

ibm.com/redbooks

WebSphere Application
Server V6.1
Planning and Design

Carla Sadtler
Fabio Albertoni

Bernardo Fagalde
Thiago Kleinubing

Henrik Sjostrand
Ken Worland

Discusses end-to-end planning for
WebSphere implementations

Provides best practices

Includes a complex
topology walk-through

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server V6.1: Planning and
Design

October 2006

International Technical Support Organization

SG24-7305-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2006)

This edition applies to IBM WebSphere Application Server Version 6.1 and IBM WebSphere
Application Server for z/OS Version 6.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xiv
Comments welcome. xv

Chapter 1. Introduction to WebSphere Application Server V6.1. 1
1.1 Product overview. 2
1.2 WebSphere Application Server . 3
1.3 Packaging . 5
1.4 Supported platforms and software . 9

1.4.1 Operating systems . 9
1.4.2 Web servers . 10
1.4.3 Database servers . 10
1.4.4 Directory servers . 11

Chapter 2. Integration with other products. 13
2.1 Tivoli Access Manager . 14

2.1.1 WebSphere Application Server security . 14
2.1.2 Tivoli Access Manager and WebSphere Application Server 15

2.2 Tivoli Directory Server . 18
2.2.1 The Lightweight Directory Access Protocol (LDAP) 18
2.2.2 Tivoli Directory Server and WebSphere Application Server 19

2.3 WebSphere MQ integration. 20

Chapter 3. Planning for infrastructure. 25
3.1 Infrastructure deployment planning . 26
3.2 Design for scalability . 27
3.3 Sizing. 29
3.4 Benchmarking . 30
3.5 Performance tuning . 32

3.5.1 Application design problems . 32
3.5.2 Understand your requirements . 32
3.5.3 Test environment setup. 33
3.5.4 Load factors . 33
3.5.5 Production system tuning . 34
3.5.6 Conclusions. 35

© Copyright IBM Corp. 2006. All rights reserved. iii

3.6 Planning for backup and recovery. 36
3.6.1 Risk analysis . 36
3.6.2 Recovery strategy . 37
3.6.3 Backup plan . 37
3.6.4 Recovery plan . 37
3.6.5 Update and test process . 38

Chapter 4. WebSphere Application Server concepts. 39
4.1 WebSphere Application Server concepts . 40

4.1.1 Stand-alone application servers . 40
4.1.2 Distributed application servers . 41
4.1.3 Nodes, node groups, and node agents . 42
4.1.4 Cells . 42
4.1.5 Application server clusters . 43
4.1.6 Web servers . 43

4.2 Distributed server environments . 45
4.2.1 Single cell configurations . 45
4.2.2 Multiple cells . 47
4.2.3 Mixed node versions in a cell . 47

4.3 Application server clusters . 48
4.4 Runtime processes . 51

4.4.1 Distributed platforms . 51
4.4.2 WebSphere Application Server for z/OS. 52

4.5 Using Web servers . 54
4.5.1 Managed Web servers . 55
4.5.2 Unmanaged Web servers . 56
4.5.3 IBM HTTP Server as an unmanaged Web server (special case) . . . 57

Chapter 5. Topologies . 59
5.1 Topology selection criteria. 60

5.1.1 Security . 60
5.1.2 Performance and throughput . 60
5.1.3 Availability . 62
5.1.4 Maintainability . 64
5.1.5 Topology selection summary . 64

5.2 Terminology. 65
5.3 Stand-alone server topology . 67
5.4 Reverse proxy topology. 71
5.5 Vertical scaling topology . 73
5.6 Horizontal scaling topology . 75
5.7 Horizontal scaling with IP sprayer topology. 77
5.8 Topology with redundancy of several components 79

Chapter 6. Planning for installation . 85

iv WebSphere Application Server V6.1: Planning and Design

6.1 What is new in V6.1. 86
6.2 Selecting a topology . 87
6.3 Selecting hardware and operating systems . 88
6.4 Naming conventions . 88
6.5 Planning for WebSphere Application Server . 88

6.5.1 Determine whether to perform a single install or multiple 90
6.5.2 Select an installation method . 92
6.5.3 Plan for profiles . 94
6.5.4 Plan for names . 102
6.5.5 Plan for TCP/IP port assignments. 105
6.5.6 Security considerations for the installation 106

6.6 Planning for migration . 109
6.7 Planning for the Web server and plug-ins . 111

6.7.1 Stand-alone server environment . 114
6.7.2 Distributed server environment . 117

6.8 Planning checklist for the installation . 120

Chapter 7. Planning for application development and deployment 123
7.1 What is new in V6.1. 124
7.2 End-to-end life cycle . 125
7.3 Development and deployment tools . 127

7.3.1 Application Server Toolkit V6.1 . 128
7.3.2 Rational Web Developer V6.0. 129
7.3.3 Rational Application Developer V6.0. 130
7.3.4 WebSphere rapid deployment. 131
7.3.5 Which tool to use. 132

7.4 Naming conventions . 133
7.4.1 Naming for applications. 133
7.4.2 Naming for resources . 133

7.5 Source code management . 134
7.5.1 Rational ClearCase . 135
7.5.2 Concurrent Versions System (CVS) . 136
7.5.3 Which SCM to use . 136

7.6 Automated build process. 137
7.7 Automated functional tests . 139
7.8 Test environments. 139
7.9 Managing application configuration settings . 144

7.9.1 Classifying configuration settings . 144
7.9.2 Managing configuration settings . 145

7.10 Planning for application upgrades in production 148
7.11 Mapping applications to application servers . 150
7.12 Planning checklist for applications . 151

 Contents v

Chapter 8. Planning for system management . 153
8.1 What is new in V6.1. 154
8.2 Administrative security . 154
8.3 WebSphere administration facilities . 155

8.3.1 Administrative console . 155
8.3.2 WebSphere scripting client (wsadmin) . 156
8.3.3 Task automation with Ant . 157
8.3.4 Administrative programs . 157
8.3.5 Command line tools . 157

8.4 Configuration planning . 158
8.4.1 Configuration repository location and synchronization 158
8.4.2 Configuring application and server startup behavior. 158
8.4.3 Custom application server configuration templates 159
8.4.4 Planning for resource scope use. 160

8.5 Change management topics . 162
8.5.1 Application updates. 163
8.5.2 Changes in topology . 164

8.6 Problem management . 165
8.6.1 Logs and traces. 165
8.6.2 Fix management . 167
8.6.3 Backing up and restoring the configuration. 167

8.7 Planning checklist for system management . 167

Chapter 9. Planning for performance, scalability, and high availability. 169
9.1 What is new in V6.1. 170
9.2 Scalability . 170

9.2.1 Workload categorization . 171
9.2.2 System tuning . 172
9.2.3 Application environment tuning . 173
9.2.4 Scaling the system . 174
9.2.5 Default messaging provider scalability . 175

9.3 Workload management . 176
9.3.1 Clustering application servers . 177
9.3.2 Scheduling tasks . 179

9.4 High availability . 179
9.4.1 Hardware availability . 180
9.4.2 Process availability . 180
9.4.3 Data availability . 181
9.4.4 Clustering and failover . 182
9.4.5 Maintainability . 183
9.4.6 WebSphere Application Server high availability features 183

9.5 Caching . 187
9.5.1 Dynamic caching. 188

vi WebSphere Application Server V6.1: Planning and Design

9.5.2 Edge caching . 188
9.5.3 Data caching . 190

9.6 Session management . 191
9.6.1 Session support . 192

9.7 Data replication service . 197
9.8 WebSphere Application Server performance tools 198

9.8.1 Performance Monitoring Infrastructure . 199
9.8.2 Tivoli Performance Viewer . 200
9.8.3 WebSphere performance advisors . 201
9.8.4 WebSphere request metrics . 202

9.9 Planning checklist for performance . 205

Chapter 10. Planning for messaging . 209
10.1 Messaging overview: What is messaging? . 210
10.2 What is new in messaging for V6.1 . 210
10.3 Messaging considerations: Is messaging for me? 211
10.4 Messaging options: What things do I need? . 212

10.4.1 Selecting a messaging service type . 212
10.4.2 Choosing a messaging service provider . 214

10.5 Messaging topologies: How can I use messaging? 215
10.5.1 Default messaging provider concepts . 216
10.5.2 Choosing a messaging topology . 217

10.6 Messaging features: How secure and reliable is it? 224
10.6.1 More messaging concepts . 224
10.6.2 Planning for security . 225
10.6.3 Planning for high availability . 226
10.6.4 Planning for reliability . 227

10.7 Planning checklist for messaging . 229

Chapter 11. Planning for Web services . 231
11.1 What are Web services? . 232
11.2 What is new in V6.1. 233
11.3 Are Web services something you should use? 234
11.4 What do you need to implement Web services? 236

11.4.1 What is the basic Web services architecture? 237
11.4.2 How can this architecture be used? . 239
11.4.3 How does WebSphere implement this architecture? 245

11.5 What other Web service considerations are there? 249
11.5.1 What are the options for Web service security? 250
11.5.2 How can Web service performance be improved? 250

11.6 Planning checklist for Web services . 251

Chapter 12. Planning for security . 253
12.1 What is new in V6.1. 254

 Contents vii

12.2 Why you need security and how it works in WebSphere 259
12.3 Security fundamentals on WebSphere . 264

12.3.1 Authentication . 264
12.3.2 Authentication process . 269
12.3.3 Authorization . 271

12.4 J2EE security . 272
12.4.1 Security roles . 272
12.4.2 Security for J2EE resources . 273

12.5 Planning for security . 278
12.6 Planning checklist for security . 281

Appendix A. Sample topology walk-through . 283
Topology review . 284

Advantages . 286
Disadvantages . 286

Component installation. 287
Deployment manager node (server E) . 288
Application server nodes (server D) . 289
IBM HTTP Server V6.1 (server B and server C) . 290
Creating the application server clusters . 291
Load Balancer (server A) . 291

Deploying applications . 293
Testing the topology . 293

Related publications . 295
IBM Redbooks . 295
Online resources . 295
How to get IBM Redbooks . 298
Help from IBM . 298

Index . 299

viii WebSphere Application Server V6.1: Planning and Design

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
CICS®
ClearCase MultiSite®
ClearCase®
ClearQuest®
Cloudscape™
DB2 Universal Database™
DB2®
developerWorks®
Domino®
HACMP™
i5/OS®

ibm.com®
IBM®
IMS™
Informix®
iSeries™
Lotus®
MVS™
OS/400®
Power PC®
POWER™
RACF®
Rational Rose®
Rational Unified Process®

Rational®
Redbooks (logo) ™
Redbooks™
RequisitePro®
RUP®
S/390®
SecureWay®
System z™
Tivoli®
WebSphere®
Workplace™
z/OS®
zSeries®

The following terms are trademarks of other companies:

iPlanet, Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, Javadoc, JavaBeans,
JavaScript, JavaServer, JavaServer Pages, JDBC, JDK, JMX, JSP, JVM, J2EE, J2SE, Solaris, Sun, Sun
Java, Sun ONE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Active Directory, Microsoft, Windows Server, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

x WebSphere Application Server V6.1: Planning and Design

Preface

This IBM® Redbook discusses the planning and design of IBM WebSphere®
Application Server Version 6.1 environments. The content of this redbook is
oriented to IT architects and consultants who require assistance when planning
and designing small implementations to large and complex implementations.

This redbook addresses the packaging and features incorporated in WebSphere
Application Server, covers the most common implementation topologies, and
addresses planning for specific tasks and components that conform to the
WebSphere Application Server environment.

The book includes planning information for WebSphere Application Server V6.1
and WebSphere Application Server Network Deployment V6.1 on distributed
platforms and WebSphere Application Server for z/OS®. It does not cover
WebSphere Application Server for i5/OS®.

Note the following companion pieces to this book:

� WebSphere Application Server V6.1: Technical Overview, REDP-4191, at:

http://www.redbooks.ibm.com/abstracts/redp4191.html

� WebSphere Application Server V6.1: System Management and
Configuration, SG24-7304, at:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247304.html

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Carla Sadtler is a certified IT Specialist at the ITSO, Raleigh Center. She writes
extensively about the WebSphere and IBM Patterns for e-business areas. Before
joining the ITSO in 1985, Carla worked in the Raleigh branch office as a Program
Support Representative. She holds a degree in mathematics from the University
of North Carolina at Greensboro.

© Copyright IBM Corp. 2006. All rights reserved. xi

http://www.redbooks.ibm.com/abstracts/redp4191.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg247304.html

Fabio Albertoni is an IBM Senior IT Specialist working at Integrated Technology
Delivery SSO, in Hortolandia, Brazil. He has nine years of experience work in the
IT industry and banks, and he has spent last five years developing and
implementing integrated solutions using the WebSphere family, including
WebSphere Application Server and WebSphere MQ. He hold a degree in data
process from FATEC University of Ourinhos and a master degree in computer
engineer from Instituto de Pesquisas Tecnologicas of Sao Paulo, Brazil.

Bernardo Fagalde is an IT Architect at IBM Uruguay and has worked for IBM
since 2000. During his time at IBM, he has had many positions, including
database administrator, system administrator, developer, designer, application
server administrator, and finally as a technical lead for e-business projects. He
has worked with WebSphere Application Server since V3.5 and mainly designs
e-business solutions focused on using the WebSphere product family. He is
currently the lead IT Architect on a large J2EE™ project. Bernardo holds a
computing engineer degree from the Uruguayan main University (Universidad de
la República Oriental del Uruguay).

Thiago Kleinubing is an IT Specialist in Brazil and has more than nine years of
experience in the IT field. He has worked at IBM for the last six years and is
currently a Team Leader for the IBM Global Business Services Organization -
Total Workplace™ Experience Center of Excellence. His areas of expertise
include the architecture, design, and development of J2EE applications. He is
also an expert on IBM WebSphere Application Server, performance tuning, and
problem determination. Thiago holds a degree in computer science and is
certified in IBM Rational® Application Developer and WebSphere Studio v5.

Henrik Sjostrand is a Senior IT Specialist and has worked for IBM Sweden for
12 years. He is currently working as a technical consultant for the Nordic IBM
Software Services for WebSphere team. The last six years, he has focused on
J2EE application development, and WebSphere Application Server architecture,
deployment, performance tuning, and troubleshooting. He is certified in
WebSphere Application Server V4, V5, and V6, WebSphere Studio V5, and
Rational Application Developer V6. Henrik holds a master of science in electrical
engineering from Chalmers University of Technology in Gothenburg, Sweden,
where he lives.

Ken Worland is a senior IT Specialist based in Melbourne, Australia. He
specializes in Web services and messaging solutions and has more than 15
years experience in the IT field. His areas of expertise include IBM WebSphere
Application Server, WebSphere MQ, DB2®, Oracle, and much more, having
worked as a UNIX® system administrator and database administer on occasion.
Ken holds a bachelor’s degree in computer science from LaTrobe University in
Melbourne.

xii WebSphere Application Server V6.1: Planning and Design

Special thanks to the authors and contributors to the previous version of this
book, WebSphere Application Server V6 Planning and Design WebSphere
Handbook Series, SG24-6446:

Hernan Cunico
Leandro Petit
Michael Asbridge
Derek Botti
Venkata Gadepalli
William Patrey
Noelle Jakusz

Thanks to the following people for their contributions to this project:

Margaret Ticknor
International Technical Support Organization, Raleigh Center

Rich Conway
International Technical Support Organization, Raleigh Center

Mollie Tucker
IBM Intern from North Carolina State University

Daniel Tishman
IBM Intern from Penn State University

Peter Kovari
ITSO, Raleigh Center

Nicolai Nielsen
IBM Denmark

Klemens Haegele
IBM Germany

Partha Sarathy Momidi
IBM India

Sandhya Kapoor
IBM U.S.

Keys Botzum
IBM U.S.

 Preface xiii

Figure 1 Authors: (from left to right) Fabio Albertoni, Carla Sadtler, Thiago Kleinubing, Bernardo Fagalde,
Ken Worland, Henrik Sjostrand

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

xiv WebSphere Application Server V6.1: Planning and Design

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi WebSphere Application Server V6.1: Planning and Design

Chapter 1. Introduction to WebSphere
Application Server V6.1

IBM WebSphere is the leading software platform for On Demand Business.
Providing comprehensive leadership, WebSphere is evolving to meet the
demands of companies faced with challenging business requirements, such as
the need for increasing operational efficiencies, strengthening client loyalty, and
integrating disparate systems. WebSphere provides answers in today’s
challenging business environments.

IBM WebSphere is architected to enable you to build business-critical
applications for the Web. WebSphere includes a wide range of products that help
you develop and serve Web applications. They are designed to make it easier for
clients to build, deploy, and manage dynamic Web sites more productively.

In this chapter, we introduce WebSphere Application Server V6.1 for distributed
platforms and WebSphere Application Server for z/OS V6.1.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 Product overview

WebSphere is the IBM brand of software products designed to work together to
help deliver dynamic On Demand Business quickly. It provides solutions for
connecting people, systems, and applications with internal and external
resources. WebSphere is based on infrastructure software, or middleware,
designed for dynamic On Demand Business. It delivers a proven, secure, and
reliable software portfolio that can provide an excellent return on investment.

The technology that powers WebSphere products is Java™. Over the years,
many software vendors have collaborated on a set of server-side application
programming technologies that help build Web accessible, distributed,
platform-neutral applications. These technologies are collectively branded as the
Java 2 Platform, Enterprise Edition (J2EE) platform. This contrasts with the
Java 2, Standard Edition (J2SE™) platform, with which most clients are familiar.
J2SE supports the development of client-side applications with rich graphical
user interfaces (GUIs). The J2EE platform is built on top of the J2SE platform.
J2EE consists of application technologies for defining business logic and
accessing enterprise resources such as databases, enterprise resource planning
(ERP) systems, messaging systems, e-mail servers, and so forth.

The potential value of J2EE to clients is tremendous. Among the benefits of
J2EE are:

� An architecture-driven approach to application development helps reduce
maintenance costs and allows for construction of an information technology
(IT) infrastructure that can grow to accommodate new services.

� Application development is focused on unique business requirements and
rules, such as security and transaction support. This improves productivity
and shortens development cycles.

� Industry standard technologies enable clients to choose among platforms,
development tools, and middleware to power their applications.

� Embedded support for Internet and Web technologies allows for a new breed
of applications that can bring services and content to a wider range of
customers, suppliers, and others, without creating the need for proprietary
integration.

Another exciting opportunity for IT is Web services. Web services allow for the
definition of functions or services within an enterprise that can be accessed using
industry standard protocols that most businesses already use today, such as
HTTP and XML. This allows for easy integration of both intra- and inter-business
applications that can lead to increased productivity, expense reduction, and
quicker time to market.

2 WebSphere Application Server V6.1: Planning and Design

1.2 WebSphere Application Server

WebSphere Application Server provides the environment to run your
Web-enabled On Demand Business applications. An application server functions
as Web middleware or a middle tier in a three-tier environment. The first tier is
the HTTP server that handles requests from the browser client. The third tier is
the business database and the business logic (for example, traditional business
applications such as order processing). The middle tier is WebSphere
Application Server, which provides a framework for a consistent and architected
link between the HTTP requests and the business data and logic.

WebSphere Application Server is available on a wide range of platforms and in
multiple packages to meet specific business needs. It also serves as the base for
other WebSphere products, such as IBM WebSphere Enterprise Service Bus
and WebSphere Process Server, by providing the application server that is
required to run these specialized applications.

Figure 1-1 illustrates a product overview of WebSphere Application Server.

Figure 1-1 WebSphere Application Server product overview

The application server is the key component of WebSphere Application Server,
providing the runtime environment for applications that conform to the J2EE 1.2,
1.3, and 1.4 specifications. Clients access these applications through standard
interfaces and APIs. The applications, in turn, have access to a wide variety of
external sources such as back-end systems, databases, Web services, and

WebSphere
Application

Server CICS, IMS,
DB2, SAP,
and so on

Clients

Msg
Queue Messaging

Networks

Service
Providers

Edge
Components

Enterprise
Application
Developer

Application Server Toolkit
Rational Application Developer
Rational Web Developer

Tivoli Access Manager

Application
Server

Application
Server

IBM HTTP
Server

IBM HTTP
Server

 Chapter 1. Introduction to WebSphere Application Server V6.1 3

messaging resources that can be used to process the client requests.
Version 6.1 extends the application server to allow it to run JSR 168 compliant
portlets and Session Initiation Protocol (SIP) applications written to the JSR 116
specification.

With the Base and Express packages, you are limited to single application server
environments. The Network Deployment package enables you to extend this
environment to include multiple application servers that are administered from a
single point of control and can be clustered to provide scalability and high
availability environments.

WebSphere Application Server supports asynchronous messaging through the
use of a JMS provider and its related messaging system. WebSphere Application
Server includes a fully integrated JMS 1.1 provider called the default messaging
provider. This messaging provider complements and extends WebSphere MQ
and the application server. It is suitable for messaging among application servers
and for providing messaging capability between WebSphere Application Server
and an existing WebSphere MQ backbone.

WebSphere Application Server provides authentication and authorization
capabilities to secure administrative functions and applications. Your choice of
user registries include the operating system user registry, an LDAP registry (for
example, IBM Tivoli® Directory Server), custom registries, file-based registries,
or federated repositories. In addition to the default authentication and
authorization capabilities, you have the option of using an external Java
Authorization Contract for Containers (JACC)-compliant authorization provider
for application security. The IBM Tivoli Access Manager client embedded in
WebSphere Application Server is JACC-compliant and can be used to secure
your WebSphere Application Server-managed resources. This client technology
is designed to be used with the Tivoli Access Manager server (shipped with
Network Deployment).

WebSphere Application Server works with a Web server (such as IBM HTTP
Server) to route requests from browsers to the applications that run in
WebSphere Application Server. Web server plug-ins are provided for installation
with supported Web browsers. The plug-ins direct requests to the appropriate
application server and perform workload balancing among servers in a cluster.

WebSphere Application Server Network Deployment includes the Caching Proxy
and Load Balancer Edge components for use in highly available, high volume
environments. Using Edge components can reduce Web server congestion,
increase content availability, and improve Web server performance.

4 WebSphere Application Server V6.1: Planning and Design

1.3 Packaging

Because varying e-business application scenarios require different levels of
application server capabilities, WebSphere Application Server is available in
multiple packaging options. Although they share a common foundation, each
provides unique benefits to meet the needs of applications and the infrastructure
that supports them. At least one WebSphere Application Server product fulfills
the requirements of any particular project and its supporting infrastructure. As
your business grows, the WebSphere Application Server family provides a
migration path to more complex configurations.

WebSphere Application Server - Express V6

The Express package is geared to those who need to get started quickly with On
Demand Business. It is specifically targeted at medium-sized businesses or
departments of a large corporation, and is focused on providing ease of use and
ease of application development. It contains full J2EE 1.4 support but is limited to
a single-server environment.

WebSphere Application Server - Express is unique from the other packages in
that it is bundled with an application development tool. Although there are
WebSphere Studio and Rational Developer products designed to support each
WebSphere Application Server package, normally they are ordered independent
of the server. WebSphere Application Server - Express includes the Rational
Web Developer application development tool. It provides a development
environment geared toward Web developers and includes support for most J2EE
1.4 features with the exception of Enterprise JavaBeans™ (EJB™) and J2EE
Connector Architecture (JCA) development environments. However, keep in
mind that WebSphere Application Server - Express V6 does contain full support
for EJB and JCA, so you can deploy applications that use these technologies.

WebSphere Application Server V6.1
The WebSphere Application Server package is the next level of server
infrastructure in the WebSphere Application Server family. Though the
WebSphere Application Server is functionally equivalent to that shipped with
Express, this package differs slightly in packaging and licensing.

Note: WebSphere Application Server - Express V6.1 is anticipated to be
announced later this year. This book specifically deals with V6.1 of Base and
Network Deployment. When you see references to Express, they are
specifically referring the V6.0 of Express.

 Chapter 1. Introduction to WebSphere Application Server V6.1 5

This package includes two tools for application development and assembly:

� The Application Server Toolkit, which has been expanded in V6.1 to include a
full set of development tools. The toolkit is suitable for J2EE 1.4 application
development, as well as the assembly and deployment of J2EE applications.
It also supports Java 5 development.

In addition, the toolkit provides tools for the development, assembly, and
deployment of JSR 116 SIP and JSR 168 portlet applications.

� This package also includes a trial version of Rational Application Developer,
which supports the development, assembly, and deployment of J2EE 1.4
applications.

To avoid confusion with the Express package in this document, we refer to this
as the Base package.

WebSphere Application Server Network Deployment V6.1
WebSphere Application Server Network Deployment provides an even higher
level of server infrastructure in the WebSphere Application Server family. It
extends the WebSphere Application Server base package to include clustering
capabilities, Edge components, and high availability for distributed
configurations. These features become more important at larger enterprises,
where applications tend to service a larger client base, and more elaborate
performance and availability requirements are in place.

Application servers in a cluster can reside on the same or multiple machines. A
Web server plug-in installed in the Web server can distribute work among
clustered application servers. In turn, Web containers running servlets and Java
ServerPages (JSPs) can distribute requests for EJBs among EJB containers in a
cluster.

The addition of Edge components provides high performance and high
availability features. For example:

� The Caching Proxy intercepts data requests from a client, retrieves the
requested information from the application servers, and delivers that content
back to the client. It stores cachable content in a local cache before delivering
it to the client. Subsequent requests for the same content are served from the
local cache, which is much faster and reduces the network and application
server load.

� The Load Balancer provides horizontal scalability by dispatching HTTP
requests among several, identically configured Web server or application
server nodes.

6 WebSphere Application Server V6.1: Planning and Design

WebSphere Application Server V6.1 for z/OS
IBM WebSphere Application Server for z/OS is a full-function version of the
Network Deployment product. WebSphere Application Server for z/OS can
support On Demand Business on any scale.

Packaging summary
Table 1-1 shows the features included with each WebSphere Application Server
packaging option.

Table 1-1 WebSphere Application Server packaging

Features
included

Express V6.0a Base V6.1 Network
Deployment V6.1

V6.1 for z/OS

WebSphere
Application Server

Yes Yes Yes Yes

Deployment
manager

No No Yes Yes

Web server
plug-ins

Yes Yes Yes Yes

IBM HTTP Server Yes Yes Yes Yes

Application Client
(not available on
Linux® for
zSeries®)

Yes Yes Yes Yes

Application Server
Toolkit

Yes Yes Yes Yes

DataDirect
Technologies
JDBC™ Drivers
for WebSphere
Application Server

Yes Yes Yes Yes (for
Microsoft®
Windows® only)

Rational
Development
tools

Rational Web
Developer (single
use license)

Rational
Application
Developer Trial

Rational
Application
Developer Trial

Rational
Application
Developer Trial
(non-z/OS
platforms)

 Chapter 1. Introduction to WebSphere Application Server V6.1 7

WebSphere Application Server includes a new tool called Installation Factory for
creating customized install packages (CIPs). Consider using Installation Factory
to create one or more CIPs and use those CIPs to deploy or update WebSphere
throughout your organization.

WebSphere Application Server also now ships the Update Installer (UPDI) for
installing maintenance (fix packs, interim fixes, and so on. In previous versions,
these tools were only available as separate Web downloads.

Database IBM DB2
Universal
Database™
Express V8.2

IBM DB2
Universal
Database Express
V8.2
(development use
only)

IBM DB2 UDB
Enterprise Server
Edition V8.2 for
WebSphere
Application Server
Network
Deployment

No

Production ready
applications

IBM Business
Solutions

No No No

Tivoli Directory
Server for
WebSphere
Application Server
(LDAP server)

No No Yes No

Tivoli Access
Manager Servers
for WebSphere
Application Server

No No Yes Yes (non-z/OS
platforms)

Caching Proxy
and Load
Balancer Edge
components

No No Yes Yes (non-z/OS
platforms)

a. Express is limited to a maximum of two CPUs.

Features
included

Express V6.0a Base V6.1 Network
Deployment V6.1

V6.1 for z/OS

Note: Not all features are available on all platforms. See the system
requirements Web page for each WebSphere Application Server package for
more information.

8 WebSphere Application Server V6.1: Planning and Design

1.4 Supported platforms and software

The following tables illustrate the platforms, software, and versions that
WebSphere Application Server V6.1 supports at the time of the writing of this
document.

For the most up-to-date operating system levels and requirements, refer to the
WebSphere Application Server system requirements Web page, at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.1 Operating systems
Table 1-2 shows the supported operating systems and versions for WebSphere
Application Server V6.1.

Table 1-2 Supported operating systems and versions

Operating systems Versions

Microsoft Windows � Microsoft Windows 2000 Advanced Server with SP4
� Microsoft Windows 2000 Server with SP4
� Microsoft Windows 2000 Professional Server with SP4
� Microsoft Windows Server® 2003 (Datacenter with SP1)
� Microsoft Windows Server 2003 (Enterprise with SP1)
� Microsoft Windows Server 2003 (Standard with SP1)
� Microsoft Windows XP Professional with SP2
� Microsoft Windows Server 2003 x64 Editions

IBM AIX® 5L™ � AIX 5L Version 5.2 Maintenance Level 5200-07
� AIX 5L Version 5.3 with Service Pack 5300-04-01

Sun™ Solaris™ � Solaris 9 with the latest patch Cluster
� Solaris 10 with the latest patch Cluster

HP-UX � HP-UX 11iv2 (11.23) with the latest Quality Pack

Linux (Intel®) � Red Hat Linux Enterprise AS, ES, WS V3 with Update 5 or 6
� Red Hat Linux Enterprise AS, ES, WS V4 with Update 2
� SUSE Linux Enterprise Server V9 with SP2 or 3

Linux (Power PC®) � Red Hat Enterprise Linux AS V3 with Update 5 or 6
� Red Hat Enterprise Linux AS V4 with Update 2
� SUSE Linux Enterprise Server V9 with SP2 or 3

Linux on IBM System z™
(Supported for WebSphere
Application Server Network
Deployment only)

� Red Hat Enterprise Linux AS V3 with Update 5 or 6
� Red Hat Enterprise Linux AS V4 with Update 2
� SUSE Linux Enterprise Server V9 with SP2 or 3

 Chapter 1. Introduction to WebSphere Application Server V6.1 9

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

1.4.2 Web servers
All available platforms of WebSphere Application Server V6.1 support the
following Web servers:

� Apache HTTP Server 2.0.54

� IBM HTTP Server for WebSphere Application Server 6.0.2

� IBM HTTP Server for WebSphere Application Server 6.1

� Internet Information Services 5.0

� Internet Information Services 6.0

� IBM Lotus® Domino® Enterprise Server 6.5.4 or 7.0

� Sun Java™ System Web Server 6.0 SP9

� Sun Java System Web Server 6.1 SP3

1.4.3 Database servers
Table 1-3 shows the database servers that WebSphere Application Server V6.1
supports.

Table 1-3 Supported database servers and versions

IBM i5/OS and OS/400® � i5/OS and OS/400, V5R3
� i5/OS V5R4

z/OS
(Supported for WebSphere
Application Server Network
Deployment only)

� z/OS 1.6 or later
� z/OS.e 1.6 or later

Operating systems Versions

Databases Versions

IBM DB2 DB2 for iSeries™ 5.2, 5.3, or 5.4
DB2 for z/OS v7 or v8
DB2 Enterprise Server Edition 8.2 FP4
DB2 Express 8.2 FP4
DB2 Workgroup Server Edition 8.2 FP4

Cloudscape™ Cloudscape 10.1 (Derby)

Oracle Oracle 9i Standard/Enterprise Release 2 - 9.2.0.7
Oracle 10g Standard/Enterprise Release 1 - 10.1.0.4
Oracle 10g Standard/Enterprise Release 2 - 10.2.0.1
or 10.2.0.2

10 WebSphere Application Server V6.1: Planning and Design

1.4.4 Directory servers
Table 1-4 shows the LDAP servers that WebSphere Application Server V6.1
supports.

Table 1-4 Supported directory servers and versions

Sybase Sybase Adaptive Server Enterprise 12.5.2 or 15.0

Microsoft SQL Server Microsoft SQL Server Enterprise 2000 SP4
Microsoft SQL Server Enterprise 2005

Informix® Informix Dynamic Server 9.4C7W1 or 10.00C4

IMS™ IMS V8 or V9

WebSphere
Information Integrator

WebSphere Information Integrator V8.2 FP4

Databases Versions

Directory server Versions

IBM Tivoli Directory Server 5.2 and 6.0

z/OS Security Server 1.6 and 1.7

z/OS.e Security Server 1.6 and 1.7

Lotus Domino Enterprise Server 6.5.4 and 7.0

Sun ONE™ Directory Server 5.1 SP4 and 5.2

Windows Active Directory® 2003 and 2000

Novell eDirectory 8.7.3 and 8.8

 Chapter 1. Introduction to WebSphere Application Server V6.1 11

12 WebSphere Application Server V6.1: Planning and Design

Chapter 2. Integration with other
products

WebSphere Application Server works closely with other IBM products to provide
a fully integrated solution. This chapter introduces some of these products,
including those that provide enhanced security and messaging options.

This chapter includes the following sections:

� Tivoli Access Manager
� Tivoli Directory Server
� WebSphere MQ integration
� Information Integration

2

© Copyright IBM Corp. 2006. All rights reserved. 13

2.1 Tivoli Access Manager

IBM Tivoli Access Manager provides a more holistic security solution at the
enterprise level than the standard security providing mechanisms found in
WebSphere Application Server. The following sections give an overview of
built-in WebSphere Application Server security, how WebSphere Application
Server integrates with Tivoli Access Manager, and when and why the two
products might be used together.

For more information about Tivoli Access Manager, see:

� Tivoli Access Manager for e-business home page

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/

� Tivoli Access Manager Information Center

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc
=/com.ibm.itame.doc/toc.xml

2.1.1 WebSphere Application Server security
WebSphere Application Server V6.1 provides its own security infrastructure. This
infrastructure is composed of some mechanisms that are specific to WebSphere
Application Server but also many that use open standards security technologies.
This security technology is widely proven, and the software can integrate with
other enterprise technologies easily.

A brief overview of WebSphere security
The rich, standards-based architecture for WebSphere Application Server
security offers various configuration options:

� At the most basic level, a single server can use the Simple WebSphere
Authentication Mechanism (SWAM). However, the SWAM mechanism has
been deprecated and will be removed in future versions, so we strongly
recommend that you to plan your security to use a different authentication
mechanism.

� If more than one server is required to share a security mechanism (that is if
containers on more than one server need to be able to track user credentials
across the servers), you can use Lightweight Third Party Authentication
(LTPA). (It can also be used for single servers.) To make this possible, LTPA
generates a security token that is passed between servers for authenticated
users.

14 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.itame.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.itame.doc/toc.xml

� Reverse proxy servers (servers that mediate between Web clients and
multiple servers behind a firewall) can be integrated with LTPA in WebSphere
Application Server to allow for client authentication. A trust association is
implemented, which is a contract between the application server and the
reverse proxy server. IBM WebSEAL Reverse Proxy is such a reverse proxy
product.

� An operating system, LDAP or customer user registry is configured to be the
user registry for the environment. Only one registry can be configured at any
one time. V6.1 introduces a file-based user registry and the ability to federate
this registry with other registries. The file-based registry is the default for
administrative security enabled out of the box.

� WebSphere uses the Java Authentication and Authorization Service (JAAS)
API, which enables services to authenticate and to enforce access controls
on users.

WebSphere uses a specialized JAAS module to implement the user
credentials mapping module in its J2EE Connector Architecture (J2C)
implementation that enables WebSphere Application Server to integrate with
enterprise information systems.

� Java 2 Security can also be enabled. This security mechanism, which is part
of the Java runtime, allows or disallows access for Java code to specific
system resources based on permissions, which can be specified in a
fine-grained manner. For example, a Java application can be granted
permission to access the operating system’s file system for file input and
output.

� J2EE 1.4 prescribes the use of the JACC API specification. (The relevant
Java Community Process Java Specification Request is JSR-115.) JACC
allows application servers to interact with third-party authorization providers
(such as Tivoli Access Manager) through standard interfaces to make
authorization decisions. Previously, proprietary interfaces for third-party
authorization providers had to be used.

2.1.2 Tivoli Access Manager and WebSphere Application Server
The WebSphere Application Server security infrastructure is in and of itself
adequate for many situations and circumstances. However, integrating
WebSphere Application Server with Tivoli Access Manager allows for a far more
holistic, end-to-end integration of application security across the entire
enterprise.

 Chapter 2. Integration with other products 15

The advantages at the enterprise level of using this approach are:

� Reduced risk through a consistent services-based security architecture

� Lower administration costs through centralized administration and fewer
security subsystems

� Faster development and deployment

� Reduced application development costs because developers do not have to
develop bespoke security subsystems

� Built-in, centralized, and configurable handling of legislative business
concerns such as privacy requirements

Repositories
As with WebSphere Application Server security, Tivoli Access Manager requires
a user repository. It supports many different repositories such as Microsoft Active
Directory, iPlanet™, and IBM Tivoli Directory Server. Tivoli Access Manager can
be configured to use the same user repository as WebSphere Application
Server, enabling you to share user identities with both Tivoli Access Manager
and WebSphere Application Server.

Tivoli Access Manager policy server
The Tivoli Access Manager policy server maintains the master authorization
policy database, which contains the security policy information for all resources
and all credentials information of all participants in the secure domain, both users
and servers. The authorization database is then replicated across all local
authorization servers. IBM WebSEAL Reverse Proxy Server, for example, has its
own local authorization server.

Tivoli Access Manager for WebSphere component
The Tivoli Access Manager clients are embedded in WebSphere Application
Server. The Tivoli Access Manager client can be configured using the scripting
and GUI management facilities of WebSphere Application Server.

The Tivoli Access Manager server is bundled with WebSphere Application
Server Network Deployment. Tivoli Access Manager further integrates with
WebSphere Application Server in that it supports the special subjects
AllAuthenticated and Everyone.

Note: AllAuthenticated and Everyone are subjects that are specific to
WebSphere Application Server. These special categories allow access to a
resource to be granted to all those users who have been authenticated
regardless of what repository user groups they might belong to and allow
access to be granted to all users whether or not they are authenticated.

16 WebSphere Application Server V6.1: Planning and Design

All communication between the Tivoli Access Manager clients and the Tivoli
Access Manager server is done through the JACC API.

Figure 2-1 shows the integration interfaces between WebSphere Application
Server and Tivoli Access Manager.

Figure 2-1 Integration of WebSphere Application Server with Tivoli Access Manager

Further advantages of using Tivoli Access Manager
We already reviewed the enterprise level advantages of using Tivoli Access
Manager. Using Tivoli Access Manager at the application server level has the
following further advantages:

� Supports accounts and password policies.

� Supports dynamic changes to the authorization table without having to restart
the applications.

� Provides tight integration with WebSphere Application Server.

Access Manager Server

Access Manager Java Runtime Component

Local ACL DB Replica

Master ACL DB ACL DB ReplicaUser Registry

Access Manager for WebSphere Component

Access Manager Policy Server AM Authorization
Server

PDJAdmin
(Management)

PDPerm
(Authorization)

PDPrincipal
(Authentication)

WebSphere Application Server V6.1

TAI
JACC

Provider
Contract

JACC
Management

GSO
Credential
Mapping

 Chapter 2. Integration with other products 17

Security, networking, and topology considerations
Clearly, because the LDAP server contains and the Access Manager server
manages sensitive data in terms of authentication, authorization and privacy, the
servers belong in the data layer of the network. It is best practice to enable
Secure Sockets Layer (SSL) configuration options between the databases so
that the data is encrypted.

Legal considerations (privacy and data protection)
You should be aware that there might be some legal and or regulatory issues
that surround storing of certain data types, such as personally identifiable data in
the European Union, on IT systems. Ensure that you have consulted your legal
department before deploying such information about your systems. These
considerations vary by geography and industry, and it is beyond the scope of this
book to discuss specific issues.

2.2 Tivoli Directory Server

This section describes IBM Tivoli Directory Server and its integration with
WebSphere Application Server.

For more information about IBM Tivoli Directory Server, see the following Web
site:

http://www.ibm.com/software/tivoli/products/directory-server/

2.2.1 The Lightweight Directory Access Protocol (LDAP)
A directory is a data structure that enables the look up of names and associated
attributes arranged in a hierarchical tree structure. In the context of enterprise
application servers, this enables applications to look up a user principal and
determine what attributes the user has and of which groups the user is a
member. Decisions about authentication and authorization can then be made
using this information.

LDAP is a fast and simple way of looking up user entities in a hierarchical data
structure. It has advantages over simply using databases as a user repository in
terms of speed, simplicity, and standardized models or schemas for defining
data. Standard schemas have standard hierarchies of objects, such as objects
that represent a person in an organization. These objects, in turn, have attributes

Note: IBM SecureWay® Directory Server has been renamed to IBM Tivoli
Directory Server in WebSphere Application Server Version 6.1.

18 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/software/tivoli/products/directory-server/

such as a user ID, common name, and so forth. The schema can also have
custom objects added to it, which means that your directory is extensible and
customizable.

Generally, LDAP is chosen over a custom database repository of users for these
reasons. LDAP implementations (such as IBM Tivoli Directory Server) use
database engines under the covers, but these engines are optimized for passive
lookup performance (through indexing techniques). This is possible because
LDAP implementations are based on the assumption that the data changes
relatively infrequently and that the directory is primarily for looking up data rather
than updating data.

Today, there are many LDAP server implementations. For example, IBM Tivoli
Directory Server, iPlanet Directory Server, Open LDAP’s SLAPD server, and
Microsoft Active Directory all support the LDAP protocol.

For a list of supported directory servers, see 1.4.4, “Directory servers” on
page 11.

2.2.2 Tivoli Directory Server and WebSphere Application Server
When you enable application security in WebSphere Application Server, you
must select the user registry to be used (in this case, an LDAP registry). This can
be done through the WebSphere administrative console or through the wsadmin
command line tool.

Because the LDAP server contains sensitive data in terms of authentication,
authorization, and privacy, the LDAP server belongs in the data layer of the
network. It is a best practice to enable SSL options in the WebSphere Application
Server security configuration so that the data is encrypted between the
application server layer and the data layer.

There might be some legal and or regulatory issues that surround storing of
certain data types, such as personally identifiable data in the European Union, on
IT systems. Ensure that you have consulted your legal department before
deploying such information about your systems. These considerations vary by
geography and industry, and it is beyond the scope of this book to discuss
specific issues. Legal considerations might become even more of an issue when
you create custom objects and attributes in the LDAP directory schema that can
store further information relating to individuals.

 Chapter 2. Integration with other products 19

2.3 WebSphere MQ integration
IBM WebSphere MQ is a proprietary, asynchronous messaging technology that
is available from IBM. WebSphere MQ is middleware technology that is designed
for application-to-application communication rather than application-to-user and
user interface communication.

WebSphere MQ is available on a large number of platforms and operating
systems. It offers a fast, robust, and scalable messaging solution that assures
once, and once only, delivery of messages to queue destinations that are hosted
by queue managers. This messaging solution has APIs in C, Java, COBOL, and
more, which allow applications to construct, send, and receive messages.

With the advent of JMS, generic, portable client applications can be written to
interface with proprietary messaging systems such as WebSphere MQ. The
integration of WebSphere Application Server with WebSphere MQ over time has
been influenced by this dichotomy of generic JMS and proprietary WebSphere
MQ access approaches.

For more information about WebSphere MQ, see:

http://www.ibm.com/software/integration/wmq/

Integration with WebSphere Application Server
WebSphere Application Server messaging is a general term for a group of
components that provide the messaging functionality for applications.
WebSphere MQ and WebSphere Application Server messaging are
complementary technologies that are tightly integrated to provide for various
messaging topologies.

WebSphere Application Server supports asynchronous messaging based on the
Java Message Service (JMS) programming interface and the use of a JMS
provider and its related messaging system. JMS providers must conform to the
JMS Specification version 1.1.

In WebSphere Application Server V6, you can use the following as JMS
providers:

� The default messaging provider

� WebSphere MQ

� Generic JMS providers

� V5 default messaging provider (for migration purposes)

The default messaging provider is the JMS API implementation for messaging
(connection factories, JMS destinations, and so on). The concrete destinations

20 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/software/integration/wmq/

(queues and topic spaces) behind the default messaging provider interface are
implemented in a service integration bus. A service integration bus consists of
one or more bus members, which can be application servers or clusters. Each
bus member will have one (or possibly more in the case of clusters) messaging
engine that manages connections to the bus and messages. A service
integration bus can connect to other service integration buses and to
WebSphere MQ.

Similarly, the WebSphere MQ JMS provider is the JMS API implementation with
WebSphere MQ (with queue managers, for example) implementing the real
destinations for the JMS interface. WebSphere MQ can coexist on the same host
as a WebSphere Application Server V6 messaging engine.

Whether to use the default messaging provider, the direct WebSphere MQ
messaging provider, or a combination depends on a number of factors. There is
no set of questions that can lead you directly to the decision; however, consider
the following guidelines.

In general, the default messaging provider is a good choice if:

� You are currently using the WebSphere Application Server V5 embedded
messaging provider for intra-WebSphere Application Server messaging.

� You require messaging between WebSphere Application Server and an
existing WebSphere MQ backbone and its applications.

� WebSphere Application Server can support the topology required for
scalability.

The WebSphere MQ messaging provider is good choice if:

� You are currently using a WebSphere MQ messaging provider and simply
want to continue using it.

� You require access to heterogeneous, non-JMS EIS systems.

� You require access to WebSphere MQ clustering.

Using a topology that combines WebSphere MQ and the default messaging
provider gives you the benefit of the tight integration between WebSphere and
the default messaging provider (clustering), and the flexibility of WebSphere MQ.

 Chapter 2. Integration with other products 21

Connecting WebSphere Application Server to WebSphere MQ
If you decide to use a topology that includes both WebSphere MQ and the
default messaging provider, there are two mechanisms to allow interaction
between them:

� Extend the WebSphere MQ and service integration bus networks by defining
a WebSphere MQ link on a messaging engine in a WebSphere Application
Server that connects the service integration bus to a WebSphere MQ queue
manager.

WebSphere MQ sees the connected service integration bus as a queue
manager. The service integration bus sees the WebSphere MQ network as
another service integration bus.

WebSphere MQ applications can send messages to queue destinations on
the service integration bus and default messaging applications can send
messages to WebSphere MQ queues without being aware of the mixed
topology. As with WebSphere MQ queue manager networks, this mechanism
can be used to send messages from one messaging network to the other; it
cannot be used to consume messages from the other messaging network.

Note that:

– WebSphere MQ to service integration bus connections are only supported
over TCP/IP.

– A service integration bus cannot be a member of a WebSphere MQ
cluster.

� Integrate specific WebSphere MQ resources into a service integration bus for
direct, synchronous access from default messaging applications running in
WebSphere Application Servers. This is achieved by representing a queue
manager or queue sharing group as a WebSphere MQ server in the
WebSphere Application Server cell and adding it to a service integration bus
as a bus member.

WebSphere MQ queues on queue managers and queue sharing groups
running on z/OS can be accessed in this way from any WebSphere
Application Server that is a member of the service integration bus. An MQ
shared queue group is a collection of queues that can be accessed by one or
more queue managers. Each queue manager that is a member of the shared
queue group has access to any of the shared queues.

Only WebSphere MQ queue managers and queue sharing groups running on
z/OS can be accessed from a service integration bus in this way.

The WebSphere MQ server does not depend on any one designated
messaging engine. This type of connectivity to MQ can tolerate the failure of
any given message engine as long as another is available in the bus,

22 WebSphere Application Server V6.1: Planning and Design

increasing robustness and availability. This mechanism can be used for both
sending and consuming messages from WebSphere MQ queues.

When a default messaging application sends a message to a WebSphere MQ
queue, the message is immediately added to that queue; it is not stored by
the service integration bus for later transmission to WebSphere MQ in the
case when the WebSphere MQ queue manager is not currently available.
When a WebSphere Application Server application receives a message from
a WebSphere MQ queue, it receives the message directly from the queue.

 Chapter 2. Integration with other products 23

24 WebSphere Application Server V6.1: Planning and Design

Chapter 3. Planning for infrastructure

Wondering about how to plan and design an infrastructure deployment that is
based on WebSphere middleware? This chapter describes the
WebSphere-specific components that you have to understand in order to run a
successful WebSphere infrastructure project. This chapter contains the following
sections:

� Infrastructure deployment planning
� Design for scalability
� Sizing
� Benchmarking
� Performance tuning
� Planning for backup and recovery

3

© Copyright IBM Corp. 2006. All rights reserved. 25

3.1 Infrastructure deployment planning

This section gives a general overview of the typical phases you have to go
through during a project, how to gather requirements, and how to apply those
requirements to a WebSphere project.

Typically, a new project starts with only a concept. Very little is known about
specific implementation details, especially as they relate to the infrastructure.
Hopefully, your development team and infrastructure team work closely together
to bring scope to the needs of the overall application environment.

Bringing together a large team of people can create an environment that helps
hone the environment requirements. If unfocused, however, a large team can be
prone to wander aimlessly and to create more confusion than resolving issues.
For this reason, carefully consider the size of the requirements team and try to
keep the meetings as focused as possible. Provide template documents to be
completed by the developers, the application business owners, and the user
experience team.

Try to gather information that falls into the following categories:

� Functional requirements, which are usually determined by the business use
of the application and are related to function

� Non-functional requirements that describe the properties of the underlying
architecture and infrastructure such as reliability, availability, or security

� Capacity requirements, including traffic estimates, traffic patterns, and
expected audience size

Requirements gathering is an iterative process. There is no way, especially in the
case of Web-based applications, to have absolutes for every item. The best you
can do is create an environment that serves your best estimates, and then
monitor the environment closely to adjust as necessary after launch. Make sure
that all your plans are flexible enough to deal with future changes in
requirements, and always keep in mind that the plans can impact other parts of
the project.

With this list of requirements, you can start to create the first drafts of your
designs. Target developing at least the following designs:

� Application design

To create your application design, use your functional and non-functional
requirements to create guidelines for your application developers about how
your application is built.

26 WebSphere Application Server V6.1: Planning and Design Update

This book does not attempt to cover the specifics of a software development
cycle. There are multiple methodologies for application design and volumes
dedicated to best practices.

� Implementation design

This design defines the target deployment infrastructure on which your
application will be deployed.

The final version of this implementation design will contain details about the
hardware, processors, and software that will be installed. However, you do
not begin with all these details. Initially, your implementation design simply
lists component requirements, such as a database, a set of application
servers, a set of Web servers, and whatever other components are defined in
the requirements phase.

This design might need to be extended during your project, whenever a
requirement for change occurs or when you get new sizing information. Too
often, however, the reality is that a project can require new hardware and,
therefore, might be constrained by capital acquisition requirements. A good
initial implementation design can reduce the chance that you will need to
constantly ask for additional resources after the project has been accepted.

With these two draft designs, you can begin the process of formulating counts of
servers, network requirements, and the other items related to the infrastructure.
We describe this exercise in sizing in 3.3, “Sizing” on page 29.

In some cases, it might be appropriate to do benchmark tests. There are many
ways to perform benchmarking tests, and in 3.4, “Benchmarking” on page 30, we
describe some of these methods.

The last step in every deployment is to tune your system and measure whether it
can handle the projected load that your non-functional requirements specify. For
more details about how to plan for load tests, see 3.5, “Performance tuning” on
page 32.

3.2 Design for scalability

Understanding the scalability of the components in your e-business infrastructure
and applying appropriate scaling techniques can greatly improve availability and
performance. Scaling techniques are especially useful in multi-tier architectures,
when you want to evaluate components that are associated with IP load
balancers, such as dispatchers or edge servers, Web presentation servers, Web
application servers, data servers, transaction servers, and LPARs in a z/OS
environment.

 Chapter 3. Planning for infrastructure 27

You can use the following steps to classify your Web site and to identify scaling
techniques that are applicable to your environment:

1. Understand the application environment.

Applications are key to the scalability of the infrastructure. It is important to
understand the component flow and traffic volumes associated with existing
applications and to evaluate the nature of new applications. Different types of
applications represent different workload patterns. For example, online
banking applications might experience the greatest delay at the database
server, while other application applications might experience the greatest
delays at the application server.

2. Categorize your workload.

Knowing the workload pattern for a site determines where you should focus
scalability efforts and which scaling techniques you need to apply. For
example, a customer self-service site, such as an online bank, needs to focus
on transaction performance and the scalability of databases that contain
customer information that is used across sessions. These considerations
would not typically be significant for a publish/subscribe site, where a user
signs up for data to be sent to them, usually through a mail message.

Web sites with similar workload patterns can be classified into site types, for
example:

– Publish/subscribe
– Online shopping
– Customer self-service
– Online trading
– Business to business

3. Determine the components most affected.

This step involves mapping the most important site characteristics to each
component. Once again, from a scalability viewpoint, the key components of
the infrastructure are the load balancers, the application servers, security
services, transaction and data servers, and the network.

4. Select the scaling techniques to apply.

When the information gathering is as complete as it can be, it is time to
consider matching scaling techniques to components. Manageability,
security, and availability are critical factors in all design decisions. Do not use
techniques that provide scalability but that compromise any of these critical
factors.

The scaling techniques are:

– Using a faster machine
– Creating a cluster of machines
– Using appliance servers

28 WebSphere Application Server V6.1: Planning and Design Update

– Segmenting the workload
– Using batch requests
– Aggregating user data
– Managing connections
– Using caching techniques

5. Apply the techniques.

Testing is key to successful application of these techniques. It is crucial that
you determine not only if the scaling techniques are effective but that they do
not adversely affect other areas. Only when you are satisfied that you have
achieved the desired results should you move into production.

6. Reevaluate.

Recognize that any system is dynamic. The initial infrastructure will at some
point need to be reviewed and possibly expanded. Changes in the nature of
the workload can create a need to reevaluate the current environment. Large
increases in traffic will require examination of the machine configurations. As
long as you understand that scalability is not a one time design consideration,
that instead it is part of the growth of the environment, you will be able to keep
a system resilient to changes and avoid possibly negative experiences due to
a poorly planned infrastructure.

The article Design for Scalability - an Update provides a detailed discussion
about these steps:

http://www.ibm.com/developerworks/websphere/library/techarticles/hipods
/scalability.html

We expand on some of the scaling techniques in Chapter 9, “Planning for
performance, scalability, and high availability” on page 169. The following IBM
Redbooks cover scalability and high availability techniques for WebSphere
Application Server V6:

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

3.3 Sizing

After determining the application design and scalability techniques, you need to
determine the number of machines required for the project. It is a given that the
application design will evolve over time and sizing is usually done in the early
stages of design. However, when sizing, it is important that you have a static

 Chapter 3. Planning for infrastructure 29

http://www.ibm.com/developerworks/websphere/library/techarticles/hipods/scalability.html

version of the application design with which to work. The better view you have of
the application design, the better your sizing estimate will be.

You should also consider which hardware platforms you want to use. This
decision is primarily dependent on your platform preference, which platforms
have sizing information available, and which platforms WebSphere Application
Server supports. Hardware decisions might also be driven by the availability of
hardware that forces a limitation in the operating systems that can be deployed.

Next, determine whether you want to scale up or out. Scaling up means to do
vertical scaling on a small number of machines with many processors. This can
present fairly significant single points of failure. Scaling out, however, means
using a larger number of smaller machines. This can generally be thought of as
significantly more resilient, because it is unlikely that the failure of one small
server is adequate to create a complete application outage. However, you would
have to support and maintain many small machines. This is usually a decision of
preference and cost for your environment. However, the reality is that application
resiliency issues can change your view.

What you need to understand, though, is that the sizing estimates are solely
based on your input, which means the better the input, the better the results.
Sizing work assumes an average standard of application performance behavior
and an average response time is assumed for each transaction. Calculations
based on this are performed to determine the estimated number of machines and
processors your application will require. If your enterprise has a user experience
team, they might have documented standards for a typical response time that
your new project will be required to meet.

If you need a more accurate estimation of your hardware requirements and you
already have your application, consider using one of the benchmarking services
discussed in 3.4, “Benchmarking” on page 30.

Based on your estimate, you might have to update your production
implementation design and the designs for the integration and development
environments accordingly. Changes to the production environment should be
incorporated into the development and testing environments if at all possible.

3.4 Benchmarking

Benchmarking is the process used to take an application environment and
determine the capacity of that environment through load testing. This
determination enables you to make reasonable judgements as your environment
begins to change. Using benchmarks, you can determine the current work

30 WebSphere Application Server V6.1: Planning and Design Update

environment capacity and set expectations as new applications and components
are introduced.

Benchmarking is primarily interesting to two kinds of clients:

� Clients who already have an application and want to migrate to a new version
of WebSphere or who want to evaluate the exact number of machines for
their target deployment platform.

� Clients who sell products that are based on WebSphere and who want to
provide sizing estimations for their products.

Many sophisticated enterprises maintain a benchmark of their application stack
and change it after each launch or upgrade of a component. These customers
usually have well-developed application testing environments and teams
dedicated to the cause. For those that do not, alternatives are available such as
the IBM Test Center. There are also third-party benchmark companies that
provide this service. When choosing, make sure that the team that performs the
benchmark tests has adequate knowledge of the environment and a clear set of
goals. This helps to reduce the costs of the benchmark tests and creates results
that are much easier to quantify.

IBM Test Center
IBM Global Services offers you the ability to retain IBM for Performance
Management, Testing, and Scalability services. This team will come to a
customer site and assess the overall site performance. This investigation is
platform neutral, with no sales team poised to sell additional hardware as a result
of the analysis. Offerings include, but are not limited to:

� Testing and Scalability Services for TCP/IP networks
� Testing and Scalability Services for Web site stress analysis
� Performance Engineering and Test Process Consulting
� Performance Testing and Validation
� Performance Tuning and Capacity Optimization

When using a service such as those provided by the IBM Test Center, you are
presented with large amounts of supporting documentation and evidence to
support the results of the tests. You can then use this data to revise your current
architecture or possibly just change the overall infrastructure footprint to add
additional machines or to correct single points of failure.

These offerings can be purchased through your local IBM account
representative.

 Chapter 3. Planning for infrastructure 31

3.5 Performance tuning

Performance is one of the most important non-functional requirements for any
WebSphere environment. Application performance should be tracked
continuously during your project.

Imagine your project is finished, you switch your environment to production, and
your environment is unable to handle the user load. This is by far the most
user-visible problem that you can have. Most users are willing to accept small
functional problems when a system is rolled out, but performance problems are
unacceptable to most users and affect everyone working on the system.

3.5.1 Application design problems

Many performance problems cannot be fixed by using more hardware or
changing WebSphere parameters. Therefore, you really want to make
performance testing (and tuning) part of your development and release cycles.
Otherwise, it takes much more effort and money to correct issues after they
occurred in production than to fix them up front. If performance testing is part of
your development cycle, you are able to correct issues with your application
design much earlier, resulting in fewer issues when using your application on the
production environment.

3.5.2 Understand your requirements

Without a clear understanding of your requirements, you have no target that you
can tune against. It is important when doing performance tuning to know your
objectives. Do not waste time trying to do performance tuning on a system that
was improperly sized and cannot withstand the load, no matter how long you
tune it. Also, do not continue tuning your system when you are already beyond
your performance targets.

Understanding your requirements demands knowledge of two things:

� Non-functional requirements
� Sizing

If you do not have this information and you are asked to tune a system, you will
either fail or will not know when to stop tuning.

32 WebSphere Application Server V6.1: Planning and Design Update

3.5.3 Test environment setup

When executing performance tests, follow these general tips throughout all your
tests:

� Execute your tests in an environment that mirrors the production server state.
Using an environment that is as close in nature as possible to the production
environment enables you to extrapolate the test results to the production
environment.

� Make sure that nobody is using the test machines and that no background
processes are running that consume more resources than what you find in
production. For example, if the intent is to test performance during the
database backup, make sure the backup is running. It is acceptable to run
monitoring software in the background that will also run in production.

� Check for processor, memory, and disk utilization before and after each test
run to see if there are any unusual patterns. If the target environment will be
using shared infrastructure (messaging servers or authentication providers,
for example) try to make sure the shared component is performing under the
projected shared load.

� Isolate network traffic as much as possible. Using switches, there is rarely a
circumstance where traffic from one server overruns the port of another. It is
possible, however, to flood ports used for routing off the network to other
networks or even the switch backbone for very heavy traffic. Make sure that
your network is designed in a manner that isolates the testing environment as
much as possible prior to starting, because performance degradation of the
network can create unexpected results.

We describe test environments in more detail in Chapter 7, “Planning for
application development and deployment” on page 123.

3.5.4 Load factors

The most important factors that determine how you conduct your load tests are:

� Request rate
� Concurrent users
� Usage patterns

This is not a complete list and other factors can become more important
depending on the kind of site that is being developed.

Usage patterns
At this point in the project, it is very important that you think about how your users
will use the site. You might want to use the use cases that your developers

 Chapter 3. Planning for infrastructure 33

defined for their application design as an input to build your usage patterns. This
makes it easier to build the scenarios later that the load test would use.

Usage patterns consist of:

� Use cases modeled as click streams through your pages
� Weights applied to your use cases

Combining weights with click streams is very important because it shows you
how many users you expect in which of your application components and where
they generate load. After all, it is a different kind of load if you expect 70% of your
users to search your site instead of browsing through the catalog than the other
way around. These assumptions also have an impact on your caching strategy.

Make sure that you notify your developers of your findings so that they can apply
them to their development effort. Make sure that the most common use cases
are the ones where most of the performance optimization work is performed.

To use this information later when recording your load test scenarios, we
recommend that you write a report with screen captures or URL paths for the
click streams (user behavior). Include the weights for your use cases to show the
reviewers how the load was distributed.

3.5.5 Production system tuning

This is the only environment that impacts the user experience for your
customers. This is where you apply all the performance, scalability, and high
availability considerations in production. Tuning this system is an iterative
process that involves optimizing WebSphere parameters to suit your runtime
environment.

When changing a production environment, use some standard practices:

� Change only one parameter at a time.
� Document all your changes.
� Compare several test runs to the baseline.

Changes between test runs should not differ by more than a small percentage to
preclude introducing new problems that you might need to sort out before you
continue tuning.

Important: To perform tuning in the production environment, you should have
the final version of code running. This version should have passed
performance tests on the integration environment prior to changing any
WebSphere parameters on the production system.

34 WebSphere Application Server V6.1: Planning and Design Update

As soon as you finish tuning your production systems, apply the settings to your
test environments to make sure that they are similar to production. Plan to rerun
your tests there to establish new baselines on these systems and to see how
these changes affect the performance.

Keep in mind that you often have only one chance to get this right. Normally, as
soon as you are in production with your system, you cannot run performance
tests on this environment any more, simply because you cannot take the
production system offline to run more performance tests. If a production system
is being tested, it is likely that the system is running in a severely degraded
position, and you have already lost half the battle.

After completing your first performance tests on your production systems and
tuning the WebSphere parameters, evaluate your results and compare them to
your objectives to see how all of this worked out for you.

3.5.6 Conclusions

There are various possible outcomes from your performance tests that you
should clearly understand and act upon:

� Performance meets your objectives.

Congratulations! However, do not stop here. Make sure that you have
planned for future growth and that you are meeting all your performance
goals. After that, we recommend documenting your findings in a performance
tuning report and archiving it. Include all the settings that you changed to
reach your objectives.

This report is useful when you set up a new environment or when you have to
duplicate your results somewhere else on a similar environment with the
same application. This data also is essential when adding additional replicas
of some component in the system, because they need to be tuned to the
same settings the current resources use.

Note: Because it is rare to use a production system for load tests, it is usually
a bad idea to migrate these environments to new WebSphere versions without
doing a proper test on an equivalent test system or new hardware.

 Chapter 3. Planning for infrastructure 35

� Performance is slower than required.

Your application performance is somewhat slower than expected, and you
have already done all possible application and WebSphere parameter tuning.
You might need to add more hardware (for example, increase memory,
upgrade processors, and so forth) to those components in your environment
that showed to be bottlenecks during your performance tests. Then, run the
tests again. Verify with the appropriate teams that there were no missed
bottlenecks in the overall system flow.

� Performance is significantly slower than required.

In this case, you should start over with your sizing and ask the following
questions:

– Did you underestimate any of the application characteristics during your
initial sizing? If so, why?

– Did you underestimate the traffic and number of users/hits on the site?

– Is it still possible to change parts of the application to improve
performance?

– Is it possible to obtain additional resources?

After answering these questions, you should have a better understanding
about the problem that you face right now. Your best bet is to analyze your
application and try to find the bottlenecks that cause your performance
problems. Tools such as the Profiler that is part of Rational Application
Developer can help you with this. For further information about profiling tools,
refer to WebSphere Application Server V6 Scalability and Performance
Handbook, SG24-6392.

3.6 Planning for backup and recovery

In general, computer hardware and software is very reliable, but sometimes
failures can occur and damage a machine, network device, software product,
configuration, or more importantly, business data. It is important to plan for such
occurrences. There are a number of stages to creating a backup and recovery
plan, which the following sections discuss.

3.6.1 Risk analysis

The first step to creating a backup and recovery plan is to complete a
comprehensive risk analysis. The goal is to discover which areas are the most
critical and which hold the greatest risk. It is also important to identify which

36 WebSphere Application Server V6.1: Planning and Design Update

business processes are the most important and how they will be affected by
application outages.

3.6.2 Recovery strategy

When the critical areas have been identified, you need to develop a strategy for
recovering those areas. There are numerous backup and recovery strategies
available which vary in recovery time and cost. In most cases, the cost increases
as the recovery time decreases. The key to developing the proper strategy is to
find the proper balance between recovery time and cost. The business impact is
the determining factor in finding the proper balance. Business-critical processes
need quick recovery time to minimize business losses. Therefore, the recovery
costs are greater.

3.6.3 Backup plan

With your recovery strategy, a backup plan needs to be created to handle the
daily backup operations. There are numerous backup methods varying in cost
and effectiveness. A hot backup site provides real-time recovery by automatically
switching to a whole new environment quickly and efficiently. Because of the
cost, only the largest sites use hot backup. For less critical applications, warm
and cold backup sites can be used. These are similar to hot backup sites, but are
less costly and effective. More commonly, sites use a combination of backup
sites, load-balancing, and high availability.

More common backup strategies combine replication, shadowing, and remote
backup, as well as the more mundane methods such as tape backup or
Redundant Array of Independent Disks (RAID) technologies. All of which are just
as viable as a hot backup site but require longer restore times.

Any physical backup must be stored at a remote location in order to be able to
recover from a disaster, such as a fire. New technologies make remote electronic
vaulting a viable alternative to physical backups and many third-party vendors
offer this service.

3.6.4 Recovery plan

If a disaster does occur, a plan for restoring operations as efficiently and quickly
as possible must be in place. The recovery plan must be coordinated with the
backup plan to ensure that the recovery happens smoothly. The appropriate
response must be readily available so that no matter what situation occurs, the
site will be operational at the agreed upon disaster recovery time. A common
practice is to rate outages from minor to critical and have a corresponding
response. For example, a hard disk failure could be rated as a Class 2 outage

 Chapter 3. Planning for infrastructure 37

and have a Class 2 response where the disk gets replaced and replicated with a
24-hour recovery time. This makes recovering easier because resources are not
wasted and disaster recovery time is optimized.

Another key point of the recovery plan must address what happens after the
recovery. Minor disasters, such as disk failure, have little impact afterward but
critical disasters, such as the loss of the site, have a significant impact. For
example, if a hot backup site is used, the recovery plan must account for the
return to normal operation. New hardware or possibly a whole new data center
might need to be created. Post-disaster activities need to be completed quickly to
minimize costs.

3.6.5 Update and test process

You must revise the backup and recovery plan on a regular basis to ensure that
the recovery plan meets your current needs. You also need to test the plan on a
regular basis to ensure that the technologies are functional and that the
personnel involved know their responsibilities. In addition to the regular
scheduled reviews, review the backup and recovery plan when adding new
hardware, technologies, or personnel.

38 WebSphere Application Server V6.1: Planning and Design Update

Chapter 4. WebSphere Application
Server concepts

Before you can plan a WebSphere Application Server installation and select a
topology, you need to understand some basic structural concepts about the
elements that make up a WebSphere Application Server runtime environment.

This chapter contains the following sections:

� WebSphere Application Server concepts
� Distributed server environments
� Application server clusters
� Runtime processes
� Using Web servers

4

© Copyright IBM Corp. 2006. All rights reserved. 39

4.1 WebSphere Application Server concepts

WebSphere Application Server is organized based on the concept of cells,
nodes, and servers. While all of these elements are present in each
configuration, cells and nodes do not play an important role until you take
advantage of the features provided with Network Deployment.

The application server is the primary runtime component in all configurations
and is where an application executes. All WebSphere Application Server
configurations can have one or more application servers. In the Express and
Base configurations, each application server functions as a separate entity.
There is no workload distribution or central administration among application
servers. With Network Deployment, you can build a distributed server
environment consisting of multiple application servers maintained from a central
administration point. In a distributed server environment, you can cluster
application servers for workload distribution.

Runtime environments are built by creating profiles. Each profile contains files
specific to that runtime such as logs and configuration files. Profiles can be
created during or after installation, or both. After creating the profiles, use the
WebSphere administrative tools for further configuration and administration.
Each profile is stored in a unique directory path selected at profile creation time.
The default is for the profiles to be stored in a subdirectory of the installation
directory, but they can be located anywhere. All profiles share the product
binaries.

4.1.1 Stand-alone application servers

All packages support a single stand-alone server environment. With a
stand-alone configuration, each application server acts as a unique entity. An
application server runs one or more J2EE applications and provides the services
required to run those applications. Each stand-alone server is created by
defining an application server profile.

Multiple stand-alone application servers can exist on a machine, either through
independent installations of the WebSphere Application Server code or by
creating multiple application server profiles within one installation. However,
WebSphere Application Server does not provide centralized management or
administration for multiple stand-alone application servers. Stand-alone
application servers do not provide workload management or failover capabilities.

40 WebSphere Application Server V6.1: Planning and Design

4.1.2 Distributed application servers

With Network Deployment, you can build a distributed server configuration to
enable central administration, workload management, and failover. In this
environment, you integrate one or more application servers into a cell that is
managed by a deployment manager. The application servers can reside on the
same machine as the deployment manager or on multiple separate machines.
Administration and management is handled centrally from the administration
interfaces by the deployment manager.

With a distributed server configuration, you can create multiple application
servers to run unique sets of applications and then manage those applications
from a central location. However, more importantly, you can cluster application
servers to allow for workload management and failover capabilities. Applications
that you install in the cluster are replicated across the application servers. When
one server fails, another server in the cluster continues processing. Workload is
distributed among Web and EJB containers in a cluster using a weighted
round-robin scheme.

A distributed server configuration can be created in one of three ways:

� Create a deployment manager profile to define the deployment manager.
Then, create one or more custom node profiles. The nodes defined by each
custom profile can be federated into the cell managed by the deployment
manager during profile creation or later manually. The custom nodes can
exist on the deployment manager machine or on multiple separate machines.
Application servers can then be created using the administrative tools, for
example, the administrative console.

The method is useful when you will be creating multiple nodes, multiple
application servers on a node, or clusters. The process for creating and
federating each node is fairly quick and streamlined. Because servers created
using the application server profile are always named “server1”, this method
gives you more flexibility in server names.

� Create a deployment manager profile to define the deployment manager.
Then, create one or more application server profiles and federate these
profiles into the cell managed by the deployment manager. This process adds
both nodes and application servers into the cell. The application server
profiles can exist on the deployment manager machine or on multiple
separate machines.

This method is useful in development or small configurations. Creating an
application server profile gives you the option of having the sample
applications installed on the server. When you federate the server and node
to the cell, any installed applications can be carried into the cell with the
server.

 Chapter 4. WebSphere Application Server concepts 41

� Create a cell profile. This actually creates two profiles, a deployment
manager profile and a federated application server profile. Both reside on the
same machine.

This is useful in a development or test environment. Creating a single profile
gives you a simple distributed system on a single server.

4.1.3 Nodes, node groups, and node agents

A node is a grouping of application servers for configuration and operational
management on one machine. Nodes are generally associated with a physical
machine. It is possible to have multiple nodes on a single machine but nodes
cannot span machines. In a stand-alone application server configuration, there is
only one node. With Network Deployment, you can configure a distributed server
environment consisting of multiple nodes that are managed from one central
administration server.

In distributed server configurations, each node has a node agent that works with
the deployment manager to manage administration processes. The node agent
is created under the covers when you add (federate) a stand-alone node to a
cell.

A node group is a grouping of nodes within a cell that have similar capabilities. A
node group validates that the node is capable of performing certain functions
before allowing those functions. For example, a cluster cannot contain both z/OS
nodes and nodes that are not z/OS. In this case, you can define multiple node
groups, one for the z/OS nodes and one for nodes other than z/OS. A
DefaultNodeGroup is automatically created based on the deployment manager
platform. This node group contains the deployment manager and any new nodes
with the same platform type. A node can be a member of more than one node
group.

On the z/OS platform, a node must be a member of a sysplex node group. Nodes
in the same sysplex must be in the same sysplex node group. A node can be in
one sysplex node group only.

4.1.4 Cells

A cell is a grouping of nodes into a single administrative domain. In the Base and
Express configurations, a cell contains one node and that node contains one
server.

In a distributed server configuration, a cell can consist of multiple nodes, which
are all administered from a single point (the deployment manager). The
configuration and application files for all nodes in the cell are centralized into a

42 WebSphere Application Server V6.1: Planning and Design

master configuration repository. This centralized repository is managed by the
deployment manager and synchronized with local copies that are held on each of
the nodes.

It is possible to have a cell made up of nodes on mixed platforms. This is referred
to as a heterogeneous cell.

4.1.5 Application server clusters

With Network Deployment, you can use application server clustering to enhance
workload distribution. A cluster is a logical collection of application server
processes that provides workload balancing and high availability.

Application servers that belong to a cluster are members of that cluster and must
all have identical application components deployed on them. Other than the
applications configured to run on them, cluster members do not have to share
any other configuration data.

For example, one cluster member might be running on a large multiprocessor
server while another member of that same cluster might be running on a small
mobile computer. The server configuration settings for each of these two cluster
members is very different, except in the area of the application components that
are assigned to them. In that area of configuration, they are identical.

The members of a cluster can be located on a single node (vertical cluster),
across multiple nodes (horizontal cluster), or on a combination of the two. A
cluster can span machine or LPAR boundaries and can span across operating
systems with one exception. A cluster cannot span z/OS and non-z/OS
platforms.

When you install, update, or delete an application, the updates are automatically
distributed to all members in the cluster. A rollout update option enables you to
update and restart the application servers on each node, one node at a time,
providing continuous availability of the application.

4.1.6 Web servers

Although Web servers are an independent product, they can be defined to the
WebSphere Application Server administration process. The primary purpose for
this is to enable the administrator to associate applications with one or more
defined Web servers in order to generate the proper routing information for Web
server plug-ins. In addition, Web server management capabilities are available in
some circumstances.

 Chapter 4. WebSphere Application Server concepts 43

As with application servers, Web servers are associated with nodes. These
nodes can be managed or unmanaged. Managed nodes have a node agent on
the Web server machine that allows the deployment manager to administer the
Web server. You can start or stop the Web server from the deployment manager,
generate the Web server plug-in for the node, and automatically push it to the
Web server. You normally have managed Web server nodes behind the firewall
with the WebSphere Application Server installations.

Unmanaged nodes, as the name implies, are not managed by WebSphere. You
normally find these outside the firewall or in the demilitarized zone. You must
manually copy or FTP the Web server plug-in configuration file to the Web server
on an unmanaged node. In a z/OS environment, you must use unmanaged
nodes if the Web server is a non-z/OS product.

Web server plug-ins
A Web server can serve requests that do not require any dynamic content, for
example, HTML pages. However, when a request requires dynamic content,
such as JSP™ or servlet processing, it must be forwarded to WebSphere
Application Server for handling.

To forward a request, you use a Web server plug-in that is included with the
WebSphere Application Server packages for installation on a Web server. You
copy an Extensible Markup Language (XML) configuration file, configured on the
WebSphere Application Server, to the Web server plug-in directory. The plug-in
uses the configuration file to determine whether a request should be handled by
the Web server or an application server. When WebSphere Application Server
receives a request for an application server, it forwards the request to the
appropriate Web container in the application server. The plug-in can use HTTP
or HTTPS to transmit the request.

Note: As a special case, if the unmanaged Web server is IBM HTTP Server,
you can administer the Web server from the WebSphere administrative
console. Then, you can automatically push the plug-in configuration file to the
Web server with the deployment manager using HTTP commands to the IBM
HTTP Server administration process. This configuration does not require a
node agent.

IBM HTTP Server is shipped with all WebSphere Application Server
packages.

44 WebSphere Application Server V6.1: Planning and Design

4.2 Distributed server environments

Network Deployment enables you to build distributed server environments
consisting of multiple application servers maintained from a central
administrative point. Application servers can be clustered for workload
management and high availability. This section provides information about how
you can structure distributed server environments.

4.2.1 Single cell configurations

A cell in a distributed server environment is a network of multiple nodes. Each
node can contain one or more application servers. The cell contains one
deployment manager that manages the nodes and servers in the cell. A node
agent in the node is the contact point for the deployment manager during cell
administration. The deployment manager can reside on the same machine or
MVS™ image as the nodes or on a separate machine.

Figure 4-1 illustrates the cell concept, showing all processes on one system.

Figure 4-1 Cell topology option: Single system

Cell
Server A

Deployment
Manager

Node

Application
Server

Application
Server

Node
Agent

Node

Application
Server

Application
Server

Node
Agent

 Chapter 4. WebSphere Application Server concepts 45

Alternately, the deployment manager can be installed on one machine (Server A)
and each node on a different machine (Server B and Server C), as shown in
Figure 4-2. The servers do not have to be the same platform. For example,
Server A can be a Microsoft Windows machine while Server B and Server C can
be AIX 5L systems. This would require a high-performing system.

Figure 4-2 One cell multiple systems

By the same logic, you can install other combinations, such as the deployment
manager on a single server, with multiple nodes on another. Or, the deployment
manager and a node on one server, with additional nodes installed on separate
servers.

The point is that a distributed server environment gives you the flexibility to install
the WebSphere components on servers and in locations that suit your
requirements.

Cell

Server B

Deployment
Manager

Server A

Node

Application
Server

Application
Server

Node
Agent

Server C

Node

Application
Server

Application
Server

Node
Agent

46 WebSphere Application Server V6.1: Planning and Design

4.2.2 Multiple cells

Several nodes can be created on a machine or MVS image. Those nodes can
belong to the same cell or spread across multiple cells. Additionally, these cells
can reside entirely within one server or be sprayed among two or more servers,
as shown in Figure 4-3.

Figure 4-3 Multiple independent cells sharing a physical machine or LPAR

4.2.3 Mixed node versions in a cell

WebSphere Application Server V6.1, V6, and V5 nodes can be part of the same
cell. This requires that the deployment manager be at V6.1. You can upgrade a
portion of the nodes in a cell, while leaving others at the earlier release level.
Therefore, you might be managing servers that are running multiple release
levels in the same cell.

Node

Application
Server

Application
Server

Node
Agent

Node

Application
Server

Application
Server

Node
Agent

Server A

Cell 1

Node

Application
Server

Application
Server

Node
Agent

Node

Application
Server

Application
Server

Node
Agent

Cell 2

Server B

Deployment
Manager

Deployment
Manager

 Chapter 4. WebSphere Application Server concepts 47

Figure 4-4 shows a configuration where mixed node versions reside within a cell.

Figure 4-4 Mixed V6.1 and V5 nodes

4.3 Application server clusters

A cluster is a grouping of application servers that run a set of applications
managed in such way that they behave as a single application server (parallel
processing). A cell can have zero or more clusters and all cluster members that
are part of the cluster must belong to the same cell. Network Deployment is
required for clustering.

All cluster members can reside on the same machine or MVS image. This
topology is known as vertical scaling.

Cluster members can also be spread across different machines or MVS images
and can span multiple operating system types, with one exception. A cluster
cannot span from distributed to z/OS. In this topology, each machine has a node
in the cell holding a cluster member. This topology is known as horizontal
scaling.

Node V6.1

Application
Server
V6.1

Application
Server
V6.1

Node
Agent V6.1

. . .

Node V5.x

Application
Server
V5.x

Application
Server
V5.x

Node
Agent V5.x

Deployment
Manager V6.1

Cell

Config
Files

J2EE
Apps

(EARs)

Config
Files
V6.1

J2EE
1.4

Apps

Config
Files
V5.x

J2EE
1.3

Apps

48 WebSphere Application Server V6.1: Planning and Design

The combination of vertical and horizontal scaling is possible.

Figure 4-5 shows a cluster that has four cluster members. Those cluster
members belong to two different nodes (but they still serve the same J2EE
application). On each node, there is also an application server that is in the same
cell but is not part of the cluster (not a cluster member). Therefore, not all the
application servers in the node have to be part of the cluster.

Figure 4-5 Cluster and cluster member

Use of a HTTP traffic-handling device such as IBM HTTP Server is highly
recommended. This is a simple and efficient way to front-end the WebSphere
HTTP transport. Weighted averages can be used to select the most efficient
server in the cluster. The use of a Web server plug-in to manage the workload
across the cluster will ensure that the loss of an application server will not disrupt
the flow of requests. In the case of horizontal scaling where each node resides
on a separate server, the loss of one server will not disrupt the flow of requests.

The loss of the deployment manager would have minimal impact on operations
and will primarily affect configuration activities.

Node

Application
Server

Cluster
Member

Cluster
Member

Node
Agent

Node

Application
Server

Cluster
Member

Deployment
Manager

Cell

Cluster
Member

Node
Agent

Cluster

 Chapter 4. WebSphere Application Server concepts 49

Mixed node versions in a cluster
The topology shown in Figure 4-6 contains mixed version nodes within a cluster.
The deployment manager has to be at V6.1.

Figure 4-6 Mixed version cluster nodes in a cell

You can upgrade a portion of the nodes in a cell, while leaving others at a
previous release level. This is not just a migration scenario, but is supported for
stable cells and clusters.

Node V6.1

Application
Server
V6.1

Cluster
Member

V6.1

Cluster
Member

V6.1

Node
Agent V6.1

Node V5.x

Application
Server
V5.x

Cluster
Member

V5.x

Deployment
Manager V6.1

Cell

Cluster
Member

V5.x

Node
Agent V5.x

Cluster

50 WebSphere Application Server V6.1: Planning and Design

4.4 Runtime processes

In this section, we discuss how WebSphere processes execute in runtime. The
executable processes include deployment managers, node agents, and the
application server. Note that cells, nodes, and clusters are administrative
concepts and not executable components.

4.4.1 Distributed platforms

On distributed platforms, WebSphere Application Server is built using a single
process model where the entire server runs on a single Java virtual machine
(JVM™) process.

Each process appears as a Java process. For example, when you start a
deployment manager on Windows, a java.exe process will be visible in the
Windows Task Manager. Starting a node agent starts a second java.exe process,
and each application server started will be seen as a java.exe process
(Figure 4-7).

Figure 4-7 WebSphere Application Server processes on a Windows system

To find the processes on an AIX 5L or Linux system, use the following command:

ps -ef | grep java

 Chapter 4. WebSphere Application Server concepts 51

4.4.2 WebSphere Application Server for z/OS

WebSphere Application Server for z/OS contains a unique process model that
enables the product to manage many z/OS unique services and provides Quality
of Service (QoS). On z/OS, an application server is built using a federation of
JVMs, each in a different process that together represents a single server
instance. A server is composed of address spaces that actually run the code.

Figure 4-8 illustrates how WebSphere processes are structured in a z/OS
environment.

Figure 4-8 One cell, deployment manager, node on same LPAR, node separated

To understand how WebSphere on z/OS is unique from the distributed platforms,
we briefly discuss some of the z/OS-specific concepts.

Address space
An address space is the area of successive virtual addresses that z/OS assigns
to a user (or separately running program) for executing instructions and storing
data. It is equivalent to a process on distributed platforms.

Control region
The control region (CR) is basically the only public interface to this collection of
JVMs that, all together, represent a single application server. All requests go
through the CR and the CR forwards them to one of the potentially many servant

MVS ITSO SYS B

Daemon

CR

Node Agent

CR

DMGR

CR A

Daemon

CR

Node Agent

CR

AppServer

CR SR

AppServer

CR SR

MVS ITSO SYS A

52 WebSphere Application Server V6.1: Planning and Design

controllers for processing. In short, a CR is like a router or even an address
space that binds the TCP ports used by the server. A CR does have an
embedded JVM, which is the only JVM allowed to receive connections from the
outside world. Each server has only one CR that is started through a JCL start
procedure.

The requests arrive in the CR process, which then works with the z/OS workload
manager (WLM) to dispatch the work to the servant regions (Figure 4-9).

Figure 4-9 Inside the application server

Control region adjunct
The control region adjunct is a specialized servant that interfaces with new
service integration buses to provide messaging services.

Servant region
The servant region (SR) is where the requests will be actually processed and is
equivalent to the application server on a distributed environment platform that
has a J2EE Web container and EJB container. All the SRs are identical and have
the same J2EE level. The SR depends on the CR for many services such as
communication, security and transaction control.

When multiple SRs are created a copy of each application is found in each SR
and the CR will forward the requests to the appropriate SR.

zWLM
The z/OS workload manager manages resources to ensure that performance
goals are met. It is a part of z/OS. To differentiate this from the workload

JCL start
procedure

System console

Controller
region zWLM

Servant region #1

JVM

Application

Servant region #n

JVM

Application

JCL start
procedure

J2EE application server

 Chapter 4. WebSphere Application Server concepts 53

management of WebSphere, we refer to this as zWLM. As the CR receives
incoming requests, it works with zWLM to ensure that these requests are
classified according to organization-defined rules and dispatched appropriately
to servant regions that can handle the load. zWLM can alter factors to ensure
that performance goals are met, for example, by updating importance levels of
services classes and starting additional servant regions.

Daemon
A daemon server provides the location name service for external clients. There is
one daemon per cell per MVS image. If your cell consists of multiple MVS
images, a daemon will be created for each MVS image where your cell exists. If
there are two cells on the same MVS image, two daemons will be created. Each
daemon server consists of a single CR.

Daemon servers are started automatically when the first server for the cell on
that MVS image is started. If you kill a daemon, all the servers for that cell on that
MVS image come down.

4.5 Using Web servers

In WebSphere Application Server, a Web server can be administratively defined
to the cell. This allows the association of applications to one or more Web
servers and custom plug-in configuration files to be generated for each Web
server. This section discusses the options you have for managing Web servers in
a WebSphere Application Server environment.

When you define a Web server to WebSphere, it is associated with a node. The
node will either be a managed or an unmanaged node. When we refer to
managed Web servers, we are referring to a Web server defined on a managed
node. Similarly, an unmanaged Web server resides on an unmanaged node. In a
stand-alone server environment, you can define one unmanaged Web server. In
a distributed environment, you define multiple managed or unmanaged Web
servers.

54 WebSphere Application Server V6.1: Planning and Design

4.5.1 Managed Web servers

Defining a managed Web server gives you the ability to start and stop the Web
server from the WebSphere Application Server console and automatically push
the plug-in configuration file to the Web server. It requires a node agent to be
installed on the Web server machine. An exception to this is the case where the
Web server is IBM HTTP Server (see 4.5.3, “IBM HTTP Server as an
unmanaged Web server (special case)” on page 57). Figure 4-10 illustrates a
Web server managed node.

Figure 4-10 Web server managed node

Node

Application
Server

Application
Server

Node
Agent

Node

Application
Server

Application
Server

Node
Agent

Cell

Server A

Manages

Web
Server

Deployment
Manager

Server B

Start/Stop

Manage

Plug-in
Module

Plug-in
Config

XML File

Node
Agent

 Chapter 4. WebSphere Application Server concepts 55

4.5.2 Unmanaged Web servers

Unmanaged Web servers reside on a system without a node agent. This is the
only option in a stand-alone server environment and is a common option for Web
servers installed outside a firewall. The use of this topology requires that each
time the plug-in configuration file is regenerated, it is copied from the machine
where WebSphere Application Server is installed to the machine where the Web
server is running. Figure 4-11 illustrates a Web server unmanaged node.

Figure 4-11 Web server unmanaged node

Cell

 Node

Application
Server

Application
Server

Node
Agent

Node

Application
Server

Application
Server

Node
Agent

Server A

Web
Server

Server B

Plug-in
Module

Plug-in
Config

XML File

Deployment
Manager

Manual copy or shared file

56 WebSphere Application Server V6.1: Planning and Design

4.5.3 IBM HTTP Server as an unmanaged Web server (special case)

If the Web server is IBM HTTP Server, it can be installed on a remote machine
without installing a node agent. You can administer IBM HTTP Server through
the deployment manager using the IBM HTTP Server Admin Process for tasks
such as starting, stopping, or automatically pushing the plug-in configuration file.
Figure 4-12 illustrates an IBM HTTP Server unmanaged node.

Figure 4-12 IBM HTTP Server unmanaged node

Cell

Node

. . .Application
Server

Application
Server

Node
Agent

Node

. . .Application
Server

Application
Server

Node
Agent

Server A HTTP
commands to
manage IHS

Web
Server

Server B

Start/Stop

Manage

Plug-in
Module

Plug-in
Config

XML File

IHS Admin
Process

Deployment
Manager

 Chapter 4. WebSphere Application Server concepts 57

58 WebSphere Application Server V6.1: Planning and Design

Chapter 5. Topologies

Topology refers to what devices and computers are going to be used to set up a
Web application—the physical layout of each one and the relationship between
them. When selecting a topology, there are a number of considerations that
impact the decision of which one to use.

This chapter describes some common topologies that are used in WebSphere
Application Server implementations. It addresses topologies that are relatively
simple to those that are more complex by describing the relationship between
WebSphere Application Server components and their role in the solution. This
chapter contains the following sections:

� Topology selection criteria
� Terminology
� Stand-alone server topology
� Reverse proxy topology
� Vertical scaling topology
� Horizontal scaling topology
� Horizontal scaling with IP sprayer topology
� Topology with redundancy of several components
� Heterogeneous cell

5

© Copyright IBM Corp. 2006. All rights reserved. 59

5.1 Topology selection criteria

There are many ways to architect a system to provide the results you need. This
section provides a quick overview of the primary considerations in selecting a
topology, including:

� Security
� Performance and throughput
� Availability
� Maintainability

5.1.1 Security

Security is one of the most critical considerations when designing a new system.
A secure system requires sophisticated controls in place to protect resources
from threats. Security is a vast topic but can be thought of in two basic
categories: physical security and logical security. Physical security means
protection against physical actions such as the room where the machines are
installed. Logical security is connected to a specific IT solution, architecture, and
application design.

When selecting a topology, be aware that security usually requires a physical
separation of the Web server from the application server processes, typically
across one or more firewalls. A common configuration is the use of two firewalls
to create a DMZ between them. Information in the DMZ has some protection that
is based on protocol and port filtering. A Web server intercepts the requests and
forwards them to the corresponding application servers through the next firewall.
The sensitive portions of the business logic and data resides behind the second
firewall, which filters based on protocols, ports, IP addresses, and domains.

Before selecting a topology, review the information in Chapter 12, “Planning for
security” on page 253.

For more information regarding security fundamentals, refer to WebSphere
Security Fundamentals, REDP-3944, available at:

http://www.redbooks.ibm.com/abstracts/redp3944.html

5.1.2 Performance and throughput

Performance involves minimizing the response time for a given transaction.
Proper hardware selection, sizing, and application design and test are critical in
achieving a well-performing system.

60 WebSphere Application Server V6.1: Planning and Design

http://www.redbooks.ibm.com/abstracts/redp3944.html

Throughput is related to performance but in the sense of the volume being
served. This volume can be measured in the number of bytes that are transferred
or the number of transactions that are completed in a given period of time.

WebSphere Application Server Network Deployment enables you to cluster
application servers so that you have multiple servers running the same
application available to handle incoming requests. Clustering provides
improvements for both performance (response time) and throughput (how
many).

Scaling
Scaling represents the ability to create more application server processes to
serve the user requests. Multiple machines can be configured to add processing
power, improve security, maximize availability, and balance workloads. There
are two options for scaling: vertical or horizontal. Which you use depends on
where and how the scaling is taking place:

� Vertical scaling

Involves creating additional application server processes on a single physical
machine or MVS image, providing application server failover as well as load
balancing across multiple application servers. This topology does not provide
a very efficient fault tolerance because a failure of the operational system or
the hardware on the physical machine itself might cause problems to all
servers in the cluster.

� Horizontal scaling

Involves creating application servers on multiple machines to take advantage
of the additional processing capacity available on each machine. This also
provides hardware failover support.

The components that provide functions for configuring scalability include:

� WebSphere Application Server cluster support

The use of application server clusters can improve the performance of a
server, simplify its administration, and enable the use of workload
management.

� WebSphere workload management

The workload management capabilities of WebSphere can be used to
distribute requests among Web containers and EJB containers in clustered
application servers. This enables both load balancing and failover, improving
the reliability and scalability of WebSphere applications. On the z/OS
platform, the workload management function is tightly integrated with the
operating system to take advantage of the superior workload management
features of z/OS.

 Chapter 5. Topologies 61

� IP sprayer

The IP sprayer transparently redirects all incoming HTTP requests from Web
clients to a group of Web servers. Although the clients behave as though they
are communicating directly with a one specific Web server, the IP sprayer is
actually intercepting all those requests and distributing them among all the
available Web servers in the group. IP sprayers (such as the Load Balancer
Edge component or Cisco Local Director) can provide scalability, load
balancing, and failover for Web servers.

5.1.3 Availability

To avoid a single point of failure and to maximize system availability, the
topology should have some degree of process redundancy. High-availability
topologies typically involve horizontal scaling across multiple machines. Vertical
scaling can improve availability by creating multiple processes, but the machine
itself becomes a point of failure.

In addition, an IP sprayer can direct Web client requests to the next available
Web server, bypassing any server that is offline. The IP sprayer server can be
configured with a cascade backup (standby) that comes online in the event that
the primary server fails. This configuration eliminates single point of failure on the
IP sprayer.

Improved availability is one of the key benefits of scaling to multiple machines.
Applications that are hosted on multiple machines generally have less down time
and are able to service client requests more consistently.

This section discusses the commonly used techniques that you can combine to
take advantage of the best features of each topology and create a highly
available system.

Hardware and process redundancy
Eliminate the single points of failure in a system by including hardware and
process redundancy using the following techniques:

� Use horizontal scaling to distribute application servers (and applications)
across multiple physical machines or MVS images. If a hardware or process
failure occurs, clustered application servers are available to handle client
requests. Additional Web servers and IP sprayers can also be included in
horizontal scaling to provide higher availability.

� Use backup servers for databases, Web servers, IP sprayers, and other
important resources, ensuring that they remain available if a hardware or
process failure occurs.

62 WebSphere Application Server V6.1: Planning and Design

� Keep the servers (physical machines) within the cluster sprayed in different
locations to prevent site-related problems.

Process isolation
Provide process isolation so that a failing servers does not impact the remaining
healthy servers. The following configurations provide some degree of process
isolation:

� Deploy the Web server on a different machine from the application servers.
This configuration ensures that problems with the application servers do not
affect the Web server and vice versa.

� Use horizontal scaling, placing application servers on different machines.

Load balancing
Use load balancing techniques to make sure that individual servers are not
overwhelmed with client requests while other servers are idle. These techniques
include:

� Use an IP sprayer to distribute requests across the Web servers in the
configuration.

� Direct requests from high-traffic URLs to more powerful servers.

The Edge components included with the Network Deployment package provides
these features.

Failover support
The site must be able to continue processing client requests, even if one or more
servers are offline. Some ways to provide failover support include:

� Use horizontal scaling with workload management to take advantage of its
failover support.

� Use an IP sprayer to distribute requests across the Web servers in the
configuration.

� Use HTTP transport to distribute client requests among application servers.

Hardware-based high availability
The WebSphere Application Server high availability framework provides
integration into an environment that might be using other high availability
frameworks, such as HACMP™, to manage resources that do not use
WebSphere.

 Chapter 5. Topologies 63

5.1.4 Maintainability

The topology affects the ease with which system hardware and software can be
updated. For instance, using horizontal scaling can make a system easier to
maintain because individual machines can be taken offline without interrupting
other machines running the application, thus providing business continuity.
When deciding how much vertical and horizontal scaling to use in a topology,
consider needs for hardware upgrades (for example, adding or upgrading
processors and memory).

5.1.5 Topology selection summary

The following tables list the requirements for topology selection and the possible
solutions.

Table 5-1 Topology selection based on availability requirements

Table 5-2 Topology selection based on performance requirements

Requirement = availability Solution/topology

Web server � Load Balancer (with backup) or a high
availability solution, based on
additional requirements

Application server � Horizontal scaling (process and
hardware redundancy)

� Vertical scaling (process redundancy)
� A combination of both

Database server � HA software solution

Requirement =
performance/throughput

Solution/topology

Web server � Multiple Web servers in conjunction
with Load Balancer

� Caching Proxy
� Dynamic caching with Adaptive Fast

Path Architecture (AFPA) or ESI
external caching

Application server � Clustering (in most cases horizontal)
� Dynamic caching
� Serving static content from Web

server to offload application server

Database server � Separate database server

64 WebSphere Application Server V6.1: Planning and Design

Table 5-3 Topology selection based on security requirements

Table 5-4 Topology selection based on maintainability requirements

5.2 Terminology

Before examining the topologies, take a minute to review the following
information. These are elements that you will see in the diagrams representing
each topology.

Web server and plug-in
Most topologies feature a stand-alone Web server that resides in a DMZ
between two firewalls. Web clients send requests to the Web server, which
serves static content such as HTTP pages. Requests for content that requires
processing by servlets, JSPs, enterprise beans, and back-end applications are
forwarded (or re-directed) to the application server.

WebSphere Application Server V6.1 ships with IBM HTTP Server and supports
several other Web server products (see 1.4.2, “Web servers” on page 10). It also
ships a set of Web server plug-ins that perform the redirection to the application
server.

Application server
This refers to the application server in WebSphere that runs user applications.
The application server collaborates with the Web server to return a dynamic,
customized response to a client request. The application server is capable of
running both presentation and business logic but generally does not serve HTTP
requests. Each application server node has its own HTTP/HTTPS listener, and it

Requirement = security Solution/topology

Web server � Separate the Web server into a DMZ,
either on LPAR or separate system.

Application server � Separate components into a DMZ,
implement security (for example,
LDAP).

Requirement = maintainability Solution/topology

Web server � Single machine environment is the
easiest option to maintain. It can be
combined with horizontal scaling.Application server

Database server

 Chapter 5. Topologies 65

is possible to point a browser directly to the application server's HTTP/HTTPS
port; however, we do not recommend this.

Domain and protocol firewalls
A firewall is a hardware and software system that manages the flow of
information between the Internet and an organization's private network. Firewalls
can prevent unauthorized Internet users from accessing private networks that
are connected to the Internet, especially intranets, and can block some virus
attacks, as long as those viruses are coming from the Internet. Firewalls also can
prevent denial of service attacks.

A firewall can separate two or more parts of a local network to control data
exchange between departments. Components of firewalls include filters or
screens, each of which controls transmission of certain classes of traffic.
Firewalls provide the first line of defense for protecting private information, but
comprehensive security systems combine firewalls with encryption and other
complementary services, such as content filtering and intrusion detection.

Firewalls control access from a less trusted network to a more trusted network.
Traditional implementations of firewall services include:

� Screening routers (the protocol firewall)

Prevents unauthorized access from the Internet to the DMZ. The role of this
node is to provide the Internet traffic access only on certain ports and to block
other IP ports.

� Application gateways (the domain firewall)

Prevents unauthorized access from the DMZ to an internal network. The role
of firewall allows the network traffic originating from the DMZ and not from the
Internet. It also provides some filtering from the intranet to the DMZ. A pair of
firewall nodes provides increasing levels of protection at the expense of
increasing computing resource requirements. The protocol firewall is typically
implemented as an IP router.

Directory and security services
Directory and security services supply information about the location,
capabilities, and attributes (including user ID and password pairs and
certificates) of resources and users known to this Web application system. This
node can supply information for various security services (authentication and
authorization) and can also perform the actual security processing, for example,
to verify certificates. The authentication in most current designs validates the
access to the Web application server part of the Web server, but this node also
authenticates for access to the database server.

66 WebSphere Application Server V6.1: Planning and Design

An example of a product that provides directory services is IBM Tivoli Directory
Server, included in the Network Deployment package. For a list of directory
servers supported by WebSphere Application Server, see 1.4.4, “Directory
servers” on page 11.

Existing applications and data
Existing applications and data represent the core business logic and data for the
organization. The application server accesses this data to build responses for the
user. For example, this can represent an enterprise information system (EIS),
such as CICS®, a Web service, or a business database.

Load balancer
A load balancer, also referred to as an IP sprayer, provides horizontal scalability
by dispatching HTTP requests among several identically configured Web
servers. In these topologies, the load balancer is implemented using the Load
Balancer Edge component provided with the Network Deployment package.

5.3 Stand-alone server topology

A stand-alone server topology refers to the installation of WebSphere Application
Server on one single (physical) machine or logical partition (LPAR) with one
application server. This topology does not provide failover or workload
management capabilities. Although this topology is possible with all packages,
Base and Express installations only support stand-alone servers. The focus of
this topology is to illustrate using a Web server and Web server plug-in in the
DMZ to direct requests to the application server.

Note: On the z/OS platform, the function that provides intelligent load
balancing is the Sysplex Distributor.

 Chapter 5. Topologies 67

Although you can direct HTTP requests directly to the application server, you
would typically have a Web server as a front-end to receive requests. The Web
server is located in a DMZ to provide security, performance, throughput,
availability, and maintainability, while the application server containing business
logic is located securely in the internal network. Figure 5-1 illustrates this
topology.

Figure 5-1 Web server separation

WebSphere Application Server provides a set of Web server plug-ins for
supported Web servers. The plug-in uses a configuration file that contains
settings describing how to pass requests to the application server. The
configuration file is generated on the application server and must be regenerated
and propagated to the Web server machine each time a change on the
application server would affect application request routing (for example, a new
application is installed). This move must be done manually.

I
N
T
E
R
N
E
T

Outside World DMZ Internal Network

Pr
ot

oc
ol

 F
ire

w
al

l

User

Existing
Applications

and Data

Directory and
Security
Services

HTTP/HTTPS

Web
Server

Server A

D
om

ai
n

Fi
re

w
al

l

Existing
Applications

and Data

Existing
applications

and data

Application
Server

Server B

Plug-in

LDAP

Application
Data

Note: In a stand-alone topology, only unmanaged Web servers are possible.
This means the plug-in must be manually pushed out to the Web server
system. The exception to this is if you are using IBM HTTP Server. The
application server can automatically propagate the plug-in configuration file to
IBM HTTP Server, even though it is an unmanaged node.

68 WebSphere Application Server V6.1: Planning and Design

Advantages
Some reasons to separate the Web server from the application server are:

� Performance

– Size and configure servers appropriately to each task.

By installing components (Web server and application server) on separate
machines or MVS images, each machine can be sized and configured to
optimize the performance of each component.

– Remove resource contention.

By physically separating the Web server from the application server, a
high load of static requests will not affect the resources (processor,
memory, and disk) available to WebSphere, and therefore does not affect
its ability to service dynamic requests. The same applies when the Web
server serves dynamic content using other technologies, such as CGI.

� Maintainability

Web server separation provides component independence. Server
components can be reconfigured, or even replaced, without affecting the
installation of other components on separate machines.

� Security

Isolating the Web server in a DMZ protects the business applications and
data in the internal network by restricting access from the public Web site to
the servers and databases where this valuable information is stored.
Desirable topologies should not have servers that directly access databases
in the DMZ.

Disadvantages
Consider the following disadvantages when you separate the Web server from
the application server:

� Maintainability

The plug-in configuration file is generated on the WebSphere Application
Server machine and must be moved to the Web server machine each time a
configuration change occurs that affects requests for applications.

� Performance

Depending on the network capacity and remoteness of the Web server, the
network response time for communications between the application server
and Web server can limit the application response time. To prevent this, you
must ensure that you have an adequate network bandwidth between the Web
server and the application server.

 Chapter 5. Topologies 69

� Security considerations

This configuration uses encrypted transport. The plug-in allows encryption of
the link between the Web server and the application server using SSL. This
reduces the risk that attackers are able to obtain secure information by
“sniffing” packets sent between the Web server and application server. A
performance penalty usually accompanies such encryption. We recommend
configuring this connection so that the plug-in and Web container must
mutually authenticate each other using public-key infrastructure. This
prevents unauthorized access to the Web container.

Software requirements
The following list indicates the minimum software configuration that you need for
the topology shown in Figure 5-1 on page 68:

� Server A

– A supported Web server (see 1.4.2, “Web servers” on page 10).
– A Web server plug-in.

� Server B

WebSphere Application Server (Express, Base, or Network Deployment):

– Profile: Application server profile.
– Administrative configuration tasks: Create a Web server definition.

The Web server definition is used by the application server to generate the
plug-in configuration file. In a stand-alone topology, only one Web server
can be defined to the configuration and it must be unmanaged.

70 WebSphere Application Server V6.1: Planning and Design

5.4 Reverse proxy topology

Reverse proxy servers, such as the one in Edge components, are typically used
in DMZ configurations to provide additional security between the public Internet
and the Web servers (and application servers) servicing requests. The topology
shown in Figure 5-2 illustrates the use of a reverse proxy server.

Figure 5-2 Topology using a reverse proxy

In this example, a reverse proxy in the DMZ listens on the HTTP port (typically
port 80) for requests. It then forwards those requests to the Web server in the
internal network. Responses are returned through the reverse proxy to the Web
client, hiding the Web server.

Reverse proxy configurations support high-performance DMZ solutions that
require as few open ports in the firewall as possible. For the reverse proxy in the
DMZ to access the Web server behind the domain firewall, it requires as few as
one port open in the firewall (two ports if using SSL).

I
N
T
E
R
N
E
T

Outside World DMZ Internal Network

P
ro

to
co

l F
ire

w
al

l

User

HTTP/HTTPS

D
om

ai
n

Fi
re

w
al

l

Application
Server

Server B

Web
Server

Plug-in

Reverse
Proxy

Server A

Server A
Existing

Applications
and Data

Existing
applications

and data

Existing
Applications

and Data

Directory and
Security
Services

LDAP

Application
Data

Note: In WebSphere Application Server V6.0.2, you had to enhance the
deployment manager profile to manage the proxy server. For WebSphere
Application Server V6.1 and later versions, the proxy server is managed from
the administrative console without initial enhancement.

 Chapter 5. Topologies 71

Advantages
Advantages of using a reverse proxy server in a DMZ configuration include:

� This is a well-known and tested configuration. It is, therefore, easy to
implement.

� It is a reliable and fast-performing solution.

� It eliminates protocol switching by using the HTTP protocol for all forwarded
requests.

� It has no effect on the configuration and maintenance of a WebSphere
application.

Disadvantages
Disadvantages of using a reverse proxy server in a DMZ configuration include:

� It requires more hardware and software than similar topologies that do not
include a reverse proxy server, making it more complicated to configure and
maintain.

� It cannot be used in environments where security policies prohibit the same
port or protocol being used for inbound and outbound traffic across a firewall.

Software requirements
The following list indicates the minimum software configuration that you need for
the topology shown in Figure 5-2 on page 71:

� Server A

– WebSphere Edge components

� Server B

– A supported Web server
– A Web server plug-in
– WebSphere Application Server (Express, Base, or Network Deployment)

• Profile: Application server profile.
• Administrative configuration tasks: Create a managed Web server

definition.

72 WebSphere Application Server V6.1: Planning and Design

5.5 Vertical scaling topology

Vertical scaling (depicted in Figure 5-3) refers to configuring multiple application
servers on a single machine and creating a cluster of associated application
servers all hosting the same J2EE applications.

Figure 5-3 Vertical scaling

This vertical scaling example includes a cluster and three cluster members. The
Web server plug-in routes the requests according to the application server’s
availability. Some basic load balancing is performed at the Web server plug-in
level based on a weighted round-robin algorithm.

Vertical scaling can be combined with other topologies to boost performance,
throughput, and availability.

I
N
T
E
R
N
E
T

Outside World DMZ Internal Network

P
ro

to
co

l F
ire

w
al

l

User

HTTP/HTTPS

Server A

Web
Server

Server C

D
om

ai
n

Fi
re

w
al

l

Web Server
Plug-in

Deployment
Manager

Server B

Cluster

Application
Server 1

Application
Server 2

Application
Server 3

Existing
Applications

and Data

Directory and
Security
Services

Existing
Applications

and Data

Existing
applications

and data

LDAP

Application
Data

 Chapter 5. Topologies 73

Advantages
Vertical scaling has the following advantages:

� Efficient use of machine processing power

With vertical scaling, each application server runs in its own JVM, each using
a portion of the machine’s processor and memory. The number of application
servers can be increased or decreased to balance the resource utilization on
the machine.

� Load balancing

Vertical scaling topologies can make use of WebSphere workload
management.

� Process failover

Vertical scaling can provide failover support among application servers of a
cluster. If one application server process goes offline, the other one continues
processing client requests.

Disadvantages
Single machine vertical scaling topologies have the drawback of introducing the
host machine as a single point of failure in the system.

Software requirements
The following list indicates the minimum software configuration that you need for
the topology shown in Figure 5-3 on page 73:

� Server A

– A supported Web server
– A Web server plug-in

� Server B

– WebSphere Application Server Network Deployment
– Custom profile (federated to the cell)

� Server C

– WebSphere Application Server Network Deployment
– Deployment manager profile
– Administration:

• Create a cluster with three application servers on the Server B node.
• Define a Web server.

74 WebSphere Application Server V6.1: Planning and Design

5.6 Horizontal scaling topology
Horizontal scaling exists when cluster members are located across multiple
machines. The topology shown in Figure 5-4 lets a single application span
multiple machines, yet still presents as a single logical image. In this example,
the cluster spans Server B and Server C, each with one application server. The
deployment manager is installed on a fourth server, Server D.

Figure 5-4 Horizontal scaling with cluster

The Web server plug-in distributes requests to the cluster members on each
server performing load balancing and offering an initial failover. If any component
(hardware or software) on Server B fails, the application server on Server C can
serve requests and vice versa.

Server C

I
N
T
E
R
N
E
T

Outside World DMZ Internal Network

P
ro

to
co

l F
ire

w
al

l

User

HTTP/HTTPS

Web
Server

Server D

D
om

ai
n

Fi
re

w
al

l

Server A

Web Server
Plug-in

Application
Server 2

Server B

Cluster

Application
Server 1

Deployment
Manager

Existing
Applications

and Data

Directory and
Security
Services

LDAP

Existing
Applications

and Data

Existing
applications

and data

Application
Data

 Chapter 5. Topologies 75

Figure 5-5 shows a horizontal cluster on a z/OS platform.

Figure 5-5 Horizontal scaling with cluster on z/OS

The Load Balancer Network Dispatcher can be configured to create a cluster of
Web servers and add it to a cluster of application servers. See 5.7, “Horizontal
scaling with IP sprayer topology” on page 77 for more information.

Advantages
Horizontal scaling using clusters has the following advantages:

� Improved throughput

The use of clusters enables the handling of more client requests
simultaneously.

� Improved performance

Hosting cluster members on multiple machines enables each cluster member
to make use of the machine's processing resources, avoiding bottlenecks and
improving response time.

� Hardware failover

Hosting cluster members on multiple machines isolates hardware failures and
provides failover support. Client requests can be redirected to cluster
members on other machines if a machine goes offline.

MVS ITSO SYS B

Daemon

CR

Node Agent

CR

DMGR

CR A

Daemon

CR

Node Agent

CR

Horizontal Cluster
AppServer

CR SR

AppServer

CR SR

MVS ITSO SYS A

76 WebSphere Application Server V6.1: Planning and Design

� Application software failover

Hosting cluster members on multiple nodes isolates application software
failures and provides failover support if an application server stops running.
Client requests can be redirected to cluster members on other nodes.

Disadvantages
Horizontal scaling using clusters has the following disadvantages:

� Higher hardware costs.
� More complex maintenance.
� Application servers must be maintained on multiple machines.

Software requirements
The following list indicates the minimum software configuration that you need for
the topology shown in Figure 5-4 on page 75:

� Server A

– A supported Web server
– A Web server plug-in

� Server B

– WebSphere Application Server Network Deployment
– Custom profile (federated to the cell)

� Server C

– WebSphere Application Server Network Deployment
– Custom profile (federated to the cell)

� Server D

– WebSphere Application Server Network Deployment
– Deployment manager profile
– Administration:

• Create a cluster with two application servers, one on the Server B node
and one on the Server C node.

• Define a Web server.

5.7 Horizontal scaling with IP sprayer topology
Load balancing products can be used to distribute HTTP requests among Web
servers running on multiple physical machines. The Load Balancer Network
Dispatcher is an IP sprayer that performs intelligent load balancing among Web
servers based on server availability and workload.

 Chapter 5. Topologies 77

Figure 5-6 illustrates a horizontal scaling configuration that uses an IP sprayer to
redistribute requests between Web servers on multiple machines.

Figure 5-6 Simple IP sprayer horizontally scaled topology

The Load Balancer sprays requests to the Web servers. The Load Balancer is
configured in cascade. The primary Load Balancer communicates to its backup
through a heartbeat to perform failover, if needed, eliminating a single point of
failure.

Both Web servers perform load balancing and failover between the application
servers in the cluster through the Web server plug-in. If any component on
Server C or Server D fails, the other can continue to receive requests.

Advantages
Using an IP sprayer to distribute HTTP requests has the following advantages:

� Improved server performance by distributing incoming TCP/IP requests (in
this case, HTTP requests) among a group of Web servers.

� The use of multiple Web servers increases the number of connected users
that can be served at the same time.

I
N
T
E
R
N
E
T

Outside World DMZ Internal Network

P
ro

to
co

l F
ire

w
al

l

User

HTTP/HTTPS Load
Balancer

Server A

Server D

ClusterCascade
Load

Balancer
Backup

Load
Balancer

Server B

Web
Server

Web
ServerD

om
ai

n
Fi

re
w

al
l

Application
Server

Application
Server

Server C

Server E

Deployment
Manager

Existing
Applications

and Data

Directory and
Security
Services

Existing
Applications

and Data

Existing
applications

and data

LDAP

Application
Data

Plug-in

Plug-in

78 WebSphere Application Server V6.1: Planning and Design

� Elimination of the Web server as a single point of failure. Used in combination
with WebSphere workload management, it eliminates the application servers
as a single point of failure.

� Improved throughput and performance by maximizing processor and memory
use.

Disadvantages
Using an IP sprayer to distribute HTTP requests means that hardware and
software are required for the IP sprayer servers.

Software requirements
The following list indicates the minimum software configuration that you need for
the topology shown in Figure 5-6 on page 78:

� Server A and Server B

– WebSphere Edge components

� Server C and Server D

– A supported Web server
– A Web server plug-in
– WebSphere Application Server Network Deployment
– Custom profile (federated to the cell)

� Server E

– WebSphere Application Server Network Deployment
– Deployment manager profile
– Administration:

• Create a cluster with two application servers, one on the Server C node
and one on the Server D node.

• Define the Web servers.

5.8 Topology with redundancy of several components

Having as much redundancy of components as possible eliminates or minimizes
the single point of failure. Most components have some kind of redundancy, such
as a Load Balancer backup server in cascade with the primary Load Balancer
server, clustered Web servers, clustered application servers, and so forth.

 Chapter 5. Topologies 79

Figure 5-7 illustrates a topology with redundancy of several components.

Figure 5-7 Topology with redundancy of several components

The redundant components in this example include:

� Two Load Balancers

The one on Server A is the primary Load Balancer. It is synchronized, through
a heart beat, with a backup Load Balancer in cascade that is in standby on
another machine, Server B.

� Two Web servers

Both Web servers receive requests from the Load Balancer and share the
requests that come from the Internet. Each one is installed on a different
machine.

� An application server cluster

The cluster is spread across four server machines and implements vertical
and horizontal scaling. The cluster consists of eight cluster members, two on
each server.

Outside World DMZ Internal Network

Server A

Cluster

Server B

Server J

Deployment
Manager

Load
Balancer
backup

Server H

Pr
ot

oc
ol

 F
ire

w
al

l

I
N
T
E
R
N
E
T

HTTP/HTTPS

User

Load
Balancer

Cell Multiple Servers

D
om

ai
n

Fi
re

w
al

lServer C

Server D

Web
Server

Web
Server

Application Server 1

Application Server 1

Server E

Application Server 2

Application Server 3

Server F

Application Server 5

Application Server 6

Server G

Application Server 7

Application Server 8

Existing
Applications

and Data

Directory and
Security
Services

Existing
Applications

and Data

Existing
applications

and data

LDAP

Application
Data

Plug-in

Plug-in

80 WebSphere Application Server V6.1: Planning and Design

The application servers on Server E are independent installations. The
application servers on Server F are profiles of a single installation.

� Two database servers

The database servers use a high availability software product. Therefore, one
copy of the database is being used and the other one is a replica that will
replace the first one if it fails.

� Two LDAP servers

The LDAP servers use a high availability software product. Therefore, one
copy of the database is being used and the other one is a replica that will
replace the first one if it fails.

Advantages
This topology is designed to maximize performance, throughput, and availability.
It incorporates the benefits of the other topologies that have been discussed
already in this chapter. The advantages include:

� Single point of failure is eliminated from the Load Balancer node, Web server,
application server, database server, and LDAP server due to the redundancy
of those components.

� It provides both hardware and software failure isolation. Hardware and
software upgrades can be easily handled during off-peak hours.

� Horizontal scaling is done by using both the IP sprayer (for the Web server
nodes) and the application server cluster to maximize availability.

� Application performance is improved using the following techniques:

– Hosting application servers on multiple physical machines, MVS images,
or both to boost the available processing power.

– Using clusters to scale application servers vertically, which makes more
efficient use of the resources of each machine.

� Applications with this topology can make use of workload management
techniques. In this example, workload management is performed through:

– Load Balancer Network Dispatcher to distribute client HTTP requests to
each Web server.

– WebSphere Application Server Network Deployment workload
management feature to distribute work among clustered application
servers.

Disadvantages
This combined topology has the disadvantages of costs in hardware,
configuration, and administration. Consider these costs in relation to
performance, throughput, and reliability.

 Chapter 5. Topologies 81

Software requirements
The following list indicates the minimum software configuration that you need for
the topology shown in Figure 5-6 on page 78:

� Server A and Server B

– WebSphere Edge components

� Server C and Server D

– A supported Web server
– A Web server plug-in

� Servers E, F, G, and H

– WebSphere Application Server Network Deployment
– Custom profile (federated to the cell)

� Server J

– WebSphere Application Server Network Deployment
– Deployment manager profile
– Administration:

• Create a cluster with two application servers on each node.
• Define the Web servers.

82 WebSphere Application Server V6.1: Planning and Design

Heterogeneous cell
Cells can span z/OS sysplex environments and other operating systems as well.
For example, z/OS nodes, Linux nodes, UNIX nodes, and Microsoft Windows
nodes can exist in the same application server cell. This kind of configuration is
referred to as a heterogeneous cell. With WebSphere V6.1, there are many
different topologies that are possible to compose a heterogeneous cell, as shown
in Figure 5-8.

Figure 5-8 Different possibilities with a heterogeneous cell

WebSphere Application Server Version 6.1 products can coexist with the
following supported versions:

� IBM WebSphere Application Server Version 5.0.x

� IBM WebSphere Application Server Network Deployment Version 5.0.x

� IBM WebSphere Application Server Version 5.1.x

� IBM WebSphere Application Server Network Deployment Version 5.1.x

� IBM WebSphere Application Server Version 6.0.x

� IBM WebSphere Application Server Network Deployment Version 6.0.x

Sysplex

DMGR

z/OS

Application
server node

z/OS

Application
server node

Traditional all z/OS, all in one sysplex

Sysplex

DMGR

z/OS

Application
server node

z/OS

Application
server node

All z/OS, but across different sysplexes

Sysplex

DMGR

Distributed

z/OS

Application
server node

Heterogeneous, DMGR on a
distributed platform

Distributed

z/OS

Heterogeneous, DMGR on z/OS

Application
server node

DMGR

 Chapter 5. Topologies 83

All combinations of Version 5.x products, Version 6.0.x products, and Version 6.1
products can coexist. WebSphere Application Server Version 5.x and Version
6.0.x clients can coexist with Version 6.1 clients.

Advantages
This topology is designed to maximize performance, throughput, and availability.
It incorporates the benefits of the other distributed server topologies and adds
the possibility to mix different operating systems. Advantages include:

� Single point of failure is eliminated due to the redundancy of components.

� It provides both hardware and software failure isolation. Hardware and
software upgrades can be easily handled during off-peak hours.

� Horizontal and vertical scaling can be implemented to maximize availability.

Disadvantages
This combined topology has the disadvantages of costs in hardware,
configuration, and administration. Consider these costs in relation to
performance, throughput, and reliability.

For information about planning and system considerations required to build a
heterogeneous cell, see WebSphere for z/OS -- Heterogeneous Cells, at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644

84 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644

Chapter 6. Planning for installation

This chapter provides a general guide to planning the installation of WebSphere
Application Server and any of its components. To effectively plan an installation,
you need to select a topology and the hardware and operating systems you plan
to use.

This chapter contains the following sections:

� What is new in V6.1
� Selecting a topology
� Selecting hardware and operating systems
� Naming conventions
� Planning for WebSphere Application Server
� Planning for the Web server and plug-ins
� Planning checklist for the installation

This document does not describe the installation process. Refer to the product
documentation during the installation.

6

© Copyright IBM Corp. 2006. All rights reserved. 85

6.1 What is new in V6.1

This section outlines some of the major changes from WebSphere Application
Server V6.0 to WebSphere Application Server V6.1. For a complete list of new
and improved items for installers, see the Information Center under the “What is
new in this release” topic for each WebSphere Application Server package.

The following installation-related items are new for the Base and Network
Deployment packages for WebSphere Application Server V6.0.2 and V6.1 for
distributed systems:

� Installation:

– Support added for non-root installations.

– A new Installation Factory feature that enables you to create custom
installation packages.

� Silent installations:

– A single response file can be used for installation and profile creation. In
V6.0, two response files are required.

– Option names have changed to names that are more user-friendly and are
less likely to change between releases.

� Profiles:

– Profiles can be created directly from the installer.

– A new profile called the Cell profile enables the creation of a deployment
manager, a federated node, and an application server on a single server.

– Ports used by WebSphere Application Server installations are
automatically detected. The wizard defaults to unused ports but provides a
button to revert to the standard ports.

– Administrative security can be enabled during profile creation.

� Enhanced integration for the Linux operating system:

– Menu entries and startup scripts created during the installation.

– New support for Linux services.

� The installation verification utility detects inconsistency and corruption in
WebSphere Application Server, application client, IBM HTTP Server, Web
server plug-ins, and Update Installer installations.

86 WebSphere Application Server V6.1: Planning and Design

The following installation-related items are specific to WebSphere Application
Server for z/OS V6.1 systems:

� A workstation-based Profile Management Tool is now available as an
alternative to the host-based ISPF Customization Dialog. This tool uses the
same worksheets and overall customization flow as the Customization
Dialog, and also provides new functions, such as the ability to create a
complete Network Deployment cell in one pass, including an application
server.

� Customization tools enable the customization file system to be created as
either an HFS or zFS file system. The zFS file system has significant
performance advantages.

� WebSphere Application Server requires a minimum z/OS level of Version 1
Release 6. Because Version 1 Release 6 always supports WLM application
environments, the customization steps and documentation for static
application environments have been removed.

The Web server plug-in installation includes the following changes:

� The IBM HTTP Server installation now includes the Web server plug-in for
IBM HTTP Server, eliminating an extra step. You can enter information in just
one place when setting up the Web server environment.

� The separate plug-ins installer installs the Web server plug-ins on a machine
on which WebSphere Application Server is not installed.

� New convenience scripts added to the installation package, enabling you to
configure another instance of the Web server post-installation. Version 6.0
requires running the Plug-ins installer again to accomplish this.

6.2 Selecting a topology

Chapter 5, “Topologies” on page 59 describes some common configurations that
illustrate single-tier and multi-tier, sometimes complex, environments. Each
topology description contains information about the software products required
and the information needed to create the WebSphere Application Server runtime
environment.

After identifying the topology that best fits your needs, you map the components
from that topology to a specific hardware and operating system and plan for the
installation of the required products.

 Chapter 6. Planning for installation 87

6.3 Selecting hardware and operating systems

The next logical step is to decide what platforms you will use to map the selected
topology to a specific hardware. These selections are driven by several factors
including existing conditions, future growth, cost, and skills within your company.

When you choose the platform or platforms, you can then determine the specific
configuration of each server by selecting the processor features, the amount of
memory, and the number of direct-access storage device (DASD) arms and
storage space that are required.

Along with selecting the hardware comes the operating system selection. The
operating system must be at a supported version with a proper maintenance
level installed for WebSphere Application Server to work properly.

For an updated list on the hardware and software requirements and supported
platforms for WebSphere Application Server V6.1, see the system requirements
for WebSphere Application Server V6.1, available at:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27007651

6.4 Naming conventions

Naming conventions make the runtime environment more comprehensible.
Using a consistent naming convention helps standardize the structure of the
environment and allow for easy expansion.

Naming conventions should be developed, established, and maintained for the
hardware and networking infrastructure, as well as the WebSphere
infrastructure, applications, and resources. When it comes to naming, most
companies have already developed a working naming convention for existing
infrastructure, and it is usually best to adhere to the existing convention instead
of trying to invent new one specific to WebSphere.

Because naming conventions are also related to many different aspects of a
company, they will vary depending on the characteristics of the environment.
However, with a proper naming convention, you should be able to understand
the purpose of an artifact by just looking at its name.

6.5 Planning for WebSphere Application Server

WebSphere Application Server V6.1 is a full installation, not an upgrade
installation.

88 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27007651

Before installing WebSphere Application Server, you need to determine on which
systems you need to install and how you plan to create the necessary profiles. In
addition, consider the best installation method to use based on the number of
systems and the complexity of the installations.

Address the following planning items before starting the installation of
WebSphere Application Server:

� Determine whether to perform a single install or multiple

The norm is to install WebSphere Application Server once on a machine and
create multiple runtime environments using profiles. Each profile has its own
configuration data but shares the product binaries. In some instances (test
environments, for example), you might want to install multiple instances.

� Select an installation method

You have multiple options for the installation. Your choice will be influenced
by several factors, including the size of the installation (how many systems),
the operating systems involved, how many times you anticipate performing
the same installation (should you use the Installation Factory feature?), and if
you will be performing remote installations with unskilled personnel.

Review the documentation:

The WebSphere Application Server Information Center contains planning
topics for each WebSphere Application Server package that is tailored to each
platform. This section gives you a high-level look at the planning tasks you
need to perform.

If you are planning a WebSphere Application Server for z/OS environment, we
strongly suggest that you review the following documents:

� For more information and examples of defining a naming convention for
WebSphere for z/OS, see WebSphere z/OS V6 -- WSC Sample ND
Configuration, available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653

A spreadsheet goes with this document that will help you create and
document your names. Download the spreadsheet from the same URL.

� For information about differences you in V6.1, see WebSphere for z/OS
V6.1 - New Things Encountered During Configuration, available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781

 Chapter 6. Planning for installation 89

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781

� Plan for profiles

The environment is defined by creating profiles. You need to determine the
types of profiles you will need and on which systems you will need to install
them. Each topology discussed in Chapter 5, “Topologies” on page 59
includes profile information.

� Plan for names

Naming conventions can be an important management tool in large
environments.

� Plan for TCP/IP port assignments

Each application server, node agent, and deployment manager uses a series
of TCP/IP ports. These ports must be unique on a system.

� Security considerations for the installation

Security for WebSphere falls into two basic categories: administrative security
and application security. During the installation, you will have the option to
enable administrative security. Plan a scheme for identifying administrative
users, their roles, and the user registry you will use to hold this information.

6.5.1 Determine whether to perform a single install or multiple

You can install WebSphere Application Server V6.1 several times on the same
machine in different directories. Those installations are independent from each
other. This configuration facilitates fix management. If a fix is applied on a
particular installation, it only affects that specific WebSphere Application Server
installation, leaving the remaining installations on that machine unaffected.

When you have a single installation of WebSphere Application Server V6.1, you
can create multiple application server profiles. In this case, all profiles share the
same product binaries. When fixes are installed, they affect all profiles. Each
profile has its own user data.

90 WebSphere Application Server V6.1: Planning and Design

Figure 6-1 shows the difference between multiple installations and multiple
WebSphere profiles in a stand-alone server environment (Base and Express).

Figure 6-1 Stand-alone server installation options

The same logic holds true for Network Deployment installations. You can install
the product several times on the same machine (multiple installs), each one for
administering different cells. Or, you can install Network Deployment once and
then create multiple profiles so that each profile is used to administer a different
cell.

Figure 6-2 Deployment manager installation options

Server

Multiple installs Single install, multiple WebSphere profiles

. . .

Config
Files

J2EE
Apps

(EARs)

Application
Server

Config
Files

J2EE
Apps

(EARs)

Application
Server

. . .

Config
Files

J2EE
Apps

(EARs)

Application
Server

Config
Files

J2EE
Apps

(EARs)

Application
Server

Note: There is no architectural limit for multiple installations or multiple
profiles. The real limitation is ruled by the hardware capacity and licensing.

Server

Multiple installs Single install, multiple WebSphere profiles

. . .

Config
Files

J2EE
Apps

(EARs)

Deployment
Manager

Config
Files

J2EE
Apps

(EARs)

. . .

Config
Files

J2EE
Apps

(EARs)

Config
Files

J2EE
Apps

(EARs)

Deployment
Manager

Deployment
Manager

Deployment
Manager

 Chapter 6. Planning for installation 91

Using multiple installations and multiple profiles
Another possibility is the combination of multiple installation instances and
multiple profiles. Figure 6-3 illustrates a Network Deployment environment where
multiple runtime environments have been created using profiles.

Cell 1 contains a deployment manager and application server on separate
machines, using separate installation instances.

Cell 2 contains a deployment manager and two application servers that span
three installation instances.

Figure 6-3 Cell configuration flexibility

6.5.2 Select an installation method

Before starting installation activities, review the options you have for installing the
code and select the option that best fits your needs.

WebSphere Application Server for z/OS is installed using SMP/E.

Application Server
Node

Application
server

Deployment
manager

Deployment
manager

U
si

ng
 m

ul
tip

le
 p

ro
fil

es

U
si

ng
 m

ul
tip

le
 p

ro
fil

es

Application Server
Node

Application
server

Application Server
Node

Application
server

U
si

ng
 a

 s
in

gl
e

pr
of

ile

CELL 1

CELL 2

Each WebSphere
profile is managed
independently

92 WebSphere Application Server V6.1: Planning and Design

On distributed systems, you have several choices for installation:

� Graphical install interface

The installation wizard is suitable for installing WebSphere Application Server
on a small number of systems. Executing the installation wizard will install
one system. You can start with the Launchpad, which contains a list of
installation activities to select, or you can execute the installation program
directly.

The installer checks for the required operating system level, sufficient disk
space, and user permissions. If you fail any of these, you can choose to
ignore the warnings; however, ultimately, the installation might fail.

� Silent installation

To install on multiple systems or remote systems, use the silent installation.
This option enables you to store installation and profile creation options in a
single response file, and then issue a command to perform the installation
and (optionally) profile creation.

As with the wizard, the installer checks for the required prerequisite
conditions. If any of these checks fail, the installation will stop. You can
override the check in the response file by specifying:

disableOSPrereqChecking=”true”

� Installation Factory (new with V6.0.2)

The Installation Factory provides an automated method for creating custom
installation packages (CIPs). These packages include product maintenance,
enterprise applications, and configuration actions in order to improve
installation repeatability.

This solution provides an easy-to-use and reliable installation that can be
used to install or update a product by selecting which fix packs should be
included. However, there are some things to consider when taking this
approach:

– The combination of multiple products and maintenance can make
packages very large.

– Because there are multiple steps involved, installations can take a long
time and the reason might not be visible to the installer.

– If any steps fail, the entire installation will fail.

– Creating a CIP might not be a trivial matter.

 Chapter 6. Planning for installation 93

6.5.3 Plan for profiles

The installation of WebSphere Application Server essentially gives you the
product files required to create a runtime environment. However, the actual
runtime is defined through the use of profiles. The product binaries remain
unchanged after installation until you install maintenance. All server processes
that share the binaries use the updated level of the system files after installing
the service.

During the installation process, you have the option to create profiles that build
the runtime configuration files.

Note the following planning considerations for profiles:

� What profile types you need.

� How to create the profiles.

� Where to store the profile configuration files. Profiles can be stored under the
installation root for WebSphere or in any other location you choose. In z/OS,
the configuration is stored on an HFS or zFS.

Although an HFS can be shared across multiple MVS images in a parallel
sysplex, experience has shown that there is a performance cost associated
with doing this in a WebSphere environment. It most cases, it can be better to
create a file system for each node, but of course it all depends on your
system requirements.

Profile types
The types of profiles available to you depend on the WebSphere Application
Server package that you have installed. The profiles types that you need are
determined by your topology.

The profile types are:

� Application server profiles

An application server profile includes default applications and the server1
application server. The application server in the Network Deployment product
can run as a managed node or as a stand-alone application server.

The stand-alone application server is the same as the one in the Express
product and in WebSphere Application Server V6.1 with one important

Note: This section is intended to help you plan for the profiles you will need
and the method you want to use to create them. WebSphere Application
Server V6.1: System Management and Configuration, SG24-7304, describes
profile creation options in more detail.

94 WebSphere Application Server V6.1: Planning and Design

exception: You can add Network Deployment stand-alone application server
nodes to a cell under the centralized management of the deployment
manager.

� Deployment manager profiles

The deployment manager profile creates the deployment manager process
(dmgr). The deployment manager provides centralized administration of
multiple application server nodes and custom nodes as a single cell. The
deployment manager provides administration for basic clustering and caching
support, including failover support and workload balancing.

� Custom profiles

A custom profile (referred to as a managed node on z/OS) is an empty node
that you must federate. Use the deployment manager to customize the node
by creating servers and clusters. The node does not include a default
application server or default applications.

� Cell profiles

A cell profile can be used to create a deployment manager, a federated node,
and an application server on that node on a single system. It creates two
profiles, one for the deployment manager and one for the node and
application server.

Creating profiles during the installation
On distributed platforms, profiles are created during the installation, or after using
the Profile Management Tool (for Express V6.0 this is done using the profile
creation wizard). During the installation of Express and Base, an application
server profile is created automatically during the installation. During a Network
Deployment installation, you have the option to create a profile but do not have
to.

Table 6-1 shows the application server environments that are created
automatically during the product installation.

Table 6-1 Application server environments created during product installation

Product Default environment WebSphere profiles
available

WebSphere Application Server -
Express V6

Stand-alone application server (application
server profile).

Application server
profile.

WebSphere Application Server
V6.1

Stand-alone application server (application
server profile).

Application server
profile.

 Chapter 6. Planning for installation 95

Express installations
The installation procedure for WebSphere Application Server - Express V6
installs the core product files and creates a stand-alone application server in a
profile named default. After the installation, you can create additional application
server profiles using the profile creation wizard. The profile created during
installation is placed under the <was_home>/profiles directory. Additional profiles
that you create can be located anywhere on the file system.

WebSphere Application Server (base) installations
The installation procedure for WebSphere Application Server V6.1 installs the
core product files and creates a stand-alone application server in a profile named
AppSrv01. After install, you can create additional application server profiles using
the Profile Management Tool. The profile created during installation is placed
under the <was_home>/profiles directory. Additional profiles that you create can
be located anywhere on the file system.

Network Deployment installations
The installation procedure for WebSphere Application Server Network
Deployment V6.1 installs the core product files (product binaries) and gives you
the option of creating a profile. For test environments, the Cell profile is a handy
option to create a deployment manager and node. To create the environment for
your chosen topology, refer to the specific topology section to get a list of the
profiles required and on which the systems to create them.

After the installation, you can create additional profiles using the Profile
Management Tool.

WebSphere Application Server
Network Deployment V6.1

Optional: The last installation panel lets you
launch the Profile Management Tool if you
want to create a profile.

All types.

WebSphere for z/OS A default environment is not created during
the installation of the core product files.

All types. Cell profiles
must be built from the
zPMT tool in the
Application Server
Toolkit.

Product Default environment WebSphere profiles
available

Note: Profiles created during the installation process are created using the
“typical” settings. See “Creating additional profiles” on page 97 for more
information about what these will be.

96 WebSphere Application Server V6.1: Planning and Design

WebSphere for z/OS installations
The installation on WebSphere Application Server for z/OS uses SMP/E and only
installs the product binaries. After the installation, you create profiles using the
WebSphere Application Server for z/OS ISPF panels or using the Profile
Management Tool (zPMT) available in the Application Server Toolkit.

Creating additional profiles
Creating profiles after the installation enables you to create additional runtime
environments and to expand distributed server environments. Using the Profile
Management Tool to create the profiles also enables you to take an “advanced”
path through the profile creation, giving you more flexibility in the options you
take.

Deployment manager profile options
Table 6-2 shows a summary of the options available when creating a profile for a
deployment manager. The options depend on whether you take the typical or
advanced path through the Profile Management Tool.

Table 6-2 Deployment manager profile options

Typical settings Advanced options

The administrative console is deployed by default. You can choose whether to deploy the
administrative console. We recommend that you
do so.

The profile name is Dmgrxx by default, where xx is 01
for the first deployment manager profile and
increments for each one created. The profile is stored
in <was_home>/profiles/Dmgrxx.

You can specify the profile name and its location.

The cell name is <host>Cellxx.
The node name is <host>CellManagerxx.
Host name defaults to your system’s DNS host name.

You can specify the node, host, and cell names.

You can enable security (yes or no). If you select yes, you will be asked to specify a user name and
password that will be given administrative authority.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The deployment manager will be run as a
service.

(Windows) You can choose whether the
deployment manager will run as a service.

 Chapter 6. Planning for installation 97

Application server profile options (Base and Network Deployment)
Table 6-3 shows a summary of the options available when creating a profile for
an application server in a Base or Network Deployment installation. The options
depend on whether you take the typical or advanced path through the Profile
Management Tool.

Table 6-3 Application server profile options: V6.1

Application server profile options (Express V6.0)
Table 6-4 on page 99 shows a summary of the options available when creating a
profile for a an application server in Express V6.0. The profile creation wizard
does not contain a quick (typical) path as the new Profile Management Tool
does.

Typical settings Advanced options

The administrative console and default application
are deployed by default. The sample applications are
not deployed.

You have the option to deploy the administrative
console (recommended), the default application,
and the sample applications (if installed).

The profile name is AppSrvxx by default, where xx is
01 for the first application server profile and
increments for each one created. The profile is stored
in <was_home>/profiles/AppSrvxx.

You can specify profile name and its location.

The profile is not the default profile. You can choose whether to make this the default
profile. (Commands run without specifying a
profile will be run against the default profile.)

The application server is built using the default
application server template.

You can choose the default template, or a
development template that is optimized for
development purposes.

The node name is <host>Nodexx.
The host name defaults to your system’s DNS host
name.

You can specify the node name and host name.

You can enable security (yes or no). If you select yes, you will be asked to specify a user name and
password that will be given administrative authority.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports (unique to
the installation), use the basic defaults, or select
port numbers manually.

(Windows) The deployment manager will be run as a
service.

(Windows) You can choose whether the
deployment manager will run as a service.

Does not create a Web server definition. Enables you to define an external Web server to
the configuration.

98 WebSphere Application Server V6.1: Planning and Design

Table 6-4 Application server profile options: Express V6.0

Cell profile options
Table 6-5 shows a summary of the options available when creating a cell profile.
Using this option actually creates two distinct profiles, a deployment manager
profile and an application server profile. The application server profile is
federated to the cell. The options you see are a reflection of the options you
would see if you were creating the individual profiles versus a cell.

Table 6-5 Cell profile options

Advanced options

You can specify profile name and its location.

You can choose whether to make this the default profile. (Commands run without
specifying a profile will be run against the default profile.)

The application server is built using the default application server template.

You can specify the node name and host name.

You can use the recommended ports (unique to the installation) or select port numbers
manually.

(Windows) You can choose whether the deployment manager will run as a service.

The default application and the sample applications are deployed.

Typical settings Advanced options

The administrative console and default application
are deployed by default. The sample applications are
not deployed.

You have the option to deploy the administrative
console (recommended), the default application,
and the sample applications (if installed).

The profile name for the deployment manager is
Dmgrxx by default, where xx is 01 for the first
deployment manager profile and increments for each
one created. The profile is stored in
<was_home>/profiles/Dmgrxx.

You can specify the profile name and its location

The profile name for the federated application server
and node is AppSrvxx by default, where xx is 01 for
the first application server profile and increments for
each one created. The profile is stored in
<was_home>/profiles/AppSrvxx.

You can specify the profile name and its location.

Neither profile is made the default profile. You can choose to make the deployment
manager profile the default profile.

 Chapter 6. Planning for installation 99

Custom profile options
Table 6-6 shows a summary of the options available when creating a custom
profile.

Table 6-6 Custom profile options

The cell name is <host>Cellxx.
The node name for the deployment manager is
<host>CellManagerxx.
The node name for the application server is
<host>Nodexx .
The host name defaults to your system’s DNS host
name.

You can specify the cell name, the host name,
and the profile names for both profiles.

You can enable security (yes or no). If you select yes, you will be asked to specify a user name and
password that will be given administrative authority.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports for each
profile (unique to the installation), use the basic
defaults, or select port numbers manually.

(Windows) The deployment manager will be run as a
service.

(Windows) You can choose whether the
deployment manager will run as a service.

Does not create a Web server definition. Enables you to define an external Web server to
the configuration.

Typical settings Advanced options

Typical settings Advanced options

The profile name is Customxx.
The profile is stored in
<was_home>/profiles/Customxx.
By default, it is not considered the default profile.

You can specify profile name and location. You
can also specify if you want this to be the default
profile.

The node name is <host>Nodexx.
The host name defaults to your system’s DNS host
name.

You can specify the node name and host name.

You can opt to federate the node later, or during the profile creation process.
If you want to do it now, specify the deployment manager host and SOAP port (by default, localhost:8879).
If security is enabled on the deployment manager, you need to specify a user ID and password.

TCP/IP ports will default to a set of ports not used by
any profiles in this WebSphere installation instance.

You can use the recommended ports for each
profile (unique to the installation), use the basic
defaults, or select port numbers manually.

100 WebSphere Application Server V6.1: Planning and Design

Starting the Profile Management Tool
After the installation of Base or Network Deployment V6.1 on distributed
systems, you can start the Profile Management Tool in the following ways:

� From the First Steps window.

� On Windows systems, from the Start menu.

� By executing the pmt.bat(sh) command to start the Profile Management
Tool. For operating systems such as AIX 5L or Linux, the command is in the
<was_home>/bin/ProfileManagement directory. For the Windows platform,
the command is in the <was_home>\bin\ProfileManagement directory.

The Profile Management Tool provides a graphical interface to the
<was_home>/manageprofiles.bat(sh) command. You can use this command
directly to manage (create, delete, and so on) profiles without a graphical
interface.

For Express V6.0, start the profile creation wizard in one of the following ways:

� From the First Steps window. The First Steps window opens after a profile
has been created.

� On Windows systems, from the Start menu.

� The command is in the <was_home>/bin/ProfileCreator directory. The name
of the command varies per platform:

– pctAIX.bin
– pctHPUX.bin

64-bit platforms: pctHPUXIA64.bin
– pctLinux.bin

64-bit platforms: pct.bin
S/390® platforms: pctLinux390.bin
POWER™ platforms: pctLinuxPPC.bin

– pctSolaris.bin
– pctWindows.exe

64-bit platforms: pctWindowsIA64.exe

In WebSphere for z/OS, profiles are created using a series of jobs. The JCL for
the jobs is created using ISPF panels or through the Profile Management Tool for
z/OS, referred to as the zPMT tool, in the Application Server Toolkit.

To start the zPMT:

1. Open the Application Server Toolkit.

2. Select Windows → Preferences.

3. Expand Server and click WebSphere for z/OS.

4. Click Create.

 Chapter 6. Planning for installation 101

Profile location
Profiles created as a part of the installation are automatically placed in the
<was_home>/profiles directory.

When you create profiles after the installation, you can designate the location
where the profiles are stored. When deciding where to keep the profiles, consider
performance, backup capabilities, and availability.

6.5.4 Plan for names

The purpose of developing systematic naming concepts and rules for a
WebSphere site is two-fold:

� To provide guidance during setup and configuration
� In case of issues, to quickly narrow down the source of the issue

Naming the WebSphere infrastructure artifacts, such as cells, nodes, application
servers, and so on should follow the company’s normal naming conventions as
far as possible. Discuss all parts of the installation planning, particularly the
naming concepts, with the subject matter experts that are involved, and
document decisions and results in writing. Failure to do so can affect operational
processes for the future site and has proved in the past to be a root source for
labor-intensive issues within client installations.

Naming conventions
Some considerations to be taken into account when developing the key concepts
for the site during the installation planning are:

� Naming profiles

The profile name can be any unique name, but it is a good idea to have a
standard for naming profiles. This will help administrators easily determine a
logical name for a profile when creating it and will help them find the proper
profiles easily after creation.

For example, a profile can include characters that indicate the profile type,
server, and an incremental number to distinguish it from other similar profiles.

Do not use any of the following characters when naming your profile:

– Spaces

– Illegal special characters that are not allowed within the name of a
directory on your operating system (namely, * & ? ‘ “, and so forth)

– Slashes (/) or (\)

102 WebSphere Application Server V6.1: Planning and Design

� Naming cells

A cell represents an administrative domain.

In a stand-alone environment, the cell name is not usually visible to
administrators and a naming convention is not required. The name is
automatically generated during profile creation, and will be in the following
format:

<system_name><node_name><number>Cell

The <number> will increment, starting with “01”, with every new node, for
example, server1Node01Cell, server1Node02Cell, and so on.

In a distributed server environment, there are considerations for naming a
cell. A cell name must be unique in any circumstance in which the product is
running on the same physical machine or cluster of machines, such as a
sysplex. Additionally, a cell name must be unique in any circumstance in
which network connectivity between entities is required either between the
cells or from a client that must communicate with each of the cells. Cell
names also must be unique if their name spaces are going to be federated.

Often a naming convention for cell names will include the name of the stage
(such as integration test, acceptance test, production) and the name of the
department or project owning it, if appropriate. But a proper naming
convention also depends on the size of the infrastructure. In a small
company, there might be only be just a few WebSphere cells in total, but in a
large company, there can be a lot more cells to accommodate test
environments for several projects as well as a highly available production
environment.

� Naming nodes

In a stand-alone environment, you will have a single node with a single
application server. A naming convention is not really a concern. However, you
can specify a node name during profile creation. If you take the default, the
node name will be in the format:

<system_name>NODE<number>

The <number> will increment, starting with “01”, with every new node, for
example, server1Node01, server1Node02, and so on.

In a distributed server environment, the node must be unique within a cell.
Nodes generally represent a system and will often include the host name of
the system, but this is not necessary. You can have multiple nodes on a
system.

Naming conventions for nodes often include the physical machine name
where they are running, such as NodeA123 if the server name is ServerA123.

 Chapter 6. Planning for installation 103

� Naming application servers

In stand-alone environments, the server name will always be “server1”. Note
that when you federate a stand-alone application server to a cell, you will
have a unique combination of node name and server1, thus allowing multiple
“server1”s to exist in the cell.

In distributed server environments, the same applies. If you create an
application server profile, you get a new node and stand-alone server. The
server name will be server1. However, it is more likely that new application
servers in a distributed server environment will be created on a federated
node using the administrative console or other administrative tool. In this
case, the server can be named and a meaningful name should be assigned.
Whether you choose to name servers based on their location, function,
membership in a cluster, or some other scheme will largely depend on how
you anticipate your servers being used and administered.

The server name must be unique within the node.

If each application server will host only a single application, the application
server name can include the name of the application. If several applications
(each deployed on their own application server) make up a total system or
project, that name can be used as a prefix to group the application servers,
which makes it easier to find them in the WebSphere administrative console.

If an application server hosts multiple applications, develop some other kind
of suitable naming convention, such as the name of a project or the group of
applications deployed on the server.

� General naming rules

Avoid using reserved folder names as field values. The use of reserved folder
names can cause unpredictable results. The following words are reserved:

– Cells
– Nodes
– Servers
– Clusters
– Applications
– Deployments

When you create a new object using the administrative console or a wsadmin
command, you often must specify a string for a name attribute. Most
characters are allowed in the name string (numbers, letters). However, the
name string cannot contain special characters or signs. The dot is not valid as
first character. The name string also cannot contain leading and trailing
spaces.

104 WebSphere Application Server V6.1: Planning and Design

WebSphere Application Server for z/OS considerations
Naming conventions take on a special importance when running WebSphere for
z/OS due to MVS length restrictions. The concept of long and short names is
used in WebSphere Application Server for z/OS to accommodate these
restrictions. The long name of a node, cell, or server, for example, is the
equivalent of the names you assign on other platforms. There will be a
corresponding short name that is limited to eight characters and must be
uppercase. Long names can be much longer and can be mixed case.

During the installation process, you will be asked to provide long and short
names when defining the cell, node, and each application server. Bear in mind
that procedures and jobs are also created to support these components. For
example, the deployment manager will consist of multiple address spaces,
including at a minimum, a control region, a servant region, and a daemon.
Naming for these elements also becomes important to avoid confusion.

Your approach should ensure that you will avoid name conflicts among other
applications running on the same environment and make sure that all names are
unique within the MVS image at least.

For more information and examples of defining a naming convention for
WebSphere for z/OS, see WebSphere z/OS V6 -- WSC Sample ND
Configuration, available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653

To go with this document, a spreadsheet has been developed that will help you
create and document your names, WebSphere for z/OS Version 6 -
Configuration Planning Spreadsheet, available at:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331

6.5.5 Plan for TCP/IP port assignments

The port assignment scheme for a WebSphere site should be developed in close
cooperation with the network administrators. From a security point-of-view, it is
highly desirable to know each and every port usage ahead of time, including the
process names and the owners using them.

Depending on the chosen WebSphere Application Server configuration and
hardware topology, the setup even for a single machine can involve having
multiple cells, nodes, and server profiles in a single process space. Each
WebSphere process requires exclusive usage of several ports and knowledge of
certain other ports for communication with other WebSphere processes.

 Chapter 6. Planning for installation 105

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653

To simplify the installation and provide transparency to the ports utilization, the
following approach is reliable and reduces the complexity of such a scenario
considerably:

� Discuss and decide on with the network administration a fixed range of
continuous ports for exclusive use for the WebSphere Application Server
installation.

� Draw the overall WebSphere Application Server topology and map your
application life cycle stages onto WebSphere profiles.

� List the number of required ports per WebSphere profile and come up with an
enumeration scheme, using appropriate increments at the cell, node, and
application server level, starting with your first cell. You can use a
spreadsheet and develop this spreadsheet as part of your installation
documentation. The same spreadsheet also can serve for the server names,
process names, user IDs, and so forth.

Note that the PMT can identify the ports used in the same installation on that
system and those ports that are currently in use and will suggest unique ports to
use. The updatePorts.ant script is also included in
<was_home>/profileTemplates/<template_name>/actions to help you change
port numbers quickly after profile creation.

For a list of the ports used by WebSphere Application Server and their default
settings, see the “Port number settings in WebSphere Application Server
versions” topic in the WebSphere Application Server Information Center. The
URL for the Network Deployment version of this article is:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/rmig_portnumber.html

For z/OS installations, use the WebSphere for z/OS Version 6 - Configuration
Planning Spreadsheet to help you prepare for port assignments:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331

6.5.6 Security considerations for the installation

To plan a secure WebSphere Application Server environment, it is imperative
that you have highly skilled security specialists that can evaluate your business
and network security needs. You need to have a fairly clear idea of your plans for
security before installation of any production systems. We give an overview of
the aspects of security specific to WebSphere Application Server in Chapter 12,
“Planning for security” on page 253. For more details, refer to WebSphere
Application Server V6 Security Handbook, SG24-6316.

106 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/rmig_portnumber.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/rmig_portnumber.html
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331

There are some specific considerations for installers that we address here. Take
into account the following security considerations during the installation planning
phase:

� Certificates

– If you will use digital certificates, make sure that you request them with
enough lead time so that they will be available when you need them.

– If default certificates or dummy key ring files are provided with any of the
products you plan to install, replace them with your own certificates.

� Network and physical security

– Usually a firewall is part of the topology. After determining what ports need
to be open, make a request to the firewall administrator to open them.

– Plan the physical access to the data center where the machines are going
to be installed to prevent delays to the personnel involved in the
installation and configuration tasks.

� User IDs

– Request user IDs with enough authority for the installation purposes, for
example, root on a Linux or UNIX operating system and a member of the
administrator group on a Windows operating system. Non-root installation
is also supported.

– If there is a policy on password expiration, it should be well known to avoid
disruption on the service (password expiration of root, QSECOFR,
Administrator, or the password of the user to access some database).

Root versus non-root installation
The term non-root implies a Linux or UNIX installer, but also means a
non-administrator group installer on a Windows system. Non-root installers can
install V6.1 in both silent and interactive mode for full product installations and
removals, incremental feature installations, and silent profile creation.

Installing as a non-root user in Version 6.1 works the same as installing as a root
user does in previous versions. However, there are limitations to be aware of.
For a list of these limitations, see the “Limitations of non-root installers” topic in
the WebSphere Application Server Information Center, available at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/rins_nonroot.html

Secure administration tasks
WebSphere Application Server provides a mechanism to secure the
administrative functions.

 Chapter 6. Planning for installation 107

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/rins_nonroot.html

In order for a user ID to have administrative authority, it must be assigned to one
of the following roles:

� Monitor

The Monitor role has the least permissions. This role primarily confines the
user to viewing the configuration and current state.

� Configurator

The Configurator role has the same permissions as the Monitor, and in
addition, can change the configuration.

� Operator

The operator role has Monitor permissions and can change the runtime state.
For example, the operator can start or stop services.

� Administrator

The Administrator role has the combined permissions of the Operator and
Configurator and the permission required to access sensitive data, including
server password, Lightweight Third Party Authentication (LTPA) password
and keys, and so on.

� Deployer (for wsadmin users only)

Users granted this role can perform both configuration actions and runtime
operations on applications.

� iscadmins (for administrative console users only)

An individual or group that uses the iscadmins role has Administrator
privileges for managing users and groups in the federated repositories from
within the administrative console only.

Fine-grained administrative security (new):

In releases prior to WebSphere Application Server Version 6.1, users granted
administrative roles could administer all of the resource instances under the
cell. With V6.1, administrative roles are now assigned per resource instance
rather than to the entire cell. Resources that require the same privileges are
placed in a group called the authorization group. Users can be granted access
to the authorization group by assigning to them the required administrative
role within the group.

A cell-wide authorization group exists for backward compatibility. Users
assigned to administrative roles in the cell-wide authorization group can still
access all of the resources within the cell.

108 WebSphere Application Server V6.1: Planning and Design

� adminsecuritymanager (for wsadmin users only)

Only users who are assigned to this role can assign users to administrative
roles. Also, when fine-grained administrative security is used, only users who
are assigned to this role can manage authorization groups.

With V6.1, you have the option to enable security for administrative tasks during
profile creation for an application server or deployment manager (including those
created with Cell profiles). Note that this option does not enable application
security.

If you intend to create a profile during installation and want to secure your
administrative environment at the same time, you need to identify one user ID to
be used for administration. The user ID and password specified during profile
creation will be created in the repository and assigned the Administrator role.
This ID can be used to access the administration tools and to add additional user
IDs for administration.

When you enable security during profile creation, LTPA is used as the
authentication mechanism.

On distributed systems, a file-based user repository is created and populated
with the administrator ID. This file-based system can be federated with other
repository types to form an overall repository system. If you do not want to use
the file-based repository, do not enable administrative security during profile
creation. In WebSphere for z/OS, you can choose to use the file-based
repository or use the z/OS system SAF-compliant security database.

Whether you choose to enable administration security during profile creation or
after, it is important that you do it before going into production.

6.6 Planning for migration

The IBM Redbook WebSphere Application Server V6 Migration Guide,
SG24-6369, thoroughly discusses migration of both the runtime configuration
and applications. This section gives a very brief summary of the migration paths
and options available for the WebSphere runtime configuration.

 Chapter 6. Planning for installation 109

There are three ways to migrate an existing WebSphere Application Server cell
to V6.1:

� Fully automated migration
The fully automated migration uses the WASPreUpgrade and WASPostUpgrade
tools to perform the migration. Strictly speaking, the migration is not fully
automatic. It is more accurate to say that the configuration of the migrated
elements is automated. We refer to this approach as “fully automated”
because we use the migration tools on every node in the cell.

� Partially automated migration
Like the fully automated migration, this method uses the migration tools, but
only to migrate the deployment manager. You might use this method if you
are not 100% confident in the abilities of the migration tools and you need a
mixed version cell (automated migration of the deployment manager is the
only way to include Version 5.x nodes in a Version 6 cell).

� Manual migration
In a manual migration, a new cell is created to first augment and then replace
the existing Version 5.x cell. You might use this method if you need to keep
Version 5.x running for an extended period (that is, you require an extended
period of interoperability) and you have adequate hardware to support a
second deployment manager.

WebSphere Application Server V6.1 includes automatic migration utilities that
help you transform an operational WebSphere configuration on a prior release to
V6.1. The automatic migration utilities save you a lot of time by eliminating the
need to create the new configuration manually.

Table 6-7 shows the products that the automatic migration utilities support as a
starting point.

Table 6-7 Supported WebSphere releases for migration starting points

Version 5.0 Version 5.1 Version 6.0

WebSphere Application Server WebSphere Application Server WebSphere Application Server

WebSphere Application Server
- Express

WebSphere Application Server
- Express

WebSphere Application Server
- Express

WebSphere Application Server
Network Deployment

WebSphere Application Server
Network Deployment

WebSphere Application Server
Network Deployment

WebSphere Application Server
Enterprise

WebSphere Business
Integration Server Foundation

WebSphere Business
Integration Server Foundation

WebSphere Application Server
for z/OS

WebSphere Application Server
for z/OS

WebSphere Application Server
for z/OS

110 WebSphere Application Server V6.1: Planning and Design

If your existing version is not listed in Table 6-7 on page 110, you must perform a
manual migration.

6.7 Planning for the Web server and plug-ins
The options for defining and managing Web servers depend on your chosen
topology and your WebSphere Application Server package. Decisions to make
include whether to collocate the Web server with other WebSphere Application
Server processes and whether to make the Web server managed or
unmanaged.

The installation process includes installing a supported Web server and the
appropriate Web server plug-in and defining the Web server to WebSphere
Application Server.

The following examples outline the process required to create each sample
topology. Note that each example assumes that only the WebSphere processes
shown in the diagrams are installed on each system and that the profile for the
process is the default profile.

This is not a substitute for using the product documentation, rather it is intended
to help you understand the process. For detailed information about how the
Plug-ins installation wizard works and the logic it follows to determine how to
create the configuration scripts, see the Getting Started with Web server plug-ins
guide that comes with the plug-in.

During the plug-in installation, you will be asked if the installation is local or
remote. Depending on the response, a certain path through the installation will
occur. Figure 6-4 on page 112 illustrates the plug-in installer behavior in more
detail. You will see this in the examples.

Note: When installing the IBM HTTP Server shipped with WebSphere
Application Server, you now have the option to install the Web server plug-in
at the same time. If you choose this option, you will automatically get a remote
installation.

The location for the plug-in configuration file is <ihs_install>/Plugins/config/.

The location for the plug-in configuration script is <ihs_install>/Plugins/bin.

 Chapter 6. Planning for installation 111

Figure 6-4 Web server plug-in installer behavior

The plug-in installer maps all possible configurations to three scenarios,
LOCAL_STANDALONE, LOCAL_DISTRIBUTED, and REMOTE, as depicted in
Figure 6-4:

� LOCAL_STANDALONE

What classifies as a LOCAL_STANDALONE plug-in configuration?

A default unfederated stand-alone profile that has no existing Web server
definition is a LOCAL_STANDALONE plug-in configuration.

What tasks does the plug-ins Installation Wizard perform in this case?

– It creates a Web server definition for the default stand-alone profile.
– It configures the Web server to use the plugin-cfg.xml file.

Installation
type

Local Remote

Stand-alone? Managed? DMgr?

Web server
definition
exists?

Yes

Yes

No

No

No

Yes

No

Federated?

Default profile
detected?

No

Yes

Yes Yes

Managed
Profile found?

Manual steps required
before starting Web server.
Web server configured to

use the Web server
plugin-cfg.xml file

(LOCAL_DISTRIBUTED)

Yes

No manual steps required
before starting Web server.
Web server configured to

use the Web server
plugin-cfg.xml file

(LOCAL_STANDALONE)

No

Manual steps required for a Web server definition.
Web server configured to use default

plugin-cfg.xml file located in
<plugin_home>/config/<ws_name>/plugin-cfg.xml

Can start Web server using the default
plugin-cfg.xml file

(REMOTE)

(A)

112 WebSphere Application Server V6.1: Planning and Design

What is next?

You can start the Web server and WebSphere Application Server without any
manual steps and access the snoop servlet through the Web server to verify
that everything is working.

� LOCAL_DISTRIBUTED

What classifies as a LOCAL_DISTRIBUTED plug-in configuration?

– A stand-alone profile that has been federated into a deployment manager
cell.

– A managed node that is either federated or unfederated in a cell.

– A managed profile found after a default deployment manager cell
detected. See (A) in Figure 6-4 on page 112.

What tasks does the Plug-ins installation wizard perform in this case?

– It does not create a Web server definition for the default distributed profile.

– It configures the Web server to use the plugin-cfg.xml file in the Web
server definition directory that the user needs to create manually. You
cannot start the Web server until the manual steps are completed.

What is next?

– If the managed node is still not federated, federate the node first. This will
avoid the Web server definition being lost after the federation has
occurred.

– Run the manual Web server definition creation script.

– Start the Web server and WebSphere Application Server and hit the
snoop servlet to verify that everything is working.

� REMOTE

What classifies as a REMOTE plug-in configuration?

– A remote install type selected by user at install time.

– A default deployment manager profile.

– No default profiles detected in the WebSphere Application Server
directory given by user.

– A default, unfederated, stand-alone profile with an existing Web server
definition.

Note: If the stand-alone profile is federated, you need to re-create the Web
server definition.

 Chapter 6. Planning for installation 113

What tasks does the plug-ins installation wizard perform in this case?

– It does not create a Web server definition for the default distributed profile.

– It configures the Web server to use the plugin-cfg.xml file in
<plugin_home>/config/<webserver_name>/plugin-cfg.xml.

What is next?

If the user uses the default plugin-cfg.xml file in the <plugin_home> directory,
start the Web server and WebSphere Application Server and select the snoop
servlet to verify that everything is working.

To benefit from the Web server definition:

a. Copy the configuration script to the WebSphere Application Server
machine.

b. Run the manual Web server definition creation script.

c. Copy the generated Web server definition plugin-cfg.xml file back to the
Web server machine into the <plugin_home> directory tree. (For IBM
HTTP Server, you can use the propagation feature.)

d. Start the Web server and WebSphere Application Server and select the
snoop servlet to verify that everything is working.

6.7.1 Stand-alone server environment
In a stand-alone server environment, a Web server can be remote to the
application server machine or local, but there can only be one defined to
WebSphere Application Server. The Web server always resides on an
unmanaged node.

114 WebSphere Application Server V6.1: Planning and Design

Remote Web server
In this scenario, the application server and the Web server are on separate
machines. The Web server machine can reside in the internal network, or more
likely, will reside in the DMZ. See Figure 6-5.

Figure 6-5 Remote Web server in a stand-alone server environment

Assume that the application server is already installed and configured on
machine A. Perform the following tasks:

1. Install the Web server on machine B.

2. Install the Web server plug-in on machine B by performing the following
steps:

a. Select Remote installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the location
is under the config directory in the plug-in install directory. For example,
when the name specified for the Web server definition in the previous step
is webserver1, the default location for the plug-in file is:

<plugin_home>/config/webserver1/plugin-cfg.xml

During the installation, the following tasks are performed:

a. A temporary plug-in configuration file is created and placed it in the
location specified.

b. The Web server configuration file is updated with the plug-in configuration,
including the location of the plug-in configuration file.

c. A script is generated to define the Web server to WebSphere Application
Server. The script is located in:

<plug-in_home>/bin/configure<web_server_name>

Firewall

Application
Server

Machine B

Web Server

Plug-in
Web Client
(Browser)

Machine A

Firewall

Internet Intranet

 Chapter 6. Planning for installation 115

3. At the end of the plug-in installation, copy the script to the <was_home>/bin
directory of the application server machine, machine A. Start the application
server, and then execute the script.

4. When the Web server is defined to WebSphere Application Server, the
plug-in configuration file is generated automatically. For IBM HTTP Server,
the new plug-in file is propagated to the Web server automatically. For other
Web server types, you need to propagate the new plug-in configuration file to
the Web server.

Local Web server
In this scenario, a stand-alone application server exists on machine A. The Web
server and Web server plug-in are also installed on machine A. This topology is
suited to a development environment or for internal applications. See Figure 6-6.

Figure 6-6 Local Web server in a stand-alone server environment

Assume that the application server is already installed and configured. Perform
the following tasks:

1. Install the Web server on machine A.

2. Install the Web server plug-in on machine A by performing the following
steps:

a. Select Local installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the location
under the config directory in the profile for the stand-alone application
server will be selected. For example, when the name specified for the Web
server definition in the previous step is webserver1, the default location for
the plug-in file is:

<profile_home>/config/cells/<cell_name>/nodes/webserver1_node/ser
vers/webserver1/plugin-cfg.xml

Be aware that in a local scenario, the plug-in configuration file does not
need to be propagated to the server when it is regenerated. The file is
generated directly in the location from which the Web server reads it.

Machine A

Web Server

Plug-in
Application

Server
Web Client
(Browser)

116 WebSphere Application Server V6.1: Planning and Design

During the installation, the following tasks are performed:

a. The plug-in configuration file is created and placed in the location
specified.

b. The Web server configuration file is updated with the plug-in configuration,
including the location of the plug-in configuration file.

c. The WebSphere Application Server configuration is updated to define the
new Web server.

The plug-in configuration file is automatically generated. Because this is a local
installation, you do not have to propagate the new plug-in configuration to the
Web server.

6.7.2 Distributed server environment
Web servers in a distributed server environment can be local to the application
server or remote. The Web server can also reside on the deployment manager
system. You can define multiple Web servers, and the Web servers can reside
on managed or unmanaged nodes.

Remote Web server on an unmanaged node
In this scenario, the deployment manager and the Web server are on separate
machines. Note that the process for this scenario is almost identical to that
outlined for a remote Web server in a stand-alone server environment. The
primary difference is that the script that defines the Web server is run against the
deployment manager and you will see an unmanaged node created for the Web
server node. In Figure 6-7, the node is unmanaged because there is no node
agent on the Web server system.

Figure 6-7 Remote Web server in a stand-alone server environment

Firewall

Deploymnet
Manager

Machine B

Web Server

Plug-in
Web Client
(Browser)

Machine A

Firewall

Internet Intranet

 Chapter 6. Planning for installation 117

Assume that the deployment manager is already installed and configured on
machine A. Perform the following tasks:

1. Install the Web server on machine B.

2. Install the Web server plug-in on machine B by performing the following
steps:

a. Select Remote installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the file will
be placed in the directory that contains the server's configuration. For
example, when the name specified for the Web server definition in the
previous step is webserver1, the default location for the plug-in file is:

<plugin_home>/config/webserver1/plugin-cfg.xml

During the installation, the following tasks are performed:

a. A temporary plug-in configuration file is created and placed in the location
specified.

b. The Web server configuration file is updated with the plug-in configuration,
including the location of the plug-in configuration file.

c. A script is generated to define the Web server and an unmanaged node to
WebSphere Application Server. The script is located in:

<plug-in_home>/bin/configure<web_server_name>

3. At the end of the plug-in installation, you need to copy the script to the
<was_home>/bin directory of the deployment manager machine (machine A),
start the deployment manager, and execute the script.

When the Web server is defined to WebSphere Application Server, the plug-in
configuration file is generated automatically. For IBM HTTP Server, the new
plug-in file is propagated to the Web server automatically. For other Web server
types, you need to propagate the new plug-in configuration file to the Web
server.

118 WebSphere Application Server V6.1: Planning and Design

Local to a federated application server (managed node)
In this scenario, the Web server is installed on a machine that also has a
managed node. Note that this scenario would also be the same if the deployment
manager was also installed on machine A. See Figure 6-8.

Figure 6-8 Web server installed locally on an application server system

Assume that the application server is already installed, configured, and federated
to the deployment manager cell. Perform the following tasks:

1. Install the Web server on machine A.

2. Install the Web server plug-in on machine A by performing the following
steps:

a. Select Local installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the file will
be placed in the directory that contains the server's configuration. For
example, when the name specified for the Web server definition in the
previous step is webserver1, the default location for the plug-in file is:

<profile_home>/config/cells/<cell_name>/nodes/<AppSrv_node>/serve
rs/webserver1/plugin-cfg.xml

During the installation, the following tasks are performed:

a. The plug-in configuration file is created and placed in the location
specified.

b. The Web server configuration file is updated with the plug-in configuration,
including the location of the plug-in configuration file.

Machine A

Web Server

Plug-in
WebSpere
Application

Server Node

Deployment
Manager

Federate

Machine B

 Chapter 6. Planning for installation 119

c. A script is generated to define the Web server and an unmanaged node to
WebSphere Application Server. The script is located in:

<plug-in_home>/Plugins/bin/configure<web_server_name>

3. At the end of the plug-in installation, you need to execute the script to define
the Web server from the location the wizard stored it in on machine A. Make
sure that the deployment manager is running on Machine B. The deployment
manager configuration will be updated and propagated back to machine A at
node synchronization.

The plug-in configuration file is generated automatically and propagated at the
next node synchronization.

6.8 Planning checklist for the installation

Table 6-8 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 6-8 Planning checklist for installation planning

Planning item

Examine your selected topology to determine hardware needs and software licenses.
Create a list of what software should be installed on each system.

Determine what WebSphere Application Server profiles need to be created and whether
you will create them during installation or after. Decide on a location for the files (see
8.4.1, “Configuration repository location and synchronization” on page 158).

Develop a naming convention that includes system naming and WebSphere Application
Server component naming.

Develop a strategy for assigning TCP/IP ports to WebSphere processes.

Select an installation method (wizard, silent, Installation Factory).

Plan an administrative security strategy including user repository and role assignment.

Determine the user ID to be used for installation and whether you will perform a root or
non-root installation. If non-root, review the limitations.

If migrating, review WebSphere Application Server V6 Migration Guide, SG24-6369.

Plan for the Web server and Web server plug-in installation. Determine if the Web server
will be a managed or unmanaged server and note the implications. Create a strategy for
generating and propagating the Web server plug-in configuration file.

120 WebSphere Application Server V6.1: Planning and Design

Resources
WebSphere Application Server ships with an installation guide that can be
accessed through the Launchpad.

The WebSphere Application Server Information Center also contains information
that helps you through the installation process:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topinstalling.html

Depending on the topology you selected, you might need additional information.
Refer to following list of articles that you might find of interest. Note that the
WebSphere Application Server Information Center articles point to the Network
Deployment version.

For information about WebSphere Application Server for z/OS:

� WebSphere for z/OS V6 Sample ND Configuration

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653

� New Things You’ll Encounter When Building a V6.1 Cell

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781

� WebSphere for z/OS Version 6 - Configuration Planning Spreadsheet

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331

For information about the WebSphere application client:

� “Application Client for WebSphere Application Server”

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.base.doc/info/aes/ae/ccli_appclients.html

� “Planning to install WebSphere Application Client”

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.nd.doc/info/ae/ae/tins_scenario6.html

For information about installing and configuring Edge components, visit the IBM
WebSphere Application Server Edge Component Information Center:

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

For the most current information about hardware and software requirements for
Edge components, refer to the following Web page:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

 Chapter 6. Planning for installation 121

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topinstalling.html
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/ccli_appclients.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tins_scenario6.html

122 WebSphere Application Server V6.1: Planning and Design

Chapter 7. Planning for application
development and
deployment

This chapter highlights important topics you need to be aware of when planning
for the development and deployment of WebSphere applications. This chapter
contains items of interest for application developers, WebSphere infrastructure
architects, and system administrators. It includes the following topics:

� What is new in V6.1
� End-to-end life cycle
� Development and deployment tools
� Naming conventions
� Source code management
� Test environments
� Managing application configuration settings
� Planning for application upgrades in production
� Mapping applications to application servers
� Planning checklist for applications

7

© Copyright IBM Corp. 2006. All rights reserved. 123

7.1 What is new in V6.1

The following list highlights the features added since V6.0:

� Application Server Toolkit enhancements

The Application Server Toolkit has shipped with WebSphere Application
Server since Version 5.1, but with Version 6.1, it has been significantly
improved and is now a full-blown integrated development environment (IDE).
It can be used to build, test, and deploy J2EE applications on a WebSphere
Application Server V6.1 environment (but not on any previous release). It has
support for all J2EE artifacts supported by WebSphere Application Server
V6.1, such as servlets, JSPs, EJBs, XML, and Web services, and also
supports developing Java 5.0 applications.

� Portlet application support

The portlet container in WebSphere Application Server V6.1 provides the
runtime environment for JSR 168 compliant portlets. Portlet applications are
intended to be combined with other portlets to collectively create a single
page of output. The portlet container takes the output of one or more portlets
and generates a complete page that can be displayed.

The primary development tool for portlets on WebSphere Application Server
portlet applications is the Application Server Toolkit. You can also use
Rational Application Developer, but you should review the following item in
the WebSphere Information Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.nd.doc/info/ae/ae/cport_portlets.html

Portlets are packaged in WAR files.

Note that the portlet runtime does not provide the advanced capabilities of
WebSphere Portal, such as portlet aggregation and page layout,
personalization and member services, or collaboration features.

For more information about JSR 168, see:

http://jcp.org/en/jsr/detail?id=168

� Session Initiation Protocol (SIP) support

SIP applications are Java programs that use at least one Session Initiation
Protocol (SIP) servlet written to the JSR 116 specification. SIP is used to
establish, modify, and terminate multimedia IP sessions. SIP negotiates the
medium, the transport, and the encoding for the call. After the SIP call has
been established, the communication takes place over the specified transport
mechanism, independent of SIP. Examples of application types that use SIP
include voice over IP, click-to-call, and instant messaging.

124 WebSphere Application Server V6.1: Planning and Design

http://jcp.org/en/jsr/detail?id=168
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/cport_portlets.html

The Application Server Toolkit provides special tools for developing SIP
applications. SIP applications are packaged as SIP archive (SAR) files and
are deployed to the application server using the standard WebSphere
Application Server administrative tools. SAR files can also be bundled within
a J2EE application archive (EAR file), just like other J2EE components.

For more information, see:

– JSR 116 SIP Servlet API 1.0 Specification

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/

– RFC 3261

http://www.ietf.org/rfc/rfc3261.txt

7.2 End-to-end life cycle

The WebSphere Application Server V6.1 environment and its integration with
Rational tools offers the developer support at every stage of the application
development life cycle. Key stages in this life cycle are:

� Requirements gathering and analysis
� Prototyping
� High level design
� Low level design
� Implementation/coding/debugging
� Unit testing
� Integration testing
� Functional verification testing
� Acceptance testing
� Performance testing
� Deployment
� Maintenance (including fixes, modifications, and extensions)

The Rational Unified Process
IBM Rational Unified Process® (RUP®) is a software engineering process. It
provides a disciplined approach to assigning tasks and responsibilities within a
development organization. Its goal is to ensure the production of high-quality
software that meets the needs of its users within a predictable schedule and
budget.

RUP is an iterative process, which means that the cycle can feed back into itself
and that software grows as the life cycle is repeated. The opposite is a waterfall
model where the output of each stage spills into the subsequent stage.

 Chapter 7. Planning for application development and deployment 125

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://www.ietf.org/rfc/rfc3261.txt

This iterative behavior of RUP occurs at both the macro and micro level. At a
macro level, the entire life cycle repeats itself; the maintenance stage often leads
back to the requirements gathering and analysis stage. At a micro level, the
review of one stage might lead back to the start of the stage again or indeed back
to the start of another stage.

At the macro level, phases of Inception, Elaboration, Construction, and
Transition can be identified in the process. These phases are basically periods
of initial planning, more detailed planning, implementation, and finalizing and
moving on to the next project cycle. The next cycle repeats these phases. At the
micro level, each phase can go through several iterations of itself. For example,
during a construction phase, coding, testing, and re-coding can take place a
number of times. Figure 7-1 gives an overview of the Rational Unified Process.

Figure 7-1 Rational Unified Process overview

RUP identifies a number of disciplines that are practiced during the various
phases. These disciplines are practiced during all phases but the amount of
activity in each phase varies. Clearly the requirements discipline will be more
active during the earlier inception and elaboration phases, for example.

RUP maps disciplines to roles. There are many roles, but the roles break down
into the following four basic sets: Analysts, Developers, Testers, Managers.
Members of the team can take on more than one role. More than one team

Phases

Iterations

Inception Elaboration Construction Transition

Initial Elab #1 Elab #2 Const
#1

Const
#2

Const
#n

Tran
#1

Tran
#2

Disciplines

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment
Configuration &
 Change Mgmt

Project Management
Environment

126 WebSphere Application Server V6.1: Planning and Design

member can have the same role. Each role might require the practice of more
than one discipline.

RUP can be followed without using Rational Software; it is just a process
specification after all. However, RUP provides specific guidance (called Tool
Mentors) on how to use Rational Software when following the process. The
disciplines identified in RUP such as requirements analysis, design, or testing
map to specific pieces of Rational software and artifacts that this software
generates. RUP is a process that can be “bought into” as much or as little as is
required.

For more information about the Rational Unified Process, see:

http://www.ibm.com/software/awdtools/rup

7.3 Development and deployment tools

The WebSphere Application Server V6.1 environment comes with a rich set of
development tools. All editions of WebSphere Application Server V6.1 include
the Application Server Toolkit V6.1, which has been much improved since
previous WebSphere releases and is now a full-blown J2EE development tool.

WebSphere Application Server - Express V6.0 comes with the Rational Web
Developer V6.0. WebSphere Application Server and WebSphere Application
Server Network Deployment come with a trial version of Rational Application
Developer V6.0. For a full version of Rational Application Developer V6.0,
additional licensing is required.

The Application Server Toolkit is targeted to support only the version of the
WebSphere Application Server with which it ships. This means that Application
Server Toolkit V6.1 supports all new features of WebSphere Application Server
V6.1 and supports it as an integrated test environment. It does not, however,
support any of the previous versions of WebSphere Application Server as
integrated test environments.

At the time of writing, Rational Web Developer V6.0 and Rational Application
Developer V6.0 have not yet been updated to support the new features of
WebSphere Application Server V6.1. This means that, for example, they do not
include support for developing SIP applications and they do not include support
for WebSphere Application Server V6.1 as an integrated test environment.
However, they do support previous versions of WebSphere Application Server
(V5.1 and V6.0) as integrated test environments, which the Application Server
Toolkit V6.1 does not.

 Chapter 7. Planning for application development and deployment 127

http://www.ibm.com/software/awdtools/rup

To develop applications in Rational Web Developer V6.0 or Rational Application
Developer V6.0 and test them on a WebSphere Application Server V6.1 test
environment, you need to export them from the development environment as an
EAR or WAR file and deploy that onto your server.

This limitation in the Rational product set will be fixed as new versions of the
Rational products are released.

7.3.1 Application Server Toolkit V6.1

Application Server Toolkit was first shipped with WebSphere Application Server
V5.1 and was originally only for the assembly, deployment, and debugging of
J2EE applications on WebSphere. In WebSphere Application Server V6.1, it has
been significantly enhanced and is now a full-blown development tool that can be
used also for developing J2EE applications.

Application Server Toolkit V6.1 is based on the Eclipse 3.1.2 platform and
inherits much of its functionality from the Eclipse Web Tools Platform, which is a
relatively new Eclipse project to which IBM has been a major contributor. The
Web Tools Platform is what provides the Web and J2EE concepts to Eclipse
and, thus, the Application Server Toolkit.

The Application Server Toolkit V6.1 provides the following features:

� Java 5.0 support.

� Development of standard J2EE artifacts, such as servlets, JSPs, and EJBs
complying with J2EE 1.2, 1.,3 and 1.4 specifications.

� Web services tools including wizards to generate Web services from Java
beans, EJBs, and WSDL files and to consume Web services. Also includes
UDDI test registry integration.

� Development of static Web projects (HTML, CSS style sheets, JavaScript™).

� SIP development, including support for JSR 116 SIP servlets.

� Portlet development (JSR 168).

� XML tools to build and validate XML artifacts, including schemas, DTDs, and
XML files.

� Data tools for connecting to and interacting with various database vendors.

� WebSphere Enhanced EAR support.

� Support for annotation-based development (part of WebSphere rapid
deployment).

128 WebSphere Application Server V6.1: Planning and Design

� Support for WebSphere Application Server V6.1 test environments in either a
local or remote configuration, but no support for any previous versions of
WebSphere Application Server (such as 6.0 or 5.1).

� Jython script development, including script debugging capabilities.

� Jacl to Jython script conversion tools (jacl2jython).

� Integration with Concurrent Versions System (CVS), which is a popular
Source Code Management (SCM) repository. (No integration with Rational
ClearCase® is provided.)

To summarize, Application Server Toolkit V6.1 is a full-blown development
environment that provides you with the tooling necessary to create, test, and
deploy the various artifacts supported by WebSphere Application Server V6.1.

It does not, however, include the productivity-enhancing features and visual
editors found in Rational Web Developer and Rational Application Developer. It
also does not include Rational ClearCase, Crystal Reports, UML modeling,
Struts, or JSF support, and it does not support any of the previous releases of
WebSphere Application Server (such as 5.1 or 6.0) as test environments.

As of writing, the Application Server Toolkit V6.1 is also the only WebSphere or
Rational development environment that fully supports development of Java 5.0
applications. Although you can plug a Java 5.0 JDK™ into Rational Web
Developer V6.0 and Rational Application Developer V6.0 and use it to compile
Java 5.0 code, the Java editors are still not updated for Java 5.0 and therefore
not aware of the new features in the Java 5.0 language, so you might not get for
example proper syntax highlighting or code completion.

7.3.2 Rational Web Developer V6.0
Rational Web Developer is a subset of the functionality in Rational Application
Developer. This set of functions focuses on Web development tooling.
JavaServer™ Pages™, servlets, Struts, JavaServer Faces, static HTML, XML,
and Web services development are all supported. However, if you require
development of full J2EE applications, including EJB development, you need
Rational Application Developer.

Note: See 7.3, “Development and deployment tools” on page 127 for
important information about supported WebSphere Application Server
versions.

 Chapter 7. Planning for application development and deployment 129

Rational Web Developer V6.0 includes the following features, among others:

� Web services tools including wizards to generate Web services from Java
beans and Web Services Description Language (WSDL) files and to consume
Web services. It also includes a WSDL editor.

� Rapid Web development with page templates to give a consistent look and
feel to Web sites.

� Apache Struts support with visual editors for most Struts artifacts.

� JavaServer Faces tools that support JavaServer Faces (JSF) 1.0. Includes
additional IBM JSF components and s visual diagrams and editors to enable
the clear layout of actions and JSF page navigation.

� Service Data Objects.

� Ant scripting and JUnit testing framework.

� Integration with CVS, a popular SCM repository.

� Integration with Rational ClearCase, the Rational SCM repository of choice.

� Unit testing using JUnit and Hyades frameworks. For further information, see
the JUnit and Hyades sites at:

http://www.junit.org
http://www.eclipse.org/hyades

� IBM Rational Enterprise Generation Language (EGL) support, a high-level
implementation-independent language that is used for developing business
logic. For more information about EGL, see:

http://www.ibm.com/software/awdtools/eglcobol/index.html

7.3.3 Rational Application Developer V6.0
Rational Application Developer includes all the features of Rational Web
Developer and adds more productivity-enhancing features, which makes it an
even more appealing development environment for advanced J2EE
development.

In addition to the features in Rational Web Developer V6.0, Rational Application
Developer V6.0 brings features such as:

� Full support for J2EE 1.4, including EJB 2.1 support.

Note: See 7.3, “Development and deployment tools” on page 127 for
important information about supported WebSphere Application Server
versions.

130 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/software/awdtools/eglcobol/index.html
http://www.junit.org
http://www.eclipse.org/hyades

� Portal application development with support for WebSphere Portal 5.0.2.2
test environment.

� EJB test client for easy testing of EJBs.

� Support for annotation-based development (part of WebSphere rapid
deployment).

� UML modeling functionality.

� Integration with the Rational Unified Process and Rational tool set, which
provides the end-to-end application development life cycle.

� Application analysis tools that check code for coding practices. Examples are
even provided for best practices and issue resolution.

� Enhanced runtime analysis tools, such as memory leak detection, thread lock
detection, user-defined probes, and code coverage.

� Includes Rational ClearCase LT Server. ClearCase LT is the junior member
of the Rational ClearCase family of Source Code Management (SCM)
repositories.

� Crystal Reports for developing visual data reports.

� Component test automation tools to automate creating tests and building and
managing test cases.

7.3.4 WebSphere rapid deployment

WebSphere rapid deployment is a set of tools and capabilities included in the
WebSphere Application Server packaging and also used by the development
tools. These features allow for the deployment of applications with minimum
effort on the part of the developer or administrator. The rapid deployment model
has three basic features:

� Annotation-based programming
� Deployment automation
� Enhanced EAR file

Annotation-based programming enables you to annotate the EJB, servlet, or
Web service module code with special Javadoc™ syntax annotations. When the
source of the module is saved, the directives in these annotations are parsed,
and the rapid deployment tools use the directives to update deployment
descriptors. Therefore, the developer can concentrate on the Java source code
rather than metadata files.

Deployment automation is where applications that installation packages are
dropped into a hot directory under an application server and the application is
installed automatically. Any installation parameters that have not been specified

 Chapter 7. Planning for application development and deployment 131

by the installation package’s deployment descriptors have default values that are
applied by the automated deployment process.

Rapid deployment allows for a free-form deployment operation. In this mode, it is
possible to drop source code or compiled classes for servlets, EJBs, JSPs,
images, and so on into the hot directory without strict J2EE packaging. Rapid
deployment then compiles the classes, adds deployment descriptors, and
generates an EAR file that is automatically deployed on a running server.

An enhanced EAR file enables the enterprise archive package to include
information about resources and properties, such as data sources, that is
required by an application. When deployed on a server, the resources are
automatically created on the server.

The WebSphere rapid deployment set of tools can be useful for quickly testing
an application. For example, if you know you are going to test several versions of
the same application, you can use the automatic deployment feature to have the
rapid deployment tools automatically deploy the versions for you. However, there
are limitations and rules you need to obey when working with these utilities, and
most of the time you are significantly more productive using a full-blown
development environment, such as the Application Server Toolkit.

7.3.5 Which tool to use

Which tool you choose depends on your requirements. As of writing, if you need
to develop and test applications on WebSphere Application Server V6.1 and you
want an integrated WebSphere test environment for fast turnaround times, if you
require a Java 5.0 capable development environment, or if you need to develop
SIP applications, choose the Application Server Toolkit.

However, if you are developing applications that do not require the new features
only available in WebSphere Application Server V6.1 (and thus the Application
Server Toolkit V6.1), you can also use Rational Web Developer or Rational
Application Developer. These tools are feature-rich and have lots of
productivity-enhancing features not found in the Application Server Toolkit.

If you are using Rational Web Developer or Rational Application Developer
today, your best option is probably to stay with your current tool and then
upgrade when new versions become available.

132 WebSphere Application Server V6.1: Planning and Design

7.4 Naming conventions

Spending some extra time on application-related naming concepts quickly pays
off in practice, because it can reduce the time spent on analyzing the source of
issues during standard operations of future J2EE applications.

7.4.1 Naming for applications

Generally, some form of the version, release, modification, fix (VRMF) schema is
used to organize code and builds, and commonly, a dotted number system such
as 1.4.0.1 is used. In this way, code management systems can be certain of
identifying, creating, and re-creating application builds accurately from the
correct source code, and systems administrators and developers know exactly
which version is used.

Append the version number to the enterprise archive (EAR) file name, such as in
OrderApplication-1.4.0.1.ear.

Sometimes, the version number of included components, such as utility JAR files
packaged in the EAR, can also have version numbers in their file names, but this
can often cause problems. Consider a utility JAR with a version number in the file
name, such as log4j-1.2.4.jar. If that is updated and the name is changed to
log4j-1.2.5.jar, each developer has to update the class path settings in their
workspace, which will cost them time. It is then better to use an SCM system and
label the new JAR file as being version 1.2.5, but keep the file name constant,
such as just log4j.jar.

To keep track of all the versions of included components, it is a good idea to
include a bill of materials file inside the EAR file itself. The file can be a simple
text file in the root of the EAR file that includes versions of all included
components, information about the tools used to build it, and the machine on
which application was built. The bill of materials file can also include information
about dependencies to other components or applications, as well as a list of fixes
and modifications made to the release.

7.4.2 Naming for resources

When naming resources, preferably associate the resource to both the
application using it and the physical resource to which it refers. As an example
for our discussion, we use a data source, but the concept holds also for other
types of resources such as messaging queue. Remember, if your company
already has a naming convention for other environments (non-WebSphere) in
place, it is probably a good idea to use the same naming convention in
WebSphere.

 Chapter 7. Planning for application development and deployment 133

Assume that you have a database called ORDER that holds orders placed by
your customers. The obvious name of the data source would be Order and its
JNDI name jdbc/Order.

If the ORDER database is used only by a single application, the application
name can also be included to further explain the purpose of the resource. The
data source would then be called Order_OrderApplication and its JNDI name
jdbc/Order_OrderApplication.

Because the WebSphere administrative console sorts resources by name, you
might want to include the name of the application first in the resource, such as in
OrderApplication_Order. This gives you the possibility to sort your resources
according to the application using them.

To group and sort resources in the WebSphere administrative console, you can
also use the Category field, which is available for all resources in the
administrative console. In this text field, you can enter, for example, a keyword
and then sort your resource on the Category column. So instead of including the
name of the application in the resource name, you enter the application name in
the Category field instead.

If you have several different database vendors, you might also want to include
the name of the database vendor for further explanation. The Category field is a
good place to do that.

7.5 Source code management

In development, it is important to manage generations of code. Carefully
organize and track application builds and the source code used to create them to
avoid confusion. In addition to tracking the version of the source code, it is
equally important to track the version of the build tools and which machine was
used to generate a build. Not all problems are due to bugs in source code.

Developers produce code and usually use an integrated development
environment (IDE) such as the Application Server Toolkit or Rational Application
Developer to do that. Code in an IDE is stored in a workspace on the file system,
usually locally on each developer’s machine. As the project continues, and
perhaps new members join the team, the code grows and it becomes necessary
to manage the code in a central master repository. This allows for:

� Development team collaboration (work on common code)
� Code versioning (managing which versions are in which releases)
� Wider team collaboration (access for project managers, testers)

134 WebSphere Application Server V6.1: Planning and Design

SCM systems are used for these purposes.

Rational Web Developer and Rational Application Developer support Rational
ClearCase and CVS as SCM systems, while the Application Server Toolkit
supports only CVS.

7.5.1 Rational ClearCase

Rational ClearCase organizes its code repositories as versioned object bases or
VOBs. VOBs contain versioned file and directory elements. Users of Rational
ClearCase are organized according to their role. Each user has their own view of
the data that is in the VOB on which they are working. Rational ClearCase tracks
VOBs and views and coordinates the checking in and checking out of VOB data
to and from views.

As the role-based model suggests, Rational ClearCase is not just an SCM
system but also a Software Asset Management (SAM) system. This means that it
not only manages code but other assets. These further assets might be
produced by the other Rational products with which Rational ClearCase
integrates.

The Rational products with which ClearCase integrates are Rational Enterprise
Suite Tools, the Rational Unified Process, and, of course, Rational IDEs.
Artifacts such as use cases generated by Rational RequisitePro® can be stored
in Rational ClearCase. These can then be fed into a Rational Rose design model
and used to design Java components and generate Unified Modeling Language
(UML) diagrams and documentation.

ClearCase can also be used to implement the Unified Change Management
(UCM) process. This change management process can be enhanced by using
Rational ClearCase in conjunction with Rational ClearQuest, a change and
defect tracking software.

The software is scalable. Rational ClearCase LT is a cut down version of
Rational ClearCase for small-to medium-sized teams. It can be upgraded
seamlessly to Rational ClearCase as a user’s needs change. Additionally, use a
ClearCase MultiSite® add-on to support use of the software in geographically
dispersed development teams.

In short, although ClearCase is an SCM system, it is also an integral part of the
Rational toolset and RUP.

For more information about Rational software, see:

http://www.ibm.com/software/rational

 Chapter 7. Planning for application development and deployment 135

http://www.ibm.com/software/rational

7.5.2 Concurrent Versions System (CVS)

CVS uses a branch model to support multiple courses of work that are somewhat
isolated from each other but still highly interdependent. Branches are where a
development team shares and integrates ongoing work. A branch can be thought
of as a shared workspace that is updated by team members as they make
changes to the project. This model enables individuals to work on a CVS team
project, share their work with others as changes are made, and access the work
of others as the project evolves. A special branch, referred to as HEAD,
represents the main course of work in the repository (HEAD is often referred to
as the trunk).

CVS has the following features:

� Free to use under the GNU license.
� Open source.
� Widely used in the development community.
� Other SCM repositories can be converted to CVS.
� Many free client applications are available, for example, WinCVS.
� Can store text and binary files.
� Handles versioning and branching.
� Is a centralized repository.

For more information about Concurrent Versions System, see:

http://ximbiot.com/cvs/wiki

7.5.3 Which SCM to use

The obvious question arises: Which SCM should the team use? There is no
simple answer to this question, because the answer depends on a number of
factors.

Current software and processes
To some extent, the choice depends on what the existing situation is (if any) and
what the SCM and development process requirements are now and in the future.
If a team uses CVS and an existing, successful, development process,
ClearCase might not be necessary, especially if the size and complexity of
requirements is not likely to grow in the future. If this is not the case, Rational
ClearCase LT or Rational ClearCase are a good choice so that the full
integration of Rational and WebSphere products can be exploited now and in the
future.

136 WebSphere Application Server V6.1: Planning and Design

http://ximbiot.com/cvs/wiki

Team size
Rational ClearCase LT gives a sound starting place for smaller teams. Rational
ClearCase LT can be upgraded to Rational ClearCase later if necessary. On very
large development projects, Rational ClearCase and Rational ClearQuest have a
MultiSite option that allows for easier development by geographically dispersed
development teams.

Complexity of requirements
RUP provides a holistic approach to the end-to-end development life cycle. The
use of the UCM process, which is part of the RUP, can shield the user from
complex tagging and branching of code. CVS does not shield the user from this.

Cost
CVS is a possibly a cheaper option because it is free and has a large user base,
which means cheaper skills. In terms of hardware, it is likely that hardware costs
for hosting CVS itself are cheaper because of its smaller footprint. However,
these might be false economies. The limitations of CVS can cause a team to
migrate to Rational ClearCase later.

Change management process
If the development team uses CVS rather than Rational ClearCase, the team
does not get a prescribed change management process for CVS such as the
UCM. If their organization does not have its own change management process,
such a process should be created and put into place.

Summary
In summary, the smaller the development team and the less complex the
requirements, the more likely that CVS or Rational ClearCase LT are good
choices. As team size and complexity grows, Rational ClearCase and then
Rational ClearCase MultiSite become more attractive. Existing processes and
software as well as the budget for new software, hardware, and training are likely
to inform the decision further. In matters of cost, there might be false economies.

7.6 Automated build process

The major driver for implementing and maintaining an automated build process is
to provide a simple and convenient method for developers to perform builds for
development, test, and production environments.

 Chapter 7. Planning for application development and deployment 137

The main problems you might run into when you do not have an automated
process are:

� Things fail on your test or production environment because the code was not
packaged correctly.

� The wrong code was deployed causing the application to fail.

� The development team, testers, and even customers have to wait to get the
code out to a test, staging, or production environment because the only
person who has control over these is unavailable.

� You cannot reproduce a problem on production because you do not know
what version of files are in production at the moment.

The time spent developing an automated build script will pay for itself over time.
After you have an automatic build process in place, you can virtually eliminate
failures due to improper deployment and packaging, considerably reduce the
turnaround time for a build, allow you to easily recreate what is in each of your
environments, and ensure that the code base is under configuration
management.

There are several tools on the market to help you develop a build script, including
Apache Ant. Apache Ant is a Java-based build tool that extends Java classes
and uses XML-based configuration files to perform its job. These files reference
a target tree in which various tasks are run. Each task is run by an object that
implements a particular Task interface. Ant has become a very popular tool in the
Java world.

WebSphere Application Server provides a copy of the Ant tool and a set of Ant
tasks that extend its capabilities to include product-specific functions. These
Apache Ant tasks reside in the com.ibm.websphere.ant.tasks package. The
Javadoc for this package contains detailed information about the Ant tasks and
how to use them.

The tasks included with WebSphere Application Server enable you to:

� Install and uninstall applications.
� Run EJB deployment and JSP pre-compilation tools.
� Start and stop servers in a base configuration.
� Run administrative scripts or commands.

By combining these tasks with those provided by Ant, you can create build
scripts that pull the code from the SCM repository, and then compile, package,
and deploy the enterprise application on WebSphere Application Server. To run
Ant and have it automatically see the WebSphere classes, use the ws_ant
command.

138 WebSphere Application Server V6.1: Planning and Design

For more detailed information about Ant, refer to the Apache organization Web
site at:

http://ant.apache.org/index.html

7.7 Automated functional tests

Automating your functional tests might be a good idea depending on your project
size and how complex the requirements of the project are. Scripts execute much
faster then people, but they are not automatically generated, so someone has to
create them at least one time. It is possible to create a script to cover all function
in your application but it would be very complicated and costly. A good idea is to
create scripts for the main features of the system and those that will not change
that much over the time, so every time a new build is published by an automated
build tool or a human, you can be sure that the application still works properly.

IBM offers a rich set of software tools for implementing automated test solutions.
These solutions solve many common problems and therefore reduce complexity
and cost. For more information, see Rational Functional Tester at:

http://www.ibm.com/software/awdtools/tester/functional/

7.8 Test environments

Before moving an application into production, it is very important to test it
thoroughly. Because there are many kinds of tests that need to be run by
different teams, a proper test environment often consists of multiple test
environments.

Tests cases must be developed according to system specification and use
cases. Do this before the application is developed. System specification and use
cases need to be detailed enough so that test cases can be developed. Test
cases need to verify both functional requirements (such as application business
logic and user interface) and non-functional requirements (such as performance
or capacity requirements). After developing the test cases and enough
functionality has been developed in the application, start testing.

 Chapter 7. Planning for application development and deployment 139

http://ant.apache.org/index.html
http://www.ibm.com/software/awdtools/tester/functional/

Figure 7-2 shows an overview of a recommended test environment setup.

Figure 7-2 Test environments

Whether you choose to use some of these test environments, all of them, or even
additional test environments depends on the system being developed, project
size, budget constraints, and so on.

Each environment is maintained as a separate cell in order to completely isolate
the environments from each other. For smaller environments, a single application
server profile is usually sufficient, while larger ones might need a deployment
manager for that particular cell environment.

Database,
backends

WebSphere

HTTP

Acceptance test environment

Load
balancer

Database,
backends

WebSphere

HTTP

Acceptance test environment

Load
balancer

Database,
backends

WebSphere

HTTP

Production environment

Load
balancer

Database,
backends

WebSphere

HTTP

Production environment

Load
balancer

Database

WebSphere

HTTP

System test environment

Database

WebSphere

HTTP

System test environmentIntegration test
environment

HTTP,
WebSphere,

Database

Integration test
environment

HTTP,
WebSphere,

Database

Development
environment

SCM Build
server

Development
environment

SCM Build
server

140 WebSphere Application Server V6.1: Planning and Design

Development environment
Usually each developer has their own WebSphere test environment integrated in
the development tool. This test environment is used for the developer’s daily
work and it is often active while the developer is coding. Whenever necessary,
the developer can perform instant testing.

Because of the tight integration between WebSphere Application Server and the
IBM development tools, the application server can run the application using the
resources in the developer’s workspace. This eliminates the need for developers
to execute build scripts, export, or otherwise package the application into an EAR
file and deploy that on a test server for every small change made. This capability
makes it very easy and quick to test applications while developing them and
increases developer productivity.

Each developer is also responsible for performing unit testing of their own code.
The majority of all tests performed for the system are executed in this
environment, and the primary goal is to wash out obvious code bugs. The
developers work against and share code using the SCM system. The
development environment is most often a powerful Windows desktop machine.

When each developer has committed their code on to the integration stream in
the SCM system, a development lead or integration team usually performs a
clean build of the whole application, bringing together code developed by
different developers. This is usually done on a special build server and is
controlled by automatic build scripts (see 7.6, “Automated build process” on
page 137). This server might need to have a copy of the Application Server
Toolkit or Rational Web Developer installed.

The development team should also create a Build Verification Test process (see
7.7, “Automated functional tests” on page 139), one where each new build is
executed before making this build available to the team. A Build Verification Test
covers test cases or scenarios that verify that critical paths through the code are
operational. Build Verification Test scripts are often controlled by JUnit.

Another activity that is every developer’s responsibility is to perform basic code
profiling. By using the profiling tools in Rational Application Developer, a
developer can discover methods that perform poorly, find memory leaks, or
excessive creation of objects.

Integration test environment
After a successful build and regression test, the application is deployed to the
integration test environment. This is the environment where the developers
perform integration tests among all system components on a hardware and
software platform that mirrors the production environment, although in a very
small size.

 Chapter 7. Planning for application development and deployment 141

Because the production environment is often not the same platform as the
development environment, a guideline is to start testing on the target platform as
early as possible in the test phase. This testing will help discover problems with
incompatibilities between platforms, for example, hard coded folder paths (such
as C:\ versus /usr). The integration test environment is usually the first
environment suitable for that.

For small projects, the integration test environment can often be shared between
different projects. But if the number of projects or developers is too large, it
becomes difficult to manage. Usually no more that 5 to 10 developers should
share a single integration test environment. If a developer needs to perform tests
that might damage the environment, a dedicated environment should be used.

As long as the machine has enough resources in terms of CPU and memory,
using multiple WebSphere profiles can also be a good method to isolate different
teams from each other. Using VMWare is another option.

The development team manages and controls the integration test environment.

System test environment
The purpose of the system test is to verify that the system meets both functional
and non-function requirements. After the development team has tested the
application in their own controlled environment, it is delivered to the system test
team. When the application is delivered, the system test team deploys it using
the instructions given.

If the tests in the previous test stages have been less formal, a key aspect of the
system test is formality. The system test team is responsible for verifying all
aspects of the system and ensuring that it conforms to the specifications.
Functional requirements include things such as does the system execute the
business rules defined, does the user interface show the right information, and
so on. Non-functional requirements include capacity, performance, installation,
backup, and failover requirements.

The system test team completely controls the system test environment. The
environment is usually a cut-down version of the real production environment,
but with all the important components in place. If the production environment is a
highly available environment with WebSphere clusters, the system test should
also be set up with clusters to verify both application functionality and
deployment routines.

The system test environment can also be used by other teams. Perhaps the
system administrators need to test new patch levels for the operating system,
WebSphere, database, and so on before rolling them out in production. The
system test environment is a good place to do that. If a patch is committed, it

142 WebSphere Application Server V6.1: Planning and Design

should also be applied to the other test environments to keep all environments in
sync.

Acceptance test environment
The acceptance test environment is the last stage where testing takes place
before moving the application into production. The acceptance test environment
is the one that most closely resembles the actual production environment.
Hardware and software must be identical to the production environment.

Because of cost constraints, it is often not possible to have an acceptance test
environment with identical capacity as the production environment. The
acceptance test environment is, therefore, usually smaller than the production
environment, but needs to contain all the same components, same brands, same
software patch levels, and same configuration settings as the production
environment.

The purpose of the acceptance test environment is to give the operations team a
chance to familiarize themselves with the application and its procedures (such as
installation, backup, failover, and so on). It also provides an opportunity to test
unrelated applications together. The previous environments all focused on
testing the applications independently of each other.

Often the acceptance test environment is where performance tests are run,
because the acceptance test environment is the one most similar to the real
production environment.

When doing performance tests, it is extremely important to have a representative
configuration as well as representative test data. It is not unusual that projects
perform successful performance tests where the results meet the given
requirements, and then when the application is moved into production, the
performance is bad. Often this can be because the production database is much
larger than the databases used in the acceptance test environment. Therefore, it
is very important that the test databases have been populated with
representative data. Ultimately, a copy of the production database should be
used, but sometimes this is not possible because tests might involve placing
orders or sending confirmation e-mails. Other causes for differences in
performance between the successful performance tests and the production
environment is, for example, that the performance tests ran without HTTP
session persistence, while the production environment uses session persistence.
To get realistic results, the performance test environment and setup must be
realistic, too.

 Chapter 7. Planning for application development and deployment 143

7.9 Managing application configuration settings

Almost all non-trivial applications require at least some amount of configuration
to their environment in order to run optimally. Part of this configuration (such as
references to EJBs, data sources, and so on) is stored in the application
deployment descriptors and is modified by developers using tools such as the
Application Server Toolkit or Rational Web Developer. Other settings, such as
the JVM maximum heap size and database connection pool size, are stored in
the WebSphere configuration repository and modified using the WebSphere
administrative tools. Finally, there are settings that are application-internal,
usually created by the developers and stored in Java property files. These files
are then modified, usually using a plain text editor, by the system administrators
as necessary after deploying the application.

7.9.1 Classifying configuration settings

Configuration data can often be categorized into three different categories.

Application-specific
This category includes configuration options that are specific for an application
regardless of its deployment environment. Examples include how many hits to
display per page for a search result and the EJB transaction timeout (for
example, if the application has long-running transactions). This category should
move, unchanged, with the application between the different environments.

Application environment-specific
This category includes configuration options that are specific both to an
application and its deployment environment. Examples include log detail levels,
cache size, and JVM maximum heap size.

For example, in development, you might want to run the OrderApplication with
debug level logging, but in production, you want to run it with only warning level
logging. And during development, the OrderApplication might work with a
256 MB heap, but in the busier production environment, it might need a 1 GB
heap size to perform well. These options should not move along with the
application between environments, but need to be tuned differently for the
application in each environment.

Environment-specific
This category includes configuration options that are specific to a deployment
environment but common to all applications running in that environment. This
category includes, for example, the name of the temp folder if applications need
to store temporary information. In the Windows development environment, this

144 WebSphere Application Server V6.1: Planning and Design

might be C:\temp, but in the UNIX production environment, it might be /tmp. This
category of options must not move between environments.

7.9.2 Managing configuration settings

Dealing with configuration settings is usually a major challenge for both
developers and system administrators. Not only may configuration settings have
to be changed when the application is moved from one deployment environment
to another, but the settings must also be kept in sync among all application
instances if running in a clustered environment.

To manage the settings stored in the WebSphere configuration repository (such
as the JVM maximum heap size), it is common to develop scripts that are run as
part of an automatic deployment to configure the settings correctly after the
application has been deployed. The values suitable for the application can be
stored in a bill of materials file inside the EAR file. This file can then be read by
scripts and used to configure the environment.

Settings stored in the deployment descriptors usually do not have to be changed
as the application is moved between different environments. Instead, the J2EE
specification does a good job here and separates the developers’ work from the
deployers’. During deployment, the resources specified in the deployment
descriptors are mapped to the corresponding resources for the environment (for
example, a data source reference is mapped to a JNDI entry, which is points to a
physical database).

Application-internal configuration settings, however, are often stored in Java
property files. These files are plain text files with key-value pairs. Java has
provided support for reading and making them available to the application using
the java.util.Properties class since Java 1.0. Although you can use databases,
LDAP, JNDI, and so on to store settings, plain Java property files are still by far
the most common way of configuring internal settings for Java applications,
mainly because it is an easy and straightforward method to accomplish the task.
However, in a clustered environment where the same application runs on
multiple servers distributed across different machines, care must be taken as to
how to package, distribute, and access the property files.

For packaging the property files, you have two approaches. Either you include
the property files within the EAR file itself or you distribute them separately. To
include them within an EAR file, the easiest approach is to create a utility JAR
project, add the property files to it, and then add that project as a dependent
project to the projects that will read the property files. The utility JAR project is
then made available on the class path for the other projects. Best practice,
however, is to centralize access to the property files using a custom property
manager class, so access to the properties is not scattered all over your code.

 Chapter 7. Planning for application development and deployment 145

For example, to load a property file using the class loader, you can use the
following code snippet:

Properties props = new Properties();
InputStream in =
MyClass.class.getClassLoader().getResourceAsStream(“my.properties”);
props.load(in);
in.close();

Property files packaged in a JAR file in the EAR file are a good solution for
property files that should not be modified after the application has been deployed
(the application-specific category described earlier).

However, if you want to make the property files easily accessible after the
application has been deployed, you might want to store them in a folder outside
the EAR file. To load the property files, you then either make the folder available
on the class path for the application (and use the previous code snippet) or you
use an absolute path name and the following code snippet instead (assuming the
file to load is /opt/apps/OrderApp/my.properties):

Properties props = new Properties();
InputStream in = new
FileInputStream(“/opt/apps/OrderApp/my.properties”);
props.load(in);
in.close();

Using absolute path names is usually a bad idea because it tends to hard code
strings into your code, which is not what you want to do.

A better approach is to make the folder with the property files available on the
class path for the application. You can do this by defining a shared library to
WebSphere Application Server. Instead of specifying JAR files, you specify the
name of the folder that holds the property files, such as “/opt/apps/OrderApp”, in
the Classpath field for the shared library.

Another less well-known but even better approach to access property files is to
use URL resources. We do not go into the details of exactly how to do that here,
but the following steps describe the approach:

1. Create a folder on your system that holds the property file.

2. Use the WebSphere administrative console and create a URL resource that
points to the property file and assign it a JNDI name.

3. In the application, create a URL resource reference binding pointing to the
JNDI name chosen.

146 WebSphere Application Server V6.1: Planning and Design

4. In Java, use JNDI to look up the URL resource reference. Create an
InputStream from the URL, and then use that InputStream as input to the
java.util.Properties class to load the property files.

This approach to access property files is also more J2EE compliant because it
does not rely on the java.io package for file access, which is prohibited according
to the J2EE specification.

The method also gives you additional opportunities that comes with the URL
class, and that is to load the property files using HTTP and FTP. So if you want,
you can set up an HTTP server serving properties files from a central location.

To learn more about this method, see the IBM developerWorks® article Using
URL resources to manage J2EE property files in IBM WebSphere Application
Server V5, available at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0502_b
otzum/0502_botzum.html

Unless using the previous technique with the HTTP or FTP protocol, it is
convenient to manage all property files in a central location, on the deployment
manager. However, property files stored in folders outside the EAR files are not
propagated to the WebSphere nodes unless the folders are created under the
deployment manager cell configuration folder, which is
<dmgr_profile_home>\config\cells\<cell_name>.

By creating a folder, such as appconfig, under this folder, you can take
advantage of the WebSphere file transfer service to propagate your files to the
nodes. But because this folder is not known to the WebSphere infrastructure, it
will not happen automatically when the contents are changed. Instead, you need
to force a synchronization with the nodes. This propagates the property files to
the <profile_home>\config\cells\<cell_name>\appconfig directory on each node,
and you can include that folder on the class path using a shared library or point
your URL resources to it.

If you store property files that need to be changed between different
environments inside the EAR file, you might discover that there are problems
involved with that approach, especially in a clustered environment.

Tip: When deciding on names for settings in property files, it is a good idea to
include the unit the setting refers to in the name. Therefore, instead of using
MaxMemory or Timeout, it is better to use MaxMemoryMB and TimeoutMS to
indicate that the max memory should be given as megabytes and the timeout
as milliseconds. This can help reduce confusion for the system administrator
who does not know the internals of the application.

 Chapter 7. Planning for application development and deployment 147

http://www.ibm.com/developerworks/websphere/library/techarticles/0502_botzum/0502_botzum.html

In a clustered environment when an enterprise application is deployed to
WebSphere, it is distributed to each node in the cluster using the WebSphere file
transfer mechanism. At each node, the EAR file is expanded and laid out on the
file system so that WebSphere can execute it. This means that a property file
included in the EAR file is automatically replicated to each member of the cluster.

If you then need to make a change to the property file, you either have to do that
manually on each cluster member, which can be error prone, or you do it on the
deployment manager itself and then distribute the updated file to each node
again. However, WebSphere does not fully expand the contents of the EAR file
to the file system on the deployment manager (it only extracts from the EAR file
the deployment descriptors needed to configure the application in the
WebSphere cell repository), so the property file is not readily accessible on the
deployment manager. Because of this, you must manually unpack the EAR file,
extract the property file, modify it, and then re-create the EAR file again and
redeploy the application. This is not a recommended approach.

Another option is to distribute the property files within the EAR, but after
deployment, extract them from the EAR file and place them in a folder separate
from the EAR. An example of a folder name suitable for that is
<dmgr_profile_home>\config\cells\<cell_name>\configData on the deployment
manager machine. Anything in that folder is replicated to each node in the cell
when WebSphere synchronizes with the nodes. For the application to find the file,
it must then refer to it on its local file system. But because that folder name then
includes both the name of the profile and the name of the cell, it can quickly
become messy and is usually not a good solution.

7.10 Planning for application upgrades in production

To have a production environment that enables you to roll out new versions of
applications while maintaining continuous availability is not only the responsibility
of the WebSphere infrastructure architects and system administrators. Even
though they might not always realize it, developers play a critical role in making
the production environment stable and highly available. If an application is poorly
written or developers introduce incompatible changes, there might not be much
the system administrators can do but to bring down the whole system for an
application upgrade. And unfortunately, application developers are too often not
aware of the impact their decisions have on the production environment.

148 WebSphere Application Server V6.1: Planning and Design

Developers need to consider at least the following areas when planning for new
versions:

� Database schema compatibility

If a change in the database layout is introduced, it might be necessary to shut
down all instances of an application (or even multiple applications if they use
the same database) in order to migrate the database to the new layout and
update the application.

One possibility is to migrate a copy of the database to the new layout and
install the new applications on a new WebSphere cluster and then switch to
the new environment. In this case, all transactions committed to the hot
database will need to be re-applied to the copy, which is now the hot
database.

� EJB version compatibility

If EJB interfaces do not maintain backward compatibility and the application
has stand-alone Java clients, it might be necessary to distribute new versions
of the Java clients to users’ desktops. Or if the EJB clients are servlets but
they are not deployed as part of the same EAR file as the EJBs or they are
running in a container separate from the EJB, it might be necessary to set up
special EJB bindings so that the version 1 clients can continue to use the
version 1 EJBs while version 2 clients use new version 2 EJBs.

� Compatibility of objects in HTTP session

If you take a simple, straightforward approach and use the WebSphere rollout
update feature and you have enabled HTTP session persistence, you must
make sure that objects stored in the HTTP session are compatible between
the two application releases. If a user is logged on and has a session on one
application server and that server is shut down for its application to be
upgraded, the user will be moved to another server in the cluster and his
session will be restored from the in-memory replica or from a database. When
the first server is upgraded, the second server will be shut down and the user
will then be moved back to the first server again. Now, if the version 1 objects
in the HTTP session in memory are not compatible with the version 2
application, the application might fail.

� User interface compatibility

If a user is using the application and it suddenly changes the way it looks, the
user might become frustrated. And, it might even require training for users to
learn a new user interface or navigation system.

We do not go into depth on this subject but instead point you to an excellent
article about the subject on developerWorks, Maintain continuous availability
while updating WebSphere Application Server enterprise applications. It
describes what to consider both from a developer point of view and a

 Chapter 7. Planning for application development and deployment 149

WebSphere infrastructure and system administration point of view in order to
have a highly available environment that can handle a rollout of new application
versions.

http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/
0412_vansickel.html

7.11 Mapping applications to application servers

A question that often arises when deploying multiple WebSphere applications is
whether the applications need to be deployed to the same application server
instance (JVM) or if you need to create a separate instance for each application.
There is no easy answer to this question because it depends on several factors.
Normally, you deploy multiple applications to one application server, mainly
because it uses a lot less resources. However, it is not always possible to do so.

This section attempts to give you some points to think about so that you can
make the right decision for your particular environment.

The advantages of deploying each application to its own application server are:

� If an application server process crashes, it will bring down only the application
running in that server. However, if using a cluster, you would still have other
instances running.

� Many WebSphere settings, such as JVM heap size and EJB transaction
timeout, are configured at the application server level. If two applications
require different settings, they cannot be deployed to the same application
server. Note, however, that multiple applications can be deployed to the same
application server and use the same heap, as long as it is large enough to
accommodate all applications.

� Java environment variables (specified using -D on the Java command line, or
using JVM custom properties) are specified per JVM instance. This means
that if you need to specify, for example, -Dlog4j.configuration with different
settings for each application, you cannot do that if they are all in the same
JVM.

� You can use the WebSphere rollout update feature, which requires the
application server to be stopped. Although it can be used even when there
are multiple applications in each application server, all applications are
stopped as the application server is stopped. You need to have all
applications clustered to have other instances always available.

150 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html

� Each application will receive its own SystemOut and SystemErr log file. If
multiple applications are deployed on the same application server, system log
output from all applications would be interleaved in the SystemOut and
SystemErr logs. Usually, however, this is not a problem because applications
often use, for example, log4j (which is very configurable) to perform logging
instead of plain system out print statements.

The advantages of deploying multiple applications to the same application server
are:

� By deploying multiple applications to the same application server, you can
reduce the memory used. Each application server instance requires about
130 MB of RAM for WebSphere to run. If you have 10 such application server
processes running on your system, you have consumed more than 1 GB
worth of RAM for the WebSphere runtime alone.

� You can use EJB local interfaces to make local calls from one application to
another, because they are in the same JVM.

� Fewer application servers means fewer ports open in the WebSphere
Application Server tier, which means fewer ports need to be opened in the
firewall between the HTTP tier and the WebSphere Application Server tier.

Sometimes, a mixed approach is the best way to go. By grouping related or
similar applications and deploying them to the same application server, while
deploying other applications that need to run in their own environment, you can
achieve a good compromise.

7.12 Planning checklist for applications

Table 7-1 lists a summary of items to consider as you plan and additional
resources that can help you.

Table 7-1 Planning checklist for applications

Planning item

Select the appropriate set of application design and development tools.

Create a naming convention for applications and application resources.

Implement a source code management system.

Design an end-to-end test environment.

Create a strategy for maintaining and distributing application configuration data.

Create a strategy for application maintenance.

 Chapter 7. Planning for application development and deployment 151

Resources
For a good overall reference for packaging and deploying J2EE applications in
WebSphere Application Server, refer to WebSphere Application Server V6.1:
System Management and Configuration, SG24-7304. We suggest that you have
a copy of this book available as you plan your Web services environment.

For detailed information about application development using Rational
Application Developer, refer to Rational Application Developer V6 Programming
Guide, SG24-6449.

The WebSphere Application Server Information Center also contains a lot of
useful information. For a good entry point to information about application
development and deployment, go to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topdeveloping.html

Determine where applications will be deployed. (All on one server?)

Planning item

152 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topdeveloping.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topdeveloping.html

Chapter 8. Planning for system
management

This chapter provides an overview of the planning necessary for the system
management of the WebSphere Application Server runtime environment. It
focuses on developing a strategy to best use the multitude of system
management capabilities in WebSphere Application Server. The operational
efficiency of the overall system hinges on the proper implementation of the
system management processes. This chapter contains the following sections:

� What is new in V6.1
� Administrative security
� WebSphere administration facilities
� Configuration planning
� Change management topics
� Problem management
� Planning checklist for system management

8

© Copyright IBM Corp. 2006. All rights reserved. 153

8.1 What is new in V6.1
The following list highlights the changes in administrative tools and processes
since V6.0:

� WebSphere Application Server V6.1 introduces thin administrative client
libraries that enable to you create and run administrative clients. These
clients rely on a JAR file, rather than requiring a full installation of WebSphere
Application Server or a Websphere Application Server client installation.

� Commands and arguments for the wsadmin tool are not case-sensitive
anymore.

� The wsadmin language used (either Jacl or Jython) is inferred by the suffix on
the script file.

� Command assistance in the administrative console maps your administrative
activities to wsadmin scripting commands. Using it, you can view the wsadmin
script command in Jython for your last action run in the administrative
console.

8.2 Administrative security

We recommend enabling administrative security to prevent unauthorized access
to the administrative tasks. Enabling administrative security only secures
administration tasks, not applications.

Proper planning for system management includes identifying the people who will
need access to the administrative tools and designing a system of groups, users,
and roles that fit your needs.

WebSphere Application Server V6.1 gives you the option to enable
administrative security during profile creation. If you choose this option during
profile creation, you will be asked to provide a user ID and password that will be
stored in a file-based user repository and be mapped to the Administrator role.
Additional users can be added after profile creation using the administrative
tools.

Administration users are assigned to roles that determine their level of authority
(see “Secure administration tasks” on page 107).

154 WebSphere Application Server V6.1: Planning and Design

8.3 WebSphere administration facilities

WebSphere Application Server provides a variety of administrative tools for
configuring and managing your runtime environment, including:

� Administrative console

Use the administrative console to perform the deployment and system
administration tasks through a Web interface.

� WebSphere scripting client (wsadmin)

The wsadmin tool is intended for production environments and unattended
operations.

� Task automation with Ant

With Ant, create build scripts that compile, package, install, and test your
application on the application server.

� Administrative programs

Develop Java classes that perform administrative functions on WebSphere
Application Server.

� Command line tools

Using the command line tools, start and stop application servers, check
server status, add or remove nodes, and complete similar tasks.

The choice of which combination of administrative tools you will employ
ultimately depends on the size and complexity of your runtime environment.
Where you have few resources, but many tasks, we recommend the use of
automation and scripts. Where you have multiple administrators that will perform
different tasks, you might want to carefully consider defining different access
control roles. This is especially important where you want non-administrators to
be able to perform limited roles such as application deployment.

8.3.1 Administrative console
The WebSphere Application Server administrative console connects to a running
stand-alone server or, in a distributed environment, to a deployment manager.

Non-secure administration access
If administrative security is not enabled, the console is accessed through a Web
browser through the following URL:

http://<hostname>:<WC_adminhost>/ibm/console

For example, http://localhost:9060/ibm/console.

 Chapter 8. Planning for system management 155

You can gain access to the console without entering a user name. If you do enter
a name, it is not validated and is used exclusively for logging purposes and to
enable the system to recover the session if it is lost while performing
administrative tasks.

Secure administration access
If administrative security is enabled, the console is accessed through a Web
browser through the following URL (note the use of https:// versus http://):

https://<hostname>:<WC_adminhost>/ibm/console

You must enter an authorized user ID and password to log in.The actions that
you can perform within the console are determined by your role assignment.

8.3.2 WebSphere scripting client (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful, text
console-based command interpreter environment that enables you to run
scripted administrative operations. The wsadmin administrative scripting program
supports two scripting languages, Jacl and Jython.

You can run the wsadmin tool in interactive and unattended mode. Use the
wsadmin tool to perform the same tasks that you can perform using the
administrative console.

WebSphere Application Server V6.1 adds command assistance in the
administrative console that maps your administrative activities to wsadmin
scripting commands written in Jython. These commands can be viewed from the
console, and if you want, you can log the command assistance data to a file. You
can also allow command assistance to emit Java Management Extensions
(JMX™) notifications to the Application Server Toolkit. The Application Server
Toolkit has Jython development tools that help you develop and test Jython
scripts.

Note: WebSphere Application Server V6.1 represents the start of the
deprecation process for the Jacl syntax associated with the wsadmin tool. The
Jacl syntax for the wsadmin tool continues to remain in the product and is
supported for at least two major product releases. After that time, the Jacl
language support might be removed from the wsadmin tool. For this reason,
you should use Jython when creating new scripts.

A conversion tool called jacl2jython is supplied with WebSphere Application
Server V6.1 to help you convert existing scripts.

156 WebSphere Application Server V6.1: Planning and Design

8.3.3 Task automation with Ant
WebSphere Application Server provides a copy of the Ant tool and a set of Ant
tasks that extend the capabilities of Ant to include product-specific functions. Ant
has become a very popular tool among Java programmers.

Apache Ant is a platform-independent, Java-based build automation tool,
configurable through XML script files and extensible through the use of a Java
API. In addition to the base Ant program and tasks, WebSphere Application
Server provides a number of tasks that are specific to managing and building
applications in WebSphere Application Server.

The Ant environment enables you to create platform-independent scripts that
compile, package, install, and test your application on the application server.
Integrate with wsadmin scripts and use Ant as their invocation mechanism.

8.3.4 Administrative programs
WebSphere Application Server supports access to the administrative functions
through a set of Java classes and methods. You can write a Java program that
performs any of the administrative features of the WebSphere Application Server
administrative tools. You can also extend the basic WebSphere Application
Server administrative system to include your own managed resources.

You can prepare, install, uninstall, edit, and update applications through
programming. Preparing an application for installation involves collecting various
types of WebSphere Application Server-specific binding information to resolve
references that are defined in the application deployment descriptors. This
information can also be modified after installation by editing a deployed
application. Updating consists of adding, removing, or replacing a single file or a
single module in an installed application, or supplying a partial application that
manipulates an arbitrary set of files and modules in the deployed application.
Updating the entire application uninstalls the old application and installs the new
one. Uninstalling an application removes it entirely from the WebSphere
Application Server configuration.

8.3.5 Command line tools

Command line tools enable you to perform management tasks including starting,
stopping, and checking the status of WebSphere Application Server processes
and nodes. These tools only work on local servers and nodes. They cannot
operate on a remote server or node. To administer a remote server, you need to
use the administrative console or a wsadmin script that connects to the
deployment manager for the cell in which the target server or node is configured.

 Chapter 8. Planning for system management 157

All command line tools function relative to a particular profile. If you run a
command from the directory <was_home>/WebSphere/AppServer/bin, the
command will run within the default profile.

8.4 Configuration planning
This section describes global configuration planning topics. Configuring and
managing the WebSphere runtime environment can be complex. This section
addresses the following items to consider at the initial installation time:

� Configuration repository location and synchronization
� Configuring application and server startup behavior
� Custom application server configuration templates
� Planning for resource scope use

8.4.1 Configuration repository location and synchronization
WebSphere Application Server uses one or more configuration repositories to
store configuration data. In a stand-alone server environment, one repository
exists within the application server profile directory structure. In a distributed
server environment, multiple repositories exist. The master repository is stored
within the deployment manager profile directory structure. Each node also has a
repository tailored to that node and its application servers. The deployment
manager maintains the complete configuration in the master repository and
pushes changes out to the nodes using the file synchronization service.
Repositories are in the <profile_home>/config subdirectory.

From a planning perspective, consider the actual location of the profile directory
structures. This can have an effect on the performance and availability of the
configuration file. The location is chosen during profile creation. If you run
WebSphere Application Server for z/OS, we recommend that you use a separate
HFS for each node.

In addition, consider whether to use automatic synchronization to push out
changes to the nodes or to synchronize changes manually. In an environment
where there are a lot of administration changes going on, automatic
synchronization might have a performance impact on the network. We discuss
this more in 8.5.2, “Changes in topology” on page 164.

8.4.2 Configuring application and server startup behavior

One feature of WebSphere Application Server is the ability to manage the startup
of applications and servers.

158 WebSphere Application Server V6.1: Planning and Design

By default, applications start when their server starts. The following settings
enable you to fine-tune the startup speed and order of applications that are
configured to start automatically when the server starts. Access these settings in
the administrative console by navigating to Applications → Enterprise
applications → <your_application> → Startup behavior.

� The Startup order setting for an application lets you specify the order in which
to start applications when the server starts. The application with the lowest
startup order starts first. Applications with the same startup order start in
parallel. This can be very important for applications that have been split into
sub-applications that need to start in a certain order due to dependencies
between them.

� The Launch application before server completes startup setting lets you
specify whether an application must initialize fully before its server is
considered started. Background applications can be initialized on an
independent thread, thus allowing the server startup to complete without
waiting for the application.

� The Create MBeans for resources setting specifies whether to create MBeans
for resources such as servlets or JavaServer Pages (JSP) files within an
application when the application starts.

The following setting can affect how an application server starts. Access this
setting by navigating to Servers → Application servers → <your_server>.

� The Parallel start setting for an application server lets you specify whether to
have the server components, services, and applications in an application
server start in parallel rather than sequentially. This can shorten the startup
time for a server.

The deployment manager, node agents, and application servers can start in any
order they are discovered with the exception that the node agent must start
before any application server on that node. Communication channels are
established as they startup and each has its own configuration and application
data to start.

You can prevent an application from starting automatically at application server
startup, enabling you to start it later manually. To prevent an application from
starting when a server starts, navigate to Applications → Enterprise
Applications → <application_name> → Target specific application status
and disable auto start for the application.

8.4.3 Custom application server configuration templates

WebSphere Application Server provides the ability to create a customized server
template that is based on an existing server configuration. Server templates can

 Chapter 8. Planning for system management 159

then be used to create new servers. This provides a powerful mechanism to
propagate the server configuration both within the same cell and across cell
boundaries. In order to propagate the server configuration across cell a boundary
template, the server configuration must be exported to a configuration archive,
after which it can be imported to another cell.

If you are going to need more than one application server (say, for a cluster), and
the characteristics of the server are different from the default server template, it
is much more efficient to create a custom template and then use that template to
create your application servers. When creating a cluster, be sure to use this
template when you add the first member to the cluster. Subsequent servers in
the cluster will also be created using this template. This will reduce the scope for
error and make the task of creating the server cluster much faster.

8.4.4 Planning for resource scope use

Resource scope is a very powerful concept to prevent duplication of resources
across lower-level scopes. For example, if a data source can be used by multiple
servers in a node, it makes sense to define that data source once at the node
level, rather than create the data source multiple times, possibly introducing
errors along the way. Also, if the data source definition needs to change (maybe
due to changes to an underlying database), the data source definition can be
changed once and is visible to all servers within the node. The savings in time
and cost should be self-evident.

Some thought needs to be put toward outlining what resources you will need for
all the applications to be deployed and at what scope to define each. You select
the scope of a resource when you create it.

The following list describes the scope levels, listed in order of granularity with the
most general scope first:

� Cell scope

The cell scope is the most general scope and does not override any other
scope. We recommend that cell scope resource definitions should be further
granularized at a more specific scope level. When you define a resource at a
more specific scope, you provide greater isolation for the resource. When you
define a resource at a more general scope, you provide less isolation. Greater
exposure to cross-application conflicts occur for a resource that you define at
a more general scope.

The cell scope value limits the visibility of all servers to the named cell. The
resource factories within the cell scope are defined for all servers within this
cell and are overridden by any resource factories that are defined within
application, server, cluster, and node scopes that are in this cell and have the
same Java Naming and Directory Interface™ (JNDI) name. The resource

160 WebSphere Application Server V6.1: Planning and Design

providers that are required by the resource factories must be installed on
every node within the cell before applications can bind or use them.

� Cluster scope

The cluster scope value limits the visibility to all the servers on the named
cluster. All cluster members must be running at least at V6 to use cluster
scope for the cluster. The resource factories that are defined within the cluster
scope are available for all the members of this cluster to use and override any
resource factories that have the same JNDI name that is defined within the
cell scope. The resource factories that are defined within the cell scope are
available for this cluster to use, in addition to the resource factories that are
defined within this cluster scope.

� Node scope (default)

The node scope value limits the visibility to all the servers on the named
node. This is the default scope for most resource types. The resource
factories that are defined within the node scope are available for servers on
this node to use and override any resource factories that have the same JNDI
name defined within the cell scope. The resource factories that are defined
within the cell scope are available for servers on this node to use, in addition
to the resource factories that are defined within this node scope.

� Server scope

The server scope value limits the visibility to the named server. This is the
most specific scope for defining resources. The resource factories that are
defined within the server scope are available for applications that are
deployed on this server and override any resource factories that have the
same JNDI name defined within the node and cell scopes. The resource
factories that are defined within the node and cell scopes are available for this
server to use, in addition to the resource factories that are defined within this
server scope.

� Application scope

The application scope value limits the visibility to the named application.
Application scope resources cannot be configured from the administrative
console. Use the Application Server Toolkit or the wsadmin tool to view or
modify the application scope resource configuration. The resource factories
that are defined within the application scope are available for this application
to use only. The application scope overrides all other scopes.

You can define resources at multiple scopes but the definition at the most
specific scope is used.

 Chapter 8. Planning for system management 161

When selecting a scope, the following rules apply:

� The application scope has precedence over all the scopes.
� The server scope has precedence over the node, cell, and cluster scopes.
� The cluster scope has precedence over the node and cell scopes.
� The node scope has precedence over the cell scope.

When viewing resources, you can select the scope to narrow the list to just the
resources defined at the scope. Alternatively, you can select to view resources
for all scopes. Resources are always created at the currently selected scope.
Resources created at a given scope might be visible to lower scope. For
example, a data source created at a node level might be visible to servers within
the node.

8.5 Change management topics

Proper change management is important to the longevity of any application
environment. WebSphere Application Server contains a number of technologies
to aid with the change management process.

This section highlights some topics to think about when planning for changes to
the WebSphere Application Server V6 operational environment. Topics include:

� Application updates

� Changes in topology

Note: A common source of confusion is the use of variables at one scope and
the resources that use them at a different in scope. Assuming that the proper
definitions are available at a scope the server can see, they do not have to be
the same scope during runtime.

However, consider the case of testing a data source. A data source is
associated with a JDBC provider. JDBC providers are commonly defined
using variables to point to the installation location of the provider product.

The scope of the variables and the scope of the JDBC provider do not
necessarily have to be the same to be successful during runtime. However,
when using the test connection service to test a data source using the
provider, the variable scope and the scope of a JDBC provider must be the
same for the test to work. For more information, see the test connection
service topic in the Information Center at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.nd.doc/info/ae/ae/cdat_testcon.html

162 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/cdat_testcon.html

8.5.1 Application updates

WebSphere Application Server V6 permits fine-grained updates to applications.
It allows application components to be supplied and the restart of only parts of
the application. This preserves application configuration during the update
process.

There are several options to update the applications’ files deployed on a server
or cluster:

� Administrative console update wizard

Use this option to update enterprise applications, modules, or files already
installed on a server. The update can be whole EAR files, single/multiple
modules (such as WAR or JAR files), or single/multiple file updates.

� wsadmin scripts

Use the wsadmin script to perform the same updates as the console wizard.

� WebSphere rapid deployment

WebSphere rapid deployment allows placement of application artifacts (EAR,
WAR, JAR, or smaller files) into a monitored directory, from where they are
detected and automatically deployed to the server by whatever steps are
deemed necessary.

� Hot deployment and dynamic reloading

Hot deployment and dynamic reloading requires that you directly manipulate
the application or module file on the server where the application is deployed;
that is, the new files are copied directly into the EAR directory on the relevant
server or servers.

When an application is deployed in a cluster, there is the option to perform an
automatic application rollout. This is a mechanism where each member in the
cluster is brought down and is updated with the application changes one at a
time. When a given server has been updated, the next server is updated. Where
clusters span multiple nodes, only one node at a time is updated. This allows the
cluster to operate uninterrupted as work is diverted from the node being updated
to the other nodes, until the entire cluster has received the update. If there is only
a single node involved, it is brought down and updated.

In WebSphere Application Server for z/OS, you can use the MVS console Modify
command to pause the listeners for an application server, perform the application
update, and then resume the listeners. If you use this technique, you do not have
to stop and then start the server to perform the application update.

WebSphere Application Server supports J2EE 1.4 enterprise applications and
modules. You can deploy J2EE 1.4 modules to WebSphere Application Server

 Chapter 8. Planning for system management 163

V6.0 or V6.1 servers or to clusters that contain such cluster members only.
WebSphere Application Server V6.1 ships with a JVM that supports JDK 5. If you
compile applications using JDK 5 and they are not backward compatible, you
must deploy your application to a V6.1 application server. The Application Server
Toolkit shipped with V6.1 provides the capability of compiling applications with
JDK 5. The default is to compile in backward compatibility mode.

Refer to Chapter 7, “Planning for application development and deployment” on
page 123 for further details about what application deployment options are
available in WebSphere Application Server V6.1.

8.5.2 Changes in topology

In a distributed server environment, the deployment manager node contains the
master configuration files. Each node has its required configuration files available
locally. Configuration updates should be done on the deployment manager node.
The deployment manager process then synchronizes the update with the node
agent. File synchronization is a one-way task, from the deployment manager to
the individual nodes. Changes made at the node level are temporary and will be
overridden by the master configuration files at the next file synchronization. If
security is turned on, HTTPS is used instead of HTTP for the transfer.

File synchronization
File synchronization settings are customizable by cell. Each cell can have distinct
file synchronization settings. File synchronization can be automatic or manual:

� Automatic

Turn on automatic synchronization using administrative clients. The default
file synchronization interval is 60 seconds and starts when the application
server starts.

� Manual

Perform manual synchronization using the administrative console, the
wsadmin tool, or using the syncNode command located in the <install_root>/bin
directory.

The file synchronization process should coincide with the whole change
management process. In general, we recommend that you define the file
synchronization strategy as part of the change management process.

164 WebSphere Application Server V6.1: Planning and Design

8.6 Problem management

A proactive approach to problem management is always the best. This section
outlines general practices to follow. For more information, including an approach
to problem determination and detailed information about resolving specific types
of problems, refer to WebSphere Application Server V6 Problem Determination
for Distributed Platforms, SG24-6798.

Perform the following checks to avoid issues with the runtime environment:

� Check that you have the necessary prerequisite software up and running.

� Check that the proper authorizations are in place.

� Check for messages that signal potential problems. Look for warnings and
error messages in the following sources:

– Logs from other subsystems and products, such as TCP/IP, RACF®,
Windows Event Viewer, and so forth

– WebSphere Application Server SystemOut and SystemErr logs

– SYSPRINT of the WebSphere Application Server for z/OS

– Component trace output for the server

� Check the ports used by WebSphere Application Server. The ports that
WebSphere Application Server uses must not be reserved by any other
system component.

� Check that enough disk space for dump files is available.

� Check your general environment:

– System memory
– Heap size
– System has enough space for archive data sets

� Make sure that all prerequisite fixes have been installed; a quick check for a
fix can save hours of debugging.

� Become familiar with the problem determination tools available in WebSphere
Application Server and what they provide.

8.6.1 Logs and traces

Log files and traces need to be properly named. We recommend that you name
log files according to the application that they belong to and group them in
different directories. Clean log files periodically (saved to a media and then

 Chapter 8. Planning for system management 165

deleted). WebSphere Application Server can write system messages to several
general purpose logs. These include:

� JVM logs

The JVM logs are written as plain text files. They are named SystemOut.log
and SystemErr.log and are in the following location:

<profile_home>/logs/<server_name>

You can view the JVM logs from the administrative console (including logs for
remote systems) or by using a text editor on the machine where the logs are
stored.

� Process logs

WebSphere Application Server processes contain two output streams that
are accessible to native code running in the process. These streams are the
standard output (stdout) and standard error (stderr) streams. Native code,
including the JVM, can write data to these process streams.

By default, the stdout and stderr streams are redirected to log files at server
startup. The stdout and stderr streams contain text written by native modules,
including Dynamic Link Libraries (DLLs), executables (EXEs), UNIX system
libraries (SO), and other modules.

By default, these files are stored as:

– <profile_home>/logs/<server_name>/native_stderr.log
– <profile_home>/logs/<server_name>/native_stdout.log

� IBM service log (activity.log)

The service log is a special log written in a binary format. You cannot view the
log directly using a text editor. You should never directly edit the service log,
because doing so will corrupt the log.

You can view the service log in two ways:

– We recommend that you use the Log Analyzer tool to view the service log.
This tool provides interactive viewing and analysis capability that is helpful
in identifying problems.

– If you are unable to use the Log Analyzer tool, you can use the Showlog
tool to convert the contents of the service log to a text format that you can
then write to a file or dump to the command shell window.

The IBM service log is in the following directory:

<profile_home>/logs/

166 WebSphere Application Server V6.1: Planning and Design

8.6.2 Fix management

You should have a fix management policy in place, and you should test fixes
before you apply them to the production system. For available fixes, see the
WebSphere Application Server support page:

http://www.ibm.com/software/webservers/appserv/was/support/

8.6.3 Backing up and restoring the configuration

Back up the WebSphere Application Server configuration to a zipped file by
using the backupConfig command.

For a stand-alone node, run the backupConfig utility at the node level. For a
network deployment cell, run the backupConfig utility at the deployment manager
level, because it contains the master repository. Do not perform backupConfig at
the node level of a cell.

The restoreConfig command restores the configuration of your stand-alone
node or cell from the zipped file that was created using the backupConfig
command.

8.7 Planning checklist for system management

Table 8-1 lists a summary of items to consider as you plan and additional
resources that can help you.

Table 8-1 Planning checklist for system management

Planning item

Create a strategy for administrative security. Identify the possible administrators and
their roles. Determine the type of user registry that you will use for WebSphere security.
If you do not want to use a federated repository, delay enabling admin security until after
installation.

Review the administration facilities available (scripting, administrative console, and so
on) and create an overall strategy for configuration and management of WebSphere
resources.

Determine where the profile directories (including the configuration repositories) will be
located.

Consider whether to use automatic or manual synchronization to nodes.

 Chapter 8. Planning for system management 167

http://www.ibm.com/software/webservers/appserv/was/support/

Resources
For a good overall reference for developing and deploying Web services in
WebSphere Application Server, refer to WebSphere Application Server V6.1:
System Management and Configuration, SG24-7304.

We suggest that you have a copy of this book available as you plan your Web
services environment.

The WebSphere Application Server Information Center also contains a lot of
useful information. For a good entry point to system management topics, see:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topmanaging.html

Plan for application server startup:
� Starting order
� Allow applications to start before server completes startup
� Create MBeans for resources
� Parallel start

Create application server templates for existing servers if you plan to create multiple
servers with the same customized characteristics.

Create a strategy for scoping resources.

Create a strategy for change management. This includes maintaining and updating
applications (see also 7.9, “Managing application configuration settings” on page 144
and 7.10, “Planning for application upgrades in production” on page 148). It also
includes strategies for changes in cell topology and updates to WebSphere code.

Create a strategy for problem management. Identify a location and naming convention
for storing WebSphere logs. Configure the processes to use those locations.

Create a strategy for backup and recovery of the installation and configuration files.

Planning item

168 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topmanaging.html

Chapter 9. Planning for performance,
scalability, and high
availability

This chapter discusses the items to consider when implementing WebSphere
Application Server V6.1 so that the environment performs well and is highly
scalable. It contains the following sections:

� What is new in V6.1
� Scalability
� Workload management
� High availability
� Caching
� WebSphere Application Server performance tools
� Session management
� Planning checklist for performance

For detailed information as you plan for performance and high availability, we
suggest you start with the following publications:

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

9

© Copyright IBM Corp. 2006. All rights reserved. 169

9.1 What is new in V6.1

WebSphere Application Server V6.1 has a new JVM for all platforms that ship
with an IBM JDK (versus Sun HotSpot-based JVMs, such as the Sun HotSpot
JVM on Solaris and the HP JVM for HP-UX). This new JVM includes a new
garbage collection scheme and a new Just-In-Time (JIT) compiler. The IBM Java
5.0 JVM provides major improvements in virtual machine technology to provide
significant performance and serviceability enhancements over the earlier IBM
Java execution technology.

9.2 Scalability

Scalability, in general terms, means adding hardware to improve performance.
However, adding more hardware might not necessarily improve the performance
if the software is not tuned correctly. Before investing in additional resources, you
should understand the workload characteristics of your systems and ensure that
your systems are properly tuned for this workload.

After optimizing the software, consider additional hardware resources as the next
step for improving performance. There are two ways to improve performance
when adding hardware:

� Vertical scaling means increasing the throughput of the site by handling more
requests in parallel. From a hardware perspective, we can increase the
number of the processors for the server. For example, by upgrading the
system hardware with two or more processors, the server can potentially gain
twice the processing capacity. Therefore, more requests should be able to be
handled at the same time. This concept is relatively easy to implement and
can apply to any server in the system. Examine vertical scaling at every
potential bottleneck tier.

� Horizontal scaling means adding duplicate servers to handle additional load.
This applies to multi-tier scenarios and can require the use of a load balancer
that sits in front of the duplicated servers so that the physical number of
servers in your site are hidden from the Web client.

Adding resources usually affects the dynamics of the system and can potentially
shift the bottleneck from one resource to another. In a single tier scenario, the
Web application and database servers are all running in the same system.
Creating a cluster and spreading application servers across systems should
improve the throughput. But at the same time, additional servers introduce new
communication traffic to the database server. How much network bandwidth will
this server configuration consume? What will be the performance improvement
by adding more servers?

170 WebSphere Application Server V6.1: Planning and Design

Because of these unknowns, we recommend that you always perform a
scalability test to identify how well the site is performing after a hardware change.
Throughput can be measured to ensure that the result meets your expectations.

In addition, be aware that the law of diminishing returns does play a role when
increasing scalability either vertically or horizontally. The law of diminishing
returns is an economics principle that states that if one factor of production is
increased while all others remain constant, the overall returns will reach a peak
and then begin to decrease. This law can be applied to scaling in computer
systems as well. This law means that adding two additional processors will not
necessarily grant you twice the processing capacity. Nor will adding two
additional horizontal servers in the application server tier necessarily grant you
twice the request serving capacity. Additional processing cycles are required to
manage those additional resources. Although the degradation might be small, it
is not a direct linear function of change in processing power to say that adding n
additional machines will result in n times the throughput.

9.2.1 Workload categorization

The workload defines how the performance of a system is evaluated. Two key
concepts that help identify workload performance are throughput and response
time:

� Throughput means the number of requests relative to some unit of time the
system can process. For example, if an application can handle 10 client
requests simultaneously and each request takes one second to process, this
site can have a potential throughput of 10 requests per second. Let us say
that each customer on average submits 60 requests per visit; then we can
also represent throughput by estimating six visits per minute or 360 visits per
hour.

� Response time is the time it takes when the user initiates a request at the
browser until the result of the HTML page returns to the browser. At one time,
there was an unwritten rule of the Internet known as the eight second rule.
This rule stated that any page that did not respond within eight seconds would
be abandoned. Many enterprises still use this as the response time
benchmark threshold for Web applications.

A workload needs the following characteristics:

� Measurable: A metric that can be quantified, such as throughput and
response time.

� Reproducible: The same results can be reproduced when the same test is
executed multiple times.

� Static: The same results can be achieved no matter for how long you execute
the run.

 Chapter 9. Planning for performance, scalability, and high availability 171

� Representative: The workload realistically represents the stress to the system
under normal operating considerations.

Workload should be discerned based on the specifications of the system. If you
are developing a data driven system, where 90% of the requests require a
database connection, this is a significantly different workload compared to a Web
application that makes 90% JSP and servlet calls, with the remaining 10% being
messages sent to a back-end store. This requires close work between the
application architect and the system architect, which are rarely the same person.

Determine the projected load for a new system as early as possible. In the case
of Web applications, it is often difficult to predict traffic flows or to anticipate user
demand for the new application. In those cases, estimate using realistic models,
and then review the data when the system is launched to adjust expectations.

9.2.2 System tuning

The first step in scaling considerations is to verify that the application and
application environment has been adequately tuned. Tuning needs to be verified
at the application code layer, the network layer, the server hardware layer, and
the WebSphere Application Server layer.

Application code layer
Review the application code itself as part of the regular application life cycle to
ensure that it is using the most efficient algorithms and the most current APIs that
are available for external dependencies. Take care to use optimized database
queries or prepared statements instead of dynamic SQL statements.

Network layer
Tuning at the network layer is usually very cursory. Take the time to verify that
port settings on the switches match the settings of the network interfaces. Many
times, a network device is set to a specific speed, and the network interface is
set to auto-detect. Depending on the operating system, this can cause
performance problems due to the negotiation done by the system. Also,
reviewing these settings establishes a baseline expectation as you move forward
with scaling attempts.

Server hardware layer
Take the time to verify that the servers used in the application environment have
been tuned adequately. This includes network options, TCP/IP settings, and
even possibly kernel parameters. Verify disk configurations and layout as well.
The tuning at this layer can be quite difficult without a specialist in the server

172 WebSphere Application Server V6.1: Planning and Design

hardware or the operating system, but the adjustments can lead to significant
improvements in throughput.

9.2.3 Application environment tuning
Within the WebSphere Application Server environment, there are many settings
that can increase application capacity and reduce performance issues. The
purpose of this section is not to directly discuss those tuning parameters, which
are thoroughly covered in WebSphere Application Server V6 Scalability and
Performance Handbook, SG24-6392. This section, however, should generate
some thoughts as to settings to consider when designing a WebSphere
Application Server application.

Java virtual machine (JVM)
When configuring a JVM, look at the minimum and maximum heap sizes closely.
The system default for the starting heap size is 2 MB and the default maximum is
64 MB. Neither of these settings is likely desirable.

Starting a JVM with that little memory means that the application must
immediately switch context to allocate memory resources. This will slow down
the execution of the application until it reaches the heap size it needs to run.
Conversely, a JVM that can grow too large does not perform garbage collection
often enough, which can leave the machine littered with unused objects.

The levels should be adjusted during testing to ascertain reasonable levels for
both settings. In addition, be aware that the prepared statement cache and
dynamic fragment caching also consume portions of the heap, and as such, you
might be required to make additional adjustments to the heap when those values
are adjusted.

Web container thread pool
The thread pool for the Web container should be closely monitored during initial
load testing and implementation. This is the most common bottleneck in the
application environment. Adjust the number of threads in the pool too high, and
the system will spend too much time swapping between threads, and requests
will not complete in a timely manner. Adjust the number of threads too low, and
the Web server threads can back up and cause a spike in response at the Web
server tier.

There are no hard rules in this space, because things such as the type and
version of Web server and the percentage of requests that require the application
server can impact the overall optimum tuning level. The best guideline is to tune
in small increments and measure with identical loads over that time to make sure
the adjustment has not crossed a threshold where the performance diminishes.

 Chapter 9. Planning for performance, scalability, and high availability 173

EJB container
The EJB container can also be another source of potential scalability
bottlenecks. The inactive pool cleanup interval is a setting that determines how
often unused EJBs are cleaned from memory. Set it too low, and the application
will spend more time instantiating new EJBs when an existing instance could
have been reused. Set it too high, and the application will have a larger memory
heap footprint with unused objects remaining in memory. EJB container cache
settings can also create performance issues if not properly tuned for the system.

The Performance Tuning Guide within the WebSphere Application Server
Information Center and other publications, such as WebSphere Application
Server V6 Scalability and Performance Handbook, SG24-6392, can provide
some general rules for adjusting these values to increase the throughput or
decrease response time of the system.

Database connection pool
The database connection pool is another common location for bottlenecks,
especially in data-driven applications. The default pool size is usually 10, and
depending on the nature of the application and the number of requests, this pool
can become full quite rapidly. During implementation testing, pay special
attention to the pool usage and adjust it higher as needed. This pool consumes
additional Java heap as it gets used, so you might be required to go back and
adjust the heap size after tuning the pool size. Also, be aware that in a clustered
environment, the connection pool is a cell resource. This means that all nodes in
the cluster share one pool. Adjust the pool in such way that it is large enough to
handle the requests of all the servers participating in the cluster and cell.

9.2.4 Scaling the system

After you verifying and tuning the application, the next step is to examine the
entire application environment to identify potential bottlenecks. Simply throwing
additional resources into the environment without fully understanding what those
resources are addressing can potentially worsen performance or scalability. It is
necessary to know the application environment, end-to-end, to quickly identify
the bottlenecks and ensure the appropriate response is timely.

When scaling at the network layer, such as with firewalls or switches, the most
common solution is vertical scaling. Network devices have processing capacity
and use memory much like any other hardware resource. Adding additional
memory or processors to a network device will increase the throughput of that
device, which positively impacts the scaling of that device. Moving from 10 MB to
100 MB or even 1 GB connections can significantly increase performance at the
network layer.

174 WebSphere Application Server V6.1: Planning and Design

When scaling at the Web server layer, the most often employed solution is
horizontal scaling. This means adding additional Web servers to the
environment. To do so, load balancers must be used. Be careful when adding
servers to make sure that the load balancer has adequate capacity, or adding the
new Web servers will simply shift the bottleneck from the Web tier to the load
balancing tier. Vertical scaling can be performed as well by adjusting HTTP
tuning parameters, or by increasing memory or processors.

Scaling at the application server layer can be done with vertical or horizontal
scaling, or both. Vertical scaling at the application server layer can be done
physically or logically. WebSphere Application Server is a Java application itself
and can take advantage of additional processors or memory in the machine.
WebSphere Application Server applications can be clustered vertically, providing
multiple copies of the same application on the same physical machine.
WebSphere Application Server also supports horizontal cloning of applications
across multiple machines, which do not necessarily need to be identical in terms
of physical resources. A workload manager is required to do a smart load
balancing across heterogeneous hardware resources.

At the data services layer, it is most common to implement vertical scaling.
Adding multiple copies of the database can introduce complexities that can be
unmanageable, and providing these resources to the application server might
introduce higher costs than the value provided. A database server, however, can
definitely make use of higher numbers of processors or more memory. Most
database management systems also can be tuned for performance with respect
to I/O, pinned memory, and numbers of processors. Database tuning should be
asserted prior to adding additional resources, because these new resources
might not improve the problem, and can even increase the problem.

9.2.5 Default messaging provider scalability
With the introduction of the messaging engine and the service integration bus,
WebSphere now offers the ability to scale messaging resources more efficiently.
Using a cluster as the service integration bus member, you can create a
partitioned destination. This enables a single logical queue to be spread across
multiple messaging engines. In this scenario, all messaging engines are active
all the time. For n cluster members, the theory is that each receives an nth of the
messages. This allows for greater scalability of messaging resources across the
cell. One key factor to consider in this design is that message order is not
preserved. That might or might not be significant, depending on the nature of the
application.

Multiple messaging engines for a cluster bus member is not the default. For
workload management, you must take manual steps to add additional messaging
engines.

 Chapter 9. Planning for performance, scalability, and high availability 175

9.3 Workload management

Workload management is the concept of sharing requests across multiple
instances of a resource. Workload management techniques are implemented
expressly for providing scalability and availability within a system. These
techniques allow the system to serve more concurrent requests. Workload
management allows for better use of resources by distributing load more evenly.
Components that are overworked, and therefore, perhaps a potential bottleneck,
can be routed around with workload management algorithms. Workload
management techniques also provide higher resiliency by routing requests
around failed components to duplicate copies of that resource.

In WebSphere Application Server, workload management is achieved by sharing
requests across one or more application servers, each running a copy of the
Web application. In more complex topologies, workload management is
embedded in load balancing technologies that can be used in front of Web
servers.

Workload management (WLM) is a WebSphere facility to provide load balancing
and affinity between nodes in a WebSphere clustered environment. WLM can be
an important facet of performance. WebSphere uses WLM to send requests to
alternate members of the cluster if the current member is too busy to process the
request in a timely fashion. WebSphere will route concurrent requests from a
user to the same application server to maintain session state.

WLM for WebSphere for z/OS (we refer to this as zWLM to distinguish it) works
differently from the WLM for distributed platforms. The workload management
structure for incoming requests is handled by the WLM features in z/OS.
Organizations can define business-oriented rules that are used to classify
incoming requests. As a request arrives at the control region, the CR works with
zWLM to classify the request. It then creates a unit of work and assigns the work
to a service class suited to its performance requirements. The CR then places
the request on a zWLM queue for that service class, where it can be selected for
processing by a servant region. zWLM manages the number of servant regions
according to workload in the queue. As you can imagine, this explanation is an
over-simplification of how workload management works in z/OS. For a good
summary of how zWLM works, see Understanding WAS for z/OS at:

http://websphere.sys-con.com/read/98083.htm

176 WebSphere Application Server V6.1: Planning and Design

http://websphere.sys-con.com/read/98083.htm

9.3.1 Clustering application servers

Clustering application servers that host Web containers automatically enables
plug-in workload management for the application servers and the servlets they
host. Routing of servlet requests occurs between the Web server plug-in and the
clustered application servers using HTTP or HTTPS, as shown in Figure 9-1.

Figure 9-1 Plug-in (Web container) workload management

This routing is based on weights associated with the cluster members. If all
cluster members have identical weights, the plug-in sends equal requests to all
members of the cluster, assuming no strong affinity configurations. If the weights
are scaled in the range from 0 to 20, the plug-in routes requests to those cluster
members with the higher weight value more often. No requests are sent to
cluster members with a weight of 0 unless no other servers are available.
Weights can be changed dynamically during runtime by the administrator.

A guideline formula for determining routing preference is:

% routed to Server1 = weight1 / (weight1+weight2+...+weightn)

Where there are n cluster members in the cluster.

The Web server plug-in temporarily routes around unavailable cluster members.

App Server

Web
Container

App Server

Web
Container

Servlet
Requests

HTTP
Server

Plug-in

 Chapter 9. Planning for performance, scalability, and high availability 177

Workload management for EJB containers can be performed by configuring the
Web container and EJB containers on separate application servers. Multiple
application servers with the EJB containers can be clustered, enabling the
distribution of EJB requests between the EJB containers, as shown in Figure 9-2.

Figure 9-2 EJB workload management

In this configuration, EJB client requests are routed to available EJB containers
in a round-robin fashion based on assigned server weights. The EJB clients can
be servlets operating within a Web container, stand-alone Java programs using
RMI/IIOP, or other EJBs.

The server-weighted, round-robin routing policy ensures a distribution based on
the set of server weights that have been assigned to the members of a cluster.
For example, if all servers in the cluster have the same weight, the expected
distribution for the cluster is that all servers receive the same number of
requests. If the weights for the servers are not equal, the distribution mechanism
sends more requests to the higher weight value servers than the lower weight
value servers. The policy ensures the desired distribution based on the weights
assigned to the cluster members.

You can also choose to have requests sent to the node on which the client
resides as the preferred routing. In this case, only cluster members on that node
are chosen (using the round-robin weight method). Cluster members on remote
nodes are chosen only if a local server is not available.

When planning for clustering, determine the number of application servers and
their physical location. Determine the server weights to assign for application
servers based on considerations such as system stability and speed. When
creating the cluster, consider using the prefer local setting to ensure that when a
client (for example, a servlet) calls an EJB, WLM will attempt to select the EJB on
the same system as the client, eliminating network communication.

EJB
Requests

App Server

EJB
Container

App Server

EJB
Container

App Server

Web
Container

EJB
Requests

Java
Client

178 WebSphere Application Server V6.1: Planning and Design

9.3.2 Scheduling tasks

WebSphere Application Server provides a Scheduler service that can be used to
schedule actions to happen only once, some time in the future, or on a recurring
basis or at regular intervals. It can also receive notifications about task activity.
Scheduler tasks can be stored in a relational database and can be executed for
indefinite repetitions and long time periods. Scheduler tasks can be EJB-based
tasks or they can be triggered using JMS.

The Scheduler service can be a tool in workload management by scheduling
maintenance tasks such as backups, cleanups, or batch processing during
off-peak hours.

When a task runs, the task is run in the work manager associated with the
scheduler instance. You can control the number of actively running tasks at a
given time by configuring schedulers with a specific work manager. The number
of tasks that can run concurrently is governed by the Number of alarm threads
parameter on the work manager.

9.4 High availability

Also known as resiliency, availability is the description of the system’s ability to
respond to requests no matter the circumstances.

Both performance and scalability can affect availability. The key is to determine
the threshold for availability. The most common method of describing availability
is by the “nines” or the percentage availability for the system. Therefore, 99.9%
availability represents 8.5 hours of outage in a single year. To add an additional
9, or 99.99% represents approximately 1 hour of outage in a single year. The
cornerstone measurement of “five nines” or 99.999% availability represents an
outage of less than five minutes in a year. Calculating availability is a simple
process using the following formula, where MTBF is the mean time between
failure and MTTR is the mean time to recovery:

Availability = (MTBF/(MTBF + MTTR)) X 100

When planning for performance and scalability, consider availability. Make sure,
however, that the business case justifies the costs. In many real world examples,
moving a system availability from 99.9% to 99.99% can be extremely expensive.
It can also be true that the system will only be used during regular business
hours on regular working days. This implies that an availability of 99.9% would
be more than adequate to meet the operational window.

Because it is likely that the complete environment is made up of multiple
systems, the goal is to make the system as available as possible. This can be

 Chapter 9. Planning for performance, scalability, and high availability 179

done by minimizing the number of single points of failure (SPOF) throughout the
system. If an SPOF cannot be eliminated, perform planning to mitigate the
impact of that potential failure.

9.4.1 Hardware availability

Hardware can and potentially will fail. Any mechanical component has an
expected failure rate and a projected useful life until failure.

To mitigate power failures, you can configure the equipment to have dual power
supplies. With a dual power supply configuration, you can further mitigate power
failures by plugging each power supply into separate circuits in the data center.

For servers, using multiple network interface cards in an adapter teaming
configuration allows a server to bind one IP address to more than one adapter,
and then provide failover facilities for the adapter. This, of course, should be
extended by plugging each adapter into separate switches as well to mitigate the
failure of a switch within the network infrastructure.

Hardware availability for servers at the disk level is also an important
consideration. External disk drive arrays and hard disk drive racks can be
deployed to provide redundant paths to the data, as well as make the disks
available independent of server failure. When working with disks, consider the
appropriate RAID levels for your disks.

Network hardware availability can be addressed by most major vendors. There is
now built-in support for stateful failover of firewalls, trunking of switches, and
failover for routers. These devices also support duplicate power supplies,
multiple controllers, and management devices.

Duplicating hardware can have an impact on the cost of the solution. You have to
evaluate this increment in the implementation cost against the cost of not having
the application available.

9.4.2 Process availability

In WebSphere Application Server, the concept of a singleton process is used.
Although not a new concept, it is important to understand what this represents in
the environment. A singleton process is an executing function that can exist in
only one location at any given instance, or multiple instances of this function
operate independently of one another. In any system, there are likely to be
singleton processes that are key components of the system functionality.
WebSphere Application Server has recognized this as a problem, and has taken
steps to address these issues for singleton processes running in the cell.

180 WebSphere Application Server V6.1: Planning and Design

WebSphere Application Server uses a high availability manager to provide
availability for singleton processes. We discuss this further in 9.4.6, “WebSphere
Application Server high availability features” on page 183.

9.4.3 Data availability

In a WebSphere Application Server environment, there are many places where
data availability is important. For database-driven applications, the database
availability is instrumental to the successful execution of the user request. For
stateful applications, the user’s session state is important to maintaining the user
experience within the application. Stateful session EJB availability is similar in
nature to the session state of a servlet request. Lastly, EJB persistence is critical
in EJB-driven applications to maintain a variety of user data. The majority of
these requirements can be satisfied using facilities available in WebSphere
Application Server.

Database server availability
A database server is for many systems the largest and most critical single point
of failure in the environment. Depending on the nature of this data, there are
many techniques that you can employ to provide availability for this data.

For read-only data, multiple copies of the database can be placed behind a load
balancing device, and the client then connects to the virtual IP the load balancer
advertises. This enables the application to connect to one of many copies of the
data and transparently fail over to the working copy of the resource.

If the data is mostly read-only, consider the possibility of replication facilities to
keep multiple copies synchronized behind a virtual IP. Most commercial
database management systems offer some form of replication facility to keep
copies of a database synchronized.

If the data is read/write and there is no prevalence of read-only access, consider
a hardware clustering solution for the database node. This requires external
shared disk through Storage Area Network (SAN), network attached storage
(NAS), or some other facility that can help to mitigate failure of a single node.

Session data
WebSphere Application Server can persist session data by storing it in
application server memory and using memory-to-memory replication to create a
copy in one or more additional servers, or by storing the data in an external
database. The choice of which to use is really left to the user. External database
persistence will survive node failures and application server restarts, but
introduces a new single point of failure that must be mitigated using an external
hardware clustering or high availability solution. Memory-to-memory replication

 Chapter 9. Planning for performance, scalability, and high availability 181

can reduce the impact of failure, but if a node fails, the data held on that node is
lost.

Stateful session EJB availability is handled using memory-to-memory replication.
Using the EJB container properties, you can specify a replication domain for the
EJB container and enable the stateful session bean failover using
memory-to-memory replication. When enabled, all stateful session beans in the
container are able to fail over to another instance of the bean and still maintain
the session state.

EJB persistence
When designing applications that use the EJB 2.1 and later specifications, the
ability to persist these beans becomes available. If the beans participate in a
clustered container, the bean persistence is available for all members of the
cluster. Using access intent policies, you can govern the data access for the
persisted bean.

9.4.4 Clustering and failover

Hardware clustering is the concept of creating highly available system processes
across multiple servers. It is usually deployed in a manner such that only one of
the servers is actively running the system resource.

Hardware clustering is achieved by using an external clustering software, such
as IBM HACMP, to create a cluster of servers. Each server is generally attached
to a shared disk array through NAS, a SAN, or simply by chaining SCSI
connections to an external disk array. Each system has the base software image
installed. Depending on the configuration and licensing constraints, the software
might be configured to run on each server in the cluster or configured to run from
the shared disk so that only the active server has the software. The servers stay
in constant communication with each other over several connections through the
use of heartbeats. Multiple paths are configured for these heartbeats so that the
loss of a switch or network interface does not necessarily cause a failover. Too
few paths can create problems with both servers believing they should be the
active node. Too many paths can create unnecessary load associated with
heartbeat management.

With software clustering, the idea is to create multiple copies of an application
component and then have all of these copies available at once, both for
availability and scalability. In WebSphere Application Server Network
Deployment, application servers can be clustered. This provides both workload
management and high availability.

Web containers or EJB containers can be clustered. If an application has both
EJB and Web containers, you can create two separate clusters to increase the

182 WebSphere Application Server V6.1: Planning and Design

overall availability of the system. Whether this helps or hurts performance
depends on the nature of the applications and the load.

In a clustered environment, the Web server plug-in module knows the location of
all cluster members and routes requests to all of those members. In the case of a
failure, the plug-in marks the cluster member as unavailable and does not send
requests to that member for a fixed interval. The plug-in periodically retries the
path to that cluster member and marks the member available again after the path
has been asserted. This retry interval is tunable through the administrative
console.

9.4.5 Maintainability

Maintainability is the ability to keep the system running before, during, and after
scheduled maintenance. When considering maintainability in performance and
scalability, remember that maintenance needs to be periodically performed on
hardware components, operating systems, and software products in addition to
the application components. Maintainability allows for ease of administration
within the system by limiting the number of unique features found in duplicated
resources. There is a delicate balance between maintainability and performance.
It is always a distinct possibility that the goal of maintainability will clash with
performance. The ideal is that a high performing system is easily maintained,
and that is still what you would strive for.

9.4.6 WebSphere Application Server high availability features

This section discusses the WebSphere Application Server features that facilitate
high availability. It will help you understand how the high availability features
work. Before creating a plan for high availability within WebSphere Application
Server, you read WebSphere Application Server Network Deployment V6: High
Availability Solutions, SG24-6688.

High availability manager
WebSphere Application Server uses a high availability manager to eliminate
single points of failure. A high availability manager is responsible for running key
services on available application servers rather than on a dedicated one (such as
the deployment manager). It takes advantage of fault tolerant storage
technologies such as network attached storage (NAS), which significantly lowers
the cost and complexity of high availability configurations. The high availability
manager also provides peer-to-peer failover for critical services by always
maintaining a backup for these services. WebSphere Application Server also
supports other high availability managers such as HACMP.

 Chapter 9. Planning for performance, scalability, and high availability 183

A high availability manager continually monitors the application server
environment. If an application server component fails, the high availability
manager takes over the in-flight and in-doubt work for the failed server. This
action significantly improves application server availability.

A high availability manager focuses on recovery support and scalability in the
following areas:

� Messaging
� Transaction managers
� Workload management controllers
� Application servers
� WebSphere partitioning facility instances

To provide this focused failover service, the high availability manager supervises
the JVMs of the application servers that are core group members. The high
availability manager uses one of the following methods to detect failures:

� An application server is marked as failed if the socket fails. This method uses
the KEEP_ALIVE function of TCP/IP and is very tolerant of extreme
application server loading, which might occur if the application server is
swapping or thrashing heavily. This method is recommended for determining
a JVM failure if you are using multicast emulation and are running enough
JVMs on a single application server to push the application server into
extreme processor starvation or memory starvation.

� A JVM is marked as failed if it stops sending heartbeats for a specified time
interval. This method is referred to as active failure detection. When it is used,
a JVM sends out one heartbeat, or pulse, every second. If the JVM is
unresponsive for more than 20 seconds, it is considered down. You can use
this method with multicast emulation. However, this method must be used for
true multicast addressing.

In either case, if a JVM fails, the application server on which it is running is
separated from the core group, and any services running on that application
server are failed over to the surviving core group members.

A JVM can be a node agent, an application server, or a deployment manager. If
a JVM fails, any singletons running in that JVM are restarted on a peer JVM after
the failure is detected. This peer JVM is already running and eliminates the
normal startup time, which potentially can be minutes.

All of the application servers in a cell are defined as members of a core group.
Each core group has only one logical high availability manager that services all
of the members of that core group. The high availability manager is responsible
for making the services within a core group highly available and scalable. It

184 WebSphere Application Server V6.1: Planning and Design

continually polls all of the core group members to verify that they are active and
healthy.

A policy matching program is used to localize certain policy-driven components
and to place these components into high availability groups. When a core group
member fails, the high availability manager assigns the failing member's work to
the same type of component from the same high availability group. Using NAS
devices in the position of common logging facilities helps to recover in-doubt and
in-flight work if a component fails.

WebSphere Application Server provides a default core group that is created
during installation. New server instances are added to the default core group as
they are created. The WebSphere Application Server environment can support
multiple core groups, but one core group is usually sufficient for most
environments.

Core group
A core group is a set of application servers that can be divided into various high
availability groups. It is a statically defined component of the WebSphere
Application Server high availability manager function that monitors the
application server environment and provides peer-to-peer failover of application
server components.

A core group can contain one or more high availability groups. However, a high
availability group must be contained totally within a single core group. Any
component, such as the service integration bus or the transaction manager, can
create a high availability group for that component's use. For example, the
service integration bus might need a high availability group to support its
messaging engines, and the transaction manager component might need a high
availability group to support its transaction logs.

A cell must have at least one core group. One is defined for each cell
automatically and is called DefaultCoreGroup. All the server processes and
JVMs are initially members of this core group.

When properly configured, the default core group is sufficient for establishing a
high availability environment. However, certain topologies require the use of
multiple core groups. For example, if a firewall is used to separate the proxy
environment from the server environment, an additional core group is required in
order to provide proper failover support. For this particular type of environment,
application servers outside of the firewall are members of a separate core group
from the application servers that are inside of the firewall.

The core group contains a bridge service, which supports cluster services that
span multiple core groups. Core groups are connected by access point groups. A

 Chapter 9. Planning for performance, scalability, and high availability 185

core group access point defines a set of bridge interfaces that resolve to IP
addresses and ports. It is through this set of bridge interfaces that the core group
bridge provides access to a core group.

If you create additional core groups when you move core group members to the
new core groups, remember that:

� Each server process within a cell can only be a member of one core group.
Core groups cannot overlap each other.

� If a cluster is defined for the cell, all of the cluster members must belong to the
same core group.

Network communication between all the members of a core group is essential.
The network environment must consist of a fast local area network with full IP
visibility and bidirectional communication between all core group members. IP
visibility means that each member is entirely receptive to the communications of
any other core group member.

High availability groups
High availability groups are dynamically created components of a core group.
They cannot be configured directly but are directly affected by static data, such
as policy configurations, which are specified at the core group level.

A high availability group cannot extend beyond the boundaries of a core group.
However, members of a high availability group can also be members of other
high availability groups, as long as all of these high availability groups are
defined within the same core group.

Any WebSphere Application Server component can create a high availability
group for that component to use. The component code must specify the
attributes that are used to create the name of the high availability group for that
component. For example, to establish a high availability group for the transaction
manager:

� The code included in the transaction manager component code specifies the
attribute type=WAS_TRANSACTIONS as part of the name of the high
availability group that is associated with this component.

� The high availability manager function includes the default policy Clustered
TM Policy that includes type=WAS_TRANSACTIONS as part of its match
criteria.

Whenever transaction manager code joins a high availability group, the high
availability manager matches the match criteria of the Clustered TM Policy to the
high availability group member name. In this example, the string
type=WAS_TRANSACTIONS included in the high availability group name is

186 WebSphere Application Server V6.1: Planning and Design

matched to the same string in the policy match criteria for the Clustered TM
Policy. This match associates the Clustered TM Policy with the high availability
group that was created by the transaction manager component.

After a policy is established for a high availability group, you can change some of
the policy attributes, such as quorum, fail back, and preferred servers. However,
you cannot change the policy type. If you need to change the policy type, you
must create a new policy and then use the match criteria to associate it with the
appropriate group.

If you want to use the same match criteria, you must delete the old policy before
defining the new policy. You cannot use the same match criteria for two different
policies.

Default messaging provider availability
A messaging engine is considered a singleton process. For the most part, the
service integration bus is used to provide high availability to the messaging
system process. If the service integration bus member is a cluster, and the
cluster member running the messaging engine fails, and the high availability
manager is configured for the messaging engine (the default), the service
integration bus starts the messaging engine on another member in the cluster.

To accomplish the failover seamlessly, the queue information and messages
must be stored in some shared location, either using an external database or a
shared disk environment. For those using embedded Cloudscape as a
messaging data store, concurrent access can be a concern. The embedded
Cloudscape does not support multiple servers running the Cloudscape engine,
so there would be no ability to have multiple servers communicating with the
same shared file system. Most database engines have minimal support for
distributed row locking. This means that it is generally difficult for more than one
application to update a data element at the same time. Because the messaging
engine is a singleton process, there are no concerns about concurrent access or
issues with distributed row locking requirements. Only one cluster member at
any given time is executing the process, although any cluster member has the
ability to spawn the process in case of the failure of the active cluster member.

9.5 Caching

Caching is a facility to offload some or all of the work to an external device or
devices so that the application server is not required to do all of the work
associated with a user request. There are caching options at many different
layers in a complete system solution. This section provides an overview of the
different possibilities for caching within a system. It does not attempt to provide

 Chapter 9. Planning for performance, scalability, and high availability 187

all options, or specific details, because the implementation types of caching are
highly varied.

9.5.1 Dynamic caching

Dynamic caching refers to the methods employed by WebSphere Application
Server to provide fragment caching or the reuse of components within the
application server engine. Fragment caching means only the static portions of a
servlet or JSP are cached, and is really a subset of dynamic caching as a whole.

Dynamic caching is enabled at the application server container services level.
Cacheable objects are defined inside the cachespec.xml file, located inside the
Web module WEB-INF or enterprise bean META-INF directory. The
cachespec.xml file enables you to configure caching at a per servlet level. The
caching options include parameters the request might specify and a timeout
value to indicate the cache is no longer valid and should be reloaded at the next
request. Pay special attention to the servlet caching configuration, because you
can create unexpected results by returning a cached servlet fragment that is
stale.

Another facet of caching available is the Edge Side Include (ESI) caching. ESI
caching is an in-memory caching at the Web server plug-in. If dynamic caching is
enabled at the servlet Web container level, the plug-in uses the ESI caching. An
additional header is added to the request from the plug-in, called the
Surrogate-Capabilities header, and the application server returns a
Surrogate-Control header in the response. Then, depending on the rules
specified for servlet caching, you can cache responses for JSP and servlets in
the plug-in itself.

9.5.2 Edge caching

Edge caching embraces a variety of methods. Software components at the Web
server, such as the Fast Response Cache Accelerator, can be deployed to
provide caching of static content at the Web server itself. Reverse proxy engines
can be used to cache content even closer to the client. Lastly, there are
numerous external caching providers that can provide content offloading at
points significantly closer to the client. WebSphere Application Server can be
used to configure and manage how these resources are accessed.

Fast Response Cache Accelerator
The first point to mention is that although WebSphere Application Server
supports static file serving, the Web server is ultimately more efficient at this type
of serving. By separating the two, the application will perform more efficiently.
When the static content has been separated from the application content, IBM

188 WebSphere Application Server V6.1: Planning and Design

HTTP Server provides the Fast Response Cache Accelerator (FRCA) to speed
up serving static content. The FRCA can be used to improve the performance of
IBM HTTP Server when serving static content, such as images, HTML, and other
text files that are not dynamic content. It is configured in the httpd.conf file.

This cache can even be configured to enable high speed caching of servlets and
JSP files by using the Afpa adapter bean through the external caching
configuration section of the administrative console.

Caching Proxy
By using the Edge components Caching Proxy, you can intercept requests and
then cache the results away from the Web servers or the application servers.
This enables you to offload additional work from the primary processing
environment. Implementing this caching adds servers and cost to the solution,
but can reflect a significant performance improvement and a reduction in
response time. This cache can be configured to offload some or all of the site.
Using the WebSphere Application Server administrative console, you can also
control through WebSphere how the content is loaded and invalidated.

Hardware caching
There are many network equipment providers that sell hardware cache devices.
These are very similar to a software cache in the way they can be used to offload
content. The main difference is that these appliances are usually not running full
versions of an operating system, opting instead for a thinner operating system
that is dedicated to the caching function. This can include custom file systems
that are higher performance than some operating system file systems and a
significantly reduced instruction set. By placing dedicated appliances instead of
software caching, you might be able to reduce total cost of ownership, because
these appliances do not have to be managed as strictly as machines with full
operating systems.

Caching services
There are a variety of providers that now sell caching as a service. This function
can provide even higher performance gains, because these providers generally
have equipment positioned at Internet peering points throughout the world. This
means the user is not required to travel all the way through the Internet to get to
the application serving network to return content. In other words, these providers
bring the cached files physically as close as possible to the client.

Caching providers also can lower project costs in the long run in terms of less
dedicated staff, equipment, and floor space to internalize the same function. The
number of players in this market has exploded in the recent years. Making no

 Chapter 9. Planning for performance, scalability, and high availability 189

preference or recommendation statements about any of the providers, some of
the names involved are:

� Accelion
� Activate
� Akamai
� AT&T
� Digital Island
� EdgeStream
� Fireclick
� Limelight Networks
� Speedera

When selecting an external caching service, make sure that they reach your
target market. If your client base is in Europe, and the service only has
equipment in the United States, you might not see as much performance
enhancement as you would like.

9.5.3 Data caching

Data caching can be a tricky proposition. The key is to minimize the back-end
database calls while at the same time assuring the currency of the data. In most
cases, the decision for data currency is a business decision. This is a decision
that should not be taken lightly, especially if the data is provided by external
sources. When configuring data caching, there are multiple methods. The first is
to keep a local copy in a database within the same network realm as the
application. The second is to cache data from a localized database in memory to
minimize database reads. The next is to use EJB persistence to keep the data in
the memory space of the running application.

In the case of some data, an external provider maintains the content. Making live
calls to this data can prove to be a single point of failure and a slower performer.
However, if there are no strict dependencies on the currency of the data,
offloading this data or a subset to a local database can provide large
performance, availability, and scalability gains. The data can be refreshed
periodically, preferably during off-peak hours for the application.

Caching data from a local database is a normal operation for a database
administrator. There are facilities to minimize the number of times a query must
perform a read from disk. Facilities such as fetch ahead constructs attempt to
anticipate that additional pages from that table are required and pre-loads those
pages into memory pools. Buffer pools offer the ability to keep the data loaded
into memory, assuming that it is likely the same portion of the data will be
requested again. Both of these constructs limit disk access, opting instead for
reading the data from the memory, which is always much faster to read. These

190 WebSphere Application Server V6.1: Planning and Design

facilities necessarily assume that the data is predominately read only. If the data
has been written, the copy in memory can be stale, depending on the write
implementation of the database. These can increase performance by minimizing
the number of disk reads that are required. Also, memory buffers can be used to
house data pages when read into memory, reducing disk access. The key is to
make sure that the system has memory to provide to the database.

Another possibility is to cache some of the database or Web page data on an
application code level by creating objects that are instantiated when the
application server is started. Those objects pull the necessary information in
memory, improving performance because the query is against an object in
memory. The key is to make sure there is some kind of synchronous or
asynchronous mechanism, or both, to update this cache on a timely basis
according to the system requirements. This approach, however, can create
additional memory requirements, especially when a dynamic cache that might
grow over the time is implemented.

EJB persistence implies loading the data into an EJB after a call to the data
provider. This is similar in nature to database caching, except that the caching
takes place in the application space, not the database server memory. The EJB
has an access intent, which indicates the rules used to determine the currency of
the data in the bean. From a performance standpoint, avoiding a call to an
external database in favor of a local bean creates significant gains.

9.6 Session management

Multi-machine scaling techniques rely on using multiple copies of an application
server. Multiple consecutive requests from various clients can be serviced by
different servers. If each client request is completely independent of every other
client request, it does not matter whether consecutive requests are processed on
the same server. However, in practice, client requests are not independent. A
client often makes a request, waits for the result, and then makes one or more
subsequent requests that depend on the results received from the earlier
requests. This sequence of operations on behalf of a client falls into two
categories:

� Stateless

A server processes requests based solely on information provided with each
request and does not rely on information from earlier requests. In other
words, the server does not need to maintain state information between
requests.

 Chapter 9. Planning for performance, scalability, and high availability 191

� Stateful

A server processes requests based on both the information that is provided
with each request and information that is stored from earlier requests. In other
words, the server needs to access and maintain state information that is
generated during the processing of an earlier request.

For stateless interactions, it does not matter whether different requests are
processed by different servers. However, for stateful interactions, the server that
processes a request needs access to the state information necessary to service
that request. Either the same server can process all requests that are associated
with the same state information or the state information can be shared by all
servers that require it. In the latter case, accessing the shared state information
from the same server minimizes the processing associated with accessing the
shared state information from multiple servers.

The load distribution facilities in WebSphere Application Server use several
different techniques for maintaining state information between client requests:

� Session affinity, where the load distribution facility (for example, the Web
server plug-in) recognizes the existence of a client session and attempts to
direct all requests within that session to the same server.

� Transaction affinity, where the load distribution facility recognizes the
existence of a transaction and attempts to direct all requests within the scope
of that transaction to the same server.

� Server affinity, where the load distribution facility recognizes that although
multiple servers might be acceptable for a given client request, a particular
server is best suited for processing that request.

The WebSphere Application Server session manager, which is part of each
application server, stores client session information and takes session affinity
and server affinity into account when directing client requests to the cluster
members of an application server. The workload management service takes
server affinity and transaction affinity into account when directing client requests
among the cluster members of an application server.

9.6.1 Session support

Information entered by a user in a Web application is often needed throughout
the application. For example, a choice made by a user might be used by the
application to determine the path through future menus or the options to show
the user. This information is kept in a session.

A session is a series of requests to a servlet that originate from the same user at
the same browser. Each request arriving at the servlet contains a session ID,

192 WebSphere Application Server V6.1: Planning and Design

allowing the servlet to associate the request with a specific user. The
WebSphere session management component is responsible for managing
sessions, providing storage for session data, allocating session IDs that identify
a specific session, and tracking the session ID associated with each client
request through the use of cookies or URL rewriting techniques.

When planning for session data, there are three basic considerations: application
design, session tracking mechanism, and session storage options. The following
sections outline the planning considerations for each.

Application design
Although using session information is a simple and convenient method for the
developer, it should be minimized. If sessions are persisted during runtime, there
can be a cost in performance.

Session tracking mechanism
You can choose to use cookies, URL rewriting, SSL session IDs, or a
combination of these as the mechanism for managing session IDs.

Cookies
Using cookies as a session tracking mechanism is common. WebSphere session
management generates a unique session ID and returns it to the user’s browser
to be stored as a cookie. This option can be a problem if you anticipate having
users that have disabled the use of cookies on their browsers.

URL rewriting
URL rewriting requires the developer to use special encoding APIs and to set up
the site page flow to avoid losing the encoded information. The session identifier
is stored in the page returned to the user. WebSphere encodes the session
identifier as a parameter on URLs that have been encoded programmatically by
the Web application developer.

URL rewriting limits the flow of site pages exclusively to dynamically generated
pages, such as pages generated by servlets or JSPs. Therefore, after the
application creates the user’s session data, the user must visit dynamically
generated pages exclusively until they finish with the portion of the site requiring
sessions. URL rewriting forces the site designer to plan the user’s flow in the site
to avoid losing their session ID.

Note: Before designing your session management topology, review
Chapter 10, “Session management,” in WebSphere Application Server V6.1:
System Management and Configuration, SG24-7304.

 Chapter 9. Planning for performance, scalability, and high availability 193

SSL ID tracking
With SSL ID tracking, SSL session information is used to track the session ID.
Because the SSL session ID is negotiated between the Web browser and HTTP
server, it cannot survive an HTTP server failure. However, the failure of an
application server does not affect the SSL session ID, and if a distributed session
is not configured, the session itself is lost. In environments that use WebSphere
components with multiple HTTP servers, you must use an affinity mechanism
when SSL session ID is used as the session tracking mechanism.

SSL tracking is supported only for IBM HTTP Server and Sun ONE Web Server.

The lifetime of an SSL session ID can be controlled by configuration options in
the Web server. For example, in IBM HTTP Server, the configuration variable
SSLV3TIMEOUT must be set to allow for an adequate lifetime for the SSL
session ID. Too short an interval can result in a premature termination of a
session. Also, some Web browsers might have their own timers that affect the
lifetime of the SSL session ID. These Web browsers might not leave the SSL
session ID active long enough to be useful as a mechanism for session tracking.

When the SSL session ID is to be used as the session tracking mechanism in a
clustered environment, either cookies or URL rewriting must be used to maintain
session affinity. The cookie or rewritten URL contains session affinity information
that enables the Web server to properly route requests back to the same server
after the HTTP session has been created on a server. The SSL ID is not sent in
the cookie or rewritten URL but is derived from the SSL information.

The main disadvantage of using SSL ID tracking is the performance hit of using
SSL. If you have a business requirement to use SSL, this is a good choice. If you
do not have such a requirement, it is probably a good idea to consider using
cookies instead.

Selecting multiple tracking mechanisms
It is possible to select all three options for a Web application. If you do this:

� SSL session identifiers are used in preference to cookie and URL rewriting.

� Cookies are used in preference to URL rewriting.

If selecting SSL session ID tracking, we recommended that you also select
cookies or URL rewriting so that session affinity can be maintained. The cookie
or rewritten URL contains session affinity information enabling the Web server to
properly route a session back to the same server for each request.

Storage of session-related information
You can choose whether to store the session data in the application server
memory (local), in a database, or using memory-to-memory data replication. The

194 WebSphere Application Server V6.1: Planning and Design

last two options allow session data to be accessed by multiple servers and
should be considered when planning for failover.

Storing session data external to the server can have drawbacks in performance.
The amount of impact depends on the method chosen and the performance and
capacity of the external storage. Session management implements caching
optimizations to minimize the impact of accessing the external store, especially
when consecutive requests are routed to the same application server.

Local sessions (non-persistent)
If you choose to use application server memory, the session data is not available
to any other servers. Although the fastest option and the simplest to set up, an
application server failure destroys the session.

The following settings can help you manage the local session storage:

� Maximum in-memory session count: Enables you to define a limit to the
number of sessions in memory. This prevents the sessions from acquiring too
much of the JVM memory.

� Allow overflow: Permits an unlimited number of sessions. If you choose this
option, monitor the session cache size closely.

� Session timeout: Determines when sessions can be removed from cache.

Database persistent sessions
You can store session data in an external database. The administrator must
create the database and define it to WebSphere.

The Use multi-row schema setting gives you the option to use multi-row sessions
to support large session objects. With multi-row support, the WebSphere session
manager breaks the session data across multiple rows if the size of the session
object exceeds the size for a row. This also provides a more efficient mechanism
for storing and retrieving session contents under certain circumstances.

Memory-to-memory replication for persistent sessions
Memory-to-memory replication copies session data across application servers in
a cluster, storing the data in the memory of an application server and providing
session persistence. Using memory-to-memory replication eliminates the cost of
maintaining a production database. It also eliminates the single point of failure
that can occur with a database.

The administrator sets up memory-to-memory replication by creating a
replication domain and adding application servers to it.

Manage replication domains from the administrative console by navigating to
Environment → Replication domain.

 Chapter 9. Planning for performance, scalability, and high availability 195

When defining a replication domain, you must specify whether each session is
replicated to one server (single replica), to every server (entire domain), or to a
defined number of servers. The number of replicas can affect performance.
Smaller numbers of replicas result in better performance because the data does
not have to be copied as many times. However, if you create more replicas, you
have more redundancy in your system. By configuring more replicas, your
system becomes more tolerant to possible failures of application servers in the
system because the data is backed up in several locations.

When adding an application server to a replication domain, you must specify the
replication mode for the server:

� Server mode

In this mode, a server only stores backup copies of other application server
sessions. It does not send copies of sessions created in that particular server.

� Client mode

In this mode, a server only broadcasts or sends copies of the sessions it
owns. It does not receive backup copies of sessions from other servers.

� Both mode

In this mode, the server simultaneously sends copies of the sessions it owns
and acts as a backup table for sessions owned by other application servers.
Because each server has a copy of all sessions, this mode uses the most
storage on each server. Replication of sessions can impact performance.

Session manager settings
Session management in WebSphere Application Server can be defined at the
following levels:

� Application server

This is the default level. Configuration at this level is applied to all Web
modules within the server.

Navigate to Servers → Application servers → <server_name> → Session
management → Distributed environment settings → Memory-to-memory
replication.

� Application

Configuration at this level is applied to all Web modules within the application.

Navigate to Applications → Enterprise applications → <app_name> →
Session management → Distributed environment settings →
Memory-to-memory replication.

196 WebSphere Application Server V6.1: Planning and Design

� Web module

Configuration at this level is applied only to that Web module.

Navigate to Applications → Enterprise applications → <app_name> →
Manage modules → <Web_module> → Session management →
Distributed environment settings → Memory-to-memory replication.

With one exception, the session management properties you can set are the
same at each configuration level:

� Session tracking mechanism lets you select from cookies, URL rewriting, and
SSL ID tracking. Selecting cookies will lead you to a second configuration
page containing further configuration options.

� Select Maximum in-memory session count and whether to allow this number
to be exceeded, or overflow.

� Session timeout specifies the amount of time to allow a session to remain idle
before invalidation.

� Security integration specifies that the user ID be associated with the HTTP
session.

� Serialize session access determines if concurrent session access in a given
server is allowed.

� Overwrite session management, for enterprise application and Web module
level only, determines whether these session management settings are used
for the current module, or if the settings are used from the parent object.

� Distributed environment settings select how to persist sessions
(memory-to-memory replication or a database) and set tuning properties.
Memory-to-memory persistence is only available in a Network Deployment
distributed server environment.

9.7 Data replication service

The data replication service (DRS) is the WebSphere Application Server
component that replicates data. Session manager, dynamic cache, and stateful
session beans are the three consumers (users) of the replication service.

To use data replication for these services, you must first create the replication
domains:

� Create one replication domain for dynamic cache. The replication domain
must be configured for full group replication (both mode).

� Create one replication domain to handle sessions for both HTTP sessions
and stateful session beans.

 Chapter 9. Planning for performance, scalability, and high availability 197

We discuss replication domains and session management memory-to-memory
replication in 9.6.1, “Session support” on page 192.

Configure dynamic cache replication through Servers → Application servers →
<server_name > → Container services → Dynamic cache service.

Session management for stateful session beans in WebSphere Application
Server can be defined at the following levels:

� Application server EJB container

Navigate to Servers → Application servers → <server_name> → EJB
Container.

� Application

Navigate to Applications → Enterprise applications → <app_name> →
Stateful session bean failover settings.

� EJB module

Navigate to Applications → Enterprise applications → <app_name> →
Manage modules → <EJB_module> → Stateful session bean failover
settings.

9.8 WebSphere Application Server performance tools

When reviewing the application environment, you often need to delve deeper into
the behavior of the application than what is presented at the operating system
layer. This requires the use of specialized tools to capture this information.
WebSphere Application Server provides tools that allow the administrator to
gather information related to the performance of various components in the J2EE
environment. In this section, we discuss the enhanced Tivoli Performance
Viewer and the request metrics available for WebSphere transactions.

Note for migration: Any replication domains that were created in a previous
version of WebSphere might be multi-brokered domains, as opposed to the
new data replication domains in WebSphere Application Server V6. If existing
multi-broker domains remain functional, however, after you upgrade your
deployment manager, you can create only data replication domains in the
administrative console. For improved performance and easier configuration,
migrate any existing multi-broker domains to the new data replication
domains.

198 WebSphere Application Server V6.1: Planning and Design

9.8.1 Performance Monitoring Infrastructure

The Tivoli Performance Viewer is a monitoring tool that is used to capture data
presented through the WebSphere Application Server Performance Monitoring
Infrastructure (PMI) The PMI is a server-side monitoring component. WebSphere
PMI complies with J2EE 1.4 standards by implementing the J2EE 1.4
Performance Data Framework. This means that the old API has been
deprecated, although it will continue to exist to allow for migration to the new
standard.

Configured through the administrative console, the PMI allows monitoring tools to
peer inside the WebSphere environment to capture specific details about the
application behavior. Using this interface, you are able to capture information
about the following resources and more:

� Customer’s application resources

– Custom PMI
– EJBs
– Servlets/JSPs
– Web services
– Any component written by the client that runs in the environment

� WebSphere runtime resources

– JVM memory
– Thread pools
– Database connection pools
– Session persistence data

� System resources

– Processor usage
– Total free memory
– Components that are controlled outside the WebSphere environment but

that are vital in healthy application state

PMI now offers the Custom PMI API. This enables you to insert your own custom
metrics and have them captured and available to the standard monitoring tools.

When determining the metrics to capture, you can select from the following
categories:

� Basic

– J2EE components
– CPU usage
– HTTP session information

 Chapter 9. Planning for performance, scalability, and high availability 199

� Extended (basic +)

– WLM
– Dynamic cache

� All

� Custom (select your own mix of metrics)

The Java Virtual Machine Tool Interface (JVMTI) is a native programming
interface that provides tools the ability to inspect the state of the JVM. This
interface is new for the JVM V1.5. JVMTI replaces the Java Virtual Machine
Profiling Interface (JVMPI), which is supported in WebSphere Application Server,
Version 6.0.2 and earlier. The JVMPI interface is deprecated as of WebSphere
Application Server Version 6.1. Both interfaces (JVMTI and JVMPI) provide the
ability to collect information about the JVM that runs the application server. The
statistics that are gathered through the JVM Tool Interface (JVMTI) is different
between the JVM provided by IBM and the Sun HotSpot-based JVM, including
Sun HotSpot JVM on Solaris and the HP JVM for HP-UX.

Enabling the JVMTI involves enabling the JVM profiler for the application server
and selecting the appropriate metrics using the Custom settings.

Monitoring a system naturally changes the nature of the system. Introducing
performance metrics consumes some resources for the application. In
WebSphere Application Server V6, this impact has been minimized, though
obviously the more statistics you capture, the more processing power is required.

9.8.2 Tivoli Performance Viewer

Tivoli Performance Viewer is the tool included with WebSphere Application
Server V6 for measuring performance. Unlike its predecessor, however, this
version is now integrated into the administrative console.

Using Tivoli Performance Viewer, you can:

� Display PMI data collected from local and remote application servers:

– Summary reports show key areas of contention.
– Graphical/tabular views of raw PMI data.
– Optionally save collected PMI data to logs.

� Provide configuration advice through performance advisor section:

– Tuning advice formulated from gathered PMI and configuration data.

You use Tivoli Performance Viewer to create summary reports. These reports let
you monitor the server’s real-time performance and health. Tivoli Performance
Viewer enables you to work with the performance modules. With these modules,

200 WebSphere Application Server V6.1: Planning and Design

you drill down on specific areas of interest, even including old logs. Use the log
analysis tools to detect trends over time. Tivoli Performance Viewer can also
save performance data for later analysis or problem determination.

9.8.3 WebSphere performance advisors

Gathering information made available through the PMI, the WebSphere
performance advisors have the ability to make suggestions about the
environment. The advisors are able to determine the current configuration for an
application server, and trending the PMI data over time, make informed
decisions about potential environmental changes that can enhance the
performance of the system. Advice is hard coded into the system and is based
on IBM best practices for tuning and performance. The advisors do not
implement any changes to the environment. Instead, they identify the problem
and allow the system administrator to make the decision whether or not to
implement. You should test after any change is implemented from the advisor
suggestions. There are two types of advisor: the Runtime Advisor and the
Performance Advisor in Tivoli Performance Viewer.

Runtime Advisor
The Runtime Advisor is configured through the administrative console. The
Runtime Advisor writes to the SystemOut.log and to the console while in monitor
mode. The interface is configurable to determine how often data is gathered and
advice is written. The Runtime Advisor offers advice about the following
components:

� ORB service thread pools
� Web container thread pools
� Connection pool size
� Persisted session size and time
� Prepared statement cache size
� Session cache size

This is not the complete set of items monitored through the PMI. If you need to
gather advice about items outside this list, you need to use the Tivoli
Performance Viewer Advisor. The Runtime Advisor, by its nature, does not have
the ability to play back data captured offline.

Performance Advisor in Tivoli Performance Viewer
This advisor is slightly different from the Runtime Advisor. The Performance
Advisor in Tivoli Performance Viewer is invoked only through the Tivoli
Performance Viewer interface. It still runs on the application server you are
monitoring, but the refresh intervals are based on selecting refresh through the
console instead of fixed intervals. Also, the output is to the user interface instead

 Chapter 9. Planning for performance, scalability, and high availability 201

of to an application server output log. This advisor also captures data and gives
advice about more components than the Runtime Viewer. Specifically, this
advisor can capture:

� ORB service thread pools
� Web container thread pools
� Connection pool size
� Persisted session size and time
� Prepared statement cache size
� Session cache size
� Dynamic cache size
� JVM heap size
� DB2 performance configuration

This advisor is used more for calculation-intensive operations. The metrics it
monitors can become quite large and can potentially impact performance if
analyzed through the Runtime Advisor. It is an on demand tool, much more
suited to problem analysis and avoidance.

9.8.4 WebSphere request metrics

Request metrics gather information about single transactions within an
application. The metric tracks each step in a transaction and determines the
process time for each of the major application components. Several components
support this transaction metric, including:

� Web server plug-ins
� Web container
� EJB container
� JDBC calls
� Web services engine
� Default messaging provider

The amount of time that is spent in each component is measured and
aggregated to define the complete transaction time for that transaction. Both the
individual component times and the overall transaction time can be very useful
metrics when trying to gauge user experience on the site. The data allows for a
hierarchical view for each individual transaction by response time. When
debugging resource constraints, these metrics provide critical data at each
component. The request metric can provide filtering mechanisms to monitor
synthetic transactions or to track the performance of a specific transaction. By
using artificial transactions, you can measure performance of the site end-to-end.

From a performance perspective, using transaction request metrics can aid in
determining if an application is meeting service level agreements (SLAs) for the
client. The metrics can be used to alert when an SLA target is not met.

202 WebSphere Application Server V6.1: Planning and Design

Request metrics help administrators answer the following questions:

� What performance area should be focused on?

� Is there too much time being spent on any given area?

� How do I determine if response times for transactions are meeting their
goals?

� How can I validate that SLA agreements are being met?

Those familiar with the Application Response Measurement (ARM) standard
know that beginning in WebSphere Application Server V5.1, the environment
was ARM 4.0 compliant. WebSphere Application Server V6 extended the
attributes measured to include Web services, JMS, and asynchronous beans.

Implementing request metrics
There are several methods for implementing request metrics. This section briefly
discusses the methods that are currently available.

Request filtering
The most common method of implementing request metrics is to use request
filtering. In this method, you use filters to limit the number of transactions that are
logged, capturing only those transactions you care to monitor. As an example,
you can use an IP address filter to monitor synthetic transactions that always
come from the same server. Some of the available filters are:

� HTTP requests: Filtered by IP address, URI, or both
� Enterprise bean requests: Filtered by method name
� JMS requests: Filtered by parameters
� Web services requests: Filtered by parameters

The performance impact is less than about 5% when all incoming transactions
are being instrumented. This is not a significant amount, but factor this in when
implementing the metrics. The console path for implementation is through
Monitoring and Tuning → Request Metrics.

Tracing
By setting the trace depth, you control not only the depth of information gathered
through the metric, but also the overall performance hit on the system. The
higher a tracing level, the greater the performance hit the system takes. There
are several available trace levels:

� None: No data captured
� Hops: Process boundaries (Web server, servlet, EJB over RMI-IIOP)
� Performance Debug: Hops + 1 level of intraprocess calls
� Debug: Full capture (all cross-process/intraprocess calls)

 Chapter 9. Planning for performance, scalability, and high availability 203

Set the tracing levels in the console through the same path, Monitoring and
Tuning → Request Metrics.

Output for request metrics
The data captured by request metrics is placed in several levels, depending on
the nature of the metric selected. For Web requests, the HTTP request is logged
to the output file specified in the plugin-cfg.xml file on the Web server. For
application server layers, servlets, Web services, EJB, JDBC, and JMS, the
information is logged to the SystemOut.log for that application server. The data
can also be output to an ARM agent and visualized using an ARM management
software, such as IBM Tivoli Monitoring for Transaction Performance or IBM
Enterprise Workload Management.

If you currently use a third-party tool that is ARM 4.0 compliant, the data can be
read by that agent as well. You can direct data to either the logs or the agent, or
both at the same time. The best practice, however, is to not use metric logging
while implementing the ARM agent monitoring, because the disk I/O can
negatively impact performance.

Application Response Measurement (ARM)
ARM is an Open Group standard that defines the specification and APIs for
per-transaction performance monitoring. Request metrics can be configured to
use ARM. In doing so, the request metrics use call across the ARM API to gather
the data.

For more information about ARM, review:

http://www.opengroup.org/tech/management/arm/

WebSphere request metrics support the Open Group ARM 4.0 Standard, as well
as the Tivoli ARM 2.0. The 4.0 standard is supported in all components. For the
Tivoli standard, WebSphere Application Server V6 supports all components
except Web server plug-ins. A correlator can be extracted from request metrics
transactions. This correlator can be passed to sub-transactions taking place in
non-WebSphere containers. This facility allows the complete transaction to be
accurately timed in complex environments.

Additional resources
For additional information about ARM and the WebSphere request metrics
implementation, refer to the following links:

� ARM 4.0 specification

http://www.opengroup.org/management/arm.htm/

� Information about the ARM standard

http://www.opengroup.org/pubs/catalog/c807.htm

204 WebSphere Application Server V6.1: Planning and Design

http://www.opengroup.org/tech/management/arm/
http://www.opengroup.org/management/arm.htm/
http://www.opengroup.org/pubs/catalog/c807.htm

� IBM Tivoli Monitoring for Transaction Performance

http://www.ibm.com/software/tivoli/products/monitor-transaction/

� IBM Enterprise Workload Management

http://www.ibm.com/servers/eserver/about/virtualization/enterprise/e
wlm.html

9.9 Planning checklist for performance

Table 9-1 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 9-1 Planning checklist for Web services

Planning item

Establish performance goals and identify workload characteristics (throughput,
response time, availability).

Design your topology to meet the performance goals. Determine if clustering will be
used. Determine if the appropriate mechanisms are in place for workload management
and failover. As part of this, you need to consider where applications will be deployed
(see 7.11, “Mapping applications to application servers” on page 150).

Implement a monitoring system to watch for performance problems and to assist in
determining if adjustments are necessary.

Monitor the following as potential physical bottleneck areas:
� Network load balancers
� Firewalls
� Application servers
� Database servers
� LTPA providers

 Chapter 9. Planning for performance, scalability, and high availability 205

http://www.ibm.com/servers/eserver/about/virtualization/enterprise/ewlm.html
http://www.ibm.com/software/tivoli/products/monitor-transaction/

Examine initial settings for performance tuning parameters and adjust if necessary.
Reevaluate these periodically:
� JVM heap maximum and minimum sizes
� Web container

– Thread pool
– Maximum persistent requests
– Timeout values

� EJB container
– Inactive pool cleanup interval
– Cache size

� Database connection pool
– Maximum connections
– Unused timeout
– Purge policy

� Database servers
– Maximum database agents
– Maximum connected applications
– Query heap size
– Sort heap size
– Buffer pool size
– Database memory heap
– Application control heap
– Lock timeout

� Directory services
– Database tuning
– Authentication cache intervals

Plan for clustering:
� Number of application servers
� Physical location
� Server weights
� Prefer local setting

Consider the Scheduler service to run intensive tasks in off-peak hours.

Evaluate session management needs:
� Session ID mechanism (cookies, URL rewriting, SSL)
� Session timeout values
� Session, transaction, and server affinity
� Distributed session data store (memory-to-memory or database store)

For messaging applications using the default messaging provider, consider:
� Quality of service settings
� Bus topology

Planning item

206 WebSphere Application Server V6.1: Planning and Design

Resources
For a good overall reference for performance and scalability planning in
WebSphere Application Server, refer to the following IBM Redbooks:

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

We suggest that you have a copy of these books available as you plan your
environment.

For information about session management, see WebSphere Application Server
V6.1: System Management and Configuration, SG24-7304.

The WebSphere Application Server Information Center also contains a lot of
useful information.

For a good entry point to monitoring topics, see:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topmonitoring.html

For a good entry point to performance topics, see:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6toptuning.html

 Chapter 9. Planning for performance, scalability, and high availability 207

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6toptuning.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topmonitoring.html

208 WebSphere Application Server V6.1: Planning and Design

Chapter 10. Planning for messaging

In this chapter, we discuss planning for a WebSphere Application Server V6.1
environment that uses messaging facilities. WebSphere Application Server V6.0
introduced significant changes to the messaging environment. A number of
further improvements have been added with V6.1. Depending on your current
messaging needs, carefully read the information that is provided in this chapter.
This chapter asks the following questions:

� Messaging overview: What is messaging?
� What is new in messaging for V6.1
� Messaging considerations: Is messaging for me?
� Messaging options: What things do I need?
� Messaging topologies: How can I use messaging?
� Messaging features: How secure and reliable is it?
� Planning checklist for messaging

This chapter briefly describes the concepts required to understand messaging.
For detailed information, refer to WebSphere Application Server V6.1: System
Management and Configuration, SG24-7304.

10

© Copyright IBM Corp. 2006. All rights reserved. 209

10.1 Messaging overview: What is messaging?

Generically, the term messaging describes communication, or exchange of
information, between two or more interested parties. Messaging can take many
shapes and forms, such as a sending a fax message from one point to another,
which is an example of point-to-point messaging. An e-mail sent to a mailing list
is an example of the publish/subscribe messaging concept, where a single
message is sent to many destinations.

However, for the purposes of this chapter, we define messaging as a
synchronous or asynchronous method of communicating between processes on
a computer. It provides reliable, secured transport of requests between
applications that might reside on the same server, different servers, or even
different networks across a global application environment. The basic premise of
messaging is that an application produces a message that is placed on a
destination or queue. The message is retrieved by a consumer, which then does
additional processing. The end result can be that the producer receives some
data back from the consumer or that the consumer does some processing task
for the producer.

Messaging is a very popular facility for exchanging data between applications
and clients of very different types. It is also an excellent tool for communication
between heterogeneous platforms. WebSphere Application Server recognizes
the power of messaging and implements a powerful and flexible messaging
platform within the WebSphere environment that is continually being improved.

10.2 What is new in messaging for V6.1

WebSphere Application Server V6.1 introduced some improvements to the
service integration bus from Version 6.0. We briefly describe these here. For
those new to WebSphere Application Server messaging, we explain the
concepts later in this chapter.

� Introduction of file stores for messaging engines

Messaging engines can now have their message stores, used for storing
persistent data, implemented as flat files (file stores) in addition to the
traditional database implementation (data stores). These files can be
administered through the host operating system and can potentially increase
messaging engine performance and throughput.

� Improved service integration bus security

Security surrounding the service integration bus has been enhanced to
provide much more flexibility and robustness to your security configuration.

210 WebSphere Application Server V6.1: Planning and Design

� Introduction of WebSphere MQ server

For those who want to access WebSphere MQ on a z/OS platform, there is a
new mechanism called WebSphere MQ server that enables applications to
take advantage of the high availability and load balancing features of the MQ
queue sharing groups that the z/OS implementation of MQ provides.

� Strict message ordering enhancement for bus destinations

Defined destinations inside a bus can now be configured to be much more
strict in the delivery of messages in the order that they were produced. When
enabled, certain automatic restrictions are placed on the use of the
destination, such as disallowing concurrent consumption of messages by
multiple applications, which can disrupt message ordering.

10.3 Messaging considerations: Is messaging for me?

Messaging can be a powerful technology for applications. It is important to
remember, however, that not all environments need to use messaging. Just
because WebSphere Application Server provides messaging does not mean the
technology is a panacea for applications. Note the following high-level
considerations when choosing whether messaging is appropriate for your
environment:

� Is your application complex or simple?

If your application just uses servlets to provide Web presentation services for
dynamic content, it is unlikely that messaging would add any degree of value
to the application. If, however, the application is data driven or has many tiers
of access, messaging can provide a good solution.

� Does your application environment have multiple platforms?

When dealing with heterogeneous systems, messaging can provide a
common input and output mechanism that crosses platforms easily. If the
environment is predominately homogenous, messaging might not do any
more than add a layer of complexity that is generally undesirable.

� Does your application need to cross security realms?

Some application environments require access to data that might not be in
the same security realm as the application servers. This does not just mean a
demilitarized zone (DMZ) environment, because some large enterprises use
multiple security realms within an environment that would not be considered
appropriate for a DMZ. Messaging provides Secure Sockets Layer (SSL)
communication and cryptography to enhance the security of the system
overall.

 Chapter 10. Planning for messaging 211

� Does your current environment use messaging?

If your environment currently is a robust and stable WebSphere MQ
environment, the possibility is high that your applications will be more robust
and stable if they implement messaging.

� What are your application resiliency requirements?

Not all applications require high availability or high degrees of reliability.
Introduce messaging into an environment where some back-end resource is
a potential single point of failure and you need to minimize the impact of that
component being unavailable. Messaging itself can introduce a single point of
failure, especially when integrating into existing messaging environments, so
be careful as to how the choice is made.

� Are your developers comfortable with messaging technologies?

Many developers have worked without using messaging for quite some time.
They have found ways using session state, EJBs, and other tricks to
implement some of the same functionality without using messaging
constructs directly. If the developers are not comfortable using messaging,
you can be turning on an environment that might consume resources that
could be put to use elsewhere in the application environment.

There are many more questions that you can ask when considering messaging.
The point really is that just because a guide discusses it or a software product
offers it as a technology does not mean the application will make use of it. The
best advice is to use the keep it simple and straightforward (KISS) method.

10.4 Messaging options: What things do I need?

In this section, we discuss at a high level how messaging is implemented within
WebSphere Application Server and what questions need consideration. This
information helps you when:

� Selecting a messaging service type

� Choosing a messaging service provider

10.4.1 Selecting a messaging service type

To implement messaging within your application, either as a message producer,
consumer, or both, your application needs to communicate with a messaging
service provider. Examples of messaging provider middleware include the
default messaging provider in WebSphere Application Server, WebSphere MQ,
Oracle Enterprise Messaging Service, SonicMQ, and many others.

212 WebSphere Application Server V6.1: Planning and Design

Your application code can interact with these providers in one of three ways,
through the JMS API, through the J2EE Connector Architecture API (JCA), or
directly through provider-specific client libraries. In the following sections, we
briefly explain these terms and discuss there use.

Java Message Service (JMS)
JMS is the standard API for accessing enterprise messaging systems from
Java-based applications. It provides methods and functions that are directly
implemented by the underlying messaging provider. WebSphere Application
Server V6.1 supports version 1.1 of the specification, which forms part of the
overall J2EE 1.4 specification. For more information about the JMS V1.1
specification, see the Sun Developer Network Java Message Service Web page:

http://java.sun.com/products/jms

We recommend using JMS in preference to anything else when writing an
application to run within WebSphere Application Server for the following reasons:

� It is a tried-and-tested, consistent, and non-proprietary API that has been
around for enough time to have plenty of skilled resources available.

� Applications that use it remain portable across many messaging providers.

� The API, while specific to messaging, has been expanded to support many
message types and architectures, providing flexibility and versatility in the
vast majority of application.

For the rest of the chapter, we assume that JMS is the chosen method to access
the messaging provider middleware.

J2EE Connector Architecture (JCA)
The J2EE Connector Architecture is a standard way for a Java component to
connect to any enterprise system, not just messaging provider software.
WebSphere Application Server V6.1 supports version 1.5 of the JCA
specification, which states that an application communicates with an enterprise
system through a resource adaptor. A resource adaptor is supplied by the
vendor of the enterprise system that is compliant with the JCA API (a bit like a
software driver). This provides a level of abstraction between your application
and the enterprise system, allowing your application to still be portable between
enterprise systems. For more information about the JCA V1.5 specification, see
the Sun Developer Network J2EE Connector Architecture Web page:

http://java.sun.com/j2ee/connector/

 Chapter 10. Planning for messaging 213

http://java.sun.com/products/jms
http://java.sun.com/j2ee/connector/

We recommend using JMS in preference to JCA whenever you are accessing a
messaging provider, because the JCA API is much less messaging specific, and
therefore harder and more prone to error. However, it is a viable alternative when
your chosen provider does not support JMS.

Vendor-specific client libraries
As the name suggests, these are libraries supplied by a software vendor so that
applications can interact with their software. These libraries are similar to
resource adaptors except in a few important ways:

� They are proprietary and do not usually conform to any open standard.

� Their use renders your application non-portable across enterprise systems,
and probably across platforms as well.

� There might not be support for certain languages such as Java, and these
libraries have no direct support in WebSphere Application Server.

We recommend that you do not use these libraries whenever possible. They are
usually only used in small, platform-specific utilities that do not run inside any
type of application server.

10.4.2 Choosing a messaging service provider

WebSphere Application Server supports several JMS message providers (for the
rest of this chapter, we assume that the external messaging provider is
WebSphere MQ for the purposes of explanation):

� WebSphere Application Server default messaging provider
This full featured messaging provider comes free with WebSphere
Application Server. It is a robust and stable messaging platform that can
handle any number of point-to-point queues, topics in a publish-subscribe
environment, or Web service endpoints.

� WebSphere MQ messaging provider

WebSphere MQ is the premier messaging middleware provided by IBM. We
recommend WebSphere MQ when you require advanced messaging facilities
and options. WebSphere MQ has been around for a lot longer than the
WebSphere Application Server default messaging provider and is available
on many platforms, supporting many programming languages. It is fully JMS
compliant and has a large client base.

214 WebSphere Application Server V6.1: Planning and Design

� Generic JMS provider

This is the catch-all for any external messaging providers other than
WebSphere MQ. Although WebSphere Application Server works with any
JMS-compliant messaging provider (after it is defined to WebSphere), there
can only be limited administrative support in WebSphere.

This approach is only recommended if you have an existing investment in a
third-party messaging provider, because much greater support is available in
WebSphere Application Server for the default and WebSphere MQ
messaging providers. For the rest of this chapter, we assume that the
external messaging provider is WebSphere MQ for the purposes of
explanation.

� V5 default messaging provider

The V5 default messaging provider is supported for migration purposes only.

10.5 Messaging topologies: How can I use messaging?

Choosing a topology depends largely on the answers to many questions about
the topology of the application and your own messaging requirements. Some of
the more important questions include:

� What is the topology of my application?

� Can I break it up into logical parts that can be separately deployed?

� Which parts need to communicate with which others?

� Are there natural divisions within the application that are autonomous,
needing separate communication channels?

� Does my application need to communicate with external systems?

� Do I need to balance the messaging workload for each part?

� Are there any critical parts that need to have high availability?

� Will I need application server clustering, or do I have it already?

The following sections try to generally outline what topology will best fit your
needs depending on the answers to the previous questions. In most cases, the
topology will not be clear cut because there will be many different ways to
implement a messaging application. However, the simpler, the better.

Note: The remainder of this chapter focuses on the default messaging
provider. Planning for external providers is out of the scope for this document.

 Chapter 10. Planning for messaging 215

10.5.1 Default messaging provider concepts

Some concepts need described very briefly in order to understand the basic
intent of the topologies.

Service integration bus
The service integration bus (or just the bus) provides the transport mechanism
for the default messaging provider. It is a group of interconnected application
servers and server clusters that have been added as part of the bus. Each
member of the bus has a messaging engine so that the applications can connect
to the bus.

Messaging engine
The messaging engine is the core part of the application server bus member that
accomplishes the communication of the message to its destination, in
cooperation with the other messaging engines of other bus members.

Destinations
A destination is defined within a bus and represents a logical address to which
applications can attach as message producers, consumers, or both. There are
different types of destinations, which are used for different message models,
such as point-to-point or publish/subscribe. Destinations are associated with a
messaging engine using a message point.

Message point
A message point is the location on a messaging engine where messages are
held for a bus destination. A message point can be a queue point, a publication
point, or a mediation point (this is a specialized message point):

� Queue points

A queue point is the message point for a queue destination. When creating a
queue destination on a bus, an administrator specifies the bus member that
will hold the messages for the queue. This action automatically defines a
queue point for each messaging engine associated with the specified bus
member.

Note: This section provides a high-level look at messaging topologies,
focusing on the default messaging provider. Before designing anything but the
simplest topology for messaging, it is important that you understand how the
default messaging provider handles messages. Review the chapters about
asynchronous messaging and the default messaging provider in WebSphere
Application Server V6.1: System Management and Configuration, SG24-7304.

216 WebSphere Application Server V6.1: Planning and Design

If the bus member is an application server, a single queue point will be
created and associated with the messaging engine on that application server.
All of the messages that are sent to the queue destination will be handled by
this messaging engine. In this configuration, message ordering is maintained
on the queue destination.

If the bus member is a cluster of application servers, a queue point is created
and associated with each messaging engine defined within the bus member.
The queue destination is partitioned across the available messaging engines
within the cluster. In this configuration, message ordering is not maintained on
the queue destination.

� Publication points

A publication point is the message point for a topic space. When creating a
topic space destination, an administrator does not need to specify a bus
member to hold messages for the topic space. Creating a topic space
destination automatically defines a publication point on each messaging
engine within the bus.

Foreign bus and link
In reality, a foreign bus is just another service integration bus with its own set of
members and destinations. You can set up a link to it so that messages traverse
from one bus to another. The WebSphere MQ network can be seen as a foreign
bus by the default messaging provider using a WebSphere MQ link.

10.5.2 Choosing a messaging topology

The following topologies are some of the typical ones implemented by the default
messaging provider (in increasing complexity) using the previously defined
concepts.

 Chapter 10. Planning for messaging 217

One bus, one bus member (application server)
This is the simplest and most common topology. It is chiefly used when
applications deployed to the same application server need to communicate
among themselves. Additional application servers that are not members of the
bus and only need to use bus resources infrequently can connect remotely to the
messaging engine. See Figure 10-1.

Figure 10-1 Single bus with an application server member

Although this is simple to set up, there are might be a performance impact for
message producers and consumers that connect to the messaging engine
remotely.

Because the single messaging engine is running on a non-clustered application
server, no high availability or workload management is supported.

One bus, one bus member (server cluster)
With this variation, the bus member is a cluster. By default, only one server in a
cluster has an active messaging engine on a bus. If the server fails, the
messaging engine on another server in the cluster is activated. This provides
failover, but no workload management.

The server with the active messaging engine has local access to the bus, but the
rest of the servers in the cluster access the bus remotely by connecting to the
active messaging engine. Servers accessing the bus remotely can consume
asynchronous messages from remote messaging engine. However, an instance

Bus

Application server

queue destination

Application server

Remote
connection

Messaging
application

MDB
Messaging
application

Messaging
application

Local
connection

Messaging
Engine

queue point

messages

218 WebSphere Application Server V6.1: Planning and Design

of a message-driven bean (MDB) deployed to the cluster can only consume from
a local messaging engine. See Figure 10-2.

Because everything is funneled through one messaging engine, performance
might still be an issue.

Figure 10-2 Single bus with a cluster member: High availability

There is the concept of preferred servers with clustering, for example, a primary
server and a backup server in the same cluster. However, this must be explicitly
configured. It is possible to set this up such that only preferred servers are used.
This might circumvent the high availability advantages of the cluster if there are
no more preferred servers available.

Busqueue destination

Messaging
application

Application server

Messaging
application

Application server

Cluster

Bus

Messaging
application

Application server

Messaging
application

Application server

Cluster

X
queue destination

Messaging
Engine

queue point

messages

Messaging
Engine
queue point

messages

 Chapter 10. Planning for messaging 219

With some additional configuration, you can create a topology where each server
in the cluster will be configured to have an active messaging engine, thus
providing workload management as well as failover (Figure 10-3). Note that
because messaging engines can run on any server, if one server goes down,
both messaging engines will run on the remaining server.

Figure 10-3 Single bus with a cluster member: Workload management

When a queue destination is assigned to the cluster, the queue is partitioned with
each messaging engine in the cluster owning a partition of the queue. A
message sent to the queue will be assigned to one partition. The messaging
engine that owns the partition is responsible for managing the message. This
means that requests sent to a destination can be served on any of the
messaging engines running on any of the servers in the cluster.

Each of these topologies require special consideration before using them. If you
are considering using a cluster topology, refer to WebSphere Application Server
V6 Scalability and Performance Handbook, SG24-6392, for more information.

Bus

queue destination

Messaging
application

Application server

Messaging
application

Application server

Cluster

Messaging
Engine

queue point

messages

Messaging
Engine

queue point

messages

220 WebSphere Application Server V6.1: Planning and Design

One bus, multiple bus members
In this topology, there are multiple non-clustered application servers connected
as members of the bus (Figure 10-4). In this topology, most, if not all servers are
bus members. Take care to locate the queue points on the same application
server as the messaging application that is the primary user of the queue. This
will maximize the use of local connections and enhance performance.

Figure 10-4 Single bus with multiple application server members

Multiple buses
Many scenarios only require relatively simple bus topologies, perhaps even just
a single server. When integrating applications that have been deployed to
multiple servers, it is often appropriate to add those servers as members of the
same bus. However, servers do not have to be bus members to connect to a bus.

In more complex situations, multiple buses can be interconnected to create more
complicated networks.

A service integration bus cannot span a WebSphere Application Server cell.
When you need to use messaging resources in multiple cells, you can connect
the buses of each cell to each other. An enterprise might also deploy multiple
interconnected service integration buses for organizational reasons. For
example, an enterprise with several autonomous departments might want to
have separately administered buses in each location. Or perhaps separate but
similar buses exist to provide test or maintenance facilities.

If you use messaging resources in a WebSphere MQ network, you can connect
the service integration bus to the WebSphere MQ network, where it appears to
be another queue manager.

Bus

Application server

queue destination
(A)

Messaging
application

MDBMessaging
application

Local
connection

Messaging
Engine

queue point (A)

messages

Application server

Messaging
application

MDBMessaging
application

Local
connection

Messaging
Engine

queue point (B)

messages

queue destination
(B)

 Chapter 10. Planning for messaging 221

Figure 10-5 illustrates how a service integration bus can be connected to another
service integration bus and to a WebSphere MQ network.

Figure 10-5 Multiple bus scenario

In the case of the connection between the two service integration buses, each
messaging engine contains a service integration bus link configuration that
defines the location of the messaging engine on the remote bus.

For the WebSphere MQ connection, the messaging engine contains an MQ link
configuration that defines the queue manager on WebSphere MQ and identifies
a queue manager name that it will be known by from the view of the WebSphere
MQ network.

When an application sends a message to a queue on the remote bus, it sends it
to an alias destination defined on the local bus that points to the queue
destination on the second bus.

Because there is a single link to a foreign bus, there is no workload management
capability. It is also important to note that an application cannot consume
messages from a destination in a foreign bus.

Application server

Bus

Messaging
application

Application server

Messaging
Engine

WebSphere MQ

QMGR

MQ
client

queue

Foreign bus

Messaging
application

Application server

Messaging
Engine

Bus

Foreign bus

queue
destination

Messaging
Engine

Foreign bus

alias
destination

MQ LinkBus Link

Bus Link

alias
destination

222 WebSphere Application Server V6.1: Planning and Design

Connecting to WebSphere MQ on z/OS
A second option for connecting to WebSphere MQ is to create a WebSphere MQ
server definition that represents a queue manager or queue sharing group on a
WebSphere MQ running on z/OS (Figure 10-6). The WebSphere MQ server
defines properties for the connection to the queue manager or queue sharing
group.

Figure 10-6 Multiple bus scenario

When you add a WebSphere MQ server as a member of the bus, the messaging
engines establish connections to that WebSphere MQ server to access queues
on WebSphere MQ.

To the WebSphere MQ server, the MQ queue manager or shared group is
regarded as a mechanism to queue messages for the bus. The WebSphere MQ
server is regarded by the WebSphere MQ network as just another MQ client
attaching to the queue manager or shared group.

WebSphere MQ server provides the following advantages over a WebSphere
MQ link:

� WebSphere MQ server allows applications to exploit the higher availability
and optimum load balancing provided by WebSphere MQ on z/OS.

Bus

Messaging
application

Application server

WebSphere MQ
z/OS

QMGR
queue

WebSphere MQ
server

WebSphere Application Server Cell

Messaging
Engine

WebSphere MQ
server

WebSphere MQ
z/OS

Queue Sharing Group

QMGR
QMGR

QMGR

Queue destination
Queue destination

 Chapter 10. Planning for messaging 223

� With WebSphere MQ link, messages from WebSphere MQ are delivered to a
queue destination in the bus. When a messaging engine fails, messages at
destinations in the messaging engine cannot be accessed until that
messaging engine restarts. When you use a WebSphere MQ server that
represents a queue sharing group, the bus can continue to access messages
on the shared queue even when a queue manager in the queue sharing
group fails. This is because the bus can connect to a different queue manager
in the queue sharing group to access the same shared queues.

� Messages are not stored within the messaging engine. Messaging
applications directly send and receive messages from the queues in
WebSphere MQ, making the WebSphere MQ server tolerant of a messaging
engine failure. This allows message beans to be configured to immediately
process messages as they arrive on an MQ queue. Similarly, any bus
mediations take place immediately upon a message appearing on an MQ
queue.

� With WebSphere MQ link, applications have to push messages from the
WebSphere MQ network end of the link. With WebSphere MQ server,
applications can pull messages from the WebSphere MQ network.
WebSphere MQ server, therefore, provides a better proposition than
WebSphere MQ link in situations requiring optimum load balancing.

WebSphere MQ server supports J2EE, JMS, WebSphere Message Queuing
Interface (MQI), and the service integration mediations API.

10.6 Messaging features: How secure and reliable is it?

This final chapter describes some of the lower-level details and requirements of
messaging. We cover three categories: security, high availability, and reliability.
These are important points that must be factored in to any planning. This section
contains the following topics:

� More messaging concepts

� Planning for security

� Planning for high availability

� Planning for reliability

10.6.1 More messaging concepts

We must briefly discuss the following concepts before discussing messaging in
more detail.

224 WebSphere Application Server V6.1: Planning and Design

Transport chains
The term transport chain describes the process and mechanism that a
messaging engine uses to communicate with another messaging engine,
external messaging provider, or messaging applications running outside of a
server with a messaging engine. They are divided into inbound and outbound,
and encompass things such as encryption and communication protocols, for
example, TCP/IP.

Message stores
At the center of a message engine is a message store. This is a repository that
allows data (messages, operational data, or both) to be stored in both a
permanent and temporary fashion. Permanent means that the data will survive a
shutdown of the message engine.

10.6.2 Planning for security

There are two main areas in messaging security. The first is authorization and
authentication of users and groups that want to connect to a bus. The second is
securing the transportation of the message from source to destination. This is not
covered in depth here. For more information, refer to WebSphere Application
Server V6 Security Handbook, SG24-6316.

Authentication and authorization
All access to a service integration bus must be both authorized and
authenticated if bus security is turned on.

Authentication is done through some sort of external access registry, such as an
LDAP server, a custom database, or the local operating system. The user or
group must have their credentials validated before they can access the bus.

After the user or group is authenticated, they must still be authorized to access
bus resources. There is a role called the bus connector role to which the user or
group must be assigned; otherwise, they might be denied access even if the
credentials are valid. Other roles that affect permissions for users and groups
include:

� Sender: User/group can send (produce) messages to the destination.

� Receiver: User/group can read (consume) messages from the destination.

� Browser: User/group can read (non-destructive) messages from the
destination.

 Chapter 10. Planning for messaging 225

Address the following questions:

� What users or groups, or both, do I need to define or have already been
defined?

� What are the minimum permissions I need to assign to each one?

Secure message transportation
A message engine uses a particular transport chain to connect to a bus and
communicate a message to another message engine. The transport chains have
attributes such as security encryption (using SSL or HTTPS, for example) and
the communication protocol used (TCP/IP, for example).

Encryption is obviously more secure, but can have performance impacts. This is
also true for the protocols, although your choice of protocol is usually decided for
you by what you are trying to communicate with. For each bus, you choose the
particular transport chains that have the attributes you need.

The relevant questions here include:

� What types of messages do I need secured?

� Where do I need to use encryption, and to what extent?

� What are the connection requirements (in terms of security) of the party I am
trying to communicate with?

10.6.3 Planning for high availability

We describe this to some extent when discussing the choice of messaging
topologies (10.5, “Messaging topologies: How can I use messaging?” on
page 215), but we briefly recap here.

Application server clustering
An application server only has one messaging engine for each bus of which it is
a member. There is no option for failover. An application server that is clustered
will by default have one active messaging engine. If the server hosting the
messaging engine fails, the messaging engine activates on another server in the
cluster.

To ensure that the messaging engine runs on one particular server in the cluster,
for example, if you have one primary server and one backup server, or if you
want the messaging engine to only run on a small group of servers within the
cluster, you must specifically configure this by defining the preferred server for
the messaging engine. Each messaging engine on a service integration bus
belongs to one high availability group. A policy assigned to the group at runtime
controls the members of each group. This policy determines the availability

226 WebSphere Application Server V6.1: Planning and Design

characteristics of the messaging engine in the group and is where preferred
servers are designated. Be careful not to reduce or remove the high availability
of the messaging engine by having a list of preferred servers that is too
restricted.

To obtain workload management across a bus with a cluster, you need to create
additional messaging engines and assign the messaging engines to a preferred
server. The messaging engines run simultaneously with queues partitioned
across them.

You might need to consider clustering some application servers if you have not
already.

10.6.4 Planning for reliability

The JMS specification supports two modes of delivery for JMS messages:
persistent and non-persistent. The WebSphere administrator can select the
mode of delivery on the JMS destination (queue/topic) configuration:

� Application (persistence is determined by the JMS client)
� Persistent
� Nonpersistent

Messages can also have a quality of service attribute that specifies the reliability
of message delivery. Different settings apply depending on the delivery mode of
the message. The reliability setting can be specified on the JMS connection
factory and, for the default messaging provider, on the bus destination. Reliability
settings set at the connection factory apply to all messages using that connection
factory, though you can opt to let the reliability settings be set individually at the
bus destination.

Each reliability setting has different performance characteristics. The settings
are:

� Best effort nonpersistent
� Express nonpersistent
� Reliable nonpersistent
� Reliable persistent
� Assured persistent

There is a trade-off between reliability and performance to consider. With
increasing reliability levels of a given destination, performance or throughput of
that destination is decreased. There is a default setting that is configured when
the destination is created, but this can be overridden by message producers and
consumers under certain circumstances.

 Chapter 10. Planning for messaging 227

The “Message reliability settings” topic in the WebSphere Application Server
Information Center contains a table that outlines what happens to a message
under various circumstances depending on delivery mode and reliability setting:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.pmc.nd.doc/concepts/cjj9000_.html

For information about how reliability levels are affected when messages flow
over an MQ link, see the “Mapping of message delivery options flowing through
the WebSphere MQ link” topic in the WebSphere Application Server Information
Center:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.pmc.nd.doc/ref/rjc0014_.html

The following questions apply here:

� What is more important for each type of message, reliability or performance?

� How heavy is the workload for the messaging engines?

� What are the implications of message loss due to server failure?

� What is the expectation?

Select a message store type
Another consideration is the message store that each messaging engine
employs. This is where the messages are persisted according to the reliability
levels of the messages. This, as well as the reliability levels, will directly affect
the performance of the messaging engine.

Message stores can be implemented as either flat files (called file stores) or as
tables inside a database (called data stores).

File stores are flat files that can be administered by the local operating system.
This is the default type of message store. File stores will generally be faster and
cheaper than data stores because of the absence of the database. File stores
have no extra licensing fees and much less administration costs, as well as no
database administrator.

Data stores are the equivalent of file stores, but are implemented inside a
relational database as a series of tables. They are administered by the facilities
provided by the database. You can use any supported database product. A
limited license version of Cloudscape is provided with WebSphere Application
Server V6 for this purpose. Data stores might be preferable for larger
organizations with an existing database infrastructure and skills.

Both types of message store can be subject to security, such as file
system/database encryption and physical security access.

228 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.pmc.nd.doc/concepts/cjj9000_.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.pmc.nd.doc/ref/rjc0014_.html

10.7 Planning checklist for messaging

Table 10-1 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 10-1 Planning checklist for Web services

Resources
For a good overall reference for messaging applications in WebSphere
Application Server, refer to WebSphere Application Server V6.1: System
Management and Configuration, SG24-7304.

We suggest that you have a copy of this book available as you plan your Web
services environment.

The WebSphere Application Server Information Center also contains a lot of
useful information. For a good entry point to messaging topics, see:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6tech_msg.html

For examples of using messaging in a SOA solution, see Enabling SOA Using
WebSphere Messaging, SG24-7163.

Planning item

Determine if messaging will be used and how.

Choose a JMS messaging provider (default messaging, WebSphere MQ, or generic).

Design a messaging topology. If using the default messaging provider, determine the
number of buses to be used and if connections to other buses or WebSphere MQ are
required.

Determine what destinations (queues, topics) are required initially and reliability levels
for those destinations.

Determine the type of message data store to use.

Design a security strategy for messaging:
� Bus security
� Transport security

Plan for high availability. If clustering application servers, decide whether to use one
messaging engine (high availability) or multiple (workload management).

 Chapter 10. Planning for messaging 229

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_msg.html

230 WebSphere Application Server V6.1: Planning and Design

Chapter 11. Planning for Web services

This chapter describes Web services and what considerations administrators
should make when planning for their usage on a WebSphere Application Server
V6.1 architecture. It contains the following sections:

� What are Web services?
� What is new in V6.1
� Are Web services something you should use?
� What do you need to implement Web services?
� What other Web service considerations are there?
� Planning checklist for Web services

For detailed information about Web services and WebSphere Application Server,
refer to Web Services Handbook for WebSphere Application Server 6.1,
SG24-7257.

11

© Copyright IBM Corp. 2006. All rights reserved. 231

11.1 What are Web services?

Web services, as a concept, are an implementation of another concept called
service-oriented architecture (SOA). SOA is an approach to building enterprise
applications that focuses on services (or loosely-coupled components) that can
be composed dynamically. SOA is an important trend in the IT community. With
the SOA approach to application architecture, existing applications can be
converted to services that can be consumed by existing applications or new
ones. As the architecture grows and more applications are added to this portfolio,
they can be orchestrated together in flexible business workflows, enabling
businesses to better react to changes, such as the introduction of a new partner
or supplier, shifts in the business model, or the streamlining of several
application services into one.

Web services provide a standard implementation for SOA and that is the support
that WebSphere Application Server V6.1 provides. Any implementation of an
SOA, including Web services, must have the following characteristics:

� Interoperability between different platforms, systems, and programming
languages

� Clear and unambiguous service interface description language

� Dynamic search and retrieval capabilities of a service at runtime

� Security

Web services are described as self-contained, modular applications that can be
described, published, located, and invoked over a network. More specifically, a
Web service can be said to be an application or function that can be
programmatically invoked over the Internet. For example, buyers and sellers all
over the world can discover each other, connect dynamically, and execute
transactions in real time with minimal human interaction. Web services have the
following properties:

� Web services are self-contained. No support beyond XML and SOAP is
required on either the client or server sides to realize a Web service.

� Web services are self-describing. The definition of the message format
travels with the message itself. No external metadata repositories are
needed.

� Web services can be published, located, and invoked across the Internet.
Web services leverage existing network infrastructure and Internet standards
such as HTTP.

� Web services are modular. Simple Web services can be chained together, or
otherwise grouped into more complex ones, to perform higher-level business
functions with little effort.

232 WebSphere Application Server V6.1: Planning and Design

� Web services are interoperable across platforms and language-independent.
The client and the server can be on different platforms, on different machines,
in different countries. There are no restrictions on the language used so long
as it supports XML and SOAP.

� Web services are based on mature and open standards. The major
underpinning technologies such as XML and HTTP were developed as open
source standards themselves, with no proprietary technologies. As such, they
have long been widely used and understood.

� Web services are dynamic and loosely coupled. Web services are not tightly
coupled, and are easily reconfigured into new ones. Therefore, Web services
must be able to be dynamically discovered in an automated fashion. This
allows for additions and changes to be implemented with minimal impact to
other Web service clients.

� Web services can wrap existing applications with a programmatic interface.
Older applications can implement a Web service interface, extending the life
and usefulness of these applications. Potentially, this provides a large gain
with little effort.

11.2 What is new in V6.1

For those of you already familiar with Web services in WebSphere, WebSphere
Application Server V6.1 offers some improvements to the Web services
implementation from V6.0:

� Performance increases in the form of a new JAXP SAX parser, improvements
to the SAAJ 1.2 implementation, and support for SOAP/JMS connection
caching for clients.

� Support for the WS Interoperability Basic Security Profile (WS-I BSP) 1.0,
addressing common problems that include improved support for enabling
interoperability in multivendor Web services solutions.

� Performance improvement in WS security by supporting the offloading of
complex cryptographic operations to specialized hardware or devices. This is
not supported for iSeries hardware. The support for the newest and fastest
cryptographic devices has also been improved and updated.

� Support for the WS Transaction Business Agreement (WS-BA) specification,
enabling the registration and flow of business agreement protocols between
Web service participants.

� Improved support for the WS Atomic Transactions (WS-AT) specification,
removing some limitations present in the previous release. Atomic transaction
contexts can now span firewalls and use virtual host names.

 Chapter 11. Planning for Web services 233

� Updated, but backward compatible support for compliancy with the latest
WS-Addressing specification from World Wide Web Consortium (W3C). This
provides transport-neutral mechanisms to address Web services and
facilitate end-to-end addressing. A limited API is available to WS applications
to use the WS-Resource Framework Resource Access Pattern (WSRF-RAP).

� Support added for the WS-Notification 1.3 specification. This enables Web
services to use the publish/subscribe messaging pattern, enabling the typical
one-to-many message distribution scenario. Part of this support is the
introduction of the Notification Broker Service as a point of separation
between producing and consuming notification applications.

11.3 Are Web services something you should use?

There are a number of both business and technical aspects to this question, and
it depends on what you want to do with Web services. The following questions
represent the types of strategic thinking that needs to happen if you want to
provide or use Web services:

� Do you have business functionality that is common and can be shared?

The typical reason to use a Web service is to save time and effort by reusing
existing infrastructure. Over time, this enables the entire IT infrastructure of
an enterprise to reduce redundancy and consist of mature, well-tested
components. Does your application have this sort of functionality? Can you
reduce the complexity of your application by using other Web services?

� What business functionality do you want to expose to external parties?

The thing to keep in mind here is that you have the option to expose as much
or as little of your application as you want. This can range from single
business functions exposed as services, to the entire application wrapped up
as a single Web service. It largely depends on your business strategy. There
are no technical constraints. Does the architecture of your application allow
individual business functions to be exposed in this manner?

� Do you need to promote your business functionality in a common and
non-proprietary way?

Web services offer a common, non-proprietary level of abstraction between
the client and the service provider. The key benefits here are that the client
can easily discover and use business services that you provide, generating
goodwill and business opportunities, while allowing you the flexibility to alter
or replace the back-end logic transparently to the client. The importance of
this varies with the type of clients targeted. What do you know about your
potential clients? Are your clients internal or external to your enterprise? Are
there a limited set of clients?

234 WebSphere Application Server V6.1: Planning and Design

There are a number of technical issues that might affect your decision on the use
of Web services, including:

� Will your Web services be stateful or stateless?

If you intend to expose your application over the Internet, you will probably be
using the HTTP communications protocol. HTTP is a stateless protocol with
no guarantees regarding message delivery, order, or response. It has no
knowledge of prior messages or connections. Multirequest transactions that
require a state to be maintained (say for a “shopping cart” or similar
functionality) will need to address this shortcoming. This can be done by
using messaging middleware based on JMS or other protocols that provide
for the maintenance of state. The bottom line is that stateful Web services are
something to be wary of. It is best to keep Web services as simple and
stateless as possible.

� Do you have stringent non-functional requirements?

Although the basic mechanisms underlying Web services have been around
for some time, some of the other newly adopted standards, such as security
and transaction workflows, are still in flux with varying levels of maturity. Take
care to ensure that only industry adopted standards are used. This might
influence your decisions on candidate business functions for Web service
enablement. Figure 11-1 on page 236 shows the various Web services
standards and their levels of maturity.

 Chapter 11. Planning for Web services 235

Figure 11-1 Web services protocol stack

� What are you using Web services for?

Web services are designed for interoperability, not performance. Use Web
services in the context of providing exposure to external parties and not
internally in the place of messaging between parts of your application. Web
services use XML to represent data as human readable text for openness and
interoperability. When compared to a binary format, it is quite inefficient,
especially where it requires the use of parsers and other post-processing.

11.4 What do you need to implement Web services?

Once again, the answer to this question depends on your intended use. The best
way to approach this is to outline the basic architecture of an SOA approach

Approved
specificationEarly work Reaching

maturity
Specification
in progress

WS-Inspection UDDI

MTOM SOAPWS-Notification WS-Addressing

WSDLWS-Discovery
WS-

MetadataExchange

Business Process
Execution Language

XML family of specifications

WS-ReliableMessaging

WSDM

WS-Transactions

Service Provisioning Markup
Language

Web Services for Remote Portlets

ASAP

WS-CAFWS-CDL

WS-Coordination

WSRM

HTTP/S Other transports

JMS, RMI/IIOP,
Java, ...

WS-Security
familySAML WS-FederationLiberty / SAML 2.0

federated identity

WS-Policy

Foundation

Messaging and
Encoding

Description and
Discovery

Security

Reliability

Transactions

Management

Business
Process

User Experience

Notation:

W
eb

 S
er

vi
ce

s
In

te
ro

pe
ra

bi
lit

y

236 WebSphere Application Server V6.1: Planning and Design

using Web services and how it is implemented with WebSphere Application
Server. From this, you can decide which parts will be useful to you. This section
describes the following points:

� What is the basic Web services architecture?
� How can this architecture be used?
� How does WebSphere implement this architecture?

11.4.1 What is the basic Web services architecture?

Your basic service-oriented architecture consists of the following three primary
components, as shown in Figure 11-2:

� Service provider (or service producer)
� Service requestor (or service consumer)
� Service broker

Each component can also act as one of the two other components. For example,
if a service provider needs some more information that it can only acquire from
some other service, it acts as a service requestor while still serving the original
request. Figure 11-2 shows the operations each SOA component can perform.

Figure 11-2 SOA components and operations

The components perform the following actions:

� The service provider creates a service and possibly publishes its interface
and accesses information to the service broker. Another name for the service
provider is the service producer. The terms are interchangeable.

� The service requestor locates entries in the broker registry using various find
operations and then binds to the service provider in order to invoke one of its
services. Another name for the service requestor is the service consumer. The
terms are interchangeable.

Service
Broker

Service
Provider

Service
Requestor

Publish Discover

Request/Response

 Chapter 11. Planning for Web services 237

� The service broker (also known as service registry) is responsible for making
the service interface and implementation access information available to any
potential service requestor. The service broker is not necessary to implement
a service if the service requestor already knows about the service provider by
other means.

Before we go on to a Web services-specific view of the architecture, the following
terms need a brief explanation:

XML Extensible Markup Language is a generic language that can be used to
describe any kind of content in a structured way, separated from its
presentation to a specific device.

SOAP SOAP is a network, transport, and programming language and
platform-neutral protocol that enables a client to call a remote service.
The message format is XML.

WSDL Web Services Description Language is an XML-based interface and
implementation description language. The service provider uses a
WSDL document in order to specify the operations a Web service
provides and the parameters and data types of these operations. A
WSDL document also contains the service access information.

WSIL Web Services Inspection Language is an XML-based specification
about how to locate Web services without the necessity of using UDDI.
However, WSIL can be also used together with UDDI, and does not
necessarily replace it.

UDDI Universal Description, Discovery, and Integration is both a client-side
API and a SOAP-based server implementation that can be used to
store and retrieve information about service providers and Web
services.

238 WebSphere Application Server V6.1: Planning and Design

Figure 11-3 is a lower-level view of an SOA architecture, but now showing some
specific components and technologies. The UDDI and WSIL, separately or
together, become the service broker.

Figure 11-3 Main building blocks in an SOA approach based on Web services

11.4.2 How can this architecture be used?

Here we consider the common message exchange patterns (sometimes referred
to as interaction patterns) that might be employed. These all use the previously
discussed Web services architecture; however, some of these might have a
bearing on the type of transport used and whether or not a Web service should
be used at all.

We also look at other options of which an administrator should be aware, such as
the use of Web service gateways to implement logging and other functions at an
infrastructure level.

UDDI

WSIL

Requestor
WSDL

Provider

SOAP
HTTP

References to service descriptors

Pointers to WSDL documents

Originates from

Legend

ClientWeb
service

Discover

Publish

Discover

 Chapter 11. Planning for Web services 239

Message exchange patterns
Some transport protocols are better adapted to some message exchange
patterns than others. For example, when using SOAP/HTTP, a response is
implicitly returned for each request. An asynchronous transport such as
SOAP/JMS is probably more proficient at handling a publish-subscribe message
exchange pattern.

The remainder of this section discusses some of the common message
exchange patterns in the context of Web services and considerations for their
use. They message exchange patterns are:

� One-way
� Asynchronous two-way
� Request-response
� Workflow-oriented
� Publish-subscribe
� Composite

For more information about selecting and applying IBM Patterns for e-business
to a Web services or SOA project, refer to Patterns: Service-Oriented
Architecture and Web Services, SG24-6303.

One-way
In this very simple message exchange pattern, messages are pushed in one
direction only. The source does not care whether the destination accepts the
message (with or without error conditions). The service provider (service
producer) implements a Web service to which the requestor (or consumer) can
send messages (Figure 11-4). This is a candidate to use messaging instead of a
Web service, depending on your interoperability and reliability requirements.

An example of a one-way message exchange pattern is a resource monitoring
component. Whenever a resource changes in an application (the source), the
new value is sent to a monitoring application (the destination).

Figure 11-4 One-way message exchange pattern

Asynchronous two-way
In this message exchange pattern (Figure 11-5 on page 241), the service
requestor expects a response, but the messages are asynchronous in nature (for

Service
Consumer
(source)

Service
Producer

(destination)

240 WebSphere Application Server V6.1: Planning and Design

example, where the response might not be available for many hours). Both sides
must implement a Web service to receive messages. In general, the Web service
provided by the service 2 provider component has to relate a message it
receives to the corresponding message that was sent by the service 1 requestor
component.

Technically, this message exchange pattern is the same as one-way with the
additional requirement that there has to be a mechanism to associate response
messages with their corresponding request message. This can be done at the
application level or using SOAP protocol.

Figure 11-5 Asynchronous two-way message exchange pattern

Request-response
Probably the most common message exchange pattern, a remote procedure call
(RPC) or request-response pattern, involves a request message and a
synchronous response message (Figure 11-6). In this message exchange
pattern, the underlying transport protocol provides an implicit association
between the request message and the response message.

In situations where the message exchange pattern is truly synchronous, such as
when a user is waiting for a response, there is little point in decoupling the
consumer and producer. In this situation, the use of SOAP/HTTP as a transport
provides the highest level of interoperability. In cases where reliability or other
quality of service requirements exist (such as prioritization of requests),
alternative solutions might have to be sought.

Figure 11-6 Request-response message exchange pattern

Service 1
Producer

Service 1
Consumer

Service 2
Producer

Service
Consumer

Service
Producer

 Chapter 11. Planning for Web services 241

There are numerous examples of this message exchange pattern, for example,
requesting an account balance on a bank account.

Workflow-oriented
A workflow message exchange pattern can be used to implement a business
process where multiple service producers exist. In this scenario, the message
that is passed from Web service to Web service maintains the state for the
workflow. Each Web service plays a specific role in the workflow (Figure 11-7).

Figure 11-7 Workflow-oriented message exchange pattern

This message exchange pattern is inflexible and does not facilitate reuse—the
workflow or choreography has been built into each of the Web services, and the
individual Web services can no longer be self-contained.

Publish-subscribe
The publish-subscribe message exchange pattern, also known as the
event-based or notification-based pattern, is generally used in situations where
information is being pushed out to one or more parties (Figure 11-8 on
page 243).

Implementation of this pattern at the application level is one possible
architecture. Alternatively, the service 1 provider component can publish SOAP
messages to a messaging infrastructure that supports the publish-subscribe
paradigm.

Service
Consumer

Service 1
Producer

Service 2
Producer

Service 3
Producer

242 WebSphere Application Server V6.1: Planning and Design

Figure 11-8 Publish-subscribe message exchange pattern

An example of a publish-subscribe message exchange pattern is a news
syndication system. A news source publishes an article to the service 1 provider
Web service. The service 1 provider Web service, in turn, sends the article to all
interested parties.

Composite
The composite message exchange pattern is where a Web service is composed
by making requests to other Web services. The composite service producer
component controls the workflow and will generally also include business logic
(Figure 11-9 on page 244).

This is a more flexible architecture than the workflow-oriented message
exchange pattern, because all of the Web services are self-contained. The
composite service producer component might be implemented in the
conventional manner, or can be implemented using a business process
choreography engine.

An example of a composite message exchange pattern is an online ordering
system, where the service consumer represents a business partner application
placing an order for parts. The composite service provider component represents
the ordering system that has been exposed as a Web service to consumers and
business partners through the Internet. The business process might involve
using the service 1 to check for the availability of parts in the warehouse, service
2 to verify the credit standing of the customer, and service 3 to request delivery
of the parts to the customer. Some of these services might be internal to the
company and others might be external.

Service 2
Producer

Service 3
Producer

Service 5
Producer

Service 4
Producer

Service 1
Producer

Service
Consumer

 Chapter 11. Planning for Web services 243

Figure 11-9 Composite message exchange pattern

SOAP processing model
At an application level, a typical Web service interaction occurs between a
service consumer and a service provider, optionally with a lookup to a service
registry. However, at the infrastructure level, additional intermediary SOAP
nodes might be involved in the interaction (Figure 11-10).

Figure 11-10 SOAP processing model

Service
Consumer

Service 1
Producer

Service 3
Producer

Service 2
Producer

1

2

3Composite
Service

Producer

Requestor Provider

Application-Level
Communication

= SOAP Node

Initial
Sender Ultimate

Receiver

Node role

actor = "security" actor = "logger"

 = SOAP Message Path

Intermediary
A

Intermediary
B

244 WebSphere Application Server V6.1: Planning and Design

These intermediary nodes might handle quality of service and infrastructure
functions that are non-application specific. Examples include message logging,
routing, prioritization, and security. In general, intermediaries should not alter the
meaning of the message body.

A typical situation where you need to use intermediary SOAP nodes is where you
have an existing internal Web service implementation within your enterprise that
you now want to expose externally. There might be new requirements associated
with requests originating from outside of your organization, such as additional
interoperability requirements, increased security requirements, auditability of
requests, or contractual service-level agreements. These requirements can be
implemented using an intermediary SOAP node, or a Web service gateway.

Web service gateways
A Web service gateway is a middleware component that bridges the gap
between Internet and intranet environments during Web service invocations. It
can be used internally to provide the SOAP node functions as described
previously. It can also be used at the network boundary of the organization, but
regardless of where it is placed, it can provide some or all of the following
functions:

� Provides automatic publishing of WSDL files to an external UDDI or WSIL
registry

� Provides automatic protocol/transport mappings

� Provides security functions

� Provides mediation of message structure

� Implements a proxy server for Web service communications through a firewall

� Provides auditing of SOAP messages

� Provides operational management and reporting of published interfaces

� Provides Web service threat detection and defense

11.4.3 How does WebSphere implement this architecture?

As stated previously, you do mot need very much to implement a Web service.
There is support for SOAP (in the form of several types of SOAP engines) and
for XML built into the J2EE 1.4 standard, which WebSphere Application Server
V6.1 supports. However, this does not represent a true SOA, rather it will be
simply a collection of point-to-point services. To set up an infrastructure that
properly implements an SOA with all its characteristics of loose coupling,
component reuse, and service composition, certain components must exist at an
organizational or enterprise level. Figure 11-11 on page 246 shows these
components.

 Chapter 11. Planning for Web services 245

Figure 11-11 Components of a service-oriented architecture

The most important component is the enterprise service bus (ESB). IBM has two
ESB products: WebSphere Enterprise Service Bus and WebSphere Message
Broker. However, the service integration technologies in WebSphere Application
Server V6.1 can also provide some basic ESB function.

The primary features describing an ESB provided by the service integration bus
in WebSphere Application Server V6.1 are:

� Communication middleware supporting a variety of communication
paradigms, platforms, and protocols

� Support for quality of service (QoS) characteristics such as security,
guaranteed delivery, performance, and transactions

� Message format transformation and transport protocol conversion

Other components include:

� The service directory (such as a UDDI, or WSIL repository) that is used for
brokering of services and an organization-level WSDL repository (stored as
Service Data Objects or SDOs). These are part of the J2EE 1.4 standard, and
as such, come with WebSphere Application Server V6.1.

� The ESB gateway (or Web service gateway), which is an optional component,
the major function of which is the enablement of internal services to be
exposed to the Internet.

Business
Service

Choreography

External
Service

Requesters

External
Service

Requesters

External
Service

Requesters
External
Service

Requesters

External
Service

Requesters

Internal
Service

Requesters

External
Service

Requesters

External
Service

Requesters

External
Service

Providers
External
Service

Requesters

External
Service

Requesters

Internal
Service

Providers

ESB Gateway

Business Service
Directory

Enterprise Service Bus

Routing, transformation,
mediations, security, etc.

ESB Namespace
Directory

Infrastructure components
for service-oriented
architecture

246 WebSphere Application Server V6.1: Planning and Design

� Optional business service choreography tools to compose workflows from
individual services. These are external products to WebSphere Application
Server V6.1 and are not described here.

Service integration bus
You know what an SOA is and how it is implemented in WebSphere Application
Server V6.1 by a service integration bus, but why use a bus at all? There are a
number of advantages that apply both to the application and to the enterprise at
large. The advantages include:

� Securely externalizing existing applications
The bus can be used to expose existing applications as Web services
regardless of the implementation details of the application. This enables the
applications to be deployed deep inside an enterprise, but still be available to
customers or suppliers on the Internet in a standard, secure, and tightly
controlled manner.

� Cost savings by reuse of infrastructure
After the bus, and optionally a UDDI registry and r Web service gateway, is
set up for use by Web services, any application that is Web service-enabled
can reuse the infrastructure.

� Messaging support
The bus is built around support for JMS. This allows exposure of messaging
artifacts such as queues and topics as Web services. There is also a
provision for advanced options such as asynchronous communication,
prioritized message delivery, and message persistence.

� Protocol transformation
If your application has existing services implemented in one protocol, the bus
can transform that into another, entirely different protocol. For example, a
SOAP/JMS internal service can only be exposed to the Internet through a
SOAP/HTTP protocol.

� Support for standards
The bus is part of the J2EE 1.4 implementation and thus supports the major
Web services standards that are also part of J2EE 1.4. These include WS-I
Basic Profile 1.1, JAX-RPC (JSR-101) 1.1, UDDI V3, WS-I Security, and
WS-Transaction. This enables businesses to build flexible and interoperable
solutions.

Note: The Web services gateway only comes standard with WebSphere
Application Server V6.1 Network Deployment.

 Chapter 11. Planning for Web services 247

� Support for complex topologies
Tight integration with the WebSphere administrative model means that
complex topologies with the bus, such as clustering for high availability, is an
option for use by Web services.

UDDI registries
Universal Description, Discovery, and Integration (UDDI) is a specification that
defines a way to store and retrieve information about a business and its technical
interfaces, in our case, Web services.

A UDDI registry makes it possible to discover what technical programming
interfaces are provided for interacting with a business for such purposes as
electronic commerce or information retrieval. Essentially, UDDI is a search
engine for application clients rather than human beings; however, many
implementations provide a browser interface for human users.

UDDI addresses a number of business problems. First, it helps broaden and
simplify business-to-business (B2B) interaction. For the manufacturer who needs
to create many relationships with different customers, each with its own set of
standards and protocols, UDDI provides a highly flexible description of services
using virtually any interface. The specifications allow the efficient and simple
discovery of a business and the services it offers by publishing them in the
registry.

Public or private?
One type of implementation is the Business Registry. This is a group of
Web-based UDDI nodes, which together form a public UDDI registry. These
nodes are run on separate sites by several companies (including IBM and
Microsoft) and can be used by anyone who wants to make information available
about a business or entity, as well as anyone who wants to find that information.

However, there are a couple of problems with public registries. First, companies
often do not want to show all of their interfaces to the whole world, which invites
the whole world to try to communicate with their service with unknown and
possibly malicious intent. Secondly, because the registry is accessible by
anyone, there is often inaccurate, obsolete, wrong, or misleading information in
there. There are no expiration dates for published information, nor any quality
review mechanisms. Given that the users of the registry are often automated
processes and not humans with the intuitive ability to separate good and bad
content, this can be a severe problem.

In this type of situation, companies can opt for their own private or protected
registries. A totally private UDDI registry can be placed behind the firewall for the
internal use of the organization only. A protected registry can be a public registry

248 WebSphere Application Server V6.1: Planning and Design

that is managed by the organization that controls access to that registry to
parties that have been previously screened.

Private registries allow control over who is allowed to explore the registry, who is
allowed to publish to the registry, and standards governing exactly what
information is published. Given the cleanliness of the data in a private registry
(compared to a public one), successful hit rates for clients dynamically searching
it increase dramatically.

Web services gateway
Web services gateway functionality enables users to take an existing Web
service and expose it as a new service that appears to be provided by the
gateway. Gateway functionality is supplied only in the Network Deployment
release of WebSphere Application Server. By using the gateway, it is possible for
a Web services client to access an external Web service hosted by the gateway.

The gateway can act as a single point of control for incoming Web services
requests. It can be used to perform protocol transformation between messages
(for example, to expose a SOAP/JMS Web service over SOAP/HTTP) and map
multiple target services to one gateway service. It also has the ability to create
proxy services and administer handlers for services it manages, providing
infrastructure-level facilities for security and logging among others.

Some of the benefits of using the gateway are:

� A gateway service is located at a different location (or endpoint) from the
target service, making it possible to relocate the target service without
disrupting the user experience.

� The gateway provides a common starting point for all Web services you
provide. Users do not need to know whether they are provided directly by you
or externally.

� You can have more than one target service for each gateway service.

11.5 What other Web service considerations are there?

There are a couple of minor Web service considerations worth mentioning in
closing. These will probably not influence your decision to use Web services or
not, but need to be planned for.

� What are the options for Web service security?

� How can Web service performance be improved?

 Chapter 11. Planning for Web services 249

11.5.1 What are the options for Web service security?

The Web service security standard WS-Security is still evolving, and some of the
responsibility for implementing security is in the hands of the application
developer. However, there are a number of things that can be configured with the
bus to enforce security for a Web service:

� WS-Security configuration and binding information specifies the level of
security required for a Web service, such as the requirement for a SOAP
message to be digitally signed and the details of the keys involved.

� The endpoint for a Web service can be configured to be subject to
authentication, security roles, and constraints.

� The underlying transport can be encrypted, for example, HTTPS.

� The bus can be configured to use authenticating proxy servers. Many
organizations use these proxy servers to protect data and services.

Note that, as always, the more security you have, the more performance is likely
to suffer.

11.5.2 How can Web service performance be improved?

Unfortunately, performance of Web services is still poor as compared to other
distributed computing technologies. The main problem is the trade-off between
performance and interoperability. Specifically, this means the use of XML
encoding (marshalling and demarshalling) for SOAP/HTTP bound Web services.

However, for HTTP and HTTPS-bound Web services, there is the concept of
Web service dynamic caching. This requires only a configuration change to
enable a significant performance improvement. No application changes are
required to implement caching on either the client or server side.

When planning to apply dynamic caching, one of the main tasks is to define
which service operations are cachable. Not all of them should be, for example,
dynamic or sensitive data. This can be a very complex task depending on the
size of the application and the number of operations exposed.

Over a slow network, client-side caching can be especially beneficial. For further
information about the dynamic cache service concept and functions, refer to the
WebSphere Application Server Information Center.

250 WebSphere Application Server V6.1: Planning and Design

11.6 Planning checklist for Web services

Table 11-1 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 11-1 Planning checklist for Web services

Resources
For a good overall reference for developing and deploying Web services in
WebSphere Application Server, refer to Web Services Handbook for WebSphere
Application Server 6.1, SG24-7257.

We suggest that you have a copy of this book available as you plan your Web
services environment.

The WebSphere Application Server Information Center also contains a lot of
useful information. For a good entry point to Web services topics, see:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6tech_wbs.html

For examples of using Web services in a SOA solution, refer to Patterns: SOA
Foundation Service Creation Scenario, SG24-7240.

For examples of using Web services through an ESB product, such as
WebSphere Enterprise Service Bus, see Patterns: SOA Foundation Service
Connectivity Scenario, SG24-7228.

Planning item

Determine if Web services will be used and how.

Determine if a Web services gateway will be required.

Determine if a UDDI service will be used. If so, decide whether you will subscribe to a
public UDDI service or set up a private UDDI.

Determine how Web service clients will call providers (directly, through the service
integration bus, or through an ESB).

Design a security strategy for Web services:
� WS-Security for applications
� Transport-level security
� HTTP basic authentication

Determine if you will use Web service dynamic caching.

 Chapter 11. Planning for Web services 251

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6tech_wbs.html

252 WebSphere Application Server V6.1: Planning and Design

Chapter 12. Planning for security

WebSphere Application Server provides security infrastructure and mechanisms
to protect sensitive resources and to address enterprise end-to-end security
requirements.

This chapter cannot possibly cover the complex aspects that are inherent in
planning security for a WebSphere Application Server installation, but it
describes the concepts and gives you a good look at what you need to consider.

This chapter contains the following sections:

� What is new in V6.1
� Why you need security and how it works in WebSphere
� Security fundamentals on WebSphere
� J2EE security
� Planning for security
� Planning checklist for security

For detailed information about WebSphere Application Server security, see
WebSphere Application Server V6 Security Handbook, SG24-6316.

12

© Copyright IBM Corp. 2006. All rights reserved. 253

12.1 What is new in V6.1

This section outlines some of the major changes from WebSphere Application
Server V6.0 to WebSphere Application Server V6.1. A complete list of new and
improved items for installers is in the Information Center under the “What is new
in this release topic” for each WebSphere Application Server package.

The following security-related items are new for WebSphere Application Server
V6.1:

� Administrative security can be enabled out of the box. Access to the
administrative system and its data is now protected by default.

� Simplified security configuration and administration. The administrative
console security panels are simplified, and new wizards and a configuration
reporting tool are provided.

� Automatically generated server IDs. You no longer need to specify a server
user ID and password during security configuration, unless using a mixed cell
environment.

� Federate various repositories, so you can manage them as one. Inclusion of
virtual member manager in this release provides a single model for managing
organizational entities. You can configure a realm that consists of identities in
the file-based repository that is built into the system in one or more external
repositories or in both the built-in, file-based repository and in one or more
external repositories.

� WebSphere key and certificate management has been simplified.

� Interoperability with other vendors of WS-Security. The product now supports
the WS-I Basic Security Profile 1.0, which promotes interoperability by
addressing the most common problems encountered from implementation
experience to date.

� SPNEGO support for single sign-on authentication through a Microsoft
Windows desktop.

� Separate Web authentication and authorization. Now, Web authentication
can be performed with or without Web authorization. A Web client’s
authenticated identity is available whether or not Web authorization is
required.

� Enhanced control over Web authentication behavior.

� Portlet URL security, enabling direct access to portlet URLs just like servlets.

� Larger variety of administrative roles.

254 WebSphere Application Server V6.1: Planning and Design

� Fine-grained administrative role authorization. In prior releases, users
granted administrative roles could administer all of the resource instances
under the cell. Now, the product is more fine-grained, meaning that access
can be granted to each user per resource instance.

� Hardware cryptographic device support for Web services security.

The following security-related items are new for WebSphere Application Server
for z/OS V6.1 systems:

� WebSphere Application Server exploits the new mixed-case password option
for RACF.

� Sync to OS Thread control enhancements. In addition to the application and
the configuration specifying the desire to use Sync to OS Thread, the RACF
administrator must also define a resource rule in order for Sync to OS Thread
to operate. A new FACILITY class profile must be defined to allow or disallow
the use of Sync to OS Thread. Also, an optional SURROGAT class profile
can be used to further refine the use of Sync to OS Thread to particular
authenticated users.

� Enabling trusted applications. A new FACILITY class profile must be defined
to enable trust applications. WebSphere Applications Server checks this
FACILITY class profile during initialization to ensure that only authorized
trusted applications are enabled. This new FACILITY class profile expands
the RACF administrator role in ensuring that only authorized trusted
applications are enabled.

Table 12-1 on page 256 describes some of the common security issues reported
in previous WebSphere Application Server versions that are addressed in
Version 6.1. It is a good starting point to understand what is new in V6.1 and how
you can improve your WebSphere configuration with the new security features.

The source of this information is WebSphere Application Server V6.1: What's
new in security? by Keys Botzum at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0606_b
otzum/0606_botzum.html

 Chapter 12. Planning for security 255

http://www.ibm.com/developerworks/websphere/library/techarticles/0606_botzum/0606_botzum.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_botzum/0606_botzum.html

Table 12-1 V6.1 security enhancements

Problem Solution on V6.1

Too hard to secure WebSphere
Application Server.

Many basic security setup steps are now made by default.
For example:
� Administrative security is enabled automatically during

installation.
� By default, all internal transports are authenticated and

most of them are encrypted by default, too.
� A cell-specific set of keys is created automatically and

the default encryption keys are eliminated.
� JNDI is ready-only by default to all instead of read/write.
� Messaging limits connections to only authenticated users

granted the bus connect role by default. All
Authenticated no longer has that role by default.

Too hard to manage certificates, private
keys, and encryption keys.

The management of trust stores and key stores is now
handled as a first class construct. There are several
enhancements to improve usability. For example:
� Clients support prompting (such as SSH) for adding

certificates to the client trust store when contacting a
server not previously accessed (this can be disabled if
desired).

� When configuring an SSL endpoint, the admin client can
query the server and automatically import the server's
signing certificate (with administrative approval, of
course).

� The Web server plug-in configuration will automatically
generate a plugin-key.kdb file containing a self-signed
certificate that is trusted by the WebSphere Application
Servers. This greatly simplifies one of the most difficult
SSL configurations.

� iKeyman usage is largely eliminated. Using the admin
tools, you can generate certificates, generate certificate
requests, import keys and certificates, manage
certificates and keys, and even share them across the
cell.

� Key management applies to more than SSL certificates.
The same infrastructure manages the keys used to
encrypt LTPA tokens. You can even manage your own
custom keys using the console, and applications can
access them using IBM-defined APIs. Applications can
now be freed from that burden.

256 WebSphere Application Server V6.1: Planning and Design

Too hard to manage certificates, private
keys, and encryption keys (continuation).

� There are now programmatic APIs for applications to
obtain URLStreamHandlers, SSLContext instances, and
SSLSocketFactories, based on the WebSphere
Application Server-managed SSL configuration. You can
also set SSL properties on the thread to be used for SSL
connections that occur on that thread.

� Support for custom JSSE trust and key managers
enables more control of the SSL handshake.

� The ability to associate an SSL configuration with
specific target hosts and ports. Previously, a single static
SSL configuration had to handle all outbound
connections for any given protocol. This enables special
configurations for targets that have unique handshake
requirements.

� Certificate expiration is managed. Where possible, new
keys are generated automatically prior to expiration.
When this is impossible, notifications are sent through
the serious event stream and, optionally, by e-mail.
Expiration monitoring is on by default.

� LTPA encryption keys are automatically changed at
regular intervals. To avoid outages, multiple key versions
are simultaneously supported.

� Better support is now provided for hardware encryption
and hardware key storage.

My registry infrastructure is not supported
by WebSphere.

WebSphere V6.1 supports a much more complicated registry
configuration out of the box. Of course, it will not solve all
problems and you might still need a custom registry but it
helps in many cases. For example:
� File registry is supported, which can be useful for small

applications with just few users or during early
prototypes and development.You can now manage all of
your users and groups in a file. There are admin tools for
managing these users and the files are automatically
replicated throughout the cell.

� More than one LDAP directory can be combined together
into one logical registry. Now, if your users are spread
across multiple directories, you can combine them into
one registry for WebSphere Application Server. Just be
aware that user IDs must be unique.

� LDAP failover is supported directly. Now, you can list
multiple LDAP server replicas by IP address or host
name. The application servers will automatically fail over
to backup servers if the primary fail.

Problem Solution on V6.1

 Chapter 12. Planning for security 257

I cannot isolate the administrators from
each other.

With V6.1, administrative authority can now be separated at
a finer-grained level. It is referred as fine-grained
administrative security.

For more information, refer to:
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1
/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes
/ae/csec_fineg_admsec.html

Too hard to set up the messaging bus to
use security.

Configuring a messaging bus to use secure transport has
become much easier. You do not have to disable the
unsecure transports and manually ensure that every client
used the secure transports. It is now all configured
automatically and is easily controllable through the admin
console.
This is done through a new concept known as permitted
chains, which controls what type of transport chains can be
used (for example, only those using SSL).

For more information, refer to:
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1
/topic/com.ibm.websphere.pmc.nd.iseries.doc/concepts/
cjr0490_.html

I cannot use single sign-on from my
Windows to my intranet application.

WebSphere Application Server V6.1 supports a SPNEGO
trust association interceptor (TAI) that allows the Kerberos
credential from a Windows desktop to be sent from the
browser to the WebSphere Application Server and then used
as the identity for access to WebSphere resources. A slightly
different version of the SPNEGO TAI is available from IBM
Software Services for WebSphere for previous releases, but
with V6.1, we now have a fully supported product solution.

For more information, refer to:
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1
/index.jsp?topic=/com.ibm.websphere.base.iseries.doc/
info/iseries/ae/csec_SPNEGO_overview.html

Problem Solution on V6.1

258 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/csec_fineg_admsec.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.iseries.doc/info/iseries/ae/csec_SPNEGO_overview.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.pmc.nd.iseries.doc/concepts/cjr0490_.html

12.2 Why you need security and how it works in
WebSphere

The fundamental reason for having security is to keep intruders out and to
prevent unauthorized users from gaining access to your systems. There are
many reasons for intruders to gain access to your systems. They might be
hackers, competitors, or even your own employees. Intruders might want to gain
access to information they should not have or to alter the behavior of your
systems.

When planning security for WebSphere Application Server, it is important to have
a comprehensive security policy that coordinates neatly with the overall
environment security. WebSphere Application Server adheres to standard J2EE
specifications as closely as possible and integrates easily with existing security
systems. There is no single solution for security concerns. However, proper
planning and diligence can keep systems functional and minimize the impact on
business.

Security can be divided into the following areas:

� Physical security

Physical security encompasses the area where the environment is located
and the major concern is access to the site. Commonly, such areas are
physically secured and access is limited to a small number of individuals.

� Logical security

Logical security is the software used to protect the various systems.
Password protection is the most common logical security but can also include
firewalls and protective devices.

My Web applications mix protected and
unprotected URIs, but I still need to know
the user’s identity from unprotected URIs.

With WebSphere Application Server V6.1, this behavior is
now supported. You can optionally configure security to
persist identity information across requests. Now, if a user
accesses a protected URI and then an unprotected URI, their
identity will be available. Anonymous users can, of course,
directly access unprotected URIs as usual but you can turn
that off as well through another option.

For more information, refer to:
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1
/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes
/ae/usec_webauth.html

Problem Solution on V6.1

 Chapter 12. Planning for security 259

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/usec_webauth.html

� Application security

Application security is the use WebSphere Application Server technologies to
secure the application from intrusion. WebSphere Application Server provides
many plug-in points to integrate with enterprise software components to
provide end-to-end security.

Security policy
There are a number of key principles of a security policy:

� Identify key assets

Identify critical areas of business and those assets that host them. By
identifying those key assets, you can adopt the methods that are best for the
environment and create an effective security policy.

� Identify vulnerabilities

Complete a comprehensive assessment of the environment to identify all the
threats and vulnerabilities. Examine each and every area of the environment
to find any way the system can be compromised. It is very important to be
thorough. Remember to examine the three types of security mentioned
earlier: physical, logical, and application. This can be a very
resource-intensive activity but it is crucial to the security of the environment.

� Identify acceptable risk

After completing a vulnerability assessment, the acceptable risk must be
determined. In most instances, this will be a cost issue. To completely secure
an environment would be extremely expensive, so compromises have to be
made to complete the security policy. In most cases, the most cost effective
method to meet the required security level will be used. For example, in a
system that contains mission-critical data for a company, the most advanced
firewall available is necessary. However, on a test system with no external
access, the appropriate security level can be met with minimal or no firewalls.

� Use layered security model

In complex systems, it is important to have multiple layers of security to
ensure the overall safety of the environment. A layered security model plans
for expected loss and minimizes the impact. It also ensures that all
components are protected, from the user to the back-end data systems, and
that a failure in any one component does not impact the whole environment.

Security configuration
After creating the security policy, you must implement it. Implement steps to
configure the physical, logical, and application security as recommended in the
security policy. In many cases, recommended configurations will not be possible

260 WebSphere Application Server V6.1: Planning and Design

and, once again, compromises must be made. Note any discrepancies so that
they can be addressed and possibly remedied at a future date.

Security reviews
A timely and regular review of the security policy is essential to its effectiveness.
As the environment evolves over time, the security policy must also evolve.
Regular appraisals of the security policy, including key assets, vulnerability
assessment, and acceptable risk, are needed to maintain the expected level of
security.

WebSphere Application Server security
When you access information on the Internet, you connect through Web servers
and product servers to WebSphere Application Server, and in the end, to the
enterprise data at the back end. WebSphere Application Server provides you a
set of features to help you to secure your systems and manage all resources.

 Chapter 12. Planning for security 261

Figure 12-1 illustrates the building blocks that make up the operating
environment for security in WebSphere Application Server.

Figure 12-1 WebSphere Application Server security layers

These building blocks consist of:

� WebSphere Application Server security

WebSphere Application Server security enforces security policies and
services in a unified manner on access to Web resources, enterprise beans,
and JMX administrative resources. It consists of WebSphere Application
Server security technologies and features to support the needs of a secure
enterprise environment.

� Java security

– J2EE security API

The security collaborator enforces J2EE-based security policies and
supports J2EE security APIs.

WebSphere Security Layers

Access control

WebSphere Application Server resources

WebSphere Application Server security

Java security

Platform security
Network security

Operating system security

Java Virtual Machine (JVM) Version 5.0

Java 2 security

CORBA security (CSIv2)

J2EE security API

WebSphere security

Naming
User registry
JMX message
beans

HTML
Servlet or JSP file
Enterprise beans
Web services

262 WebSphere Application Server V6.1: Planning and Design

– CSIv2 (CORBA security)

Any calls made among secure Object Request Brokers (ORBs) are
invoked over the Common Secure Interoperability Version 2 (CSIv2)
security protocol, which sets up the security context and the necessary
quality of protection. After the session is established, the call is passed up
to the enterprise bean layer. CSIv2 is an IIOP-based, three-tiered, security
protocol that is developed by the Object Management Group (OMG). This
protocol provides message protection, interoperable authentication, and
delegation. The three layers include a base transport security layer, a
supplemental client authentication layer, and a security attribute layer.

– Java 2 security

The Java 2 security model offers access control to system resources
including file system, system property, socket connection, threading, class
loading, and so on. Application code must explicitly grant the required
permission to access a protected resource.

– Java virtual machine (JVM) 5.0

The JVM security model provides a layer of security above the operating
system layer. For example, JVM security protects the memory from
unrestricted access, creates exceptions when errors occur within a thread,
and defines array types.

� Platform security

– Operating system security

The security infrastructure of the underlying operating system provides
certain security services for WebSphere Application Server. These
services include the file system security support that secures sensitive
files in the product installation for WebSphere Application Server.

The administrator can configure WebSphere Application Server to obtain
authentication information directly from the operating system user registry.
When you select the local operating system as a registry on z/OS, SAF
works in conjunction with the user registry to authorize applications to run
on the server.

Note: For backward compatibility, WebSphere Application Server
supports the Secure Authentication Service (SAS) security protocol,
which was used in prior releases of WebSphere Application Server and
other IBM products.

 Chapter 12. Planning for security 263

– Network security

The network security layers provide transport level authentication and
message integrity and confidentiality. You can configure the
communication between separate application servers to use SSL.
Additionally, you can use IP security and virtual private network (VPN) for
added message protection.

12.3 Security fundamentals on WebSphere

This section discusses some fundamental security concepts that WebSphere
Application Server supports.

12.3.1 Authentication

Authentication is the process of identifying who is requesting access to a
resource. For the authentication process, the server implements a challenge
mechanism to gather unique information to identify the client. Secure
authentication can be knowledge-based (user and password), key-based
(physical keys, encryption keys), or biometric (fingerprints, retina scan, DNA, and
so forth).

The authentication mechanism in WebSphere Application Server typically
collaborates closely with a user registry. When performing authentication, the
user registry is consulted. A successful authentication results in the creation of a
credential, which is the internal representation of a successfully authenticated
client user. The abilities of the credential are determined by the configured
authorization mechanism.

Although this product provides support for multiple authentication mechanisms,
you can configure only a single active authentication mechanism at a time.
WebSphere Application Server supports the following authentication
mechanisms:

� Simple WebSphere Authentication Mechanism (SWAM)
� Lightweight Third Party Authentication (LTPA)

Note: WebSphere Application Server for z/OS provides SystemSSL for
communication using the Internet. SystemSSL is composed of the
Secure Sockets Layer (SSL) and Transport Layer Security (TLS), which
enable secure file transfer by providing data privacy and message
integrity.

264 WebSphere Application Server V6.1: Planning and Design

Lightweight Third Party Authentication (LTPA)
LTPA is intended for distributed, multiple application server and machine
environments. It supports forwardable credentials and single sign-on (SSO).
LTPA can support security in a distributed environment through cryptography.
This support permits LTPA to encrypt, digitally sign, and securely transmit
authentication-related data, and later decrypt and verify the signature.

Application servers distributed in multiple nodes and cells can securely
communicate using this protocol. It also provides the SSO feature, where a user
is required to authenticate only once in a Domain Name System (DNS) domain
and can access resources in other WebSphere Application Server cells without
getting prompted.

When using LTPA, a token is created with the user information and an expiration
time and is signed by the keys. The LTPA token is time sensitive. All product
servers that participate in a protection domain must have their time, date, and
time zone synchronized. If not, LTPA tokens appear prematurely expired and
cause authentication or validation failures. When SSO is enabled, this token is
passed to other servers through cookies for Web resources.

If the receiving servers share the same keys as the originating server, the token
can be decrypted to obtain the user information, which then is validated to make
sure that it has not expired and that the user information in the token is valid in its
registry. On successful validation, the resources in the receiving servers are
accessible after the authorization check. All of the WebSphere Application
Server processes in a cell (deployment manager, node agents, application
servers) share the same set of keys. If key sharing is required between different
cells, export them from one cell and import them to the other. For security
purposes, the exported keys are encrypted with a user-defined password. This
same password is needed when importing the keys into another cell.

Note: LTPA is the only authentication mechanism available in a Network
Deployment environment.

SWAM is deprecated in WebSphere Application Server Version 6.1 and will
be removed in a future release. If you need more information about SWAM,
refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.base.doc/info/aes/ae/rsec_swam.html

Note: When security is enabled during profile creation time, LTPA is
configured by default.

 Chapter 12. Planning for security 265

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/rsec_swam.html

When security is enabled for the first time with LTPA, configuring LTPA is
normally the initial step performed. LTPA requires that the configured user
registry be a centrally shared repository, such as an LDAP or a Windows domain
type registry, so that users and groups are the same regardless of the machine.

Lightweight Directory Access Protocol (LDAP)
LDAP is a directory service, not a database. The information in the LDAP
directory is descriptive and attribute-based. LDAP users generally read the
information more often than they change it. The LDAP model is based on entries
that are referred to as objects. Each entry consists of one or more attributes such
as a name or address and a type. The types typically consist of mnemonic
strings, such as cn for common name or mail for e-mail address. Each directory
entry also has a special attribute called objectClass. This attribute controls which
attributes are required and allowed in each entry.

Examples of LDAP servers include Tivoli Directory Server, Lotus Domino
Enterprise Server, Sun ONE Directory Server, and Microsoft Active Directory
Server.

User registry
The information about users and groups reside in a user registry. In WebSphere
Application Server, a user registry authenticates a user and retrieves information
about users and groups to perform security-related functions, including
authentication and authorization. Before configuring the user registry or
repository, decide which user registry or repository to use.

Although WebSphere Application Server supports different types of user
registries, only one can be active. This active registry is shared by all of the
product server processes.

WebSphere Application Server supports the following types of user registries:

� Federated repository

� Local operating system

� Stand-alone Lightweight Directory Access Protocol (LDAP) registry

In the event that none of these options are feasible for you, you can implement a
custom registry, for example, a database. WebSphere provides a service
provider interface (SPI) that you can implement to interact with your custom user
registry. The SPI is the UserRegistry interface, which is the same interface used
by the local OS and LDAP registry implementations.

The UserRegistry interface is a collection of methods that are required to
authenticate individual users using either a password or certificates and to collect

266 WebSphere Application Server V6.1: Planning and Design

information about the user authorization purposes. This interface also includes
methods that obtain user and group information so that they can be given access
to resources. When implementing the methods in the interface, you must decide
how to map the information that is manipulated by the UserRegistry interface to
the information in your registry.

Delegation
Delegation occurs when a client requests a method on server A and the method
request results in a new invocation to another method of an object in server B.
Server A performs the authentication of the identity of the client and passes the
request to server B. Server B assumes that the client identity has been verified
by server A and responds to that request.

Secure Sockets Layer (SSL)
SSL is the industry standard for data interchange encryption between clients and
servers. SSL provides secure connections through:

� Communication privacy

The data that passes through the connection is encrypted.

� Communication integrity

The protocol includes a built-in integrity check.

� Authentication

The server authenticates the client, interchanging digital certificates.

A certificate is an encrypted, password-protected file that includes:

� The name of the certificate holder
� The private key for encryption/decryption
� The verification of sender’s public key
� The name of the certificate authority
� Validity period for the certificate

A certificate authority is an organization that issues certificates after verifying the
requester’s identity.

Single sign-on (SSO)
SSO is the process where users provide their credentials (user ID, password,
and token) just once within a session. These credentials are available to all
enterprise applications for which SSO was enabled without prompting the user to
re-enter a user ID and password when switching from one application to another.

 Chapter 12. Planning for security 267

The following list describes the requirements for enabling SSO using LTPA:

� All SSO participating servers must use the same user registry (for example,
the LDAP server).

� All SSO participating servers must be in the same Domain Name System.
(Cookies are issued with a domain name and will not work in a domain other
than the one for which it was issued.)

� All URL requests must use domain names. No IP addresses or host names
are allowed because these cause the cookie not to work properly.

� The browser must be configured to accept cookies.

� Server time and time zone must be correct. The SSO token expiration time is
absolute.

� All servers participating in the SSO scenario must be configured to share
LTPA keys.

Public key infrastructure
A public key infrastructure (PKI) represents a system of digital certificates,
certificate authorities, registration authorities, a certificate management service,
and X.500 directories. A PKI verifies the identity and the authority of each party
that is involved in an Internet transaction, either financial or operational, with
requirements for identity verification. Examples of these transactions include
confirming the origin of proposal bids or the author of e-mail messages.

A PKI supports the use of certificate revocation lists (CRLs). A CRL is a list of
revoked certificates. CRLs provide a more global method for authenticating client
identity by certificate and can verify the validity of trusted CA certificates. An
X.500 directory server stores and retrieves CRLs and trusted CA certificates.
The protocols used for storing and retrieving information from an X.500 directory
server include Directory Access Protocol (DAP) and LDAP. IBM HTTP Server
supports LDAP.

You can distribute information about multiple directory servers over the Internet
and intranets, enabling an organization to manage certificates, trust policy, and
CRLs from either a central location or in a distributed manner. This capability
makes the trust policy more dynamic because you can add or delete trusted CAs
from a network of secure servers, without having to reconfigure each of the
servers.

268 WebSphere Application Server V6.1: Planning and Design

12.3.2 Authentication process

Figure 12-2 shows the authentication process in WebSphere Application Server.
As the figure shows, authentication is required for enterprise bean clients and
Web clients when they access protected resources.

Figure 12-2 Authentication process

As illustrated in the figure, authentication involves two primary cases:

� Web client authentication
� EJB client authentication

Web client authentication
When a security policy is specified for a Web resource and WebSphere
Application Server security is enforced, the Web container performs access
control when the resource is requested by a Web client. The Web container
challenges the Web client for authentication data (if none is present) according to
the specified authentication method, ensures that the data constraints are met,
and determines whether the authenticated user has the required security role.

 Chapter 12. Planning for security 269

WebSphere Application Server takes the authentication information, looks up the
user's unique ID in the registry, and then verifies the password against the
registry.

Securing Web components
Web components such as static HTML files, JSPs, and servlets can be secured
using either the HTTP server or WebSphere Application Server. When
discussing securing Web components, there are two elements to consider:

� Static HTML components
� Servlets and JSPs

Static HTML components
Most Web servers can secure the files they serve. WebSphere Application
Server also has the ability to serve static content using the built-in Web server.
WebSphere cannot manage the static content stored in the Web server. It can
only serve the content that is packaged as part of the Web module (WAR file).
The Application Server Toolkit can be used to set up security constraints to
protect static content for the Web application module.

Servlets and JSPs
WebSphere Application Server can secure dynamic resources such as servlets
using role-based declarative security mechanisms. This means that the logical
application security structure is defined independently from the application itself.
The logical security structure is stored in deployment descriptors of the
application. For servlets, WebSphere Application Server enables you to protect
the resources on the method level. For example, the POST method of a servlet
can be part of a different security constraint than the GET method. The full list of
predefined methods that can be secured is:

� GET
� POST
� PUT
� DELETE
� HEAD
� OPTION
� TRACE

Using method-level security constraints for servlets, you might want to separate
dynamic content that all the users can view from the administrative functions that
only privileged users are allowed to access. In WebSphere Application Server,
this is done using different security constraints for the different servlet methods.

270 WebSphere Application Server V6.1: Planning and Design

EJB client authentication
Enterprise bean clients, such as a servlet or other enterprise beans or a pure
client, send the authentication information to a Web application server using one
of the following protocols:

� Common Secure Interoperability Version 2 (CSIv2)

� Secure Authentication Service (SAS)

� z/OS Secure Authentication Service (z/SAS)

12.3.3 Authorization

Authorization is the process of checking whether a given user has the privileges
necessary to get access to the requested resource. WebSphere Application
Server supports many authorization technologies including:

� Authorization involving the Web container and J2EE technology

� Authorization involving an enterprise bean application and J2EE technology

� Authorization involving Web services and J2EE technology

� Java Message Service (JMS)

� Java Authorization Contract for Containers (JACC)

WebSphere Application Server V6 supports both a default authorization provider,
which was supported in previous releases, and an authorization provider that is
based on the JACC specification. The JACC-based authorization provider
enables third-party security providers to handle the J2EE authorization.
WebSphere Application Server also supports an authorization infrastructure that
enables you to plug in an external authorization provider.

When security is enabled, the default authorization is used unless a JACC
provider is specified. The default authorization does not require special setup,
and the default authorization engine makes all of the authorization decisions.

When a JACC provider is used for authorization, the J2EE application-based
authorization decisions are delegated to the provider per the JACC specification.

All administrative security authorization decisions are made by the WebSphere
Application Server default authorization engine. The JACC provider is not called
to make the authorization decisions for administrative security.

Note: SAS or z/SAS is supported only between Version 6.0.x and previous
version servers that have been federated in a Version 6.1 cell.

 Chapter 12. Planning for security 271

When a protected J2EE resource is accessed, the authorization decision to give
access to the principal is the same whether using the default authorization
engine or a JACC provider. Both of the authorization models satisfy the J2EE
specification, so there should be no differences in function. Choose a JACC
provider only when you want to work with an external security provider such as
Tivoli Access Manager. The provider must support the JACC specification and
be set up to work with the WebSphere Application Server.

12.4 J2EE security

The J2EE specification defines the building blocks and elements of a J2EE
application that build an enterprise application. The specification also provides
details about security related to the different elements. A typical J2EE application
consists of an application client tier, a Web tier, and EJB tier. When designing a
security solution, you need to be aware of the connections between each of the
modules. Figure 12-3 shows the components of a J2EE application.

Figure 12-3 J2EE application components

For example, a user using a Web browser can access a JSP or a servlet, which
is a protected resource. In this case, the Web container needs to check if the
user is authenticated and has the required authorization to view the JSP or
servlet. Similarly, a thick client can also access an EJB. When you plan for
security, you need to consider the security for every module.

12.4.1 Security roles

A security role is a logical grouping of users that are defined by the application
assembler. Because at development time it is not possible to know all the users

J2EE ServerClient Machine

Web
Browser

Client
Container

Client

EJB Container

EJB EJB

Web Container

Servlet JSP

DatabaseDatabase

272 WebSphere Application Server V6.1: Planning and Design

that are going to be using the application, security roles provide the developers a
mechanism through which the security policies for an application can be defined.
This is done by creating named sets of users (for example, managers,
customers, and employees) that have access to secure resources and methods.
At application assembly time, these users are just place holders. At deployment
time, they are mapped to real users or groups. Figure 12-4 shows an example of
how roles can be mapped to users.

Figure 12-4 User role mapping

This two-phase approach to security gives a great deal of flexibility because
deployers and administrators have a great control over how their users are
mapped to the various security roles.

12.4.2 Security for J2EE resources

J2EE containers enforce security in two ways:

� Declarative security
� Programmatic security

Web Resources

JSPs

HTML

Servlets

EJB Methods

Mike

Sally

Fred

Users

Clerk

Accountant

Manager

Security Roles

 Chapter 12. Planning for security 273

Declarative security
Declarative security is the means by which an application’s security policies can
be expressed externally to the application code. At application assembly time,
security policies are defined in an application’s deployment descriptor. A
deployment descriptor is an XML file that includes a representation of an
application’s security requirements, including the application’s security roles,
access control, and authentication requirements. When using declarative
security, application developers can write component methods that are
completely unaware of security. By making changes to the deployment
descriptor, an application’s security environment can be radically changed
without requiring any changes in application code. There are several descriptor
files that are used for security role mappings. These files can be created using:

� IBM Rational Application Developer

� Application Server Toolkit

Programmatic security
Programmatic security is useful when the application server-provided security
infrastructure cannot supply all the functions that are needed for the application.
Using the Java APIs for security can be the way to implement security for the
whole application without using the application server security functions at all.
Programmatic security also gives you the option to implement dynamic security
rules for your applications. Generally, the developer does not have to code for
security because WebSphere Application Server provides a very robust security
infrastructure, which is transparent to the developer. However, there are cases
where the security provided is not sufficient and the developer wants greater
control over to what the user has access. For such cases, there are a few
security APIs that the developers can implement.

Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) extends the Java 2
security architecture with additional support to authenticate and enforce access
control with principals and users. It implements a Java version of the standard
Pluggable Authentication Module (PAM) framework and extends the access
control architecture of the Java 2 platform in a compatible fashion to support
user-based authorization or principal-based authorization. WebSphere
Application Server fully supports the JAAS architecture and extends the access
control architecture to support role-based authorization for J2EE resources
including servlets, JSP files, and EJB components.

JAAS authentication is performed in a pluggable fashion. This permits Java
applications to remain independent from underlying authentication technologies.
Therefore, new or updated authentication technologies can be plugged under an
application without requiring modifications to the application itself. Applications

274 WebSphere Application Server V6.1: Planning and Design

enable the authentication process by instantiating a LoginContext object, which
in turn references a Configuration to determine the authentication technology, or
LoginModule, to be used in performing the authentication. A typical LoginModule
can prompt for and verify a user name and password.

A typical JAAS-secured application has two parts:

� The main application that handles the login procedure and runs the secured
code under the authenticated subject

� The action that is invoked from the main application under a specific subject

When using JAAS to authenticate a user, a subject is created to represent the
authenticated user. A subject consists of a set of principals, where each principal
represents an identity for that user. You can grant permissions in the policy to
specific principals. After the user is authenticated, the application can associate
the subject with the current access control context. For each subsequent
security-checked operation, the Java run time automatically determines whether
the policy grants the required permission to a specific principal only. If so, the
operation is supported if the subject associated with the access control context
contains the designated principal only.

Trust association interceptors
Web clients can also authenticate by using a trust association interceptor (TAI).
Trust association enables the integration of WebSphere Application Server
security and third-party security servers. More specifically, a reverse proxy
server can act as a front-end authentication server while the product applies its
own authorization policy onto the resulting credentials passed by the reverse
proxy server.

Demand for such an integrated configuration has become more compelling,
especially when a single product cannot meet all of the client needs or when
migration is not a viable solution. In this configuration, WebSphere Application
Server is used as a back-end server to further exploit its fine-grained access
control. The reverse proxy server passes the HTTP request to the WebSphere
Application Server that includes the credentials of the authenticated user.
WebSphere Application Server then uses these credentials to authorize the
request.

Java Authorization Contract for Containers (JACC)
JACC is a specification introduced in J2EE 1.4. This specification defines a
contract between J2EE containers and authorization providers. The contract
enables third-party authorization providers to plug into J2EE 1.4 application
servers (such as WebSphere Application Server) to make the authorization
decisions when a J2EE resource is accessed. The access decisions are made
through the standard java.security.Policy object.

 Chapter 12. Planning for security 275

WebSphere Application Server supports two authorization contracts using both a
native and a third-party JACC provider implementation. The default (out-of-box)
solution is the WebSphere Application Server default J2EE role-based
authorization implementation, which does not implement the JACC policy
provider interface. The JACC provider in WebSphere Application Server is
implemented by both the client and the server pieces of the Tivoli Access
Manager server. The client piece of Tivoli Access Manager is embedded in
WebSphere Application Server. The server piece is located on a separate
installable CD that is shipped as part of the WebSphere Application Server
Network Deployment V6.1 package.

The JACC specification does not specify how to handle the authorization table
(user or group to role) information between the container and the provider. It is
the responsibility of the provider to provide some management facilities to handle
this information. It does not require the container to provide the authorization
table information in the binding file to the provider.

WebSphere Application Server provides two role configuration interfaces
(RoleConfigurationFactory and RoleConfiguration) to help the provider obtain
information from the binding file, as well as an initialization interface
(InitializeJACCProvider). The implementation of these interfaces is optional.

JACC access decisions
When security is enabled and an enterprise bean or Web resource is accessed,
the EJB container or Web container calls the security runtime to make an
authorization decision on whether to permit access. When using an external
provider, the access decision is delegated to that provider. According to the
JACC specification, the appropriate permission object is created, the appropriate
policy context handlers are registered, and the appropriate policy context
identifier (contextID) is set. A call is made to the java.security.Policy object
method implemented by the provider to make the access decision. See
Figure 12-5 on page 277.

Note: For WebSphere Application Server for z/OS, if SAF- based
authorization is implemented, the implementation at this point does not use or
implement the JACC policy provider interface.

Note: The JACC provider is not an out-of-box solution. You must configure
WebSphere Application Server to use the JACC provider.

276 WebSphere Application Server V6.1: Planning and Design

Figure 12-5 JACC provider architecture

Dynamic module updates in JACC
WebSphere Application Server supports dynamic updates to Web modules
under certain conditions. If a Web module is updated, deleted, or added to an
application, only that module is stopped or started as appropriate. The other
existing modules in the application are not impacted, and the application itself is
not stopped and then restarted.

When any security policies are modified in the Web modules, the application is
stopped and then restarted when using the default authorization engine. When
using the JACC-based authorization, the behavior depends on the functionality
that a provider supports. If a provider can handle dynamic changes to the Web
modules, only the Web modules are impacted. Otherwise, the entire application
is stopped and restarted for the new changes in the Web modules to take effect.

A provider can indicate if they support the dynamic updates by configuring the
“Supports dynamic module updates” option in the JACC configuration model.
Enable or disable this option by using the administrative console or by scripting.
It is expected that most providers store the policy information in their external
repository, which makes it possible for them to support these dynamic updates.
This option is enabled by default for most providers.

When the “Supports dynamic module updates” option is enabled, if a Web
module that contains security roles is dynamically added, modified, or deleted,
only the specific Web modules are impacted and restarted. If the option is
disabled, the entire application is restarted. When dynamic updates are
performed, the security policy information of the modules impacted are
propagated to the provider.

Provider Repository

JACC Provider
Contract

Policy Object

WebSphere Application
Server V6.1

Policy Object

Access J2EE
resource

Check
access

Yes / NoYes / No

 Chapter 12. Planning for security 277

Mixed node environment and JACC
Authorization using JACC is a new feature in WebSphere Application Server V6.
JACC configuration is set up at the cell level and is applicable for all the nodes
and servers in that cell. If you are planning to use the JACC-based authorization,
the cell should only contain Version 6.0.x and later nodes. This means that a
mixed node environment containing a set of V5 or later nodes in a Version 6.0.x
cell or later is not supported.

Java 2 security
Where J2EE security guards access to Web resources such as servlets, JSPs,
and EJBs, Java 2 security guards access to system resources such as file I/O,
sockets, and properties.

12.5 Planning for security

When planning for security, it is very important that you understand the
difference between administrative security and application security from the
WebSphere perspective:

� Administrative security: Administrative security protects the cell from
unauthorized modification.

� Application security: Application security enables security for the applications
in your environment. This type of security provides application isolation and
requirements for authenticating application users.

In previous releases of WebSphere Application Server, when a user enabled
global security, both administrative and application security were enabled. Now
in WebSphere Application Server V6.1, these security functions can be enabled
separately. Administrative security is enabled or disabled during profile creation.
The default is for it to be enabled. Application security is disabled, by default, and
must be enabled after profile creation using the administrative tools. To enable
application security, you must also enable administrative security.

Note: You need to be careful before enabling Java 2 security. Java 2 security
places new requirements on application developers and administrators and
your applications might not be prepared for the very fine-grain access control
programming model that Java 2 security is capable of enforcing.

For more information about Java 2 security, refer to:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.websphere.nd.doc/info/ae/ae/csec_rsecmgr2.html

278 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/csec_rsecmgr2.html

When a new application server profile or deployment manager profile is created,
you have the following options for administrative security:

� Use WebSphere Application Server to manage user identities and the
authorization policy (file-based repository).

� Do not enable security.

� Use a z/OS security product to manage user identities and authorization
policy (z/OS only).

LTPA is used as the authentication mechanism.

After profile creation, you can activate application security, selecting from the
following user registry options:

� Federated repository (including the file-based registry created for
administrative security)

� Local operating system

� Stand-alone LDAP registry

� Stand-alone custom registry

For more information about administrative security and the roles for
administrators, see “Secure administration tasks” on page 107.

Server IDs
WebSphere Application Server V6.1 distinguishes between the user identities for
administrators who manage the environment and server identities for
authenticating server-to-server communications.

When you configure the user registry from the console, you can choose to have a
server ID automatically generated. Automatically generated IDs are not stored in
the registry.

Alternatively, you can specify a user ID and password. On distributed systems,
this is a user ID that exists in the user registry. On z/OS, you can choose to use
the ID for that is associated with each started task.

If you are adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must
ensure that the Version 5.x or Version 6.0.x server identity and password are
defined in the repository for this cell.

Scenarios
In order to give a better explanation of what the implications are if you select one
of the previous options, we describe two scenarios with different configurations
to illustrate common setups.

 Chapter 12. Planning for security 279

Scenario 1: Enable administrative security at profile creation
In this scenario, let us say that you want to enable administrative security during
the installation process. With this option, the profile creation tools create a
file-based registry in the configuration file system, and a user ID /password
combination of your choice is registered with administrator authority. Self-signed
digital certificates for servers are created in the configuration file system
automatically and LTPA is enabled.

Additional users can be added and assigned administrative roles through the
administrative tools (for example, through the “Console users and groups”
settings in the administrative console.

Note that so far, only administrative security has been enabled. After the profile
is complete and the application server or deployment manager is running, you
can enable application security through the administrative console.

You can federate the file-based registry holding the administrative security
information with another user registry of your choice.

Scenario 2: Enable security after profile creation
In this scenario, let us say that you do not enable administrative security during
the profile creation process. Anyone with access to the administrative console
port can make changes to the server or cell configuration.

After profile creation, you can enable both administrative and application security
using a user registry of your choice.

Scenario 3: Using a z/OS security product
In this scenario, let us say that you want to enable administrative security during
the profile creation process using a z/OS security product to manage security.
With this option, each user and group identity corresponds to a user ID or group
in the z/OS system's SAF-compliant security system (IBM RACF or an equivalent
product).

Access to WebSphere Application Server roles is controlled using the SAF
EJBROLE profile, and digital certificates for SSL communication are stored in the
z/OS security product.

280 WebSphere Application Server V6.1: Planning and Design

Summary of options to enable security at profile creation
Table 12-2 summarizes these options.

Table 12-2 Options to enable security at profile creation

12.6 Planning checklist for security

Table 12-3 provides a summary of items to consider as you plan and additional
resources that can help you.

Table 12-3 Planning checklist for Web services

Option chosen Implications

Use WebSphere Application Server to manage
user identities and the authorization policy.

� Each WebSphere Application Server user and
group identity corresponds to an entry in a
WebSphere Application Server user registry.
The initial registry is a file-based user registry,
created during customization, and residing in
the configuration file system.

� Access to roles is controlled using WebSphere
Application Server role bindings. In particular,
administrative roles are controlled using the
"Console users and groups" settings in the
administrative console.

� Digital certificates for SSL communication are
stored in the configuration file system.

Do not enable security. � No administrative security is configured.
Anyone with access to the administrative
console port can make changes to the server
or cell configuration.

Use a z/OS security product to manage user
identities and authorization policy (z/OS only).

� Each WebSphere Application Server user and
group identity corresponds to a user ID or
group in the z/OS system's SAF-compliant
security system (RACF or an equivalent
product).

� Access to WebSphere Application Server roles
is controlled using the SAF EJBROLE profile.

� Digital certificates for SSL communication are
stored in the z/OS security product.

Planning item

Determine when and how you will enable WebSphere Application Security (bus,
administrative, application, Java 2).

 Chapter 12. Planning for security 281

Resources
For a good overall reference for WebSphere Application Server security, refer to
WebSphere Application Server V6 Security Handbook, SG24-6316.

We suggest that you have a copy of this book available as you plan to secure
your environment.

The WebSphere Application Server Information Center also contains a lot of
useful information. For a good entry point to security topics, see:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.web
sphere.nd.doc/info/ae/ae/welc6topsecuring.html

Create a strategy for administrative security (see also 6.5.6, “Security considerations for
the installation” on page 106).

Determine the type of user registry you will use and procure the appropriate products
and licenses. If you do not want to use a federated repository, delay turning on admin
security until after installation. Populate the user registry with the appropriate user IDs
and groups for initial security.

Determine the authentication mechanism (LTPA strongly suggested).

Determine the authorization method (default or JACC). If JACC, plan for the
implementation of the JACC provider.

Plan where you will implement SSL in your network.

Plan for certificate management.

Plan for single sign-on. See the single sign-on topics in the WebSphere Application
Server Information Center at:
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.webspher
e.nd.doc/info/ae/ae/csec_sso.html

Create a strategy for securing applications using J2EE security (declarative or
programmatic?). Application security requires close cooperation between application
developers, security specialists, and administrators. Plan for coordinating role
definitions with development and assigning users to roles during the application
installation. Determine individual application components that have special security
requirements.

Review and incorporate security strategies for Web services (see 11.5.1, “What are the
options for Web service security?” on page 250).

Review and incorporate security strategies for the service integration bus (see 10.6,
“Messaging features: How secure and reliable is it?” on page 224).

Planning item

282 WebSphere Application Server V6.1: Planning and Design

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/welc6topsecuring.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/csec_sso.html

Appendix A. Sample topology
walk-through

This appendix explores a complex topology and provides general guidance on
setting it up. It contains the following sections:

� Topology review
� Component installation
� Testing the topology
� Deploying applications

A

© Copyright IBM Corp. 2006. All rights reserved. 283

Topology review
The topology shown in Figure A-1 takes elements from several of the topologies
found in Chapter 5, “Topologies” on page 59 and combines them. The motivating
factor for this combination is scalability, workload management, and high
availability. This topology is a common implementation according to discussions
with IBM clients, as well as IBM Global Services teams who are responsible for
the implementation of WebSphere environments.

Figure A-1 Complex topology

Note: This appendix addresses a subset of this topology. For the full details
about implementing this topology, see WebSphere Application Server V6
Scalability and Performance Handbook, SG24-6392.

Admin Console

 App2Node

 App1Node

Node Agent

Deployment Manager

App
Data

Database
Server 1

DB

DM

Backend Network
(10.20.30.0/24)

D
B2

 C
lie

nt
D

B2
 C

lie
nt

Application Network
(10.20.20.0/24)

 Cluster
cluster.itso.ibm.com

DMZ Network
(10.20.10.0/24)

Client Network
(10.20.0.0/24)

EJB
Cont.

EJB2b

Web
Cont.

Web2b

EJB
Cont.

EJB1

Web
Cont.

Web1

EJB
Cont.

EJB2a

Web
Cont.

Web2a

Client

IBM HTTP
Server

HTTP1

IBM HTTP
Server

HTTP2

Plug-in

Plug-incproxy

 C
ac

hi
ng

 P
ro

xy

B
ac

ku
p

 C
ac

hi
ng

 P
ro

xy

lb2

 L
oa

d
Ba

la
nc

er

Ba
ck

up
 L

oa
d

Ba
la

nc
er

 fo
r

H
TT

P
 S

er
ve

rs

 L
oa

d
Ba

la
nc

er

B
ac

ku
p

lb1

 L
oa

d
B

al
an

ce
r f

or

C
ac

hi
ng

 P
ro

xy

Client

Node Agent

 Application Server Clusters

284 WebSphere Application Server V6.1: Planning and Design

This configuration provides both the greatest resiliency of a site, and the greatest
administrative complexity. The topology includes the following elements:

� Two IBM HTTP Server Web servers configured in a cluster

Incoming requests for static content are served by the Web server. Requests
for dynamic content is forwarded to the appropriate application server by the
Web server plug-in.

� A Caching Proxy server that keeps a local cache of recently accessed pages

Cachable content includes static Web pages and JSPs with dynamically
generated but infrequently changing fragments. The Caching Proxy can
satisfy subsequent requests for the same content by delivering it directly from
the local cache, which is much quicker than retrieving it again from the
content host.

A backup server is configured for high availability.

� A Load Balancer server to direct incoming requests to the Caching Proxy and
a second Load Balancer server to manage the workload across the HTTP
servers

The Load Balancers distribute incoming client requests across servers,
balancing workload and providing high availability by routing around
unavailable servers.

A backup server is configured for each primary Load Balancer for high
availability.

� A dedicated server to host the deployment manager

The deployment manager is required for administration but is not critical to
the runtime execution of applications. It has a master copy of the
configuration that should be backed up on a regular basis.

� Two clusters consisting of three application servers

Each cluster spans two machines. Note that in this topology, one cluster
contains application servers that provide the Web container functionality of
the applications (servlets, JSPs), and the second cluster contains the EJB
container functionality. Whether you choose to do this or not is a matter of
careful consideration. Although it provides failover and workload
management capabilities for both Web and EJB containers, it can also affect
performance.

� A dedicated database server running IBM DB2 UDB V8.2

 Appendix A. Sample topology walk-through 285

Advantages
This topology is designed to maximize scalability, workload management, and
high availability and has the following advantages:

� Single points of failure are eliminated for many components (Web server,
application server, and so on) through the redundancy of those components.

� It provides both hardware and software failure isolation. Hardware and
software upgrades can be easily handled during off-peak hours.

� Horizontal scaling is done by using both the Load Balancer IP sprayer (for the
Web server nodes) and the application server cluster to maximize availability.

� Application performance is improved by using several techniques:

– Hosting application servers on multiple physical machines to boost the
available processing power

– Using clusters to vertically scale application servers, which makes more
efficient use of the resources of each machine

� Applications with this topology can make use of workload management
techniques. In this example, workload management is performed through:

– The Network Dispatcher component of the Load Balancer to distribute
client HTTP requests to each Web server

– WebSphere Application Server workload management to distribute work
among clustered application servers

Disadvantages
This combined topology has the following disadvantages:

� Isolating multiple components and providing hardware backups increases the
overall cost of this implementation.

� Licenses must be obtained for all the machines to be used, and this can add
significant costs to provide resiliency.

� This is an example of a standard implementation, but it should also be noted
that it is one of the most complex. Consider the costs of administration and
configuration work in relation to the benefits of increased performance, higher
throughput, and greater reliability.

286 WebSphere Application Server V6.1: Planning and Design

Component installation
The example topology involves isolating as many of the components as possible.
For the purposes of this illustration, we did not implement all of the components
in the topology due to the availability of equipment and resources in our lab. We
did, however, create a representative subset, shown in Figure A-2. We take you
through the general process required to build this environment.

Figure A-2 Completed topology

The remainder of this appendix works through the process of building out the
components shown in Figure A-2.

lb01.itso.ral.ibm.com

Edge
Server
Load

Balancer

a01.itso.ral.ibm.com

Custom Profile 01

c01.itso.ral.ibm.com

Custom Profile 01

Deployment
Manager

d01.itso.ral.ibm.com

m01.itso.ral.ibm.com

IBM HTTP
Server
V6.1

w01.itso.ral.ibm.com

IBM HTTP
Server
V6.1

WebSphere Application Server
Network Deployment V6.1

WebSphere Application
Server Network Deployment

V6.1
Application

Server

Application
Server

Server A

Server B

Server C

Server D

Server E
Application

Server

 Appendix A. Sample topology walk-through 287

The installation process for all the components is fairly similar. With the
exception of the Load Balancer, all the installations are started from a single
point, the Launchpad for the Network Deployment package, shown in Figure A-3.

Figure A-3 Network Deployment V6.1 Installation Launchpad

Deployment manager node (server E)
Server E hosts the deployment manager used to administer the servers
(including the Web servers and application servers), applications, and resources
in the WebSphere Application Server cell. To build this node:

1. Install WebSphere Application Server Network Deployment.

From the Launchpad, we selected Launch the Installation wizard for
WebSphere Application Server Network Deployment and navigated
through the panels in the installation wizard.

2. Launch the Profile Management Tool to create a deployment manager profile
for the node. You can launch it after installation or as a last step in the
installation.

We launched the PMT after the installation and selected Deployment
manager. We followed the prompts, taking the defaults.

288 WebSphere Application Server V6.1: Planning and Design

3. After creating the profile, we used the First Steps menu to start the
deployment manager, test the installation, and finally to log in to the
administrative console.

This resulted in a running deployment manager on d01.itso.ral.ibm.com, shown
in Figure A-2 on page 287.

Application server nodes (server D)
Server D hosts the application server clusters. This configuration is one in which
WebSphere Application Server is installed on a node and a custom profile is built
to be federated to a cell.

The process for installing and building the WebSphere Application Server
components is the same for each application server node. In the sample
topology, there are two application server nodes on two separate machines. In
our walk-through, we only have one machine but still create two nodes for
illustration purposes.

We performed the following actions:

1. On each physical machine, install WebSphere Application Server Network
Deployment.

2. For each node, launch the Profile Management Tool (PMT) to create a
custom profile for the node.

We launched the PMT after the installation for each node. We selected
Custom Profile and followed the prompts taking the defaults, including
allowing the node to be federated to the cell as part of the process (the
deployment manager must be installed and running).

The result is the two nodes c01.itso.ral.ibm.com and a01.itso.ral.ibm.com in
Figure A-2 on page 287. Because these are custom nodes, no application
servers or applications exist yet. We create these using the administrative
console on the deployment manager.

Tip: Nodes that are federated need to have their system clocks very closely in
sync. This does not mean in the same time zone, but that they must be within
five minutes of each other with respect to time zone variance. If they are not,
the node will not federate. If the node is federated and then the gap grows to
greater than five minutes, the node will not be able to synchronize correctly
with the deployment manager repository.

 Appendix A. Sample topology walk-through 289

IBM HTTP Server V6.1 (server B and server C)
Server B (w01.itso.ral.ibm.com) and server C (m01.itso.ral.ibm.com) host the
Web servers. Communication between the Web servers and the application
servers is facilitated through the Web server plug-in module. The Web servers
are defined to the deployment manager as unmanaged nodes. Because they are
IBM HTTP Servers, we can propagate changes to the plugin-cfg.xml file through
the console.

We performed the following actions:

� On each physical machine:

We installed IBM HTTP Server and the Web server plug-in.

From the Launchpad, we selected Launch the installation wizard for IBM
HTTP Server. We accepted the defaults, which included the default ports of
80 for the HTTP Server and 8008 for the HTTP Administration Server. We
also took the default of creating a Windows service for the HTTP server and
administration server.

The installation panels gave us the option of entering a user ID and password
to be used to log in to the HTTP Administration Server, which we did.
Additional user IDs can be added after the installation using the htpasswd
command in the HTTP server bin directory.

Because we installed the IBM HTTP Server packaged with WebSphere
Application Server, we were able to launch the plug-in installation as part of
the IBM HTTP Server installation.

� On the deployment manager machine:

After correctly installing the IBM HTTP Server and Web server plug-in, we
copied the <plugin_home>/bin/configure<web_server_name> script from
each plug-in installation to the deployment manager’s <profile_home>/bin
directory on server E and executed it. This created the Web server definitions
on the deployment manager and generated the plug-ins. We then propagated
the new plug-in configuration files back to the IBM HTTP Server installations
to the location stated in the httpd.conf file.

After completing the installation, we ran functional tests to verify the operation of
each Web server. First, we started the HTTP server and administration server on
each machine. Our server installation was Windows, so we were able to start
both using the Windows services defined for them.

We verified that the HTTP servers were working by accessing the default splash
page (http://localhost) for each. Next, we verified that the deployment manager
could access the configuration data, log files, and start and stop the Web servers
through the administrative console.

290 WebSphere Application Server V6.1: Planning and Design

We then tested loading the snoop servlet and the Plants by WebSphere sample
application using each remote Web server instead of the embedded HTTP
server for WebSphere.

Creating the application server clusters
Our test topology required a cluster of application servers spread across the two
application server nodes. To do so, we created a cluster named test from the
administrative console and added three servers to the cluster (one from the a01
node and two from the c01 node). We configured memory-to-memory session
replication as our distributed session management mechanism.

We wanted to test a sample application, so we took the simple step of creating
an application server profile and federating it to the cell. This gave us the sample
and default applications. We then changed the module mapping for the Default
Application to use the cluster instead of the original stand-alone server. We
assigned the Web modules to the newly defined Web servers.

After we had the module mapping set correctly, we were then able to regenerate
the plugin-cfg.xml configuration file and propagate it to remote Web servers. We
then tested the default application (http://<web_server>/snoop) to verify that the
applications are still served correctly.

Note that in the complex topology shown in Figure A-1 on page 284, there are
two clusters. The second cluster is created in the same manner as the first.

Load Balancer (server A)
We chose to use the Load Balancer component of the WebSphere Edge
components so that we could distribute traffic between the two Web servers. The
Caching Proxy would typically be used for segmenting traffic, but was not
implemented for this testing. A single cluster was created that supported port 80
load balancing. We chose not to implement a port 443 cluster in the test
environment. Referring to Figure A-2 on page 287, the machine that was our
load balancing machine was named lb.itso.ral.ibm.com and is labeled server A.

Configuring the Load Balancer can be done in one of two ways: using the
graphical console, or using the command line. For this test, we chose to use the
graphical console. To invoke the console, execute the lbadmin command from a
prompt, or click the icon to run this script. If you prefer the command line, you can
issue the dscontrol command from a prompt and enter the commands there.

We performed the following steps:

1. First, create a cluster. This cluster is the host name and IP combination that
are used by clients to access the Web site and guarantee the load balancing.

 Appendix A. Sample topology walk-through 291

When creating the cluster, the console prompts you for the interface to which
to bind this cluster. Select the primary interface as defined for that machine. It
is customary for the name of the cluster (which is simply a label) to be the
DNS name for the cluster for ease of administration. After creating the cluster,
you add a port to the cluster. For our purposes, we chose HTTP, which
defaults to port 80.

The next step is to add the servers that will be serving for this cluster. We
added m01.itso.ral.ibm.com and w01.itso.ral.ibm.com. We used this
name for both the label and the host name so that we could verify that the
Load Balancer could resolve the names correctly to an IP address.

2. Now that the Web servers are defined to the cluster, we must go to the Web
servers and verify the configuration to assure they can serve that cluster
address. When using Load Balancer, you are required to bind the cluster IP
as an alias to the loopback adapter for each Web server, and the load
balancer itself. Refer to specifics for your operating system for adding a
loopback alias.

3. At this point, we are now ready to enable the advisor. The Load Balancer
uses a port advisor to verify the health of servers participating in the cluster.
In the case of HTTP requests, the advisor sends a HEAD request to each of
the servers participating in the cluster. If a server does not respond correctly
to the advisor, the advisor marks the node down in the Load Balancer cluster
so that traffic is not sprayed to the malfunctioning server.

4. To do unit testing of the Load Balancer cluster, we simply marked one of the
two Web servers “down” in sequence, and then verified that the cluster was
still serving from the remaining Web server.

Note: The dialog box in the console has an option for the network router
address and a check box to indicate it must be used. This should only be
the case if your Web server is not on the same network as the Load
Balancer. For the purposes of our testing, all the machines were on the
same logical network.

Important: Windows operating systems require a special network adapter
be installed to handle loopback addressing. Also, Windows adds a bad
route for the loopback alias, which then must also be removed prior to
verifying that the server is functioning correctly. Refer to WebSphere
Application Server V6 Scalability and Performance Handbook, SG24-6392,
for details about the adapter and the bad route.

292 WebSphere Application Server V6.1: Planning and Design

Deploying applications
So far, we have built a WebSphere Application Server environment with a cluster
of application servers. To deploy applications in this topology, you must
remember to map the modules to the clustered application servers. In the
complex topology (Figure A-1 on page 284), this involves mapping Web modules
to servers in one cluster and the EJB modules to servers in the second cluster. In
our simplified version, we simply map all the modules to the single cluster we
created. Remember to also map the Web modules to both Web servers so that
the plug-ins are generated correctly. Then, you need to regenerate and
propagate the plug-ins.

Testing the topology
After building and unit testing the entire environment, we verified the expected
functionality. To do this, we created a simple frameset HTML page that was
placed on each one of the Web servers. The top portion of the frame indicated
which Web server was serving the request. The lower frame executed the snoop
servlet, showing which application server responded to the plug-in request. I
Table A-1 shows the various page loads and the results of those loads. The table
lists, in order, the page request and which Web server and application server
responded to the two frames. We continued the tests until we verified that each
Web server processed a request from each of the four application server
instances.

Table A-1 Testing the entire environment

One item of interest is that the operation of the Load Balancer is such that it uses
a statistical round-robin when the advisor is running, which means that the Web
servers responded based on the metrics the Load Balancer used to weight the
likelihood a server would be able to respond to the request. Even after turning off
the HTTP port advisor and the manager, the weights assigned to the servers

Web server host Application server host Server instance

w01.itso.ral.ibm.com c01.itso.ral.ibm.com AppSrv01

m01.itso.ral.ibm.com c01.itso.ral.ibm.com AppSrv01

w01.itso.ral.ibm.com c01.itso.ral.ibm.com AppSrv02

m01.itso.ral.ibm.com c01.itso.ral.ibm.com AppSrv02

w01.itso.ral.ibm.com a01.itso.ral.ibm.com AppSrv01

m01.itso.ral.ibm.com a01.itso.ral.ibm.com AppSrv01

 Appendix A. Sample topology walk-through 293

based on response times continued to keep the clustered Web servers from
serving in a true round-robin fashion.

After testing at this level, we were confident that the environment was behaving
as expected. Each Web server received some of the traffic from the Load
Balancer, and each application server served some of the requests to the snoop
servlet.

294 WebSphere Application Server V6.1: Planning and Design

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 298. Note that some of the documents referenced here may
be available in softcopy only.

� Enabling SOA Using WebSphere Messaging, SG24-7163

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� WebSphere Application Server V6 Problem Determination for Distributed
Platforms, SG24-6798

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server V6 Security Handbook, SG24-6316

� WebSphere Application Server V6.1: System Management and
Configuration, SG24-7304

� WebSphere Application Server V6.1: Technical Overview, REDP-4191

� WebSphere Security Fundamentals, REDP-3944

Online resources
These Web sites are also relevant as further information sources:

� WebSphere Application Server Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

© Copyright IBM Corp. 2006. All rights reserved. 295

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

� WebSphere Application Server V6.1 supported software

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27007642

� WebSphere Application Server V6.1 system requirements

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27007651

� WebSphere Application Server support page

http://www.ibm.com/software/webservers/appserv/was/support/

� WebSphere Application Server Edge Component Information Center

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

� WebSphere MQ home page

http://www.ibm.com/software/integration/wmq/

� IBM Enterprise Workload Management

http://www.ibm.com/servers/eserver/about/virtualization/enterprise/e
wlm.html

� Application Client for WebSphere Application Server topic

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.base.doc/info/aes/ae/ccli_appclients.html

� Planning to install WebSphere Application Client topic

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.
websphere.nd.doc/info/ae/ae/tins_scenario6.html

� Rational software

http://www.ibm.com/software/rational

� Rational Enterprise Generation Language

http://www.ibm.com/software/awdtools/eglcobol/index.html

� Rational Unified Process

http://www.ibm.com/software/awdtools/rup

� Rational Functional Tester

http://www.ibm.com/software/awdtools/tester/functional/

� IBM Tivoli Directory Server home page

http://www.ibm.com/software/tivoli/products/directory-server/

� IBM Tivoli Access Manager for e-business home page

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/

296 WebSphere Application Server V6.1: Planning and Design

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27007642
http://www.ibm.com/software/tivoli/products/directory-server/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/awdtools/tester/functional/
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/ccli_appclients.html
http://www.ibm.com/software/integration/wmq/
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.nd.doc/info/ae/ae/tins_scenario6.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27007651
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/software/awdtools/rup
http://www.ibm.com/software/awdtools/eglcobol/index.html
http://www.ibm.com/software/rational
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
http://www.ibm.com/servers/eserver/about/virtualization/enterprise/ewlm.html

� IBM Tivoli Access Manager Information Center

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc
=/com.ibm.itame.doc/toc.xml

� IBM Tivoli Monitoring for Transaction Performance

http://www.ibm.com/software/tivoli/products/monitor-transaction/

� Design for Scalability - an Update

http://www.ibm.com/developerworks/websphere/library/techarticles/hip
ods/scalability.html

� WebSphere for z/OS -- Heterogeneous Cells

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644

� WebSphere for z/OS V6 -- WSC Sample ND Configuration

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653

� WebSphere for z/OS V6.1 - New Things Encountered During Configuration

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781

� WebSphere for z/OS Version 6 - Configuration Planning Spreadsheet

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331

� Understanding WAS for z/OS

http://websphere.sys-con.com/read/98083.htm

� WebSphere Application Server V6.1: What's new in security?

http://www.ibm.com/developerworks/websphere/library/techarticles/060
6_botzum/0606_botzum.html

� Using URL resources to manage J2EE property files in IBM WebSphere
Application Server V5

http://www.ibm.com/developerworks/websphere/library/techarticles/050
2_botzum/0502_botzum.html

� Maintain continuous availability while updating WebSphere Application
Server enterprise applications

http://www.ibm.com/developerworks/websphere/techjournal/0412_vansick
el/0412_vansickel.html

� Sun Developer Network Java Message Service Web page

http://java.sun.com/products/jms

� Sun Developer Network J2EE Connector Architecture Web page

http://java.sun.com/j2ee/connector/

 Related publications 297

http://websphere.sys-con.com/read/98083.htm
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100644
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.itame.doc/toc.xml
http://www.ibm.com/developerworks/websphere/library/techarticles/hipods/scalability.html
http://www.ibm.com/developerworks/websphere/library/techarticles/hipods/scalability.html
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100653
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100781
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/PRS1331
http://www.ibm.com/developerworks/websphere/library/techarticles/0502_botzum/0502_botzum.html
http://www.ibm.com/developerworks/websphere/techjournal/0412_vansickel/0412_vansickel.html
http://www.ibm.com/software/tivoli/products/monitor-transaction/
http://java.sun.com/products/jms
http://java.sun.com/j2ee/connector/
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_botzum/0606_botzum.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0606_botzum/0606_botzum.html

� ARM 4.0 specification

http://www.opengroup.org/management/arm.htm/

� Information about the ARM standard

http://www.opengroup.org/pubs/catalog/c807.htm

� The Apache Ant project

http://ant.apache.org/index.html

� Concurrent Versions System

http://ximbiot.com/cvs/wiki

� The Java Community Process Program - JSRs Java Specification Requests -
detail JSR# 168

http://jcp.org/en/jsr/detail?id=168

� JSR 116 SIP Servlet API 1.0 Specification

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/

� RFC 3261

http://www.ietf.org/rfc/rfc3261.txt

� JUnit, Testing Resources for Extreme Programming

http://www.junit.org

� Eclipse Test and Performance Tools Platform

http://www.eclipse.org/hyades

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

298 WebSphere Application Server V6.1: Planning and Design

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://ximbiot.com/cvs/wiki
http://ant.apache.org/index.html
http://jcp.org/en/jsr/detail?id=168
http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://www.ietf.org/rfc/rfc3261.txt
http://www.junit.org
http://www.eclipse.org/hyades
http://www.opengroup.org/management/arm.htm/
http://www.opengroup.org/pubs/catalog/c807.htm

Index

A
access intent policies 182
Access Manager for WebSphere 16
activity.log 166
adapter teaming configuration 180
Adaptive Fast Path Architecture (AFPA) 64
address space 52
administrative console 155
administrative security 86, 90, 154–156, 254, 256,
258, 271, 278–281
administrative security roles 108, 154
AFPA 189
allow overflow 195
annotation-based programming 128, 131
Ant 130, 155, 157
Apache Ant 138
Apache HTTP Server 10
Apache Struts 130
Application Client 7, 86
application design 26
Application Response Measurement (ARM)
203–204
application rollout 163
application scope 161
application security 90, 260, 270, 278–280, 282
application server 27, 40, 65, 104, 119
application server profile 40–42, 70, 72, 94, 98
Application Server Toolkit 6–7, 97, 101, 124,
127–128, 161, 270, 274
application startup 159
application upgrades 148
ARM agent 204
atomic transaction contexts 233
authentication 225, 254, 263–264, 266–267,
269–270, 274–275, 282
authentication mechanism 264–265, 279, 282
authorization 225, 254, 265–267, 271, 277
authorization policy 281
authorization provider 275
automated build process 137
automated functional tests 139
availability 62

© Copyright IBM Corp. 2006. All rights reserved.
B
B2B 248
backup and recovery 36
backupConfig command 167
bean persistence 182
benchmark 27
benchmarking 30
bill of materials file 133
biometric 264
buffer pool 190
bus connector role 225
Business Registry 248
business-to-business 248

C
cachespec.xml 188
caching 187
Caching Proxy 4, 6, 189, 285, 291
caching service 190
caching strategy 34
capacity 142
cell 42, 103
cell profile 42, 95, 99
cell scope 160
certificate 107, 254, 256–257, 266–268, 280–281
certificate authority 268
certificate management service 268
certificate revocation lists (CRLs) 268
certification authority 267
change management 162
choreography 242–243
CIP 93
Cisco Local Director 62
Cloudscape 10, 187
cluster 40, 43, 45, 48, 61, 63, 73, 76, 80, 160, 163,
175, 177–178, 182, 187, 218, 226, 286, 289, 291
cluster scope 161
Clustered TM Policy 186
code versioning 134
cold backup 37
collaboration 134
com.ibm.websphere.ant.tasks 138
command assistance 154

 299

command line tools 155, 157
Common Secure Interoperability Version 2 (CSIv2)
263
composite message 243
concurrent users 33
Concurrent Versions System (CVS) 129, 136
configuration backup and restore 167
configuration repository 158
configuration settings 144–145
connection pool 174
connection pool size 201–202
contextID 276
control region (CR) 52
control region adjunct 53
cookies 193–194, 197, 268
CORBA security 263
core group 184–185
cryptography 211
Crystal Reports 129, 131
CSIv2 263, 271
custom node profile 41
Custom PMI API 199
custom profile 74, 77, 79, 82, 95, 100, 289
custom registry 266, 279
customized install packages (CIPs) 8
CVS 129–130, 135

D
daemon server 54
data availability 181
data caching 190
data protection 18
data server 27
data store 228
database connection pool 174, 199
database connection pool size 144
database schema 149
database server 175, 181
database servers 10
database tuning 175
DataDirect Technologies JDBC Drivers for Web-
Sphere Application Server 7
DB2 8, 10
DB2 performance configuration 202
declarative security 274
default authorization provider 271
default messaging provider 20, 187, 202, 214
default profile 111

DefaultCoreGroup 185
DefaultNodeGroup 42
delegation 267
denial of service 66
deployment automation 131
deployment descriptor 274
deployment manager 7, 41–43, 45–46, 117, 184,
265, 285, 289–290
deployment manager profile 41–42, 74, 77, 79, 82,
95, 97, 288
destination 216
development tools 127
Directory Access Protocol (DAP) 268
directory servers 11
disable auto start 159
disk utilization 33
Distributed Process Discovery 158
distributed server 41
distributed server configuration 41
distributed server environment 40, 42
DMZ 60, 65, 68, 115, 211
DNA 264
DRS 197
dscontrol 291
dump files 165
dynamic cache 197, 200
dynamic cache size 202
dynamic caching 64, 188, 250
dynamic reloading 163
dynamic SQL 172

E
edge caching 188
Edge Component 4, 6, 8, 62–63, 67, 71–72, 79, 82,
121, 291, 296
Edge server 27
Edge Side Include (ESI) 188
EJB client 178
EJB client authentication 269, 271
EJB container 174, 178, 182, 202
EJB module 293
EJB persistence 181–182, 190–191
encryption 257
encryption key 256, 264
enhanced EAR 128
enhanced EAR file 132
enterprise bean request 203
Enterprise Generation Language (EGL) 130

300 WebSphere Application Server V6.1: Planning and Design

enterprise service bus (ESB) 246
ESB gateway 246
ESI caching 188
ESI external caching 64
Extensible Markup Language

see XML
Extensible Markup Language (XML) 44

F
FACILITY class profile 255
failover 40, 61, 63, 74, 76, 142, 180, 182–183, 185,
187, 218, 220, 257
Fast Response Cache Accelerator (FRCA) 188
fault tolerant storage 183
federate 42
federated repository 254, 266
file registry 257
file store 228
file synchronization 164
file-based registry 15
file-based repository 279, 281
fingerprints 264
firewall 66, 107, 180, 185, 248
First Steps 101
fix management 167
flat file message store 210
foreign bus 217, 222
fragment caching 188
FRCA 188–189

G
generic JMS provider 215
guaranteed delivery 246

H
HACMP 63, 182–183
hardware availability 180
hardware caching 189
hardware cluster 182
hardware cryptographic device support 255
heap size 165, 173–174, 202
heartbeat 182, 184
heterogeneous cell 43, 83
HFS 87, 94, 158
high availability 179, 182–183, 219, 226, 284
high availability group 186
high availability manager 181, 183–184, 186

horizontal cluster 43
horizontal scaling 48–49, 61, 63–64, 75, 77–78,
170, 175, 286
hot backup 37
hot deployment 163
HP JVM for HP-UX 170
HTML 129
htpasswd 290
HTTP administration server 290
HTTP request 203
Hyades 130

I
IBM Enterprise Workload Management 204
IBM Global Services 31
IBM HTTP Server 7, 10, 44, 49, 57, 65, 86–87, 290
IBM JDK 170
IBM service log 166
IBM Test Center 31
IBM Tivoli Access Manager client 4
IBM Tivoli Monitoring for Transaction Performance
204
IBM WebSeal Reverse Proxy 15
identity 267
implementation design 27
IMS 11
inactive pool cleanup interval 174
Informix 11
InitializeJACCProvider 276
install method 92
Installation Factory 8, 86, 89, 93, 120
installation verification utility 86
integrity 267
intermediary 245
Internet Information Services 10
intruder 259
IP sprayer 62–63, 67, 77–79, 81, 286
IP sprayers 62
iPlanet 16
iPlanet Directory Server 19
ISPF Customization Dialog 87

J
J2EE Connector Architecture (JCA) 213
J2EE security 272
J2EE security API 262
JAAS 15, 274–275
JACC 15, 17, 271, 275–278, 282

 Index 301

JACC Policy provider interface 276
JACC provider 271–272, 276, 282
JACC-based authorization 278
JACC-based authorization provider 271
Jacl 129, 154
jacl2jython 129
Java 2 Platform, Enterprise Edition (J2EE) 2
Java 2 security 15, 263, 278
Java 2, Standard Edition (J2SE) 2
Java 5 6, 128–129, 132, 170
Java Authentication and Authorization Service 274
Java Authentication and Authorization Service
(JAAS) 15
Java Authorization Contract for Containers (JACC)
4, 271
Java environment variables 150
Java Message Service (JMS) 271
Java property files 144–145
Java virtual machine (JVM) 51, 173
Java Virtual Machine Profiling Interface (JVMPI)
200
Java Virtual Machine Tool Interface (JVMTI) 200
java.exe 51
java.security 276
java.security.Policy 275
Javadoc 131
JavaServer Faces 129–130
JavaServer Pages 129
JAXP SAX parser 233
JAX-RPC 247
JCA V1.5 specification 213
JDBC call 202
JDK 5 164
JMS message delivery mode 227
JMS provider 20
JMS request 203
JMS V1.1 specification 213
JNDI 160–161
JSF 129–130
JSR 116 4, 6
JSR 116 specification 124
JSR 168 4, 6, 124, 128
JSR-101 247
JSR-115 15
JSSE 257
JUnit 130
Just-In-Time (JIT) compiler 170
JVM 74, 184
JVM 5.0 263

JVM for HP-UX 200
JVM logs 166
JVM security 263
Jython 129, 154

K
KEEP_ALIVE 184
key management 256
key sharing 265

L
lbadmin 291
LDAP 4, 15, 18–19, 65, 81, 257, 266, 268
LDAP registry 266, 279
legal 18
Lightweight Directory Access Protocol (LDAP) 18,
266
Lightweight Third Party Authentication (LTPA) 14,
108, 264
Load Balancer 4, 6, 64, 67, 78, 80, 285–286, 288,
291–293
load balancer 67, 181
load balancers 175
load balancing 63, 73–74
load factors 33
load tests 33
local operating system user registry 266
Log Analyzer tool 166
logical security 259
LoginContext 275
logs 165
long and short names 105
Lotus Domino Enterprise Server 10–11, 266
LTPA 14, 257, 265–266, 268, 279–280, 282
LTPA token 256, 265

M
maintainability 183
managed node 44, 54, 95, 117, 119
managed Web server 54–55
manageprofiles.bat(sh) 101
Managers 126
mapping applications 150
master repository 158
match criteria 186–187
maximum heap size 144–145
maximum in-memory session count 195, 197

302 WebSphere Application Server V6.1: Planning and Design

MBeans 159
mediation 224, 245
memory utilization 33
memory-to-memory replication 181–182, 195, 197
memory-to-memory session replication 291
message bean 224
message exchange

composite 243
one-way 240
publish-subscribe 242
request-response 241
two-way 240
workflow 242

message exchange patterns 240
message ordering 211
message point 216
message store 210, 225, 228
message-driven bean (MDB) 219
messaging 210
messaging engine 175, 185, 187, 216, 218, 220,
222, 224, 227
messaging security 225
messaging service provider 214
messaging service type 212
method level security 270
Microsoft Active Directory 16, 19
Microsoft Active Directory Server 266
Microsoft SQL Server 11
migration 109
mixed node 48
MQ client 223
MQ link 224
MTBF 179
MTTR 179

N
naming conventions 88, 90, 102, 105, 133
NAS 181–183, 185
native code 166
Network Dispatcher 76–77, 81, 286
network interface card 180
node 42–43, 103
node agent 42, 44, 55, 184, 265
node group 42
node scope 161
non-functional requirements 32
non-root installation 107
Notification Broker Service 234

Novell eDirectory 11
Number of alarm threads 179

O
Object Request Broker (ORB) 263
one-way message 240
operating systems 9
Oracle 10
ORB service thread pool 201–202
overwrite session management 197

P
packaging 5
PAM 274
parallel processing 48
parallel start 159
partitioned queue 220
pattern

observer 242
patterns 33
performance 60, 76, 142
Performance Advisor 201
performance management 31
Performance Monitoring Infrastructure (PMI) 199
performance requirements 32
performance tuning 32
persisted session size 201–202
persisted session time 201–202
physical security 259
planning requirements 26

capacity 26
functional 26
non-functional 26

Plants by WebSphere 291
Pluggable Authentication Module 274
pmt.bat(sh) 101
policy 185, 187
port assignment 105
portal application development 131
portlet 6
portlet container 124
portlet URL security 254
power failure 180
prepared statement cache size 201–202
prepared statements 172
privacy 18, 267
private key 256
private UDDI registry 248

 Index 303

problem management 165
process availability 180
process choreography 232
process isolation 63
process logs 166
processing model 244
processor utilization 33
profile 40, 86, 90–91, 94, 102
profile creation 280
profile creation wizard 95, 98, 101
Profile Management Tool 87, 95–98, 101, 288–289
Profile Management Tool for z/OS (zPMT) 101
programmatic security 274
protocol transformation 247
proxy 185
proxy server 71
public key infrastructure (PKI) 268
public UDDI registry 248
publication point 217
publish-subscribe message 242

Q
QSECOFR 107
quality of service 246
quality of service attribute 227
queue destination 216, 220
queue manager 223–224
queue point 216–217
queue sharing group 211, 223–224

R
RACF 255, 280–281
RAID 180
rapid deployment 132
Rational Application Developer 6–7, 127, 129–130,
274
Rational ClearCase 129–130, 135
Rational ClearCase LT 135
Rational ClearCase LT Server 131
Rational ClearQuest 135
Rational Enterprise Suite Tools 135
Rational RequisitePro 135
Rational Rose 135
Rational Unified Process 131, 135
Rational Unified Process (RUP) 125
Rational Web Developer 7, 127, 129–130
recovery plan 37
recovery strategy 37

Redbooks Web site 298
Contact us xv

redundancy 62, 64, 79
Redundant Array of Independent Disks (RAID) 37
registration authority 268
registry 238
reliability 61, 227
replication domain 195–197
request filtering 203
request metric 202–204
request metrics 202
request rate 33
request-response 241
resource adaptor 213
resource scope 160
response time 61, 171
restoreConfig command 167
retina scan 264
reverse proxy 15, 275
reverse proxy server 71–72
risk analysis 36
RMI/IIOP 178
RoleConfiguration 276
RoleConfigurationFactory 276
rollout update 150
round-robin routing policy 178
Runtime Advisor 201
RUP 126, 135, 137

S
SAAJ 1.2 233
SAF 263, 280–281
SAF EJBROLE 281
SAN 182
SAS 271
scalability 27, 170–171, 179, 284
scaling 61, 174
scaling techniques 27–28
scaling-out 30
Scheduler service 179
scheduling tasks 179
SCM 131, 133, 138, 141
scope 160, 162
scripting client 156
scripting program 156
SCSI connections 182
Secure Authentication Service (SAS) 271
secure message transportation 226

304 WebSphere Application Server V6.1: Planning and Design

Secure Sockets Layer (SSL) 211, 267
security 60, 69–70, 90, 107, 210

single sign-on (SSO)
security integration 197
security policy 269
security roles 272
self-signed certificate 256
serialize session access 197
servant region (SR) 53
server affinity 192
server configuration template 159
server ID 254, 279
server scope 161
server startup 158, 166
server time 268
server weighted routing policy 178
servers

database 10
directory 11

service broker 237–238
service consumer 237
Service Data Objects 130
service integration bus 175, 185, 187, 210, 216,
222, 225, 247, 249
service level agreement (SLA) 202
service producer 237
service provider 237
service provider interface (SPI) 266
service registry 238
service requestor 237
service-oriented architecture 246
service-oriented architecture (SOA) 232
servlets 129
session affinity 192, 194
session cache size 201–202
session data 181
session ID 192–193
Session Initiation Protocol (SIP) 4, 124
session management 191, 193, 195, 197
session manager 192, 197
session persistence 194, 199
session timeout 195, 197
session tracking 193
shopping cart 235
Showlog 166
silent installation 86, 93
Simple WebSphere Authentication Mechanism
(SWAM) 14, 264
single point of failure 74, 183, 195

see SPOF
single points of failure 62
single sign-on

see SSO
single sign-on (SSO) 254, 265
single-sign on 258
singleton process 180–181
SIP 125, 127
SIP archive (SAR) files 125
sizing 29–30, 32, 60
SLAPD server 19
snoop servlet 291
SOAP 238, 244
SOAP/HTTP 240
SOAP/JMS 240
Software Asset Management 135
software cluster 182
Source Code Management 131
Source Code Management (SCM) 135
SPNEGO 254, 258
SPOF 180
SSL 226, 256–258, 264, 267, 280–281
SSL ID tracking 194, 197
SSL session ID 193–194
SSLContext instances 257
SSLSocketFactories 257
SSLV3TIMEOUT 194
SSO 265, 267–268
stand-alone application server 40, 42
stand-alone server environment 114
startup order 159
stateful 192
stateful session bean 197–198
stateful session EJB 181–182
stateless 191
stderr 166
stdout 166
Storage Area Network (SAN) 181
Struts 129
Sun HotSpot JVM 170, 200
Sun Java System Web Server 10
Sun ONE Directory Server 11, 266
support 167
SURROGAT class profile 255
Surrogate-Capabilities header 188
SWAM 265
Sybase 11
Sync to OS Thread 255
synchronization 120

 Index 305

synchronous 241
syncNode command 164
sysplex node group 42
SystemErr 151, 165–166
SystemOut 151, 165–166, 204
SystemSSL 264

T
TAI 275
team collaboration 134
template 159
test connection service 162
test environment 33, 139, 141–142
test results 33
thin administrative client 154
thread pool 173, 199, 201–202
throughput 61, 76, 171
time zone 268
Tivoli Access Manager 14–17, 276
Tivoli Access Manager policy server 16
Tivoli Access Manager Server 4
Tivoli Access Manager Servers for WebSphere Ap-
plication Server 8
Tivoli Directory Server 4, 11, 16, 18–19, 67, 266
Tivoli Directory Server for WebSphere Application
Server 8
Tivoli Performance Viewer 200
Tool Mentors 127
topic space 217
topology 59
traces 165
tracing 203
transaction affinity 192
transaction manager 184–185
transaction server 27
transport chain 225
Transport Layer Security (TLS) 264
transport level authentication 264
trust association 15
trust association interceptor 275
trust association model 275
trust policy 268
tuning 172–173
two-way message 240

U
UBR 248
UCM 135, 137

UDDI 238, 246–247
UDDI registry 247–248
UML 135
UML modeling 129, 131
Unified Change Management (UCM) 135
Unified Modeling Language 135
Universal Description, Discovery, and Integration

see UDDI
unmanaged node 54, 117
unmanaged Web server 44, 54, 56–57, 68
Update Installer 86
Update Installer (UPDI) 8
update wizard 163
updatePorts.ant 106
URL rewriting 193–194, 197
URLStreamHandlers 257
usage patterns 33
Use multi-row schema 195
user registry 15, 90, 266, 268
user repository 266
UserRegistry 266–267
utility JAR 133

V
V5 default messaging provider 215
variables 162
Versioned Object Bases (VOB) 135
vertical cluster 43
vertical scaling 48, 61, 73–74, 170, 175
virtual IP 181
virtual private network (VPN) 264
VOB 135

W
warm backup 37
WASPostUpgrade 110
WASPreUpgrade 110
Web client authentication 269
Web container 173, 177–178, 182, 202
Web container thread pool 173, 201–202
Web module 270, 293
Web server 27, 43, 54
Web server node 44
Web server plug-in 7, 44, 65, 68, 72, 75, 82, 111,
177, 183, 202, 256, 290
Web server plug-in remote versus local install 111
Web server plug-ins 86
Web servers 10

306 WebSphere Application Server V6.1: Planning and Design

Web service gateway 245–247
Web services 130, 231–232
Web Services Description Language

see WSDL
Web services engine 202
Web services gateway 245, 249
Web Services Inspection Language

see WSIL
Web services request 203
WebSEAL Reverse Proxy Server 16
WebSphere Application Server - Express 5, 40
WebSphere Application Server Network Deploy-
ment 6, 41
WebSphere Application Server V6.1 for z/OS 7
WebSphere Enterprise Service Bus 3, 246
WebSphere Information Integrator 11
WebSphere Message Broker 246
WebSphere Message Queuing Interface (MQI) 224
WebSphere MQ 4, 20, 214, 222
WebSphere MQ link 22, 217, 223–224
WebSphere MQ messaging provider 214
WebSphere MQ on z/OS 223
WebSphere MQ server 22, 211, 223–224
WebSphere partitioning facility 184
WebSphere Performance Advisors 201
WebSphere Process Server 3
WebSphere rapid deployment 128, 131, 163
WebSphere request metrics 204
WebSphere workload management 61
weighted round-robin algorithm 73
weights 177
Windows Active Directory 11
WLM 61, 200
WLM for WebSphere z/OS 176
workflow 242
workload 28, 171
workload distribution 40, 43
workload management 40, 61, 63, 176, 178, 182,
192, 220, 227, 284
workload management (WLM) 176
workload manager 175
workload patterns 28
wsadmin 154, 156, 163
WS-AT 233
WS-BA 233
WSDL 238
WS-I Basic Profile 247
WS-I Basic Security Profile 254
WS-I BSP 233

WS-I Security 247
WSIL 238, 246
WS-Notification 234
WSRF-RAP 234
WS-Security 250, 254
WS-Transaction 247

X
X.500 directories 268
XML 129, 238

Z
z/OS Secure Authentication Service (z/SAS) 271
z/OS security 280
z/OS Security Server 11
z/OS workload manager 53
z/OS.e Security Server 11
z/SAS 271
zFS 87, 94
zPMT 97
zWLM 54, 176

 Index 307

308 WebSphere Application Server V6.1: Planning and Design

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

W
ebSphere Application Server V6.1: Planning and Design

®

SG24-7305-00 ISBN 073849450X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Application
Server V6.1
Planning and Design

Discusses
end-to-end planning
for WebSphere
implementations

Provides best
practices

Includes a complex
topology
walk-through

This IBM Redbook discusses the planning and design of IBM
WebSphere Application Server Version 6.1 environments.
The content of this redbook is oriented to IT architects and
consultants who require assistance when planning and
designing small implementations to large and complex
implementations.

This redbook addresses the packaging and features
incorporated in WebSphere Application Server, covers the
most common implementation topologies, and addresses
planning for specific tasks and components that conform to
the WebSphere Application Server environment.

The book includes planning information for WebSphere
Application Server V6.1 and WebSphere Application Server
Network Deployment V6.1 on distributed platforms and
WebSphere Application Server for z/OS. It does not cover
WebSphere Application Server for i5/OS.

Note the following companion pieces to this book:

� WebSphere Application Server V6.1: Technical Overview,
REDP-4191

� WebSphere Application Server V6.1: System
Management and Configuration, SG24-7304

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction to WebSphere Application Server V6.1
	1.1 Product overview
	1.2 WebSphere Application Server
	1.3 Packaging
	1.4 Supported platforms and software
	1.4.1 Operating systems
	1.4.2 Web servers
	1.4.3 Database servers
	1.4.4 Directory servers

	Chapter 2. Integration with other products
	2.1 Tivoli Access Manager
	2.1.1 WebSphere Application Server security
	2.1.2 Tivoli Access Manager and WebSphere Application Server

	2.2 Tivoli Directory Server
	2.2.1 The Lightweight Directory Access Protocol (LDAP)
	2.2.2 Tivoli Directory Server and WebSphere Application Server

	2.3 WebSphere MQ integration

	Chapter 3. Planning for infrastructure
	3.1 Infrastructure deployment planning
	3.2 Design for scalability
	3.3 Sizing
	3.4 Benchmarking
	3.5 Performance tuning
	3.5.1 Application design problems
	3.5.2 Understand your requirements
	3.5.3 Test environment setup
	3.5.4 Load factors
	3.5.5 Production system tuning
	3.5.6 Conclusions

	3.6 Planning for backup and recovery
	3.6.1 Risk analysis
	3.6.2 Recovery strategy
	3.6.3 Backup plan
	3.6.4 Recovery plan
	3.6.5 Update and test process

	Chapter 4. WebSphere Application Server concepts
	4.1 WebSphere Application Server concepts
	4.1.1 Stand-alone application servers
	4.1.2 Distributed application servers
	4.1.3 Nodes, node groups, and node agents
	4.1.4 Cells
	4.1.5 Application server clusters
	4.1.6 Web servers

	4.2 Distributed server environments
	4.2.1 Single cell configurations
	4.2.2 Multiple cells
	4.2.3 Mixed node versions in a cell

	4.3 Application server clusters
	4.4 Runtime processes
	4.4.1 Distributed platforms
	4.4.2 WebSphere Application Server for z/OS

	4.5 Using Web servers
	4.5.1 Managed Web servers
	4.5.2 Unmanaged Web servers
	4.5.3 IBM HTTP Server as an unmanaged Web server (special case)

	Chapter 5. Topologies
	5.1 Topology selection criteria
	5.1.1 Security
	5.1.2 Performance and throughput
	5.1.3 Availability
	5.1.4 Maintainability
	5.1.5 Topology selection summary

	5.2 Terminology
	5.3 Stand-alone server topology
	5.4 Reverse proxy topology
	5.5 Vertical scaling topology
	5.6 Horizontal scaling topology
	5.7 Horizontal scaling with IP sprayer topology
	5.8 Topology with redundancy of several components

	Chapter 6. Planning for installation
	6.1 What is new in V6.1
	6.2 Selecting a topology
	6.3 Selecting hardware and operating systems
	6.4 Naming conventions
	6.5 Planning for WebSphere Application Server
	6.5.1 Determine whether to perform a single install or multiple
	6.5.2 Select an installation method
	6.5.3 Plan for profiles
	6.5.4 Plan for names
	6.5.5 Plan for TCP/IP port assignments
	6.5.6 Security considerations for the installation

	6.6 Planning for migration
	6.7 Planning for the Web server and plug-ins
	6.7.1 Stand-alone server environment
	6.7.2 Distributed server environment

	6.8 Planning checklist for the installation

	Chapter 7. Planning for application development and deployment
	7.1 What is new in V6.1
	7.2 End-to-end life cycle
	7.3 Development and deployment tools
	7.3.1 Application Server Toolkit V6.1
	7.3.2 Rational Web Developer V6.0
	7.3.3 Rational Application Developer V6.0
	7.3.4 WebSphere rapid deployment
	7.3.5 Which tool to use

	7.4 Naming conventions
	7.4.1 Naming for applications
	7.4.2 Naming for resources

	7.5 Source code management
	7.5.1 Rational ClearCase
	7.5.2 Concurrent Versions System (CVS)
	7.5.3 Which SCM to use

	7.6 Automated build process
	7.7 Automated functional tests
	7.8 Test environments
	7.9 Managing application configuration settings
	7.9.1 Classifying configuration settings
	7.9.2 Managing configuration settings

	7.10 Planning for application upgrades in production
	7.11 Mapping applications to application servers
	7.12 Planning checklist for applications

	Chapter 8. Planning for system management
	8.1 What is new in V6.1
	8.2 Administrative security
	8.3 WebSphere administration facilities
	8.3.1 Administrative console
	8.3.2 WebSphere scripting client (wsadmin)
	8.3.3 Task automation with Ant
	8.3.4 Administrative programs
	8.3.5 Command line tools

	8.4 Configuration planning
	8.4.1 Configuration repository location and synchronization
	8.4.2 Configuring application and server startup behavior
	8.4.3 Custom application server configuration templates
	8.4.4 Planning for resource scope use

	8.5 Change management topics
	8.5.1 Application updates
	8.5.2 Changes in topology

	8.6 Problem management
	8.6.1 Logs and traces
	8.6.2 Fix management
	8.6.3 Backing up and restoring the configuration

	8.7 Planning checklist for system management

	Chapter 9. Planning for performance, scalability, and high availability
	9.1 What is new in V6.1
	9.2 Scalability
	9.2.1 Workload categorization
	9.2.2 System tuning
	9.2.3 Application environment tuning
	9.2.4 Scaling the system
	9.2.5 Default messaging provider scalability

	9.3 Workload management
	9.3.1 Clustering application servers
	9.3.2 Scheduling tasks

	9.4 High availability
	9.4.1 Hardware availability
	9.4.2 Process availability
	9.4.3 Data availability
	9.4.4 Clustering and failover
	9.4.5 Maintainability
	9.4.6 WebSphere Application Server high availability features

	9.5 Caching
	9.5.1 Dynamic caching
	9.5.2 Edge caching
	9.5.3 Data caching

	9.6 Session management
	9.6.1 Session support

	9.7 Data replication service
	9.8 WebSphere Application Server performance tools
	9.8.1 Performance Monitoring Infrastructure
	9.8.2 Tivoli Performance Viewer
	9.8.3 WebSphere performance advisors
	9.8.4 WebSphere request metrics

	9.9 Planning checklist for performance

	Chapter 10. Planning for messaging
	10.1 Messaging overview: What is messaging?
	10.2 What is new in messaging for V6.1
	10.3 Messaging considerations: Is messaging for me?
	10.4 Messaging options: What things do I need?
	10.4.1 Selecting a messaging service type
	10.4.2 Choosing a messaging service provider

	10.5 Messaging topologies: How can I use messaging?
	10.5.1 Default messaging provider concepts
	10.5.2 Choosing a messaging topology

	10.6 Messaging features: How secure and reliable is it?
	10.6.1 More messaging concepts
	10.6.2 Planning for security
	10.6.3 Planning for high availability
	10.6.4 Planning for reliability

	10.7 Planning checklist for messaging

	Chapter 11. Planning for Web services
	11.1 What are Web services?
	11.2 What is new in V6.1
	11.3 Are Web services something you should use?
	11.4 What do you need to implement Web services?
	11.4.1 What is the basic Web services architecture?
	11.4.2 How can this architecture be used?
	11.4.3 How does WebSphere implement this architecture?

	11.5 What other Web service considerations are there?
	11.5.1 What are the options for Web service security?
	11.5.2 How can Web service performance be improved?

	11.6 Planning checklist for Web services

	Chapter 12. Planning for security
	12.1 What is new in V6.1
	12.2 Why you need security and how it works in WebSphere
	12.3 Security fundamentals on WebSphere
	12.3.1 Authentication
	12.3.2 Authentication process
	12.3.3 Authorization

	12.4 J2EE security
	12.4.1 Security roles
	12.4.2 Security for J2EE resources

	12.5 Planning for security
	12.6 Planning checklist for security

	Appendix A. Sample topology walk-through
	Topology review
	Advantages
	Disadvantages

	Component installation
	Deployment manager node (server E)
	Application server nodes (server D)
	IBM HTTP Server V6.1 (server B and server C)
	Creating the application server clusters
	Load Balancer (server A)

	Deploying applications
	Testing the topology

	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

