XML processing layer for all XML processing
needs. By standardizing on high-performance hardware appliances,
enterprises can deploy sophisticated applications while helping to eliminate

 Chapter 7. WebSphere DataPower appliances in SOA 179

unnecessary hours of application debugging and tuning for marginal
performance gains.

� Intelligent XML processing: In addition to wirespeed processing, DataPower
appliances support XML routing, XML pipeline processing, XML
compression, XML/XSL caching, as well as other intelligent processing
capabilities to help manage XML traffic.

� Advanced management: The DataPower XML Accelerator XA35 provides
real-time visibility into critical XML statistics such as throughput, transaction
counts, errors, and other processing statistics. Data network level analysis is
provided, and includes server health information and traffic statistics, as well
as management and configuration data.

For full product information about IBM WebSphere DataPower SOA Appliances:

http://www-306.ibm.com/software/integration/datapower/index.html

180 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/integration/datapower/index.html

Chapter 8. ESB design options

This chapter presents ESB topologies that make use of WebSphere Enterprise
Service Bus, WebSphere Message Broker, and other supporting products.
Specifically, two sets of topologies are presented — one that uses WebSphere
ESB as the main ESB backbone and one that uses WebSphere Message Broker
as the main ESB backbone. Supporting products such as WebSphere
DataPower, WebSphere Transformation Extender, WBI Adapters, and J2C
Adapters are also leveraged to make the ESB environment more comprehensive.

The primary ESB functions are discussed in each topology to show how IBM
WebSphere products are used together to implement the ESB’s most important
functions in a relatively simple way. Each topology is a one-ESB topology. The
following ESB functions are discussed:

� Data format transformations
� Transport protocol transformations
� Service virtualization
� Dynamic routing
� Qualities of service

The supported transport protocols between the ESB components are shown
where multiple products are used to implement an ESB.

A resilient configuration is shown and discussed for each ESB topology. The
resiliency of the ESB topology where WebSphere ESB and WebSphere
Message Broker are used together can be derived from the resiliency

8

© Copyright IBM Corp. 2007. All rights reserved. 181

discussions presented in the WebSphere ESB-based topology and WebSphere
Message Broker-based topology.

An ideal candidate environment is discussed for each ESB topology presented.

Details are provided in this chapter on how to set up HTTPS communication
between WebSphere ESB and WebSphere Message Broker.

182 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

8.1 WebSphere ESB-based architecture

The WebSphere ESB-based architecture is a J2EE-based architecture based on
the simple fact that WebSphere ESB runs inside WebSphere Application Server,
which implements the J2EE specification. Figure 8-1 shows a relatively simple
WebSphere ESB-based architecture.

Figure 8-1 A simple WebSphere ESB-based architecture

Figure 8-1 shows WebSphere ESB to be at the heart of the ESB topology. It
receives various types of service requests from the Internet and intranet. It routes
these service requests intelligently to the correct service providers. The
configuration shows that optionally either a WebSphere DataPower XS40 may be
deployed as an XML firewall or a WebSphere DataPower XI50 may be deployed
as an explicit ESB Gateway.

Through mediation flows developed in WID and deployed in the WebSphere ESB
run time, WebSphere ESB routes the service request to the service provider that

Demilitarized
Zone

Enterprise Secure
Zone

Internet
Zone

Zone: Enterprise Service Bus

<Service Consumer> <Service Provider>

<Service Provider>

App Server/
Services

HubHub

D
om

ai
n

Fi
re

w
al

l

Service
Registry

App Server/
Services

<Service Provider>

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

App Server/
Services

Hub

WESB

WSRR

<Service Consumer>

App Server/
Services

ESB
Gateway

WDP
XI50

Legend:
Orange – node
Green – product
White – code

May be in the Hub
or a separate product

An optional product

XML
Firewall

WDP
XS40

Present but not necessarily
dynamically invoked

Demilitarized
Zone

Demilitarized
Zone

Enterprise Secure
Zone

Internet
Zone

Zone: Enterprise Service Bus

<Service Consumer> <Service Provider>

<Service Provider>

App Server/
Services

HubHub

D
om

ai
n

Fi
re

w
al

l

Service
Registry

App Server/
Services

<Service Provider>

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

App Server/
Services

Hub

WESB

WSRR

<Service Consumer>

App Server/
Services

ESB
Gateway

WDP
XI50

Legend:
Orange – node
Green – product
White – code

May be in the Hub
or a separate product

An optional productAn optional product

XML
Firewall

WDP
XS40

Present but not necessarily
dynamically invoked

 Chapter 8. ESB design options 183

may be located in the intranet, like a CICS service. WebSphere ESB may
leverage a number of IBM WebSphere products such as WebSphere
Transformation Extender, WebSphere DataPower, a J2C adapter, or a WBI
adapter to interact with the service provider such as a CICS program or an SAP
BAPI®. WebSphere ESB may also leverage WSRR to locate a service provider
dynamically before invoking the service provider.

Service requests may be sent to WebSphere ESB from the intranet by Java and
non-Java applications. To simplify interactions with WebSphere ESB from
non-Java applications, IBM packages WebSphere ESB with two clients that can
be leveraged by non-Java applications -- Message Service Clients for C/C++ and
.Net and Web services Clients for C/C++.

The intranet service requests may also be sent to WebSphere DataPower, a J2C
Adapter, a WBI adapter, or WebSphere Transformation Extender to process
before they are sent to WebSphere ESB.

Similar to Internet-originated requests, intranet-originated requests invoke
facade services exposed by WebSphere ESB. Then, through WebSphere ESB
mediation flows, the actual service providers that may be located internally or
externally are invoked to service these requests.

Note that the ESB zone shown in Figure 8-1 on page 183 contains only
WebSphere ESB and one optional WebSphere DataPower appliance. But it may
also contain WebSphere Transformation Extender, J2C Adapters, WBI Adapters,
and WebSphere MQ leveraged primarily by WebSphere ESB.

8.1.1 Platforms support

Table 8-1 shows the support of various platforms by various ESB-related
products shown in Figure 8-1 on page 183 or referenced earlier.

Table 8-1 Platform support of the ESB-related components

Product Supported Platforms

WebSphere ESB AIX®, HP-UX, Linux, Solaris, Windows,
and Z/OS.

WebSphere Transformation Extender AIX, Solaris, HP-UX, Linux, Windows, and
Z/OS.

WebSphere DataPower Not Applicable. it is a hardware device or
appliance.

WSRR AIX, HP-UX, Linux, Solaris, Windows, and
Z/OS.

184 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

8.1.2 WebSphere ESB-based candidate environment

WebSphere ESB is a good fit for an environment that has the following
characteristics.

Strong J2EE environment
The J2EE developer will have no problem developing artifacts for WebSphere
ESB. These artifacts are used by the integration developer who may be the same
as the J2EE developer. The integration developer uses the visually-rich WID tool
to build a mediation flow component by wiring existing pre-built mediation
primitives or custom mediation primitives that may be implemented by the J2EE
developer. The mediation flow component is part of an SCA mediation module
that gets packaged as an EAR file and deployed in WebSphere Application
Server as a J2EE application.

WebSphere Application Server already exists in the
environment
WebSphere ESB runs inside WebSphere Application Server and leverages its
services and capabilities. WebSphere ESB administration is done through
WebSphere Application Server Administration Console, which has been
augmented to enable the administrator to manage WebSphere ESB-specific
artifacts.

� Business process management need

If there is a need for a business process development and management or a
need that may arise in the foreseeable future, it is relatively easy to add
WebSphere Process Server on top of WebSphere ESB. As a matter of fact,
WebSphere Process Server contains WebSphere ESB. So if an environment
already makes use of WebSphere ESB, it will be relatively easy to add
WebSphere Process Server and make use of the existing WebSphere ESB
environment. Besides, WID is used to develop both types of artifacts — SCA

J2C Adaptersa AIX, HP-UX, Linux, Solaris, Windows, and
Z/OS.

WBI Adaptersb Windows, AIX, Solaris, HP-UX, and Linux.

a. For more details see the following link:
http://www-1.ibm.com/support/docview.wss?uid=swg27008539
b. For more details see the following link:
http://www-1.ibm.com/support/docview.wss?uid=swg27008539

Product Supported Platforms

 Chapter 8. ESB design options 185

http://www-1.ibm.com/support/docview.wss?uid=swg27008539
http://www-1.ibm.com/support/docview.wss?uid=swg27008539

modules for WebSphere Process Server and SCA mediation modules for
WebSphere ESB.

� Strong standard-driven environment

The WebSphere ESB programming model is based on SCA and the data
model is based on SMO, which is an extension of SDO. SDO is primarily a
joint effort between IBM and BEA. A number of companies have contributed
to SCA. These companies are BEA, IBM, Interface21, IONA, Oracle®, SAP,
Siebel, and Sybase. SDO has been standardized. SCA is also strongly driven
toward standardization. Web services-related standards are also
implemented in WebSphere ESB. WebSphere ESB supports the following
WS-related standards: SOAP, SOAP with attachments, WSDL 1.1, WS-I
Basic Profile 1.0 and 1.1, WS-Security, WS-Atomic Transactions, UDDI 3.0,
and JAX-RPC handlers.

� Flexible programming model need

SCA defines a very flexible programming model for SOA. An integration
developer wires the mediation flow from pre-built or custom mediation
primitives. SCA is also the programming model used in the WebSphere
Process Server. If a primitive or a component needs to be changed, it is easy
to replace it with another implementation. This ease of component
replacement promotes component reuse.

� Component reuse

The flexible SCA programming model implemented by WebSphere ESB
promotes component reuse.

� Applications standard connectivity need

WebSphere Adapters or J2C Adapters implement the J2EE Connector
Architecture specifications (currently, WebSphere ESB supports Siebel,
PeopleSoft, SAP, JD Edwards®, e-mail, Flat File, and JDBC WebSphere
Adapters). The number of supported applications will increase in the future.

� Dynamic routing needed

Routing does not have to be hardcoded in mediation flows. WebSphere ESB
supports the dynamic routing through an enhancement introduced to the
SMO header in WebSphere ESB 6.0.2. The dynamic routing capability can
leverage the service endpoint lookup primitive to look up a match for a service
endpoint in WSRR.

8.1.3 Data Format Transformation

A WebSphere ESB mediation module uses import components to invoke
services located outside the module and uses export components to expose
services to applications located outside the module.

186 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

To invoke a service exposed by a WebSphere ESB mediation module, the
service requester must provide the data in the XML format. If the data is not in
the XML format, WebSphere ESB supports WebSphere Transformation
Extender, WebSphere DataPower, J2C Adapters, or WBI Adapters to transform
the message from non-XML to XML.

The XML data is de-serialized as Service Message Object (SMO) when it enters
the WebSphere ESB run time. The data may change as it flows through the
mediation flow, but always as SMO as long as the data is in the WebSphere ESB
run time.

Data may have to be transformed to a non-XML format so that the service
provider can process it. To transform the data from XML to non-XML, WebSphere
ESB can leverage, again, WebSphere DataPower, WebSphere Transformation
Extender, J2C Adapters, or WBI Adapters.

 Chapter 8. ESB design options 187

Service Message Object
Figure 8-2 shows a portion of the SMO tree. Note the addition of the MQHeader
subtree to support the MQ binding in WebSphere ESB 6.0.2. Any part of the
SMO tree can be accessed via an XPath expression. For example, the XPath
expression for the root object that is the smo element is /. The XPath expression
for the context subtree is /context, and so on.

� The application data or payload is stored in the body subtree. Most of the data
mapping is performed on the body subtree.

� The SMOHeader subtree is always there.

� The JMSHeader subtree is created when the JMS binding is used for the
export or import component.

� The SOAPHeader subtree is created when the Web service binding is used
for the export or import component.

� The MQHeader subtree is created when the MQ binding is used for the export
or import component.

� Note that there may be more than one SOAPHeader and more than one
properties subtree.

Figure 8-2 SMO context, headers, and body subtrees

smo

body

correlation transient failinfo primitiveContext

SMOHeader JMSHeader MQHeaderSOAPFaultInfoSOAPHeader

SOAPHeader

SOAPHeader

properties

properties

properties

context

headers

...
...

188 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Example 8-1 shows an XML representation of a sample SMO tree.

Example 8-1 XML representation of a sample SMO tree

<?xml version=”1.0” encoding=UTF-8”?>
<smo:smo xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmins:accounts=”urn://www.example.com/accounts”
xmins:smo=”http://www.ibm.com.com/websphere/sibx/smo/v6.0
<context>
<correlation xsi:type=”accounts:CorrelateByAgentId”>
<agentid>SMI537654-2</agentid>

</correlation>
<transient xsi:type=”accounts:ExchangeRate”>
<from>GBP</from>
<to>USD</to>
<multiplier>1.74068</multiplier>

</transient>
</context>
<headers>
<SMOHeader>
<MessageUUID>b048778f-0701-0000-0080-80c5b8a4d8b8<MessageUUID>
<Version>
<Version>6</Version>
<Release>0</Release>
<Modification>1</Modification>
</Version>

</SMOHeader>
</headers>
<body xsi:type=”accounts:processPaymentRequestMsg”>
<processPayment>
<agentid>SMI537654-2</agentid>
<priority>2</priorty>
<payment>
<value>415.26</value>
<currency>USD</currency>
<date>2005-01-16Z</date>
<account>546219G</account>
</payment>

</processPayment>
</body>
</smo.smo>

 Chapter 8. ESB design options 189

XML mapping in the mediation flow
Mapping data from one XML format to another is the only mapping type
supported in WebSphere ESB.

The XML mapping capabilities are primarily provided by the XSL Transformation
mediation primitive. XSL Transformation usage is necessary when the output
terminal data type (SMO) of the source primitive or node is different from the
input terminal data type (SMO) of the target primitive or node. The XSL
Transformation primitive is effectively used to map one XML-serialized SMO tree
to a different XML-serialized SMO tree. This means that when the XSL
Transformation primitive is reached in a mediation flow, the SMO tree gets
serialized to XML before the XML transformation occurs.

When there is no need to create another SMO tree and only a change for the
same SMO tree is needed, the Message Element Setter primitive can be used to
set values to leaf elements of the SMO tree. It can also be used to copy subtrees
from one part of the SMO tree to another as long as the source subtree and the
target subtree are of the same type. The Message Element Setter primitive can
also be used to delete element instances in the SMO tree. The Message Element
Setter primitive is provided with WebSphere ESB 6.0.2. Without this primitive, the
simple tasks of setting element values or copying subtrees require an XSL
transformation or a custom mediation primitive. Using the Message Element
Setter primitive to update the SMO tree offers better performance than using the
XSL Transformation primitive because the Message Element Setter primitive
updates the same SMO tree, while the XSL Transformation primitive creates
another SMO tree.

So far, this section discussed XML-to-XML transformations mechanisms inside a
mediation flow component using the XSL Transformation and the Message
Element Setter primitives.

190 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Data transformation using external means
Figure 8-3 shows additional message transformation possibilities.

Figure 8-3 Data mapping performed by various components

The request may possibly get translated at high speed by WebSphere
DataPower to another XML format before entering WebSphere ESB. Figure 8-3
also shows the data getting translated from XML to EIS format by a J2C SAP
adapter, from XML to non-XML format by WebSphere Transformation Extender
V8.1, and from XML to EIS by a WBI adapter. The J2C SAP adapter is shown
inside the WebSphere ESB box because the J2C SAP adapter runs in the same
JVM™ as WebSphere ESB. The WBI adapter is shown outside the WebSphere
ESB box because the WBI adapter runs in its own JVM.

It is relatively straightforward to develop a binding for WebSphere Transformation
Extender on an export and import the SCA component. (Such a binding has
been developed by the IBM Software Services for WebSphere group.)

The WebSphere Application Server box shown in Figure 8-3 could be the same
WebSphere Application Server environment used by WebSphere ESB or a
remote WebSphere Application Server environment. The data sent to the EJB

Enterprise Secure Zone
Demilitarized

Zone
Internet

Zone

Zone: ESB

HubHub
D

om
ai

n
Fi

re
w

al
l

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

Hub

Existing
Application

Existing
Application

Existing
Application

AppServer
/Services
WAS V6

SAP

Siebel

EDI

EJB

WBI Adapter
Simple

mapping

WESB

Connector
WTX

Complex
mapping

Hub

J2C SAP Adapt
Simple

mapping
ESB Gateway

WDP XI50
Simple perf

mapping

Simple
mapping

XML1/
HTTP

XML2/
HTTP

IDocs/
RFC

Siebel
API

EDI data/
FTP

EJB/
RMI

An optional productLegend:
Orange – node
Green – product
White – code

XML/
JMS

XML/
MQ

XML/
HTTP

- message/
protocol
context

Enterprise Secure ZoneEnterprise Secure Zone
Demilitarized

Zone
Demilitarized

Zone
Internet

Zone

Zone: ESB

HubHub
D

om
ai

n
Fi

re
w

al
l

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

Hub

Existing
Application

Existing
Application

Existing
Application

AppServer
/Services
WAS V6

SAP

Siebel

EDI

EJB

WBI Adapter
Simple

mapping

WESB

Connector
WTX

Complex
mapping

Hub

J2C SAP Adapt
Simple

mapping
ESB Gateway

WDP XI50
Simple perf

mapping

Simple
mapping

XML1/
HTTP

XML2/
HTTP

IDocs/
RFC

Siebel
API

EDI data/
FTP

EJB/
RMI

An optional productAn optional productLegend:
Orange – node
Green – product
White – code

XML/
JMS

XML/
MQ

XML/
HTTP

- message/
protocol
context

XML/
HTTP
XML/
HTTP

- message/
protocol
context

 Chapter 8. ESB design options 191

box shown in Figure 8-3 on page 191 is supported by the stateless session EJB
binding on an import SCA component. But a Java SCA component is needed to
convert the SMO object to a Java object that can be consumed by EJB. WID
6.0.2 uses the java2wsdl (JAX-RPC) command to generate this Java component
automatically.

Transformations using WebSphere adapters
The strategic direction for adapters is J2C Adapters, which currently do not
support many technologies and applications, but the number of supported
technologies and applications will soon increase. J2C Adapters include the
following:

� IBM WebSphere Adapter for JDBC
� IBM WebSphere Adapter for FTP
� IBM WebSphere Adapter for E-mail
� IBM WebSphere Adapter for Flat File
� IBM WebSphere Adapter for IMS
� IBM WebSphere Adapter for CICS
� IBM WebSphere Adapter for Oracle E-Business Suite
� IBM WebSphere Adapter for SAP
� IBM WebSphere Adapter for PeopleSoft
� IBM WebSphere Adapter for Siebel
� IBM WebSphere Adapter for JD Edwards EnterpriseOne.

For more details see the following:

http://www-306.ibm.com/software/integration/wbiadapters/v60/

WBI Adapters can be used where J2C Adapters are used. WBI Adapters support
many technologies and applications. Where an adapter functionality is desirable,
but not supported in J2C Adapters, a WBI adapter can be used. For more details
see the following:

http://www-306.ibm.com/software/integration/wbiadapters/v60/

The export and import components with EIS binding in a mediation module can
be associated with either adapter type, J2C or WBI, to enable a mediation flow to
interact with an EIS application. Note that the J2C adapter runs in the same JVM
as WebSphere ESB, but the WBI adapter runs in its own JVM outside the
WebSphere ESB JVM and requires the WBI Adapter Framework product. J2C
and WBI adapters provide relatively simple interaction capabilities, primarily
create, read, update, and delete (CRUD) operations against EIS applications or
technology providers.

192 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/integration/wbiadapters/v60/
http://www-306.ibm.com/software/integration/wbiadapters/v60/

Transformations using WebSphere Transformation Extender
WebSphere Transformation Extender has a powerful and fast many-to-many
transformation, the C/C++ engine.

Each input and output of a WebSphere Transformation Extender transformation
map is associated with a data format and an adapter. For example, inputs to a
WebSphere Transformation Extender map could be XML using the MQ adapter,
SOAP using the HTTP adapter, flat file using the FTP adapter, and binary using
the E-mail adapter, and the outputs from the WebSphere Transformation
Extender map could be EDI X12 using the MQ adapter and SOAP using the
HTTP adapter.

To support various industry data format standards and adapter functionality, IBM
provides many data format packs and resource adapters for WebSphere
Transformation Extender. Packs for WebSphere Transformation Extender include
Pack for Web services, Pack for EDIFACT, Pack for HL7, Pack for HIPAA EDI,
and so on. Resource adapters for WebSphere Transformation Extender include
the database adapters such as DB2 and Oracle, the Internet adapters such as
E-mail and HTTP, the message-oriented middleware adapters such as MQ and
MSMQ, and so on. For a technology or an application that does not have a
supported adapter, WebSphere Transformation Extender provides the adapter
toolkit for building custom adapters.

WebSphere Transformation Extender maps can be invoked from within
applications such as those written in Java, C, and C#. Java applications can
invoke WebSphere Transformation Extender maps by using WebSphere
Transformation Extender Programming Interface Java API, RMI API, CORBA
API, or by using the JCA Connector. So WebSphere Transformation Extender
maps can be invoked from within a custom mediation inside a WebSphere ESB
mediation module or from within a custom JMS binding Java class of an import
component inside a WebSphere ESB mediation module. Alternatively,
WebSphere Transformation Extender and WebSphere ESB may interact
indirectly through one of the supported protocols like MQ.

WebSphere Transformation Extender is a great fit in situations where more than
one input data source needs to be mapped to one or more output data targets.

For more information about WebSphere Transformation Extender see:

http://www-306.ibm.com/software/integration/wdatastagetx/index.html

Transformations using WebSphere DataPower
There are three different versions of WebSphere DataPower: XA35, XS40, and
XI50. XA35 is a subset of XS40, which is a subset of XI50. XA35 is effectively a
fast XML transformation engine. XS40 has the same capabilities as XA35 in

 Chapter 8. ESB design options 193

http://www-306.ibm.com/software/integration/wdatastagetx/index.html

addition to a more robust XML and SOAP security processing. XI50 has the
same capabilities as XS40 in addition to more robust data transformation
capabilities for XML and non-XML data.

WebSphere DataPower in the DMZ should be at least at the XS40 level.
WebSphere DataPower in the intranet could be used primarily for a specialized
data handling like a field-level encryption and a fast data transformation.
Depending on application requirements, any version of WebSphere DataPower
may perform the specialized data handling task in the intranet.

For more information see Chapter 7, “WebSphere DataPower appliances in
SOA” on page 165.

8.1.4 Protocol Transformation

A WebSphere ESB mediation module is used to mediate between a service
requester and a service provider. The mediation module contains at the most
one mediation flow component, one or more export components to enable
service requesters to invoke facade services, one or more import components to
enable the module to invoke service providers, and possibly a Java component.
A WebSphere ESB mediation module that does not have a mediation flow
component, but has an export and an import component, can be used primarily
for transport protocol transformations. For example, the service requester
invokes the facade service with a SOAP/HTTP call, but the service provider is
invoked via SOAP/JMS call.

The SCA export component is defined via a WSDL interface to expose a service
operation and has a binding type to define the access mechanism for use by the
service requester to call the service operations.

The SCA import component is defined via a WSDL interface that defines a
service operation and has a binding type to define the access mechanism to use
to invoke the service provider.

Note that the SCA import component with the stateless-session EJB binding has
a Java-described interface. This is why a wsdl-to-Java conversion must happen
between the WSDL-defined interface and a Java-defined interface.

194 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 8-4 shows the content of a simple mediation module.

Figure 8-4 Content of a simple mediation module

Note that the custom mediation component is only needed when the mediation
flow component cannot achieve the mediation task. When the mediation module
only contains the export and the import components, the mediation module can
only be used to perform a transport protocol transformation, as shown in
Figure 8-5.

Figure 8-5 Mediation module for transport protocol transformation only

WESB

Mediation Module

Custom
MediationExport Mediation

Flow ImportService
Requester

Service
Provider

WSRR

Dynamic lookup possible – but not yet a common approach !

WESB

Mediation Module

Custom
MediationExport Mediation

Flow ImportService
Requester

Service
Provider

WSRR

Dynamic lookup possible – but not yet a common approach !

WESB

Mediation Module

Export ImportService
Requester

Service
Provider

Protocol Transformation

 Chapter 8. ESB design options 195

Figure 8-6 shows the various product choices available to perform the protocol
transformations required. The SMTP, TCP/IP, and FTP transformations are
supported by WebSphere Transformation Extender. (WebSphere Message
Broker is shown in a later table in this chapter.)

Figure 8-6 Protocol transformation capabilities

WESB with
J2C
Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB, WTXWESB,
WTX

WESB,
WTX

WESB,
WTX

MQ-JMS

WESB with
J2C Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB, WTX

WESB, WTX

WESB, WTX

MQ-JMS

WESB with
J2C
Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB
with J2C
Adapter,
WTX

SMTP

WESB with
J2C
Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB
with J2C
Adapter,
WTX

FTP

WESB with
J2C Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB with
J2C Adapter,
WTX

SMTP

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

FTP

WESB,
WDP,
WTX

WESB,
WDP,
WTX

WESB,
WTX, WDP

MQ

WESB,
WDP,
WTX

WESB,
WDP,
WTX

WESB,
WDP,
WTX

JMS

WESB,
WDP,
WTX

MQ

WESB,
WDP,
WTX

JMS

WESB,
WDP,
WTX

HTTP

HTTPOut
In

WESB with
J2C
Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB, WTXWESB,
WTX

WESB,
WTX

WESB,
WTX

MQ-JMS

WESB with
J2C Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB, WTX

WESB, WTX

WESB, WTX

MQ-JMS

WESB with
J2C
Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB
with J2C
Adapter,
WTX

SMTP

WESB with
J2C
Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB
with J2C
Adapter,
WTX

FTP

WESB with
J2C Adapter,
WTX

WESB with
J2C Adapter,
WTX

WESB with
J2C Adapter,
WTX

SMTP

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

WESB with
J2C
Adapter,
WTX

FTP

WESB,
WDP,
WTX

WESB,
WDP,
WTX

WESB,
WTX, WDP

MQ

WESB,
WDP,
WTX

WESB,
WDP,
WTX

WESB,
WDP,
WTX

JMS

WESB,
WDP,
WTX

MQ

WESB,
WDP,
WTX

JMS

WESB,
WDP,
WTX

HTTP

HTTPOut
In

196 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 8-7 shows calls made at the component level of ESB. WebSphere ESB
6.0.2 supports the following bindings on an export component: MQ, JMS, MQ
JMS, SCA, EIS, and Web service.

Figure 8-7 Calls made from various ESB clients and ESB components

The requests coming into WebSphere ESB in Figure 8-7 are supported via the
export components. Note the use for the J2C SAP adapter to support the export
component with EIS binding.

The import component supports all the bindings supported on the export
component in addition to the stateless session EJB binding.

The requests going out of WebSphere ESB in Figure 8-7 are supported via the
import components: an import component with S-SEJB binding to call a
stateless-session EJB running in WebSphere Application Server; an import

Enterprise Secure
Zone

Zone: ESB

Existing
Application

Existing
Application

AppServer
/Services
WAS V6

Siebel

Other

S-SEJB

SOAP/
HTTP

EJB/
RMI

EDI data/
FTP

Demilitarized
Zone

Msg/
MQ

Msg/
JMS Existing

Application

EDI

Connector
WTX

Complex
mapping

HubHub

Hub
WESB

Hub

Simple
mapping

Existing
Application

SAP

J2C Adapter
Simple

mapping

J2C SAP Adapt.
Simple

mapping

IDocs/
RFC

D
om

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

w
al

l

Legend:
Orange – node
Green – product
White – code

- message/
protocol
context

XML/
HTTP

Siebel
API

Enterprise Secure
Zone

Zone: ESB

Existing
Application

Existing
Application

AppServer
/Services
WAS V6

Siebel

Other

S-SEJB

SOAP/
HTTP

EJB/
RMI

EDI data/
FTP

Demilitarized
Zone

Msg/
MQ

Msg/
JMS Existing

Application

EDI

Connector
WTX

Complex
mapping

HubHub

Hub
WESBWESB

Hub

Simple
mapping

Existing
Application

SAP

J2C Adapter
Simple

mapping

J2C Adapter
Simple

mapping

J2C SAP Adapt.
Simple

mapping

J2C SAP Adapt.
Simple

mapping

IDocs/
RFC

D
om

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

w
al

l

Legend:
Orange – node
Green – product
White – code

- message/
protocol
context

XML/
HTTP

Legend:
Orange – node
Green – product
White – code

- message/
protocol
context

XML/
HTTP
XML/
HTTP

Siebel
API

 Chapter 8. ESB design options 197

component with EIS binding to call Siebel. Note that WebSphere ESB leverages
WebSphere Transformation Extender to send an FTP request in Figure 8-7 on
page 197.

Note that the J2C Siebel adapter and the J2C SAP adapter are shown inside
WebSphere ESB because they run in the same JVM as WebSphere ESB, while
WebSphere Transformation Extender is outside WebSphere ESB.

The most efficient binding is the SCA binding. In the SCA binding, there are
typically two SCA modules involved. One module has an SCA export component
that is imported into another module with SCA binding. At run time, the call from
the module that has the import component to the module that has the export
component is a direct call. The other binding types have a performance
overhead. Stateless session EJB binding is likely faster than the Web service
binding because a Web service call involves a SOAP parsing performance
overhead. JMS, MQ, and MQJMS binding are used where reliability is more
important than performance.

One of the capabilities of ESB is transport protocol transformations. A
synchronous transport protocol may be transformed to an asynchronous
transport protocol. This has to be taken into consideration to understand its
effects on client interactions with ESB. For example, let us assume that a service
requester sends a request synchronously using SOAP over HTTP to WebSphere
ESB. WebSphere ESB forwards the request to WebSphere DataPower using
XML over MQ. Then WebSphere DataPower forwards the request synchronously
to the service provider using SOAP over HTTP. The service provider creates a
reply that is sent synchronously to WebSphere DataPower. At this point,
WebSphere DataPower needs to send the correct reply back to WebSphere ESB
because WebSphere ESB sent the request asynchronously via MQ. To send the
correct reply, WebSphere DataPower needs to copy the MsgId field of the MQMD
header from the request message into the CorrelId field of the MQMD header of
the reply message. Then, when WebSphere DataPower sends the reply to
WebSphere ESB, WebSphere ESB will be able to correlate the reply with the
request. WebSphere ESB will then send the reply back to the correct service
requester.

8.1.5 Virtualization of Service

One of the major benefits of an ESB is loose coupling or even decoupling. When
an ESB pattern is implemented, the service provider can change location,
platform, and implementation; add new functions; and change interface, data
types, or qualities of service. The service requester knows how to communicate
with the service facade exposed by ESB. The service requester interacts with the
service facade, not knowing that the real service provider is located somewhere
else.

198 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 8-8 shows schematically one service facade and multiple service
providers that differ in shape to reflect the possible differences in platform,
location, implementation language, interfaces, operations exposed, operation
parameters required, and so on. The service facade exposed as a Web service
receives a request from a service requester. The Web service could be defined
through a wsdl-described interface export component with a Web service binding
in a mediation module or could be exposed in WebSphere DataPower or
WebSphere Transformation Extender. The WebSphere ESB run time operates
on the request using a mediation flow and eventually invokes the real service
provider that is implemented as a JMS service or any other supported service.

Figure 8-8 Many services can be virtualized as Web services

Service Providers

S-SEJB Service

EIS Service

JMS
Service

ESB
Web

Service

SOAP/
HTTP

SOAP/
JMS

EIS data/
MQ

EJB/
RMI

Service Providers

S-SEJB Service

EIS Service

JMS
Service

ESB
Web

Service

SOAP/
HTTP

SOAP/
JMS

EIS data/
MQ

EJB/
RMI

 Chapter 8. ESB design options 199

8.1.6 Dynamic routing

The dynamic routing of a service request is supported in WebSphere ESB 6.0.2
through the use of the /smo/headers/SMOHeader/Target/address element
(shown in Figure 8-9) and by checking the box labeled Use dynamic endpoint if
set in the message header on the Details tab of the Callout node in WID. When
the Callout node is configured for dynamic routing, the Callout node associated
reference does not have to be wired to any service.

Figure 8-9 A part of the SMO tree

If the address field contains a valid value and the Callout node is configured for
dynamic routing, the service identified in the address field is invoked. Or else if
the address field is not set and the Callout node associated reference is wired,
the default wired service is invoked. Otherwise, an exception is thrown by the
WebSphere ESB run time.

correlation transient failinfo primitiveContext

EndpointLookupContext

EndpointLookupContext

EndpointLookupContext

SMOHeader

headers

Target

address

Address ReferenceProperties ReferenceParameters PortType ServiceName property classification relationship

@PortName

property classification relationship
...

...
...

context

smo

...
enpointReference registryAnnotations

200 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The Endpoint Lookup primitive is used in a mediation flow to retrieve service
endpoints and related information from WSRR based on selection criteria. The
primitive submits a service search request to the registry. The search request
has the following parameters:

� Port type name - usually matches the reference interface name set on the
Callout node.

� Port type version - specifies a specific version of a service.

� Namespace

� Registry name - specifies the name of a registry configured in the WebSphere
ESB run time. The registry name can be found under the registries entry in
the navigation table of the WebSphere Administrative Console.

� Match policy - can be set to either “Return one matching endpoint” or “Return
all matching endpoints”.

� Classifications - a set of URIs defined in the Web Ontology Language (OWL).

� User properties - The user enters values for properties that should be
matched for endpoints found in the registry.

If one endpoint is returned from the registry, the SMO address field is set to the
endpoint address and the endpoint service is invoked. If more than one endpoint
is returned, the SMO primitiveContext subtree shown in Figure 8-9 on page 200
is populated and the SMO tree is propagated forward to the next mediation
primitives for endpoint selection logic. For example, these mediation primitives
may check the registryAnnotations subtree to find the information associated
with the best service endpoint to select for invocation.

To enhance the performance of the Endpoint Lookup primitive, the registry
lookups are cached in the WebSphere ESB run time, so the primitive lookups do
not have to be performed against the registry unless the associated cache
lookup entry has been invalidated or timed out. The registry lookups cache is not
available to the developer, but it is available to the administrator, who can
configure the registry lookups cache.

Another primitive that can be used in conjunction with the dynamic routing
mechanism available with WebSphere ESB is the DB Lookup primitive, but the
use of the Endpoint Lookup primitive helps make WebSphere ESB mediation
flows more flexible because the primitive can retrieve potentially many service
endpoints with different properties. These service endpoints and associated
information are not hard coded in the mediation flow. They are specified in the
registry, which can be updated independently of the mediation flow.

If a mediation module contains a call to a WebSphere Transformation Extender
map in a custom mediation component or an import component with a custom

 Chapter 8. ESB design options 201

JMS binding, the map input and output cards can be selected dynamically at run
time.

8.1.7 Inter-communication

Figure 8-10 shows the communication between the components of ESB. Note
that WebSphere Transformation Extender can be integrated with WebSphere
ESB in a number of ways. WebSphere Transformation Extender can be
connected with WebSphere ESB through JMS, MQ, or HTTP. Alternatively,
WebSphere Transformation Extender maps can be invoked from within a custom
mediation inside a WebSphere ESB mediation module or from within a custom
JMS binding Java class of an import component inside a WebSphere ESB
mediation module. WebSphere DataPower can be connected with WebSphere
ESB through HTTP, JMS, and MQ.

Figure 8-10 Inter-communication between the components of ESB

8.1.8 Resiliency

The WebSphere ESB product, which is the core ESB product in this section, can
be made highly available by leveraging the clustering capability in WebSphere
Application Server. Figure 8-11 on page 203 shows three clusters: a messaging
engine cluster (ME Cluster), an application cluster (Application Cluster), and a
common event infrastructure cluster (CEI Cluster), all of which are managed in a
WebSphere Application Server cell by the deployment manager. Each of these
clusters is shown to have its own database — MEDB for JMS messages
persistence, APPDB for use by SCA mediation modules, and CEIDB for use by

MQ, JMS,
SOAP/HTTP

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS,
SOAP/HTTP

MQ, JMS, MQ-
JMS,
SOAP/HTTP

WTX

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS, MQ-
JMS,
SOAP/HTTP

WTX

WESB

WESBProduct

Product

MQ, JMS,
SOAP/HTTP

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS,
SOAP/HTTP

MQ, JMS, MQ-
JMS,
SOAP/HTTP

WTX

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS, MQ-
JMS,
SOAP/HTTP

WTX

WESB

WESBProduct

Product

202 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

the CEI server. Only one messaging engine is active in the messaging engine
cluster. It is active on one of the application servers of the cluster.

Figure 8-11 WebSphere ESB clustered configuration

If the messaging engine fails, the HA manager will start the messaging engine on
another application server member of the messaging engine cluster. This
configuration does not increase the message throughput of the messaging
engine, but increases messaging engine availability.

The message throughput is increased through a bus destination partitioning
across multiple physical queues. The workload manager will distribute all
messages destined for that partitioned bus destination across all the underlying
physical queues. This eliminates the potential bottle-necking behavior with a
single physical queue. To accomplish the bus destination partitioning, there
needs to be one messaging engine active on each application server member of
the messaging engine cluster. This way, each messaging engine will host an
instance of a physical queue that is mapped to the partitioned destination.
Beware that destination partitioning has negative implications.

Cell

ME Cluster

Deployment
Manager

SCA.SYSTEM.cell.Bus

SCA.APPLICATION.cell.Bus

CommonEventInfrastructure_Bus

MEDB APPDB CEIDB

Application
Cluster

CEI
Cluster

 Chapter 8. ESB design options 203

There are four different implications associated with a bus destination
partitioning:

� Unbalanced connections to the physical queues
� Affinity problems between the message and the application
� Message orphans on failed messaging engines
� Message sequencing problem

Avoid the cluster topology that makes use of a bus destination partitioning unless
your application is stateless. It can deal with messages that are out of sequence,
and delays in processing message orphans are not a problem.

The topology shown in Figure 8-11 on page 203 enables the administrator to
tune each cluster and each database independently for optimal performance,
availability, and scalability. The CEI and messaging engine clusters do not run
user applications. User applications like mediation flow applications run in the
application cluster.

The application cluster runs the same SCA mediation module enterprise
applications on every member of the cluster. This increases request throughput
and availability of the mediation applications.

The CEI server is running on each application server member of the CEI cluster.
This increases the request throughput and availability of the CEI server.

204 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 8-12 shows the WebSphere Application Server HA manager and the
services it monitors. Note the use of a database for JMS messages, HTTP
sessions, and stateful session beans persistence. Also note the use of an
external shared storage for WebSphere Application Server transaction logs.

Figure 8-12 WebSphere Application Server HA manager

The application components (such as the Event Emitter primitive in a mediation
flow) running in the application cluster interact with the CEI server running in the
CEI cluster either synchronously or asynchronously. The synchronous interaction
is done through an EJB call to the CEI server. The asynchronous interaction is
done through a message queue hosted by a messaging engine running in the
messaging engine cluster. Both types of interactions are highly available.

WAS Cluster Member 1

Transaction
Service

Distributed
Cache

Service

Data
Replication

Service

Dynamic
Workload
Manager

Messaging
Service

HA Manager 1

GMS
Provider

WAS Cluster Member 2

Transaction
Service

Distributed
Cache
Service

Data
Replication

Service

Dynamic
Workload
Manager

Messaging
Service

HA Manager 2

GMS
Provider

Health Beat HA
Coordinator

HA
Coordinator

Transaction
Logs

NAS
HTTP Sessions

Stateful Session Beans
JMS Messages

HACMP DB

 Chapter 8. ESB design options 205

Figure 8-13 shows the two types of interactions between the application
components and the CEI server. The recommendation is to use the
asynchronous interaction between the application and the CEI server. Using the
asynchronous interaction is preferable because the application does not block
until the event is logged in the database by the CEI server. The type of interaction
between the application and the CEI server is configurable via WebSphere
Administrative Console.

Figure 8-13 Application interactions with CEI

CEI Cluster

CEI Server

Application Cluster

Bus

ME Cluster

JMS Destination

Messaging Engine

EJB CallApplication

MEDB

CEI Cluster

CEI Server

Application Cluster

Bus

ME Cluster

JMS Destination

Messaging Engine

EJB CallApplication

MEDB

206 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

A simpler topology to set up is shown in Figure 8-14, but this topology is not as
flexible as the topology shown in Figure 8-11 on page 203. Figure 8-14 shows
that there is only one cluster for all WebSphere ESB components. Each
component still has its own database.

Figure 8-14 One WebSphere ESB cluster for all components with separate databases

Cell

Deployment
Manager

MEDB APPDB CEIDB

WESB Cluster

SCA.SYSTEM.cell.Bus

SCA.APPLICATION.cell.Bus

CommonEventInfrastructure_Bus

Cell

Deployment
Manager

MEDB APPDB CEIDB

WESB Cluster

SCA.SYSTEM.cell.Bus

SCA.APPLICATION.cell.Bus

CommonEventInfrastructure_Bus

 Chapter 8. ESB design options 207

Figure 8-15 shows the simplest, but least flexible topology, where there is only
one WebSphere ESB cluster where all components share the same database.

Figure 8-15 The least flexible WebSphere ESB topology

Cell

Deployment
Manager

WESBDB

WESB Cluster

SCA.SYSTEM.cell.Bus

SCA.APPLICATION.cell.Bus

CommonEventInfrastructure_Bus

Cell

Deployment
Manager

WESBDB

WESB Cluster

SCA.SYSTEM.cell.Bus

SCA.APPLICATION.cell.Bus

CommonEventInfrastructure_Bus

208 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

8.1.9 Qualities of service

In the WebSphere ESB-based architecture, the qualities of service are set at
different levels and scope in the WebSphere ESB runtime artifacts. Table 8-2 lists
the qualities of service that can be set in different scopes of the runtime artifacts
of WebSphere ESB.

Table 8-2 Qualities of service available in the WebSphere ESB run time

A quality of service set at the interface level can be overridden at the operation
level, but cannot be removed at the operation level. The quality of service can be
removed at the interface level.

The type of interactions between two SCA components in a mediation module
can be set to either synchronous or asynchronous. Also, the interaction type
between the SCA mediation module and a component outside WebSphere ESB
is determined via the binding type of the export or the import component used to
interact with the component outside the WebSphere ESB run time.

There are a number of different delivery qualities of service provided by the
WebSphere Application Server messaging engine. When the WebSphere
Application Server messaging engine is used (as is the case with the internal
asynchronous communication used in the WebSphere ESB run time) the
following delivery qualities of service are available: assured persistent, reliable
persistent, reliable nonpersistent, express nonpersistent, and best effort
nonpersistent.

Assured persistent messages have the most negative impact on performance but
are the most reliable, while the best effort nonpersistent is best for performance
but is the least reliable.

Artifact type Qualities of service

Interface Join activity session
Join transaction
Security permission

Operation Event sequencing
Join activity session
Join transaction
Security permission

Reference Asynchronous invocation
Reliability
Request expiration
Response expiration
Suspend activity session
Suspend transaction

 Chapter 8. ESB design options 209

Table 8-3 lists the characteristics of the various levels of the delivery quality of
service.

Table 8-3 Delivery qualities of service

Characteristic Best effort
nonpersistent

Express
nonpersistent

Reliable
nonpersistent

Reliable
persistent

Assured
persistent

JMS Delivery
mode

Nonpersistent Nonpersistent Nonpersistent Persistent Persistent

Transactionally
atomic?

No Yes, but
messages do
not survive
restart

Same as
express
nonpersistent

Yes Yes

Messages
hardened?

No Only as a
result of
resource
shortage

Same as
express
nonpersistent

Yes,
asynchronously

Yes,
synchronously

Discarded in
normal
operations?

Yes No No No No

Duplicated No Possibly Possibly Possibly No

Messages
survive
planned
shutdown?

No No No Yes Yes

Messages
survive client
communication
failure?

No No Yes Yes Yes

Messages
survive engine
communication
failure?

No Yes Yes Yes Yes

Messages
survive engine
crash?

No No No Hardened
messages are
recovered

Yes

210 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

For a message received from WebSphere MQ into the WebSphere Application
Server messaging engine, the delivery qualities of service are mapped by
default. See Table 8-4.

Table 8-4 Delivery qualities of service mapping

For a message sent to WebSphere MQ from the WebSphere Application Server
messaging engine, the delivery qualities of service are mapped as follows
(Table 8-5) when it is received by MQ.

Table 8-5 Delivery qualities of service mapping

Note that the MQ link needed to connect WebSphere MQ to the WebSphere
Application Server messaging engine is made highly available through
SupportPac MR01 found here:

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24013895&loc=en_
US&cs=utf-8&lang=en

WebSphere MQ WebSphere Application Server
Messaging Engine

Persistent Assured persistent

Nonpersistent Express nonpersistent

WebSphere Application Server
Messaging Engine

WebSphere MQ

Reliable persistent Persistent

Assured persistent Persistent

Reliable nonpersistent Nonpersistent

Express nonpersistent Nonpersistent

Best effort nonpersistent Nonpersistent

 Chapter 8. ESB design options 211

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24013895&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg24013895&loc=en_US&cs=utf-8&lang=en

8.2 WebSphere Message Broker-based ESB
architecture

The WebSphere Message Broker-based ESB architecture is based on a C/C++
high-performance broker engine. Figure 8-16 shows a relatively simple
WebSphere Message Broker-based ESB architecture. Figure 8-16 is quite
similar to Figure 8-1 on page 183, which shows a simple WebSphere ESB-based
architecture. Architecturally, both WebSphere Message Broker and WebSphere
ESB are used as brokers, but each one is suited for a specific environment.

Figure 8-16 A simple WebSphere Message Broker-based ESB environment

Figure 8-16 shows WebSphere Message Broker to be at the heart of the ESB
topology. It receives service requests from the Internet and intranet. It routes
these service requests intelligently to the correct service providers. The
configuration shows that optionally either a WebSphere DataPower XS40 may be
deployed as an XML firewall or a WebSphere DataPower XI50 may be deployed
as an explicit ESB Gateway. Using a message flow developed in Message
Brokers Toolkit and deployed in the WebSphere Message Broker run time,
WebSphere Message Broker routes the service request optionally coming from
WebSphere DataPower to the service provider that may be located in the
intranet, as shown in Figure 8-16.

Enterprise Secure
Zone

Internet
Zone

Demilitarized
Zone

Zone: Enterprise Service Bus

<Service Consumer> <Service Provider>

<Service Provider>

App Server/
Services

HubHub

D
om

ai
n

Fi
re

w
al

l

Service
Registry

App Server/
Services

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

App Server/
Services

Hub

WMB

WSRR

<Service Consumer>

App Server/
Services

ESB
Gateway

WDP
XI50

Legend:
Orange – node
Green – product
White – code

May be in the Hub
or a separate product

An optional product

XML
Firewall

WDP
XS40<Service Provider>

Present but not necessarily
dynamically invoked

Enterprise Secure
Zone

Internet
Zone

Demilitarized
Zone

Zone: Enterprise Service Bus

<Service Consumer> <Service Provider>

<Service Provider>

App Server/
Services

HubHub

D
om

ai
n

Fi
re

w
al

l

Service
Registry

App Server/
Services

App Server/
Services

Pr
ot

oc
ol

 F
ire

w
al

l

App Server/
Services

Hub

WMB

WSRR

<Service Consumer>

App Server/
Services

ESB
Gateway

WDP
XI50

Legend:
Orange – node
Green – product
White – code

May be in the Hub
or a separate product

An optional productAn optional product

XML
Firewall

WDP
XS40<Service Provider>

Present but not necessarily
dynamically invoked

212 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

WebSphere Message Broker may leverage a number of IBM WebSphere
products such as WebSphere Transformation Extender, WebSphere DataPower,
and WBI Adapters to interact with the service providers such as a CICS program
or an SAP BAPI. WebSphere Message Broker may also leverage a number of
SupportPacs to interact with EIS systems. For the dynamic routing of service
requests, WebSphere Message Broker may leverage WSRR to locate a service
provider before invocation.

The service requests may be sent to WebSphere Message Broker from the
intranet. To simplify interactions with WebSphere Message Broker, IBM provides
the Message Service Client for C/C++ SupportPac that enables C/C++
applications to exchange messages with WebSphere Message Broker. A Java
application may leverage a number of Java APIs provided by WebSphere MQ to
communicate with WebSphere Message Broker. WebSphere MQ provides JMS,
Java MQ, and AMI APIs. The Java application may run standalone or inside a
J2EE application server such as WebSphere Application Server.

Similar to Internet-originated requests, intranet-originated requests invoke
facade services exposed by WebSphere Message Broker. Then, through
WebSphere Message Broker message flows, the actual service providers that
may be located internally or externally are invoked to service these service
requests.

8.2.1 Platforms support

Table 8-6 shows the support of various platforms by WebSphere Message
Broker shown in Figure 8-16 on page 212.

Table 8-6 WebSphere Message Broker support for various platforms

8.2.2 WebSphere Message Broker-based ESB candidate environment

WebSphere Message Broker is a good fit for an environment that has the
following characteristics:

� WebSphere MQ already exists in the environment.

WebSphere Message Broker leverages WebSphere MQ qualities of service
like message delivery, transaction management, authorization, and so on.

Product Supported platformsa

a. Check the platform details from the following link:
http://www-306.ibm.com/software/integration/wbimessagebroker/requirements/

WebSphere Message Broker AIX, HP-UX, Linux, Solaris, Windows, and
Z/OS

 Chapter 8. ESB design options 213

http://www-306.ibm.com/software/integration/wbimessagebroker/requirements/

� High-performance is needed.

The WebSphere Message Broker is a high-performance message flow
engine. A processing speed of more than 1700 messages per second has
been reported for messages of 1 KB in size.

� Support for various transport protocols is needed.

If an environment needs messages to be exchanged over many different
transport protocols, WebSphere Message Broker will be a great fit.
WebSphere Message Broker supports all MQ-related transports in addition to
other types of transport like HTTP, FTP, TCP/IP, SMTP, LDAP, JMS, SOAP
over HTTP/S, and over MQ.

� Application integration is needed.

Through SupportPacs, WebSphere Message Broker supports native
connectivity and processing for CICS, Z/OS VSAM and Z/OS QSAM, E-mail,
FTP, flat file, LDAP, TLog, Zip/Unzip, and Remote Server Retail Data
Extensions. WBI Adapters enable WebSphere Message Broker to integrate
with many other applications.

� XML and non-XML data transformations are needed.

WebSphere Message Broker has many built-in parsers that are capable of
processing many data formats. If complex data transformation is needed,
WebSphere Message Broker provides a number of nodes that simplify the
mapping tasks for the developer. WebSphere Message Broker provides the
following built-in nodes: Compute, Database, DataDelete, DataInsert,
DataUpdate, Extract, JavaCompute, JMSMQTransform, MQJMSTransform,
Mapping, Warehouse, and XMLTransformation, in addition to other nodes
provided in SupportPacs that help you develop complex data transformations.
For even more challenging data transformation tasks, WebSphere Message
Broker leverages WebSphere Transformation Extender for Message Brokers
product that integrates WebSphere Transformation Extender’s powerful data
transformation capabilities inside message flows.

� Support for XML and non-XML data formats is needed.

WebSphere Message Broker supports many industry data formats like HL7,
EDI X12, EDIFACT, SWIFT, and so on. If there is a need for a data format that
is not supported by WebSphere Message Broker, the more comprehensive
data format support provided by WebSphere Transformation Extender can be
leveraged easily in WebSphere Message Broker.

� Complex event processing is needed.

The SupportPac IA0S provides two powerful event processing nodes that can
be included in message flows for complex event processing. Using an
embedded complex-event processing engine, these nodes monitor the
message flows for complex situations and intelligently react to these

214 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

situations to drive message flows. The two nodes are SituationManager and
IntelligentFilter.

� A mixture of implementation languages is needed.

WebSphere Message Broker supports custom nodes written in C and in Java.

� Support for standards is needed.

WebSphere Message Broker supports JMS, WSDL 1.1, WS-I Basic Profile
1.0, SOAP, HTTP/S, SOAP over MQ, SOAP over JMS, SOAP over HTTP/S,
and SOAP with Attachment. The number of supported standards will increase
with WebSphere Message Broker in the future.

� Dynamic routing is needed.

WebSphere Message Broker dynamic routing capabilities are quite powerful.
WebSphere Message Broker supports WSRR through a number of nodes
introduced with WebSphere Message Broker Fix Pack 6.0.3. These nodes are
included in message flows to query WSRR for certain information that would
dynamically affect message routes through the message flows. WebSphere
Message Broker supports dynamic routing through other means also.

8.2.3 Message modeling

WebSphere Message Broker provides a number of pre-built message types as
SupportPacs so that developers do not have to develop the message sets and
message types themselves. These message types cover a number of industries,
like health care and financial industries. If a message type is not supported in a
SupportPac, a custom message type can be built in the WebSphere Message
Brokers Toolkit.

The WebSphere Message Broker supports different data format types like
Tagged or Delimited String (TDS) format type, Custom Wire Format (CWF) type,
and XML format type. Messages compliant with ACORD, AL3, EDIFACT, HL7,
and X12 fall in the TDS format category where data elements in the message are
separated by a well-known delimiter like the asterisk. Messages like a C structure
or a COBOL copybook fall in the CWF format category where data elements in
the message are not separated by a delimiter.

8.2.4 Data Format Transformation

WebSphere Message Broker does not need the service request to be in a
specific data format. WebSphere Message Broker has a number of built-in
parsers that are capable of parsing many data formats. The data may be
transformed as it flows through the message flow using one or more of the data
transformation nodes. Data may have to be transformed to another format so that
the service provider accepts it. When it comes to data transformations,

 Chapter 8. ESB design options 215

WebSphere Message Broker is much more sophisticated than WebSphere ESB
because WebSphere Message Broker can natively do XML-to-Non-XML
mapping and vice versa. WebSphere Message Broker can perform the data
transformation between any two format categories like XML-to-TDS and between
two formats of the same category like XML-to-XML.

WebSphere Message Broker natively comes with a number of robust message
transformation nodes:

� To transform the request message from one XML format to another XML
format, the XMLTransformation node can be used to perform the
transformation according to a specified XSL style sheet.

� The mapping node accepts the request message and a database as inputs to
create a new output message.

� For more complex data transformation, the Compute node or the
JavaCompute node can be used. The Compute node accepts the request
message and a database as inputs and can create multiple output messages.
To perform data transformation, the Compute node uses ESQL code.

� The JavaCompute node enables the developer to leverage the full power of
the Java language in a message flow to transform request messages, to
interact with databases, to call a service like an EJB or a Web service, and so
on.

All of the transformation nodes can perform the data transformation on the
message body as well as the message headers.

Message parsing
The message parser specified on the input node (such as the MQInput node)
receives the message as a bit stream and creates a logical tree for processing
such as data transformation through the message flow. There are four different
subtrees that make up the logical tree:

� The message subtree
� The Environment subtree
� The LocalEnvironment subtree
� The ExceptionList subtree

216 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 8-17 shows the message tree. This tree is specific to a message received
via an MQ transport. For a message received via another transport protocol, the
headers will be different. If a user-defined parser was used to create the
message tree, the tree may look different from this tree. The Properties element
shown in the tree is used by the application.

Figure 8-17 The message tree

Figure 8-18 shows the environment tree. This tree is used by the application. The
application can create any variable in the tree to be used during the message
flow processing. Figure 8-19 on page 218 shows the LocalEnvironment tree.
There are more details provided about this tree in 8.2.7, “Dynamic routing” on
page 222. The ExceptionList tree contains exception details about a message
flow processing failure. The ExceptionList tree is shown in Figure 8-20 on
page 218. Other exception types that may be shown in the ExceptionList tree are
ParserException, ConversionException, UserException, and
DatabaseException. All of these trees are available in the message flow for
processing, such as transformation.

Figure 8-18 The environment tree

Properties MQMD BodyOther headers

Root

Variables

Environment

Variable1 Variable2 Variable3

 Chapter 8. ESB design options 217

Figure 8-19 Portion of the LocalEnvironment tree

Figure 8-20 A portion of the ExceptionList tree

External data transformation
Like WebSphere ESB, WebSphere Message Broker can also leverage
WebSphere Transformation Extender for more sophisticated mapping, especially
when many-to-many mapping is required. Also like WebSphere ESB,
WebSphere Message Broker can leverage WebSphere DataPower for a
specialized, but simple mapping like encrypting a specific security-sensitive field
in a message.

DestinationServiceRegistry

LocalEnvironment

WrittenDestination

MQ

MQ

MQDestinationList

MQDestinationList

RouterList

DestinationData

labelName

type bsrURL name namespace version content location

Entity

Entity

Entity ...
...

RecoverableException

ExceptionList

File Line Function RecoverableException (1)

218 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 8-21 shows one WebSphere Message Broker-based ESB topology used
for both simple or complex data transformation. In Figure 8-21, WebSphere
Message Broker is being used to transform an XML message received to
possibly another XML format before passing the message to a Web service
running in WebSphere Application Server. WebSphere Message Broker is also
leveraging WebSphere Transformation Extender in Figure 8-21 to transform the
input XML data and a database input to EDI X12.

Figure 8-21 Data transformation in WebSphere Message Broker-based ESB

Enterprise Secure Zone
Internet

Zone
Demilitarized

Zone

Zone: ESB

HubHub

D
om

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

w
al

l

Hub

Existing
Application

Existing
Application

AppServer
/Services
WAS V6

CICS

EDI

Web svc
WMB

Connector
WTX

Complex
mapping

Hub

Complex
mapping

Simple
mapping

XML/
HTTP

COBOL copybook/
MQ

X12/
FTP

XML/
JMS

XML/
MQ

Legend:
Orange – node
Green – product
White – code

XML/
HTTP

- message/
protocol
context

Enterprise Secure ZoneEnterprise Secure Zone
Internet

Zone
Demilitarized

Zone

Zone: ESB

HubHub

D
om

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

w
al

l

Hub

Existing
Application

Existing
Application

AppServer
/Services
WAS V6

CICS

EDI

Web svc
WMB

Connector
WTX

Complex
mapping

Hub

Complex
mapping

Simple
mapping

XML/
HTTP

COBOL copybook/
MQ

X12/
FTP

XML/
JMS

XML/
MQ

Legend:
Orange – node
Green – product
White – code

XML/
HTTP

- message/
protocol
context

XML/
HTTP
XML/
HTTP

- message/
protocol
context

 Chapter 8. ESB design options 219

8.2.5 Protocol transformation

Figure 8-22 shows the various product choices available to perform the protocol
transformations required. The ESB component is a logical component that may
include WebSphere Message Broker, WebSphere DataPower, WebSphere
Transformation Extender, and WBI Adapters.

Figure 8-22 Protocol transformations by ESB

WebSphere Message Broker natively comes with many built-in nodes that
support different transport protocols. These nodes can be wired together in many
different ways to support protocol transformations. For example, the MQInput
node supports the receipt of a message using the MQ transport protocol, and the
HTTPRequest node sends a SOAP message using the HTTP protocol to a Web
service. The two nodes can be wired together in a message flow in such a way
that a message received via MQ is sent via SOAP over HTTP.

If a specific transport protocol is not supported in the WebSphere Message
Broker built-in nodes, there are SupportPacs that are available to support
additional transport protocols like TCP/IP, LDAP, SMTP, and FTP nodes. If
additional transport protocols support is needed beyond what is provided in the
built-in and SupportPacs nodes, WebSphere Transformation Extender can be
leveraged for its transport protocols conversion capabilities.

WMBWMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

EIS

WMBWMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

FTP

WMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

EIS

WMB,
WTX

WMB,
WTX

WMB,
WTX

WMB,
WTX

FTP

WMB,
WDP,
WTX

WMB,
WTX

WMB,
WDP,
WTX

WMB,
WDP,
WTX

HTTP

WMBWMB,
WTX

WMB,
WDP,
WTX

WMB,
WDP,
WTX

HTTP

WMBWMB,
WTX

WMB,
WTX

WMB,
WTX

MQ-JMS

WMB,
WTX

WMB,
WTX

MQ-JMS

WMB,
WDP,
WTX

WMB,
WDP,
WTX

JMS

WMB

WMB

RMI over
IIOP

WMB,
WDP,
WTX

JMS

WMB,
WDP,
WTX

MQ

MQOutbound
format

Inbound
format

220 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

8.2.6 Virtualization of service

One of the major benefits of an ESB is loose coupling or even decoupling. When
an ESB pattern is implemented, the service provider can change location,
platform, implementation; add new functions; and change interface, data types,
or quality of services. The service requester knows how to communicate with the
service facade exposed by the ESB. The service requester interacts with the
service facade, not knowing that the real service provider is located somewhere
else. Figure 8-23 shows schematically one service facade and multiple service
providers that differ in shape to reflect the possible differences in platform,
location, implementation language, interfaces, operations exposed, operation
parameters required, and so on. The service facade exposed as a Web service
receives a request from a service requester. The WebSphere Message Broker
run time operates on the request using a message flow and eventually invokes
the real service provider that is implemented as a JMS service or any other
supported service.

Figure 8-23 Many services can be virtualized as Web services

Service Providers

JMS
Service

ESB
Web

Service

SOAP/
HTTP

SOAP/
JMS

SOAP/
HTTP

XML/
MQ

MQ Service

Web
Service

Service Providers

JMS
Service

ESB
Web

Service

SOAP/
HTTP

SOAP/
JMS

SOAP/
HTTP

XML/
MQ

MQ Service

Web
Service

 Chapter 8. ESB design options 221

Figure 8-24 shows a Web service virtualized by WebSphere Message Broker as
an MQ service. The MQInput node receives the MQ request, which goes through
some processing in a message flow. When the HTTPRequest node is reached, a
Web service call is issued to a Web service running in WebSphere Application
Server. The Web service sends a reply that may get processed through the
message flow that uses the MQOutput node to send a reply to the original
service requester.

Figure 8-24 A Web service call made from an HTTPRequest node

Figure 8-24 shows a service virtualization using the various components of a
multi-component ESB. Some service providers get invoked directly by
WebSphere Message Broker, some get invoked by WebSphere Transformation
Extender, some get invoked by WebSphere DataPower, and some may be
invoked by a WBI adapter.

8.2.7 Dynamic routing

The dynamic routing in WebSphere Message Broker can be accomplished by
using the RouteToLabel and Label nodes. In a message flow designed for
dynamic routing, the RouteToLabel node reads the RouterList structure set in the
LocalEnvironment tree of the message and routes the message to the Label
node identified in the RouterList structure. The RouteToLabel node is not wired to
the Label nodes. The route taken by the message is determined at run time.

WMB

Message Flow

MQOutput

MQInput

HTTP
Server

WebSphere
Application

Server

Web
Service

Web service request
HTTPRequest

Web service response

222 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 8-25 shows a portion of the MQ message LocalEnvironment tree relevant
to the dynamic routing capability. Note that the Entity, MQ, and
MQDestinationList elements are arrays. Also note that this LocalEnvironment
tree is specific to MQ messages.

Figure 8-25 A portion of the MQ message LocalEnvironment tree

The dynamic routing in WebSphere Message Broker is enhanced with the use of
WSRR and the WSRR-related nodes available with the WSRR client for
WebSphere Message Broker. There are five WSRR-related nodes that can be
used in WebSphere Message Broker message flows just like any built-in node.
The WSRR-related nodes are SRGetVirtualService, SRProcessVirtualService,
SRDispatchVirtualService, SRRetrieveITService, and SRRetrieveEntity.

At run time, the SRGetVirtualService node sets the labelName field shown in
Figure 8-25 for the RouterToLabel node based on the relationship type,
relationship value, and endpoint alias retrieved from WSRR. When the message
is propagated from the SRGetVirtualService node to the RouterToLabel node,
the RouterToLabel node reads the labelName field and routes the message to
the Label node identified in the labelName field.

DestinationServiceRegistry

LocalEnvironment

WrittenDestination

MQ

MQ

MQDestinationList

MQDestinationList

RouterList

DestinationData

labelName

type bsrURL name namespace version content location

Entity

Entity

Entity ...
...

 Chapter 8. ESB design options 223

Figure 8-26 shows the steps involved in the dynamic routing behavior described
here. The SRProcessVirtualService node works similarly to the
SRGetVirtualService node, but it sets the labelName field to a value that contains
a label name and a supported protocol such as MQ, URL, or JMS. At run time,
the dynamic routing behavior is similar to the behavior described in the case of
the SRGetVirtualService node. The SRDispatchVirtualService is used to
establish the endpoint of the target service.

Figure 8-26 Dynamic routing support in WebSphere Message Broker

The SRRetrieveEntity node retrieves any type of documents stored in WSRR.
Once these documents are retrieved, the SRRetrieveEntity node populates the
ServiceRegistry structure shown in Figure 8-25 on page 223. Note that the Entity
field shown in the tree is an array. It is conceivable that the information populated

RouteToLabelSRGetVirtualService

Message
Assembly

Message
Assembly

Label2

Label3

Label1
Populates destination list Reads destination list

224 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

in the ServiceRegistry structure can be easily used to determine a message
route at run time. Figure 8-27 illustrates this point. The SRRetrieveITService
node can be configured to return either one service endpoint or multiple service
endpoints.

Figure 8-27 Use of SRRetrieveEntity in dynamic routing in WebSphere Message Broker

To improve the performance of WSRR lookups that can be made by all of these
five nodes, WebSphere Message Broker retains a local cache of lookup data so
that the lookup requests are sent to WSRR only when the cache cannot service
the lookup requests.

In cases where WSRR is not used to provide information used for dynamic
routing, the RouteToLabel and Label nodes can still be used, but logic has to be
built before the RouteToLabel node in the message flow to populate the
RouterList structure. This can be done by using a node such as a Compute or a
JavaCompute node. The node populates the RouterList structure based on the
message content, a database lookup, and some ESQL or Java logic.

ComputeSRRetrieveEntity

Message
Assembly

Message
Assembly

Label2

Label3

Label1 Populates ServiceRegistry
structure Populates RouterList

RouteToLabel

Message
Assembly

Reads RouterList

 Chapter 8. ESB design options 225

Figure 8-28 shows the steps involved in the dynamic routing capability of
WebSphere Message Broker without using WSRR. Each Label node may be
connected to a message subflow that provides further processing to the
message. The message subflow may end with a call to a Web service or further
dynamic routing.

Figure 8-28 Dynamic routing in WebSphere Message Broker without WSRR

Other mechanisms can also be used in WebSphere Message Broker for dynamic
routing. For example, the Filter node can be used for dynamic routing, but the
nodes RouteToLabel and Label are more robust than the Filter node because
they can do a more complex routing logic.

RouteToLabel

Message
Assembly

Message
Assembly

Label2

Label3

Label1
Populates destination list Reads destination list

Compute

226 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

8.2.8 Inter-communication

Figure 8-29 shows the communication between the components of a WebSphere
Message Broker-based ESB.

Figure 8-29 Inter-communication between the WebSphere Message Broker-based ESB
components

Note that WebSphere Transformation Extender can be integrated with
WebSphere Message Broker in a number of ways. WebSphere Transformation
Extender can be connected with WebSphere Message Broker through JMS, MQ,
and HTTP. Also, a WebSphere Transformation Extender node is available for
message flow developers in the Message Brokers Toolkit. To get the WebSphere
Transformation Extender node, the WebSphere Transformation Extender for
Message Broker product needs to be installed.

8.2.9 Resiliency

In this section we discuss the ability to return to the original state.

HACMP for AIX platforms
High-Availability Cluster Multi-Processing (HACMP™) is IBM flagship software
that enables critical software services, like databases, to be highly available on
AIX-based clustered machines. The simplest HACMP environment consists of
two machines in an active-passive or active-standby configuration, whereby the
active machine is doing critical data processing and the passive machine is

MQ, JMS,
SOAP/HTTP

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS,
SOAP/HTTP

MQ, JMS,
SOAP/HTTP

WTX

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS,
SOAP/HTTP

WTX

WMB

WMBProduct

Product

MQ, JMS,
SOAP/HTTP

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS,
SOAP/HTTP

MQ, JMS,
SOAP/HTTP

WTX

MQ, JMS,
SOAP/HTTP

WDP

MQ, JMS,
SOAP/HTTP

WTX

WMB

WMBProduct

Product

 Chapter 8. ESB design options 227

waiting to take over data processing from the active machine when necessary. If
a failover-inducing event takes place on the active machine, the data processing
must be routed from the failing active machine to the healthy passive or standby
machine. A more advanced HACMP environment consists of two machines in an
active-active configuration, whereby both machines are doing critical data
processing. If a failover-inducing event takes place on one machine, the data
processing must be routed from the failing machine to the healthy machine.

Upon failover, the healthy machine, in an HACMP cluster, must be able to
process its own data as well as the newly routed stream of data. This means that
the software, processing the data stream on the failing machine, must be able to
process the same data stream when it is routed to the healthy machine. This
requirement dictates that such software must be installed and configured
specifically for such an environment. To accomplish this, the software must be
available, but not necessarily concurrently, on both machines. This availability
requirement is met when the software is installed on disk space shared between
the two machines in the HACMP clustered configuration. Due to the fact that
some software cannot be completely installed on shared space, special
installation or configuration is required to enable such software to process the
same data stream on either machine. DB2, WebSphere MQ, and WebSphere
Message Broker, for example, cannot be completely installed on shared space.
They use file systems defined in the system (rootvg) volume group internal to
each machine.

Often an HACMP cluster acts as a server that services clients located outside of
the cluster. Any message originating from a client, outside of the HACMP cluster,
is sent to a specific machine in the cluster, but the message must be processed
even if it was destined to an HACMP machine that immediately fails when the
message arrives. In this scenario, HACMP software will fail over all software
components necessary from the failed machine to the healthy machine so that
the message can be processed. All provisions must be made for a successful
failover and high-availability. This includes multiple copies of data on separate
physical disks, multiple network adapters, and multiple software components. If a
disk fails, another disk with the same needed data must be available. If a network
adapter fails, another one must be available to reach the machine in the HACMP
cluster. If a software component fails, processing will still continue on the other
machine if failover is necessary.

HACMP groups all critical components of a service that must be available for
business data processing in what is termed a resource group. If any component
in the resource group fails, HACMP will fail over the entire resource group from
the failing machine to the healthy machine, if necessary, to keep the service
available.

228 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

WebSphere Message Broker high availability
Figure 8-30 shows a possible configuration for a simple HACMP cluster of two
machines.

Figure 8-30 A simple active/standby HA configuration of WebSphere Message Broker

Machine 1 and machine 2 have the same software installed — HACMP software
WebSphere MQ, DB2, and WebSphere Message Broker. In this HACMP
configuration, if a client uses an IP address to reach a service such as an
HTTPInput node in a message flow provided by machine 1 and a
failover-inducing event occurs on machine 1, HACMP software will migrate the IP
address to machine 2 so that the client will still be able to use the service that will
now be provided by machine 2. The client must take into consideration this failure
scenario so that the client will re-establish connection because the failure is not
completely transparent.

Note the heartbeat line connecting machine 1 and machine 2. This heartbeat line
is used by HACMP software to send HACMP packets between machine 1 and
machine 2 to check on the health of the machines.

Figure 8-30 also shows a volume group created on shared storage. Note that
machine 1 and the volume group mqvg both have the same color. This indicates
that the volume group mqvg is being accessed exclusively by machine 1. All
critical data that must be available, whether the service is provided by machine 1
or machine 2, is put in volume group mqvg. When a failover-inducing event

Machine 2

Clustering Software
WebSphere MQ Server

WMB

IP Failover

Heartbeat

Shared Storage

VG Failover

Machine 1

Clustering Software
WebSphere MQ Server

WMB

Active on Machine 1
Volume Group mqvg

File Systems:
/shared/mq/data
/shared/mq/log

Broker

HADB

HAQM

 Chapter 8. ESB design options 229

occurs on machine 1, HACMP software deactivates volume group mqvg on
machine 1 and activates the volume group mqvg on machine 2. Note that the
shared volume group mqvg has two file systems — one for the logs and one for
the broker data. The logs file system contains queue manager logs, broker logs,
and database logs. The broker data file system contains the queue manager
data such as queues, the database table spaces, and the broker files. HADB is
the broker database and HAQM is the broker queue manager. The queue
manager, the database, and the broker can run on either machine, but only on
one machine at a time in this configuration.

Figure 8-31 shows a topology where both machines are active. Each machine is
running two brokers whose database is located remotely, preferably in another
highly available cluster.

Figure 8-31 A more robust active/active HA configuration of WebSphere Message Broker

IP Failover
HACMP
WebSphere MQ
WMB
Database Client

HACMP
WebSphere MQ
WMB
Database Client

Shared Storage

Heartbeat

VG Failover

Active on Machine 1
Volume Group broker1vg

File Systems:
/shared/broker1/data
/shared/broker1/log

Broker1
VG Failover

Active on Machine 2
Volume Group broker3vg

File Systems:
/shared/broker3/data
/shared/broker3/log

Broker3

VG Failover

Active on Machine 1
Volume Group broker2vg

File Systems:
/shared/broker2/data
/shared/broker2/log

Broker2
VG Failover

Active on Machine 2
Volume Group broker4vg

File Systems:
/shared/broker4/data
/shared/broker4/log

Broker4

BROKER1QM BROKER3QM

BROKER2QM BROKER4QM

230 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Redundancy
WebSphere Message Broker application availability is increased using the
following means:

� Message flows redundancy
� Execution groups redundancy
� Local broker redundancy
� Clustered broker redundancy
� Broker queue manager cluster

Message flows and execution group redundancy
Figure 8-31 on page 230 shows two brokers on each machine in the HA cluster.
So, for a two-machine HA cluster, there are four identical brokers. Each of these
brokers has the following characteristics:

� It has two execution groups for a given message flow. More execution groups
can be created if necessary.

� Each execution group has at least two instances of a given message flow.

So there are at least four instances of a given message flow — two instances in
each execution group. This creates an execution group and a message flow
redundancy. So, if one execution group goes down, the other execution group is
up managing different instances of the same message flow that stopped on the
failed execution group.

Local broker redundancy
Each machine in the cluster has two identical brokers running. So, if one broker
goes down, the other broker on the same machine is still available to process
messages.

Clustered broker redundancy
The two-machine HA cluster has four identical brokers. So, if one machine goes
down, the two brokers on the other machine are still available to process
messages.

Broker queue manager cluster
A well designed queue manager cluster increases availability and throughput by
using clustered queues. If twenty MQ messages are sent by clients to a clustered
queue defined on all broker queue managers in the cluster, five messages are
sent to each queue manager in the cluster and hence five messages are
processed by each broker. If one broker goes down, the twenty messages will be
divided equally among the three remaining brokers.

 Chapter 8. ESB design options 231

Message sequence considerations
If a specific sequence of MQ messages must be processed by a given message
flow, the high availability is decreased because if the execution group containing
the desired message flow goes down, one of the following scenarios has to take
place before the messages are processed:

� The execution group is restarted automatically by the broker.

� If the execution group went down because its broker went down, then the
broker must be restarted automatically by the HACMP software on the same
machine before the execution group is restarted.

� If the execution group went down because the whole machine went down,
then the broker must be restarted automatically by the HACMP software on
the other machine before the execution group is restarted.

The first scenario has the least downtime, while the last scenario has the most
downtime.

Broker Web service communication
The broker uses the biphttplistener process to receive HTTP requests. The
biphttplistener forwards HTTP requests to an HTTPInput node in a message
flow, as shown in Figure 8-32.

Figure 8-32 A simple way of receiving HTTP requests in a broker

The HTTP listener uses the MQ transport to communicate with the broker
component. The HTTP listener puts the HTTP request in the
SYSTEM.BROKER.WS.INPUT queue and receives the HTTP reply from the
SYSTEM.BROKER.WS.REPLY queue. The listener uses the

WMB

Message Flow

HTTPInput

MQ HTTPReply

MQ HTTP

HTTP

biphttplistener
HTTP
Client

232 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

SYSTEM.BROKER.WS.ACK queue to send acknowledgement messages to the
HTTP flows when replies are sent to the clients. The HTTP request is processed
through the message flow and a reply is sent back by the HTTPReply node to the
HTTP client through the biphttplistener process.

The biphttplistener is a multi-threaded resilient process configured to accept
many concurrent HTTP calls. If the process stops, it will automatically be
restarted. Every broker has its own listener. In Figure 8-31 on page 230, there
are four brokers running in the HACMP cluster, each with its own biphttplistener
process. If any one broker fails, it can be failed over to the other machine, and the
biphttplistener process is available again.

The number of HTTP requests that can be sent through the same HTTP
connection and the number of concurrent HTTP connections are configurable.

� The biphttplistener process configured for fewer concurrent HTTP
connections with a large number of HTTP requests enabled for each HTTP
connection is ideal for a small number of client applications that require large
message throughput. A large message throughput is possible because the
applications do not have to establish an HTTP connection often. For example,
if 100 HTTP requests can be sent through the same HTTP connection, the
application can send 100 HTTP requests before it has to open another HTTP
connection.

� The biphttplistener process configured for large concurrent HTTP
connections and a small number of HTTP requests enabled for each HTTP
connection is ideal for a large number of client applications.

The biphttplistener process is not very scalable. It can handle about 1200
concurrent HTTP requests. To handle a larger number of concurrent HTTP
requests, WebSphere Message Broker can use a number of different
mechanisms.

 Chapter 8. ESB design options 233

Running the same message flow in different brokers
If every message flow that makes use of an HTTPInput node runs in more than
one broker, the number of concurrent HTTP requests to that message flow is
increased. This configuration can be done by using a load balancer between the
client applications and the biphttplistener processes of the brokers, as shown in
Figure 8-33.

Figure 8-33 Increasing HTTP throughput through a load balancer

WMB

HTTP Message FlowMQbiphttplistener

WMB

HTTP
HTTP

HTTP

Message Flow

HTTP
Clients

Network
Dispatcher

MQbiphttplistener

234 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Using proxy servlet from SupportPac IE01
The proxy servlet runs inside a Web container like the one running in WebSphere
Application Server. The proxy servlet can be deployed remotely. It communicates
with the broker using broker internal MQ queues. The proxy servlet can forward
HTTP requests only to one broker, but more than one proxy servlet can be
configured to forward HTTP requests to one broker. Using this mechanism off
loads the HTTP requests receipt to the proxy servlet instead of the biphttplistener
process. This mechanism is illustrated in Figure 8-34.

Figure 8-34 Increasing HTTP throughput through the proxy servlet

8.2.10 Qualities of service

WebSphere Message Broker leverages the underlying qualities of service
provided by WebSphere MQ. This includes delivery, persistence level, priority
level, and transaction management qualities of service. WebSphere MQ
guarantees that the message is delivered to its destination once without
duplication.

WebSphere MQ provides two levels of persistence. The message is either
persistent or non-persistent. Where the message does not need to be persistent,
non-persistent messages should be used because they are best for
performance. The persistence level can be specified on the message queue as
well as the message MQMD header in the Persistence field.

Priority level can be set in the message MQMD header in the Priority field and
should be used in certain situations where messages from specific applications
or clients, for example, should be processed first. The priority setting in the
MQMD header overrides the default WebSphere MQ behavior of
First-In-First-Out (FIFO).

WebSphere
Application

Server

WMB

HTTP Message FlowMQProxy servlet

HTTP
HTTP

HTTP

Message Flow

HTTP
Clients

Network
Dispatcher

MQProxy servlet

 Chapter 8. ESB design options 235

If all processing steps within a message flow need to be treated together in one
transaction, WebSphere Message Broker supports that when the developer
activates the coordinated property on the message flow. This type of message
flow is called a coordinated message flow. This type of a message flow is needed
when the data integrity is critical and updates to more than one recoverable
resource such as DB2 and MQ are necessary to complete the flow. Some input
nodes have a property called Transaction mode. When this property is set to
automatic, the message is part of the global transaction of the message flow and
the message flow is marked transactional if the input message is persistent. But
if the message is not persistent, the message flow is marked uncoordinated. All
other nodes whose Transaction mode property is set to automatic are included in
the global transaction if the input node set the message flow to transactional.

When integrating WebSphere Message Broker with WebSphere Transformation
Extender via the WebSphere Transformation Extender node, the WebSphere
Transformation Extender input card used in the message flow is always the card
#1. This is irrelevant if the WebSphere Transformation Extender map has only
one input card. The output card number is configurable on the WebSphere
Transformation Extender node. The WebSphere Transformation Extender map
input and output cards used in the message flow are included in the global
transaction of the message flow. When the WebSphere Transformation Extender
map has more than one input and more than one output card, the input and
output cards that are not used in the message flow are not included in the global
transaction of the message flow. So if the WebSphere Transformation Extender
map updates a database using a card that is not used in the message flow and
the message flow fails, the update to the database made by the WebSphere
Transformation Extender map is not rolled back.

To include all WebSphere Transformation Extender map input and output cards
in the global transaction, the WebSphere Transformation Extender API should be
used. Using WebSphere Transformation Extender API, WebSphere
Transformation Extender maps can be executed and WebSphere Transformation
Extender input, output cards, adapters, and properties can be overridden. The
WebSphere Transformation Extender Java API can be invoked from a
JavaCompute node.

The developer can write a Java application to communicate with the configuration
manager component of WebSphere Message Broker to control certain qualities
of service in the broker. The Java application uses the configuration manager
proxy (CMP) API to interact with the configuration manager. Using the CMP API,
the user application can deploy bar files and publish/subscribe topologies, topic
trees, and broker configurations. The user application can modify the
publish/subscribe topology; and add and delete brokers, brokers connections,
and collectives. The user application can create, modify, and delete execution
groups.

236 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

8.2.11 WebSphere ESB-WebSphere Message Broker
inter-communication

Figure 8-35 shows the communication protocols supported between WebSphere
Message Broker and WebSphere ESB 6.0.2.

Figure 8-35 Transport protocols supported between WebSphere Message Broker and
WebSphere ESB

As can be seen, both synchronous and asynchronous communication protocols
are supported.

� HTTP Communication

This transport protocol is used to carry SOAP messages. An import SCA
component with Web service binding in a WebSphere ESB mediation module
can invoke a WebSphere Message Broker-exposed Web service. WebSphere
Message Broker can accept SOAP calls destined to one of the HTTPInput
nodes in the various message flows running in the broker. The HTTPRequest
node running in any message flow in the broker can send a SOAP call over
HTTP to a Web service exposed in WebSphere ESB as an SCA export
component with Web service binding.

� MQ Communication

WebSphere ESB 6.0.2 supports the MQ binding on the export and import
SCA components. Using an import SCA component with MQ binding, a
WebSphere ESB mediation module can send an MQ message to WebSphere
Message Broker. An MQInput node of a message flow running in WebSphere
Message Broker can receive this MQ message coming from WebSphere
ESB. WebSphere Message Broker uses an MQOutput node in a message

WMB

JMS

MQ

MQ JMS

HTTP

HTTPS

WESB

 Chapter 8. ESB design options 237

flow to send an MQ message to WebSphere ESB. An export SCA component
with MQ binding receives the MQ message sent by WebSphere Message
Broker. The MQ message payload format supported between WebSphere
ESB and WebSphere Message Broker is XML.

� JMS Communication

WebSphere Message Broker may use the JMSInput node to receive a JMS
message from, and the JMSOutput node to send a JMS message to, the
WebSphere Application Server JMS provider, which is used by WebSphere
ESB. In this scenario, WebSphere Message Broker acts as a JMS client to
the WebSphere Application Server JMS provider. WebSphere ESB uses the
import SCA component with JMS binding to send JMS messages to
WebSphere Message Broker, which receives them with the JMSInput node.
WebSphere ESB uses the export SCA component with JMS binding to
receive JMS messages put by the JMSOutput node of a WebSphere
Message Broker message flow. WebSphere Message Broker and
WebSphere ESB 6.0.2 support all 6 JMS message types: Message,
TextMessage, BytesMessage, ObjectMessage, StreamMessage, and
MapMessage.

� MQ JMS Communication

WebSphere ESB 6.0.2 may use an SCA import with MQ JMS binding to send
a JMS message to WebSphere Message Broker via WebSphere MQ using
the JMS API provided with WebSphere MQ. WebSphere Message Broker
receives the JMS message from WebSphere MQ using the JMSInput node.
WebSphere Message Broker uses the JMSOutput node to send a JMS
message to WebSphere ESB via WebSphere MQ. WebSphere ESB receives
the JMS message from WebSphere MQ using an export SCA component with
MQ JMS binding.

8.2.12 WebSphere Message Broker-WebSphere ESB HTTP secure
communication

The subject of security is out of the scope of this book. But, the following
procedure describes one of the simplest ways to enable HTTPS communication
between WebSphere Message Broker and WebSphere ESB.

Configuring WebSphere Message Broker for HTTPS
To configure WebSphere Message Broker to receive HTTPS requests, perform
the following steps:

1. Use the keytool command that comes with Java Runtime Environment
installed with WebSphere Message Broker to create a self-signed certificate
or to import a CA-signed certificate. The following command creates a new

238 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

keystore file and a self-signed certificate. The command will prompt you for
certain details that are used to create the self-signed certificate. Replace
password with the password that you want to access the keystore file, path
with the path name to the keystore file, and alias with a string to identify the
self-signed certificate. Export the corresponding public self-signed certificate
to all the WebSphere Message Broker clients to enable them to send HTTPS
requests to WebSphere Message Broker. If WebSphere Message Broker is
using a CA-signed certificate, you may not have to export the corresponding
public CA-signed certificate because most of public certificate stores should
already have the most popular public CA-signed certificates.

keytool -genkey -keypass password -keystore path -alias alias

2. Use the mqsichangeproperties command to configure the biphttplistener
process for SSL. The following commands will do that. In the commands
below, replace broker with the actual name of the broker, pathname with the
full path name to the keystore file created above, password with the password
used to access the keystore file, and port with the port number used for the
SSL traffic.

mqsichangeproperties broker -b httplistener -o HTTPListener -n
enableSSLConnector -v true

mqsichangeproperties broker -b httplistener -o HTTPSConnector -n
keystoreFile -v pathname

mqsichangeproperties broker -b httplistener -o HTTPSConnector -n
keystorePass -v password

mqsichangeproperties broker -b httplistener -o HTTPSConnector -n
port -v port

3. Select the Use HTTPS check box on the HTTPInput node of the message
flow used to receive and process HTTPS requests.

To configure WebSphere Message Broker to send HTTPS requests, use the
keytool command that comes with the Java Runtime Environment installed with
WebSphere Message Broker to import the HTTP server public self-signed
certificate into the cacerts file. The HTTP server refers to the server to which
WebSphere Message Broker sends an HTTPS request. This could be IBM HTTP
Server used in the WebSphere Application Server environment. The file cacerts
is located in the security directory of the JRE installation directory. The following
command imports the HTTP server certificate. Replace alias with a string to
identify the certificate to import and cert with the path name of the certificate file.

 Chapter 8. ESB design options 239

The string changeit is the default password of the cacerts file. If the HTTP server
is using a CA-signed certificate. This step may not be needed because cacerts
should already have the most popular public CA-signed certificates.

keytool -import -alias alias -file cert -keystore cacerts -keypass
changeit

Configuring WebSphere ESB for HTTPS
To configure WebSphere ESB to receive HTTPS requests, perform the following
steps. Note that these steps do not secure the communication between the IBM
HTTP Server plug-in and the WebSphere Application Server Web container. This
configuration only secures the communication between the client, like
WebSphere Message Broker and IBM HTTP Server.

1. Use the ikeyman tool to create the key database file for IBM HTTP Server. The
ikeyman tool is used to manage keys and certificates. The tool can be used to
create and export self-signed certificates, create CA certificate requests,
import CA-signed certificates, and so on.

2. Add the following lines to the httpd.conf file found in the conf directory of IBM
HTTP Server. The SSLEnable directive enables SSL globally. The KeyFile
directive specifies where the key database file is located for IBM HTTP
Server. Replace pathname with the path name of the key database file. The
directives SSLEnable and KeyFile can be specified for a specific virtual host
only. In such a case, both directives will be nested inside a pair of virtual host
entries:

SSLEnable

KeyFile pathname

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

3. If a self-signed certificate is used for IBM HTTP Server, export the
corresponding public self-signed certificate to all HTTPS clients like
WebSphere Message Broker to enable them to send HTTPS requests to IBM
HTTP Server. If IBM HTTP Server is using a CA-signed certificate, this step
may not be needed because most certificate stores already contain the most
popular public CA-signed certificates.

To configure WebSphere ESB to send HTTPS requests, use the ikeyman tool that
comes with WebSphere Application Server to import the WebSphere Message
Broker public self-signed certificate into the DummyClientTrustFile.jks file. This
file is located in the etc directory of the WebSphere Application Server
installation directory. If WebSphere Message Broker is using a CA-signed
certificate, this step may not be needed because the DummyClientTrustFile.jks
file should already have the most popular public CA-signed certificates.

240 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Part 3 Physical
scenarios

In this part we look at a couple of examples of how to use the products within an
enterprise service bus. This part contains the following chapters:

� Chapter 9, “Scenario: using WebSphere ESB and WebSphere Message
Broker in combination” on page 243, works through the how to set up
connectivity using standard SOA protocols between WebSphere Enterprise
Service Bus and WebSphere Message Broker.

� Chapter 10, “Scenario: DataPower in an SOA” on page 323, shows how
DataPower appliances are configured when used as an ESB Gateway.

Although not shown in this part of the book, we highly recommend that you
review the scenarios on how WebSphere Service Registry and Repository can
be used to augment an enterprise service bus hub. See WebSphere Service
Registry and RepositoryWebSphere Service Registry and Repository Handbook,
SG24-7386.

Part 3

© Copyright IBM Corp. 2007. All rights reserved. 241

http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247386.html?Open

242 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 9. Scenario: using WebSphere
ESB and WebSphere
Message Broker in
combination

The sample business scenario used in this chapter illustrates how to connect two
separate ESBs, a WebSphere Enterprise Service Bus, and a WebSphere
Message Broker into a single ESB. It focuses on the interaction between a retail
system residing on a WebSphere Enterprise Service Bus and a warehouse
system residing on WebSphere Message Broker.

This scenario demonstrates several new features introduced in WebSphere
Message Broker V6, including the use of HTTPS for an additional level of privacy
and security, SOAP over HTTP communication, and the use of the new MQGET
node within the message flow to interact with the existing back end manufacturer.

In this chapter the following points are discussed:

� Design guidelines and business needs addressed by the sample scenario
and the selection of the relevant ESB integration patterns

� Runtime guidelines to create and integrate the two systems including the
building of the bar files and deployment steps

9

© Copyright IBM Corp. 2007. All rights reserved. 243

9.1 Design guidelines

This section discusses the business needs for linking two ESBs that belong to
different organizations. It maps the business requirements to the sample
scenario and to the appropriate ESB integration patterns.

To simplify the implementation, we import several project interchange files,
consisting of the message flows, message sets, and the XML Schema
Definitions (XSDs). We also provide instructions for importing on the project
interchange, as well as the building of the execution groups, bar files, and the
deployment steps.

To simulate the front end retail system, we utilize the IH03 - WBI Message Broker
V6 - Message display, test, and performance utilities and the Test Component
feature in WebSphere Integration Developer tool. The IH03 supportpac is
available from the WebSphere MQ Web site. We also used the MA01 -
WebSphere MQ - Q Program in simulating the back-end manufacturing
application.

244 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www-306.ibm.com/software/integration/wmq/support/
http://www-306.ibm.com/software/integration/wmq/support/
http://www-306.ibm.com/software/integration/wmq/support/
http://www-306.ibm.com/software/integration/wmq/support/
http://www-306.ibm.com/software/integration/wmq/support/

9.1.1 Business scenario
The business scenario implemented is a supply chain management process that
is split across two organizations, as seen in Figure 9-1. This scenario focuses on
the interaction between the retail system in division A and the warehouse system
in division B business scenario.

Figure 9-1 High-level business context showing the existing infrastructure

High-level business overview context
This is a supply chain management scenario in which customers access an
electronics retailer’s Web site, review a catalog of available products, and place
orders at a warehouse for items such as televisions, DVD players, and video
cameras. The stock of the warehouse is replenished by placing orders with the
relevant manufacturer. Each system resides in a different division of the
organization from the other components in the supply chain management
scenario.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 245

Organizational overview
As a result of growth and acquisitions, the new company now spans three
separate divisions within the organization, each containing its own functional
components:

� Division A

– Internet based e-commerce systems (SCM application)
– Retail system

� Division B

Warehouse system

� Division C

Manufacturer system

The challenge was to integrate these entities without any major redesign on the
existing applications.

Integration of divisions
In Figure 9-2 division A uses WebSphere ESB for its ESB implementation. The
primary transport used is SOAP over HTTP, though it also uses JMS over MQ.

Figure 9-2 Supply chain zone

Manufacturer
- Division C

App Server/
Services

<Service Provider>

Retailer
- Division A

Zone:ESB

Hub B

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

ESB
Gateway

Service
Registry

Warehouse
- Division B

Zone: ESB

App Server/
Services

<Service Provider>

App Server/
Services

<Service Provider> App Server/
Services

<Service Consumer>

Service
Registry

Hub A

ESB
Gateway

SOAP/
HTTP
SOAP/
HTTP

XML/
MQ

XML/
MQ

SOAP/
JMSSOAP/

JMS
SOAP/
JMS

JMS
msg/
MQ

SOAP/
HTTP
SOAP/
HTTP

WESB

WMB

246 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Division B uses WebSphere Message Broker. The primary transport used is
SOAP over JMS with WebSphere MQ as the JMS provider.

To integrate division A with division B, the two ESB implementations will be
connected using SOAP over HTTP.

The manufacturer system in division C responds to fulfillment orders using XML
messages. It is linked to external buyers through WebSphere Message Broker
using WebSphere MQ as the transport.

This configuration matches the Brokered ESB Variation 1 described in Figure 4-8
on page 77.

General transaction flow
The retail system requests products from the warehouse through WebSphere
ESB using a PurchaseOrder request message. If the request causes the
remaining stock in the warehouse to fall below a minimum threshold, the
scenario requires the warehouse to re-order stock from the manufacturer.

Our focus is on the interaction between two ESB technologies used by the retail
system utilizing WebSphere ESB and the warehouse system utilizing
WebSphere Message Broker. The purchase order transaction can be sent from
the retail system to the warehouse system over the two application systems
using two possible communication methods. Prior to WebSphere Message
Broker V6, the customer was utilizing SOAP over HTTP. With the implementation
of WebSphere Message Broker V6, the customer can implement SOAP over
HTTPS to further secure the communications.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 247

Using JMS over MQ
The first shown in Figure 9-3 is the interaction between the retail system and the
warehouse system through JMS over MQ.

Figure 9-3 JMS/MQ warehouse PO submit

The message is sent to the warehouse system through a MQ Put to the
PO.REQ.IN queue. The warehouse system retrieves the messages, and parses
and stores the information. The warehouse system puts a notification message
on the SAW610.POREQ.IN queue where the existing back-end application
retrieves the message and sends a response back to the warehouse system on
SAW610.POREQ.OUT. The warehouse system resumes processing and notifies
the retailer that the purchase order has been processed.

The message flow diagram in Figure 9-3 shows the processing path from the
requestor into the warehouse. The application sends the requests message to
the queue manager in step 1 and issues a mqget with wait on the PO.RES.IN
queue. The broker then consumes the message in step 2. During the message
process, the broker sends a MQ Request message to the manufacturer
application in step 3. The causes the manufacturer process to be triggered (step
4) and a response sent back in step 5. The broker then resumes processing of
the request in step 6, picking up the response from the manufacturer and
formatting the response for the request and inserting the response on the
PO.RES.IN queue step 7, releasing the wait in step 8.

248 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Using SOAP over HTTP
The second method of communication with the warehouse system is using
SOAP over HTTP. The retail system sends the warehouse system a purchase
order transaction. In this method the retail system and the warehouse system are
directly communicating.

The requesting application sends a SOAP message to the broker over HTTP or
HTTPS in step 1. During the message process, the broker sends a MQ Request
message to the manufacturer application in step 2. The causes the manufacturer
process to be triggered (step 3) and a response sent back in step 4. The broker
then resumes processing of the request in step 5, picking up the response from
the manufacturer and formatting the response for the request and inserting the
response on the PO.RES.IN queue in step 6, releasing the wait in step 7.

Figure 9-4 HTTP warehouse PO submit

This scenario is represented by Figure 9-1 on page 245, which uses an
instantiation of the Brokered ESBs Variation 1 pattern described in Figure 4-8 on
page 77.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 249

9.2 WebSphere Message Broker

This section describes the WebSphere Message Broker ESB and its associated
service consumers and providers.

� Messages exchanged between the two ESBs use a SOAP over HTTP or XML
over JMS/MQ.

� Messages sent between WebSphere Message Broker and the back-end
existing manufacturer’s applications use native WebSphere MQ messages
(MQ message body data is not SOAP, and the application does not use the
WebSphere MQ JMS API).

Message flows in WebSphere Message Broker mediate messages from the retail
system (via WebSphere ESB) for use by the manufacturer service providers. The
message flows are named:

� Warehouse_SubmitPO
� Warehouse_SubmitPO_SubFlow_1
� WarehouseLogEvent
� Warehouse_SubmitSN

In order to mediate messages, WebSphere Message Broker receives data in a
physical wire format and parses the information into what is commonly referred to
as the logical tree. Users of WebSphere Message Broker may select this parser
using a message domain. Available message domains include Binary Large
Object (BLOB), Message Repository Manager (MRM), XML, and XML
NameSpace (XMLNS). Of these alternatives, the MRM domain is the only
method that implements a parser to check on the wire messages against a
predefined format. In such circumstances the message is said to be validated
against the provided message dictionary. When users select the message
domain to be used, the decision should take into account:

� Whether the message data itself will be manipulated by a mediation

� The requirements of validation

� The level of expected performance (When conducting any kind of tree-walk or
validation, a certain degree of performance overhead should be expected.)

Note: The message flows discussed in this section are included with the
samples shipped with this book. For information about how to download the
samples, see Appendix C, “Additional material” on page 377. For information
about how to import these message flows into the Message Brokers Toolkit,
see Appendix B, “Sample instructions” on page 371.

250 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

To simplify the implementation, we import the project interchange, consisting of
the message flows, message sets, and XML Schema Definitions (XSDs).
Instructions for importing on the project interchange as well as the building of the
execution groups, bar files, and the deployment steps are described in 9.1,
“Design guidelines” on page 244.

To simulate the front-end retail system, we utilize the IH03 - WBI Message Broker
V6 - Message display, test, and performance utilities and the Test Component
feature in WebSphere Integration Developer tool. The IH03 supportpac is
available from the WebSphere MQ Web site. We also used the MA01 -
WebSphere MQ - Q Program in simulating the back end manufacturing
application.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 251

9.2.1 Message flow descriptions

The following section describes the message flows and their functions within the
ESB. In this section of the business scenario we interface the purchase orders
from the retail system into the warehouse system and the manufacturer
applications (see Figure 9-5).

Figure 9-5 Purchase order transaction flow

The warehouse makes requests to the manufacturer using SOAP over HTTP.
The manufacturer receives that message and removes the SOAP envelope from
the XML content, preparing the message to be delivered to the manufacturer
application.

The application receives the message and returns the Purchase Order status
requested. If the purchase order (PO) request is not returned in one minute after
the manufacturer delivered the request, the flow formats and sends a SOAP fault
message to the warehouse saying that a error occurred.

252 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

The manufacturer receives the message from the system, logs the request in the
warehouse log application (SOAP over MQ), and then returns the PO
acknowledgement message to the warehouse (SOAP over HTTP), describing
the status of the request.

Warehouse_SubmitPO message flow
The Warehouse_SubmitPO message flow routes messages from WebSphere
ESB to the manufacturer system. Its primary purpose is to translate SOAP over
HTTP into the XML format required by the back-end application.

The logic in the Warehouse_SubmitPO_Http message flow is broken down into
the following functional nodes:

� JavaCompute node: TransformMessage
� JavaCompute node: FormatMessage
� JavaCompute node: FaultHandler
� JavaCompute node: FormatReply

Note: The complete JavaCompute node flow implementation can be found in
Appendix A, “Java node source code” on page 353.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 253

This message flow calls two subflows:

� Legacy_SubFlow
� logEvent_SubFlow

Figure 9-6 Warehouse PurchaseOrderRequest message flow

254 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

TransformMessage JavaCompute node
The TransformMessage JavaCompute node removes the SOAP message parts
and saves the necessary SOAP arguments in the LocalEnvironment domain
inside the broker to be used later on the flow (Example 9-1).

Example 9-1 Saving the necessary SOAP message parts in LocalEnvironment structure

...
SOAPMessageHelper.resetSoapHeader(envRoot); // Reset SOAP
SOAPMessageHelper.initService(envRoot,

"Intermediary",
"www.itso.ral.ibm.com",
"PurchaseOrderRequest");

SOAPMessageHelper.setValidHeaders(envRoot, "PurchaseOrder");
SOAPMessageHelper.setValidHeaders(envRoot, "Configuration");
SOAPMessageHelper.setValidHeaders(envRoot, "StartHeader");
...

This node also has the dynamic routing pattern implemented. This means that
every message that comes to the manufacturer purchase order process is routed
depending on its structure and implementation, MQ messages, HTTP messages,
or JMS messages.

FormatMessage JavaCompute node
This node prepares the message in the format (plain XML) so it can then be
transported over MQ to the application system.

FaultHandler JavaCompute node
Exceptions within the flows are caught by a TryCatch node defined at the
beginning of the manufacturer flow. If an exception is caught during the execution
of the flow, the TryCatch node sends the message to a JavaCompute node to be
transformed into the correct SOAP fault message format.

Note: All Compute nodes use a utilitary class called SOAPMessageHelper,
responsible for executing all operational functions defined in the flows. These
functions are not just operational, but structural functions designed to realize
all service virtualization implemented inside the broker.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 255

For example, after the XML message is delivered to the application, the flow
waits for one minute (with the MQGet node) for a response. If no messages are
returned during this time, the node throws an exception that is caught by the
TryCatch node and sent to the exception JavaCompute node to be formatted in
right SOAP message fault standards (Example 9-2).

Example 9-2 Creates the SOAP fault message to be delivered to the message requester

...
String err = new String(msgEx.getBuffer());
String msgErr =

"An genereric error ocorred while processing the message. Node"+
(err!=null?err:"");

// Creates the Soap FAULT Codes //
SOAPMessageHelper.formatSoalFaultMessage(mrm, env, msgErr);
...

Legacy_SubFlow Message Flow
The Legacy_SubFlow node sends a request message to the Manufacturing
system to validate available stock. The message is sent to the queue
SAW610PO.REQ.TEST and retrieves a response message from queue
SAW610.POLGYRES.IN. The MQGet node in the flow has a wait interval of one
minute. In no message is received within the wait interval, a message is returned
"Couldn't get any message from the Queue" rc=3001. If a response is received
the flow continues.

Figure 9-7 Legacy_SubFlow message flow

FormatReply JavaCompute node
The FormatReply JavaCompute node sends an acknowledge status notification
message back to the requestor of the warehouse products. The message status
is received by the purchase order process, and after sending the log status to the
warehouse, this node then transforms the message into a SOAP envelope

256 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

response (over HTTP) using the data saved in the broker LocalEnvironment
structure (Example 9-3).

Example 9-3 Creating a response to the warehouse request

...
SOAPMessageHelper.setOutOperation(

inAssembly.getGlobalEnvironment().getRootElement(),
"Response", "www.itso.ibm.com/ackPO");

// Creates the response SOAP Message //
SOAPMessageHelper.encodeAckPOSOAPMessage(inRoot, outRoot, env);
...

This node also implements the dynamic routing pattern so that the output
message is delivered to the destination depending on its request format. If a
message was requested using HTTP, a HTTPResponse is applied, and if a
message was request using MQ, then a MQOutput is used.

LogEvent_SubFlow Message Flow
After the PO responds the product status, an inner flow is executed to log the
request status to the warehouse. The CreateSOAP JavaCompute node is
responsible to format the log message to the requester (Example 9-4 on
page 258) and dynamically route the message to the right output, depending on
the request format stated on the first part of the PO flow (Figure 9-8).

Figure 9-8 LogEvent_SubFlow message flow

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 257

Example 9-4 Creating the log request to the warehouse system (WebSphere ESB)

...
SOAPMessageHelper.setOutOperation(

inAssembly.getGlobalEnvironment().getRootElement(),
"Response", "www.itso.ibm.com/Log");

// Takes references to the InputRoot and constructs
// an OutputRoot with a SOAP envelope defined
SOAPMessageHelper.encodeLogSOAPMessage(inRoot, outRoot,

inAssembly.getGlobalEnvironment().getRootElement());
...

WarehouseCallbackResponse message flow
The WarehouseCallbackResponse flow routes the messages to an existing
back-end manufacturer application and then waits to receive a response. As
stated before (“FaultHandler JavaCompute node” on page 255), if no message is
returned by the purchase order process in one minute, the MQGet node throws
an exception (Figure 9-9) and the flow is interrupted with an error message
returned to the warehouse describing the origin of this error.

Figure 9-9 WarehouseCallbackResponse message flow

Note: In the case of an HTTP request, the log event is formatted as a SOAP
envelope and transported to the warehouse over an HTTP request
(HTTPRequest node). Otherwise the SOAP request is done using MQ
(MQOutput node).

258 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Warehouse_SubmitSN Message Flow
The warehouse submit shipping notice is a HTTP asynchronous request
notifying the warehouse system of the ship date of the order. The SOAPFormat
Java node wraps the XML message with the appropriate SOAP header/body
information. The HTTP request is sent to the retail system. Once the retail
system receives the ship notice, it is logged and a confirmation HTTP Reply is
sent back to the manufacturer (Figure 9-10).

Figure 9-10 Warehouse_SubmitSN message flow

If an error occurs during the execution of the flow, the request message is
automatically redirected to a MQ error queue so that the message can later be
on processed by another back-end system, for example, a monitoring system.

9.2.2 Existing back-end manufacturer application
The manufacturer application is a stand-alone application. The application
communicates with external systems as a WebSphere MQ messaging client. The
main function of the application is to simulate an existing back-end application
system and show the integration into a Web service scenario. The back-end
application system does not leverage any open standard, such as JMS.
Therefore, simple WebSphere MQ XML messages are used for communication
with external systems. XML schemas provide a common method of describing
the messages that are exchanged.

The warehouse client triggers the manufacturer’s execution by sending a
message into the input queue [SAW610.POREQ.IN]. The message is
represented by ManufacturerSchema.xsd and is received by the MQ receiver
component of the existing back-end application. The MQ receiver component
receives incoming messages and transforms them into an internal object format.
The request is processed and a response message is inserted on to a queue
[SAW610.POREQ.OUT] for the warehouse system. The warehouse message
flow consumes the message and resumes processing.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 259

Detailed communication sequence
From a messaging point of view, the communication sequence in the warehouse
application is as follows:

1. The warehouse application receives a message from the consumer or retailer
service.

The message format is defined by the schema Manufacturer.xsd and the root
element is named manufacturer. The MQMD message header contains
information about the reply location (ReplyToQ and ReplyToQMgr).

2. The manufacturer application sends a message to the LoggingFacility
service.

The message format is defined by the schema LoggingFacility.xsd, and the
root element is named logEventRequestElement. The message is a one-way
message and contains no reply location information.

3. The manufacturer application sends a message to the warehouse service to
submit a shipment notice.

The message format is defined by the schema
ManufacturerCallbackMessage.xsd, and the root element is named
WareHouseCallbackMessage. The MQMD message header has the
ReplyToQ value set to the input queue name of the other receiver component
of the manufacturer application.

4. The manufacturer application sends a message to the LoggingFacility
service.

5. The manufacturer application receives a response message from the
warehouse service.

The message format is defined by the schema ManufacturerSN.xsd, and the
root element is named ackSN.

6. The manufacturer application sends a message to the LoggingFacility
service.

7. The manufacturer application sends an acknowledgement message back to
the original warehouse service.

The message format is defined by the schema ManufacturerPO_Legacy.xsd, and
the root element is named ackPO.

260 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

9.3 Runtime guidelines for ESB based on WebSphere
Message Broker

This section describes how to deploy the WebSphere Message Broker artifacts
necessary to run this scenario. The five message flows that contribute to form the
WebSphere Message Broker ESB could all be deployed to a single (for example,
default) execution group. Production systems often choose to divide message
flows between several different execution groups for performance reasons or
organizational concerns. In order to demonstrate how this can be achieved, the
following instructions choose to deploy the message flows between three
execution groups. These runtime guidelines carry out the following operations:

� Configure WebSphere MQ environment.
� Connect the toolkit to the configuration manager.
� Create execution groups.
� Create and deploy broker archive files.

9.3.1 Configure WebSphere MQ environment
You need to define several resources in WebSphere MQ for the default queue
manager QMGR1, which we use as a single queue manager for supporting the
configuration manager and runtime broker. In the download samples provided
with this book we provide the mqsc control cards to define the queues, channels,
process, and trigger service. Save the SAW610.QMGR1.tst to the workspace.
Open the WebSphere MQ Explorer and define a new qmgr.

1. Create a default Queue Manager, QMGR1.

2. Create a new WebSphere MQ Listener, listening on port 1414 using the TCP
protocol, then start this listener.

3. Create a WebSphere MQ ServerConn channel with the following attributes:

– Channel name: SW610.CLNT
– Transmission protocol: TCP/IP

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 261

4. Create the following WebSphere MQ objects by performing a runmqsc piping
in the mqsc cards (Example 9-5).

QLOCAL(ExceptionQueue)

QLOCAL(LOG.IN)

QLOCAL(SAW610.INITQ)

QLOCAL(SAW610.POJMS.REQ.IN)

QLOCAL(SAW610.POLGYRES.IN)

QLOCAL(SAW610.POREQ.EXCEPT)

QLOCAL(SAW610.POREQ.IN)

QLOCALE(SAW610.POREQ.OUT)

QLOCAL(SAW610.REQSN.IN)

QLOCAL(SAW610.REQSN.OUT)

QLOCAL(SAW610PO.REQ.TEST)
INITQ(SAW610.INITQ) PROCESS(SAW610.RESPONSE) TRIGDATA()
TRIGTYPE(EVERY) TRIGGER

PROCESS(SAW610.RESPONSE)
APPLTYPE(WINDOWSNT) APPLICID(start "C:\Documents and
Settings\Administrator\IBM\wmbt6.0\workspace\BackEnd.CMD")

Example 9-5 mqsc execution to define QMGR1 objects

C:\Documents and Settings\Administrator\IBM\wmbt6.0\workspace>runmqsc <
SAW610.QMGR1.tst
5724-H72 (C) Copyright IBM Corp. 1994, 2004. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QMGR1.

 : *
 : * MQSC Definitions for building Qmgr QMGR1
 : *
 :
 1 : DEFINE QLOCAL ('ExceptionQueue') +
 : MAXDEPTH(5000) MAXMSGL(4194304) +
 : SHARE DEFSOPT(SHARED) USAGE(NORMAL) +
 : NOTRIGGER +
 : REPLACE
AMQ8006: WebSphere MQ queue created.
 :

 15 : DEFINE SERVICE ('SAW610.Trigger1') +

262 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

 : STARTCMD('C:\program files\IBM\WebSphere
MQ\bin\runmqtrm') +
 : STARTARG('-m QMGR1 -q SAW610.INITQ') +
 : STOPCMD(' ') +
 : STOPARG(' ') +
 : STDOUT(' ') +
 : STDERR(' ') +
 : CONTROL(STARTONLY) +
 : SERVTYPE(COMMAND) +
 : REPLACE
AMQ8625: WebSphere MQ service created.
 :
15 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

9.3.2 Connect the toolkit to the configuration manager
In order to deploy build time artifacts (message sets and message flows) to the
runtime broker, the WebSphere Message Broker Toolkit must communicate with
the runtime Configuration Manager. The toolkit uses a WebSphere MQ client
connection to form this communication link. The following instructions assume
that you have already created a runtime configuration manager and a runtime
broker named BRK610.

If you have not already done so, open the WebSphere Message Broker Toolkit
that was used to create the resources in the development section of this
scenario.

1. Open the Broker Administration perspective by selecting Window → Open
Perspective → Broker Administration.

2. Right-click the Domain Connections folder in the Broker Administration
Navigator and select New → Domain.

3. Enter QMGR1 in the Queue Manager Name field, localhost in the Host field,
and 1414 in the Port field, and click Next. These settings assume that you
installed the WebSphere Business Integration Message Broker Toolkit on the
same physical machine as the runtime components.

4. Enter Servers for server project and Domain1 for connection name, and click
Finish. This creates a server project named servers and stores the
configuration manager connection information you specified within the project
inside a file named Domain1.configmgr.

5. Having connected to the configuration manager, create a representation of
your runtime broker within the toolkit topology that is shown in the Domains

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 263

view. This adds the runtime broker to the topology that is controlled by the
configuration manager, and enables you to deploy to the runtime broker from
the toolkit. Right-click the Broker Topology level of the hierarchy displayed in
the Domains view and select New → Broker.

6. Enter BRK610 as the broker name and QMGR1 in queue manager name, and
click Finish.

When the action successfully completes, you will see a broker named BRK610
appear in the hierarchy of the Domains view, beneath the Broker Topology level.
The BRK610 broker will have a single execution group as a child, named default.

9.3.3 Create execution groups
You will need to create several execution groups, a WarehousePO and a
SubmitSN to execute the message flows. The following instructions describe the
creation of separate execution groups, which will be used to organize the
deployed message sets and message flows:

1. Right-click the broker BRK610 in the Domains view and select New →
Execution Group.

2. Enter WarehousePO in the Execution Group name and click Finish.

3. Right-click the broker BRK610 in the Domains view and select New →
Execution Group.

4. Enter SubmitSN in the Execution Group name and click Finish.

5. Click Finish.

6. The new execution groups should appear beneath the broker BRK610.

264 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

9.3.4 Create and deploy broker archive files
Two broker archive files are used (one for each execution group) to deploy the
message flows and message sets. Note that message dictionaries (the runtime
term for a deployed message set) are not shared between separate execution
groups, so they must be deployed separately to each execution group that needs
access to this metadata.

1. Right-click the Broker Archives folder in the Broker Administration Navigator
and select New → Message Broker Archive.

2. Select the Servers project and enter SAW610.PO in the File Name field, then
click Finish.

Figure 9-11 New Message Broker Archive window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 265

3. Click the Add icon in the main editing window.

Figure 9-12 Content window

266 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

4. In the selection list, check mfp_SW-610_Manufacturer,
mfp_SW-610_ManufacturerJava_SubmitPO, ms_Manufacturer, and
ms_Other, and click OK to add it to the SAW610.Test.bar file. Click OK in the
response dialog window.

Figure 9-13 Add to Broker Archive window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 267

5. Click OK in the response dialog window (Figure 9-14).

Figure 9-14 Adding to Broker Archive File window

6. Save the SAW610.PO.bar file by pressing Ctrl+S.

7. If the domain is not already connected, connect it now. In the Domains view,
connect to the broker by right-clicking and selecting Connect.

8. Deploy the SAW610.PO.bar file by dragging it from the Broker Administration
Navigator view to the execution group named WarehousePO under the broker
BRK610 in the Domains view.

9. Click OK to acknowledge the response message from the configuration
manager.

10.Double-click the Event log in the Domains view, and watch for the two
successful messages with a current time stamp.

The message sets and message flow for the WarehousePO are now deployed
and ready for use. Repeat this process for the SubmitSN message flow. Create
an execution group SubmitSN, selecting the mfs_SW-619_Warehouse,
mfp_SW-610_Warehouse, and mfp_SW-610_WarehouseJava in step 4 on
page 267 for the shipping notice.

268 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

9.4 ESB based on WebSphere ESB

To implement the WebSphere ESB runtime ESB, we import a project interchange
consisting of several mediation modules. The rest of this section provides
instructions for connecting the WebSphere Integration Developer console to the
WebSphere Enterprise Service Bus server and importing the required build time
resources in order to run the scenario.

9.4.1 WebSphere Integration Developer to WebSphere Enterprise
Service Bus connection

Complete the following instructions to connect WebSphere Integration Developer
(WID) to the WebSphere ESB:

1. Start WID.

2. In the Servers tab window, right-click and select NEW → Server.

Figure 9-15 New Server connection in WebSphere Integration Developer Console

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 269

3. In the Define a New Server window, enter the host name or IP address for the
WebSphere Enterprise Service Bus Server. In our example, we are local, so
we use localhost. Select WebSphere ESB Server v6.0 and click Finish.

Figure 9-16 New Server window

4. This creates the connection to the WebSphere ESB. On the Server tab, you
will see that the connection is in a starting state.

Figure 9-17 Servers tab window

270 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

5. Upon successful startup, in the Console tab you will see the message:

WSVR0001I: Sever <server-name> open for e-business

Figure 9-18 Console X window

9.4.2 Runtime artifacts

The project interchange files (Table 9-1) that cover the four scenarios that are
discussed in this book are provided.

Table 9-1 Scenario and project interchange files

Please review Appendix C, “Additional material” on page 377, for instructions on
how to acquire the files mentioned in the project interchange files.

To build the runtime artifacts we need to import the Project Interchange files.

1. Start the WebSphere Integration Developer Toolkit.

Scenario Project Interchange

WebSphere ESB → WebSphere Message Broker using SOAP over HTTP WESB_2_WMB_SOAP_HTTP.zip

WebSphere ESB → WebSphere Message Broker using MQJMS WESB_2_WMB_MQJMS.zip

WebSphere ESB → WebSphere Message Broker using MQXML WESB_2_WMB_MQXML.zip

WebSphere ESB → WebSphere Message Broker using SOAP over HTTP WMB_2_WESB_SOAP_HTTP.zip

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 271

2. Import the project interchange into the Eclipse environment:

a. Click File → Import.

Figure 9-19 Select Import window

272 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

b. Select Project Interchange and click Next.

Figure 9-20 Import Project Interchange window example

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 273

c. Select the appropriate project interchange from the list and click Open. In
our example, we selected sw-610_wmb6.0.2_releaseCandidate.zip.

Figure 9-21 Project Interchange window example

274 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

d. Click Select All, and click Finish (Figure 9-22).

Figure 9-22 Import Projects window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 275

This will import the mediation flow into the WebSphere Enterprise Service Bus
server.

Figure 9-23 Business Integration window

9.5 Scenario 1: WebSphere ESB to WebSphere Message
Broker interaction using SOAP over HTTP

This scenario demonstrates connectivity to WebSphere Enterprise Service Bus
(retailer), sending a submitPO type message to the WebSphere Message Broker
(manufacturer) using SOAP over HTTP. The manufacturer application responds
to the request with an ackPO response. The following sections describe the
mediation flow details.

Assembly diagram

Figure 9-24 Assembly diagram

Component overview
Table 9-2 Exports

Display name Name Binding

ManufactureExport ManufactureExport

276 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Table 9-3 Mediation flows

Table 9-4 Exports

Table 9-5 Component wires

Table 9-6 Export wires

Mediation overview

Figure 9-25 SC1_AssemblyDiagram

Source interfaces
The following are the source interfaces used in the mediation flows.

ManufacturerPortTypeInterface
NameSpace:
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Man
ufacturer.wsdl

Display name Name Binding

SubmitPO SubmitPO Mediation1.mfc

Display name Name Binding

ManufactureSOAPSvc ManufactureSOAPSvc WebService Binding

Source Target

Component
name

Reference name Component name Interface name

SubmitPO ManufacturePortType
Partner

ManufactureSOAP
Svc

ManufacturePorthType(www.ws-i.org/Sa
mpleApplications/SupplyChainManage
ment/2002-10/Manufacturer.wsdl

Export Target Interface name

ManufactureExport SubmitPO ManufacturerPortType

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 277

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacturer.wsdl
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacturer.wsdl

Table 9-7 ManufacturerPortTypeInterface

References
The following references are used in the mediation flows.

Table 9-8 ManufacturerPortTypePartner

Request

Figure 9-26 SC1_MF_Request

Input submitPO:ManufacturerPortType
The input node is the starting point for the request flow. It sends the message
from the source operation into the request flow
(ManufacturerPortType_submitPO_Input) and propagates the message to the
out terminal.

Input response submitPO:ManufacturerPortType
The input response node is the endpoint in the request response flows. It returns
the processed message as a response to the source operation.

Input fault ManufacturerPortType
The input fault node is an endpoint in the request flow. It has an input terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault on the source
operation.

Operation name Property Reference Operation

submitPO request/response ManufacturerPortTypePartner submitPO

Operation Property Interface Operation

submitPO request/response http://www.ws-i.org/SampleApplications/Suppl
yChainManagement/2002-10/Manufacturer.wsdl

submitPO

278 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacturer.wsdl

Callout submitPO:ManufacturerPortType
A callout node is an endpoint in the request flow. It sends the processed
message to the target operation.

Response

Figure 9-27 SC1_MF_Response

Callout Response submitPO:ManufacturerPortTypePartner
A callout response node is a starting point for the response flow. It forwards the
message received from the target operation into the response flow.

Outputs
Propagates the message to the primitive or node to which it is wired.

Fails
Propagates a generic message of the original message to the fail terminal if an
exception that has not been explicitly described in the WSDL used in the callout
occurs while invoking the callout. Exception information will be added to the
transient header of the SMO. By default, a generic message will be propagated
to the out terminal.

Callout fault ManufacturerPortTypePartner
A callout fault node is a starting point for the response flow. It has an output
terminal for each fault message type defined in the target operation. When a
WSDL fault occurs, the callout fault node propagates the message to the
primitive or node to which it is wired.

Outputs
ConfigurationFaultMessage or submitPOFault based on the success or failure of
the message.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 279

Input response submitPO : ManufacturerPortType
The input response node is an endpoint in the request and response flows. It
returns the processed message as a response to the source operation.

Inputs
Receives the processed message at the end of the flow.

Input fault ManufacturerPortType
The input fault node is an endpoint in the request flow. It has an input terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault of the source
operation.

Message logger MessageLogger
Logger primitive that logs the response to a database.

Business objects
Business objects used in the mediation flows are listed below.

Figure 9-28 ConfigurationType

Figure 9-29 CallbackFaultType

280 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-30 CallbackHeaderType

Figure 9-31 CustomerReferenceType

Figure 9-32 Item

Figure 9-33 ItemList

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 281

Figure 9-34 ManufacturerPortType

Figure 9-35 PurchOrdType

Figure 9-36 ShipmentNoticeType

282 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-37 StartHeaderType

Figure 9-38 SubmitPOFaultType

Figure 9-39 SubmitSNFaultType

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 283

Figure 9-40 WarehouseCallbackPortType

9.6 Scenario 2: WebSphere ESB to WebSphere Message
Broker interaction using MQJMS

This scenario demonstrates connectivity of WebSphere ESB (retailer) sending a
submitPO type message to WebSphere Message Broker (manufacturer) using
MQ JMS. The manufacturer application responds to the request with an ackPO
response. The following sections describe the mediation flow details.

Assembly diagram

Figure 9-41 Assembly diagram

284 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Component overview
The following tables list the overview of the components used in the mediation
flows.

Table 9-9 Exports

Table 9-10 Mediation flows

Table 9-11 Exports

Table 9-12 Component wires

Table 9-13 Export wires

Display name Name Binding

CallSCM CallSCM

Display name Name Binding

SubmitPO SubmitPO Mediation1.mfc

Display name Name Binding

CallBrokerJMS CallBrokerJMS

CallBrokerWS CallBrokerWS

Source Target

Component
name

Reference name Component
name

Interface name

SubmitPO ManufacturePortTypeP
artner1

CallBrokerJMS ManufacturePortType(www.ws-i.org/Samp
leApplications/SupplyChainManagement/
2002-10/Manufacturer.wsdl

SubmitPO ManufacturePortTypeP
artner2

CallBrokerWS ManufacturePortType(www.ws-i.org/Samp
leApplications/SupplyChainManagement/
2002-10/Manufacturer.wsdl

Export Target Interface name

CallSCM SubmitPO ManufacturerPortType

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 285

Mediation overview

Figure 9-42 Mediation overview

Source interfaces
The following are the source interfaces used in the mediation flows.

ManufacturerPortTypeInterface
NameSpace:
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Man
ufacturer.wsdl

Table 9-14 ManufacturerPortTypeInterface

References
The following are the tables describe the mediation references.

Table 9-15 ManufacturerPortTypePartner1

Table 9-16 ManufacturerPortTypePartner2

Operation name Property Reference Operation

submitPO request/response ManufacturerPortTypePart
ner1

submitPO

submitPO request/response ManufacturerPortTypePart
ner2

submitPO

Operation Property Interface Operation

submitPO request/response http://www.ws-i.org/Sample
Applications/SupplyChainM
anagement/2002-10/Manufa
cturer.wsdl

submitPO

Operation Property Interface Operation

submitPO request/response ManufacturerPortType submitPO

286 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacturer.wsdl

Request flow

Figure 9-43 Request flow

Input submitPO:ManufacturerPortType
The input node is the starting point for the request flow. It sends the message
from the source operation into the request flow
(ManufacturerPortType_submitPO_Input) and propagates the message to the
out terminal.

Input response submitPO:ManufacturerPortType
The input response node is the endpoint in the request response flows. It returns
the processed message as a response to the source operation.

Input fault ManufacturerPortType
The input fault node is an endpoint in the request flow. It has an input terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault on the source
operation.

Callout submitPO:ManufacturerPortType1
A callout node is an endpoint in the request flow. It sends the processed
message to the target operation.

Message filter MessageFilter1
The filter primitive filters (Table 9-17) the incoming message based on the SMO
values and compares the message against a list of configured expressions.

Table 9-17 Message filter MessageFilter1

Pattern Terminal Name

/body/PurchaseOrder/customerRe[self::node()=”DirectOrder”] match1

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 287

Callout submitPO:ManufacturerPortType2
A callout node is an endpoint in the request flow. It sends the processed
message to the target operation.

Fail Fail1
Enables users to throw an explicit exception within the mediation flow. Flow
execution is terminated and global transactions are rolled back.

Response

Figure 9-44 Response

Callout response submitPO:ManufacturerPortTypePartner1
A callout response node is a starting point for the response flow. It forwards the
message received from the target operation into the response flow.

Outputs
Propagates the message to the primitive or node to which it is wired.

Fails
Propagates a generic message of the original message to the fail terminal if an
exception that has not been explicitly described in the WSDL used in the callout
occurs while invoking the callout. Exception information will be added to the
transient header of the SMO. By default, a generic message will be propagated
to the out terminal.

Callout fault ManufacturerPortTypePartner1
A callout fault node is a starting point for the response flow. It has an output
terminal for each fault message type defined in the target operation. When a
WSDL fault occurs, the callout fault node propagates the message to the
primitive or node to which it is wired.

288 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Outputs
ConfigurationFaultMessage or submitPOFault based on the success or failure of
the message.

Input response submitPO : ManufacturerPortType
The input response node is an endpoint in the request and response flows. It
returns the processed message as a response to the source operation.

Inputs
Receives the processed message at the end of the flow.

Input fault manufacturerPortType
The input fault node is an endpoint in the request flow. It has an input terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault of the source
operation.

Callout response submitPO:ManufacturerPortTypePartner2
A callout response node is a starting point for the response flow. It forwards the
message received from the target operation into the response flow.

Outputs
Propagates the message to the primitive or node to which it is wired.

Fails
Propagates a generic message of the original message to the fail terminal if an
exception that has not been explicitly described in the WSDL used in the callout
occurs while invoking the callout. Exception information will be added to the
transient header of the SMO. By default, a generic message will be propagated
to the out terminal.

Callout fault ManufacturerPortTypePartner2
A callout fault node is a starting point for the response flow. It has an output
terminal for each fault message type defined in the target operation. When a
WSDL fault occurs, the callout fault node propagates the message to the
primitive or node to which it is wired.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 289

Business objects
The following are the business objects that are used in the mediation flows.

Figure 9-45 ConfigurationType

Figure 9-46 ConfigurationFaultType

Figure 9-47 CallbackFaultType

290 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-48 CallbackHeaderType

Figure 9-49 CustomerReferenceType

Figure 9-50 Item

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 291

Figure 9-51 ItemList

Figure 9-52 ManufacturerPortType

Figure 9-53 PurchOrdType

292 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-54 ShipmentNoticeType

Figure 9-55 StartHeaderType

Figure 9-56 SubmitPOFaultType

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 293

Figure 9-57 SubmitSNFaultType

Figure 9-58 WarehouseCallbackPortType

9.7 Scenario 3: WebSphere ESB to WebSphere Message
Broker interaction using MQ XML

This scenario demonstrates connectivity of WebSphere ESB (retailer), sending a
submitPO type message to WebSphere Message Broker (manufacturer) using
MQ XML. The manufacturer application responds to the request with an ackPO
response. The following sections describe the mediation flow details.

294 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Assembly diagram

Figure 9-59 Assembly diagram

Component overview
Table 9-18 Exports

Table 9-19 Mediation flows

Table 9-20 Exports

Table 9-21 Component wires

Display name Name Binding

CallSCM CallSCM

Display name Name Binding

SubmitPO SubmitPO Mediation1.mfc

Display name Name Binding

CallBrokerJMS CallBrokerJMS

CallBrokerWS CallBrokerWS

Source Target

Component
name

Reference
name

Component
name

Interface name

SubmitPO ManufacturePort
TypePartner1

CallBrokerJMS ManufacturePortType(www.w
s-i.org/SampleApplications/S
upplyChainManagement/200
2-10/Manufacturer.wsdl

SubmitPO ManufacturePort
TypePartner2

CallBrokerWS ManufacturePortType(www.w
s-i.org/SampleApplications/S
upplyChainManagement/200
2-10/Manufacturer.wsdl

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 295

Table 9-22 Export wires

Mediation overview

Figure 9-60 Mediation overview

Source interfaces
The following are the interfaces used in mediation flows.

ManufacturerPortTypeInterface
NameSpace:
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacture
r.wsdl

Table 9-23 ManufacturerPortTypePartner1

References
The following are the references used in the mediation flow.

Table 9-24 ManufacturerPortTypePartner1

Export Target Interface Name

CallSCM SubmitPO ManufacturerPortType

Operation
name

Property Reference Operation

submitPO request/response ManufacturerPortTypePartner1 submitPO

submitPO request/response ManufacturerPortTypePartner2 submitPO

Operation Property Interface Operation

submitPO request/response http://www.ws-i.org/Sample
Applications/SupplyChainM
anagement/2002-10/Manufa
cturer.wsdl

submitPO

296 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Table 9-25 ManufacturerPortTypePartner2

Request flow

Figure 9-61 Request flow

Input submitPO:ManufacturerPortType
The input node is the starting point for the request flow. It sends the message
from the source operation into the request flow
(ManufacturerPortType_submitPO_Input) and propagates the message to the
out terminal.

Input response submitPO:ManufacturerPortType
The input response node is the endpoint in the request response flows. It returns
the processed message as a response to the source operation.

Input fault manufacturerPortType
The input fault node is an endpoint in the request flow. It has an input terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault on the source
operation.

Callout submitPO:ManufacturerPortType1
A callout node is an endpoint in the request flow. It sends the processed
message to the target operation.

Message filter MessageFilter1
The filter primitive filters the incoming message based on the SMO values and
compares the message against a list of configured expressions.

Operation Property Interface Operation

submitPO request/response ManufacturerPortType submitPO

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 297

Table 9-26 Message filter MessageFilter1

Callout submitPO:ManufacturerPortType2
A callout node is an endpoint in the request flow. It sends the processed
message to the target operation.

Fail Fail1
Enables users to throw an explicit exception within the mediation flow. Flow
execution is terminated and global transactions are rolled back.

Response

Figure 9-62 Response

Callout response submitPO:ManufacturerPortTypePartner1
A callout response node is a starting point for the response flow. It forwards the
message received from the target operation into the response flow.

Outputs
Propagates the message to the primitive or node to which it is wired.

Fails
Propagates a generic message of the original message to the fail terminal if an
exception that has not been explicitly described in the WSDL used in the callout
occurs while invoking the callout. Exception information will be added to the
transient header of the SMO. By default, a generic message will be propagated
to the out terminal.

Callout fault ManufacturerPortTypePartner1
A callout fault node is a starting point for the response flow. It has an output
terminal for each fault message type defined in the target operation. When a

Pattern Terminal name

/body/PurchaseOrder/customerRe[self::node()=”DirectOrder”] match1

298 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

WSDL fault occurs, the callout fault node propagates the message to the
primitive or node to which it is wired.

Outputs
ConfigurationFaultMessage or submitPOFault based on the success or failure of
the message.

Input Response submitPO : ManufacturerPortType
The input response node is an endpoint in the request and response flows. It
returns the processed message as a response to the source operation.

Inputs
Receives the processed message at the end of the flow.

Input fault ManufacturerPortType
The input fault node is an endpoint in the request flow. It has an input terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault of the source
operation.

Callout response submitPO:ManufacturerPortTypePartner2
A callout response node is a starting point for the response flow. It forwards the
message received from the target operation into the response flow.

Outputs
Propagates the message to the primitive or node to which it is wired.

Fails
Propagates a generic message of the original message to the fail terminal if an
exception that has not been explicitly described in the WSDL used in the callout
occurs while invoking the callout. Exception information will be added to the
transient header of the SMO. By default, a generic message will be propagated
to the out terminal.

Callout fault ManufacturerPortTypePartner2
A callout fault node is a starting point for the response flow. It has an output
terminal for each fault message type defined in the target operation. When a
WSDL fault occurs, the callout fault node propagates the message to the
primitive or node to which it is wired.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 299

Business objects
The following are the business objects used in the mediation flow.

Figure 9-63 ConfigurationType

Figure 9-64 ConfigurationFaultType

Figure 9-65 CallbackFaultType

300 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-66 CallbackHeaderType

Figure 9-67 CustomerReferenceType

Figure 9-68 Item

Figure 9-69 ItemList

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 301

Figure 9-70 ManufacturerPortType

Figure 9-71 PurchOrdType

Figure 9-72 ShipmentNoticeType

302 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-73 StartHeaderType

Figure 9-74 SubmitPOFaultType

Figure 9-75 SubmitSNFaultType

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 303

Figure 9-76 WarehouseCallbackPortType

9.8 Scenario 4: WebSphere Message Broker to
WebSphere ESB interaction using MQ XML

This scenario demonstrates connectivity WebSphere Message Broker
(manufacturer) sending a submitSB type message to WebSphere ESB (retailer)
using MQ XML. The retailer application has a Java component that responds to
the request with an boolean response. The following sections describe the
mediation flow details.

Assembly diagram

Figure 9-77 Assembly diagram

304 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Mediation overview

Figure 9-78 Mediation overview

Source interfaces
The following are the source interfaces used in the mediation flow.

WarehouseCallbackPortType
NameSpace:
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/Manufacture
r.wsdl

Table 9-27 WarehouseCallbackPortType

References
The following references are used in the mediation flow.

Table 9-28 WarehouseCallbackPortTypePartner

Operation name Property Reference Operation

submitSN request/response WarehouseCallbackPortTy
pe

submitSN

Operation Property Interface Operation

submitSN request/response WarehouseCallbackPortT
ype
http://www.ws-i.org/Sample
Applications/SupplyChainM
anagement/2002-10/Manufa
cturer.wsdl

submitSN

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 305

Request flow

Input submitSN:WarehouseCallbackPortType
The input node is the starting point for the request flow. It sends the message
from the source operation into the request flow
(WarehouseCallbackPortType_submitSN_Input) and propagates the message to
the out terminal.

Input response submitSN:WarehouseCallbackPortType
The input response node is the endpoint in the request response flows. It returns
the processed message as a response to the source operation.

Callout submitSN:WarehouseCallbackPortTypePartner
A callout node is an endpoint in the request flow. It sends the processed
message to the target operation.

Response

Figure 9-79 Response

Callout response submitSN:WarehouseCallbackPortTypePartner
A callout response node is a starting point for the response flow. It forwards the
message received from the target operation into the response flow.

Outputs
Propagates the message to the primitive or node to which it is wired.

306 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Fails
Propagates a generic message of the original message to the fail terminal if an
exception that has not been explicitly described in the WSDL used in the callout
occurs while invoking the callout. Exception information will be added to the
transient header of the SMO. By default, a generic message will be propagated
to the out terminal.

Callout fault WarehouseCallbackPortTypePartner
A callout fault node is a starting point for the response flow. It has an output
terminal for each fault message type defined in the target operation. When a
WSDL fault occurs, the callout fault node propagates the message to the
primitive or node to which it is wired.

Outputs
ConfigurationFaultMessage or submitPOFault based on the success or failure of
the message.

Input response submitSN:WarehouseCallbackPortType
The input response node is an endpoint in the request and response flows. It
returns the processed message as a response to the source operation.

Inputs
Receives the processed message at the end of the flow.

Input fault WarehouseCallbackPortType
The input fault node is an endpoint in the request flow. It has an input terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault of the source
operation.

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 307

SNResponseComponent

Figure 9-80 sca.component.java.impl window

Business objects
The following are the business objects that are used in the mediation flows.

Figure 9-81 ConfigurationType

308 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-82 ConfigurationFaultType

Figure 9-83 CallbackFaultType

Figure 9-84 CallbackHeaderType

Figure 9-85 CustomerReferenceType

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 309

Figure 9-86 Item

Figure 9-87 ItemList

Figure 9-88 ManufacturerPortType

Figure 9-89 PurchOrdType

310 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Figure 9-90 ShipmentNoticeType

Figure 9-91 StartHeader Type

Figure 9-92 SubmitPOFaultType

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 311

Figure 9-93 SubmitSNFaultType

Figure 9-94 WarehouseCallbackPortType window

312 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

9.9 Testing the scenarios

Using the steps below, you can test each scenario:

1. In the Business Integration Perspective, right-click the appropriate project and
select Test Module (Figure 9-95).

Figure 9-95 Business Integration window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 313

2. In the Events window, click Configurations. Select Emulators and click
Remove (Figure 9-96).

Figure 9-96 Configurations

3. In the Events window, fill in the values for the PurchaseOrder (Figure 9-97).

Figure 9-97 Configuarations

4. Click Continue. This will send the message to the Message Broker, and when
the response is received from the warehouse this can be viewed in the Events
Window.

314 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

9.10 Runtime guidelines for back-end existing
manufacturer applications

The manufacturer application is a stand-alone application that uses the
WebSphere MQ API to communicate with the outer world.

The same application code is designed to be run as a triggered process under
WebSphere MQ. We have defined three local queue: SAQ610.INITQ,
SAW610.POREQ.OUT, and SAW610.POREQ.IN. The queue attributes for the
local queue SAW610.POREQ.IN are triggered (trigger type of every, initq of
SAQ610.INITQ, and process as SAW610.RESPONSE). The process definition
SAQ610.RESPOSE is a Windows NT® application calling a command file
BackEnd.cmd, which is supplied in the resource samples file for this book. After
defining the queues, process, channels, and service (as described in 9.3.1,
“Configure WebSphere MQ environment” on page 261), you need to verify that
the Trigger monitor is active. Open the WebSphere MQ explorer and display the
services or check the task manager. See Figure 9-98.

Figure 9-98 WebSphere MQ Explorer - Services window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 315

Figure 9-99 Processes window

Example 9-6 BackEnd.CMD - Back-end manufacture application simulator

set mqserver=SW610.CLNT/TCP/9.42.170.160(1414)
C:\SAW610\q -oSAW610.POREQ.OUT -FC:\SAW610\po_soap_legacy_ex.xml
C:\SAW610\q -ISAW610PO.REQ.TEST -dd3
C:\SAW610\q -ISAW610.INITQ -dd3

9.11 Testing the application

To test the mediation flow into the message flow, ensure that the following things
are running:

� The WebSphere Message Broker server with the ESB configured as
described in 9.3, “Runtime guidelines for ESB based on WebSphere Message
Broker” on page 261.

� The WebSphere Enterprise Service Bus server instance with the ESB
configured as described in 9.3, “Runtime guidelines for ESB based on
WebSphere Message Broker” on page 261.

316 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

� The back end manufacturer applications are started as described in 9.10,
“Runtime guidelines for back-end existing manufacturer applications” on
page 315.

We provide two methods of verification testing. The first method is the use of the
RFHUTILC utility from the IH03 supportpac. The second method is the use of the
Test Component feature under the WebSphere Integration Developer Eclipse
console.

The system verification test will route a purchase order request from the
WebSphere Enterprise Service Bus retail system to the WebSphere Message
Broker ESB warehouse system. We simulate a test from a MQ client with a
SOAP/MQ message. To test the sample application, we use the Test Component
feature under the WebSphere Integration Developer Eclipse console. Each
method inserts a test message into the purchase order system.

Test SOAP/MQ with RFHUTILC
To test the SOAP/MQ messaging, on your workstation:

1. Set the system environment variable
MQSERVER=SAW610.CLNT/TCP/ipaddress.

2. Open the RFHUTILC utility provided by the IH03 Supportpac (Figure 9-100).

Figure 9-100 RfhUtil window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 317

3. Enter QMGR1 in the Queue Manager Name field and SAW610.POREQ.IN in
the Queue name field. Click Read File.

Figure 9-101 RfhUtil window

4. Select PO_SOAP_EX.XML and click Open (Figure 9-102).

Figure 9-102 Select OP_SOAP_EX.XML window

318 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

5. Click Write Q to sent the message to the PO Submit message flow
(Figure 9-103).

Figure 9-103 SAW610.PORLQ.IN window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 319

6. Change the Queue from field to SAW610.POREQ.OUT and click Read Q
(Figure 9-104).

Figure 9-104 SAW610.POREQ.OUT window

320 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

7. To display the response detail, click the Data tab and then select XML for the
data format (Figure 9-105).

Figure 9-105 SAW610.PORLQ.OUT window

 Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination 321

Figure 9-106 SAW610.POREQ.OUT window

You have sent a SOAP/MQ message to the WebSphere Message Broker
warehouse system message flow and received a reply.

322 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Chapter 10. Scenario: DataPower in an
SOA

In this chapter we discuss the scenario regarding the Web Service gateway using
DataPower. In the scenario we use the Web Service endpoint
GetLocationInformationByAddress. This function returns summary information
about a location via an address. In the second scenario we include a basic
authentication mechanism provided by DataPower.

For more information regarding DataPower refer to Chapter 7, “WebSphere
DataPower appliances in SOA” on page 165.

10

© Copyright IBM Corp. 2007. All rights reserved. 323

10.1 Scenario 1: Build Web Service gateway using
DataPower

First we need to check the availability of the Web service. To do this we use the
curl tool (a command-line tool) for transferring files with URL syntax, supporting
FTP, FTPS, TFTP, HTTP, and so on. For our example, we use the cendata.xml
file. This file includes the SOAP request that is sent to the Web service. In return,
the Web service successfully sends a SOAP response back to the client.
Afterwards, we continue with the building of the WS-proxy gateway. In order to
build the WS-proxy gateway, we need to obtain a WSDL file for the Web service.
The WSDL file specifies what a Web service can do (interface specification), how
to invoke it (binding specification), and where it resides (service specification). It
also has a Types section, which corresponds to the type definitions, such as XML
schema.

Figure 10-1 illustrates the Web service gateway using DataPower to access an
external Web Service.

Figure 10-1 Machine topology

Perform the following steps to test and then build the Web Service gateway:

1. Test connectivity to the existing Web services using the curl tool. The curl tool
can be obtained from the following Web site:

http://curl.haxx.se/download.html

2. Use the cendata.xml file to initiate our SOAP request executed by the curl
tool. Place the cendata.xml in the directory where curl is installed.

External Web
Service

Web Service
Proxy

Web Service Clients

Transformations
XML Schema validation
WS-Security

The content for dynamically
generated XML SOAP
documents from the application
server can be retrieved from the
Web Service Proxy.

324 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://curl.haxx.se/download.html

3. Go to the command prompt and execute the following command:

type cendata.xml

You will see a window similar to Figure 10-2. Note the content of the SOAP
test message.

Figure 10-2 Viewing and executing the cendata.xml file

4. Execute at the command prompt:

curl --data-binary @cendata.xml -i
http://ws.cdyne.com/DemographixWS/DemographixQuery.asmx -H
"Content-type: text/xml" -H u
http://ws.cdyne.com/DemographixWS/GetLocationInformationByAddress"

Note: The cendata.xml can be retrieved from the Additional Material folder
from the book link. This SOAP request xml file can be generated by tools
such as Web Service Explorer in Rational Application Development,
Oxegen, and so on. It has been provided here to help streamline your
efforts in testing your Web services connectivity.

 Chapter 10. Scenario: DataPower in an SOA 325

5. After the successful Web services testing, you will obtain a WSDL file. In our
example, we used the demografix.wsdl file and downloaded it from:

http://ws.cdyne.com/DemographixWS/DemographixQuery.asmx?wsdl

6. After downloading the WSDL to your local file system, you need to upload it to
the DataPower using the File management icon. From your Web browser,
access the DataPower Control Panel:

https://<dpip>:9090

You will see a window similar to Figure 10-3.

Figure 10-3 Control Panel and File Management windows

7. From the Control Panel, double-click the File Management icon. You will be
directed to another window where you are able to upload the file to the
DataPower. In Figure 10-3, the File Management window displays the file
updated to the DataPower.

326 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://ws.cdyne.com/DemographixWS/DemographixQuery.asmx?wsdl

8. Now we are ready to build the WS Proxy. Return to the DataPower Control
panel and click the Web Service Proxy icon (Figure 10-4).

Figure 10-4 Control Panel window

 Chapter 10. Scenario: DataPower in an SOA 327

9. From the Configure Web Service Proxy window (Figure 10-5), click Add.

Figure 10-5 Configure Web Service Proxy window

328 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

10.Enter a Web Service Proxy name and select the WSDL file from the menu
(Figure 10-6).

Figure 10-6 Configure Web Service Proxy window

 Chapter 10. Scenario: DataPower in an SOA 329

11.Create a local HTTP Front handler. Under Local Endpoint Handler
(Figure 10-7), click Create a New → HTTP Front Side Handler.

Figure 10-7 Configure Web Service Proxy window

330 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

12.From the Configure HTTP Front Side Handler window, enter the name and
port number. In our example, we use WS_proxy-demo and 3380. See
Figure 10-8.

Figure 10-8 HTTP Front Side Handler window

 Chapter 10. Scenario: DataPower in an SOA 331

13.Click Apply (Figure 10-9).

Figure 10-9 Configure HTTP Front Side Handler window

14.Click Apply → Save Config. See Figure 10-10.

Figure 10-10 Configure Web Service Proxy window

332 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

15.At this time we are ready to test the Web service using DataPower. From the
command prompt, type:

curl --data-binary @cendata.xml -i
http://isswdatapower2.rtp.raleigh.ibm.com:3380/DemographixWS/Demogra
phixQuery.asmx -H "Content-type: text/xml" -H "SOAPAction:
http://ws.cdyne.com/DemographixWS/GetLocationInformationByAddress"

See Figure 10-11.

Figure 10-11 Execute curl tool to test successful build of WS-proxy gateway using DataPower

 Chapter 10. Scenario: DataPower in an SOA 333

10.2 Scenario 2: Basic authentication mechanism
provided by DataPower

In this section we implement the DataPower Authentication, Authorization, and
Auditing (AAA) Framework features that enable the appliance to integrate flexibly
with all types of access control architectures. In our example, we only use
DataPower Authentication to simplify the scenario. Perform the following steps:

1. From the DataPower Control Panel, click the Web Service Proxy icon
(Figure 10-12).

Figure 10-12 DataPower Control Panel window

334 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

2. Click the WS-proxy link that you created in the previous section. In our
example, the link is WS-proxy-demo (Figure 10-13).

Figure 10-13 Configure Web Service Proxy window

3. Click the Policy tab (Figure 10-14).

Figure 10-14 Configure Web Service Proxy window

 Chapter 10. Scenario: DataPower in an SOA 335

4. Click the WS-proxy-demo default request-rule(request-rule) link
(Figure 10-15).

Figure 10-15 Web Service Proxy Policy window

336 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

5. Drag the AAA icon between and (Figure 10-16).

Figure 10-16 Web Service Proxy Policy window

6. You will see the AAA icon surrounded by yellow (Figure 10-17). Double-click
it.

Figure 10-17 Web Service Proxy Policy window

 Chapter 10. Scenario: DataPower in an SOA 337

7. The Configure AAA Action window appears. In the Input field, change (auto)
to INPUT. In the AAA Policy field, change to AAAFile (Figure 10-18).

Figure 10-18 Configure AAA Action window

338 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

8. Click the ... button next to AAAFile (Figure 10-19).

Figure 10-19 Configure AAA Action window

 Chapter 10. Scenario: DataPower in an SOA 339

9. The Configure an Access Control Policy window appears. Check
Password-carrying UsernameToken Element from WS-Security Header.
Scroll down and click Next (Figure 10-20).

Figure 10-20 Configure an Access Control Policy window

340 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

10.Click Next three times and then click Commit (Figure 10-21).

Figure 10-21 Configure an Access Control Policy window

11.Click Done (Figure 10-22).

Figure 10-22 Successful creation of Access Control Policy AAAFile window

 Chapter 10. Scenario: DataPower in an SOA 341

12.From your Configure AAA Action window (Figure 10-23), click Done.

Figure 10-23 Configure AAA Action window

342 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

13.Click Apply → Save Config (Figure 10-24).

Figure 10-24 Web Service Proxy window

 Chapter 10. Scenario: DataPower in an SOA 343

14.We now modify the AAAFile to insert a valid user ID and password. From the
DataPower Control Panel (Figure 10-25), click the File Management icon.

Figure 10-25 DataPower Control Panel window

344 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

15.Navigate to local → AAAInfo.xml and then click Edit (Figure 10-26).

Figure 10-26 File Management window

 Chapter 10. Scenario: DataPower in an SOA 345

16.Add the following lines into the AAAInfo.xml file (Figure 10-27):

<Authenticate>
<Username>sungik</Username>
<Password>purdue</Password>
<OutputCredential>admin</OutputCredential>

</Authenticate>

17.Click Submit.

Figure 10-27 File name: local:/AAAInfo.xml window

346 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

18.Modify the password value of the cendata.xml. Change to the value other
than purdue (Figure 10-28). In our example, we changed to cornell.

Figure 10-28 cendata.xml window

19.Test using curl. From a command prompt, type and execute the following
command:

curl --data-binary @cendata.xml -i
http://isswdatapower2.rtp.raleigh.ibm.com:3380/DemographixWS/Demogra
phixQuery.asmx -H "Content-type: text/xml" -H "SOAPAction:
http://ws.cdyne.com/DemographixWS/GetLocationInformationByAddress"

We see that the request was rejected by the AAA policy (Figure 10-29).

Figure 10-29 First curl test - failure window

 Chapter 10. Scenario: DataPower in an SOA 347

20.Change back to purdue for the password. Test it again using curl
(Figure 10-30). You will notice that curl executed successfully.

Figure 10-30 Second curl test - successful window

348 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

10.3 How to create a Domain

In this section we discuss how to create a domain called LocalDomain1 on
DataPower.

1. Login to the DataPower X150 console.

Figure 10-31 DataPower X150 Console window

 Chapter 10. Scenario: DataPower in an SOA 349

2. From the Control Panel, click Administration → Configuration →
Application Domain (Figure 10-32).

Figure 10-32 Control Panel window

3. Click Add.

350 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

4. Enter domain name LocalDomain1 and comments Local Domain. Click Apply
(Figure 10-33).

Figure 10-33 Application Domain window

5. Click Save Config (Figure 10-34).

Figure 10-34 Dialog window

 Chapter 10. Scenario: DataPower in an SOA 351

Now you will see the newly created domain (Figure 10-35).

Figure 10-35 Domain created successfully window

Figure 10-36 DataPower X150 Console window

352 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Appendix A. Java node source code

Example: A-1 WarehouseSubmitPOTransform.java

package com.ibm.itsoral.scenario;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.MbElement;
import com.ibm.broker.plugin.MbException;
import com.ibm.broker.plugin.MbMessage;
import com.ibm.broker.plugin.MbMessageAssembly;
import com.ibm.broker.plugin.MbOutputTerminal;
import com.ibm.broker.plugin.MbRFH2C;
import com.ibm.itsoral.scenario.po.SOAPMessageHelper;

/**
 * <p> Transform the PO request message. </p>
 *
 * <p> Creation date Dec 5, 2006
 * @author Joao Batista De Los Rios
 * @version SAW610 1.0
 */
public class WarehouseSubmitPOTransform extends MbJavaComputeNode
{

 public void evaluate(MbMessageAssembly inAssembly) throws
MbException

A

© Copyright IBM Corp. 2007. All rights reserved. 353

 {
 MbOutputTerminal out = getOutputTerminal("out");

MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage msgEnv= new
MbMessage(inAssembly.getLocalEnvironment());

MbMessage inMessage = inAssembly.getMessage();

// create a empty message //
MbMessage outMessage = new MbMessage();
try
{
 // Copy the headers //
 SOAPMessageHelper.copyHeaders(inMessage, outMessage);

 // Define the element variables to be used in this message //
 MbElement envRoot =

inAssembly.getGlobalEnvironment().getRootElement();
 MbElement inRoot = inMessage.getRootElement();
 MbElement outRoot = outMessage.getRootElement();

 // Save the Reply destination information so that it
 // can be reinstated by the PurchaseOrderResponse

// message flow once the Legacy Manufacturer has
 // responded to the WBIMB ESB. Only used with MQ requests
 MbElement mqmd = inRoot.getFirstElementByPath("MQMD");
 // Verifies the MQMD headers for dynamic routing later on //
 if (SOAPMessageHelper.verifyMQMDHeaders(mqmd, outRoot)) //

Could be a message from a HTTP request
 {

 MbElement reply2Queue =
mqmd.getFirstElementByPath("ReplyToQ");

 MbElement reply2QM =
mqmd.getFirstElementByPath("ReplyToQMgr");

 MbElement usr = outRoot.getLastChild()
 .createElementAfter(MbRFH2C.PARSER_NAME)
 .createElementAsFirstChild(MbElement.TYPE_NAME, "usr",

null);
 usr.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,

"FinalReplyToQ", reply2Queue.getValue());
 usr.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,

"FinalReplyToQMgr", reply2QM.getValue());
 }

354 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

 else // HTTP
 // Save the HTTP request in the global env //

 SOAPMessageHelper.saveHTTPRequest(inRoot, envRoot);

 // Saves the SOAP Operations rotines if they dont exist //
 SOAPMessageHelper.resetSoapHeader(envRoot);
 // Save some SOAP call references that can be used later on
 SOAPMessageHelper.initService(envRoot,
 "Intermediary",

"http://www.ws-i.org/SampleApplications/SupplyChainManagement/",
 "PurchaseOrderRequest");
 // Save the valid headers to limit the operations later on
 SOAPMessageHelper.setValidHeaders(envRoot, "PurchaseOrder");
 SOAPMessageHelper.setValidHeaders(envRoot, "Configuration");
 SOAPMessageHelper.setValidHeaders(envRoot, "StartHeader");
 // Decode the SOAP message to be used by the PO Legacy system

SOAPMessageHelper.decodeSOAPMessage(inRoot.getFirstElementByPath("MRM")
,

 outRoot, envRoot, "PurchaseOrder");
 /////////////////////////////

 // Create the out Assembly //
 MbMessageAssembly outAssembly = new

MbMessageAssembly(inAssembly, outMessage);
 // Propagate the message //
 out.propagate(outAssembly);
}
finally
{

// clear the outMessage
outMessage.clearMessage();

}
 }
}

 Appendix A. Java node source code 355

Example: A-2 POFormatSOAPMessage.java

/*
 * Created on Dec 5, 2006
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package com.ibm.itsoral.scenario;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.MbElement;
import com.ibm.broker.plugin.MbException;
import com.ibm.broker.plugin.MbMessage;
import com.ibm.broker.plugin.MbMessageAssembly;
import com.ibm.broker.plugin.MbOutputTerminal;
import com.ibm.itsoral.scenario.po.SOAPMessageHelper;

/**
 * <p> Create the PO message to be processed by the legacy system. </p>
 * <p> Pure XML messages. </p>
 *
 * <p> Creation date Dec 5, 2006
 * @author Joao Batista De Los Rios
 * @version SAW610 1.0
 */
public class POFormatSOAPMessage extends MbJavaComputeNode
{
 /**
 * <p> The QUEUE is hardcoded, should be loaded dinamically in a
real world. </p>
 */
 protected static final String QUEUE_DEST = "SAW610PO.REQ.TEST";

 /**
 * @see
com.ibm.broker.javacompute.MbJavaComputeNode#evaluate(com.ibm.broker.pl
ugin.MbMessageAssembly)
 */
 public void evaluate(MbMessageAssembly inAssembly) throws
MbException
 {
 MbOutputTerminal out = getOutputTerminal("out");

MbOutputTerminal alt = getOutputTerminal("alternate");

356 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

MbMessage inMessage = inAssembly.getMessage();

// create a empty message //
MbMessage outMessage = new MbMessage();
try
{
 MbElement inRoot = inMessage.getRootElement();
 MbElement localEnv =

inAssembly.getLocalEnvironment().getRootElement();
 // Copy the headers //
 SOAPMessageHelper.copyHeaders(inMessage, outMessage);

 // Even now the SOAP has been removed, the
 // message needs transforming into the format expected

// by the Legacy Manufacturer
 MbElement outRoot = outMessage.getRootElement();
 MbElement mrm = outRoot.createElementAsLastChild("MRM");
 MbElement mrmIn = inRoot.getLastChild();
 MbElement sdata = mrmIn.getFirstChild(); // ServiceData
 MbElement po= sdata.getFirstChild(); // PurchaseOrder
 boolean end=false;
 do
 {
 String poName = po.getName();
 if (po!=null && (end=(poName.equals("PurchaseOrder"))))
 {

 // Create the elements //
 MbElement poL =
 mrm.createElementAsLastChild(MbElement.TYPE_NAME,

"PurchaseOrderLegacy", null);// Top level
 poL.setNamespace(m_po_ns);

 MbElement innerElements;
 // Creates the Message Parts //
 if ((innerElements = po.getFirstChild())!=null)
 {
 MbElement _e =

poL.createElementAsLastChild(MbElement.TYPE_NAME, "orderNum",
innerElements.getValue());

 _e.setNamespace(m_po_ns);
 }
 if

((innerElements=innerElements.getNextSibling())!=null)
 {

 Appendix A. Java node source code 357

 MbElement _e =
poL.createElementAsLastChild(MbElement.TYPE_NAME, "customerRef",
innerElements.getValue());

 _e.setNamespace(m_po_ns);
 }

 if
((innerElements=innerElements.getNextSibling())!=null)

 {
 MbElement _e =

poL.createElementAsLastChild(MbElement.TYPE_NAME, "items", null);
 _e.copyElementTree(innerElements);
 _e.setNamespace(m_po_ns);

 }
 if

((innerElements=innerElements.getNextSibling())!=null);
 {
 MbElement _e =

poL.createElementAsLastChild(MbElement.TYPE_NAME, "total",
innerElements.getValue());

 _e.setNamespace(m_po_ns);
 }
 }
 }
 while ((po=sdata.getNextSibling())!=null&&!end);

 // TODO: Examine the Service Directory, to locate which

Manufacturer
 // and set the destination list accordingly.

// The role of a naming directory for the WBIMB ESB can be
assumed by a DB2

 // Reset the message name now that the SOAP Envelope has been
removed

 MbElement props =
outRoot.getFirstElementByPath("Properties");

 props.getFirstElementByPath("MessageFormat").setValue("MRM");
// ms_Manufacturer

props.getFirstElementByPath("MessageSet").setValue("G71ASSS002001"); //
ms_Manufacturer

props.getFirstElementByPath("MessageType").setValue("PurchaseOrderLegac
y"); // XSD Formatter

props.getFirstElementByPath("MessageFormat").setValue("XML");

 // Create the "out" Assembly //

358 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

 MbMessageAssembly outAssembly = new
MbMessageAssembly(inAssembly, outMessage);

 // Propagate the message //
 out.propagate(outAssembly);
}
finally
{

// clear the outMessage
outMessage.clearMessage();

}
 }

 final private String m_man_ns =
"http://www.itso.ibm.com/SampleApplications/Manufacturer/Manufacturer.x
sd";
 final private String m_po_ns =
"http://www.itso.ibm.com/SampleApplications/Manufacturer/ManufacturerPO
_Legacy.xsd";
}

 Appendix A. Java node source code 359

Example: A-3 SOAPFaultHandler.java

package com.ibm.itsoral.scenario;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.MbElement;
import com.ibm.broker.plugin.MbException;
import com.ibm.broker.plugin.MbMessage;
import com.ibm.broker.plugin.MbMessageAssembly;
import com.ibm.broker.plugin.MbOutputTerminal;
import com.ibm.itsoral.scenario.po.SOAPMessageHelper;

/**
 * <p> Create the error in a SOAP envelope format. </p>
 *
 * <p> Creation Date Dec 7, 2006
 * @author Joao Batista De Los Rios
 * @version 1.0
 */
public class SOAPFaultHandler extends MbJavaComputeNode
{

 /**
 * @see
com.ibm.broker.javacompute.MbJavaComputeNode#evaluate(com.ibm.broker.pl
ugin.MbMessageAssembly)
 */
 public void evaluate(MbMessageAssembly inAssembly) throws
MbException
 {
 MbOutputTerminal out = getOutputTerminal("out");

MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage msgEnv= new
MbMessage(inAssembly.getLocalEnvironment());

MbMessage msgEx= new MbMessage(inAssembly.getExceptionList());
MbMessage inMessage = inAssembly.getMessage();

// create a empty message //
MbMessage outMessage = new MbMessage();
try
{
 MbElement env = msgEnv.getRootElement();
 MbElement exRoot = msgEx.getRootElement(); // Exception list
 MbElement inRoot = inMessage.getRootElement();

360 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

 MbElement outRoot = outMessage.getRootElement();

 String name = exRoot.getFirstChild().getName();
 String val = (String) exRoot.getFirstChild().getValue();
 // Add the HTTP support if it was a HTTP request //
 if (SOAPMessageHelper.isHTTPRequest(inRoot))
 {
 SOAPMessageHelper.copyHeaders(inMessage, outMessage, new

String[]{"MQMD"});
 SOAPMessageHelper.addHTTPRequest(outRoot, env);
 }
 else SOAPMessageHelper.copyHeaders(inMessage, outMessage);

 // Creates the message structure //
 MbElement mrm = outRoot.getFirstElementByPath("MRM");
 if (mrm==null) mrm=outRoot.createElementAsLastChild("MRM");

 // PO Response ... as simple as that! :-)
 String msgErr = "MalformedOrder";
 // Create the Soap FAULT Codes //
 SOAPMessageHelper.formatPOFaultMessage(mrm, env, exRoot,

msgErr);

 // Defines the parsing properties of the message //
 MbElement props = outRoot.getFirstChild(); // Properties

props.getFirstElementByPath("MessageSet").setValue("G71ASSS002001");

props.getFirstElementByPath("MessageType").setValue("Envelope");
props.getFirstElementByPath("MessageFormat").setValue("XML");

 // Create the "out" Assembly //
 MbMessageAssembly outAssembly = new

MbMessageAssembly(inAssembly, outMessage);
 // Propagate the message to the right place - Dinamically

route
 MbOutputTerminal terminal =
 SOAPMessageHelper.selectOutputTerminal(inRoot, out, alt);
 terminal.propagate(outAssembly);
}
finally
{

// clear the outMessage
outMessage.clearMessage();

}

 Appendix A. Java node source code 361

 }

}

Example: A-4 POTransformReply.java

package com.ibm.itsoral.scenario;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.MbElement;
import com.ibm.broker.plugin.MbException;
import com.ibm.broker.plugin.MbMessage;
import com.ibm.broker.plugin.MbMessageAssembly;
import com.ibm.broker.plugin.MbOutputTerminal;
import com.ibm.itsoral.scenario.po.SOAPMessageHelper;

/**
 * <p> Transform the message to the SOAP format again, to be retorned
to the requester. </p>
 *
 * <p> Creation date Dec 5, 2006
 * @author Joao Batista De Los Rios
 * @version SAW610 1.0
 */
public class POTransformReply extends MbJavaComputeNode
{

 /**
 * @see
com.ibm.broker.javacompute.MbJavaComputeNode#evaluate(com.ibm.broker.pl
ugin.MbMessageAssembly)
 */
 public void evaluate(MbMessageAssembly inAssembly) throws
MbException
 {
 MbOutputTerminal out = getOutputTerminal("out");

MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage msgEnv= new
MbMessage(inAssembly.getGlobalEnvironment());

MbMessage inMessage = inAssembly.getMessage();

// create a empty message //

362 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

MbMessage outMessage = new MbMessage();
try
{

MbElement env = msgEnv.getRootElement();
 MbElement inRoot = inMessage.getRootElement();
 MbElement outRoot = outMessage.getRootElement();

 // Add the HTTP support for the message //
 if (SOAPMessageHelper.isHTTPRequest(inRoot)) // The request

can from HTTP?
 {
 // Dont copy the MQMD header for the SOAP over HTTP reply
 SOAPMessageHelper.copyHeaders(inMessage, outMessage, new

String[]{"MQMD"});
 SOAPMessageHelper.addHTTPRequest(outRoot, env); // Adds the

HTTP Reply
 }
 else SOAPMessageHelper.copyHeaders(inMessage, outMessage); //

Just copy the headers :-)

 // Creates the acknowledge PO SOAP Message //
 SOAPMessageHelper.encodeAckPOSOAPMessage(inRoot, outRoot,

env);
 // Define the MessageSet to create the message in a SOAP

envelope format
 MbElement props =

outRoot.getFirstElementByPath("Properties");

props.getFirstElementByPath("MessageSet").setValue("G71ASSS002001");

props.getFirstElementByPath("MessageType").setValue("Envelope");// If
not using SOAP: ackPO

props.getFirstElementByPath("MessageFormat").setValue("XML");

 // Create the "out" Assembly and get out of here //
 MbMessageAssembly outAssembly = new

MbMessageAssembly(inAssembly, outMessage);

 // Propagate the message to the right place (HTTP or MQ) -
Dinamic routing //

 MbOutputTerminal terminal =
SOAPMessageHelper.selectOutputTerminal(inRoot, alt, out);

 terminal.propagate(outAssembly);
}
finally

 Appendix A. Java node source code 363

{
// clear the outMessage
outMessage.clearMessage();

}
 }

}

Example: A-5 POLogEvent.java

/*
 * Created on Dec 5, 2006
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package com.ibm.itsoral.scenario;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.MbElement;
import com.ibm.broker.plugin.MbException;
import com.ibm.broker.plugin.MbMessage;
import com.ibm.broker.plugin.MbMessageAssembly;
import com.ibm.broker.plugin.MbOutputTerminal;
import com.ibm.itsoral.scenario.po.SOAPMessageHelper;

/**
 * <p> TODO: Implement Comment here. </p>
 *
 * <p> Creation date Dec 5, 2006
 * @author root
 * @version SAW610 1.0
 */
public class POLogEvent extends MbJavaComputeNode
{

 /**
 * @see
com.ibm.broker.javacompute.MbJavaComputeNode#evaluate(com.ibm.broker.pl
ugin.MbMessageAssembly)
 */
 public void evaluate(MbMessageAssembly inAssembly) throws
MbException

364 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

 {
 MbOutputTerminal out = getOutputTerminal("out");

MbOutputTerminal alt = getOutputTerminal("alternate");

MbMessage msgEnv= new
MbMessage(inAssembly.getLocalEnvironment());

MbMessage inMessage = inAssembly.getMessage();

// create a empty message //
MbMessage outMessage = new MbMessage();
try
{
 SOAPMessageHelper.copyHeaders(inMessage, outMessage);

 MbElement env = msgEnv.getRootElement();
 MbElement inRoot = inMessage.getRootElement();
 MbElement outRoot = outMessage.getRootElement();

 // Clear the service parameters from any previous requests
 SOAPMessageHelper.resetSoapHeader(env);
 // Takes references to InputRoot and constructs
 // an OutputRoot with SOAP envelope
 SOAPMessageHelper.encodeLogSOAPMessage(inRoot, outRoot,

inAssembly.getGlobalEnvironment().getRootElement());

 // Defines the parsing properties of the message //
 MbElement props = outRoot.getFirstChild(); // Properties
 String name = props.getName();

props.getFirstElementByPath("MessageSet").setValue("G71ASSS002001"); //
ms_Manufacturer (HGDCJ2C002001)

props.getFirstElementByPath("MessageType").setValue("Envelope");

props.getFirstElementByPath("MessageFormat").setValue("XML");

 // Create the "out" Assembly //
 MbMessageAssembly outAssembly =

 new MbMessageAssembly(inAssembly, outMessage);
 // Propagate the message //
 out.propagate(outAssembly);
}
finally
{

// clear the outMessage

 Appendix A. Java node source code 365

outMessage.clearMessage();
}

 }

}

Example: A-6 WarehouseSubmitSN.java

/*
 * Created on Dec 10, 2006
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package com.ibm.itsoral.scenario;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.*;

/**
 * <p> TODO: Implement Comment here. </p>
 *
 * <p> Creation date Dec 10, 2006
 * @author root
 * @version SAW610 1.0
 */
public class WarehouseSubmitSN extends MbJavaComputeNode
{
 public final String m_soap11ns =
"http://schemas.xmlsoap.org/soap/envelope/";
 public final String m_configns =
"http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/C
onfiguration.xsd";
 public final String m_callbackns =
"http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/M
anufacturer/CallBack";
 public final String m_shipns =
"http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/M
anufacturerSN.xsd";

 public void evaluate(MbMessageAssembly inAssembly) throws
MbException
 {

366 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

 MbOutputTerminal out = getOutputTerminal("out");
 MbOutputTerminal alt = getOutputTerminal("alternate");

 MbMessage inMessage = inAssembly.getMessage();

 // create new message
 MbMessage outMessage = new MbMessage();
 MbMessageAssembly outAssembly =
 new MbMessageAssembly(inAssembly, outMessage);

 try
 {
 copyHeaders(inMessage, outMessage);

 // Get the elements //
 MbElement inRoot = inMessage.getRootElement();
 MbElement outRoot = outMessage.getRootElement();

 // Creates the message parts //
 MbElement mrm = outRoot.createElementAsLastChild("MRM");

 //
 // Creates the Header parts
 MbElement header =
mrm.createElementAsLastChild(MbElement.TYPE_NAME, "Header", null);
 header.setNamespace(m_soap11ns);
 // Callback
 MbElement callback =
header.createElementAsLastChild(MbElement.TYPE_NAME, "CallbackHeader",
null);
 callback.setNamespace(m_callbackns);
 MbElement convId =
 callback.createElementAsLastChild(MbElement.TYPE_NAME,
"conversationID", String.valueOf(hashCode()));
 convId.setNamespace(m_callbackns);
 // Configuration
 MbElement config =
header.createElementAsLastChild(MbElement.TYPE_NAME, "Configuration",
null);
 config.setNamespace(m_configns);
 // Defines the first attribute //
 MbElement mustUnderstand =

config.createElementAsLastChild(MbElement.TYPE_NAME_VALUE,
"mustUnderstand", "false");

 Appendix A. Java node source code 367

 mustUnderstand.setNamespace(m_soap11ns);
 MbElement userId =
config.createElementAsLastChild(MbElement.TYPE_NAME, "UserId",
"Admin"); // User ID fixed

 //
 // Creates the Body parts //
 MbElement body =
mrm.createElementAsLastChild(MbElement.TYPE_NAME, "Body", null);
 body.setNamespace(m_soap11ns);
 // Creates the body parts //
 MbElement mrmIn = inRoot.getLastChild(); // MRM
 transformMessageParts(mrmIn, body);

 // The following should only be changed
 // if not propagating message to the 'out' terminal
 out.propagate(outAssembly);

 }
 finally
 {
 // clear the outMessage
 outMessage.clearMessage();
 }
 }

 protected void transformMessageParts(MbElement mrmIn, MbElement
body)
 throws MbException
 {
 MbElement sn = mrmIn.getFirstChild();
 do
 {
 // Base tag
 if (sn!=null)
 {
 MbElement snOut =
body.createElementAsLastChild(MbElement.TYPE_NAME, sn.getName(), null);
 snOut.setNamespace(m_shipns);
 snOut.copyElementTree(sn);
 // Defines the NS for every element in the tree
 addNS(snOut , m_shipns);
 }
 }
 while ((sn=sn.getNextSibling())!=null);

368 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

 }
 private void addNS(MbElement sn, String ns)
 throws MbException
 {
 // Just to remember: <xs:sequence>
 MbElement shipNum = sn.getFirstChild(); // shipNum
 if (shipNum!=null) shipNum.setNamespace(ns);
 MbElement orderNum = shipNum.getNextSibling(); // orderNum
 if (orderNum!=null) orderNum.setNamespace(ns);
 MbElement custRef = orderNum.getNextSibling(); // customerRef
 if (custRef!=null) custRef.setNamespace(ns);
 MbElement items = custRef.getNextSibling(); // items
 if (items!=null) items.setNamespace(ns);

 MbElement item = items.getFirstChild(); // Item
 boolean end=false;
 // Search inside every item //
 do
 {
 if (!(end=!(item!=null)))
 {
 item.setNamespace(ns);
 MbElement id = item.getFirstChild(); // ID
 if (id!=null) id.setNamespace(ns);
 MbElement qty = id.getNextSibling(); // qty
 if (qty!=null) qty.setNamespace(ns);
 MbElement price = qty.getNextSibling(); // price
 if (price!=null) price.setNamespace(ns);
 }
 }
 while (!end&&(item=item.getNextSibling())!=null);

 MbElement total = items.getNextSibling(); // items
 if (total!=null) total.setNamespace(ns);
 }

 /**
 * <p> Copy the entire header </p>
 * @param msgIn
 * @param msgOut
 * @throws MbException
 */

protected void copyHeaders(MbMessage msgIn, MbMessage msgOut)
throws MbException

{

 Appendix A. Java node source code 369

 MbElement headersIn = msgIn.getRootElement().getFirstChild();
 MbElement headerOut = msgOut.getRootElement();

while (headersIn!=null && headersIn.getNextSibling()!=null)
{
 headerOut.addAsLastChild(headersIn.copy());
 headersIn = headersIn.getNextSibling();
}

}
}

370 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Appendix B. Sample instructions

In this appendix we provide sample instructions.

B

© Copyright IBM Corp. 2007. All rights reserved. 371

WebSphere Message Broker message flows
In this section we discuss WebSphere Message Broker flows.

Import of build time artifacts
To implement the WebSphere Message Broker runtime ESB, we import a project
interchange consisting of the message set, message flows, and XML Schema
Definitions Broker artifacts. The rest of this section provides instructions for the
importation of the required build time resources to run the scenario. Descriptions
of these message flows and the Java Compute code are shown later in this
appendix.

372 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Import the message flow and message set projects
To import the message flows and message set project, follow these steps:

1. Download the samples provided with Patterns SOA Design using WebSphere
Message Broker and WebSphere Enterprise Service Bus, SG24-7369-00,
and copy the sw-610_wmb6.0.2_releaseCandidate.zip files.

2. Paste the 610_wmb6.0.2_releaseCandidate.zip files into your Message
Broker workspace. If you installed the WebSphere Message Broker Toolkit in
the default location, this will be C:\Documents and
Settings\<userid>\IBM\wmbt6.0\workspace.

3. Start the WebSphere Business Integration Message Broker Toolkit.

4. Import the project interchange into the Eclipse environment:

a. Click File → Import.

b. Select Project Interchange and click Next.

Figure B-1 Import Project Interchange window example

 Appendix B. Sample instructions 373

c. Select sw-610_wmb6.0.2_releaseCandidate.zip and click Open.

Figure B-2 Project Interchange window example

374 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

d. Click Select ALL to select all projects listed, and click Finish.

Figure B-3 Select All Projects panel example

At this time you have imported all of the message flows and messages sets
required for the implementation. You may see several errors and warnings after
these two projects have been imported. These can be ignored, and will be
addressed when we do a clean of the message flows and message sets. The
clean request will rebuild and resolve the errors.

 Appendix B. Sample instructions 375

Removing errors and warnings
At this stage, several additional task list warnings will be in your toolkit (unless
you have suppressed these warnings using the Filter function). To get rid of these
errors and warnings:

1. From the WebSphere Business Integration Message Broker Toolkit, click
Project → Clean.

2. Select Clean all projects and click OK.

Figure B-4 Clean all projects window example

At this time all errors should have been resolved. You can ignore any remaining
warnings because they will be resolved at run time.

376 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material
The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247369

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the book form number, SG24-7369.

Using the Web material
The additional Web material that accompanies this book includes the following
files:

File name Description
SOAFiles.zip Zipped book code samples

C

© Copyright IBM Corp. 2007. All rights reserved. 377

ftp://www.redbooks.ibm.com/redbooks/SG247369
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

378 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 379. Note that some of the documents referenced here may
be available in softcopy only.

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212

� WebSphere Message Broker Basics, SG24-7137

� Enabling SOA Using WebSphere Messaging, SG24-7163

� Patterns: Extended Enterprise SOA and Web Services, SG24-7135

� Patterns: Implementing and SOA Using and ESB, SG24-6347

� WebSphere Service Registry and Repository Handbook, SG24-7386

� WebSphere Message Broker V6, Best Practices Guide: Bullet Proofing
Message Flows, REDP-4043

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

© Copyright IBM Corp. 2007. All rights reserved. 379

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/abstracts/sg246346.html?Open

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

380 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
(Web Services Interoperability Organization 148

Numerics
69097

Head 5
FaultHandler JavaCompute node 255

A
Access Control List (ACL) 160
ACID properties 57
Activity Sessions 100
AggregateControl Node 128
AggregateReply Node 128
AggregateReply node 130
AggregateRequest Node 128
any-to-any transformation engine 171
application cluster 204
approach to creating service

bottom-up 28
top-down 28

ASN.1 172
Asynchronous reliability 101
authentication and authorization 170

B
backend resource gateway 172
Binding 95
biphttplistener process 232
BLOB 115, 250
BLOB domain 120
bottom-up 28
broker 107
broker domain 109
broker engine 106
Broker Topology 264
BuildReply node 130
business design 10
Business Process Execution Language for Web
Services 29
business requirements 13
business scenario 245

© Copyright IBM Corp. 2007. All rights reserved.
Business Service Registry 176

C
C and COBOL data structures 112
centralized policy management 178
CICS EXCI 111
CICS Transaction Server 61
CICS transaction server 106
CICSRequest node 132
COBOL Copybook 172
COBOL Copybooks 175
COBOL copybooks 114
COBOL program 113
collaborative business 13
Commercial Off The Shelf (COTS) 40
Common Base Event 102
common event infrastructure 102
common event infrastructure cluster (CEI Cluster)
202
component based application 15
Component Business Model (CBM) 19
composite application 11
Compute node 116
Configuration manager 263
configuration manager 108
Configuration Manager Proxy (CMP) 135, 160
configuration manager proxy (CMP) 236
Configuration Manager Proxy API 135
consume Web service 28
create customer account service 109
create, read, update and delete (CRUD) operations
192
CSV 172
custom mediation support 109
Custom Wire Format (CWF) 135
customer balance query 109

D
data format transformations 181
data model and namespace 171
data parsing 56
DataGlue technology 172
DataPower 4, 168

 381

DataPower XI50 175
DataPower XS40 173–174
design guidelines 243
Dictionary Attack Protection 170
discovery 12
Domain Connections folder 263
dynamic invocation 29
dynamic message routing 109
dynamic proxy 29

E
EBCDIC 56
ebXML 172
Eclipse 18
Eclipse Java Development Tools (JDT) 117
EDI 172
EDIFACT 112
EJB container 28
Endpoint Lookup primitive 201
Enterprise Service Bus 105

extended capability
infrastructure intelligence 37
integration 35
management and autonomic 37
message processing 36
modeling 36
quality of service 35
security 36
service level 36

integration attributes 37
capabilities of existing ESB 39
enterprise integration strategy 40
ESB technology allegiance 39
existing ESB technology 38
hardware and operating system 40
maturity of existing ESB implementation 38
programming model 40

multiple ESBs 66
alignment by organizational unit 67
business strategy 68
funding models 67
geography 68
multiple ESB technologies 68
multiple governance bodies 66

enterprise service bus 30, 33
Enterprise Service Bus (ESB) 1, 3
enterprise service bus (ESB) xi, 392
enterprise service bus pattern 9

ESB Gatewa 63
ESB gateway 172
ESB Hub technology 174
ESB Pattern 30
ESB runtime pattern

administration and security services 58
administration 58

security 58
App server / services 55, 61
Hub node

addressing 56
infrastructure intelligence 58
integration 57
message processing 57
messaging styles 56
modelling 57
quality of service 57
routing 56
service interface definition 57
service level 57
service messaging model 57
Transport protocols 57

service directory 61
Event Emitter primitive 205
execution group 108
expose J2EE artifact as service

servlet 28
stateless session EJB 28

expose Web services 28
Exposed ESB Gateway 62
Extended Structured Query Language (ESQL) 116
Extensible Markup Language

See XML
Extensible Markup Language (XML) 168
eXtensible Stylesheet Language (XSL) 120
eXtensible Stylesheet Language for Transforma-
tions (XSLT) 120

F
Field level message security 177
field level message security 170
Figure 11-4 Import Project Interchange window ex-
ample 373
Figure 11-5 Project Interchange window example
374
Figure 11-6 Select All Projects Screen Example
375
Figure 11-7 Clean All Projects window example

382 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

376
Filter node 121
FIX 114
fixed width 56
flexible architecture 14
FlowOrder node 121
Food and Drug Administration 68
FormatMessage JavaCompute node 255
formatted text message 113
FTP 111
Fugure 11-12 Warehouse_SubmitSN message flow
259

G
gateway to multiple ESBs 172
General 247
getting started 20–21
government regulatory requirements 67

H
heterogeneous ESBs

design guidelines 244
business scenario 245
High-level business context 245
integration of organizations 246–247
Organizational overview 246

HL7 114
HTTP listener 232
HTTPRequest node 127
hub node 62

I
IBM Service Integration Maturity Model 21
IBM Service Integration Maturity Model (SIMM) 19
IBM SOA Foundation 24
IBM Tivoli Access Manager for Business Integration
47
IBM Tivoli Access Manager for Business Integration
Host Edition 48
IBM Tivoli Composite Application Manager for SOA
(ITCAM for SOA) 48
IBM Tivoli Federated Identity Management (FIM)
47
IDOC 115
ikeyman tool 240
IMS Transaction Manager 61
Integrated Message Level Security 179

Integration 246
interaction pattern support 110
Interface 88
Internet based e-commerce systems 246
invoking Web services 28
ISO 8583 172
IT decision-making 13
IT metrics 11

J
J2C Adapters 181, 192
J2C SAP adapter 198
J2C Siebel adapter 198
J2EE 18
J2SE 117
Java Compute node 117, 164
Java Message Service Specification, version 1.1
111
JAX-RPC 28
JDBC type 4 117
JMS / MQ Warehouse PO Submit 248
JMS interoperability 111
JMS Message over MQ 161
JMS over MQ 246
JMSHeader subtree 188
JMSInput 111
JMSInput node 155
JMSMap 115
JMSMQTranform 111
JMSOutput 111
JMSOutput node 155
JMSStream 115

K
Kerberos 58
Key terms 84
keytool 149
keytool command 238

L
Label node 122
LDAP plug-in node 125
location transparency 56
LogEvent 250
loose coupling 33

 Index 383

M
manufacturer system 246
Mapping node 118
Mapping node editor 139
Mediation 85
Mediation flow 89

Callout 89
Callout response 89
Input 89
Input fault 89
Input response 89
Request flow 89
Response flow 89

Mediation Flow component 83, 88
Interface 88
Partner reference 88
Wiring 88

Mediation module 86
Mediation primitive 90
message bit-stream 113
Message Broker Toolkit 147
Message Brokers Toolkit 108, 134
message channels 43
Message Element Setter primitive 190
message flow diagram 248
Message Flow Visual Debugger 117
message models and transformation 109
message parser 216
Message Repository Manager 250
Message Repository Manager (MRM) 135
Message Tampering Protection 170
messaging engine cluster (ME Cluster) 202
Methodology 19
MIME 115
Model-driven development 19
monolithic business application 15
MQ queue 127
MQGET node 243
MQGET options 153
MQHeader subtree 188
MQInput 110
MQJMSTranform 111
MQMD header 235
MQOutput 110
MQOutput node 146
MQReply 110
mqsichangeproperties command 239
MRM 114
Multiple Message XML Denial of Service Protection

170

N
namespace translation 56
Netegrity SiteMinder 169, 172

P
parser 113
Partner reference 88
Patterns 19
Payload 90
platforms support 184
point-to-point communication model 44
private service registries 12
Process modeling 19
programming model 11
protocol switching 171
Protocol Threat Protection 170
protocols 171
proxy servlet 235
public service registries 12
publication 111
publish/subscribe communication model 44
purchase order (PO) 252
PurchaseOrderResponse 250

Q
QSAM dataset 124
QSAM dataset adapter nodes 124
QSAM files 111
qualities of service 181
Quality of Service 96

Activity Sessions 100
Asynchronous reliability 101
Security 97
Transactions 100

Quality of service (QoS) support 110
quality of service (QoS) support 110
queue definitions 43
queue manager 43, 263

R
Rational Unified Process (RUP) 19
Redbooks Web site 379

Contact us xvi
Reference 86
Reference architecture 19

384 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

remote management 172
Remote Procedure Call (RPC) 147
Request flow 89
requests message 248
Response flow 89
retail system 246
RouteToLabel node 122, 222
routing 171
runtime guidelines 243

S
sample business scenario 243
SAW610.POREQ.IN queue 248
SAW610.POREQ.OUT queue 248
SCA

See Service Component Architecture
SCA binding 198
SCA export component 194
SCA import component 194
SCA mediation module enterprise applications 204
SCADA 111
SCADAInput 111
SCADAOutput 111
SCM application 246
SDO

See Service Data Objects
Security 97
security role references 28
SEI

See service endpoint interface
self-defining message format 113
sender channel 261
service 10
Service Component Architecture 18
service consumer 12
Service consumers 85
service consumers 11
Service Data Objects 18
service endpoint interface 28
service implementation bean 28
service interface 12
Service Level Agreement (SLA) 123
service level management 172
Service Message Object 83, 90, 92

Manipulation 94
Structure 92

Context section 94
Data section 93

Header section 94
Service Message Object (SMO) 83, 187
service orientation 10
service oriented architecture 120
Service Oriented Architecture (SOA) 1
service oriented architecture (SOA) 3
service provider 11, 110
Service providers 85
service providers 11
service provisioning 58
Service Registry 176
service registry 11–12, 58, 133
service registry access 110
service requester 110
service substitution 56
service virtualization 109–110, 171, 178, 181
service-oriented architecture 9
service-oriented architecture (SOA) xi, 10, 392
shift in IT driven by business 17
SIMM 21
Simple Object Access Protocol

See SOAP
Single Message XML Denial of Service Protection
170
SMO 186
SMOHeader subtree 188
SOA 10

business requirements 13
challenges 12
components

service consumer 12
service provider 11
service registry 12

defined
by role 10
composite application 11
service 10
service orientation 10

drivers 13
achieve better IT use and ROI 14
need for flexible architecture 14
reduce cycle time and costs 14
simplify integration across the enterprise 14
support an agile business model 13

example approach 20
getting started 21

IBM SOA Entry Points 22
IBM SOA Foundation 24
SOA Adoption 21

 Index 385

Web services 29
why now

best practices 18
open standards and platforms 18
shift in IT driven by business 17
SOA enables flexibility 17

SOA Adoption 18, 21
SOA Assessment Tool 22
SOA based application 16
SOA Entry Points 22

Connectivity 23
Information 23
People 23
Process 23
Reuse 23

SOA firewall 172
SOA Foundation products 5
SOA Governance 19
SOAP 26

body 26
encoding rules 26
envelope 26
headers 26
message format 26
RPC representation 26
transports 26

SOAP message 138
SOAP over HTTP 246
SOAP over MQ 253
SOAPEnvelope node 145
SOAPExtract node 145
SOAPHeader subtree 188
SRGetVirtualService node 223
SRRetrieveEntity node 224
Stand-alone reference 86
standards based infrastructure 11
stateless session EJB binding 198
static stub 29
statistics 172
supply chain management scenario 245
SupportPac 123
SupportPac IA9L 133
SupportPac IA9O 145
SWIFT 112

T
Tagged Delimited String Format (TDS) 136
Tagged or Delimited String (TDS) 215

TCP/IP Socket 111
telemetry protocols 111
Timeout Notification node 122
TimeoutControl node 122
TimeoutNotification node 122
Tivoli Access Manager 169
Tivoli Access Manager (TAM) 170
Tivoli Enterprise Monitoring 169, 172
Tivoli Federated Identity Manager (TFIM) 170
TLOG 114
top-down 28
trading partner agreement 12
transaction mode 236
Transactions 100
TransformMessage JavaCompute node 255
transport protocol 148
transport protocol support and conversion 109
transport protocol transformations 181
TryCatch node 255

U
UDDI 27
Universal Description, Discovery, and Integration

See UDDI
Universal Description, Discovery, and Integration
(UDDI) 172, 178
user name server 108

V
Validate node 115, 123
validation 176
versioning 171
VSAM dataset adapter nodes 125
VSAM files 111

W
warehouse system 246
Warehouse_SubmitPO message flow 253
Warehouse_SubmitSN.msgflow 250
WarehouseCallbackResponse 250, 258
WBI Adapters 112, 181
Web Ontology Language (OWL) 201
Web services 18, 25

core elements
SOAP 26
UDDI 27
WSDL 26

386 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

XML 25
standards 27

Web Services Description Language
See WSDL

Web Services Description Language (WSDL) 172,
178
Web Services Distributed Management (WSDM)
178
Web services Distributed Management (WSDM),
172
Web Services for J2EE V1.1 28
Web services Interoperability Organization 27
Web Services management 172, 178
Web Services technology 29
WebSphere Adapters 61
WebSphere Application Server Administration Con-
sole 185
WebSphere Application Server messaging engine
209
WebSphere Broker JMS Transport 111
WebSphere Business Integration Adapters 132
WebSphere Business Integration Message Broker

Import message flow projects 269, 372–373
WebSphere Business Integration Message Broker
V5 43
WebSphere DataPower 181
WebSphere DataPower Integration Appliance XI50
167
WebSphere DataPower SOA Appliances 2, 166
WebSphere DataPower XML Accelerator XA35
167
WebSphere DataPower XML Security Gateway
XS40 167, 177
WebSphere Enterprise Service Bus 2
WebSphere Enterprise Service Bus (WESB) 247
WebSphere Enterprise Service Bus ESB 243
WebSphere ESB programming model 186
WebSphere ESB-based ESB architecture 183
WebSphere ESB-based topology 182
WebSphere Integration Developer (WID) 42
WebSphere Message Broker 2
WebSphere Message Broker (WMB) 247
WebSphere Message Broker ESB 243
WebSphere Message Broker File Extender 112,
125
WebSphere Message Broker runtime 106
WebSphere Message Broker Toolkit 263
WebSphere Message Broker toolkit 106
WebSphere Message Broker-based ESB architec-

ture 212
WebSphere Message Broker-based topolog 182
WebSphere MQ

Queue definitions 262
sender channel 261

WebSphere MQ Enterprise Transport 110
WebSphere MQ Everyplace 111
WebSphere MQ Mobile Transport 111
WebSphere MQ Multicast Transport 111
WebSphere MQ Real-time Transport 111
WebSphere MQ Telemetry Transport 111
WebSphere MQ V5.3 43
WebSphere MQ Web Services Transport 111
WebSphere Partner Gateway 2
WebSphere Service Registry and Repository 61,
176
WebSphere Transformation Extender 2, 181, 193,
236
WebSphere Transformation Extender for Message
Broker 112
WebSphere Transformation Extender Java API
236
workload management 44
WS-BPEL

See Business Process Execution Language for
Web Services

WSDL 26, 29
WSDL definition 28
WSDL files 114
WSEE 28
WS-Policy 58
WS-ReliableMessaging 57
WS-Transaction 57

X
X12 114
XML 25, 113, 115
XML accelerator 172
XML domain 136
XML DTD 112
XML message wrapper 138
XML NameSpace 250
XML Schema 114
XML Schema Definitions (XSD) 244, 251
XML Stylesheet Language (XSL) 168
XML Threat Protection 170
XML Validator node 123
XML Virus Protection 170

 Index 387

XML Web services access control 170, 178
XML Wire Format (XML) 135
XML/SOAP data validation 177
XML/SOAP firewall 177
XMLNS 115
XMLNS domain 136
XMLNSC 115
XMLNSC domain 136
XMLTransformation 120
XMLTransformation node 120
XPath 1.0 117
XSL Transformation mediation primitive 190

388 Patterns: SOA Design Using WebSphere Message Broker and WebSphere ESB

Patterns: SOA Design Using W
ebSphere M

essage Broker and W
ebSphere ESB

®

SG24-7369-00 ISBN 0738489085

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: SOA Design Using
WebSphere Message Broker
and WebSphere ESB

ESB implementation
options for maturing
SOA

Enhance your
knowledge of IBM
ESB products

Learn how to enable
your environment
with ESB patterns

The Patterns for e-business are a group of proven, reusable
assets that can be used to increase the speed of developing
and deploying e-business applications. This IBM Redbooks
publication focuses on the use of the WebSphere Enterprise
Service Bus and WebSphere Message Broker together to
form an enterprise service bus (ESB) implemented in a
service-oriented architecture (SOA).

This book discusses patterns for integrating WebSphere
Enterprise Service Bus and WebSphere Message Broker and
includes a scenario to help you design, develop, and deploy
these products.

This book is designed to assist customers that are
approaching the use of both advanced and basic ESB
products from typically messaging and J2EE worlds, but are
not quite sure when each is appropriate.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Document structure
	1.2 Related IBM Redbooks publications

	Part 1 Concepts, patterns, and products
	Chapter 2. Introduction to SOA and ESB
	2.1 Service-oriented architecture overview
	2.1.1 Definition of a service-oriented architecture
	2.1.2 Challenges and drivers for SOA
	2.1.3 Why SOA now
	2.1.4 SOA approach for building a solution

	2.2 Getting started with SOA
	2.2.1 SOA adoption
	2.2.2 IBM SOA entry points
	2.2.3 IBM SOA Foundation
	2.2.4 IBM SOA Foundation and Patterns for e-business

	2.3 Web services and SOA
	2.3.1 Web services technologies
	2.3.2 Web services and SOA

	2.4 The enterprise service bus
	2.4.1 The role of an enterprise service bus

	2.5 ESB capabilities and decision attributes
	2.5.1 ESB capabilities
	2.5.2 Softer attributes

	Chapter 3. Product descriptions
	3.1 Primary products discussed in this book
	3.1.1 IBM WebSphere Enterprise Service Bus V6
	3.1.2 IBM WebSphere Message Broker V6
	3.1.3 IBM WebSphere MQ V6.0
	3.1.4 DataPower
	3.1.5 WebSphere Service Registry and Repository
	3.1.6 WebSphere Adapters
	3.1.7 WebSphere Partner Gateway
	3.1.8 WebSphere Transformation Extender for Message Broker

	3.2 Related products
	3.2.1 WebSphere Process Server
	3.2.2 TFIM/TAM
	3.2.3 IT CAM for SOA

	Part 2 Product capabilities in relation to SOA and ESB
	Chapter 4. ESB runtime patterns and product mappings
	4.1 ESB runtime topologies
	4.1.1 ESB runtime pattern
	4.1.2 ESB runtime pattern product mapping
	4.1.3 Exposed ESB Gateway composite pattern
	4.1.4 Exposed ESB Gateway product mapping

	4.2 Multiple ESBs within an organization
	4.2.1 Multiple ESBs
	4.2.2 ESB topology patterns
	4.2.3 Handling policy with ESB Gateways and Service Registries
	4.2.4 Patterns for multiple governance zones

	Chapter 5. WebSphere Enterprise Service Bus
	5.1 Product overview
	5.2 Key terms in WebSphere Enterprise Service Bus
	5.3 Structure of WebSphere Enterprise Service Bus
	5.3.1 Mediations, service consumers, and service providers
	5.3.2 Mediation modules
	5.3.3 Mediation flow components
	5.3.4 Mediation flows
	5.3.5 Mediation primitives

	5.4 Related technologies
	5.4.1 Service message objects
	5.4.2 WebSphere Enterprise Service Bus bindings
	5.4.3 Quality of service
	5.4.4 Common event infrastructure

	5.5 WebSphere ESB V6.0.2 release notes

	Chapter 6. WebSphere Message Broker in SOA
	6.1 WebSphere Message Broker overview
	6.1.1 Product positioning
	6.1.2 WebSphere Message Broker runtime architecture

	6.2 WebSphere Message Broker as enterprise service bus
	6.2.1 Service virtualization
	6.2.2 Transport protocol support and conversion
	6.2.3 Message models and transformation
	6.2.4 Dynamic message routing
	6.2.5 Custom mediation support
	6.2.6 Interaction pattern support
	6.2.7 Integration with other enterprise information systems
	6.2.8 Quality of service (QoS) support
	6.2.9 Service Registry access
	6.2.10 Ease of administration

	6.3 Web service support in WebSphere Message Broker
	6.3.1 Choose the message domain for SOAP
	6.3.2 Processing SOAP messages
	6.3.3 WSDL support
	6.3.4 Web service transport capabilities
	6.3.5 Java Message Service (JMS) transport

	6.4 Using message flows for mediation
	6.4.1 Service Registry lookup

	6.5 Security considerations
	6.5.1 WebSphere Message Broker security
	6.5.2 Web services security

	6.6 Transaction considerations
	6.6.1 Message flow transaction

	Chapter 7. WebSphere DataPower appliances in SOA
	7.1 DataPower overview
	7.1.1 Key SOA features

	7.2 Roles for DataPower in an SOA environment
	7.2.1 XML firewall
	7.2.2 ESB Gateway
	7.2.3 Hierarchical ESB Gateways
	7.2.4 Adapter Connector
	7.2.5 XML Acceleration

	7.3 Combining DataPower with a registry
	7.4 DataPower appliance models

	Chapter 8. ESB design options
	8.1 WebSphere ESB-based architecture
	8.1.1 Platforms support
	8.1.2 WebSphere ESB-based candidate environment
	8.1.3 Data Format Transformation
	8.1.4 Protocol Transformation
	8.1.5 Virtualization of Service
	8.1.6 Dynamic routing
	8.1.7 Inter-communication
	8.1.8 Resiliency
	8.1.9 Qualities of service

	8.2 WebSphere Message Broker-based ESB architecture
	8.2.1 Platforms support
	8.2.2 WebSphere Message Broker-based ESB candidate environment
	8.2.3 Message modeling
	8.2.4 Data Format Transformation
	8.2.5 Protocol transformation
	8.2.6 Virtualization of service
	8.2.7 Dynamic routing
	8.2.8 Inter-communication
	8.2.9 Resiliency
	8.2.10 Qualities of service
	8.2.11 WebSphere ESB-WebSphere Message Broker inter-communication
	8.2.12 WebSphere Message Broker-WebSphere ESB HTTP secure communication

	Part 3 Physical scenarios
	Chapter 9. Scenario: using WebSphere ESB and WebSphere Message Broker in combination
	9.1 Design guidelines
	9.1.1 Business scenario

	9.2 WebSphere Message Broker
	9.2.1 Message flow descriptions
	9.2.2 Existing back-end manufacturer application

	9.3 Runtime guidelines for ESB based on WebSphere Message Broker
	9.3.1 Configure WebSphere MQ environment
	9.3.2 Connect the toolkit to the configuration manager
	9.3.3 Create execution groups
	9.3.4 Create and deploy broker archive files

	9.4 ESB based on WebSphere ESB
	9.4.1 WebSphere Integration Developer to WebSphere Enterprise Service Bus connection
	9.4.2 Runtime artifacts

	9.5 Scenario 1: WebSphere ESB to WebSphere Message Broker interaction using SOAP over HTTP
	9.6 Scenario 2: WebSphere ESB to WebSphere Message Broker interaction using MQJMS
	9.7 Scenario 3: WebSphere ESB to WebSphere Message Broker interaction using MQ XML
	9.8 Scenario 4: WebSphere Message Broker to WebSphere ESB interaction using MQ XML
	9.9 Testing the scenarios
	9.10 Runtime guidelines for back-end existing manufacturer applications
	9.11 Testing the application

	Chapter 10. Scenario: DataPower in an SOA
	10.1 Scenario 1: Build Web Service gateway using DataPower
	10.2 Scenario 2: Basic authentication mechanism provided by DataPower
	10.3 How to create a Domain

	Appendix A. Java node source code
	Appendix B. Sample instructions
	WebSphere Message Broker message flows

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

