
ibm.com/redbooks

Using IBM CICS Transaction
Server Channels and Containers

Steve Burghard
Peter Klein

Convert a COMMAREA-based application
to use channels and containers

Learn how to configure systems
with a sample application

Simplify the process for
code page conversion

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using IBM CICS Transaction Server Channels and
Containers

March 2015

International Technical Support Organization

SG24-7227-01

© Copyright International Business Machines Corporation 2006, 2015. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (March 2015)

This edition applies to version 5, release 2 of CICS Transaction Server for z/OS, and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions. Make
sure that you are using the correct edition for the level of the product.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . vii
Trademarks . viii

IBM Redbooks promotions . ix

Preface . xi
Authors . xii
Now you can become a published author, too . xiii
Comments welcome. xiii
Stay connected to IBM Redbooks . xiv

Summary of changes . xv
March 2015, Second Edition . xv

Chapter 1. Introduction to channels and containers 1
1.1 Communication area for data passing. 2
1.2 The requirement for change . 3

1.2.1 Memory constraints. 3
1.2.2 Flexibility of the channels and containers approach 4

1.3 COMMAREA constraints and alternative solutions 5
1.3.1 32 KB size limit . 5
1.3.2 Methods of passing data larger than 32 KB before channels and

containers . 6
1.3.3 The evolution of the 32 KB COMMAREA . 7

1.4 Channels and containers concepts . 8
1.4.1 General concepts . 9
1.4.2 Channels . 10
1.4.3 The DFHTRANSACTION transaction channel 15
1.4.4 Containers. 18
1.4.5 Channels and business transaction services 19
1.4.6 Channels and CICS Java . 20
1.4.7 Data conversion . 21

1.5 Benefits of using channels and containers . 22
1.6 Porting COMMAREA to channels and containers. 24
© Copyright IBM Corp. 2006, 2015. All rights reserved. iii

Chapter 2. Application design and implementation. 27
2.1 Container usage as a replacement to COMMAREAs 28

2.1.1 Basic COMMAREA example. 28
2.1.2 Basic channel example . 29
2.1.3 Channel name character set . 30
2.1.4 Creating a channel . 30

2.2 Flexible way to pass multiple pieces of data . 35
2.2.1 COMMAREA solution . 35
2.2.2 Channel solution . 37

2.3 Overloaded COMMAREAs . 38
2.4 STARTBROWSE application programming interface 40
2.5 Channels and containers in called subroutines. 43
2.6 Data conversion and code page conversion . 44

2.6.1 Data conversion with channels . 44
2.6.2 How to cause CICS to convert data automatically 45
2.6.3 Using containers to do code page conversion 47
2.6.4 SOAP example . 48
2.6.5 File example . 49
2.6.6 Command-level interpreter CICS-supplied transaction example . . . 50

2.7 Storage . 53
2.8 Dynamic routing application considerations . 54

2.8.1 COMMAREA . 55
2.8.2 Channel. 56

2.9 Best practices . 58
2.9.1 Designing a channel . 58
2.9.2 Naming a channel . 60
2.9.3 Porting from COMMAREAs to channels . 60

Chapter 3. Programming. 65
3.1 EXEC CICS application programming interface . 66

3.1.1 Creating a channel . 66
3.1.2 Placing data in a container . 66
3.1.3 Passing a channel to another program or task 69
3.1.4 Receiving the current channel. 70
3.1.5 Getting data from a container . 71
3.1.6 Browsing the current channel . 73
3.1.7 Deleting a container . 75
3.1.8 Moving containers between channels . 75

3.2 CICS Java . 76
3.2.1 Creating channels and containers in JCICS 76
3.2.2 Placing data in a container . 77
3.2.3 Passing a channel to another program or task 77
3.2.4 Receiving the current channel. 79
iv Using IBM CICS Transaction Server Channels and Containers

3.2.5 Getting data from a container . 79
3.2.6 Browsing the current channel . 80
3.2.7 Browsing a name channel. 80
3.2.8 Deleting a container . 81
3.2.9 Code page considerations . 81

3.3 Business transaction services . 82
3.3.1 Application components . 83
3.3.2 Channel and container options . 91

3.4 Web services. 93
3.4.1 Using channels and containers in CICS web services 93

3.5 CICS-WebSphere MQ bridge . 97
3.5.1 Channels and containers and the CICS-WebSphere MQ bridge . . . 98

Chapter 4. Systems management and configuration 99
4.1 Storage . 100
4.2 The DFHROUTE container . 100
4.3 Code page conversion . 101

4.3.1 Simple code page conversion . 101
4.3.2 z/OS Unicode conversion services . 102

4.4 Performance considerations . 103
4.4.1 Configuration. 103

4.5 Monitoring and statistics . 106
4.5.1 Monitoring groups . 106
4.5.2 Statistics domain . 107

4.6 Problem determination . 109
4.6.1 Channels and containers abend codes. 109
4.6.2 Channels and containers trace entries . 110
4.6.3 Tracing channels and containers applications 116
4.6.4 Sample application trace flow . 117
4.6.5 Multiregion operation flow . 128
4.6.6 Intersystem communication flow . 138

Chapter 5. Sample application . 139
5.1 Implementation scenario . 140

5.1.1 The CICS catalog manager example application 141
5.1.2 The base application . 142
5.1.3 Porting steps: CICS back end . 145
5.1.4 Stage 1: Porting to channels and containers 146
5.1.5 Installing and setting up the base application 167
5.1.6 Defining the 3270 interface . 168
5.1.7 Running the application. 169
5.1.8 Stage2: Catalog item images support . 173
 Contents v

5.2 Running the stage 2 code . 179
5.2.1 Installing and setting up the Stage 2 application. 179
5.2.2 JCICS image handler program installation 180
5.2.3 Define a JVMSERVER definition in CICS TS 191
5.2.4 Transfer the CICS Bundle to z/OS UNIX System Services. 193
5.2.5 The Liberty profile servlet access to the catalog manager 196
5.2.6 Running the catalog servlet. 200
5.2.7 Deploying the catalog servlet . 202
5.2.8 Workspace setup for developing OSGi servlets and JSP 203
5.2.9 Create the catalog OSGi Project . 204
5.2.10 Create an EBA project to the OSGi Bundle Project 206
5.2.11 Create a CICS BUNDLE to the EBA project 208
5.2.12 Add the com.ibm.cics.server package to your OSGi project 210
5.2.13 Create the dynamic web project . 210
5.2.14 Define a CICS JVMSERVER with Liberty profile 211
5.2.15 Export the CICS Bundle to z/OS . 212
5.2.16 Define a CICS Bundle definition for the catalog servlet 214

Chapter 6. Frequently asked questions . 217
6.1 Administration questions . 218
6.2 Application programming questions . 219
6.3 Performance questions . 221
6.4 Functions not supporting channels and containers 222
6.5 Online information about channels and containers 223
6.6 Hints and tips. 223

Appendix A. CICS channels and containers Liberty servlet example . . 225
Channels and containers JCICS servlet example . 226

What the servlet channels and containers JCICS example does 226
HTML page and java script . 228

Servlet implementation LinkProg . 232
JCICS business class LinkProgOSGI . 234
CICS back end program. 236
Installation . 237

Appendix B. Additional material . 239
Locating the web material . 239
Using the web material . 240

System requirements for downloading the web material 240
How to use the web material . 240

Sample server program used in some examples . 240
vi Using IBM CICS Transaction Server Channels and Containers

Related publications . 245
IBM Redbooks . 245
Online resources . 245
How to get IBM Redbooks . 246
Help from IBM . 246

Index . 247
 Contents vii

viii Using IBM CICS Transaction Server Channels and Containers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your
local IBM representative for information about the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the materials
for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any
obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements will be the same on generally
available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as
completely as possible, the examples include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is
entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any
form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing
application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2006, 2015. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
CICS Explorer®
CICSPlex®
DB2®
IBM®

MQSeries®
MVS™
OS/390®
Redbooks®
Redbooks (logo) ®

TXSeries®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Using IBM CICS Transaction Server Channels and Containers

http://www.ibm.com/legal/copytrade.shtml

IBM REDBOOKS PROMOTIONS
Promote your business in an
IBM Redbooks publication

Place a Sponsorship Promotion in an IBM
Redbooks publication, featuring your business
or solution with a link to your web site.

Qualified IBM Business Partners may place a full page
promotion in the most popular Redbooks publications.
Imagine the power of being seen by users who download
millions of Redbooks publications each year!

®

®

Find and read thousands
of IBM Redbooks publications

Search, bookmark, save and organize favorites

Get up-to-the-minute Redbooks news and announcements

Link to the latest Redbooks blogs and videos

Download
NowiO

S

Android

Get the latest version of the Redbooks Mobile App

ibm.com/Redbooks
About Redbooks Business Partner Programs

IBM Redbooks promotions

https://itunes.apple.com/bw/app/ibm-redbooks/id778694354
https://play.google.com/store/apps/details?id=com.ibm.homeScreen
http://www.redbooks.ibm.com/redbooks.nsf/pages/partnerprograms?Open
http://www.redbooks.ibm.com/redbooks.nsf/pages/mobileapp

THIS PAGE INTENTIONALLY LEFT BLANK

Preface

This IBM® Redbooks® publication describes the new channels and containers
support in IBM Customer Information Control System (CICS®) Transaction
Server V5.2. The book begins with an overview of the techniques used to pass
data between applications running in CICS.

This book describes the constraints that these data techniques might be subject
to, and how a channels and containers solution can provide solid advantages
alongside these techniques. These capabilities enable CICS to fully comply with
emerging technology requirements in terms of sizing and flexibility.

The book then goes on to describe application design, and looks at implementing
channels and containers from an application programmer point of view. It
provides examples to show how to evolve channels and containers from
communication areas (COMMAREAs).

Next, the book explains the channels and containers application programming
interface (API). It also describes how this API can be used in both traditional
CICS applications and a Java CICS (JCICS) applications.

The business transaction services (BTS) API is considered as a similar yet
recoverable alternative to channels and containers. Some authorized program
analysis reports (APARs) are introduced, which enable more flexible web
services features by using channels and containers.

The book also presents information from a systems management point of view,
describing the systems management and configuration tasks and techniques
that you must consider when implementing a channels and containers solution.

The book chooses a sample application in the CICS catalog manager example,
and describes how you can port an existing CICS application to use channels
and containers rather than using COMMAREAs.
© Copyright IBM Corp. 2006, 2015. All rights reserved. xiii

Authors
This book was produced by a team of specialists from around the world working
at the International Technical Support Organization (ITSO), Poughkeepsie, NY.

Steve Burghard is a member of the CICS 390 Change Team based in Hursley,
UK. He has 31 years of experience in CICS. He has been with IBM for 18 years,
working as a CICS Technical Solutions Specialist before joining the Change
Team. He has contributed widely to other ITSO CICS Redbooks publications,
and has a vast range of experience in all areas of IBM CICSPlex® System
Manager and IBM CICS Transaction Server for OS/390®.

Peter Klein is a CICS Team Leader at the IBM Germany Customer Support
Center. He has 26 years of experience working as a technical support specialist
with IBM software products. His expertise includes IBM WebSphere® MQ (IBM
MQ), CICSPlex System Manager, and distributed transaction systems. Peter has
contributed to several other IBM Redbooks publications and ITSO projects
sponsored by IBM Learning Services.

Thanks to the following authors of the previous edition of this book:

� Chris Rayns
� Pietro De Angelis
� Steve Burghard
� David Carey
� Scott Clee
� Peter Klein
� Erhard Woerner

Thanks to the following people for their contributions to this project:

Mark Cocker, CICS Technical Strategy and Planning
IBM Hursley

Rich Conway, ITSO Technical Support
International Technical Support Organization, Poughkeepsie Center

Andy Bates, CICS Product Manager
IBM Hursley

Colin Penfold, CICS Transaction Server, Technical Planner
IBM Hursley

Phil Wakelin, IBM CICS Transaction Gateway, Technical Planner
IBM Hursley

Andy Wright, CICS Transaction Server, Senior Software Engineer,

IBM Hursley

Steve Zemblowski, Software Specialist, Advanced Technical Support
IBM Dallas
xiv Using IBM CICS Transaction Server Channels and Containers

Now you can become a published author, too

Here’s an opportunity to spotlight your skills, grow your career, and become a
published author—all at the same time. Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run two - six weeks, and you can participate either in
person or as a remote resident working from your home base.

Learn more about the residency program, browse the residency index, and
apply online:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us.

We want our IBM Redbooks publication to be as helpful as possible. Send us
your comments about this or other IBM Redbooks publications in one of the
following ways:

� Use the online Contact us review IBM Redbooks publication form:

ibm.com/redbooks

� Send your comments in an email:

redbook@us.ibm.com

� Mail your comments:

IBM Corporation, International Technical Support Organization
Dept. HYJ; HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the
IBM Redbooks weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xvi Using IBM CICS Transaction Server Channels and Containers

http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition might also include minor corrections and
editorial changes that are not identified.

Summary of Changes
for SG24-7227-01
for Using IBM CICS Transaction Server Channels and Containers
as created or updated on March 17, 2015.

March 2015, Second Edition

This revision reflects the addition, deletion, or modification of new and changed
information described in the following section.

New information
� CICS Transaction Server V3R2

– Channels and containers enhanced to include 64-bit use

• A 64-bit CICS Storage Manager was created, the first user of which
was the CICS channels and containers support

� CICS Transaction Server V4R1

– Introduction of Internet Protocol interconnectivity (IPIC)-based
connectivity, along with channels and containers, for improved
interoperability between CICS Transaction Server and IBM TXSeries®

� CICS Transaction Server V5R1

– CICS-WebSphere MQ Bridge support for channels and containers

– GET64 CONTAINER application programming interface (API) introduced

• This includes the BYTEOFFSET parameter (also for GET CONTAINER)

– PUT64 CONTAINER API introduced

• This includes the APPEND parameter (also for PUT CONTAINER)

� CICS Transaction Server V5R2

– DFHTRANSACTION channel
© Copyright IBM Corp. 2006, 2015. All rights reserved. xvii

xviii Using IBM CICS Transaction Server Channels and Containers

Chapter 1. Introduction to channels and
containers

This introduction provides an overview of the techniques traditionally used to
pass data between applications running in IBM Customer Information Control
System (CICS). We describe the constraints that they might have been subject
to, and how a channels and containers solution was developed to provide solid
advantages, alongside these techniques, which enabled CICS to fully comply
with modern technology requirements in terms of sizing and flexibility.

1

© Copyright IBM Corp. 2006, 2015. All rights reserved. 1

1.1 Communication area for data passing

In 1975, command-level programming was introduced in CICS using an
in-memory process called the communication area (COMMAREA) as a method
of passing data from one application to another. The COMMAREA was limited in
size to 32 kilobytes (). However, this was not a concern, because application data
was IBM 3270-based and so not resource intensive. The 32 KB limit was enough
to manage data propagation between applications.

Characteristics of a COMMAREA
A COMMAREA is a facility used to transfer information between two programs
within a transaction, or to transfer information between two transactions from the
same terminal. Information in a COMMAREA is available only to the two
participating programs, unless those programs take explicit steps to make the
data available to other programs, which might be started later in the transaction.

When one program links to another, the COMMAREA can be any data area to
which the linking program has access. It is often in the working storage or
Linkage Section of this program. In this area, the linking program can both pass
data to the program it is starting and receive results from the specified program.
When one program uses an XCTL command to transfer control to another
program, CICS might copy the specified COMMAREA into a new area of storage.

This is because the starting program and its control blocks might no longer be
available after it transfers control. In either case, the address of the area is
passed to the program that is receiving control, and the CICS command-level
interface (CLI) sets up addressability.

The processing required for using COMMAREA in a LINK command is minimal.
However, it is significantly more for a distributed program link (DPL), because it
can return the maximum storage. It is slightly more with the XCTL and RETURN
commands, when CICS creates the COMMAREA from a larger area of storage
used by the program.

Figure 1-1 shows a diagram representing a link using a COMMAREA.

Figure 1-1 Sample of a link using COMMAREA

Program A

EXEC CICS LINK PROGRAM ('program')
COMMAREA (structure)

Program B

EXEC CICS ADDRESS
 COMMAREA (structure-ptr)
2 Using IBM CICS Transaction Server Channels and Containers

The length option of a CICS command is generally expressed as a signed
halfword binary value. This puts a theoretical upper limit of 32,763 bytes on
length, meaning the maximum length for an area that the link, xctl, and return
commands pass is 32 KB. For DPL, the suggested maximum length is 24 KB to
enable additional CICS control blocks to be transferred.

The following list provides a summary of some of the characteristics of a
COMMAREA:

� Required processing is low.

� COMMAREA is not recoverable.

� CICS holds a COMMAREA in CICS main storage until the terminal user
responds with the next transaction.

� A COMMAREA is available only to the first program in the next transaction,
unless this program explicitly passes the data to another program or a
succeeding transaction.

� The use of the COMMAREA option on the RETURN command is the principal
example of a safe programming technique that you can use to pass data
between successive transactions in a CICS pseudo-conversational
transaction.

1.2 The requirement for change

Considering that the COMMAREA was the most popular technique used to pass
data between applications that run in CICS, the question was: Why did we need
to change such a valid method that historically demonstrates its strength, and
based on which the major part of CICS applications have been built?

The answer was, we were not changing at all, but merely enhancing the
technique of passing data. This was for the benefit of the new evolution of
application design, which is based on web technologies, and which required
large amounts of data to pass between applications. This enhanced design also
provided the possibility to dynamically add or remove parts of the passed data.

1.2.1 Memory constraints

CICS applications have traditionally passed parameter data using the EXEC CICS
LINK application programming interface (API) specifying a COMMAREA.
Previously, CICS applications were highly optimized to be memory-efficient, and
were easily able to pass the required parameter data within the size constraints
imposed by the CICS API on COMMAREA memory size.
 Chapter 1. Introduction to channels and containers 3

However, modern CICS applications are required to process large quantities of
structured parameter data, in both Extensible Markup Language (XML) and
non-XML formats, such as JavaScript Object Notation (JSON).

This is because the integration of CICS applications with the elements of
enterprise solutions, outside the bounds of the CICS environment, is becoming
the norm. The consequence of effectively extending CICS applications to new
enterprise solutions is that the constraints imposed on the COMMAREA size by
the system might be too inflexible.

1.2.2 Flexibility of the channels and containers approach

The COMMAREA is a large and contiguous block of data that contains all of the
data to be passed to the called program, even if only part of this data is required.
This might not be acceptable for the modern application design, where the
flexibility of data structure is a basic component that offers the possibility of
accommodating future business requirements.

If an XML document has to be exchanged, the parameter data contained within it
is different from the data format previously known to CICS programmers.

By design, XML is extensible, so you can add further data elements when
application requirements change. XML structures can accommodate a varied mix
of data types, and it is common for an XML document to contain large binary
objects, such as images, in addition to character and numeric payload data.

When you add the lengthy tag descriptions, XML-based parameter data areas
can require large areas of memory when passed by value between program
elements. Therefore, the 32 KB limit, together with the static structure imposed
on the traditional CICS COMMAREA, is insufficient for such applications.

Although the COMMAREA remains the basic way to pass data between CICS
application programs with the recognized qualities mentioned earlier, a new way
to exchange data is required alongside the COMMAREA solution. This provides
an alternative way to satisfy the requirements introduced by the usage of new
application programming styles.

A new approach that provides an easy and more flexible mechanism for
exchange of large volumes of structured parameter data between CICS
programs was introduced in CICS Transaction Server V3.1.

This new approach is known as the channels and containers model.
4 Using IBM CICS Transaction Server Channels and Containers

1.3 COMMAREA constraints and alternative solutions

The following section provides a more detailed description of the COMMAREA,
to help you understand its constraints and the techniques that you might consider
using to bypass them.

1.3.1 32 KB size limit

The size limit of the COMMAREA can be explained as follows:

� The EXEC CICS API constrains the size of a COMMAREA to a maximum of 32
KB. It is in the processing of large XML documents that the constraints of the
traditional COMMAREA application become more prominent. To deal with this
type of content, circumvention methods are required.

� The 32 KB COMMAREA size constraint is applicable to both LINK and XCTL
commands in a single region. These constraints are also applicable to those
COMMAREAs that programs participating in a DPL use, between two CICS
regions.

� This 32 KB constraint can also affect the exchange of data between multiple
CICS tasks in the following cases:

– When data is passed between two tasks using the EXEC CICS START
TRANSID FROM command

– In CICS transactions involved in a pseudo-conversational sequence where
you can exchange data by using the EXEC CICS RETURN TRANSID COMMAREA
command

� The 32 KB COMMAREA restriction also applies to the external CICS interface
(EXCI) and the external call interface (ECI) used by the IBM CICS Transaction
Gateway and the IBM CICS Universal Clients.
 Chapter 1. Introduction to channels and containers 5

1.3.2 Methods of passing data larger than 32 KB before channels and
containers

There are several options you might consider implementing to circumvent the
32 KB COMMAREA restriction, both within a single CICS region and between
multiple CICS regions. These can include:

� Using the FLENGTH option of the GETMAIN command to acquire a storage area
larger than 32 KB, and passing the address of the large storage area in the
COMMAREA:

– This solution, although simple, only works in a single CICS address space.
A region affinity between the two programs or transactions is created.

– Must ensure that programs use the same data key and data lock.

� Using Virtual Storage Access Method (VSAM) files or IBM DB2® data.

This technique involves the allocation of program-specific managed
resources, such as VSAM files or DB2 data, to contain large parameter
payloads, and passing the resource name within the COMMAREA structure.

� Passing the name of a temporary storage (TS) queue in the COMMAREA.

By placing the data in TS, more than 32 KB of data can be passed between
programs or tasks. If the TS queue is placed in a TS, owning region, or a
shared TS server, the data can be accessed across multiple CICS regions.

� Passing the name of an IBM WebSphere MQSeries® queue in the
COMMAREA.

By placing the data in IBM MQ queues and only passing the queue name, a
larger amount of data can be passed between the communicating programs
or tasks.

The following considerations apply to many cases in the previously mentioned
techniques:

� Applications can create new managed resources of the types listed, using the
appropriate EXEC CICS API.

� Depending on the configured resource characteristics, these can be
accessible across multiple CICS regions.

� These solutions require the application to manage unique resource naming
conventions and implement lifecycle management for the resource used.

� Applications might also be required to implement the resource setup and
initialization, perhaps introducing extra processing demands.

� More systems configuration and management might be required, depending
on the nature of the shared managed resource.
6 Using IBM CICS Transaction Server Channels and Containers

1.3.3 The evolution of the 32 KB COMMAREA

It is worth mentioning, with the various techniques available to bypass the 32 KB
restriction, the COMMAREA remains the most used method to pass data
between applications running under CICS. Therefore, the simplest solution to this
problem would have been to make the COMMAREA capable of handling lengths
greater than 32 KB. Although such an implementation would ease the 32 KB
restriction, it would not resolve all of the problems that exist in exchanging data
today.

Also, it would exacerbate some of the problem areas. The following list describes
some of these issues:

� Overloading of the copybooks

The current copybooks used in the exchange of data today tend to be
overloaded. Also, these structures are redefined several times, depending on
whether the copybook is passing input, output, or error information. This leads
to confusion on exactly when the fields are valid.

� Inefficient transmission of overloaded COMMAREAs:

– The current overloaded COMMAREA structure does not lend itself to
being efficiently transmitted between CICS regions. The COMMAREA
structure size must account for the maximum size of the data that can
be returned.

By addressing the COMMAREA structure directly, CICS cannot determine
if you have changed the data contents. CICS must always return the full
COMMAREA structure from a DPL, even if nothing has been changed.

– The current COMMAREA structure does not support easy separation of
binary and character data. By contrast, the channel construct offers a
simple way to get character data returned in the code page that your
application program requires.

� Loss of compatibility

Merely changing the COMMAREA length to a fullword length could result in
the loss of object and source code compatibility for existing CICS programs.
In this case, a program would have difficulty determining if EIBCALEN was
valid or whether to check a new EXEC interface block (EIB) field.

Note: Further information regarding this argument is presented in 2.3,
“Overloaded COMMAREAs” on page 38.
 Chapter 1. Introduction to channels and containers 7

� Business transaction services (BTS) use

This approach addresses many of the concerns associated with the previous
circumvention techniques, and is available on all currently supported CICS
versions. However, it requires the adoption of a new programming approach
for CICS applications, with consequential application re-engineering. This
can be an ambitious undertaking for a mature, critical CICS business
application suite.

� XML requirement

In the contemporary enterprise solution context, a CICS application can
expect to exchange parameter data in the form of an XML document, either
from a system component external to CICS or as part of the request
processing path with other CICS applications. Depending on the nature of the
request, XML documents can be large, while containing large volumes of
character, numeric, and binary payload data.

The adoption of channels and containers in existing applications can preserve
the existing application architecture while overcoming the most common
constraints revealed by the new data format. This enables CICS components to
process XML or other structure data in places where the 32 KB COMMAREA
limit cannot satisfy the application requirements.

1.4 Channels and containers concepts

CICS Transaction Server Version 3.1 introduced a new approach that provided
an easy and more flexible mechanism for exchange of large volumes of
structured parameter data between CICS programs. This new approach was
provided by two new capabilities known as channels and containers.

A container is a named reference to a storage area managed by CICS that can
hold any form of application data. A container can be any size, and can hold data
in any format that the application requires. An application can reference any
number of containers. CICS provides EXEC API verbs to create, delete, reference,
access, and manipulate a container, and to associate it with
a channel.

A channel is a uniquely named reference to a collection of containers. A channel
is analogous to a COMMAREA, but it does not have the constraints of a
COMMAREA. CICS provides an EXEC API, which associates a named channel
with a collection of one or more containers.

This is an easy way of grouping parameter data structures that might pass to a
called application. CICS deletes a channel and its containers when it can no
longer be referenced (when a channel becomes out of scope).
8 Using IBM CICS Transaction Server Channels and Containers

1.4.1 General concepts

The following list describes general concepts about channels and containers:

� Containers are named blocks of data designed for passing information
between programs. You can think of them as named COMMAREAs.

� Container size is limited only by the amount of storage available.

� Container data is stored “above the bar”. However, the data must be copied
below the bar for applications to access it.

� Containers are grouped together in sets called channels. Programs can pass
a single channel between them. You can think of a channel as a parameter
list. The same channel can be passed from one program to another.

� To create named containers and assign them to a channel, a program uses
the following command:

EXEC CICS PUT CONTAINER(container-name) CHANNEL(channel-name)

The program can then pass the channel and its containers to a second
program using the CHANNEL(channel-name) option of the EXEC CICS LINK,
XCTL, START, or RETURN commands.

Example 1-1 shows how to pass a channel on a link.

Example 1-1 Passing a channel on a link

EXEC CICS PUT CONTAINER(structure-name)
 CHANNEL(channel-name)
 FROM(structure)
EXEC CICS LINK PROGRAM(PROG2)
 CHANNEL(channel-name)

� The second program can read containers passed to it using the following
command:

EXEC CICS GET CONTAINER(container-name)

This command reads the named container belonging to the channel that the
program was started with. See Example 1-2.

Example 1-2 Receiving a container

EXEC CICS GET CONTAINER(structure-name)
CHANNEL(channel-name)
INTO(structure)

� If the second program is started by a LINK command, it can also return
containers to the calling program. It can do this by creating new containers, or
by reusing existing containers.
 Chapter 1. Introduction to channels and containers 9

Example 1-3 shows how to return a container.

Example 1-3 Returning a container

EXEC CICS PUT CONTAINER(structure-name)
FROM(structure)

EXEC CICS RETURN

� Channels and containers are visible only to the program that creates them,
and to the programs that they are passed to. When these programs end,
CICS automatically deletes the containers and their storage. The exception to
this is containers that are defined within a channel created with the name
DFHTRANSACTION, which we describe later.

� Channels and containers are not recoverable. If you require to use
recoverable containers, use CICS BTS containers. The relationship between
channel and BTS containers is described in 1.4.5, “Channels and business
transaction services” on page 19.

� Channels and COMMAREAs EXEC CICS LINK, EXEC CICS XCTL, and EXEC
CICS RETURN can only pass a channel or a COMMAREA. However, Program A
can pass data in a COMMAREA to Program B, which then creates a channel
to pass the data on to Program C. Because Program B receives the data
returned from Program C in a container, Program B moves the container data
into a COMMAREA, and this is where Program A expects to find it.

1.4.2 Channels

A channel is a uniquely named reference to a collection of application parameter
data held in containers. It’s analogous to a COMMAREA, but is not subject to the
constraints of a COMMAREA.

You can choose a channel name that is a meaningful representation of the data
structures that the channel is associated with. For example, in a human resource
application, a channel name might be <employee-info>.

Note: Addressing mode 64 programs, called AMODE(64), can use
channels and containers to transfer data in 64-bit storage in the same way,
by using the following commands:

EXEC CICS PUT64 CONTAINER(container-name) CHANNEL(channel-name)
EXEC CICS GET64 CONTAINER(container-name) CHANNEL(channel-name)

These commands are for use only in non-Language Environment
AMODE(64) assembly language application programs. CICS BTS
containers are not supported.
10 Using IBM CICS Transaction Server Channels and Containers

This collection of application parameter data serves as a standard mechanism to
exchange data between CICS programs. CICS Transaction Server provides an
EXEC API that associates a named channel with a collection of one or more
containers, offering an easy way to group parameter data structures that can
pass to a called application. CICS Transaction Server removes a channel when it
can no longer be referenced (when it becomes out of scope).

The current channel
A program’s current channel (if any) is the channel with which it was started. The
current channel is set by the calling program or transaction, by transferring the
control to the called program through a LINK, XCTL, START, and pseudo-
conversational return with the CHANNEL parameter.

Although the program can create other channels, the current channel for a
particular invocation of a particular program never changes. It is analogous to a
parameter list. If a channel is not explicitly specified, the current channel is used
as the default value for the CHANNEL ('<channel-name>') parameter on the EXEC
CICS command. Figure 1-2 shows the previously mentioned process.

Figure 1-2 The current channel

Current Channel: none

Current Channel:
EMPLOYEE-INFO

Current Channel:
EMPLOYEE-INFO

Current Channel: none

Current Channel:
MANAGER-INFO

Program A

Program B

Program C

EXEC CICS LINK
PROGRAM('PROGRAMB')
CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK
PROGRAM('PROGRAMC')
CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK
PROGRAM('PROGRAMD')

Program D

Program E

EXEC CICS LINK
PROGRAM('PROGRAME')
CHANNEL('MANAGER-INFO')

EXEC CICS RETURN
 Chapter 1. Introduction to channels and containers 11

Typically, programs that exchange a channel are written to handle that channel.
Therefore, both client and server programs know the name of the channel, and
the names and number of the containers in that channel.

However, for example, if a server program or component is written to handle
more than one channel, on invocation, it must discover which of the possible
channels it has been passed.

A program can discover its current channel, meaning the channel with which it
was started, if it issues the following command:

EXEC CICS ASSIGN CHANNEL

If there is no current channel, the command returns blanks.

The program can also retrieve the names of the containers in its current channel
by browsing, but typically this is not necessary. A program written to handle
several channels is often coded to be aware of the names and number of the
containers in each possible channel.

To get the names of the containers in the current channel, use the browse
commands, as Example 1-4 shows.

Example 1-4 Browsing containers in a channel

EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area)
EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token)
EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token)

Having retrieved the name of its current channel and, if necessary, the names of
the containers in the channel, a server program can adjust its processing to suit
the kind of data that it has been passed.

The browsing of a channel is described in detail in 2.4, “STARTBROWSE
application programming interface” on page 40.

Important: A browse does not guarantee the order in which containers are
returned.

Tip: For a program creating a channel, the assign channel command returns
blanks unless it was started using start, link, or xctl, specifying the channel
name.
12 Using IBM CICS Transaction Server Channels and Containers

The scope of a channel
The scope of a channel is the code (the program or programs) from which you
can access it.

See Figure 1-3, which illustrates the scope of channel.

Figure 1-3 Example showing the scope of a channel

Figure 1-3 shows the scope of the EMPLOYEE-INFO channel, which consists of
Program A (the program that created it), Program B (for which it is the current
channel), and Program C (for which it is also the current channel). Additionally,
Figure 1-3 shows the scope of the MANAGER-INFO channel, which consists of
Program D (which created it) and Program E (for which it is the current channel).

None of these channels is the DFHTRANSACTION transaction channel, the
scope of which would be the whole transaction.

Program A

Program B

Program C

EXEC CICS LINK
PROGRAM('PROGRAMB')
CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK
PROGRAM('PROGRAMC')
CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK
PROGRAM('PROGRAMD')

Scope of Channel EMPLOYEE_INFO

Program D

Program E

EXEC CICS LINK
PROGRAM('PROGRAME')
CHANNEL('MANAGER-INFO')

EXEC CICS RETURN

Scope of Channel MANAGER_INFO

Current Channel: none

Current Channel: EMPLOYEE-INFO

Current Channel: EMPLOYEE-INFO

Current Channel: none

Current Channel: MANAGER-INFO
 Chapter 1. Introduction to channels and containers 13

Lifetime of a channel
A channel is created when it is named on an EXEC CICS command. The usual
command to create a channel is the following command:

EXEC CICS PUT CONTAINER

In the previously given command, specifying the CHANNEL parameter creates the
channel, and also associates the container with it.

A channel is deleted when it goes out of scope to the programs in the linkage
stack, which means that no programs are able to access it. This causes CICS to
delete the channel.

However, an exception to this is the DFHTRANSACTION transaction channel,
which does not go out of scope until the end of the transaction, to any program in
the linkage stack. This is true if each of those programs is not running in a CICS
region at a version earlier than CICS Transaction Server Version 5.2.
14 Using IBM CICS Transaction Server Channels and Containers

Figure 1-4 shows the APIs used to create and manage a channel. Each of the
following commands creates a channel if there is not one already created with
that name.

Figure 1-4 API to create and manage a channel

API used to manage channels and containers are further described in 3.1,
“EXEC CICS application programming interface” on page 66.

1.4.3 The DFHTRANSACTION transaction channel

Channels normally go out of scope when the link level changes. They might,
therefore, not be available to all of the programs in a transaction. If you create a
channel with the name DFHTRANSACTION, it does not go out of scope when
the link level changes.

EXEC CICS PUT CONTAINER CHANNEL
Creates a channel and places data into a container within the
channel
EXEC CICS PUT64 CONTAINER CHANNEL
Places data from 64-bit storage into a container that is associated
with a specified channel
EXEC CICS GET CONTAINER CHANNEL
Retrieves the container data passed to the called program
EXEC CICS GET64 CONTAINER CHANNEL
Retrieves data from a named channel container into 64-bit storage.
EXEC CICS MOVE CONTAINER CHANNEL AS TOCHANNEL
Moves a container from one channel to another channel
EXEC CICS DELETE CONTAINER CHANNEL
Deletes a container
EXEC CICS ASSIGN CHANNEL
Returns the name of the program’s current channel, if one exists
EXEC CICS LINK PROGRAM CHANNEL
Links to the program, on a local or remote system, passing the
channel and container data
EXEC CICS XCTL PROGRAM CHANNEL
Transfers control to the program passing the channel and container
data
EXEC CICS START TRANSID CHANNEL
Starts a task, on a local or remote system, copying the named
channel and containers and passing it to the started task
EXEC CICS RETURN TRANSID CHANNEL
Returns control to CICS, passing the channel and containers to the
next transaction
 Chapter 1. Introduction to channels and containers 15

DFHTRANSACTION is therefore available to all programs in a transaction,
including any exit points that are API-enabled. However, the transaction channel
cannot be passed to any CICS region at a version earlier than CICS Transaction
Server Version 5.2. DFHTRANSACTION can be used in all API commands that
accept a channel name.

In Figure 1-5, we show how a simple application using dynamic program links to
pass a COMMAREA would need to be amended to use channels and containers
before the implementation of the DFHTRANSACTION channel in CICS
Transaction Server Version 5.2.

Programs at all link levels in the DPL stack would need to be amended to pass
channel CH.

Figure 1-5 Implementing channels and containers without DFHTRANSACTION
16 Using IBM CICS Transaction Server Channels and Containers

In Figure 1-6, we show how, using the DFHTRANSACTION channel, the only
change needed to the application is to amend the front-end program to create the
DFHTRANSACTION channel with a put container command. Also, to amend
the program that uses the data from the container to read the container with a
get container command.

Figure 1-6 Implementing channels and containers with DFHTRANSACTION

Remember: When using the DFHTRANSACTION channel, the front-end
program in the DPL stack should be the program that creates the channel,
even if it creates an empty channel.
 Chapter 1. Introduction to channels and containers 17

1.4.4 Containers

A container is a uniquely named block of data that can be passed to a
subsequent program or transaction. It refers to a particular parameter data
structure that exists within a collection of virtually any form of application
parameter data.

You can choose a container name that has a meaningful representation of the
data structure. For example, in a human resource application, the container
name might be <employee-name>.

CICS Transaction Server provides EXEC API verbs to create, delete, reference,
access, and manipulate a container, and also to associate it with a channel. See
Figure 1-7 for more details.

Figure 1-7 Container-related API

A container can be any length, and a container size is constrained only by the
available user storage in the CICS address space. It can include data in any
format that an application requires. An application can create any number of
containers and can use separate containers for different data types, such as
binary and character data. This capability helps ensure that each container
structure is based on a unique area of memory.

EXEC CICS PUT CONTAINER CHANNEL
Creates a channel and places data into a container within the
channel
EXEC CICS PUT64 CONTAINER CHANNEL
Creates a channel and places data from 64-bit storage into a
container within the channel
EXEC CICS GET CONTAINER CHANNEL
Retrieves the container data passed to the called program into
64-bit storage
EXEC CICS GET64 CONTAINER CHANNEL
Retrieves the container data passed to the called program
EXEC CICS MOVE CONTAINER CHANNEL AS TOCHANNEL
Moves a container from one channel to another channel
EXEC CICS DELETE CONTAINER CHANNEL
Deletes a container from a channel
EXEC CICS STARTBROWSE CONTAINER
Start a browse of the containers associated with a channel
EXEC CICS GETNEXT CONTAINER
Return the name of the next container associated to the channel
EXEC CICS ENDBROWSE CONTAINER
Ends the browse of the containers associated with the channel
18 Using IBM CICS Transaction Server Channels and Containers

It also minimizes the potential for errors that commonly arise when parameter
data for multiple applications is overloaded in a single memory area. The
potential errors are minimized by isolating different data structures, and making
the association between data structure and purpose clear.

CICS read-only containers
CICS can create channels and containers for its own use, and pass them to user
programs. In some cases (in particular when CICS uses containers for security
information), CICS marks these containers as read-only. This is so that the user
program cannot modify data that CICS requires on return from the user program.

User programs cannot create read-only containers.

You cannot overwrite, move, or delete a read-only container. Therefore, if you
specify a read-only container on a put container, move container, or delete
container command, you receive an INVREQ condition.

1.4.5 Channels and business transaction services

The put container, get container, move container, and delete container
commands that are used to build and interact with a channel are similar to those
used in CICS BTS applications. BTS implemented containers as a way of
passing information between activities and processes. There is no limit to the
size of a container in BTS.

The containers used in the channel context are similar to those used in BTS, and
the commands used to access the container data are similar (for example, get,
put, move, and delete).

It is possible to have the same server program started in both a channel and a
BTS context. To accomplish this, the server program must avoid the use of
options that specifically identify the context.

The server program must call CICS to determine the context of a command.
When a container command is run, CICS first checks to see if there is a current
channel. If there is a current channel, the context of the command is channel. If
there is no current channel, CICS checks to see if this is part of a BTS activity. If
this is part of a BTS activity, the context is BTS. If the program has no channel
context and no BTS context, an INVREQ is raised.

Therefore, a program that issues container commands can be used, without
change, as part of a channel application or as part of a BTS activity.
 Chapter 1. Introduction to channels and containers 19

The BTS approach requires the adoption of a new programming approach for
CICS applications, with consequential application re-engineering. This can be an
ambitious undertaking for a mature, critical CICS business application suite. The
channels and containers approach is more simple, and does not require as much
effort to change applications.

1.4.6 Channels and CICS Java

CICS provides EXEC API support for channels and containers in all supported
CICS programming languages. In the CICS Java environment, CICS Java
(JCICS) classes are provided to enable channels and containers to be used as
the mechanism to exchange data between CICS Java applications and traditional
CICS procedural applications.

See Figure 1-8 for details about the JCICS classes that CICS Java programs can
use to pass and receive channels.

Figure 1-8 JCICS classes managing channels

CICS also provides the exception classes for handling errors shown in
Figure 1-9.

Figure 1-9 JCICS classes for channels error handling

Details about this item are further provided in 3.2, “CICS Java” on page 76.

Important: Channel containers are not recoverable. If you require to use
recoverable containers, use CICS BTS containers.

com.ibm.cics.server.Channel
A Channel class used to create new containers in a channel
com.ibm.cics.server.Container
A Container class used to place data in a container
com.ibm.cics.server.ContainerIterator
A ContainerInterator class used to browse the current channel

com.ibm.cics.server.CCSIDErrorException
Class that represents the CICS CCSIDERR condition
com.ibm.cics.server.ChannelErrorException
Class that represents the CICS CHANNELERR condition
com.ibm.cics.server.ContainerErrorException
Class that represents the CICS CONTAINERERR condition
20 Using IBM CICS Transaction Server Channels and Containers

1.4.7 Data conversion

There are two types of container: BIT and CHAR. CHAR containers enable
application programs to convert data between different encodings. The data
conversion model that channel applications use is much simpler than the model
that COMMAREA applications use.

This is because the system programmer controls the data conversion in
COMMAREA applications. However, the application programmer controls the
data conversion in channel applications, using simple API commands.

The following cases are examples of when data conversion is necessary:

� When character data is passed between platforms that use different encoding
standards, for example, Extended Binary Coded Decimal Interchange Code
(EBCDIC) and American Standard Code for Information Interchange (ASCII).

� When you want to change the encoding of some character data from one
coded character set identifier (CCSID) to another.

Applications that use channels to exchange data use a simple data conversion
model. Frequently, no conversion is required and, when conversion is required,
you can use a single programming instruction to tell CICS to handle it
automatically.

Further information about data conversion is presented in 2.6, “Data conversion
and code page conversion” on page 44.

Conversion models
There are two conversion model applications.

Using COMMAREA
For applications that use the COMMAREAs to exchange data, the conversion
takes place under the control of the system programmer. This uses the DFHCNV
conversion table, the DFHCCNV conversion program, and the DFHUCNV
user-replaceable conversion program, which is optional.

Using channels
Channel applications use the data conversion model, which is much simpler than
the one that the COMMAREA applications use. The data in channel and
containers is converted under the control of the application programmer, using
API commands.
 Chapter 1. Introduction to channels and containers 21

The following items specify the processes that the application programmer
supports:

� The application programmer is responsible only for the conversion of user
data, which is the data in containers that the application programs create.
CICS converts the system data automatically, where it is necessary.

� The application programmer is concerned only with the conversion of
character data. The conversion of binary data, between big-endian and
little-endian, is not supported.

� Applications can use the container API as a simple means of converting
character data from one code page to another. Example 1-5 converts data
from codepage1 to codepage2.

Example 1-5 API to convert code page

EXEC CICS PUT CONTAINER(temp) DATATYPE(CHAR)
FROMCCSID(codepage1) FROM(input-data)

EXEC CICS GET CONTAINER(temp) INTOCCSID(codepage2)
SET(data-ptr) FLENGTH(data-len)

1.5 Benefits of using channels and containers

The lifecycle and scope of channels and containers are completely under the
control of the CICS system, ensuring data integrity and storage resource
management.

The following list describes the major benefits obtained by applications using the
capabilities of the channels and containers methodology:

� An unconstrained, CICS-supported method of passing parameter data

� Segregation of parameter data structures, each part represented by a named
container structure

� A loose functional coupling approach

� The freedom to dynamically determine the nature of the passed data, and to
select the appropriate processing required

Tip: When using Example 1-5, remember to add a temporary channel,
such as CHANNEL(temp). If you fail to add this temporary channel, you are
relying solely on the program to be called along with a channel.
Additionally, if the data is large, you must perform a delete container
operation immediately.
22 Using IBM CICS Transaction Server Channels and Containers

� A CICS-standard API for optimized exchange of data between CICS
programs implemented in any CICS-supported language

� CICS-managed lifecycle for channel and container resources

� Ease of parameter passing by use of unique named references

� Ease of understanding by use of unique named references to parameter
payload

� Explicit code page conversion operations

The internal CICS implementation of channels and containers is optimized for
efficient memory management and data transfer. CICS ensures that only the
necessary new and modified containers are transferred between the calling
applications. This is to optimize the performance of the calling mechanism.

Assuming that the containers separate the different parameter structures, the
calling applications benefit from complete access to the data content in all
containers that are in scope.
 Chapter 1. Introduction to channels and containers 23

1.6 Porting COMMAREA to channels and containers

To port programs that are exchanging data through a COMMAREA on a link
command, the format of the command must be changed, and proper commands
must be added to use channels and containers. Figure 1-10 shows you an
example of this.

Figure 1-10 Changes from COMMAREA to channels using link

The same applies to programs using the start command with the COMMAREA.
Figure 1-11 on page 25 shows an example of the changes necessary to convert
an application program using an EXEC CICS START command with data to start
passing a channel. The example shows the commands that must be added
or changed.

A program can issue multiple starts with data for a single transaction ID. CICS
starts one instance of the transaction. The program can issue multiple retrieves
to get the data. When using the channel option on the start, CICS starts one
transaction for each start request. The started transaction is able to access the
contents of a single channel, and also get a copy of the channel.

Existing application with COMMAREA

Program A

EXEC CICS PUT CONTAINER(structure-name)
 CHANNEL(channel-name)
 FROM(structure)

EXEC CICS LINK PROGRAM('programb')
 CHANNEL(channel-name)

EXEC CICS GET CONTAINER(structure-name)
 INTO(structure)

Changed application using channels

Program A

EXEC CICS LINK PROGRAM ('program')
COMMAREA (structure)

Program B

EXEC CICS ADDRESS
 COMMAREA (structure-ptr)

Program B

EXEC CICS GET CONTAINER(structure-name)
 INTO(structure)

EXEC CICS PUT CONTAINER(structure-name)
 FROM(structure)

EXEC CICS RETURN
24 Using IBM CICS Transaction Server Channels and Containers

Figure 1-11 shows an example of converting an application program.

Figure 1-11 Changes from COMMAREA to channels using start

Consider the following items when porting from a COMMAREA to channels and
containers:

� CICS application programs, which use traditional COMMAREAS to exchange
data, continue to work as before.

� EXEC CICS LINK and EXEC CICS START commands, which can pass either
COMMAREAs or channels, can be dynamically routed.

� If you employ a user-written dynamic or distributed routing program for
workload management, rather than IBM CICSPlex System Manager, you
must modify your program to handle the new values that it can pass in the
DYRLEVEL, DYRTYPE, and DYRVER fields of the DFHDYPDS
communications area.

� It is possible to replace a COMMAREA using a channel with a single
container. Although this might seem the simplest way to move from
COMMAREAs to channels and containers, it is not a good practice to do this.

� In addition, be aware that a channel might use more storage than a
COMMAREA designed to pass the same data. Because you are taking the
time to change your application programs to use this new function, you must
implement the best practices for channels and containers.

Existing application with START data

Changed application using channels

Transaction 1

EXEC CICS START TRANSID('TRN2')
FROM(structure)

Transaction 2

EXEC CICS RETRIEVE
 INTO(structure)

Transaction 1

EXEC CICS PUT CONTAINER(structure-name)
 CHANNEL(channel-name)
 FROM(structure)

EXEC CICS START TRANSID('TRN2')
 CHANNEL(channel-name)

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Transaction 2
 Chapter 1. Introduction to channels and containers 25

� Channels have several advantages over COMMAREAs, and it is
advantageous to design your channels to make the most of these
improvements.

� In previous releases, because the size of COMMAREAs is limited to 32 KB
and channels were not available, some applications used TS queues to pass
more than 32 KB of data from one program to another. Typically, this involved
multiple writes to, and reads from, a TS queue. If you port one of these
applications to use channels, be aware of the following points:

– If the TS queue used by your existing application is in main storage, the
storage requirements of the new, ported application are likely to be similar
to those of the existing application.

– If the TS queue used by your existing application is in auxiliary storage, the
storage requirements of the ported application are likely to be greater than
those of the existing application. This is because container data is held in
storage rather than being written to disk.

Details about COMMAREA migration to channels and containers are provided in
2.9.3, “Porting from COMMAREAs to channels” on page 60.
26 Using IBM CICS Transaction Server Channels and Containers

Chapter 2. Application design and
implementation

In this chapter we provide information about implementing channels and
containers from an application programmer’s point of view.

Examples are provided to show how to evolve channels and containers from
communication areas (COMMAREAs).

When using channels and containers, the code page conversion, formerly an
issue for the systems programmer, is now an issue for an application
programmer.

2

© Copyright IBM Corp. 2006, 2015. All rights reserved. 27

2.1 Container usage as a replacement to COMMAREAs

This chapter presents examples that show how to replace a COMMAREA with a
channel and container solution.

2.1.1 Basic COMMAREA example

This section shows an example of how to replace a COMMAREA by a channel
and container solution. The first part of Example 2-1 shows the classic
COMMAREA solution. A program calls a subroutine providing two variables
grouped into a COMMAREA structure. The first variable is treated as the input
field for the subroutine, and the second variable receives the output the called
program creates.

The second part in Example 2-1 shows a name as input. The subroutine
changes the name into a phonetic string and returns this string to the caller. For
example, if you call the subroutine with different names, all of which sound the
same but are spelled differently, the subroutine returns the same phonetic string
for all names.

For instance, the subroutine returns MAYR when it is called for Meyer, Mayer,
Meier, or Maier. Therefore, Example 2-1 is a program fragment that
demonstrates how to call the subroutine PHONETIC with a COMMAREA.

Example 2-1 COMMAREA example

01 MYCOMMAREA.
03 LNAME PIC X(40).
03 PNAME PIC X(40).

01 PHONETIC PIC X(8) VALUE IS 'PHONETIC'.
.
.
MOVE 'MEYER' TO LNAME.
EXEC CICS LINK PROGRAM (PHONETIC)

COMMAREA(MYCOMMAREA)
END-EXEC.
DISPLAY PNAME.

*** PNAME CONTAINS ‘MAYR’.
28 Using IBM CICS Transaction Server Channels and Containers

2.1.2 Basic channel example

Example 2-2 shows how to transform the small piece of code into a channel and
container solution. In Example 2-2, you can see that the input to the subroutine
can now be treated as two separate objects. This means that the two variables
can be defined independently. We advise that you perform this data separation,
even though it is still possible to send both variables in one container.

Example 2-2 Channel and container example

01 LNAME PIC X(40).
01 PNAME PIC X(40).
01 INPUTCONTAINER PIC X(16) VALUE IS 'MYINPUTCONTAINER'.
01 OUTPUTCONTAINER PIC X(16) VALUE IS 'MYOUTPTCONTAINER'.
01 CHANNELNAME PIC X(16) VALUE IS 'MYCHANNELNAME'.
01 PHONETIC PIC X(8) VALUE IS 'PHONETIC'.

.
MOVE 'MEYER' TO LNAME.
EXEC CICS PUT CONTAINER(INPUTCONTAINER)

FROM(LNAME)
CHANNEL(CHANNELNAME)

END-EXEC.
EXEC CICS LINK PROGRAM (PHONETIC)

CHANNEL(CHANNELNAME)
END-EXEC.
EXEC CICS GET CONTAINER(OUTPUTCONTAINER)

INTO(PNAME)
CHANNEL(CHANNELNAME)

END-EXEC.
DISPLAY PNAME.

*** PNAME CONTAINS ‘MAYR’.
 Chapter 2. Application design and implementation 29

2.1.3 Channel name character set

A channel name consists of 1-16 characters. The following list contains the
acceptable characters:

� A-Z
� a-z
� 0-9
� $
� @
� #
� /
� %
� &
� ?
� !
� :
� |
� "
� =
� ¬
� ,
� ;
� < >
� .
� -
� _

You cannot use leading and embedded blank characters. If the name supplied
has fewer than 16 characters, it is padded with trailing blanks.

2.1.4 Creating a channel

You can create a channel if you name and place it with one of the following
commands to transfer the control to another program or transaction:

� EXEC CICS LINK PROGRAM CHANNEL
� EXEC CICS START TRANSID CHANNEL
� EXEC CICS XCTL PROGRAM CHANNEL
� EXEC CICS RETURN TRANSID CHANNEL

Important: Start makes a copy of the channel. If there are subsequent
changes in the program that issued the start, these changes are not reflected
in the copy of the channel.
30 Using IBM CICS Transaction Server Channels and Containers

Normally, a PUT or MOVE is used to create a channel:

� EXEC CICS PUT CONTAINER CHANNEL
� EXEC CICS PUT64 CONTAINER CHANNEL
� EXEC CICS MOVE CONTAINER CHANNEL TOCHANNEL

If the channel does not already exist in the current program scope, it is created.

A simple means to create a channel, and populate it with containers of data, is to
issue a succession of commands with the following information:

EXEC CICS PUT CONTAINER(<container-name>) CHANNEL(<channel-name>)
FROM(<data-area>)

The first PUT command creates the channel, if the channel does not already exist,
and adds a container to it. The subsequent commands add further containers to
the channel. If the containers already exist, their contents are overwritten by the
new data unless you specify the APPEND option, which indicates that the data
passed to the container is appended to the end of the existing data in the
container. The following command shows an example of this:

EXEC CICS PUT CONTAINER(<container-name>) CHANNEL(<channel-name>)
FROM(<data-area>) APPEND

An alternative way to add containers to a channel is to move them from another
channel. To do this, use the following command:

EXEC CICS MOVE CONTAINER(<container-name>) AS(<container-new-name>)
CHANNEL(<channel-name1>) TOCHANNEL(<channel-name2>)

You can use move container, rather than get container and put container, as a
more efficient way of transferring data between channels.

Attention: If the channel name on the previous commands does not already
exist within the current program scope, an empty channel is created. If this is
done unintentionally, it leads to unpredictable results.
 Chapter 2. Application design and implementation 31

When subroutines are called from various programs that use both COMMAREA
and channel techniques, the subroutines must be able to recognize which
technique is being used in the current invocation. The suggested method to
check whether a channel is being used is to use the IBM CICS API command
EXEC CICS ASSIGN CHANNEL.

If the returned value is not equal to spaces, a channel has been passed and you
can process it. Otherwise, use a COMMAREA.

It is feasible to do the check if you reverse the process. Checking the EIBCALEN
field for greater than zero indicates that this is a COMMAREA version. However,
we do not recommend this, because if it is a pseudo conversational program the
COMMAREA length is always zero on the first invocation. Therefore, in this case,
you cannot trust this as an indication for COMMAREA or channel technique.

In Example 2-3 we show the back-end program phonetic, which has been written
to use both techniques.

Example 2-3 Decide channel or COMMAREA: PHONETIC

WORKING-STORAGE SECTION.
01 CURRENTCHANNELNAME PIC X(16).
01 MYBROWSETOKEN PIC 9(8) BINARY.
01 INPUTCONTAINER PIC X(16) VALUE IS 'MYINPUTCONTAINER'.
01 OUTPUTCONTAINER PIC X(16) VALUE IS 'MYOUTPTCONTAINER'.

01 LASTNAME PIC X(40).

LINKAGE SECTION.
01 DFHCOMMAREA.

03 LNAME PIC X(40).
03 PNAME PIC X(40).

Note: The following items are a summary of points that you must remember:

� If the CHANNEL or TOCHANNEL option is not specified, the current channel is
implied.

� The source channel must be in the program scope.

� If the target channel does not exist within the current program scope, it is
created.

� If the source container does not exist, an error occurs.

� If the target container does not exist, it is created. If it exists, its contents
are overwritten.
32 Using IBM CICS Transaction Server Channels and Containers

PROCEDURE DIVISION USING DFHCOMMAREA.
EXEC CICS ASSIGN CHANNEL(CURRENTCHANNELNAME)
END-EXEC.
IF CURRENTCHANNELNAME IS EQUAL TO SPACES

THEN
* /* CONTINUE WITH COMMAREA */

CONTINUE
ELSE

* GET THE CONTAINER NAME
EXEC CICS STARTBROWSE CONTAINER

CHANNEL(CURRENTCHANNELNAME)
BROWSETOKEN(MYBROWSETOKEN)

END-EXEC
EXEC CICS GETNEXT CONTAINER(INPUTCONTAINER)

BROWSETOKEN(MYBROWSETOKEN)
END-EXEC
EXEC CICS ENDBROWSE CONTAINER

BROWSETOKEN(MYBROWSETOKEN)
END-EXEC
EXEC CICS GET CONTAINER(INPUTCONTAINER)

CHANNEL(CURRENTCHANNELNAME)
INTO(LASTNAME)

END-EXEC
END-IF

The STARTBROWSE example, shown previously, only works when the subroutine is
called with one container in the channel. We advise that you access containers
directly, as described in the following section. A STARTBROWSE loop makes sense,
where a subroutine is written to handle more than one channel. Therefore, it
must be able to discover which of the possible channels it has been passed. To
learn more about this, read 2.4, “STARTBROWSE application programming
interface” on page 40.

Current channel
If the container name that the subroutine uses is already known, you can access
the container directly. If you know that you are always using channels, the assign
channel statement is not required. In this case, the channel used to start the
subroutine is known as the current channel. Even though the subroutine might
create other channels, the current channel does not change.

A main program started for the first time does not have a current channel. You
must reinvoke this program with an EXEC CICS RETURN TRANSID command with a
channel, for this main program to have a current channel. Subroutines have a
current channel when they are started with a channel.
 Chapter 2. Application design and implementation 33

Example 2-4 shows the process that you can use to get the input container
directly, without using a browse loop. In this case, the name must be standard
and not changed. Always check the response code for unexpected events, for
example, CONTAINERERROR, which means that the specified container could not be
found. See Example 2-4.

Example 2-4 Get container directly

WORKING-STORAGE SECTION.
01 L PIC 9(8) BINARY.
01 LASTNAME PIC X(40).
01 RC PIC 9(8) BINARY.
01 INPUTCONTAINER PIC X(16) VALUE IS 'MYINPUTCONTAINER'.
01 CURRENTCHANNELNAME PIC X(16).

LINKAGE SECTION.
01 DFHCOMMAREA.

03 LNAME PIC X(40).
03 PNAME PIC X(40).

PROCEDURE DIVISION USING DFHCOMMAREA.
EXEC CICS ASSIGN CHANNEL(CURRENTCHANNELNAME)
END-EXEC.
IF CURRENTCHANNELNAME IS EQUAL TO SPACES

THEN
* /* CONTINUE WITH COMMAREA */

CONTINUE
ELSE

* GET THE CONTAINER NAME
EXEC CICS GET CONTAINER(INPUTCONTAINER)

CHANNEL(CURRENTCHANNELNAME)
INTO(LASTNAME)
FLENGTH(L)
RESP(RC)

END-EXEC
IF RC NOT = DFHRESP(NORMAL)

THEN
* *** DO SOME ERROR PROCESSING HERE ***

CONTINUE
END-IF

END-IF.
34 Using IBM CICS Transaction Server Channels and Containers

2.2 Flexible way to pass multiple pieces of data

There is more to coding with the channel technique than there is with the
COMMAREA technique. As Example 2-7 on page 37 shows, it could be
questioned which is better.

We do not recommend replacing all COMMAREAs with channels, especially
existing running applications. However, there are situations where the channel
technique is much easier to implement than the COMMAREA. One such
instance is explained in the following paragraph.

Assume that there are applications that call the previously defined phonetic
subroutine, providing a name as input. However, the subroutine does not simply
return a phonetic string, it also translates the name in a phonetic and reads from
an input source, for example, DB2, Virtual Storage Access Method (VSAM), and
so on. This is a realistic situation. It is conceivable that, in this situation, the data
return by the subroutine could exceed the limit of a COMMAREA.

Furthermore, the question arises how to structure the data in the COMMAREA.
You require to provide input data, output data with an unpredictable size, status
data, and error data.

The following sections compare this application scenario in both variations.

2.2.1 COMMAREA solution

In addition to the mandatory input data, you also require some kind of return
information data, such as return codes and reason codes. The return codes and
reason codes indicate whether the request was successful, partially successful,
or not successful.

Partially successful means that the name has been successfully translated into a
phonetic, but the result set is too large and does not fit into the largest available
COMMAREA. This is because the largest COMMAREA you can have is 32
kilobytes (KB). This must be reflected in the return codes and reason codes,
because further processing is necessary to retrieve all of the data.

On a subsequent call to the subprogram, additional status data is required. For
instance, the subroutine must receive the key of the latest record returned, so
that this key can be used to start again.
 Chapter 2. Application design and implementation 35

An example of how this COMMAREA would look is provided in Example 2-5.

Example 2-5 COMMAREA example for a complex request

01 MYCOMMAREA.
03 NAME PIC X(40).
03 RETURNCODE PIC 9(8) BINARY.
03 REASONCODE PIC 9(8) BINARY.
03 STATUSDATA PIC 9(15).
03 I PIC 9(4) BINARY.
03 CUSTOMERRECORD PIC X(800) OCCURS 0 TO 40 TIMES

DEPENDING ON I.

Because you cannot determine the size of the returned data, you must set up a
maximum COMMAREA size. Although, the COMMAREA here is not exactly the
maximum size of 32 KB, you have insufficient space remaining to add another
client record of 800 bytes.

If the subroutine returns the COMMAREA and the return codes and reason
codes indicate that the request was successful, but there are more client records
available that could not be returned because of the size limit of the COMMAREA,
additional calls are required. Therefore, a loop is necessary on each return, to
check whether more data is still available or not. You can see this in Example 2-6.
This process is processor-intensive, complex to program, and error-prone.

Example 2-6 COMMAREA programming example

EXEC CICS LINK PROGRAM(PHONETIC)
COMMAREA(MYCOMMAREA)

END-EXEC.

* PROCESS ALL RETURNED CUSTOMER RECORDS IN A LOOP
PERFORM VARYING J FROM 1 BY 1 UNTIL J IS GREATER THAN I

* ...
CONTINUE

END-PERFORM.

* CHECK WHETHER ADDITIONAL CUSTOMER RECORDS ARE AVAILABLE
IF RETURNCODE = 4 AND REASONCODE = 1

THEN
PERFORM UNTIL RETURNCODE = ZERO

* CALL PHONETIC AGAIN
* PROCESS RESULTS

CONTINUE
END-PERFORM

END-IF.
36 Using IBM CICS Transaction Server Channels and Containers

2.2.2 Channel solution

The program coding requirement to use channels and containers for the
application scenario mentioned previously, is much easier and more logically
structured than the COMMAREA solution shown in Example 2-6 on page 36.
See Example 2-7 for the channel code.

The input data is provided in a container to the subroutine, and the subroutine
returns the result in another container. Error data could optionally return, but this
is not mandatory, because the existence of an output container would indicate
success. If no container is returned, there is no client data available. If a
container is returned, all of the client records are in this container.

Example 2-7 Channel programming example

WORKING-STORAGE SECTION.
01 LNAME PIC X(40).
01 INPUTCONTAINER PIC X(16) VALUE IS 'MYINPUTCONTAINER'.
01 OUTPUTCONTAINER PIC X(16) VALUE IS 'MYOUTPTCONTAINER'.
01 CHANNELNAME PIC X(16) VALUE IS 'MYCHANNEL'.
01 PHONETIC PIC X(8) VALUE IS 'PHONETIC'.
01 P POINTER.
01 L PIC 9(8) BINARY.

LINKAGE SECTION.
01 CUSTOMERRECORD PIC X(800).

PROCEDURE DIVISION.
EXEC CICS PUT CONTAINER(INPUTCONTAINER)

FROM(LNAME)
CHANNEL(CHANNELNAME)

END-EXEC.
EXEC CICS LINK PROGRAM(PHONETIC)

CHANNEL(CHANNELNAME)
END-EXEC.
EXEC CICS GET CONTAINER(OUTPUTCONTAINER)

CHANNEL(CHANNELNAME)
SET(P) FLENGTH(L)

END-EXEC.

* CHECK HERE L FOR GREATER THAN ZERO (RECORDS RETURNED) AND THAN
* PROCESS THE RETURNED TABLE STARTING AT POINTER P

In Example 2-7, there is no logical requirement to check the availability of records
left. No loop is necessary to process additional subroutine invocations. It is much
easier and more straightforward.
 Chapter 2. Application design and implementation 37

2.3 Overloaded COMMAREAs

The current copybooks, used in the exchange of data, tend to overload. The
structures are redefined several times, depending on whether the copybook is
passing input, output, or error information. This leads to confusion about the
validity of the various fields at any particular time.

Example 2-8 is an expanded replica of the previously mentioned fragment code
in Example 2-1 on page 28. On comparison of the two examples, it can be seen
that the complexity increases from one to the other. The FLAG variable indicates
whether the following data is input data, output data, or error data.

Redefinitions are necessary to work with meaningful variable names. Otherwise,
the name of the variable is misleading. Differentiation between LNAME and PNAME
is only possible by using redefinitions. An alternative to redefinitions is the use of
dummy sections (see the ERROR-STRUCTURE variable).

Before using dummy sections, a SET ADDRESS is required to establish
addressability. Also, checking for an invalid flag is necessary. The subroutine
could be wrong, returning an unexpected value in this variable. See Example 2-8.

Example 2-8 Overloaded COMMAREA: FIELD is for input and for output

WORKING-STORAGE SECTION.
01 MYCOMMAREA.

03 FLAG PIC X(1).
03 FIELD PIC X(40).
03 LNAME REDEFINES FIELD PIC X(40).
03 PNAME REDEFINES FIELD PIC X(40).

01 PHONETIC PIC X(8) VALUE IS 'PHONETIC'.

LINKAGE SECTION.
01 ERROR-STRUCTURE.

03 EFLAG PIC X(1).
03 EMSG PIC X(40).

PROCEDURE DIVISION.
MOVE 'MEYER' TO LNAME.

* I = INPUT
MOVE 'I' TO FLAG
EXEC CICS LINK PROGRAM (PHONETIC)

COMMAREA(MYCOMMAREA)
END-EXEC.

* E = ERROR
IF FLAG = 'E'

THEN
38 Using IBM CICS Transaction Server Channels and Containers

* DO SOME ERROR PROCESSING.
SET ADDRESS OF ERROR-STRUCTURE

TO ADDRESS OF MYCOMMAREA
* ...

CONTINUE
ELSE

* O = OUTPUT
IF FLAG = 'O'

THEN
* PNAME SHOULD CONTAIN 'MAYR'.

DISPLAY PNAME
ELSE

* FLAG CONTAINS UNEXPECTED VALUE.
* DO SOME OTHER ERROR PROCESSING.

CONTINUE
END-IF

END-IF.

When using channels and containers, you can avoid the confusion of
redefinitions and dummy sections. The program code is more straightforward. In
Example 2-9, we have expanded fragment code in Example 2-2 on page 29 by
introducing an error container.

Example 2-9 Introduction of an error container

IDENTIFICATION DIVISION.
PROGRAM-ID. RESCC05.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LNAME PIC X(40).
01 PNAME PIC X(40).
01 ERRMSG PIC X(40).
01 INPUTCONTAINER PIC X(16) VALUE IS 'MYINPUTCONTAINER'.
01 OUTPUTCONTAINER PIC X(16) VALUE IS 'MYOUTPTCONTAINER'.
01 ERRORCONTAINER PIC X(16) VALUE IS 'MYERRORCONTAINER'.
01 CHANNELNAME PIC X(16) VALUE IS 'MYCHANNELNAME'.
01 PHONETIC PIC X(8) VALUE IS 'PHONETIC'.
01 RC PIC 9(8) BINARY.
PROCEDURE DIVISION.

MOVE 'MEYER' TO LNAME.
EXEC CICS PUT CONTAINER(INPUTCONTAINER)

FROM(LNAME)
CHANNEL(CHANNELNAME)

END-EXEC.
 Chapter 2. Application design and implementation 39

EXEC CICS LINK PROGRAM (PHONETIC)
CHANNEL(CHANNELNAME)

END-EXEC.
EXEC CICS GET CONTAINER(ERRORCONTAINER)

INTO(ERRMSG)
CHANNEL(CHANNELNAME)
RESP(RC)

END-EXEC.
IF RC = DFHRESP(NORMAL)

THEN
* Do some error processing here, because an
* error container exists. Exit.

CONTINUE
END-IF.
EXEC CICS GET CONTAINER(OUTPUTCONTAINER)

INTO(PNAME)
CHANNEL(CHANNELNAME)

END-EXEC.
DISPLAY PNAME.
EXEC CICS RETURN
END-EXEC.
GOBACK.

END PROGRAM RESCC05.

2.4 STARTBROWSE application programming interface

Typically, programs that exchange a channel are written to handle that channel.
Therefore, both client and server programs know the name of the channel, and
the names and number of the containers in the channel. However, if, for example,
a server program or component is written to handle more than one channel, on
invocation, it must discover which of the possible channels it has been passed.

A program can discover its current channel (the channel with which it was
started), by issuing an EXEC CICS ASSIGN CHANNEL command. If there is no
current channel, the command returns blanks.

The program can browse to get the names of the containers in its current
channel. Typically, this is not necessary. A program written to handle several
channels is often coded to be aware of the names and number of the containers
in each possible channel.
40 Using IBM CICS Transaction Server Channels and Containers

To get the names of the containers in the current channel, use the following
browse commands:

� EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area)
� EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token)
� EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token)

Having retrieved the name of its current channel and, if necessary, the names of
the containers in the channel, a server program can adjust its processing to suit
the kind of data that it has been passed.

A STARTBROWSE loop is provided in Example 2-10. The loop displays all container
names in the channel and their lengths.

Example 2-10 Display all container names in a channel

IDENTIFICATION DIVISION.
PROGRAM-ID. RESCC04.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CONTAINERNAME PIC X(16).
01 XRESP PIC 9(8) BINARY.
01 XTOKEN PIC 9(8) BINARY.
01 XLENGTH PIC 9(8) BINARY.
PROCEDURE DIVISION.

EXEC CICS STARTBROWSE CONTAINER
BROWSETOKEN(XTOKEN)
RESP(XRESP)

END-EXEC.
IF XRESP = DFHRESP(NORMAL)

THEN
EXEC CICS GETNEXT CONTAINER(CONTAINERNAME)

BROWSETOKEN(XTOKEN)
RESP(XRESP)

END-EXEC
PERFORM UNTIL XRESP = DFHRESP(END)

EXEC CICS GET CONTAINER(CONTAINERNAME)
NODATA FLENGTH(XLENGTH)
RESP(XRESP)

END-EXEC
DISPLAY ' CONTAINER NAME= ' CONTAINERNAME

' CONTAINER LENGTH= ' XLENGTH
EXEC CICS GETNEXT CONTAINER(CONTAINERNAME)

BROWSETOKEN(XTOKEN)
RESP(XRESP)
 Chapter 2. Application design and implementation 41

END-EXEC
END-PERFORM
EXEC CICS ENDBROWSE CONTAINER

BROWSETOKEN(XTOKEN)
RESP(XRESP)

END-EXEC
ELSE

* DO SOME ERROR PROCESSING.
CONTINUE

END-IF
EXEC CICS RETURN
END-EXEC.
GOBACK.

END PROGRAM RESCC04.

On program return, the starting program knows the name of the channel
that has been returned, because it is the same name used to start the
subroutine. However, it does not necessarily know the names of the containers in
the channel.

The question to be answered is: Does the returned channel contain the same
containers as the passed channel, or has the subroutine deleted some or created
others? In this case, we advise browsing through the channel, as shown in
Example 2-10 on page 41.

It is more efficient to perform a GET for a container, rather than browse through
the containers (STARTBROWSE), to see if it exists. The NODATA option can be used if
you only need to know that the container exists, not what it holds.

Important: Do not rely on the order in which the container names are
returned. This might be unpredictable, because it can depend on various
factors, such as whether the STARTBROWSE runs locally (where the channel has
been created) or remotely. Also, the order might change between releases.
42 Using IBM CICS Transaction Server Channels and Containers

2.5 Channels and containers in called subroutines

In the previous sections, we have described how to create, transfer, and return
data in channels and containers using the CICS API. In the following section, we
describe how dynamically called subroutines can participate.

Processing containers in a called subroutine
When using either a dynamic or static Common Business Oriented Language
(COBOL) call, because CICS treats both the calling and called program as the
same logical link level, channels that were passed to or created by the calling
program are available to the called program. However, you must note the
importance of specifying the channel name on any container-related EXEC CICS
command issued in the called program.

If the calling program has a current channel, the called program, by default,
assumes this as the channel name. Therefore, if the called program issues a
container-related EXEC CICS command with no channel name specified, the
calling program’s current channel is assumed. Therefore, the calling program’s
current channel is also the called program’s current channel.

If the calling program does not have a current channel, the called program also
does not have a current channel. In this case, if the calling program creates its
own channel, this channel is available to the called program.

However, any container-related EXEC CICS command that the called program
issues to access this channel must specify the channel name. Failure to provide
a channel name in this case causes the container-related EXEC CICS command to
return an INVREQ with a RESP2=4(no current channel).

If the calling program has a current channel, the called program also has a
current channel. If you want to access any other channel, apart from the current
channel in the called program, you need to provide the other channel’s name in
any container-related EXEC CICS command that you use in the called program.

Therefore, unless you want to use the current channel, you must ensure that you
always provide the correct channel name on any container-related command that
you issue in a called program.
 Chapter 2. Application design and implementation 43

2.6 Data conversion and code page conversion

CICS is now able to convert received data to another encoding format, and later
convert results back to the appropriate form on return. Data for conversion is
expected to come from Hypertext Markup Language (HTML) or Extensible
Markup Language (XML), but this function is not limited to these. Input data from
any interface can be processed with suitable conversion.

2.6.1 Data conversion with channels

Applications that use channels to exchange data use a simple data conversion
model. Frequently, no conversion is required and, when it is, a single
programming instruction can be used to tell CICS to handle it automatically.

Note the following points:

� Usually, when a (non-Java) CICS Transaction Server program calls another
(non-Java) CICS Transaction Server program, no data conversion is required,
because both programs use Extended Binary Coded Decimal Interchange
Code (EBCDIC) encoding.

For example, if a CICS Transaction Server C-language program calls a CICS
Transaction Server COBOL program to pass it some containers holding
character data, the only reason for using conversion would be the unusual
one of wanting to change the coded character set identifier (CCSID) of
the data.

� The data conversion model that a channel application uses is much simpler
than that a COMMAREA application uses. Applications that use
COMMAREAs to exchange data use the traditional data conversion model.
Conversion is done under the control of the system programmer, using the
DFHCNV conversion table, the DFHCCNV conversion program, and the
DFHUCNV user-replaceable conversion program, which is optional.

In contrast, the data in channel containers is converted under the control of
the application programmer, using API commands.

� The application programmer is responsible only for the conversion of user
data, which is the data in containers that application programs create. When
necessary, CICS converts system data automatically.

� Containers only support the conversion of character data. The conversion of
binary data, between big-endian and little-endian, is not supported.

� Your applications can use the container API as a simple means of converting
character data from one code page to another.
44 Using IBM CICS Transaction Server Channels and Containers

For data conversion purposes, CICS recognizes two types of data:

� CHAR

Character data is a text string. The data in the container is converted, if
necessary, to the code page of the application that retrieves it. If the
application that retrieves the data is a client on an American Standard Code
for Information Interchange (ASCII)-based system, this is an ASCII code
page. If it is a CICS Transaction Server for IBM z/OS® application, it is an
EBCDIC code page.

All the data in a container is converted as though it were a single character
string. For single-byte character set (SBCS) code pages this is not a problem,
because a structure consisting of several character fields can be interpreted
as a single-byte character string.

However, for double-byte character set (DBCS) code pages this is not the
case. This is because DBCS code pages can consist of character strings
made up of double-byte characters, or a mixture of single-byte and
double-byte characters.

To ensure that it is obvious that you are using DBCS, and that the data
conversion works correctly, you must put each character string of a DBCS
code page into a separate container.

� BIT

All non-character data is everything that is not designated as being of type
CHAR. The data in the container cannot be converted. This is the default
value, unless FROMCCSID is specified, in which case CHAR is the default.

The following API commands are used for data conversion:

� EXEC CICS PUT CONTAINER [<CHANNEL>] [<DATATYPE>] [FROMCCSID]
� EXEC CICS GET CONTAINER [<CHANNEL>] [INTOCCSID]

2.6.2 How to cause CICS to convert data automatically

In the client program, use the DATATYPE(DFHVALUE(CHAR)) option of the put
container or put64 container command to specify that a container holds
character data, and that the data is eligible for conversion. The following example
shows how to put data into a container eligible for conversion:

EXEC CICS PUT CONTAINER(<cont_name>) CHANNEL(<channel_name>)
FROM(<data1>) DATATYPE(DFHVALUE(CHAR))

There is no requirement to specify the FROMCCSID or FROMCODEPAGE option, unless
the data is not in the default CCSID of the client platform. The default CCSID
is implied.
 Chapter 2. Application design and implementation 45

In the following example, you find the get container command to retrieve the
data from the program’s current channel. The data is returned in the default
CCSID of the server platform. There is no requirement to specify the INTOCCSID
or INTOCODEPAGE option unless you want the data to be converted to a CCSID
other than the default.

If client and server platforms are different, data conversion takes place
automatically. Data retrieved from a container is automatically converted, as the
following command shows:

EXEC CICS GET CONTAINER(<cont_name>) INTO(<data_area1>)

The return is the same. In the following sample, you can see that the server
program issues a put container command to return a value to the client. Put
data in a container and make the data eligible for conversion as follows:

EXEC CICS PUT CONTAINER(<status>) FROM(<data_area2>) CHAR

In the example that follows, the client program issues a get container command
to retrieve the status returned by the server program. The status is returned in
the default CCSID of the client platform. There is no requirement to specify the
INTOCCSID or INTOCODEPAGE option unless you want the data to be converted to a
CCSID other than the default.

If the client and server platforms are different, data conversion takes place
automatically. Get the data from a container and convert it automatically, as
shown in the following example:

EXEC CICS GET CONTAINER(<status>) CHANNEL(<channel_name>)
INTO(<status_area>)

Remember: For CICS Transaction Server regions, the default CCSID is
specified in the LOCALCCSID system initialization parameter.

For DATATYPE(DFHVALUE(CHAR)) you can specify CHAR.

Important: Consider that the BYTEOFFSET option of GET CONTAINER or GET64
CONTAINER is specified, and you use a code page with multibyte characters.
Depending on the BYTEOFFSET value that you specify, the data returned might
have partial characters at the beginning, end, or both. In this situation, your
application program must be able to handle and interpret the data returned.
46 Using IBM CICS Transaction Server Channels and Containers

2.6.3 Using containers to do code page conversion

Your application can use the container API as a simple means of converting
character data from one code page to another. The code shown in Figure 2-1
converts data from codepage1 to codepage2.

Figure 2-1 Code page data converter

The input data length can differ from the output data length. We suggest that you
use the SET option (locate mode), rather than the INTO option (move mode),
unless the converted length is known. You can issue a get container with the
NODATA and FLENGTH option to retrieve the length of the converted data. The
length of the output data is calculated, but no data is returned.

When using the container API in this way, note the following tips:

� If you prefer to specify a supported Internet Assigned Numbers Authority
(IANA) charset name for the code pages, rather than the decimal CCSIDs, or
if you want to specify a CCSID alphanumerically, use the FROMCODEPAGE and
INTOCODEPAGE options rather than the FROMCCSID and INTOCSSID options.

� To avoid storage resource requirements after conversion, copy the converted
data and delete the container.

� To avoid shipping the channel, use a temporary channel.

� All-to-all conversion is not possible. A code page conversion error occurs if a
specified code page and the channel’s code page are an unsupported
combination.

Note: We have used INTO for the get commands for code page conversion.
This is logical when you know exactly how much data is being returned, which
might not be the case. A programmer must use SET if the length of the data
returned is not known.

EXEC CICS PUT CONTAINER(temp) CHAR
FROMCCSID(ccsid1) FROM(inputdata)

END-EXEC

EXEC CICS GET CONTAINER(temp) INTOCCSID(ccsid2)
SET(data-ptr) FLENGTH(data-len)

END-EXEC
 Chapter 2. Application design and implementation 47

2.6.4 SOAP example

A CICS Transaction Server SOAP application performs the following tasks:

1. Retrieve a Unicode Transformation Format 8 (UTF8) or UTF16 message from
a socket or IBM MQ message queue.

2. Put the message into a container in UTF8 format.
3. Put EBCDIC data structures into other containers on the same channel.
4. Make a distributed program link (DPL) call to a handler program, on a

back-end application-owning region (AOR), passing the channel.

The back-end handler program, also running on CICS Transaction Server, can
use the EXEC CICS GET CONTAINER command to retrieve the EBCDIC data
structures or messages. It can get the message in UTF8, or UTF16, or in its own
EBCDIC code page, or the region’s EBCDIC code page. Similarly, it can use EXEC
CICS PUT CONTAINER commands to place data into the containers, in UTF8,
UTF16, or EBCDIC formats.

To retrieve one of the messages in the region’s EBCDIC code page, the handler
can issue the following command to get data from a container in the default
CCSID:

EXEC CICS GET CONTAINER(<input_msg>) INTO(<msg>)

Because the INTOCCSID and INTOCODEPAGE options are not specified, the
message data is automatically converted to the region’s EBCDIC code page.
This assumes that the put container command used to store the message data
in the channel specified is a DATATYPE of CHAR. If it specified a DATATYPE of BIT,
which is the default, no conversion is possible.

To return output to the region’s EBCDIC code page, the handler can issue the
following command to put data into a container default CCSID:

EXEC CICS PUT CONTAINER(<output>) FROM(<output_msg>)

Because CHAR is not specified, no data conversion is permitted. Because the
FROMCCSID or FROMCODEPAGE options are not specified, the message data is
selected to be in the region’s EBCDIC code page.

To retrieve one of the messages in UTF8, the INTOCCSID or INTOCODEPAGE option
must be specified to identify the code page and prevent automatic conversion of
the data to the region’s EBCDIC code page. The handler can issue the following
command to retrieve the data and convert it:

EXEC CICS GET CONTAINER(<input_msg>) INTO(<msg>) INTOCCSID(<utf8>)
48 Using IBM CICS Transaction Server Channels and Containers

In this case, <utf8> is a variable that is defined as a fullword, and is initialized to
1208, which is the CCSID for UTF8. If you prefer to use an IANA charset name for
the code page, you can use the INTOCODEPAGE option rather than the INTOCCSID
option:

EXEC CICS GET CONTAINER(<input_msg>) INTO(<msg>) INTOCODEPAGE(<utf8>)

In this case, utf8 is a variable that is defined as a character string of length 56,
and is initialized to ‘utf-8’.

To return some output in UTF8, the server program can issue the following
command to specify a CCSID on returning the data:

EXEC CICS PUT CONTAINER(<output>) FROM(<output_msg>) FROMCCSID(<utf8>)

or alternatively:

EXEC CICS PUT CONTAINER(<output>) FROM(<output_msg>)
FROMCODEPAGE(<utf8>)

In this case, the variable <utf8> is defined and initialized in the same way as for
INTOCCSID and INTOCODEPAGE.

The FROMCCSID or FROMCODEPAGE option specifies that the message data is
currently in UTF8 format. Because FROMCCSID or FROMCODEPAGE is specified, a
DATATYPE of CHAR is implied, so conversion is permitted.

2.6.5 File example

A CICS Transaction Server file application performs the following actions:

1. Read a VSAM key-sequenced data set (KSDS) file with client records.
2. Put the EBCDIC data into a container.
3. Get the data from the container in ASCII format.
4. Write a transient data (TD) queue to externalize the file in ASCII format.

The file interface has no code page conversion capabilities. So, if you want to
externalize a file from an EBCDIC code page to an ASCII file, for example, it is
easy to use the channels and containers.

To read the file records in the region’s EBCDIC code page, the program can
issue the following command:

EXEC CICS READ FILE(<filename>) INTO(<data-area1>)
RIDFLD(<keydata-area>)
 Chapter 2. Application design and implementation 49

To copy the data and move the record into a container and make it eligible for
conversion, use the following command:

EXEC CICS PUT CONTAINER(<containername>) CHANNEL(<channelname>)
FROM(<data-area1>) CHAR

The CHAR option specifies that the container holds character data, and that the
data is eligible for conversion. The FROMCCSID option has been omitted, so the
region’s default CCSID is implied.

The following command converts the container from the current local EBCDIC
code page to ASCII:

EXEC CICS GET CONTAINER(<containername>) CHANNEL(<channelname>)
INTO(<data-area2>) INTOCCSID(858)

Figure 2-2 shows an example of how to use a variable for INTOCCSID.

Figure 2-2 Use a variable to hold the code page number

The following command is to externalize the ASCII record to a TD queue file:

EXEC CICS WRITEQ TD QUEUE(<queuename>) from(<data-area2>)

2.6.6 Command-level interpreter CICS-supplied transaction example

Use a CICS command-level interpreter (CECI) transaction to put EBCDIC data
into a container and receive the container in ASCII. Do not press PF3 after
putting the data into a container with CECI, because this stops CECI and the
current unit of work (UOW). A new session does not have access to the
container, so simply overwrite the CECI input string.

01 ASCIICODEPAGE pic 9(8) BINARY.
.
MOVE 858 TO ASCIICODEPAGE
EXEC CICS GET CONTAINER(containername) CHANNEL(channelname)

INTO(data-area2) INTOCCSID(ASCIICODEPAGE)
50 Using IBM CICS Transaction Server Channels and Containers

In Figure 2-3, you can see how to put that data into a container, and what the
CICS system returns.

Figure 2-3 Put X'F1F2F3F4F5' into a container

CECI PUT CONTAINER(TEMP) CHANNEL(MYCHANNELNAME) FROM(12345) CHAR

returns:

PUT CONTAINER(TEMP) CHANNEL(MYCHANNELNAME) FROM(12345) CHAR
STATUS: COMMAND EXECUTION COMPLETE NAME=
 EXEC CICS PUT COntainer('TEMP ')
 < ACTivity() | ACQActivity | Process | ACQProcess
 | CHANnel('MYCHANNELNAME ') >
 FROM('12345')
 < FLength(+0000000005) >
 < Datatype() | Bit | CHAR >
 < FROMCCsid() | FROMCOdepage() >
 < APpend >

in hex:

PUT CONTAINER(TEMP) CHANNEL(MYCHANNELNAME) FROM(12345) CHAR
STATUS: COMMAND EXECUTION COMPLETE NAME=
 EXEC CICS PUT COntainer(X'E3C5D4D7404040404040404040404040')
 < ACTivity() | ACQActivity | Process | ACQProcess
 | CHANnel(X'D4E8C3C8C1D5D5C5D3D5C1D4C5404040') >
 FROM(X'F1F2F3F4F5')
 < FLength(X'00000005') >
 < Datatype() | Bit | CHAR >
 < FROMCCsid() | FROMCOdepage() >
 < APpend >
 Chapter 2. Application design and implementation 51

In Figure 2-4 you can see that CICS returns the ASCII representation of the
digits “12345”.

Figure 2-4 Get container returns ASCII digits X'3132333435'

GET CONTAINER(TEMP) CHANNEL(MYCHANNELNAME) INTO(&OUT)
INTOCODEPAGE(858)

returns:

GET CONTAINER(TEMP) CHANNEL(MYCHANNELNAME) INTO(&OUT)
INTOCODEPAGE(858)
STATUS: COMMAND EXECUTION COMPLETE NAME=
 EXEC CICS GET CONtainer('TEMP ')
 < ACTivity() | ACQActivity | Process | ACQProcess
 | CHannel('MYCHANNELNAME ') >
 (Set() | INTO('.....') | NOData)
 < Flength(+0000000005) >
 < INTOCCsid() | INTOCOdepage('858
')
 | ((COnvertst() | NOConvert) < CCsid() > >)
 < Byteoffset() >

in hex:

GET CONTAINER(TEMP) CHANNEL(MYCHANNELNAME) INTO(&OUT)
INTOCODEPAGE(858)
STATUS: COMMAND EXECUTION COMPLETE NAME=
 EXEC CICS GET CONtainer(X'E3C5D4D7404040404040404040404040')
 < ACTivity() | ACQActivity | Process | ACQProcess
 | CHannel(X'D4E8C3C8C1D5D5C5D3D5C1D4C5404040') >
 (Set() | INTO(X'3132333435') | NOData)
 < Flength(X'00000005') >
 < INTOCCsid()
 | INTOCOdepage(
X'F8F5F840' ...)
 | ((COnvertst() | NOConvert) < CCsid() > >)
 < Byteoffset() >

Restriction: Replacing a container with a different data type is not possible
using PUT CONTAINER. Also, you cannot replace a container using different
CCSIDs. If you need to do this, delete the container and re-create it with a PUT
CONTAINER.
52 Using IBM CICS Transaction Server Channels and Containers

2.7 Storage

Container storage is created in 64-bit data. However, storage for containers must
be copied below the bar to access it. When using channels and containers with
sizes significantly above 32 KB, you must pay attention to the following factors:

� Dynamic storage area (DSA) size

Using big containers requires big DSAs, which could lead to short-on-storage
(SOS) conditions, if you need to get the whole contents of the container in
one go. You can use BYTEOFFSET to GET containers in sections, and you can
use APPEND to PUT containers in sections.

� Addressing mode (AMODE)

A program running in AMODE 24 cannot receive containers greater than 16
megabytes (MB), unless OFFSET is used.

You must specify AMODE(64) only in a non-Language Environment
assembler language program if you want to use EXEC CICS GET64 CONTAINER
and EXEC CICS PUT64 CONTAINER commands.

� Data location

You must read any programs with data location that cannot receive containers
greater than 16 MB.

� Performance

When an EXEC CICS LINK command is sent over an intersystem
communication (ISC) connection and a big container is specified, it can lead
to performance issues. Sending big containers over ISC links can take a
significant amount of time.

� Queuing

If links are busy transmitting big containers, it can lead to queuing in the CICS
system.

� Using the SET option

Specifying a SET value on an EXEC CICS GET CONTAINER command always
gets the whole container contents below the bar.

The storage model for containers is different than that of COMMAREAs.
COMMAREAs are shared storage between programs, therefore there is only one
copy of the data, except in certain circumstances, such as programs with
different keys and AMODEs. For container storage, there are three copies of
the data:

� The working storage of each of the programs
� The CICS copy of the container
 Chapter 2. Application design and implementation 53

If you have transactions that use very large containers, you might consider
controlling such transactions by the use of TCLASS to circumvent the possibility of
your system going into an SOS condition.

2.8 Dynamic routing application considerations

You might need to dynamically route workload based on information in the
COMMAREA. The normal procedure you can use to do this is if you provide
additional system-related information in a header. The application program
places the header at the top of the COMMAREA before the application data.
Application programming and systems programming must mutually agree on the
header information.

The systems programmer provides a user-replaceable module, which gets
control for every transaction or program defined as dynamic to CICS. This
module has access to the COMMAREAs, so it can read the header information
and make a routing decision based on this information. The default routing
program for CICS is DFHDYP. If you use IBM CICSPlex System Manager, it is
mandatory to use EYU9XLOP as the routing program.

An application header could have information for lengths, terminal information,
application information, time stamps, and also as an option, user ID, password
information, and so on. The following example does not provide a complete
header, but is a more simple example based on the previously introduced
phonetic application.
54 Using IBM CICS Transaction Server Channels and Containers

Figure 2-5 shows the smallest system configuration for the dynamic routing
environment, at least two AORs connected to a terminal-owning region (TOR).

Figure 2-5 DFHDYP or EYU9XLOP influence the AOR selection

The example application has a 40-byte name as input, and a 40-byte phonetically
translated name as output. Additionally, we have a one-byte header, which is the
first character of the name. The exit influences the routing decision based on this
header. If the first character in the name falls between A and M, AOR1 is eligible
for routing, otherwise AOR2 is selected.

2.8.1 COMMAREA

In the COMMAREA solution, prefix the application data with the header. The
dynamic routing exit has access to the COMMAREA. The CICS system provides
the address of the COMMAREA to the exit. Note that in this simple example you
can avoid the header, and the routing exit can directly access the application
data.

However, this is not good in practice, because the routing exit must know all of
the structures of all of the applications. Therefore, we use a header.

TOR1

AOR1

AOR2

RE02 Meyer

M Meyer

A-M

N-Z

M Meyer

N Norbert

N Norbert

DFHDYP
or

EYU9XLOP
 Chapter 2. Application design and implementation 55

In Example 2-11 you can see the COMMAREA instance.

Example 2-11 Provide a header in the COMMAREA for the dynamic routing program

IDENTIFICATION DIVISION.
PROGRAM-ID. EX211.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 MYCOMMAREA.

03 HEADER PIC X(1).
03 LNAME PIC X(40).
03 PNAME PIC X(40).

01 PHONETIC PIC X(8) VALUE IS 'PHONETIC'.
PROCEDURE DIVISION.

MOVE 'MEYER' TO LNAME.
EXEC CICS LINK PROGRAM (PHONETIC)

COMMAREA(MYCOMMAREA)
END-EXEC.
DISPLAY PNAME.

* PNAME CONTAINS 'MAYR'.
EXEC CICS RETURN
END-EXEC.
GOBACK.

END PROGRAM EX211.

2.8.2 Channel

When using a channel, Example 2-11 looks slightly different. As previously
mentioned, we advise you to separate the data in different containers. Therefore,
put the name in an input container, to get back an output container. The container
data has to be available to the routing program. However, the channels and
containers API is not valid in this context, and the EXEC CICS GET CONTAINER
command would result in an invalid request.

Therefore, the container data must be put in a special container that the routing
program can read. The mandatory name of this container is DFHROUTE. For
further information about DFHROUTE, see Chapter 4, “Systems management
and configuration” on page 99.

In our example, we create an input container and a container for routing
information in one channel. On the EXEC CICS LINK command, we provide the
channel name. Because the subroutine is defined as dynamic, the routing exit
gets control. This exit has direct access to the DFHROUTE container only. The
routing decision is made based on the content in this container.
56 Using IBM CICS Transaction Server Channels and Containers

In Example 2-12, you can find the code necessary to create the DFHROUTE
container.

Example 2-12 Provide the header in a DFHROUTE container

IDENTIFICATION DIVISION.
PROGRAM-ID. EX212.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 LNAME PIC X(40).
01 ROUTEINFO REDEFINES LNAME PIC X(1).
01 PNAME PIC X(40).
01 INPUTCONTAINER PIC X(16) VALUE IS 'MYINPUTCONTAINER'.
01 OUTPUTCONTAINER PIC X(16) VALUE IS 'MYOUTPTCONTAINER'.
01 ROUTINGCONTAINER PIC X(16) VALUE IS 'DFHROUTE'.
01 CHANNELNAME PIC X(16) VALUE IS 'MYCHANNELNAME'.
01 PHONETIC PIC X(8) VALUE IS 'PHONETIC'.
PROCEDURE DIVISION.

MOVE 'MEYER' TO LNAME.
EXEC CICS PUT CONTAINER(INPUTCONTAINER)

FROM(LNAME)
CHANNEL(CHANNELNAME)

END-EXEC.
EXEC CICS PUT CONTAINER(ROUTINGCONTAINER)

FROM(ROUTEINFO)
CHANNEL(CHANNELNAME)

END-EXEC.
EXEC CICS LINK PROGRAM (PHONETIC)

CHANNEL(CHANNELNAME)
END-EXEC.
EXEC CICS GET CONTAINER(OUTPUTCONTAINER)

INTO(PNAME)
CHANNEL(CHANNELNAME)

END-EXEC.
EXEC CICS RETURN
END-EXEC.
GOBACK.

END PROGRAM EX212.

Remember: The name of the container including the routing information must
be DFHROUTE. The routing exit has access to the DFHROUTE container, but
no access to other containers.
 Chapter 2. Application design and implementation 57

2.9 Best practices

This section provides information about leading practices when using channels
and containers.

2.9.1 Designing a channel

It is possible to use containers to pass data in the same manner as
COMMAREAs have traditionally been used. However, channels have several
advantages over COMMAREAs, and it is advantageous to design your own
channels to make the most of these improvements.

At the end of a DPL call, if a container has changed, it is necessary for CICS to
send its contents back to the calling region. Input containers whose contents
have been changed by the server program, and containers created by the server
program, are returned. Therefore, for optimal DPL performance, abide by the
following practices:

� Use separate containers for input and output data.
� The server program, not the client, must create the output containers.
� Use separate containers for read-only and read/write data.
� Use separate containers for CHAR data and BIT data.
� If a structure is optional, make it a separate container.
� Use dedicated containers for error information.

The following hints provide general guidelines for designing a channel. They
include and expand on the suggestions for achieving optimal DPL performance:

� Use separate containers for input and output data. This provides the following
advantages:

– Better encapsulation of the data, making your programs easier to maintain
– Greater efficiency when a channel is passed on a DPL call, because

smaller containers flow in each direction

� Do not initialize containers in a client program if the server program does not
require the data as input data. If the client program has any large containers
that the server program does not require, use a separate channel for the DPL
request. Use MOVE to move the containers between the current channel and
the channel passed to the server.
58 Using IBM CICS Transaction Server Channels and Containers

� Use separate containers for read-only and read/write data. This provides the
following advantages:

– Simplified copybook structure makes your programs easier to understand
– Avoidance of the problems with REORDER overlays
– Greater transmission efficiency between CICS regions, because read-only

containers sent to a server region are not returned

� Use separate containers for each structure. This provides the following
advantages:

– Better encapsulation of the data, making your programs easier to
understand and maintain

– Greater ease in changing one of the structures, because you do not
require to recompile the entire component

– The ability to pass a subset of the channel to subcomponents if you use
the move container command to move containers between channels

� If a structure is optional, make it a separate container. This leads to greater
efficiency, because the structure is passed only if the container is present.

� Use dedicated containers for error information. This provides the following
advantages:

– Better documentation of what is error information.

– Greater efficiency:

• The structure containing the error information is passed back only if an
error occurs.

• It is more efficient to check for the presence of an error container if you
issue a get container (<known-error-container-name>) or get
container64 (<known-error-container-name>) command and
possibly receive a NOTFOUND condition, than it is to initiate a browse of
the containers in the channel.

� When you need to pass data of different types, for example binary data and
character data, use separate containers for each type, rather than one
container with a complicated structure. This improves your ability to move
between different code pages.

� Do not create too many large containers, because it limits the amount of
storage available to other applications.

� Channels and containers use storage below 2 gigabytes (GB) (below the bar)
and some 64-bit (above-the-bar) storage. Their use of 64-bit storage
influences the value that you choose for the z/OS MEMLIMIT parameter that
applies to the CICS region. You must also consider other CICS facilities that
use 64-bit storage.
 Chapter 2. Application design and implementation 59

2.9.2 Naming a channel

Before linking to the subprogram, you must move the data to a container and
connect the container to a channel. Note that the channel and container names
are case-sensitive. For example, MyChannel differs from mychannel and
MYCHANNEL. Therefore, putting a container into MyChannel and then linking to
a program with a container name of mychannel does not give error messages
during compile, but might lead to unexpected results when you run the program.

CICS creates a new channel on first reference. Therefore, if there is a typo in the
channel name specified on the EXEC CICS LINK command, a new channel is
created and transferred to the subroutine without any containers.

To avoid this pitfall, we suggest that you do not use strings, such as container or
channel names included in quotation marks. Instead, move the channel name
and the container name into a previously defined variable that you can use in the
API. This ensures that your channel or container name is always correct.

2.9.3 Porting from COMMAREAs to channels

The following sections describe the various processes of porting from
COMMAREAs to channels.

Porting existing functions
You should take the following points into consideration:

� CICS application programs that use traditional COMMAREAS to exchange
data continue to work as before.

� If you employ a user-written dynamic or distributed routing program for
workload management, rather than CICSPlex System Manager, you must
modify your program to handle the new values that it can be passed in the
DYRTYPE field of the DFHDYPDS communications area. See the CICS
Transaction Server for z/OS V5.2 CICS Customization Guide, SC34-7269.

Porting to the channels and containers function
This section describes how you can port several types of existing applications to
use channels and containers rather than COMMAREAs.

It is possible to replace a COMMAREA with a channel that consists of a single
container. We do not recommend this practice, even though it might seem to be
the simplest means to move from COMMAREAs to channels and containers.
60 Using IBM CICS Transaction Server Channels and Containers

You must implement the leading practices for channels and containers, because
you are taking the time to change your application programs to use this function.
See 2.9.1, “Designing a channel” on page 58.

Channels have several advantages over COMMAREAs. See 1.5, “Benefits of
using channels and containers” on page 22. It is advantageous to design your
channels to make the most of these improvements.

Porting link commands that pass COMMAREAs
To port two programs that use a COMMAREA on a link command to exchange a
structure, change the instructions as shown in Table 2-1.

Table 2-1 Porting link commands that pass COMMAREAs

Program Before After

PROG1 EXEC CICS LINK
PROGRAM(PROG2)
COMMAREA(structure)

EXEC CICS PUT
CONTAINER(contr-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS LINK
PROGRAM(PROG2)
CHANNEL(channel-name)
.
.
.
EXEC CICS GET
CONTAINER(contr-name)
CHANNEL(channel-name)
INTO(structure)

PROG2 EXEC CICS ADDRESS
COMMAREA(structurePtr)
...
RETURN

EXEC CICS GET
CONTAINER(contr-name)
INTO(structure)
...
EXEC CICS PUT
CONTAINER(contr-name)
FROM(structure)

EXEC CICS RETURN

Note: In the COMMAREA example, PROG2, having put data in the
COMMAREA, only has to issue a return command to return the data to
PROG1. In the channel example, to return data, PROG2 must issue a put
container command before the return.
 Chapter 2. Application design and implementation 61

Porting xctl commands that pass COMMAREAs
To port two programs, which use a COMMAREA on an xctl command to pass a
structure, change the instructions as shown in Table 2-2.

Table 2-2 Porting xctl commands that pass COMMAREAs

Porting pseudo-conversational transactions COMMAREAs
To port two programs, which use COMMAREAs to exchange a structure as part
of a pseudo-conversation, change the instructions as shown in Table 2-3.

Table 2-3 Porting pseudo-conversational COMMAREAs on return command

Program Before After

PROG1 EXEC CICS XCTL
PROGRAM(PROG2)
COMMAREA(structure)

EXEC CICS PUT
CONTAINER(contr-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS XCTL
PROGRAM(PROG2)
CHANNEL(channel-name)

PROG2 EXEC CICS ADDRESS
COMMAREA(structurePtr)

EXEC CICS GET
CONTAINER(contr-name)
INTO(structure)

Program Before After

PROG1 EXEC CICS RETURN
TRANSID(TRAN2)
COMMAREA(structure)

EXEC CICS PUT
CONTAINER(contr-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS RETURN
TRANSID(TRAN2)
CHANNEL(channel-name)

PROG2 EXEC CICS ADDRESS
COMMAREA(structurePtr)

EXEC CICS GET
CONTAINER(contr-name)
INTO(structure)
62 Using IBM CICS Transaction Server Channels and Containers

Porting start data
To port two programs, which use start data to exchange a structure, change the
instructions as shown in Table 2-4.

Table 2-4 Porting start data

Porting dynamically routed applications
EXEC CICS LINK and EXEC CICS START commands, which can pass either
COMMAREAs or channels, can be dynamically routed.

When a link or start command passes a COMMAREA rather than a channel,
the routing program can, depending on the type of request, inspect or change the
COMMAREA’s contents. For link requests and transactions, determining which
terminal-related start requests begin is handled by the dynamic routing program.

The routing program is given the address of the application’s COMMAREA in the
DYRACMAA field of its communication area, and can inspect and change its
contents. The same rule is not valid for non-terminal-related start requests, which
are handled by the distributed routing program.

Program Before After

PROG1 EXEC CICS START
TRANSID(TRAN2)
FROM(structure)

EXEC CICS PUT
CONTAINER(contr-name)
CHANNEL(channel-name)
FROM(structure)

EXEC CICS START
TRANSID(TRAN2)
CHANNEL(channel-name)

PROG2 EXEC CICS RETRIEVE
INTO(structure)

EXEC CICS GET
CONTAINER(contr-name)
INTO(structure)

Note: The new version of PROG2 is the same as that in the pseudo-
conversational example.

Important: The routing programs communication area is mapped by the
DFHDYPDS DSECT.
 Chapter 2. Application design and implementation 63

If you port a dynamically-routed EXEC CICS LINK or EXEC CICS START command to
use a channel rather than a COMMAREA, the routing program is passed in the
DYRCHANL field of DFHDYPDS, which is the name of the channel. Note that the
routing program is given the name of the channel, not its address, and so is
unable to use the DYRCHANL field to inspect or change the contents of the
channel’s containers.

To give the routing program the same kind of functionality with channels, an
application that uses a channel can create, within the channel, a special
container named DFHROUTE.

If the application issues a link or terminal-related start request that is to be
dynamically routed, the dynamic routing program is given in the DYRACMAA
field of DFHDYPDS, the address of the DFHROUTE container, and can inspect
and change its contents. This rule is not valid for a non-terminal-related start
request.

If you are porting a program to pass a channel rather than a COMMAREA, you
could use its existing COMMAREA structure to map DFHROUTE.

See Chapter 4, “Systems management and configuration” on page 99 for more
information.
64 Using IBM CICS Transaction Server Channels and Containers

Chapter 3. Programming

This chapter provides information about the channels and containers application
programming interface (API) and how you can use it in a traditional IBM
Customer Information Control System (CICS) application and also a CICS Java
(JCICS) application. It also describes the business transaction services (BTS)
API as a similar but recoverable alternative to channels and containers.

3

© Copyright IBM Corp. 2006, 2015. All rights reserved. 65

3.1 EXEC CICS application programming interface

CICS provides a set of API commands that you can use to perform actions in
channels and containers. The following sections describe the various actions that
you can perform using the API, and some of the nuances involved in doing so.

3.1.1 Creating a channel

There is no explicit EXEC CICS API command for creating an instance of a
channel. Instead, an instance of a channel is implicitly created when performing
certain commands. Example 3-1 shows a set of commands that instantiates a
named channel if it does not already exist.

Example 3-1 Creating a channel

EXEC CICS LINK PROGRAM CHANNEL
EXEC CICS MOVE CONTAINER CHANNEL TOCHANNEL
EXEC CICS PUT CONTAINER CHANNEL
EXEC CICS PUT64 CONTAINER CHANNEL
EXEC CICS RETURN TRANSID CHANNEL
EXEC CICS START TRANSID CHANNEL
EXEC CICS XCTL PROGRAM CHANNEL

3.1.2 Placing data in a container

The put container and put64 container commands are used to add data to a
container. If the container named on the command does not exist, it is created
and the data inserted. Its contents are overwritten if the container already exists.
The length of a container is specified using the FLENGTH parameter, which you
can omit if the compiler is able to determine the size of the data area being
inserted into the container.

Information: For a detailed breakdown of the EXEC CICS API, see the CICS
Transaction Server for z/OS V5.2 Knowledge Center on the following website:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.c
ics.ts.home.doc/welcomePage/welcomePage.html

Tip: If the named channel does not exist on a link, return, start, or xctl
command, an empty channel is created and passed to the program. You can
use this with link as a location to place values that are to be returned from the
link to the program.
66 Using IBM CICS Transaction Server Channels and Containers

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html

Inserting data as character (CHAR) or binary (BIT) has an important difference.
Character data is susceptible to code page conversion and binary data is not.
Data inserted as BIT means that it remains untouched during its life in the
container. Alternatively, CHAR data might get converted to another code page or
coded character set identifier (CCSID).

Put container CHAR
Example 3-2 shows character data being put into a container with the Extended
Binary Coded Decimal Interchange Code (EBCDIC) code page specified with the
FROMCCSID(037) parameter. The CCSID value is stored with the data, such that, if
it is extracted with an alternative CCSID specification, the data converts to the
new code page before being given to the application.

Example 3-2 Putting character data into a container with CCSID 037

EXEC CICS PUT CONTAINER(‘USER-ID’) CHANNEL(‘ACCOUNT-DATA’)
FROM(USER-ID) FLENGTH(LENGTH OF USER-ID) CHAR FROMCCSID(037) END-EXEC.

In Example 3-2, you could use DATATYPE(DFHVALUE(CHAR)) rather than CHAR. After
you insert a character data into a container, its CCSID value is unchangeable.
Therefore, in a subsequent PUT to the same container, if you specify a different
FROMCCSID value, the data is converted to that of the original data’s CCSID, and
the old data is overwritten.

Put container BIT
The FROMCCSID and FROMCODEPAGE parameters are not applicable to containers of
BIT type, and an INVREQ response is returned if you attempt to use it.
Example 3-3 shows how you can insert binary data into a container.

Example 3-3 Putting binary data into a container

EXEC CICS PUT CONTAINER(‘ACCOUNT-NO’) CHANNEL(‘ACCOUNT-DATA’)
FROM(ACCOUNT-NO) FLENGTH(LENGTH OF ACCOUNT-NO) BIT END-EXEC.

In Example 3-3, you could use DATATYPE(DFHVALUE(BIT)) rather than BIT.

Important: If CHAR is specified and FROMCCSID is not, the put command uses
the value of the LOCALCCSID SIT parameter for the data’s code page. If
LOCALCCSID is not set, the value 037 (US EBCDIC) is used.

Note: If CHAR or BIT is not specified on a put container command, the default
behavior is to insert it as BIT unless you specify the FROMCCSID or
FROMCODEPAGE.
 Chapter 3. Programming 67

You can insert character data into a container as BIT, if the region that the data is
extracted from is running on the same code page as that which inserted the data.
If the region has an alternative code page, the character data might be
unrecognizable when it is extracted.

Put container APPEND
If you specify the APPEND option, the data passed to the container is appended to
the existing data in the container, as shown in Example 3-4. If this option is not
stated, the existing data in the container is overwritten by the data passed to the
container.

Example 3-4 Appending data into a channel with existing data

EXEC CICS PUT CONTAINER(‘LARGE-CONTAINER’) CHANNEL(‘MYCHANNEL’)
FROM(SOME-DATA) FLENGTH(LENGTH OF SOME-DATA-AREA) END-EXEC.
:
EXEC CICS PUT CONTAINER(‘LARGE-CONTAINER’) CHANNEL(‘MYCHANNEL’)
FROM(SOME-DATA) FLENGTH(LENGTH OF SOME-DATA) APPEND END-EXEC.

Example 3-4 shows that data is placed in the LARGE-CONTAINER container
in the MYCHANNEL channel from the SOME-DATA data area with a put
container command.

Then, although the example does not show this, more data is placed into
DATA-AREA, which is placed into LARGE-CONTAINER by the second put
container command. Because we have specified the APPEND option, the data
from SOME-DATA is appended to the end of the existing data created in
LARGE-CONTAINER by the first put container command.

Requirement: You must always insert character data as CHAR and binary data
as BIT. This increases the portability of your applications and enables you to
deploy them on different regions with different code pages.
68 Using IBM CICS Transaction Server Channels and Containers

3.1.3 Passing a channel to another program or task

Similar to the process that you use to pass communication areas
(COMMAREAs) to programs or tasks, the facility to pass a channel also exists.
This is applicable to programs that run either locally or remotely. When passing
channels to other programs or tasks, it is useful to understand the scope of
channels as they move around. We describe this in detail in Chapter 2,
“Application design and implementation” on page 27.

Link channel
You can pass a channel on a link request using the same process you use to
pass a COMMAREA. If the new program alters any content in the containers of
the channel, the resulting changes are reflected in the channel when it is
returned to the controlling program. The following example shows the linking of a
program with a channel:

EXEC CICS LINK PROGRAM(‘MY-PROG’) CHANNEL(‘ACCOUNT-DATA’) END-EXEC.

Xctl channel
When transferring control to another program, you can pass a channel to the new
program. Because control is never given back to the calling program, any
channel that it had access to goes out of scope and the storage is freed. The
following example shows the passing of a channel on an xctl command:

EXEC CICS XCTL PROGRAM(‘MY-PROG’) CHANNEL(‘ACCOUNT-DATA’) END-EXEC.

Return channel
For pseudo-conversational programming, you can pass a channel to the next
transaction to be run, which is similar to that of a COMMAREA. The following
example shows the passing of a channel in a pseudo-conversational program:

EXEC CICS RETURN TRANSID(‘ABCD’) CHANNEL(‘ACCOUNT-DATA’) END-EXEC.

Start channel
When starting a new task, you can pass a channel to the newly running program.
The channel being passed is copied along with its containers and placed into
another channel with the same name given to the program. Therefore, any
changes that are made to this new channel are not reflected back in the original
channel, because it goes out of scope of the original program.

Also, although the start command might not start the new transaction until after
the current transaction finishes, any subsequent changes to containers are not
reflected in the channel copy. The channel is a copy made at the time that you
issue the start command. The example shows a channel passing on a start call:

EXEC CICS START TRANSID(‘ABCD’) CHANNEL(‘ACCOUNT-DATA’) END-EXEC.
 Chapter 3. Programming 69

3.1.4 Receiving the current channel

When a channel is passed to a program, it is called the current channel. The
application owns this channel, and can use it without explicitly referencing its
name. Example 3-5 shows data being put into a container in the current channel,
without the CHANNEL parameter. If the current channel did not exist, the command
would fail with an INVREQ response.

Example 3-5 Adding a container to the current channel

EXEC CICS PUT CONTAINER('ACCOUNT-NO') FROM(ACCOUNT-NO)
FLENGTH(LENGTH OF ACCOUNT-NO) END-EXEC.

If you require the name of the current channel for use on the commands
previously described in 3.1.3, “Passing a channel to another program or task” on
page 69, you can use the assign channel command:

EXEC CICS ASSIGN CHANNEL(CHANNEL-NAME) END-EXEC.

The value is set to blanks if no current channel exists.

Information: Some key points about passing channels to programs or tasks
are described in the following list:

� COMMAREAs and channels are mutually exclusive. You can pass one or
the other, but not both.

� If the channel specified on a link, xctl, return, or start command does
not already exist, an empty one is created and passed to the program.

Tip: You can reference the current channel explicitly, if you specify its name in
the CHANNEL parameter on any channel-supported command.

Observe: When using any of the commands in 3.1.3, “Passing a channel to
another program or task” on page 69, omitting the channel option does not
cause the program or task to pass to the current channel. Rather, it passes
nothing at all.
70 Using IBM CICS Transaction Server Channels and Containers

3.1.5 Getting data from a container

The get container command is used to retrieve data from a container. You can
place the data into an existing piece of storage, have the container code allocate
storage for you and get it to return the address, or simply query the size of the
container. This is all done through slight variations of the get container
command.

Get container NODATA
As the parameter name suggests, NODATA does not return the container contents
in the get container command. Rather, it sets the field specified in FLENGTH to
the length of the container data that you can retrieve.

If the container has character data on a different code page in comparison to that
with which it is being extracted, the data first converts to the new code page and
then the converted data length is returned. This enables you to check if the size
of the data area that you have is sufficient for the converted data.

Example 3-6 shows a get container NODATA call on a container holding
character data. Because a channel is not specified, you can use the
current channel.

Example 3-6 Using NODATA to get the size of character data in a container

EXEC CICS GET CONTAINER(‘USER-ID’) NODATA FLENGTH(DATA-LEN)
INTOCCSID(037) END-EXEC.

Get container INTO
The INTO parameter is used to retrieve the container contents and place it in an
existing data area. With this approach, the FLENGTH parameter has the following
two purposes:

� On input, it specifies the maximum size of the data that can be put into the
supplied data area. If BYTEOFFSET is specified, the data returned begins at the
offset specified (from the start of the container).

� On output, it holds the size of the data that was returned in the request.

Note: Similar to put container, if INTOCCSID or INTOCODEPAGE is not used
when extracting character data, the value specified in the LOCALCCSID SIT
parameter is used. If LOCALCCSID is not set, the value 037 (US EBCDIC)
is used.
 Chapter 3. Programming 71

If the available data in the container is greater than the value specified in
FLENGTH, a LENGERR response is given to signify that the retrieved data was
truncated. FLENGTH is optional, depending on the compiler’s ability to determine
the length of the field specified in the INTO parameter. Example 3-7 shows a get
container INTO command to extract binary data. The INTOCCSID option is not
specified, because it is not applicable to binary data.

Example 3-7 Getting the contents INTO an existing storage area

EXEC CICS GET CONTAINER('ACCOUNT-NO') INTO(DATA-AREA) FLENGTH(DATA-LEN)
END-EXEC.

Get container SET
For greater flexibility while working with varying length data sizes, the get
container SET command dynamically allocates a piece of storage to place the
container’s contents. The address of the allocated storage is returned in the field
specified on the SET parameter. The returned storage is internally managed, and
therefore you cannot depend on it to exist indefinitely.

If BYTEOFFSET is specified, the data returned begins at the offset specified (from
the start of the container).

The following situations are some in which the data can no longer be guaranteed
to exist:

� When any program that can access this storage issues a subsequent get
container command with the SET option, for the same container in the same
channel

� When a delete container command deletes the container

� When a move container command moves the container

� When the channel goes out of program scope

The FLENGTH is an output-only parameter with the SET command. The length of
the data returned is stored in the field given to it.

Information: Each container has its own SET storage. This remains until the
channel goes out of scope, or until you issue a command against that channel,
which could change the contents of the channel. For example, you might issue
a MOVE, PUT, DELETE, or some forms of GET. Large character containers that
require CCSID conversion can use a large amount of SET storage.
72 Using IBM CICS Transaction Server Channels and Containers

Example 3-8 shows a get container set command using a pointer to hold the
address of the extracted data.

Example 3-8 Obtaining the address of storage representing the container contents

EXEC CICS GET CONTAINER('USER-ID') SET(DATA-PTR) FLENGTH(DATA-LEN)
END-EXEC.

The following points are important to note when using the SET option:

� Do not issue a FREEMAIN command to release this storage, because storage
management is handled internally.

� If your application needs to store the data, it must move it into its own storage,
because there is no guarantee that it exists for any prolonged period of time.

� Be careful if your program links to another program after using the SET option.
If another command is issued for this container, it might delete the SET pointer,
which could cause a storage overwrite.

3.1.6 Browsing the current channel

In situations where you get a channel, but do not know what containers it has or
even how many of them there are, you can perform a browse on the channel to
get back the name of each container.

STARTBROWSE container
You can initiate a browse on a channel using the STARTBROWSE CONTAINER
command. A browse token is returned in the field specified on the BROWSETOKEN
parameter. Use this parameter to perform the browse on the channel. If the
CHANNEL parameter is not specified, an attempt is made to browse the current
channel. An ACTIVITYERR response is returned if no current channel exists.
Example 3-9 shows you how to obtain the browse token for browsing a channel.

Example 3-9 Initiating a browse on a channel

EXEC CICS STARTBROWSE CONTAINER CHANNEL('ACCOUNT-DATA')
BROWSETOKEN(TOKEN) END-EXEC.

Important: Data is always inserted and retrieved from containers by copy,
even with a SET command. Therefore, if you want to update a container’s
contents, you must perform a put container after the original get
container.
 Chapter 3. Programming 73

GETNEXT container
After receiving the browse token, it is used to move through the list of containers
in the channel. Each GET NEXT CONTAINER call inserts the name of a container
into the field specified on the CONTAINER parameter. Each container name is
returned only once, and there is no guarantee of the order that they are in. After
you have a container name, you can use it with a get container command to
retrieve the container’s contents.

Example 3-10 shows a GET NEXT CONTAINER call using the browse token. You do
not need to specify the channel name on the command, because the browse
token signifies the particular channel that you are browsing. When all container
names have been returned, an END response condition is given.

Example 3-10 Getting the next container name in a channel

EXEC CICS GETNEXT CONTAINER(DATA-AREA) BROWSETOKEN(TOKEN) RESP(WS-RESP)
END-EXEC.

ENDBROWSE container
To signify that the browse has finished, the browse token is passed to an
ENDBROWSE CONTAINER call, as the following example shows:

EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(TOKEN) END-EXEC.

Combining all of the previous commands together, and wrapping the GETNEXT
CONTAINER call in a loop, iterates all of the container names. The result gives you
something like that shown in Example 3-11.

Example 3-11 Browsing the containers in a channel

EXEC CICS STARTBROWSE CONTAINER CHANNEL('ACCOUNT-DATA')
BROWSETOKEN(TOKEN) END-EXEC.

PERFORM WITH TEST AFTER
UNTIL WS-RESP NOT EQUAL DFHRESP(NORMAL)

EXEC CICS GETNEXT CONTAINER(DATA-AREA) BROWSETOKEN(TOKEN)
RESP(WS-RESP) END-EXEC

DISPLAY 'Container name: ' DATA-AREA

END-PERFORM.

EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(TOKEN) END-EXEC.
74 Using IBM CICS Transaction Server Channels and Containers

3.1.7 Deleting a container

You can use the delete container command to permanently remove a container
from a channel. When you delete a container, its storage is released and its
name is removed from the list of containers that the channel holds. There is
absolutely no way to restore a container after you delete it. It is impossible to
delete a channel, because this is done implicitly whenever it goes out of program
scope. Example 3-12 shows a container being deleted from a channel.

Example 3-12 Deleting a container from a channel

EXEC CICS DELETE CONTAINER('ACCOUNT-NO') CHANNEL('ACCOUNT-DATA')
END-EXEC.

3.1.8 Moving containers between channels

You can use the move container command to pass containers between
channels. Moving a container from one channel to another is destructive,
because the original container no longer exists. If you attempt to move a
container within the same channel, it effectively renames the container.

The following list describes some key points when using move container:

� If the source container does not exist, an error occurs.

� If the target channel does not exist, it is created.

� If the target container does not exist, it is created. If it does exist, it is deleted.
This enables a container of a different type to be replaced.

� If you attempt to overwrite a container with itself, nothing happens, and no
error condition is raised.

When linking to a program, we suggest that you pass only the necessary
containers that the program requires in a channel, so that you can minimize the
amount of data being transferred. Example 3-13 shows a container moving to a
temporary channel that you can later use for the program link. Note that as part
of the move, the container is being renamed to ACC-NO.

Example 3-13 Moving a container from one channel to another

EXEC CICS MOVE CONTAINER('ACCOUNT-NO') AS('ACC-NO')
CHANNEL('ACCOUNT-DATA') TOCHANNEL('TMP-CHANNEL') END-EXEC.

Remember: There is no requirement to delete a container when it returns
from a remote program that it has been linked to, because an internal
optimization facilitates only the particular data that changes in the return call.
 Chapter 3. Programming 75

3.2 CICS Java

You can use the Java based JCICS API to perform all of the functions that have
been previously explained using the more traditional style of a channels and
containers API.

As with any JCICS implementation, the interface has been developed in an
object-oriented perspective.

3.2.1 Creating channels and containers in JCICS

To create a channel, use the createChannel() method of the Task class. The
string supplied to the createChannel() method is the name that CICS uses to
recognize the channel. To create a container in the channel, call the
createContainer() method on the channel object.

If a container of the same name already exists in the channel, a
ContainerErrorException message is displayed. The channel and container
names are limited to 16 characters. Example 3-14 shows how to create a
channel object, and then use it to create a container object.

Example 3-14 Creating a channel and container

Task task = Task.getTask();
Channel myChannel = task.createChannel("ACCOUNT-DATA");
Container myContainer = myChannel.createContainer("ACCOUNT-NO");

Fast path: You can use move container, rather than get container and put
container, as a more efficient way of transferring data between channels.

Information: For detailed information about the JCICS API, see Java
Development using JCICS in the CICS Transaction Server 5.2 Knowledge
Center on the following website:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.c
ics.ts.java.doc/topics/dfhpjlp.html?lang=en

Important: When using JCICS, make sure that the dfjcics.jar file is in your
class path. In addition, add the following import statement to the top of your
Java class:

import com.ibm.cics.server.*;
76 Using IBM CICS Transaction Server Channels and Containers

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.java.doc/topics/dfhpjlp.html?lang=en

3.2.2 Placing data in a container

To add data to a container use the put() method on the container class. The API
supports the addition of data as either a byte array or a string.

Example 3-15 shows data insertion into a container.

Example 3-15 Adding data to a container

String custNo = "00054321";
byte[] tmpBytes = custNo.getBytes();
myContainer.put(tmpBytes);

// Or alternatively
myContainer.put("00054321");

Note the following points based on Example 3-15:

� The Container.put(String) method causes an implicit String.getBytes()
call, which means it performs the same action as an explicit
String.getBytes() call followed by a put(byte[]).

� JCICS always puts data into containers as type BIT, because if it is character
data then it becomes a constant and remains the same from when it is
inserted. The String.getBytes() call encodes the string into a sequence
of bytes using the platform’s default code page, which in this case is most
likely EBCDIC.

3.2.3 Passing a channel to another program or task

The facility to pass a channel to programs or tasks is similar to the process of
passing COMMAREAs.

Link and xctl
To pass a channel on a program-link or transfer program control call, xctl, use
the link() and xctl() methods of the program class.

Important: When using channels and containers in JCICS, data is always
inserted into containers as type BIT. It is not possible to create a CHAR
container in JCICS. However, they can be received in the current channel.
 Chapter 3. Programming 77

Example 3-16 shows a link with a channel.

Example 3-16 Passing a channel on a link()

Program program1 = new Program();
program1.setName("PROG1");
program1.link(myChannel);

Example 3-17 shows an xctl with a channel.

Example 3-17 Passing a channel on an xctl()

Program program2 = new Program();
program2.setName("PROG2");
program2.xctl(myChannel);

Return transid
To set the next channel in a pseudo-conversational program, use the
setNextChannel() method of the TerminalPrincipalFacility class.
Example 3-18 shows a channel being passed in a pseudo-conversational
transaction.

Example 3-18 Setting the next channel on a return transid call

TerminalPrincipalFacility terminalPF =
(TerminalPrincipalFacility) Task.getTask().getPrincipalFacility();

terminalPF.setNextTransaction("ABCD");
terminalPF.setNextChannel(myChannel);

Start transid
To pass a channel on a start request, use the issue() method of the
StartRequest class. Example 3-19 shows a channel being passed on a
start request.

Example 3-19 Passing a channel on a start transid call

StartRequest startRequest = new StartRequest();
startRequest.setTransId("ABCD");
startRequest.issue(myChannel);
78 Using IBM CICS Transaction Server Channels and Containers

3.2.4 Receiving the current channel

If a program links to the Java program and passes a channel during the link, it
becomes the current channel for the program. To instantiate an instance of the
current channel, you can use the getCurrentChannel() method on the Task
class. If no current channel exists, null is returned from the call.

Example 3-20 shows how to reference the current channel.

Example 3-20 Getting an instance of the current channel

// Current channel example
Task task = Task.getTask();
Channel currentChannel = task.getCurrentChannel();

if (currentChannel != null) {
Container myContainer = currentChannel.getContainer("ACCOUNT-NO");

}
else {

System.out.println("There is no current channel");
}

3.2.5 Getting data from a container

To retrieve data from a container, use the get() method of the container class.
This method always returns its data as a byte array, irrespective of whether it is of
character data or binary data. To reinstantiate the data as character data, the
byte array can be passed to the constructor of the String class as Example 3-21
shows.

Example 3-21 Getting the data from a container

byte[] custInfo = myContainer.get();
String custString = new String(custInfo);

Example 3-21 shows how new String(byte[] bytes) decodes the byte array
data using the system’s default code page, which in this case would be EBCDIC.
If you know that the data is in a different code page, you must use new
String(byte[] bytes, String charsetName), passing the name of that
code page.
 Chapter 3. Programming 79

3.2.6 Browsing the current channel

A channel that a JCICS program passes can access all of the container objects
without receiving the channel explicitly. To do this, it uses a ContainerIterator
object, which implements the java.util.Iterator interface. The
containerIterator() method on the Task object returns an Iterator for the
current channel, or a null value if there is no current channel. Example 3-22
shows how to browse the current channel.

Example 3-22 Browsing the containers in the current channel

Task task = Task.getTask();
ContainerIterator iterator = task.containerIterator();

while (iterator.hasNext()) {
Container myContainer = (Container) iterator.next();
// Process the container...

}

3.2.7 Browsing a name channel

It is also possible to perform a browse on an instance of a channel. You can
perform this function using the containerIterator() method on a channel
object. The code is almost identical to that of browsing the current channel,
Example 3-23 shows how to perform a browse on a channel instance.

Example 3-23 Browsing the containers in a channel instance

ContainerIterator iterator = myChannel.containerIterator();

while (iterator.hasNext()) {
Container myContainer = (Container) iterator.next();
// Process the container...

}

Note: If the container is of type CHAR, its data is converted to the default code
page of the system before being returned to the Java application. So if the
container’s original code page has characters that the system’s default code
page does not support, which here would be a version of EBCDIC, character
loss can occur during the conversion. A way to prevent this is to pass the data
in BIT containers, and instantiate it using new String(byte[] bytes, String
charsetName).
80 Using IBM CICS Transaction Server Channels and Containers

3.2.8 Deleting a container

You can delete a container in either of the following two ways:

� If you have an instance of a container, you can call the delete() method to
delete it.

� Alternatively, you can call the deleteContainer() method on the channel
class.

Example 3-24 shows the process to delete containers using both methods.

Example 3-24 Deleting containers in a channel

Container cont1 = myChannel.createContainer("CONT1");
Container cont2 = myChannel.createContainer("CONT2");

// Add some data
cont1.put("Some data");
cont2.put("Some more data");

// Deleting a container using a channel instance
myChannel.deleteContainer("CONT1");

// Deleting a container using its container instance
cont2.delete();

3.2.9 Code page considerations

Both Java and CICS work in two different code pages. Java represents String
literals using the Unicode variable length character encoding, Unicode
Transformation Format-8 (UTF-8). CICS uses EBCDIC for character encodings.
A character in Java is represented by a different code point (a number) internally
than that of CICS. Therefore, when passing character data between CICS and
Java programs, you need to be aware of these code page considerations.

Because the main input and output type when using containers is the byte array,
the easiest way to convert to and from String data is to use utility methods on the
String class itself. When using String.getBytes() and new String(byte[]),
Java encodes and decodes the bytes using the platform’s default code page.

Observation: In Example 3-24, no channel or container is created in CICS
until you perform the put() command on the Java container instance. It is the
put() command that causes an EXEC CICS PUT CONTAINER in CICS to create
the channel and container, and then insert the data.
 Chapter 3. Programming 81

In CICS, this is one of the EBCDIC code pages. Therefore, Java handles most of
the conversion between UTF-8 and EBCDIC using these two methods. This
helps with linking between Java and non-Java technology programs, because the
majority of these running in CICS use the EBCDIC code page.

3.3 Business transaction services

The put, get, move, and delete container commands that you use to build and
interact with a channel are similar to those that you use in CICS BTS
applications. Therefore, programmers with experience using BTS find it easy to
use containers in non-BTS applications. Furthermore, you can call server
programs that use containers from both channel and BTS applications.

Attention: Putting character data into a container using JCICS, encodes it in
the system’s local code page and places it in a BIT container. Linking to a
CICS program in a remote system that runs an alternative code page means
that when the data is extracted, it is in the code page of the original system.
This is because BIT containers are not applicable to code page conversion.
Therefore, the character data might appear corrupted in the new application.

A solution to this is if you insert the data into a temporary CHAR container in the
new program, while specifying the original CCSID, it can be extracted in the
local CCSID of that system.
82 Using IBM CICS Transaction Server Channels and Containers

Figure 3-1 shows the bilingual application scenario that we use to call a standard
CICS server program from both a BTS wrapper activity and a non-BTS client.

Figure 3-1 Bilingual channel or BTS application environment

This section explains the process of developing a bilingual channel or BTS
application. The application uses a BTS activity to link to a standard CICS server
program that is using containers. We also develop a non-BTS client program that
creates a channel and links to the same server.

3.3.1 Application components

The application shown in Figure 3-1 consists of the components that we describe
in the following sections.

BTS root activity

DEFINE ACTIVITY

PUT CONTAINER
(employee)

LINK ACTIVITY

GET
CONTAINER(status)

BTS activity

E.C. LINK
PROGR(SERVER)

Server

E.C.ASSIGN CHANNEL() PROCESS()
....

GET CONTAINER(employee)
PUT CONTAINER(status)

Client passing
channel

PUT CONTAINER
(employee)

E.C. LINK
PROGR(SERVER)

GET
CONTAINER(status)

BTS initial request

DEFINE PROCESS
RUN ACQPROCESS

2

4

5

3

1 BTSROOTCHNCON

PAYACT

PAYR

BTSINT
 Chapter 3. Programming 83

Business transaction services initial request
This is the initial request to start the business transaction. The BTSINIT program
handles this request. The module shown in Example 3-25 performs two steps:

� It creates the business transaction. To create an instance of the BTSX
business transaction, BTSINIT issues a DEFINE PROCESS command. The
PROGRAM option of DEFINE PROCESS defines a program to run under the control
of BTS.

It is the root activity program that typically manages the ordering and
execution of the child activities that make up a business transaction. In this
case, the program is BTSROOT, which is the root activity program for the BTSX
business transaction.

� On return from the DEFINE PROCESS command, BTSINIT issues a RUN
ACQPROCESS command to start an instance of the business transaction.

See the module BTSINIT in Example 3-25.

Example 3-25 Module BTSINIT

//* /*JCTRL*/
// EXEC PROC=TCKEITAL,OUTC=K,
// INDEX='CICSTS31.CICS'
//TRN.STEPLIB DD
//SYSPRINT DD SYSOUT=*
//TRN.SYSIN DD *
DFHEISTG DSECT
BTSINIT CSECT
BEGIN DS 0H
 EXEC CICS DEFINE PROCESS ('INITREQ0002')
X
 PROCESSTYPE('INITREQ')
X
 TRANSID('BTSX')
X
 PROGRAM('BTSROOT')
 EXEC CICS RUN ACQPROCESS ASYNCHRONOUS
RETURN DS 0H
 EXEC CICS RETURN
 END
//LKED.SYSIN DD *
 MODE RMODE(ANY),AMODE(31)
 NAME BTSINIT(R)
/*
//
84 Using IBM CICS Transaction Server Channels and Containers

Business transaction services root activity
The BTSINIT program starts a new instance of the BTSX business transaction by
starting the BTSROOT program, running under the transid BTSX. BTSROOT
implements a root activity that manages the inter-relationship, ordering, and
execution of the child activities that make up the BTSX business transaction.

A root activity program, such as BTSROOT, is designed so that BTS can reattach it,
when the running transactions trigger the events that interest it. The activity
program determines the possible events that cause BTS to attach it and what to
do as a result.

BTSROOT defines one child activity that is later used as a wrapper to the standard
CICS server program. When the child activity completes, it triggers an event
indicating that the activity is complete. Using the DEFINE ACTIVITY command to
create the payroll-2004 activity, we specified PAYACT on the PROGRAM option, BTS1
on the TRANSID option, and SERVERFINISHED on the EVENT option.

Therefore, the SERVERFINISHED event triggers the root activity to reattach when
the child activity completes. The process we used is explained in the following
steps showing the logic flow of BTSROOT:

1. BTSINIT starts the root activity. Issue a RETRIEVE REATTACH EVENT command
to determine the event.

2. The first event is always DFHINITIAL. If the event is DFHINITIAL, run the
code on the initial label. Define the child activity.

3. After this, issue two put container commands.

4. Then, issue a link activity command that calls the PAYACT program.

5. On return, issue a get container command to get the status from the
server program.

6. Issue an EXEC CICS RETURN command. BTSROOT is sleeping.

7. The SERVERFINISHED event drives the root activity, BTSROOT, again.

8. Issue the retrieve reattach event command to determine the event.

9. If the event is SERVERFINSHED, issue a check activity command. If the child
activity returns successfully, issue an EXEC CICS RETURN ENDACTIVITY
command.

10.The business transaction ends.
 Chapter 3. Programming 85

Example 3-26 shows a module BTSROOT and the steps explained previously.

Example 3-26 Module BTSROOT

//* /*JCTRL*/
// EXEC PROC=TCKEITAL,OUTC=K,
// INDEX='CICSTS31.CICS'
//TRN.STEPLIB DD
//SYSPRINT DD SYSOUT=*
//TRN.SYSIN DD *
DFHEISTG DSECT
STAT DS CL2
EVENT DS CL16
 DS CL16
CS DS XL4
RESP DS XL4
RESP2 DS XL4
BTSROOT CSECT
BEGIN DS 0H

*** CHECK POSSIBLE EVENTS - START WITH DFHINITIAL ***

 EXEC CICS RETRIEVE REATTACH EVENT(EVENT)
 CLC EVENT(16),=CL16'DFHINITIAL '
 BNE NXTEVENT
 BAL 8,INITIAL
 B RETURN

*** ROOT DRIVEN BY SERVERFINISHED EVENT? ***

NXTEVENT DS 0H
 CLC EVENT(16),=CL16'SERVERFINISHED '
 BE CHKACT
 B RETURN

*** RETURN WITH OR WITHOUT ENDACTIVITY OPTION ***

RETURN DS 0H
 EXEC CICS RETURN
RETURN1 DS 0H
 EXEC CICS RETURN ENDACTIVITY

*** IF SERVERFINISHED EVENT DO CHECK ACTIVITY ... ***
*** AND RETURN USING ENDACTIVITY OPTION ***

86 Using IBM CICS Transaction Server Channels and Containers

CHKACT DS 0H
 EXEC CICS CHECK ACTIVITY('PAYROLL-2004')
X
 COMPSTATUS(CS)
X
 RESP(RESP)
X
 RESP2(RESP2)
 CLC RESP,DFHRESP(NORMAL)
 BNE RETURN
 B RETURN1

*** INITIAL PROCESS - DEFINE AND LINK ACTIVITY ***

INITIAL DS 0H
 EXEC CICS DEFINE ACTIVITY('PAYROLL-2004')
X
 PROGRAM('PAYACT')
X
 TRANSID('BTS1')
X
 EVENT('SERVERFINISHED')
 EXEC CICS PUT CONTAINER('EMPLOYEE')
X
 ACTIVITY('PAYROLL-2004')
X
 FROM('JOHN DOE')
 EXEC CICS PUT CONTAINER('WAGE')
X
 ACTIVITY('PAYROLL-2004')
X
 FROM('100')
 EXEC CICS LINK ACTIVITY('PAYROLL-2004')
 EXEC CICS GET CONTAINER('STATUS')
X
 ACTIVITY('PAYROLL-2004')
X
 INTO(STAT)
 BR 8
**
 Chapter 3. Programming 87

 END
//LKED.SYSIN DD *
 MODE RMODE(ANY),AMODE(31)
 NAME BTSROOT(R)
/*
//

Business transaction services activity
The PAYACT child activity program issues the EXEC CICS LINK command that calls
the CICS standard non-BTS server program. Specify PAYR on the program
option. Do not determine the event that triggered the activity, to keep the sample
as short as possible. The event is always DFHINITIAL.

Example 3-27 shows a PAYACT module.

Example 3-27 Module PAYACT

//* /*JCTRL*/
// EXEC PROC=TCKEITAL,OUTC=K,
// INDEX='CICSTS31.CICS'
//TRN.STEPLIB DD
//SYSPRINT DD SYSOUT=*
//TRN.SYSIN DD *
DFHEISTG DSECT
EVENT DS CL16
 DS CL16
PAYACT CSECT
BEGIN DS 0H
 EXEC CICS RETRIEVE REATTACH EVENT(EVENT)
 EXEC CICS LINK PROGRAM('PAYR')
RETURN DS 0H
 EXEC CICS RETURN
 END
//LKED.SYSIN DD *
 MODE RMODE(ANY),AMODE(31)
 NAME PAYACT(R)
/*
//
88 Using IBM CICS Transaction Server Channels and Containers

Server
The PAYR server program is a standard CICS server program using channels and
containers. The program can be called from both BTS and non-BTS clients.
Therefore, note the following steps:

1. Issue an assign channel() process() command to determine if the caller is
BTS or non-BTS.

2. After determining the caller identification, set up an informational message
and issue a writeq td command.

3. Issue a get container command followed by the put container command to
set the status to OK.

Example 3-28 shows the server module PAYR.

Example 3-28 Server module PAYR

//* /*JCTRL*/
// EXEC PROC=TCKEITAL,OUTC=K,
// INDEX='CICSTS31.CICS'
//TRN.STEPLIB DD
//SYSPRINT DD SYSOUT=*
//TRN.SYSIN DD *
DFHEISTG DSECT
CHN DS CL16
PROCESS DS CL36
STAT DS CL16
EMP DS CL16
EMPDAT DS CL8
STATDAT DS CL2
MSGAREA DS CL35
RESP DS F
RESP2 DS F
PAYR CSECT
BEGIN DS 0H
 MVC STAT,=CL16'STATUS '
 MVC EMP,=CL16'EMPLOYEE '
 MVC STATDAT,=CL2'OK'
 EXEC CICS ASSIGN CHANNEL(CHN) PROCESS(PROCESS)
X
 RESP(RESP) RESP2(RESP2)
 CLC CHN(7),=CL7'PAYROLL'
 BNE NEXT
 MVC MSGAREA(35),=CL35'PAYR WAS CALLED BY NON BTS CLIENT '
 B START
NEXT DS 0H
 Chapter 3. Programming 89

 CLC PROCESS(7),=CL7'INITREQ'
 BNE RETURN
 MVC MSGAREA(35),=CL35'PAYR WAS CALLED BY A BTS CLIENT '
START DS 0H
 EXEC CICS GET CONTAINER(EMP) INTO(EMPDAT)
 EXEC CICS PUT CONTAINER(STAT) FROM (STATDAT) FLENGTH(STATLEN)
 EXEC CICS WRITEQ TD QUEUE('CSMT') FROM(MSGAREA) LENGTH(LEN)
RETURN DS 0H
 EXEC CICS RETURN
LEN DC H'0035'
STATLEN DC F'2'
 END
//LKED.SYSIN DD *
 MODE RMODE(ANY),AMODE(31)
 NAME PAYR(R)
/*
//

Client
To create a simple non-BTS client that links to the server passing a channel, with
the program name of the client as CHNCON, complete the following steps:

1. Create a channel called PAYROLL.
2. Issue two put container commands.
3. Issue an EXEC CICS LINK PROGRAM(PAYR) command.
4. Specify PAYROLL on the channel option.
5. On return, issue a get container command to get the status.

See Example 3-29, which shows the CHNCON client module.

Example 3-29 Client module CHNCON

//* /*JCTRL*/
// EXEC PROC=TCKEITAL,OUTC=K,
// INDEX='CICSTS31.CICS'
//TRN.STEPLIB DD
//SYSPRINT DD SYSOUT=*
//TRN.SYSIN DD *
DFHEISTG DSECT
CHN DS CL16
EMP DS CL16
WGE DS CL16
STAT DS CL16
STATDAT DS CL2
CHNCON CSECT
90 Using IBM CICS Transaction Server Channels and Containers

BEGIN DS 0H
 MVC CHN,=CL16'PAYROLL '
 MVC EMP,=CL16'EMPLOYEE '
 MVC WGE,=CL16'WAGE '
 MVC STAT,=CL16'STATUS '
 EXEC CICS PUT CONTAINER(EMP) CHANNEL(CHN) FROM('JOHN DOE')
X
 FLENGTH(LEN)
 EXEC CICS PUT CONTAINER(WGE) CHANNEL(CHN) FROM('100')
X
 FLENGTH(LEN1)
 EXEC CICS LINK PROGRAM('PAYR') CHANNEL(CHN)
 EXEC CICS GET CONTAINER(STAT) CHANNEL(CHN) INTO(STATDAT)
RETURN DS 0H
 EXEC CICS RETURN
LEN DC F'8'
LEN1 DC F'3'
 END
//LKED.SYSIN DD *
 MODE RMODE(ANY),AMODE(31)
 NAME CHNCON(R)
/*
//

3.3.2 Channel and container options

As the sample application previously described shows, you can use a program
that issues container commands, without change and as part of a channel
application, or as part of a BTS activity.

To use a program in both a channel and a BTS context, the container commands
that it issues must not specify any options that identify them as either channel or
BTS commands.
 Chapter 3. Programming 91

You can avoid the following options on each of the container commands:

� Delete container

– ACQACTIVITY (BTS-specific)
– ACQPROCESS (BTS-specific)
– ACTIVITY (BTS-specific)
– CHANNEL (channel-specific)
– PROCESS (BTS-specific)

� Get container

– ACQACTIVITY (BTS-specific)
– ACQPROCESS (BTS-specific)
– ACTIVITY (BTS-specific)
– CHANNEL (channel-specific)
– INTOCCSID (channel-specific)
– PROCESS (BTS-specific)

� Move container

– FROMACTIVITY (BTS-specific)
– CHANNEL (channel-specific)
– FROMPROCESS (BTS-specific)
– TOACTIVITY (BTS-specific)
– TOCHANNEL (channel-specific)
– TOPROCESS (BTS-specific)

� Put container

– ACQACTIVITY (BTS-specific)
– ACQPROCESS (BTS-specific)
– ACTIVITY (BTS-specific)
– CHANNEL (channel-specific)
– DATATYPE (channel-specific)
– FROMCCSID (channel-specific)
– PROCESS (BTS-specific)

When you run a container command, CICS analyzes the context (channel, BTS,
or neither) in which it occurs, to determine how to process the command. To
determine the context, CICS uses the following sequence of tests:

Channel Does the program have a current channel?

BTS Is the program part of a BTS activity?

None The program has no current channel, and is not part of a
BTS activity. Therefore, it has no context in which to run
container commands. The command is rejected with an
INVREQ condition and a RESP2 value of 4.
92 Using IBM CICS Transaction Server Channels and Containers

3.4 Web services

As previously mentioned, one of the reasons channels and containers were
introduced was to alleviate the 32 KB limitations when working with web
services. Channels and containers compliment core web services interacting
through SOAP messages.

The increase in usability with SOAP means that the size of these messages is
larger than that of a compact binary message. However, the binary format is
almost impossible to read with the human eye. The increase in usability is
proportional to the increase in storage use, which means that channels and
containers are now an integral part of web services in CICS.

3.4.1 Using channels and containers in CICS web services

You can use channels and containers to transfer SOAP message data to a
service provider application. You can also use channels and containers to work
with arrays of varying amounts of elements.

Using channels and containers in a service provider
application
You can decide to use channels and containers or a COMMAREA in your service
provider application during the creation of the WSBind file with the Web Services
Assistant. You can give the PGMINT parameter either of the following two values:

� Channel. CICS uses a channel interface to pass data to the target application.

� COMMAREA. CICS uses a COMMAREA to pass data to the target
application.

If CICS uses a channel, you can specify the optional CONTID parameter of the job
control language (JCL) procedure (DFHWS2LS or DFHLS2WS) as the name of
the container. In this way, it can hold the top-level data structure that you use to
represent the SOAP message.

If you do not specify CONTID, the container name defaults to DFHWS-DATA. The
channel interface supports arrays with varying numbers of elements, which are
represented as series of connected data structures in a series of containers.
These containers are also present.
 Chapter 3. Programming 93

Variable arrays of elements
When using DFHWS2LS to generate language structure with array elements, if
the array is a fixed length, DFHWS2LS can easily represent this array in the
resulting language structure. However, if the number of elements in an array is
allowed to vary at run time, this process might be too resource-intensive. In this
case, generate an array type in the local system (LS), which is large enough to
hold the maximum number of elements that can be received.

What would happen if the Web Services Description Language (WSDL) specifies
that the application can receive an unbounded number of elements? In this
scenario, channels and containers are an easy and reliable option.

Example 3-30 shows a message that can contain zero - eight string elements.

Example 3-30 Sample WSDL

<xsd:element name="component" minOccurs="0" maxOccurs="8">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="8"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

In this case, the main data structure does not contain a declaration of an array.
Instead, it contains a declaration of two fields:

� 05 component-num PIC S9(9) COMP-4
� 05 component-cont PIC X(16)

At run time, the first field (component-num) contains the number of times, zero -
eight, that the element is displayed in the SOAP message. The second field
(component-cont) contains the name of a container.

A second data structure contains the declaration of the element itself:

01 DFHWS-component
 02 component PIC X(8)

Therefore, to process the data structure in your application program, you must
examine the value of component-num. If it is zero, there is no component element
in the message, and the contents of component-cont are undefined.

If the value is not zero, the component element is in the container that is named
in component-cont. The container holds an array of elements, and the DFHWS-
component data structure maps each of these elements in the container.
94 Using IBM CICS Transaction Server Channels and Containers

We advise that you start considering how you can represent nested arrays. You
can see further information about arrays of elements in the CICS Transaction
Server version 5.2 Knowledge Center on the following website:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics
.ts.applicationprogramming.doc/datamapping/dfhws_variablearrays.html?cp
=SSGMCP_5.2.0%2F8-9-0-0-0-4

Channel description document
If your service provider application uses channels and many containers, you
should create a channel description document that describes the interface with
Extensible Markup Language (XML). The channel description document in a
suitable directory on IBM z/OS and CICS uses this document to construct and
deconstruct a SOAP message from the containers in the channel. If you use only
one container in a channel, you do not need a channel descriptor document.

The schema for the channel description document is called channel.xsd and is in
the /usr/lpp/cicsts/cicsts52/schemas/channel directory (where
/usr/lpp/cicsts/cicsts52 is the default install directory for CICS files).

Procedure
To create a channel descriptor document, use the following procedure:

1. Create an XML document with a <channel> element and the CICS channel
namespace. Example 3-31 shows a sample <channel> element.

Example 3-31 Sample <channel> element

<channel name="myChannel"
xmlns="http://www.ibm.com/xmlns/prod/CICS/channel">
</channel>

2. Add a <container> element for every container that the API uses on the
channel. You must use name, type, and use attributes to describe each
container. Example 3-32 shows six containers with different attribute values.
The <structure> element indicates that the content is defined in a language
structure in a partitioned data set member.

Example 3-32 Six containers with different attribute values

<container name="cont1" type="char" use="required"/>
<container name="cont2" type="char" use="optional"/>
<container name="cont3" type="bit" use="required"/>
<container name="cont4" type="bit" use="optional"/>
<container name="cont5" type="bit" use="required">
 <structure location="//HLQ.PDSNAME(MEMBER)"/>
</container>
 Chapter 3. Programming 95

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.applicationprogramming.doc/datamapping/dfhws_variablearrays.html?cp=SSGMCP_5.2.0%2F8-9-0-0-0-4

<container name="cont6" type="bit" use="optional">
 <structure location="//HLQ.PDSNAME(MEMBER2)"/>
</container>

3. Save the XML document in z/OS UNIX.

Channel schema
Example 3-33 shows the schema format to which the channel description
document should conform:

Example 3-33 Sample Channel schema

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/xmlns/prod/CICS/channel"
 xmlns:tns="http://www.ibm.com/xmlns/prod/CICS/channel"
elementFormDefault="qualified">
 <element name="channel"> 1
 <complexType>
 <sequence>
 <element name="container" maxOccurs="unbounded" "unbounded"
minOccurs="0"> 2
 <complexType>
 <sequence>
 <element name="structure" minOccurs="0"> 3
 <complexType>
 <attribute name="location" type="string" use="required"/>
 <attribute name="structure" type="string" use="optional"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="tns:name16Type" use="required"/>
 <attribute name="type" type="tns:typeType" use="required"/>
 <attribute name="use" type="tns:useType" use="required"/>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="tns:name16Type" use="optional" />
 </complexType>
 </element>
 <simpleType name="name16Type">
 <restriction base="string">
 <maxLength value="16"/>
 </restriction>
 </simpleType>
 <simpleType name="typeType">
96 Using IBM CICS Transaction Server Channels and Containers

 <restriction base="string">
 <enumeration value="char"/>
 <enumeration value="bit"/>
 </restriction>
 </simpleType>
 <simpleType name="useType">
 <restriction base="string">
 <enumeration value="required"/>
 <enumeration value="optional"/>
 </restriction>
 </simpleType>
</schema>

In Example 3-33 on page 96, the numbered entries describe the following
elements:

1. This element represents a CICS channel.
2. This element represents a CICS container with the channel.
3. A structure can only be used with bit mode containers. The location

attribute indicates the location of a file that maps the contents of the
container. The structure attribute can be used in C and C++ to indicate the
name of the structure.

Creating mappings and WSDL document
Run DFHLS2WS to create the mappings and WSDL document for the Web
Service Provider application. DFHLS2WS puts the mappings for the channel in
the WSDL document in the order that the containers are specified in the channel
description document.

3.5 CICS-WebSphere MQ bridge

An application that is not CICS can communicate with a CICS program or
transaction by sending and receiving IBM WebSphere MQ messages over the
CICS-WebSphere MQ bridge. The data required by the CICS application is
included in request messages, and the CICS-WebSphere MQ bridge uses reply
messages to return the data provided by the CICS application.

CICS programs that are called using the EXEC CICS LINK command, known as
distributed program link (DPL) programs, have traditionally accepted input from
the CICS-WebSphere MQ bridge process in a COMMAREA. However, now the
CICS-WebSphere MQ bridge also supports data being passed to the DPL
program using a channel with request and reply containers.
 Chapter 3. Programming 97

3.5.1 Channels and containers and the CICS-WebSphere MQ bridge

You can use channels and containers to transfer data to and from programs
started by the CICS-WebSphere MQ bridge, by ensuring that your DPL message
structure is set up to do so.

DPL message structure for CICS-WebSphere MQ bridge
If you want to pass data through channels and containers to your DPL program,
the program should be set up to receive a container named DFHREQUEST, and
to place output data in a container called DFHRESPONSE.

Example 3-34 shows the message structure to use when your non-CICS
application runs one or more DPL programs in a unit of work (UOW), sends
DFHREQUEST container data, and receives DFHRESPONSE container data.
ProgName is the name of the DPL program.

Example 3-34 Message structure

••
• MQMD • MQCIH • ProgName • DPL program data •
••

MQCIH fields for channels and containers
The WebSphere MQ Bridge transaction that processes channels and containers
input and output data is called CC, and it runs the DFHMQBR3 program. If you want
to use this transaction, there are certain fields in the WebSphere MQ Control
Information Header (CIH) you must be aware of:

MQCIH.TransactionId Specifies the transaction code that you want to run
the CICS DPL bridge program under. In this case,
specify CC.

MQCIH.OutputDataLength This field sets the length of data returned by the
program, and is ignored for DPL requests that use
the channel and container interface. For these
requests, the output (the response) length is the
size of the DFHRESPONSE container

MQCIH.ReplyToFormat This field specifies the CCSID and encoding
format of the data returned, and is ignored for DPL
requests that use the channel and container
interface. For these requests, the reply-to format is
set based on the content of the DFHRESPONSE
container. If the content is character data, the
reply-to format is MQFMT_STRING. If the content is
binary data, the reply-to format is MQFMT_NONE.
98 Using IBM CICS Transaction Server Channels and Containers

Chapter 4. Systems management and
configuration

This chapter provides information about the systems management and
configuration tasks and techniques that you must consider when implementing a
channels and containers solution.

Although these are tasks that you would normally expect the systems
programmer to undertake, you can see that, in a channels and containers
implementation, some of these tasks are no longer the responsibility of the
systems programmer role.

Because successful systems management requires a well-tuned software
implementation, this chapter also looks at the monitoring groups and statistics
data related to channels and containers. It also describes the options available to
the systems programmer for problem determination.

4

© Copyright IBM Corp. 2006, 2015. All rights reserved. 99

4.1 Storage

When the application programmer creates a container, the IBM Customer
Information Control System (CICS) does not enforce any size limitation regarding
how large the container can be. The only upper limit for size is the amount of
available user storage in the CICS address space.

CICS deletes channels when they are no longer in scope, but you should still
encourage the application programmer to limit the amount of storage that they
use for a channel at any given time. For example, you must use the delete
container command whenever it is appropriate, such as after calling a program
with the container as input.

Also, to ensure that multiple copies of the same data are not processed,
encourage the use of the EXEC CICS MOVE CONTAINER command to move data
from one channel to another.

4.2 The DFHROUTE container

If you use a channels and containers solution in an application that employs
dynamic transaction routing, the DFHDYPDS communication area
(COMMAREA) still passes to the dynamic routing program, or your version of it.
This is an important change made to the DFHDYPDS to remove what was
previously a restriction.

How the routing program uses DFHROUTE
When you port a dynamically-routed EXEC CICS LINK or EXEC CICS START
command to use a channel rather than a COMMAREA, the DFHDYP routing
program is passed the name of the channel in the DYRCHANL field of DFHDYPDS.

Because it is the name of the channel passed, rather than the name of the
channel address, if the routing program attempts to use the DYRCHANL as a
parameter on an EXEC CICS GET CONTAINER CHANNEL command, it fails with an
INVREQ message appearing.

The routing program cannot inspect or modify the contents of the channel’s
containers that are passed to it. To circumvent this problem, and to ensure that
the routing program has the same kind of functionality with channels that it had
with COMMAREAs, a special container named DFHROUTE is available to the
application programmer in the channel to be passed to the routing program.

This container can hold the data that the routing program requires to access
the channel.
100 Using IBM CICS Transaction Server Channels and Containers

When the application issues a link or terminal-related start (but not a
non-terminal related start request) to be dynamically routed, the dynamic routing
program is passed the address of the DFHROUTE container in the DYRACMAA field
of DFHDYPDS. Therefore, it can now inspect and change its contents if required.

If you are porting a program to pass a channel rather than a COMMAREA,
consider using the program’s existing COMMAREA structure to map
DFHROUTE. This is especially important if you rely on the contents of all or part
of your COMMAREA to influence the decision that the dynamic routing program
makes regarding where to route work.

4.3 Code page conversion

Traditionally, it was the responsibility of the systems programmer to handle the
code page conversion using the DFHCNV conversion table, the DFHCCNV conversion
program, and the DFHUCNV user-replaceable conversion program, which is an
optional choice. The systems programmer handled data conversion when it was
required, because the process was complex.

For example, an IBM CICS Transaction Server program, using Extended Binary
Coded Decimal Interchange Code (EBCDIC) encoding is interacting through a
COMMAREA with a Java program using Unicode Transformation Format-8
(UTF-8) encoding. However, when a channels and containers solution replaces
the COMMAREA, the task of data conversion simplifies such that the application
programmer can perform the operation as part of the application code.

4.3.1 Simple code page conversion

If you use a combination of the EXEC CICS PUT CONTAINER command with the
DATATYPE parameter, the FROMCCSID parameter, or both parameters, and the EXEC
CICS GET CONTAINER command with the INTOCCSID parameter, the application
programmer can now perform a simple code page conversion. This is described
in more detail in Chapter 2, “Application design and implementation” on page 27.

Note: If you are using IBM CICSPlex System Manager and the EYU9XLOP
routing program, you can use the DFHROUTE container in the
user-replaceable EYU9WRAM module, using the same process described
previously in this chapter.
 Chapter 4. Systems management and configuration 101

However, there is still a requirement for the systems programmer to ensure that
the CICS region is using the correct coded character set identifier (CCSID). By
default this is CCSID 37. If you need to change this, you can specify the relevant
code page in the LOCALCSSID SIT parameter, as the following example shows:

LOCALCSSID={037|CCSID}

4.3.2 z/OS Unicode conversion services

Code page conversion is performed using IBM z/OS Unicode conversion
services.

Two messages are issued resulting from failures in starting the z/OS conversion
services:

� The following console message is issued during CICS initialization to indicate
that this CICS region does not support Unicode conversion, because the
services are not enabled:

DFHAP0801I applid z/OS Conversion Services are not available

� The following message is issued to report that this system does not support a
particular conversion between two specific CCSIDs:

DFHAP0802 applid Data conversion using CCSID ccsid and CCSID ccsid
is not supported by this system

Important: You must activate support for Unicode before you start CICS.

Note: If you attempt to use a code page in CICS, which Unicode supports
but has not yet enabled, z/OS still attempts to enable or install that
conversion, anyway.

It is not necessary for the system programmers to configure all possible
pairs of CCSIDs that application programs require. CICS uses its internal
tables for pairs of CCSIDs that the DFHCNV mechanism currently
supports.
102 Using IBM CICS Transaction Server Channels and Containers

4.4 Performance considerations

There are several performance-related options during the design phase of a
channels and containers implementation that you must encourage the
application programmer to consider.

4.4.1 Configuration

There are two aspects of configuration that are described in the following
sections:

� Data separation
� Error data handling

Data separation
If you are converting an existing application, it might look like an obvious choice
to use a channel with a single container to replace your current COMMAREA.
However, from a performance perspective, it might be better to separate the input
and output fields in your COMMAREA into different containers. The main
performance benefit of doing this is that the amount of unnecessary data
transmission is significantly reduced.

For example, at the end of a distributed program link (DPL) call, input containers
whose contents the server program has not changed do not return to the client.
Alternatively, input containers whose contents the server program has changed,
and also those containers that the server program creates, are returned to
the client.

To demonstrate the previous point, we present a scenario.

Assume that an existing COMMAREA-based application, in which a doctor
collates a large amount of data in the form of a patient’s medical history, passes
on to a server program. The server program provides, by return, a small amount
of data, which is the patient’s current diagnosis.

Figure 4-1 on page 104 shows that the COMMAREA consists of one contiguous
block of data containing three separate fields for the patient, which includes
personal details, medical history, and current diagnosis. The doctor only wants to
receive the current diagnosis back from the server. However, the server also
retransmits the medical history field, which could potentially be very large, back
to the doctor, even though it has probably not been altered.
 Chapter 4. Systems management and configuration 103

Figure 4-1 illustrates this simple COMMAREA scenario.

Figure 4-1 Simple COMMAREA scenario

Figure 4-2 on page 105 shows the same scenario, but with separate containers
for the personal details, medical history, and current diagnosis data fields.

In this case, the doctor passes the personal details and medical history
containers, PATIENT_DETAILS and MEDICAL_HISTORY, to the diagnosis
server program and receives the patient diagnosis data back in another separate
container, CURR_DIAGNOSIS.

Note that because the data in the PATIENT_DETAILS container and the
MEDICAL_HISTORY container were not modified on the call, the server does not
return these data. All that the doctor receives back is the CURR_DIAGNOSIS
container in which the diagnosis data is held.

Client
Server

Personal
details

Medical
history

Current
diagnosis
104 Using IBM CICS Transaction Server Channels and Containers

See Figure 4-2 that illustrates this simple containers scenario.

Figure 4-2 Simple containers scenario

Error data handling
Channels and containers offer a different option for handling error data in an
application. Using a single, dedicated container for error information can lead to
improved performance, and can also simplify application logic.

If you include an EXEC CICS GET CONTAINER command for the error container in
your code, a NOTFOUND condition would indicate no error. Therefore, if an error is
found, you could interrogate the container for the error information.

Additionally, the application benefits from improved efficiency between CICS
regions, because the server only needs to transmit the error container when an
error occurs. We list here the monitoring groups and statistics domain entries for
channels and containers support.

Server

PATIENT_DETAILS

MEDICAL_HISTORY

CURR_DIAGNOSIS

Client
 Chapter 4. Systems management and configuration 105

4.5 Monitoring and statistics

This section describes monitoring and statistics activities.

4.5.1 Monitoring groups

There are three monitoring groups that contain entries relating to channels and
containers. The following sections describe the relevant entries in those groups.

DFHCHNL
DFHCHNL is a monitoring group that contains monitor data for channel and
container usage. Table 4-1 shows the fields in the DFHCHNL group.

Table 4-1 DFHCHNL group entries

Field name Field ID Description

PGTOTCCT 321 Total number of CICS requests for channel containers for the task

PGBRWCCT 322 Number of browse requests for channel containers for the task

PGGETCT 323 Number of GET CONTAINER and GET64 CONTAINER requests for the task

PGPUTCT 324 Number of PUT CONTAINER and PUT64 CONTAINER requests for the task

PGMOVCT 325 Number of MOVE CONTAINER requests for the task

PGGETCDL 326 Total length, in bytes, of all of the GET CONTAINER and GET64 CONTAINER data
returned

PGPUTCDL 327 Total length, in bytes, of all of the PUT CONTAINER and PUT64 CONTAINER data
returned

PGCRECCT 328 Number of containers created by MOVE, PUT, and PUT64 CONTAINER requests by
the task

PGCSTHWM 329 Maximum amount, in bytes, of container storage allocated to the task
106 Using IBM CICS Transaction Server Channels and Containers

DFHPROG
Table 4-2 shows the channels and containers fields in the DFHPROG group.

Table 4-2 DFHPROG group channels and containers entries

DFHTASK
Table 4-3 shows the channels and containers fields in the DFHTASK group.

Table 4-3 DFHTASK group channels and containers entries

4.5.2 Statistics domain

There are several fields in the intersystem communication (ISC) or interregion
communication (IRC) system entries of the statistics report that relate to
channels and containers:

� Terminal sharing

– Number of terminal-sharing channel requests
– Number of bytes sent on terminal-sharing channel requests
– Number of bytes received on terminal-sharing channel requests

Field name Field ID Description

PCDLCSDL 286 Total length, in bytes, of the container data for a DPL

PCDLCRDL 287 Total length, in bytes, of all of the container data returned from a DPL

PCLNKCCT 306 Number of LINK and START APPLICATION requests issued with the CHANNEL
option for this task

PCXCLCCT 307 Number of XCTL requests issued with the CHANNEL option for this task

PCDPLCCT 308 Number of DPL requests issued with the CHANNEL option by the user task

PCRTNCCT 309 Number of RETURN requests issued with the CHANNEL option for this task

PCRTNCDL 310 Total length, in bytes, of the container data return

Field name Field ID Description

ICSTACCT 65 Number of start requests issued with the channel option

ICSTACDL 345 Length of the data in the containers of all the locally run start channel requests

ICSTRCCT 346 Number of interval control start channel requests to be run on remote systems

ICSTRCDL 347 Total length of the data in the containers of all the remotely run start channel
requests
 Chapter 4. Systems management and configuration 107

� Program control

– Number of program control link requests, with channels, for function
shipping

– Number of bytes sent on link channel requests

– Number of bytes received on link channel requests

� Interval control

– Number of interval control start requests, with channels, for function
shipping

– Number of bytes sent on start channel requests

– Number of bytes received on start channel requests

Figure 4-3 shows a sample statistic report produced for channels and containers
usage.

Figure 4-3 Statistics output

Transaction Routing Requests Max Queue Time - Allocate Purge: 0

Transaction Routing - Total...: 0 Allocates Purged - Max Queue Time ..: 0
 Transaction Routing - Channel.: 0

Allocates Rejected - XZIQUE: 0
Function Shipping Requests XZIQUE - Allocate Purge: 0

 File Control................: 0 Allocates Purged - XZIQUE: 0
 Interval Control - Total......: 0
 Interval Control - Channel..: 0
 Transient Data...............: 0
 Temporary Storage: 0
 Program Control - Total: 0
 Program Control - Channel..: 0

Total: 0
Bytes Sent by Transaction Routing requests:0Average Bytes Sent by Routing request:0
Bytes Received by Transaction Routing requests:0
Bytes Sent by Program Channel requests:0 Average Bytes Sent by Channel request:0
Bytes Received by Program Channel requests:0
Bytes Sent by Interval Channel requests:0 Average Bytes Sent by Channel request:0
Bytes Received by Interval Channel requests:0
108 Using IBM CICS Transaction Server Channels and Containers

4.6 Problem determination

This section details the various abnormal end of task (abend) codes and trace
points associated with channels and containers to help with problem
determination.

4.6.1 Channels and containers abend codes

There is a set of abend codes, which relate to CICS regions in which channels
and containers have been implemented. These are depicted in the following
sections.

AEYF
An AEYF abend occurs when an invalid storage area passes to CICS on a put
container, put64 container, get container, or get64 container command. The
error can occur when one of the following events takes place:

� Either the FROM or INTO address is specified incorrectly.

� The FLENGTH value specifies a value large enough to cause the area to include
storage that the transaction cannot access.

A common cause of this error is specifying the address of a halfword area in the
FLENGTH parameter, which expects a fullword area. This error can arise when a
program that previously used COMMAREAs, which have halfword lengths, has
been modified to use containers, which have fullword lengths.

AITI
An AITI abend occurs when a mirror transaction that is processing a start
channel or a link channel request, fails while trying to receive data from, or send
data to, a connected CICS system. Because a channel can include a
considerable amount of data, it might require many calls to terminal control to
transmit channel data.

DFHMIRS calls the DFHAPCR program to perform all of the inter-system
transmission of channel data. Terminal control has detected an error in one of
these calls. The error could be a read timeout, or a more serious error in the
flows, that prevented CICS from correctly processing the data.
 Chapter 4. Systems management and configuration 109

AXGA
An AXGA abend occurs when the DFHAPCR program returns an unexpected
response on a function shipping request.

DFHAPCR performs the following functions:

� Extracts the contents of all of the containers making up a channel, and
transmits them to a remote system.

� Re-creates the channel and containers from inbound data received from a
remote system.

AXTS
An AXTS abend indicates that an attempt was made to pass channel and
container data between the transactions in a pseudo-conversation, but the next
transaction in the pseudo-conversation is in a CICS region that does not support
channels and containers.

AXTU
An AXTU abend occurs when the DFHAPCR program returns an unexpected
response. DFHAPCR performs the following functions:

� Extracts the contents of all containers making up a channel and transmits
them to a remote system.

� Re-creates the channel and containers from inbound data received from a
remote system.

DFHAPCR has either detected an error in inbound data or has received an

4.6.2 Channels and containers trace entries

There are several trace entries pertaining to channels and containers. These are
shown in Table 4-4.

Table 4-4 Container data transformation trace points

Point ID Module Lvl Type Data

AP
4E00

DFHAPCR AP
1

Entry 1
APCR parameter list

AP
4E01

DFHACPR AP
1

Exit 1
APCR parameter list

AP
4E02

DFHACPR AP
Exc

Invalid format 1
APCR parameter list
110 Using IBM CICS Transaction Server Channels and Containers

AP
4E03

DFHACPR AP
Exc

Invalid function 1
ACPR parameter list

AP
4E04

DFHACPR AP
Exc

Recovery 1
APCR parameter list
2
Kernel error data

AP
4E05

DFHAPCR AP
Exc

Delete container
failed

1
APCR parameter list
2
PGCR parameter list

AP
4E06

DFHACPR AP
Exc

Put container
failed

1
ACPR parameter list
2
PGCR parameter list

AP
4E07

DFHACPR AP
2

Receive terminal
input/output area
(TIOA)

1
TIOA
2
03307400

AP
4E08

DFHACPR AP
Exc

Create channel
failed

1
APCR parameter list
2
PGCR parameter list
3
03307900

AP
4E09

DFHACPR AP
Exc

No room for
channel header

1
APCR parameter list
2
03308400

AP
4E0A

DFHACPR AP
Exc

Getmain failed 1
ACPR parameter list
2
SMGF parameter list
3
03308900

Point ID Module Lvl Type Data
 Chapter 4. Systems management and configuration 111

AP
4E0B

DFHACPR AP
Exc

DFHtc error 1
Response
2
Abend code
3
Sense code
4
03309400

AP
4E0C

DFHACPR AP
Exc

Extract total
length

1
ACPR parameter list
2
Buffer left
3
03309900

AP
4E0D

DFHACPR AP
Exc

Extract channel
header

1
APCR parameter list
2
Buffer left
3
03310900

AP
4E0E

DFHACPR AP
Exc

Extract container
header

1
APCR parameter list
2
Buffer left
3
03310900

AP
4E0F

DFHACPR AP
Exc

Premature end of
data

1
APCR parameter list
2
Buffer left
3
03311400

AP
4E10

DFHAPCR AP
Exc

More data
expected

1
APCR parameter list
2
Buffer left
3
03311900

Point ID Module Lvl Type Data
112 Using IBM CICS Transaction Server Channels and Containers

AP
4E11

DFHACPR AP
Exc

Extract container
length

1
APCR parameter list
2
Buffer left
3
03312100

AP
4E12

DFHACPR AP
Exc

Bad channel
eye-catcher

1
APCR parameter list
2
Channel header
3
03312200

AP
4E13

DFHACPR AP
Exc

Bad container
eye-catcher

1
ACPR parameter list
2
Container header
3
03312300

AP
4E14

DFHACPR AP
2

Extract channel
length

1
Channel length
2
03312400

AP
4E15

DFHACPR AP
2

Extract channel
header

1
Channel header
2
03312500

AP
4E16

DFHACPR AP
2

Extract container
header

1
Container header
2
03312600

AP
4E17

DFHAPCR AP
2

Extract container
length

1
Container length
2
03312800

AP
4E18

DFHACPR AP
Exc

Extract container
data

1
Container data
2
03313000

Point ID Module Lvl Type Data
 Chapter 4. Systems management and configuration 113

There is also a trace point entry for channels and containers in the AP domain
recovery set, as shown in Table 4-5.

Table 4-5 P domain recovery trace point for channels and containers AP domain rEvent

AP
4E19

DFHACPR AP
Exc

Bad response to
domain call

1
APCR parameter list
2
DOMAIN PLIST
Parameter list

AP
4E20

DFHACPR AP
2

Container added 1
Container name
2
Owner
3
03313400

AP
4E21

DFHACPR AP
2

Container
changed

1
Container name
2
Owner
3
iseq
4
cseq
5
origi03313500

AP
4E22

DFHACPR AP
2

Container deleted 1
Container name
2
Owner
3
03313600

Point ID Module Lvl Type Data

AP
0785

DFHSRP Exc Abend AEYF 1
Application program
name
2
Parameter address
3
ARG0

Point ID Module Lvl Type Data
114 Using IBM CICS Transaction Server Channels and Containers

Event processing has some channels and containers-related trace points, which
are shown in Table 4-6.

Table 4-6 Event processing trace points for channels and containers

Point ID Module Lvl Type Data

EP
070A

DFHEPRL Exc Create Channel 1
EPRL parameter list
2
EP adapter name
3
PGCH parameter list

EP
070E

DFHEPRL Exc Get container failed 1
EPRL parameter list
2
EP adapter name
3
PGCR parameter list

EP
070F

DFHEPRL Exc Inquire channel failed 1
EPRL parameter list
2
EP adapter name
3
PGCH parameter list

EP
0A05

DFHEPXM Exc Bind channel error 1
XMAC parameter list
2
PGCH parameter list

EP
042F

DFHEPEV Exc ADAPTER container put
failed

1
EPEV parameter list
2
PGCH or PGCR
parameter list

EP
0606

DFHEPAS Exc Container error 1
EPAS parameter list
2
PGCR parameter list

EP
0607

DFHEPAS Exc Container length error 1
EPAS parameter list
2
PGCR parameter list
3
Container data
 Chapter 4. Systems management and configuration 115

4.6.3 Tracing channels and containers applications

As with most complex problems in CICS, a problem arising from using channels
and containers is probably best solved by obtaining a dump and inspecting it
using Interactive Problem Control System (IPCS).

The channel and containers trace points have been described previously. The
trace table in the memory dump is, more often than not, the best place to begin
debugging, looking first for the presence of any of the exception entries listed in
these tables previously mentioned.

This is usually a good indicator of why any given problem might have occurred,
and the trace entries, immediately before the exception entry, can provide vital
clues as to what led to the problem occurring in the first place.

Note: Trace points related to channels and containers are part of the standard
set of trace points in the application program domain, and you do not need to
turn on special tracing in CICS Trace Control Facility (CETR) to obtain them.
116 Using IBM CICS Transaction Server Channels and Containers

4.6.4 Sample application trace flow

The following sections depict the trace output of a sample application that we ran,
which includes some of the trace points listed previously.

The environment
We defined a transaction (BIGL), which uses an assembler program called
BIGLOC, as shown in Figure 4-4. This program allocates a 10 megabyte (MB)
user area containing x'FF', runs a put container command specifying a
channel (CHN), and then starts a second transaction (BIG).

Figure 4-4 The BIGLOC program

PTR1 DSECT
 DS CL16
DFHEISTG DSECT
CHN DS CL16
BIGONE DS CL16
BIGLOC CSECT
BEGIN DS 0H
 MVC BIGONE,=CL16'BIGONE '
 MVC CHN,=CL16'CHN '
 EXEC CICS GETMAIN FLENGTH(10000000) INITIMG(FFS) SET(PTR)
 USING PTR1,6
 EXEC CICS PUT CONTAINER(BIGONE) CHANNEL(CHN) FROM(PTR1)
X
 FLENGTH(LEN)
 EXEC CICS START TRANSID('BIG') CHANNEL(CHN)
RETURN DS 0H
 EXEC CICS RETURN
FFS DC XL1'FF'
PTR EQU 6
LEN DC XL4'989680'
 END
 Chapter 4. Systems management and configuration 117

The BIG transaction runs assembler program BIGREM, which runs a get
container command to retrieve the 10 MB of x'FF' that BIGLOC creates, and
then returns. Figure 4-5 provides the source code for the BIGREM program.

Figure 4-5 The BIGREM program

This application was started in three different modes:

� Specifying both the transactions, BIGL and BIG, as local. Therefore, they both
ran in the same CICS region, SCSCPTA1.

� Specifying the BIG transaction as remote, having the name BIG2, and
running on another CICS region (SCSCPAA1) in the same z/OS image
(therefore connecting to SCSCPTA1 with a multiregion operation (MRO) link).

� Specifying transaction BIG as remote, having the name BIG2, and running on
CICS region SCSCPAA4 in a different IBM MVS™ image (therefore using an
ISC LU6.2 connection between the two regions).

The application ran with an 8 MB internal trace active on all CICS regions, and
took SNAP dumps after each test.

PTR1 DSECT
 DS CL16
DFHEISTG DSECT
CHN DS CL16
BIGONE DS CL16
BIGREM CSECT
BEGIN DS 0H
 MVC BIGONE,=CL16'BIGONE '
 MVC CHN,=CL16'CHN '
 EXEC CICS GETMAIN FLENGTH(10000000) INITIMG(FFS) SET(PTR)
 USING PTR1,6
S EXEC CICS GET CONTAINER(BIGONE) CHANNEL(CHN) INTO(PTR1)
X
 FLENGTH(LEN)
RETURN DS 0H
 EXEC CICS RETURN
FFS DC XL1'FF'
PTR EQU 6
LEN DC XL4'989680'
 END
118 Using IBM CICS Transaction Server Channels and Containers

Transactions running locally
The first test was run inside SSYKZCCQ, where the BIGL transaction (BIGLOC
program) runs a put container command and starts the BIG transaction (BIGREM
program) that runs a get container. The size of the area passed is 10 MB, and it
contains x'FF'.

Figure 4-6 shows the first part of the trace output of this test, which produces the
following results:

1. After the BIGL transaction was started, with transaction number 00202, the
initial link to the BIGLOC program completes, trace entry 0001.

2. The BIGLOC program requests a 10 MB area (x'989680'). Therefore, we run
the GETMAIN function to allocate this request into extended user dynamic
storage area (EUDSA) and associate it to the task, as trace entries 0002 and
0003 show.

3. The BIGLOC program runs the put container command to move the data from
the EUDSA to the container, trace entry 0004.

4. This leads to a check, to see whether the CHN channel already exists.
Because it does not exist, a CHANNEL_NOT_FOUND condition is received, as
shown in trace entries 0005 and 0006.

Figure 4-6 Inquire channel

PG 0901 PGPG ENTRY - FUNCTION(INITIAL_LINK) PROGRAM_NAME(BIGLOC)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-A036878E TIME-14:25:47.7875687 =0001

SM 0C01 SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(989680) SUSPEND(YES)
INITIAL_IMAGE(FF) STORAGE_CLASS(USER) CALLER(EXEC)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-207A4BA3 TIME-14:25:48.9199094 =0002

SM 0C02 SMMG EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(22100008)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-207A4BA3 TIME-14:25:48.9214815 =0003

AP F801 EIBAM ENTRY - PUT_CONTAINER
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-80082DEA TIME-14:25:48.9214852 =0004

PG 1700 PGCH ENTRY - FUNCTION(INQUIRE_CHANNEL) CHANNEL_NAME(CHN)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-20727757 TIME-14:25:48.9214868 =0005

PG 1701 PGCH EXIT - FUNCTION(INQUIRE_CHANNEL) RESPONSE(EXCEPTION)
REASON(CHANNEL_NOT_FOUND) CONTAINER_POOL_TOKEN(00000000)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-20727757 TIME-14:25:48.9214874 =0006
 Chapter 4. Systems management and configuration 119

Figure 4-7 shows the next couple of steps:

1. The channel is now created with the name CHN, as shown in trace entries
0007 and 0010. It is allocated into the subpool (PGCHCB) in extended CICS
DSA (ECDSA).

2. The container pool is created too, as shown in trace entries 0008 and 0009. It
is allocated into the PGCPCB subpool in ECDSA.

Figure 4-7 Create channel

PG 1700 PGCH ENTRY - FUNCTION(CREATE_CHANNEL) CHANNEL_NAME(CHN) LINK_LEVEL(CURRENT)
CURRENT_CHANNEL(NO)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-207275E9 TIME-14:25:48.9214887 =0007

PG 1800 PGCP ENTRY - FUNCTION(CREATE_CONTAINER_POOL) CCSID(25) IMPORTED(NO)
CHANNEL_RELATED(YES)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE8F40C TIME-14:25:48.9214930 =0008

PG 1801 PGCP EXIT - FUNCTION(CREATE_CONTAINER_POOL) RESPONSE(OK)
POOL_TOKEN(20CC1060)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE8F40C TIME-14:25:48.9214950 =0009

PG 1701 PGCH EXIT - FUNCTION(CREATE_CHANNEL) RESPONSE(OK) CHANNEL_TOKEN(20CC0070)
CONTAINER_POOL_TOKEN(20CC1060)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-207275E9 TIME-14:25:48.9214951 =0010
120 Using IBM CICS Transaction Server Channels and Containers

Figure 4-8 shows the put container process:

1. After the setup of the environment for container creation is complete, the put
container command was run, as shown in trace entry 0011.

2. The GETMAIN function is used for the container, to copy the data from user
storage. The GETMAIN function is used in GSDSA subpool PGCSDB, for a
length of 10 MB (x'989680'), as shown in trace entry 0012.

3. Now the container is created and filled with data, as shown in trace entries
0013 and 0014.

Figure 4-8 Put container process

4. The BIGLOC program next performs a start of the BIG transaction.

5. This causes an inquire_channel command to be issued. This time, a positive
response is received, because channel CHN now exists.

PG 1900 PGCR ENTRY - FUNCTION(PUT_CONTAINER) POOL_TOKEN(20CC1060)
CONTAINER_NAME(BIGONE) CALLER(EXEC) ITEM_DATA(22100008 , 00989680)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-20722277 TIME-14:25:48.9219446 =0011

SM 4201 S2GF ENTRY - FUNCTION(GETMAIN) SUBPOOL_TOKEN(00000048_40704584 ,
00000000_0000006F) GET_LENGTH(98A000) SUSPEND(YES) REMARK(CSDB) LOCK_POOL(YES)
LMLM_ADDRESS(20C19FD0)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-1FE40937 TIME-14:25:48.9219524 =0012

SM 4202 S2GF EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(00000048_41600000)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-1FE40937 TIME-14:25:48.9219596 =0013

PG 1901 PGCR EXIT - FUNCTION(PUT_CONTAINER) RESPONSE(OK)
CONTAINER_TOKEN_OUT(20B73110) GENERATION_NUMBER(1) INITIAL_GENERATION(1)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-20722277 TIME-14:25:48.9283619 =0014

AP F802 EIBAM EXIT - PUT_CONTAINER RESP=0 RESP2=0
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-80082DEA TIME-14:25:48.9283635 =0015
 Chapter 4. Systems management and configuration 121

A copy of the channel, the container pool, and the previously created container is
created. Figure 4-9 and Figure 4-10 on page 123 show the process:

1. Trace entries 0016 and 0017 show the inquire_channel succeeding.

2. The copy channel, container pool, and container process were started, as
shown in trace entries 0018 - 0026.

3. Again, the GETMAIN function is used in GSDSA subpool PGCSDB, for a length
of 10 MB (x'989680').

4. Trace entries 0027 - 0029 show the positive end of the process.

Figure 4-9 Copy channel and container process (1)

PG 1700 PGCH ENTRY - FUNCTION(INQUIRE_CHANNEL) CHANNEL_NAME(CHN)
LINK_LEVEL(CURRENT)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-A079914C TIME-14:25:48.9283809 =0016

PG 1701 PGCH EXIT - FUNCTION(INQUIRE_CHANNEL) RESPONSE(OK) CHANNEL_TOKEN(20CC0070)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-A079914C TIME-14:25:48.9284031 =0017

PG 1700 PGCH ENTRY - FUNCTION(COPY_CHANNEL) CHANNEL_TOKEN(20CC0070)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-A0799228 TIME-14:25:48.9284038 =0018

SM 0301 SMGF ENTRY - FUNCTION(GETMAIN) SUBPOOL_TOKEN(1FAFD41C , 0000006A)
GET_LENGTH(40) SUSPEND(YES) INITIAL_IMAGE(00) REMARK (CHCB) LOCK_POOL(YES)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8F6A4 TIME-14:25:48.9284046 =0019

SM 0302 SMGF EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(20CC0030)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8F6A4 TIME-14:25:48.9284055 =0020

PG 1800 PGCP ENTRY - FUNCTION(COPY_CONTAINER_POOL) POOL_TOKEN(20CC1060)
CHANNEL_RELATED(YES)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8F760 TIME-14:25:48.9284062 =0021

SM 0301 SMGF ENTRY - FUNCTION(GETMAIN) SUBPOOL_TOKEN(1FAFD4E8 , 0000006B)
SUSPEND(YES) INITIAL_IMAGE(00) REMARK(CPCB) LOCK_POOL
 (YES)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE93190 TIME-14:25:48.9284069 =0022

SM 0302 SMGF EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(20CC1030)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE93190 TIME-14:25:48.9284070 =0023

PG 1900 PGCR ENTRY - FUNCTION(COPY_CONTAINER) CONTAINER_TOKEN(20B73110)
TO_POOL_TOKEN(20CC1030)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE92F68 TIME-14:25:48.9284081 =0024
122 Using IBM CICS Transaction Server Channels and Containers

Figure 4-10 is a continuation of the previous Figure 4-9 on page 122.

Figure 4-10 Copy channel and container process (2)

SM 4201 S2GF ENTRY - FUNCTION(GETMAIN) SUBPOOL_TOKEN(00000048_40704584 ,
00000000_0000006F) GET_LENGTH(98A000) SUSPEND(YES) REMARK (CSDB)
LOCK_POOL(YES) LMLM_ADDRESS(20C1B970)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-1FE40937 TIME-14:25:48.9284117 =0025

SM 4202 S2GF EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(00000048_41F8A000)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-1FE40937 TIME-14:25:48.9284142 =0026
..
PG 1901 PGCR EXIT - FUNCTION(COPY_CONTAINER) RESPONSE(OK)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE92F68 TIME-14:25:48.9316879 =0027

PG 1801 PGCP EXIT - FUNCTION(COPY_CONTAINER_POOL) RESPONSE(OK)
COPIED_POOL_TOKEN(20CC1030)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8F760 TIME-14:25:48.9316891 =0028

PG 1701 PGCH EXIT - FUNCTION(COPY_CHANNEL) RESPONSE(OK)
COPIED_CHANNEL_TOKEN(20CC0030)
TASK-00202 KE_NUM-0042 TCB-QR /008F8680 RET-A0799228 TIME-14:25:48.9316895 =0029
 Chapter 4. Systems management and configuration 123

Figure 4-11 shows the next stage of the process:

1. We start the BIG transaction locally in the same CICS. Therefore, the BIGLOC
program issues a return, as trace entry 0030 shows.

2. The delete functions for channel, container pool, and container start, as trace
entries 0031 - 0033 show.

3. The owned channel, container pool, and container were freed, other than the
copied container.

4. Also, the 10 MB user storage associated to the transaction was freed, as
shown in trace entry 0037.

Figure 4-11 Delete channel and container

AP 00E1 EIP ENTRY RETURN REQ(0004) FIELD-A(20D00A80
.}..) FIELD-B(08000E08) BOUNDARY(0200)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-A2010172 TIME-14:25:48.9325179 =0030

PG 1700 PGCH ENTRY - FUNCTION(DELETE_OWNED_CHANNELS) SCOPE(TRANSACTION)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE3697A TIME-14:25:48.9328367 =0031

PG 1800 PGCP ENTRY - FUNCTION(DELETE_CONTAINER_POOL) POOL_TOKEN(20CC1060)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE8FE42 TIME-14:25:48.9328378 =0032

PG 1900 PGCR ENTRY - FUNCTION(DELETE_CONTAINER) CONTAINER_TOKEN(20B73110)
CALLER(SYSTEM)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE93440 TIME-14:25:48.9328386 =0033
..
PG 1901 PGCR EXIT - FUNCTION(DELETE_CONTAINER) RESPONSE(OK)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE93440 TIME-14:25:48.9328468 =0034

PG 1801 PGCP EXIT - FUNCTION(DELETE_CONTAINER_POOL) RESPONSE(OK)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE8FE42 TIME-14:25:48.9328486 =0035

PG 1701 PGCH EXIT - FUNCTION(DELETE_OWNED_CHANNELS) RESPONSE(OK)
TASK-00202 KE_NUM-0042 TCB-L8003/008A02C0 RET-9FE3697A TIME-14:25:48.9328495 =0036

SM 0F0D SMAR EVENT - Storage_released - USER storage at 22100008
TASK-XM KE_NUM-0042 TCB-QR /008F8680 RET-9F7599BC TIME-14:25:48.9359276 =0037
1-0000 22100008
2-0000 11
3-0000 FFFFFFFF FFFFFFFF
124 Using IBM CICS Transaction Server Channels and Containers

The BIGL transaction ended, and control was passed to the BIG transaction, as
shown in task number 00204. Figure 4-12 shows the process flow:

1. The transaction environment was set up, and a bind for the channel was
performed, as shown in trace entries 0038 - 0039.

2. The channel found was set as the current channel, as shown in trace entries
0040 - 0041.

3. The BIGREM program was started, as shown in trace entry 0042.

4. The user storage of 10 MB for the transaction was allocated by the GETMAIN
function, as shown in trace entries 0043 - 0044.

Figure 4-12 BIG transaction started locally

Information: The channel token is the same as the one assigned to the
copy of the channel that Figure 4-9 on page 122 shows in trace entry 0020.

PG 1700 PGCH ENTRY - FUNCTION(BIND_CHANNEL) CHANNEL_TOKEN(20CC0030)
TASK-00204 KE_NUM-0040 TCB-QR /008F8680 RET-A091AFEC TIME-14:25:48.9339104 =0038

PG 1701 PGCH EXIT - FUNCTION(BIND_CHANNEL) RESPONSE(OK)
TASK-00204 KE_NUM-0040 TCB-QR /008F8680 RET-A091AFEC TIME-14:25:48.9339110 =0039

PG 1700 PGCH ENTRY - FUNCTION(SET_CURRENT_CHANNEL) CHANNEL_TOKEN(20CC0030)
OWNER(YES)
TASK-00204 KE_NUM-0040 TCB-QR /008F8680 RET-9FE36A18 TIME-14:25:48.9339239 =0040

PG 1701 PGCH EXIT - FUNCTION(SET_CURRENT_CHANNEL) RESPONSE(OK)
TASK-00204 KE_NUM-0040 TCB-QR /008F8680 RET-9FE36A18 TIME-14:25:48.9339246 =0041

AP 1940 APLI ENTRY - FUNCTION(START_PROGRAM) PROGRAM(BIGREM) CEDF_STATUS(CEDF)
EXECUTION_SET(FULLAPI) ENVIRONMENT_TYPE(EXEC) SYNCONRETURN(NO)
LANGUAGE_BLOCK(20E0D5D4) COMMAREA(00000000 , 00000000) LINK_LEVEL(1)
SYSEIB_REQUEST(NO)
TASK-00204 KE_NUM-0040 TCB-QR /008F8680 RET-9FE32EB4 TIME-14:25:48.9339258 =0042

SM 0C01 SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(989680) SUSPEND(YES)
INITIAL_IMAGE(FF) STORAGE_CLASS(USER) CALLER(EXEC)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-207A4BA3 TIME-14:25:48.9342775 =0043

SM 0C02 SMMG EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(22B00008)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-207A4BA3 TIME-14:25:48.9358818 =0044
 Chapter 4. Systems management and configuration 125

5. The get container command was run, moving the data from the container to
the user storage that trace entries 0045 - 0050 show.

Notice the item buffer on trace entry 0048, which contains the address and
length of the area into which the container was copied. The address and the
length are those provided by the GETMAIN function in the previous trace entry
0044, which is shown in Figure 4-12 on page 125.

Figure 4-13 shows the get container process.

Figure 4-13 Get container into storage

The process completes. After this, the BIGREM program runs the return
command, and the copies of the channel, container pool, and container areas
are freed. Figure 4-14 on page 127 shows trace entries for this phase, which the
following steps explain:

1. The BIGREM program issues the EXEC CICS RETURN command, as trace entry
0051 shows.

2. This leads to program control deleting the owned channel, container pool, and
container areas, as trace entries 0052 - 0054 show.

3. FREEMAIN functions are issued for the subpools owning those areas, as trace
entry 0055 shows.

AP F801 EIBAM ENTRY - GET_CONTAINER
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-80082DEA TIME-14:25:48.9358859 =0045

PG 1700 PGCH ENTRY - FUNCTION(INQUIRE_CHANNEL) CHANNEL_NAME(CHN)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-20727757 TIME-14:25:48.9358869 =0046

PG 1701 PGCH EXIT - FUNCTION(INQUIRE_CHANNEL) RESPONSE(OK)
CONTAINER_POOL_TOKEN(20CC1030)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-20727757 TIME-14:25:48.9358875 =0047

PG 1900 PGCR ENTRY - FUNCTION(GET_CONTAINER_INTO) POOL_TOKEN(20CC1030)
CONTAINER_NAME(BIGONE) CALLER(EXEC) ITEM_BUFFER(22B00008 , 00000000 , 00989680)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-20727A05 TIME-14:25:48.9363466 =0048

PG 1901 PGCR EXIT - FUNCTION(GET_CONTAINER_INTO) RESPONSE(OK) USERACCESS(ANY)
DATATYPE(BIT) ITEM_BUFFER(22B00008 , 00989680 , 00989680) GENERATION_NUMBER(1)
INITIAL_GENERATION(1) CONTAINER_CCSID(25)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-20727A05 TIME-14:25:48.9395862 =0049

AP F802 EIBAM EXIT - GET_CONTAINER RESP=0 RESP2=0
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-80082DEA TIME-14:25:48.9395877 =0050
126 Using IBM CICS Transaction Server Channels and Containers

4. The BIG transaction completes and the user storage is freed, as trace entry
0059 shows.

Figure 4-14 Ending the transaction: Delete channel

Note: The address of the container area that FREEMAIN was used for is the
same as Figure 4-10 on page 123 shows. This was the address of the area
that the BIGL transaction allocated to copy the container.

AP 00E1 EIP ENTRY RETURN REQ(0004) FIELD-A(20D10A80
.J..) FIELD-B(08000E08) BOUNDARY(0440)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-A2010332 TIME-14:25:48.9395889 =0051

PG 1700 PGCH ENTRY - FUNCTION(DELETE_OWNED_CHANNELS) SCOPE(TRANSACTION)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-9FE3697A TIME-14:25:48.9395966 =0052

PG 1800 PGCP ENTRY - FUNCTION(DELETE_CONTAINER_POOL) POOL_TOKEN(20CC1030)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-9FE8FE42 TIME-14:25:48.9395971 =0053

PG 1900 PGCR ENTRY - FUNCTION(DELETE_CONTAINER) CONTAINER_TOKEN(20B730A0)
CALLER(SYSTEM)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-9FE93440 TIME-14:25:48.9395976 =0054

SM 4201 S2GF ENTRY - FUNCTION(FREEMAIN) SUBPOOL_TOKEN(00000048_40704584 ,
00000000_0000006F) ADDRESS(00000048_41F8A000) FREE_LENGTH (98A000) REMARK(CSDB)
LOCK_POOL(YES) LMLM_ADDRESS(20C0ABC0)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-1FE40A7F TIME-14:25:48.9395986 =0055
..
PG 1901 PGCR EXIT - FUNCTION(DELETE_CONTAINER) RESPONSE(OK)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-9FE93440 TIME-14:25:48.9396026 =0056

PG 1801 PGCP EXIT - FUNCTION(DELETE_CONTAINER_POOL) RESPONSE(OK)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-9FE8FE42 TIME-14:25:48.9396040 =0057

PG 1701 PGCH EXIT - FUNCTION(DELETE_OWNED_CHANNELS) RESPONSE(OK)
TASK-00204 KE_NUM-0040 TCB-L8002/008A7C88 RET-9FE3697A TIME-14:25:48.9396047 =0058
..
SM 0F0D SMAR EVENT - Storage_released - USER storage at 22B00008
TASK-XM KE_NUM-0040 TCB-QR /008F8680 RET-9F7599BC TIME-14:25:48.9403285 =0059
1-0000 22B00008
2-0000 11
3-0000 FFFFFFFF FFFFFFFF
 Chapter 4. Systems management and configuration 127

4.6.5 Multiregion operation flow

In this example, we define a transaction named BIG1 in CICS region
SSYKZCCQ (SYSA). The related COBOL program is BIGCN1 performing the
same EXEC CICS PUT CONTAINER command as BIGLOC did in the previous section
to pass a 10 MB user area to the started transaction (BIG2).

Here, the BIG2 transaction is defined as remote and running on region
SSYKZCCR (SYSB). SSYKZCCQ and SSYKZCCR were on the same MVS
image and connected by an MRO. The BIG2 transaction starts program BIGREM,
which performed the EXEC CICS GET CONTAINER command.

Tracing the terminal-owning region
The initial part of this is the same as described in Chapter 3, “Programming” on
page 65:

1. Transaction BIG1 was started and program BIGCN1 got control. It used
GETMAIN for the 10 MB user area and performed an EXEC CICS PUT CONTAINER
command. See Figure 4-6 on page 119 and Figure 4-7 on page 120.

2. The CHN channel, container pool, and BIGONE container are allocated in the
proper subpools. See Figure 4-8 on page 121.

3. The start was issued for transaction BIG2, which caused a copy of the
channel, container pool, and container areas to be created in the same
subpools. See Figure 4-9 on page 122 and Figure 4-10 on page 123.

The environment to start the BIG transaction is now ready.

In Example 4-1, you can see the following items:

1. The BIG2 transaction is located, as shown in trace entries 0001 - 0004.

2. It is found that it had to run on CICS SYSB, therefore, the ISP CONVERSE is
issued, as shown in trace entry 0005.

3. The TCTSE for CICS SYSB is found, as shown in trace entries 0006 - 0009.

4. The transformer 1 program is called, as shown in trace entry 0010.

5. An estimation of the amount of data to send is performed, and the result is
x'9896D4', as shown in trace entries 0011 - 0012.

Example 4-1 Transmitting the channel: Part 1

XM 0401 XMLD ENTRY - FUNCTION(LOCATE_AND_LOCK_TRANDEF) TRANSACTION_ID(BIG2)
BUNDLE_PROTECT(YES)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A078FD28 TIME-12:01:33.6650073 =0001

128 Using IBM CICS Transaction Server Channels and Containers

DD 0301 DDLO ENTRY - FUNCTION(LOCATE) DIRECTORY_TOKEN(1FB00060) ENTRY_NAME(20C11E4C)
DIRECTORY_NAME(TXD) NAME(BIG2)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-9F84D44E TIME-12:01:33.6650087 =0002=

DD 0302 DDLO EXIT - FUNCTION(LOCATE) RESPONSE(OK) DATA_TOKEN(20EF1C90 , D7000000)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-9F84D44E TIME-12:01:33.6650095 =0003

XM 0402 XMLD EXIT - FUNCTION(LOCATE_AND_LOCK_TRANDEF) RESPONSE(OK)
TRANDEF_TOKEN(20EF7810 , 000002D4)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A078FD28 TIME-12:01:33.6650106 =0004

AP 00DF ISP ENTRY CONVERSE REQ(0003) FIELD-A(04000000
....) FIELD-B(E2E8E2C2 SYSB)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A079291C TIME-12:01:33.6650196 =0005

AP FD02 ZLOC ENTRY LOCATE ID(SYSB) LOC_REQ ID_LOCAL
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03E6864 TIME-12:01:33.6650206 =0006

AP EA01 TMP EXIT FUNCTION(LOCATE) TABLE(TCTS) KEY(SYSB) ENTRY_ADDRESS(20CB11E0)
RESPONSE(NORMAL)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A048A94A TIME-12:01:33.6650270 =0007

AP FD0B ZISP ENTRY FACILITY_REQ TCTTE(20CB11E0) ALLOCATE FREESYNC FREEREST UNPROT Q
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03E6B14 TIME-12:01:33.6650323 =0008

AP FD8B ZISP EXIT FACILITY_REQ
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03E6B14 TIME-12:01:33.6653640 =0009

AP D902 XFX ENTRY - TRANSFORMER_1 PLIST_ADDR(20C11BD4) FUNCTION(1008)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03E6E12 TIME-12:01:33.6653658 =0010

AP 4E00 APCR ENTRY - FUNCTION(ESTIMATE_ALL) CHANNEL_TOKEN(20ECD070)
COMMAND(START_MRO)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A073D310 TIME-12:01:33.6653865 =0011

AP 4E01 APCR EXIT - FUNCTION(ESTIMATE_ALL) RESPONSE(OK) BYTES_NEEDED(9896D4)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A073D310 TIME-12:01:33.6653905 =0012

Now the container data can start to be sent over an MRO link.
 Chapter 4. Systems management and configuration 129

Example 4-2 shows the process of sending the buffer of data to SSYKZCCR:

1. The 32 KB buffer is set with the GETMAIN function, with a length x'8210'. The
IOAREALEN parameter cannot alter this length, as shown in trace entries 0013 -
0014.

2. The export_all function over an MRO link is started, as shown in trace entry
0015.

3. An attempt to get the whole container into the acquired area is made, as
shown in trace entry 0016.

4. The response more_data is received because the container is 10 MB long, as
shown in trace entry 0017.

5. Therefore, the first 32 KB buffer is sent over an MRO link, as trace entries
0018 - 0020 show.

This process is repeated using 32 KB buffers until the whole container transmits
to CICS SYSB.

Example 4-2 Transmitting the channel: Part 2

SM 0C01 SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(8210) TCTTE_ADDRESS(21005030)
SUSPEND(YES) INITIAL_IMAGE(00) STORAGE_CLASS (TERMINAL)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A073A67C TIME-12:01:33.6654019 =0013

SM 0C02 SMMG EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(2108A000)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A073A67C TIME-12:01:33.6654119 =0014

AP 4E00 APCR ENTRY - FUNCTION(EXPORT_ALL) TERMINAL_TOKEN(21005030)
CHANNEL_TOKEN(20ECD070) COMMAND(START_MRO)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A073D97A TIME-12:01:33.6654146 =0015

PG 1900 PGCR ENTRY - FUNCTION(GET_CONTAINER_INTO) CONTAINER_TOKEN(20AFF110)
CALLER(SYSTEM) CONVERT(NO) ITEM_BUFFER(2108A2B3 , 00000000 , 00007D58)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A01D7552 TIME-12:01:33.6654181 =0016

PG 1901 PGCR EXIT - FUNCTION(GET_CONTAINER_INTO) RESPONSE(EXCEPTION)
REASON(MORE_DATA) ITEM_BUFFER(2108A2B3 , 00007D58 , 00007D58)
DATA_TOKEN_OUT(20C26080 , 00007D58)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A01D7552 TIME-12:01:33.6654278 =0017
..
AP DD21 ZIS2 EVENT - IRC SWITCH FIRST TO SYSTEM (IYCKZCCR) - RETURN CODE WAS
00000000
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03BE638 TIME-12:01:33.6658764 =0018

130 Using IBM CICS Transaction Server Channels and Containers

AP DD22 ZIS2 EVENT - IRC OUTBOUND REQUEST HEADER: FMH RQE BB - PLUS LU62 FMH5,
SEQNUM(928)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03BE638 TIME-12:01:33.6658769 =0019

AP FC01 ZARQ EVENT MRO/LU6.1 STATE SETTING TO SEND
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A01D6FAC TIME-12:01:33.6670094 =0020

The final part of the transmission phase is shown in Example 4-3:

1. Trace entries 0021 and 0022 show that only 1847 bytes remain. Therefore,
this time the get_container_into received a response OK rather than
more_data as before.

2. The export_all function is exited, as shown by trace entry 0023. The last
buffer is sent, as trace entries 0024 - 0025 show.

3. At the end of the process, transformer 4 got control, and the ISP converse
and the EIP start are exited, as shown in trace entries 0026 - 0029.

Example 4-3 Transmitting the channel: Part 3

PG 1900 PGCR ENTRY - FUNCTION(GET_CONTAINER_INTO) CALLER(SYSTEM) CONVERT(NO)
ITEM_BUFFER(2108A00C , 00000000 , 00007FFF) DATA_TOKEN_IN(20C26080 , 00987C28)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A01D7674 TIME-12:01:33.7319224 =0021

PG 1901 PGCR EXIT - FUNCTION(GET_CONTAINER_INTO) RESPONSE(OK) ITEM_BUFFER(2108A00C ,
00001A58 , 00007FFF) DATA_TOKEN_OUT(00000000 , 00000000)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A01D7674 TIME-12:01:33.7319254 =0022

AP 4E01 APCR EXIT - FUNCTION(EXPORT_ALL) RESPONSE(OK) TC_RESPONSE(0) TC_ABEND()
TC_SENSE(00000000)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A073D97A TIME-12:01:33.7319276 =0023

AP DD21 ZIS2 EVENT - IRC SWITCH SUBSEQUENT TO SYSTEM (IYCKZCCR) - RETURN CODE WAS
00000000
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03BE638 TIME-12:01:33.7319338 =0024

AP DD22 ZIS2 EVENT - IRC OUTBOUND REQUEST HEADER: RQE CD , SEQNUM(1233)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03BE638 TIME-12:01:33.7319340 =0025
...
AP D902 XFX ENTRY - TRANSFORMER_4 PLIST_ADDR(20C11BD4) FUNCTION(1008)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03E72D8 TIME-12:01:33.7496153 =0026

AP D903 XFX EXIT - TRANSFORMER_4 PLIST_ADDR(20C11BD4) FUNCTION(1008)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A03E72D8 TIME-12:01:33.7496158 =0027

 Chapter 4. Systems management and configuration 131

AP 00DF ISP EXIT CONVERSE REQ(0005) FIELD-A(04000000) FIELD-B(E2E8E2C2 SYSB)
TASK-00121 KE_NUM-0042 TCB-QR /008F8680 RET-A079291C TIME-12:01:33.7496254 =0028

AP 00E1 EIP EXIT START OK REQ(00F4) FIELD-A(00000000) FIELD-B(00001008)
BOUNDARY(0200)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-A201015C TIME-12:01:34.3823071 =0029

The BIG1 transaction now ends:

1. Example 4-4 shows that after the return and the exit of the start function that
trace entries 0030 - 0031 show, the channel and container environment for
transaction BIG1 is freed, as the trace entries 0032 - 0041 show.

2. The FREEMAIN for PGCSDB is shown in trace entries 0035 - 0036.

3. Finally, the normal termination for transaction BIG1 occurs, and the 10 MB
user storage is freed.

Example 4-4 End of transaction on terminal-owning region

AP 00E1 EIP ENTRY RETURN REQ(0004) FIELD-A(20D00A80 .}..) FIELD-B(08000E08)
BOUNDARY(0200)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-A2010172 TIME-12:01:34.3823083 =0030

AP 1941 APLI EXIT - FUNCTION(START_PROGRAM) RESPONSE(OK) ABEND_CODE()
IGNORE_PENDING_XCTL(NO) Program_name(BIGCN1)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-9FE32EB4 TIME-12:01:36.9055516 =0031

PG 1700 PGCH ENTRY - FUNCTION(DELETE_OWNED_CHANNELS) SCOPE(TRANSACTION)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-9FE3697A TIME-12:01:36.9057106 =0032

PG 1800 PGCP ENTRY - FUNCTION(DELETE_CONTAINER_POOL) POOL_TOKEN(20EF8030)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-9FE8FE42 TIME-12:01:36.9057120 =0033

PG 1900 PGCR ENTRY - FUNCTION(DELETE_CONTAINER) CONTAINER_TOKEN(20AFF0A0)
CALLER(SYSTEM)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-9FE93440 TIME-12:01:36.9057140 =0034

SM 4201 S2GF ENTRY - FUNCTION(FREEMAIN) SUBPOOL_TOKEN(00000048_40704584 ,
00000000_0000006F) ADDRESS(00000048_41600000) FREE_LENGTH (98A000) REMARK(CSDB)
LOCK_POOL(YES) LMLM_ADDRESS(20C11BC0)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-1FE40A7F TIME-12:01:36.9057190 =0035

SM 4202 S2GF EXIT - FUNCTION(FREEMAIN) RESPONSE(OK)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-1FE40A7F TIME-12:01:36.9057275 =0036

132 Using IBM CICS Transaction Server Channels and Containers

PG 1901 PGCR EXIT - FUNCTION(DELETE_CONTAINER) RESPONSE(OK)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-9FE93440 TIME-12:01:36.9057296 =0037

PG 1801 PGCP EXIT - FUNCTION(DELETE_CONTAINER_POOL) RESPONSE(OK)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-9FE8FE42 TIME-12:01:36.9057313 =0038

PG 1701 PGCH EXIT - FUNCTION(DELETE_OWNED_CHANNELS) RESPONSE(OK)
TASK-00121 KE_NUM-0042 TCB-L8005/008AAC88 RET-9FE3697A TIME-12:01:36.90573212 =0039

Tracing the application-owning region
This section describes the SSYKZCCR region, and explains the processes that
occurred, as shown in Example 4-5:

1. Input is received from SSYKZCCQ, trace entries 0040 - 0043. The seqnum is
928. Therefore, it is the first buffer sent, as trace entry 0019 in Example 4-2
on page 130 shows.

2. A CICS mirror transaction, number 00083, is attached to manage the
receiving of the data, as shown in trace entry 0045.

3. After CICS mirror transaction starts, the import_all function is performed, as
shown in trace entry 0048.

The CICS mirror transaction creates the channel, container pool, and container
for the incoming data, as trace entries 0047 - 0049 show.

Example 4-5 CICS mirror transaction creating the channel

AP DD18 CRNP EVENT - DEQUEUE WORK ELEMENT TYPE (INITIAL INPUT RECEIVED) TIMESTAMP
(CDF39635C866430D) SCCB AT 7F5DDE70 TCTTE AT 21006930 SESSION NAME AR1 SYSTEM
IYCKZCCQ
TASK-00023 KE_NUM-0008 TCB-QR /008F8680 RET-0008B614 TIME-12:01:33.6659271 =0040

AP FD0D ZIS2 ENTRY IRC TCTTE(21006930) GETDATA
TASK-00023 KE_NUM-0008 TCB-QR /008F8680 RET-A00F9B98 TIME-12:01:33.6659301 =0041

AP DD20 ZIS2 EVENT - IRC PULL - DATA FROM SYSTEM (IYCKZCCQ) - RETURN CODE WAS
00000000
TASK-00023 KE_NUM-0008 TCB-QR /008F8680 RET-A00F9B98 TIME-12:01:33.6660216 =0042

AP DD15 CRNP EVENT - IRC INBOUND REQUEST HEADER: FMH RQE BB , SEQNUM(928)
TASK-00023 KE_NUM-0008 TCB-QR /008F8680 RET-0008B614 TIME-12:01:33.6660231 =0043

AP FD11 ZATT ENTRY ATTACH ID(AR1)
TASK-00023 KE_NUM-0008 TCB-QR /008F8680 RET-A00F92C6 TIME-12:01:33.6660253 =0044

 Chapter 4. Systems management and configuration 133

XM 1101 XMAT ENTRY - FUNCTION(ATTACH) TRANSACTION_ID(CSMI) EXTERNAL_UOW_ID(1F934DF4
,
0000001B) PRIORITY(0) START_CODE(T) RETURN_NOT_FOUND(NO) USE_DTRTRAN(YES)
PRIMARY_CLIENT_TYPE(MRO_SESSION) PRIMARY_CLIENT_REQ_BLOCK(21006930 , 02130000)
TRANSACTION_GROUP(SAME) WLM_SRC_TOKEN(055D8000) TRANSACTION_GROUP_ID(1F934E78 ,
0000001C) ORIGIN_DATA (21086083 , 000001EC) ADAPTER_FIELDS(00000000 , 00000000)
INITIAL_IS_CURRENT_CTX(NO)
TASK-00023 KE_NUM-0008 TCB-QR /008F8680 RET-A03B8036 TIME-12:01:33.6660301 =0045
...
AP 4E00 APCR ENTRY - FUNCTION(IMPORT_ALL) TERMINAL_TOKEN(21006930) DATA_START(253)
COMMAND(START_MRO)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A0735576 TIME-12:01:33.6669420 =0046

PG 1700 PGCH ENTRY - FUNCTION(CREATE_CHANNEL) CHANNEL_NAME(CHN) CCSID(25)
LINK_LEVEL(CURRENT) CURRENT_CHANNEL(NO) IMPORTED(NO)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A01D6C20 TIME-12:01:33.6669465 =0047

PG 1800 PGCP ENTRY - FUNCTION(CREATE_CONTAINER_POOL) CCSID(25) IMPORTED(NO)
CHANNEL_RELATED(YES)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8F40C TIME-12:01:33.6669514 =0048

PG 1801 PGCP EXIT - FUNCTION(CREATE_CONTAINER_POOL) RESPONSE(OK)
POOL_TOKEN(20EFF060)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8F40C TIME-12:01:33.6669538 =0049

Figure 4-15 on page 135 shows the put container process:

1. A put container command is issued to receive the first 32 KB buffer of data,
as shown in trace entry 0050.

2. This leads to a GETMAIN function in subpool PGCSDB to acquire the container
area for the 32 KB buffer of data, as shown in trace entry 0051.

3. After the first 32 KB buffer is received into the container, the put container
exits, as trace entry 0053 shows.

4. When the next 32 KB buffer of data is available, another put container is
issued and the cycle repeats, until all the 10 MB of data are put into the
container. In this case, it is repeated 132 times, as you can see from the
generation_number in trace entry 0054.
134 Using IBM CICS Transaction Server Channels and Containers

Figure 4-15 Put container cycle

Figure 4-16 on page 136 shows the COPY channel process

1. Receiving the complete data into the container ends the import_all function,
as shown in trace entry 0055.

2. The request to start transaction BIG2 is received, as shown in trace entries
0056-0058.

3. This leads to a copy of the channel, container pool, and container data being
created. Therefore, the amount of storage allocated is duplicated in the same
subpools (PGCPCB, PGCHCB, and PGCSCB), as shown in trace entries
0059-0061.

4. The copy of the channel and container is made available to the BIG2
transaction, as shown in trace entry 0062.

5. After this, it detaches itself from the channel, as trace entry 0063 shows, and
deletes the container, as shown in trace entries 0064 - 0067. The subpool
storage related to the original container is freed, but not the copied one,
because this is passed to BIG2.

6. Finally, the CICS mirror transaction ends and BIG2 gets control, with
transaction number 0068.

PG 1900 PGCR ENTRY - FUNCTION(PUT_CONTAINER) POOL_TOKEN(20EFF060)
CONTAINER_NAME(BIGONE) CALLER(IMPORTED) TYPE(USER) USERACCESS(ANY)
DATATYPE(BIT) CONVERT(NO) PUT_TYPE(REPLACE) ITEM_DATA(210862B3 ,
00007D58)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A01D7598 TIME-12:01:33.6669573 =0050

SM 4201 S2GF ENTRY - FUNCTION(GETMAIN) SUBPOOL_TOKEN(00000048_40704584 ,
00000000_0000006F) GET_LENGTH(8000) SUSPEND(YES) REMARK (CSDB)
LOCK_POOL(YES) LMLM_ADDRESS(20C19840)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-1FE40937 TIME-12:01:33.6669651 =0051

SM 4202 S2GF EXIT - FUNCTION(GETMAIN) RESPONSE(OK) ADDRESS(00000048_40C01000)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-1FE40937 TIME-12:01:33.6669680 =0052
..
PG 1901 PGCR EXIT - FUNCTION(PUT_CONTAINER) RESPONSE(OK) GENERATION_NUMBER(1)
INITIAL_GENERATION(1)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A01D7598 TIME-12:01:33.6669810 =0053
..
PG 1901 PGCR EXIT - FUNCTION(PUT_CONTAINER) RESPONSE(OK) GENERATION_NUMBER(132)
INITIAL_GENERATION(1)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A01D7598 TIME-12:01:33.7319465 =0054
 Chapter 4. Systems management and configuration 135

Figure 4-16 shows the COPY channel process trace entries.

Figure 4-16 Copy the channel

AP 4E01 APCR EXIT - FUNCTION(IMPORT_ALL) RESPONSE(OK) CHANNEL_TOKEN(20EEA070)
CHANNEL_NAME(CHN) TC_RESPONSE(0) TC_ABEND() TC_SENSE (00000000) SIZE(9896D4)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A0735576 TIME-12:01:33.7319513 =0055

AP 00E1 EIP ENTRY START REQ(0004) FIELD-A(20C174E8 .A.Y) FIELD-B(08001008)
BOUNDARY(0200)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A13D5034 TIME-12:01:33.7319582 =0056

PG 1700 PGCH ENTRY - FUNCTION(INQUIRE_CHANNEL) CHANNEL_NAME(CHN) LINK_LEVEL(CURRENT)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A079F64C TIME-12:01:33.7319664 =0057

PG 1701 PGCH EXIT - FUNCTION(INQUIRE_CHANNEL) RESPONSE(OK) CHANNEL_TOKEN(20EEA070)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A079F64C TIME-12:01:33.7319670 =0058

PG 1700 PGCH ENTRY - FUNCTION(COPY_CHANNEL) CHANNEL_TOKEN(20EEA070)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A079F728 TIME-12:01:33.7319675 =0059

PG 1800 PGCP ENTRY - FUNCTION(COPY_CONTAINER_POOL) POOL_TOKEN(20EFF060)
CHANNEL_RELATED(YES)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8F760 TIME-12:01:33.7319702 =0060

PG 1900 PGCR ENTRY - FUNCTION(COPY_CONTAINER) CONTAIbNER_TOKEN(20AFF110)
TO_POOL_TOKEN(20EFF030)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-9FE92F68 TIME-12:01:33.7322205 =0061
..
AP 00E1 EIP EXIT START OK REQ(00F4) FIELD-A(00000000) FIELD-B(00001008)
BOUNDARY(0200)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A13D5034 TIME-12:01:33.7411030 =0062

PG 1700 PGCH ENTRY - FUNCTION(DETACH_CHANNEL) CHANNEL_TOKEN(20EEA070) DELETE(YES)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A07356A6 TIME-12:01:33.7411093 =0063

PG 1800 PGCP ENTRY - FUNCTION(DELETE_CONTAINER_POOL) POOL_TOKEN(20EFF060)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8FA02 TIME-12:01:33.7411101 =0064

PG 1700 PGCH ENTRY - FUNCTION(DETACH_CHANNEL) CHANNEL_TOKEN(20EEA070) DELETE(YES)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-A07356A6 TIME-12:01:33.7411093 =0065

PG 1800 PGCP ENTRY - FUNCTION(DELETE_CONTAINER_POOL) POOL_TOKEN(20EFF060)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-9FE8FA02 TIME-12:01:33.7411101 =0066

PG 1900 PGCR ENTRY - FUNCTION(DELETE_CONTAINER) CONTAINER_TOKEN(20AFF110)
CALLER(SYSTEM)
TASK-00083 KE_NUM-0042 TCB-QR /008F8680 RET-9FE93440 TIME-12:01:33.7411107 =0067
136 Using IBM CICS Transaction Server Channels and Containers

Figure 4-17 shows the start of the get container process:

1. The BIG2 transaction performs the initial link to the BIGREM program, as trace
entry 0068 shows, and the current channel is set, as shown in trace entries
0069 - 0070.

2. The BIGREM program uses the GETMAIN function to allocate the 10 MB user
storage required, as shown in trace entries 0071 - 0072.

3. The get_container command is issued, as shown in trace number 0073.

Figure 4-17 Get container start

PG 0901 PGPG ENTRY - FUNCTION(INITIAL_LINK) PROGRAM_NAME(BIGREM)
TASK-00084 KE_NUM-0043 TCB-QR /008F8680 RET-9F758DD2 TIME-12:01:33.7513875 =0068

PG 1700 PGCH ENTRY - FUNCTION(SET_CURRENT_CHANNEL) CHANNEL_TOKEN(20EEA030)
OWNER(YES)
TASK-00084 KE_NUM-0043 TCB-QR /008F8680 RET-9FE36A18 TIME-12:01:33.7518134 =0069

PG 1701 PGCH EXIT - FUNCTION(SET_CURRENT_CHANNEL) RESPONSE(OK)
TASK-00084 KE_NUM-0043 TCB-QR /008F8680 RET-9FE36A18 TIME-12:01:33.7518142 =0070

AP E123 EISC ENTRY - GETMAIN
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-80082DEA TIME-12:01:33.7518648 =0071

SM 0C01 SMMG ENTRY - FUNCTION(GETMAIN) GET_LENGTH(989680) SUSPEND(YES)
INITIAL_IMAGE(FF) STORAGE_CLASS(USER) CALLER(EXEC)
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-207C27A3 TIME-12:01:33.7518691 =0072

AP F801 EIBAM ENTRY - GET_CONTAINER
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-80082DEA TIME-12:01:33.7539396 =0073
 Chapter 4. Systems management and configuration 137

To conclude the get container process, the following steps are performed as
Figure 4-18 shows:

1. An inquiry for channel CHN is performed, resulting in the find of the proper
container, as shown in trace entries 0074 - 0075.

2. Container BIGONE is copied into the user storage allocated by the GETMAIN
function, as trace entries 0076 - 0078 show.

Figure 4-18 Get container end

The BIGREM program runs an EXEC CICS RETURN command to end the process.
This leads to the remaining copied channel and container storage allocated in
the GCDSA subpools being freed. However, the trace entries for this process are
not illustrated.

4.6.6 Intersystem communication flow

The trace activated on the ISC connection between CICSPTA1 and CICSPAA4
shows exactly the same behavior as the MRO tracing from a channel and
container point of view. However, the communication protocol is different, as are
the modules involved. Nevertheless, the management of channel and container
storage inside the terminal-owning region (TOR) and application-owning region
(AOR) is quite similar to the MRO process described previously.

PG 1700 PGCH ENTRY - FUNCTION(INQUIRE_CHANNEL) CHANNEL_NAME(CHN)
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-2073D057 TIME-12:01:33.7539412 =0074

PG 1701 PGCH EXIT - FUNCTION(INQUIRE_CHANNEL) RESPONSE(OK)
CONTAINER_POOL_TOKEN(20EFF030)
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-2073D057 TIME-12:01:33.7539417 =0075

PG 1900 PGCR ENTRY - FUNCTION(GET_CONTAINER_INTO) POOL_TOKEN(20EFF030)
CONTAINER_NAME(BIGONE) CALLER(EXEC) ITEM_BUFFER(22100008 , 00000000 , 00989680)
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-2073D305 TIME-12:01:33.7544125 =0076

PG 1901 PGCR EXIT - FUNCTION(GET_CONTAINER_INTO) RESPONSE(OK) USERACCESS(ANY)
DATATYPE(BIT) ITEM_BUFFER(22100008 , 00989680 , 00989680) GENERATION_NUMBER(1)
INITIAL_GENERATION(1) CONTAINER_CCSID(25)
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-2073D305 TIME-12:01:33.7588918 =0077

AP F802 EIBAM EXIT - GET_CONTAINER RESP=0 RESP2=0
TASK-00084 KE_NUM-0043 TCB-L8001/008AAC88 RET-80082DEA TIME-12:01:33.7588960 =0078
138 Using IBM CICS Transaction Server Channels and Containers

Chapter 5. Sample application

This chapter describes the process you can use to port an existing IBM
Customer Information Control System (CICS) application to use channels and
containers rather than using communication areas (COMMAREAs). To show the
porting process, this chapter uses the CICS catalog manager example
application.

In this chapter, we also demonstrate how to use the Java CICS (JCICS) channel
and container application programming interface (API) commands within a
Liberty profile servlet. We show in detail how to use a Liberty profile servlet to
access the existing catalog manager business logic using JCICS channel and
container commands.

5

© Copyright IBM Corp. 2006, 2015. All rights reserved. 139

5.1 Implementation scenario

The original CICS catalog example application is designed to demonstrate how
to extend an IBM 3270 CICS Common Business Oriented Language (COBOL)
application to use web service support. The web service support extension for
the base application provides a web client front end and a web service endpoint.
Therefore, either the web client front end or the IBM 3270 interface of the catalog
manager application can drive the business logic of the example application.

The CICS catalog example program has a modular structure with well-defined
interfaces. The EXEC CICS LINK command calls these various components using
a COMMAREA.

What is the requirement to change the design of such an approved existing CICS
application? For an existing CICS application, the COMMAREA is equivalent to
the functions that channels and containers provide. If you do not have any
COMMAREA constraints, and if you have no plans to extend your application
design (which eventually would exceed the COMMAREA limit), there is no
reason to port the application to the new function.

COMMAREA-based CICS application programs can be extended or modernized
in many ways using the capabilities of web services or CICS Liberty profile
servlets. If you use an Extensible Markup Language (XML)-based or
servlet-based front end to call your existing business logic, you might have
additional requirements that can exceed the limit of your COMMAREAs.

To demonstrate how to port an existing COMMAREA-based program, we use the
CICS catalog example application to show the function of channels and
containers. This section covers the following topics:

� The CICS catalog manager example application
� The base application
� Porting steps: CICS back end
� Stage 1: Porting to the new function
� Using channels and containers: A first approach
� Best practice approach: Replacing the COMMAREA
� Stage 2: Place an order using a Liberty profile servlet
� Running the application

Note: Based on the previously described starting position, we decided to
provide a Liberty profile servlet that can also be used to access the catalog
business logic. The servlet can use JCICS API services, such as channel,
container, and program link commands.
140 Using IBM CICS Transaction Server Channels and Containers

5.1.1 The CICS catalog manager example application

We use a Liberty profile servlet to demonstrate how to access the back-end
CICS Cobol catalog manager using JCICS link with the channels and containers
API. The CICS servlet uses the JCICS API to access CICS directly, so we
developed the catalog servlet. The catalog servlet demonstrates an easy and
efficient way to access the catalog example application.

The catalog manager example application accesses an order catalog that a
Virtual Storage Access Method (VSAM) file stores. The example application is a
catalog management, purchase-order style application. It is a simple application
that provides the functions to list details of an item in the catalog and then selects
a quantity of that item to order.

Then, the application updates the catalog to reflect the new stock levels. If the
catalog servlet is deployed, it provides the functions to deal with the catalog from
a browser session. The following section describes the CICS implementation of
this process.
 Chapter 5. Sample application 141

Figure 5-1 shows the application porting environment at the Stage 0 level.
There are two stages in performing the port, which this chapter describes in its
latter half.

Figure 5-1 CICS catalog manager example application

5.1.2 The base application

The base application, with its 3270 user interface (UI), provides functions with
which you can perform the following tasks:

� List the contents of a stored catalog: Inquire catalog
� Select an item from the list: Inquire single
� Enter a quantity to order: Place order

The application has a modular design, which makes it easier to extend the
application to support newer technology, such as web services.

Catalog manager
(DFHOXCMN)

Dispatch
manager

(DFHOXW OD)

Pipeline
(EXPIPE02)

CICS1

BMS presentation
manager

(DFHOXGUI)

3270 emulation

Outbound W ebService = YES

Order dispatch
end point

(DFHOXODE)

CICS2 W ebSphere Application Server

Order dispatch
end point

ExampleApp
DispatchOrder.ear

Datastore Type = VSAM

Catalog
data

(EXMPCAT)

VSAM
data handler

(DFHOXVDS)

VSAM

Stage 0: The base application
142 Using IBM CICS Transaction Server Channels and Containers

Components of the base application
When you call the CICS catalog manager example using the basic mapping
support (BMS) 3270 interface, there are three modules involved in the process.
Figure 5-2 shows that there are two parts that separate the application.

Module DFH0XGUI provides the presentation logic, which exclusively manages
the process of sending and receiving the required BMS maps. DFH0XGUI links
to the DFH0XCMN catalog manager program to perform the supported functions
against the catalog. DFH0XGUI uses an EXEC CICS LINK command that passes
the COMMAREA structure that Example 5-1 on page 150 shows.

The catalog manager module DFH0XCMN provides the business logic, which in
turn links to the VSAM data handler stub DFH0XVDS. The catalog manager
program has other functions that it also implements, such as the outbound web
service function. They do not play a role in the channels and containers migration
project, so they are not described in this section.

The catalog manager does not require any considerations to be able to get called
by the catalog servlet. The channel and container migration is unaffected in
that situation.

As previously mentioned, the 3270 user interface and the provided web client
front end can call the catalog manager example business logic. We provide a
new web browser front end that can be used to access the capabilities of
JavaServer Pages (JSP) and servlets to display the catalog manager results.

We demonstrate how to access the business logic of the catalog manager shown
in Figure 5-2, and also describe the opportunities to extend the look of
web-based presentation logic.

Figure 5-2 Components of the base application

BMS
presentation

manager

Data
Handler
VSAM

Catalog
manager

VSAM

DFH0XVSM

DFH0XGUI

DFH0XCMN

Components of base application
 Chapter 5. Sample application 143

Migration considerations
You do not want to port the presentation logic DFH0XGUI to the new function.
The presentation logic is using the COMMAREA, and it is inconceivable that
you get any constraints with it in the future. Therefore, the presentation logic
remains unaffected.

However, the catalog manager must port. We provide a new Liberty profile-based
browser front end to it that can additionally display the corresponding item
images. Because of their sizes, the relevant .gif images cannot pass between
the wrapper program and the catalog manager using COMMAREAs.

The .gif images that this chapter uses to demonstrate how to display catalog
item images have a size of approximately 60 kilobytes (KB), which exceeds the
COMMAREA limit. Therefore, you need to port the catalog manager module
DFH0XCMN to the channels and container functionality.

Currently, the presentation logic uses an EXEC CICS LINK command that passes
a COMMAREA to call the catalog manager module DFH0XCMN. However, you
want to use a wrapper program for the web client front end that uses an EXEC
CICS LINK command to pass a channel to link to the catalog manager program.

There is an alternative solution to avoid porting the presentation logic of the
catalog manager example program. You can create an additional routine that the
presentation logic DFH0XGUI can call to separate the COMMAREA structure to
individual containers.

Figure 5-3 on page 145 shows the new structure of the base application. The
presentation logic of the application calls the data separation logic first. The data
separation logic then calls the business logic using an EXEC CICS LINK command
that passes a channel rather than a COMMAREA. The latter half of this chapter
describes the structure of the data separation logic.
144 Using IBM CICS Transaction Server Channels and Containers

Figure 5-3 Data separation module DFH0XSEP

5.1.3 Porting steps: CICS back end

The previous sections describe the basic structure of the CICS catalog manager
example program. They also provide information about the addition of a new
function to the catalog manager that enables you to retrieve the corresponding
image of a catalog item before any order of the item takes place.

To port the back end of the CICS catalog manager example program to the new
function, you must perform the following steps:

1. Separate the COMMAREA structure into containers.

You do not want to port the presentation logic DFH0XGUI, but you must
change the module to link to the data separation module DFH0XSEP. You
must separate the COMMAREA structure into individual containers first.
Module DFH0XSEP does not exist yet, so you must create it.

2. Create the data separation module DFH0XSEP.

The module takes the COMMAREA structure from DFH0XGUI and creates
suitable containers for the catalog manager DFH0XCMN. When the catalog
manager returns, you receive the information from the relevant containers
back to the COMMAREA.

3. Port the catalog manager module DFH0XCMN, Stage 1.

The catalog manager ports in two stages. During Stage 1, you change the
logic of the catalog manager module to use channels and containers. After
this, the logic of DFH0XCMN manages the channels that get passed from
either the web client front end or from the presentation logic.

BMS
presentation

manager

Data
Handler
VSAM

Data
separation

VSAM

DFH0XSEP

Data separation routine

Catalog
manager
 Chapter 5. Sample application 145

4. Verify the basic functions.

When the Stage1 migration process has completed, you can perform a
function test of the base application using the 3270 interface. You must make
sure that the basic functions (inquire catalog, inquire single, and place order)
still work fine after porting the catalog manager application.

5. Port the catalog manager DFH0XCMN, Stage2.

During the Stage 2 migration step, you can add the display catalog item
support to the catalog manager module. Store the item images to a
hierarchical file system (HFS) data set. The catalog manager module
DFH0XCMN is modified to retrieve the item image from the HFS data set.
This process is described later in this chapter.

6. Create a new module that reads the catalog item image from HFS.

The new routine gets control from the catalog manager DFH0XCMN. After
that, it gets the item image from the HFS data set and puts it into a container
that the current channel of the catalog manager program owns. Therefore, the
item image is available when you return to the catalog manager.

7. Verify the extended functionality of the base application.

When you have completed step 5 and step 6, make sure that the basic
functions of the application still work properly. Also, verify that the item image
is available in a container when the catalog manager returns.

5.1.4 Stage 1: Porting to channels and containers

This section describes the process of porting the CICS catalog manager
example program to use the functionality of channels and containers. As
mentioned previously, the beginning of Stage 1 is to create the data separation
module. Before you start, you must consider the way to separate the
COMMAREA to individual containers.

It is possible to use a channel with a single container to replace the COMMAREA
that passes between the presentation logic and the catalog manager. This is the
simplest and quickest way to port the catalog manager application. However, we
do not recommend replacing the COMMAREA with just one single container as a
leading practice. We advise that the process to replace the existing COMMAREA
structure complies with the following statements:

� Use separate containers for input and output.
� Use a dedicated container for error information.
� Use separate containers for each structure.
� Use a copybook that records the name of the channel, records the names of

the containers used, and defines the data fields that map to the containers.
� Include the copybook in both the client and the server program.
146 Using IBM CICS Transaction Server Channels and Containers

See Figure 5-4 illustrates the suggested separation of data.

Figure 5-4 Catalog manager application at Stage 1 level

There are two migration scenarios that you can perform:

� A first approach is where you do not split the COMMAREA structure into
separate containers. The following section describes the disadvantages of
this approach.

� The leading practice approach is where you split the COMMAREA structure
of the application into separate containers according to the statements
mentioned previously.

Catalog manager
(DFHOXCMN)

BMS presentation
manager

(DFHOXGUI)

Dispatch manager
(DFHOXWOD)

Pipeline
(EXPIPE02)

CICS1

3270 emulation

Outbound WebService = YES

Order dispatch
end point

(DFHOXODE)

CICS2
WebSphere Application Server

Order dispatch
end point

ExampleApp
DispatchOrder.ear

Datastore Type = VSAM

Catalog
data

(EXMPCAT)

VSAM
data handler

(DFHOXVDS)

VSAM

Stage 1: Separation of data

COMMAREA Data
separator

Channel
 Chapter 5. Sample application 147

Using channels and containers: A first approach
The simplest approach to convert an existing CICS application to take advantage
of containers and channels might seem to be replacing an existing COMMAREA
implementation by creating a new channel with a single container that holds the
existing COMMAREA structure. However, this approach does not enable you to
separate a monolithic parameter block into its separate component parts.

Consequently, the application suite cannot take complete advantage of the
benefits of the containers and channels approach.

We provide a data separation module DFH0XSEP, and also a ported version of
catalog manager module DFH0XCMN, to demonstrate the simplest approach to
converting existing CICS applications to use channels and containers. A detailed
description of the leading practice approach to the new function is presented in
the next section.

Leading practice approach: Replacing the COMMAREA
This section describes the process to port the CICS catalog manager example to
the new function using the leading practice approach. Create a new module
DFH0XSEP that runs the structure that Figure 5-5 illustrates.

Figure 5-5 DFH0XSEP structure

CA
available? abend

DFH0XCMN

create
INQS

container
INQS ?

ORDER?

INQC ?

Create REQ container

Create
ORDER
container

create
INQC

container

Y

N

Y

Y

Y

N

N

DFH0XGUI

inv-request

DFH0XSEP structure

EXEC CICS LINK
PROGRAM(DFHXCMN) CHANNEL

EXEC CICS LINK
PROGRAM(DFHXSEP)

COMMAREA
148 Using IBM CICS Transaction Server Channels and Containers

The following steps describe the logic of the structure:

1. DFH0XSEP gets control from DFH0XGUI through the EXEC CICS LINK
command. DFH0XGUI passes a COMMAREA.

2. If there is no COMMAREA available, write an error message and issue an
abnormal end (abend) called EXCA using an EXEC CICS ABEND command.

3. If you have a COMMAREA available, create a separate input container for the
required request, which can be inquire catalog, inquire single, or place order.

4. Do not create a separate input container for return codes and messages at
this time. The catalog manager module creates this later.

5. After that, evaluate the request type and create another input container
according to the relevant request.

When the evaluation of the request type is complete, call the catalog manager
using an EXEC CICS LINK command passing the channel holding the containers.
Do not create any output containers in the data separation logic. We suggest that
you create the output containers in the server program, which in our case is the
catalog manager module DFH0XCMN.

The following section provides a more practical description about how you can
separate the COMMAREA structure.

COMMAREA structure
Example 5-1 on page 150 shows the COMMAREA structure used by the CICS
catalog manager example program. The structure consists of the following parts:

� A general part

This part contains the request type and structure items for the return code
and the response message. The general part of the structure also contains a
field for the result of the different requests, CA-REQUEST-SPECIFIC.

� Fields used in inquire catalog

This section of the COMMAREA structure is used for the inquire catalog
function. It redefines CA-REQUEST-SPECIFIC and uses a table to store 15
catalog items.

� Fields used in inquire single

This section of the COMMAREA structure is used to describe the fields used
for the inquire single function. It also redefines CA-REQUEST-SPECIFIC.

� Fields used in place order

This section of the COMMAREA structure is used for the place order function.
It also redefines CA-REQUEST-SPECIFIC.
 Chapter 5. Sample application 149

Example 5-1 shows the COMMAREA structure.

Example 5-1 COMMAREA structure of catalog manager example

* Catalogue COMMAREA structure
 03 CA-REQUEST-ID PIC X(6).
 03 CA-RETURN-CODE PIC 9(2).
 03 CA-RESPONSE-MESSAGE PIC X(79).
 03 CA-REQUEST-SPECIFIC PIC X(911).
* Fields used in Inquire Catalog
 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-LIST-START-REF PIC 9(4).
 05 CA-LAST-ITEM-REF PIC 9(4).
 05 CA-ITEM-COUNT PIC 9(3).
 05 CA-INQUIRY-RESPONSE-DATA PIC X(900).
 05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA
 OCCURS 15 TIMES.
 07 CA-ITEM-REF PIC 9(4).
 07 CA-DESCRIPTION PIC X(40).
 07 CA-DEPARTMENT PIC 9(3).
 07 CA-COST PIC X(6).
 07 IN-STOCK PIC 9(4).
 07 ON-ORDER PIC 9(3).
* Fields used in Inquire Single
 03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-ITEM-REF-REQ PIC 9(4).
 05 FILLER PIC 9(4).
 05 FILLER PIC 9(3).
 05 CA-SINGLE-ITEM.
 07 CA-SNGL-ITEM-REF PIC 9(4).
 07 CA-SNGL-DESCRIPTION PIC X(40).
 07 CA-SNGL-DEPARTMENT PIC 9(3).

07 CA-SNGL-COST PIC X(6).
 07 IN-SNGL-STOCK PIC 9(4).
 07 ON-SNGL-ORDER PIC 9(3).
 05 FILLER PIC X(840).
* Fields used in Place Order
 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.
 05 CA-USERID PIC X(8).
 05 CA-CHARGE-DEPT PIC X(8).
 05 CA-ITEM-REF-NUMBER PIC 9(4).
 05 CA-QUANTITY-REQ PIC 9(3).
 05 FILLER PIC X(888).
150 Using IBM CICS Transaction Server Channels and Containers

Data separation of the structure
According to the leading practice approach to implement channel and containers,
you can separate the COMMAREA structure into the following functional parts:

� The request ID. CA-REQUEST-ID is part of the general section, and you must
place it in a single input container.

� Return code and response message. We advise that you place return codes
and response messages in a separate output-only container.

� Keep the CA-INQUIRE-REQUEST structure in a separate container. You can
separate this structure further. However, we decided to keep the structures for
each function in a single container rather than using further containers.

� Keep the CA-INQUIRE-SINGLE structure in a single container.

� The CA-ORDER-REQUEST structure also goes in a single container.

� The catalog manager module creates the result container. Copy the result
information for each function to a separate container. It is a good practice to
use different containers for input and output processing.
 Chapter 5. Sample application 151

Figure 5-6 shows the COMMAREA structure separated into different containers.

Figure 5-6 Data separation of the COMMAREA structure

After separating the COMMAREA structure to port the application to the new
function according to leading practices, verify that you have completed the
following actions:

 Used different containers for input and output operations. This simplifies the
copybook structure and makes the program easier to understand.

 Separated the structures of the individual functions into their own containers.
Input containers that the server program has not changed are not returned to
the caller.

 Used a dedicated container for return code and response messages.

CA-REQUEST-ID

CA-RETURN-CODE
CA-RESPONSE-MESSAGE

CA-REQUEST-SPECIFIC

CA-INQUIRE-REQUEST
CA-LIST-START-REF
CA-LAST-ITEM-REF
CA-ITEM-COUNT
CA-CAT-ITEM

CA-ITEM-REF
CA-DESCRIPTION
CA-DEPARTMENT
CA-COST
IN-STOCK
ON-ORDER

CA-INQUIRE-SINGLE
CA-ITEM-REF-REQ
CA-SINGLE-ITEM.
CA-SNGL-ITEM-REF
CA-SNGL-DESCRIPTION
CA-SNGL-DEPARTMENT
CA-SNGL-COST
IN-SNGL-STOCK
ON-SNGL-ORDER

CA-ORDER-REQUEST
CA-USERID
CA-CHARGE-DEPT
CA-ITEM-REF-NUMBER

CA-QUANTITY-REQ

ContainerCA-Structure

order-item

request-type

result

inquire-cat

inquire-single

return-code-msg
152 Using IBM CICS Transaction Server Channels and Containers

DFH0X02 copybook
It is a leading practice to create a copybook that records the name of the
channel, and the names of the containers that you use. The copybook must
define the data fields that map to the containers.

Example 5-2 shows the copybook that our example uses for the data separation
routine, and for the catalog manager module DFH0XCMN.

The first part of the structure defines the use of the channel name and the
container names to port the application. The data separation routine DFH0XSEP
creates the following containers:

� request-type
� return-code-msg
� inquire-cat
� inquire single
� order-item

The catalog manager module creates the result container. Use the other
containers in the structure during Stage 2 of the migration, when you add the
item image support to the catalog manager. This process is described later in
this chapter.

Example 5-2 illustrates the creation of copybook DFH0X02.

Example 5-2 Copybook DFH0X02

* Channel name
 01 CMN-CHANNEL PIC X(16) VALUE 'cmn-channel'.

* Container names
 01 REQ PIC X(16) VALUE 'request-type'.
 01 RC-MSG PIC X(16) VALUE 'return-code-msg'.
 01 INQC PIC X(16) VALUE 'inquire-cat'.
 01 INQS PIC X(16) VALUE 'inquire-single'.
 01 ORDR PIC X(16) VALUE 'order-item'.
 01 RESULT PIC X(16) VALUE 'result'.
 01 IMAGE-REF PIC X(16) VALUE 'ref-no'.
 01 IMG-CONTAINER PIC X(16) VALUE 'gif-data'.

01 IMG-DIR PIC X(16) VALUE 'img-dir'.
 01 GET-IMG-ERROR PIC X(16) VALUE 'error-msg'.
 01 SINGLE-CNT PIC X(16) VALUE 'single'.
 Chapter 5. Sample application 153

* Define the data fields used by the program
 01 XCMNPROG PIC X(8) VALUE 'EFH2XCMN'.
 01 CATALOG-SERVER PIC X(8) VALUE 'CTLGSERV'.

01 IMG-DIR-CONTENTS PIC X(18) VALUE '/u/cicsrs9/images/'.
 01 CHN-NAME PIC X(16).
 01 IMG-REF-NUMBER PIC 9(2) VALUE 10.

* Request-ID container structure
 01 REQUEST-ID PIC X(6).

* Return code & MSG container structure
 01 RETCODE-MSG.
 03 RC PIC 9(2).
 03 RESPONSE-MESSAGE PIC X(79).

* Inquire single container structure
 01 INQUIRE-SINGLE.

03 ITEM-REF-REQ PIC 9(4).
 03 FILLER PIC 9(4).
 03 FILLER PIC 9(3).

* Inquire catalog container structure
 01 INQUIRE-CAT.
 03 LIST-START-REF PIC 9(4).
 03 LAST-ITEM-REF PIC 9(4).
 03 ITEM-COUNT PIC 9(3).

* Order request catalog container structure
 01 ORDER-REQUEST.
 03 USERID PIC X(8).
 03 CHARGE-DEPT PIC X(8).
 03 ITEM-REF-NUMBER PIC 9(4).
 03 QUANTITY-REQ PIC 9(3).

Creating DFH0XSEP
This section describes steps that we used in our example to create the data
separation module DFH0XSEP. You can also complete the following major tasks:

1. Separate the existing COMMAREA structure of the catalog manager example
program into different containers.

2. Copy the structure of copybook DFH0X02 to module DFH0XSEP.

3. Check in the mainline section of the program to see if you were passed a valid
COMMAREA from DFH0XGUI. Prepare a suitable error message and issue
an EXEC CICS ABEND if there is no COMMAREA available.
154 Using IBM CICS Transaction Server Channels and Containers

4. If the COMMAREA is passed to DFH0XSEP, create the first input channel.

5. The first channel takes only the request type. Therefore, move CA-REQUEST
to the structure that maps the request ID container.

6. Example 5-3 also shows how to create the container that takes the return
code and response messages. The name of the container is
return-code-msg. Move the return code and response message to the
structure that maps the container.

7. Set up the container with the appropriate request type structure. Do not pass
data structures superfluously.

8. Evaluate the request type and set up the appropriate container that
corresponds to the request.

Complete the following steps to create the data separation module:

1. Create the request type container, as shown in the code snippet in
Example 5-3.

Example 5-3 Set up request ID container

* Set up request-id container

MOVE CA-REQUEST-ID TO REQUEST-ID.

* Create request container

EXEC CICS PUT CONTAINER(REQ) CHANNEL(CMN-CHANNEL)
FROM(REQUEST-ID) FLENGTH(LENGTH OF REQUEST-ID)

END-EXEC.

* Set up return code & Msg container

MOVE CA-RETURN-CODE TO RC.
MOVE CA-RESPONSE-MESSAGE TO RESPONSE-MESSAGE.

* Create return code and message container

EXEC CICS PUT CONTAINER(RC-MSG) CHANNEL(CMN-CHANNEL)
FROM(RETCODE-MSG) FLENGTH(LENGTH OF RETCODE-MSG)

END-EXEC.
 Chapter 5. Sample application 155

2. Evaluate the request type to create the corresponding container, as shown in
Example 5-4.

This example uses three individual paragraphs to set up the containers:

– CATALOG-INQUIRE creates the container for the inquire catalog function.
– CATALOG-SIN creates the container for the inquire single function.
– PLACE-ORDER creates the container for the order function.

Example 5-4 Evaluate request type structure

EVALUATE CA-REQUEST-ID
WHEN '01INQC'

* prepare request container for catalog inquiry
PERFORM CATALOG-INQUIRE

WHEN '01INQS'

* prepare request container for inquire single
PERFORM INQUIRE-SIN

WHEN '01ORDR'

* prepare reuest container for place order request
PERFORM PLACE-ORDER

WHEN OTHER

The following three examples show the paragraphs that our example uses to
set up the structures that map to the data fields of the containers.
156 Using IBM CICS Transaction Server Channels and Containers

3. Example 5-5 shows the creation of the container that takes the structure for
the inquire catalog request.

Move two parameters from the COMMAREA to the INQUIRE-CAT structure.
The parameters are LIST-START-REF and LAST-ITEM-REF. They define the
start of the item list, and are a reference of the displayed item.

Example 5-5 Create inquire catalog container

==
* Catalog inquire routine *
==
CATALOG-INQUIRE.
* Set up inquire catalog container structure
 MOVE CA-LIST-START-REF TO LIST-START-REF.
 MOVE CA-LAST-ITEM-REF TO LAST-ITEM-REF.

* Create inquire catalog container
 EXEC CICS PUT CONTAINER(INQC) CHANNEL(CMN-CHANNEL)
 FROM(INQUIRE-CAT) FLENGTH(LENGTH OF INQUIRE-CAT)
 END-EXEC.
 EXIT.

4. Example 5-6 shows the paragraph that our example uses to create the
container for the inquire single request.

To run the inquire single request, you must pass one parameter. Move
CA-ITEM-REF-REQ from the COMMAREA to the INQUIRE-SINGLE
structure, which maps the data fields of the container.

Example 5-6 Create inquire single container

==
* Catalog inquire single routine *
==
INQUIRE-SIN.
* Set up inquire single container structure

 MOVE CA-ITEM-REF-REQ TO ITEM-REF-REQ.

* Create container for inquire single
 EXEC CICS PUT CONTAINER(INQS) CHANNEL(CMN-CHANNEL)
 FROM(INQUIRE-SINGLE) FLENGTH(LENGTH OF
INQUIRE-SINGLE)
 END-EXEC.
 EXIT.
 Chapter 5. Sample application 157

5. Example 5-7 shows the PLACE-ORDER paragraph that our example uses to
create the container for the order request.

Move four fields from the COMMAREA to the ORDER-REQUEST structure
that was created in copybook DFH0S02. The following parameters are the
four that our example uses for the order request container:

– USERID: The name of the person that places the order.
– CHARGE-DEPT: The name of the department.
– ITEM-REF-NUMBER: The reference number of the catalog item.
– QUANTITY-REQ: The number of items to order.

Example 5-7 Create place order container

==
* Place order routine *
* *
==
PLACE-ORDER.
* Set up request and container name
 MOVE CA-USERID TO USERID.
 MOVE CA-CHARGE-DEPT TO CHARGE-DEPT.
 MOVE CA-ITEM-REF-NUMBER TO ITEM-REF-NUMBER.
 MOVE CA-QUANTITY-REQ TO QUANTITY-REQ.

* Create container for place order
 EXEC CICS PUT CONTAINER(ORDR) CHANNEL(CMN-CHANNEL)
 FROM(ORDER-REQUEST) FLENGTH(LENGTH OF
ORDER-REQUEST)
 END-EXEC.
 EXIT.

6. Example 5-8 on page 159 shows how the example links to the catalog
manager. Issue an EXEC CICS LINK command passing the channel that owns
the following containers:

– request-type
– return-code-msg
– inquire-cat
– inquire-single
– order-item
– result

The catalog manager DFH0XCMN creates the result container.
158 Using IBM CICS Transaction Server Channels and Containers

Example 5-8 shows the process of linking to the catalog manager module.

Example 5-8 Link to catalog manager module

==
* Link to the catalog manager *
==

EXEC CICS LINK PROGRAM(XCMNPROG)
CHANNEL(CMN-CHANNEL)

END-EXEC.
EXEC CICS GET CONTAINER(RC-MSG) CHANNEL(CMN-CHANNEL)

INTO(RETCODE-MSG)
END-EXEC

MOVE RC TO CA-RETURN-CODE.
MOVE RESPONSE-MESSAGE TO CA-RESPONSE-MESSAGE.

7. After the return from catalog manager DFH0XCMN, perform an EXEC CICS
GET CONTAINER command to get back the return code and response
message to the COMMAREA. The data separation routine converts the
COMMAREA structure to separate containers to link to the catalog manager.

When the catalog manager returns, the logic in DFH0XSEP receives the
information from the outbound containers to the COMMAREA. After that,
DFH0XSEP returns to DFH0XGUI using the updated COMMAREA, as shown
in Example 5-9.

Example 5-9 Get container commands on return

EVALUATE CA-REQUEST-ID

WHEN '01INQC'
EXEC CICS GET CONTAINER(RESULT) CHANNEL(CMN-CHANNEL)

 INTO(CA-INQUIRE-REQUEST)
END-EXEC

WHEN '01INQS'
EXEC CICS GET CONTAINER(RESULT) CHANNEL(CMN-CHANNEL)

 INTO(CA-INQUIRE-SINGLE)
END-EXEC

WHEN '01ORDR'
EXEC CICS GET CONTAINER(RESULT) CHANNEL(CMN-CHANNEL)

 INTO(CA-ORDER-REQUEST)
END-EXEC
 Chapter 5. Sample application 159

8. When the catalog manager DFH0XCMN returns, DFH0XSEP expects the
result of the relevant request in the result container. Therefore, evaluate the
request ID to move the data fields of the result container to the corresponding
structure in the COMMAREA.

Example 5-9 on page 159 shows the evaluation of the request ID and the
corresponding EXEC CICS GET CONTAINER commands.

The next section describes the process used to port the catalog manager
DFH0XCMN.

Extending the catalog manager module
This section describes the migration of the catalog manager module to use
channels and containers. So far, you have developed the data separation module
that you use as a converter from COMMAREA to channels and container. The
presentation logic DFH0XGUI uses the data separation module to convert its
COMMAREA structure to the channel and container design that the catalog
manager module DFH0XCMN accepts.

Consider the following points, before the description of the porting steps:

� The original catalog manager module takes the COMMAREA from the
presentation logic DFH0XGUI.

� The catalog manager module links to a VSAM data handler module
DFH0XVDS to perform one of the three request types, which are inquire
catalog, inquire single, or place order.

� Use an EXEC CICS LINK command passing a COMMAREA to call the VSAM
data handler. You must not port the VSAM data handler to the function,
because it is not possible to get any COMMAREA constraints with it in
the future.

Therefore, after you complete the previously mentioned checks, you must port
the catalog manager module so that it is able to perform the following actions:

� When the data separation module DFH0XSEP or the web client front end
calls the catalog manager, it expects a channel.

� The catalog manager module calls the VSAM data handler DFH0XVDS using
an EXEC CICS LINK command, over a COMMAREA.

� Therefore, port the catalog manager to run in dual mode. When it calls the
VSAM data handler module DFH0XVDS, it uses channels and containers and
also the COMMAREA.
160 Using IBM CICS Transaction Server Channels and Containers

To extend the catalog manager module, perform the following steps:

1. Example 5-10 shows the start of the mainline section within the original
catalog manager module. The initial action is to perform a check against
EIBCALEN. If the length of the COMMAREA is zero, you can set up a
response message and issue an EXEC CICS ABEND.

Example 5-10 Before migration: check for a valid COMMAREA

* Check commarea and obtain required details *

* If NO COMMAREA received issue an ABEND
 IF EIBCALEN IS EQUAL TO ZERO
 MOVE ' NO COMMAREA RECEIVED' TO EM-DETAIL
 PERFORM WRITE-ERROR-MESSAGE
 EXEC CICS ABEND ABCODE('EXCA') NODUMP END-EXEC
 END-IF

* Initalize COMMAREA return code to zero
 MOVE '00' TO CA-RETURN-CODE.
 MOVE EIBCALEN TO WS-CALEN.

2. Replace the code that examines the COMMAREA. A channel, rather than a
COMMAREA, calls the ported version of the catalog manager. Therefore, the
first thing you must do is to check if you were passed a channel.

3. Use an EXEC CICS ASSIGN CHANNEL command to make sure that you received
the expected channel. The name of the channel must be cmn-channel.

If there is no channel available, set up an error message and issue an EXEC
CICS ABEND command. See Example 5-11.

Example 5-11 Assign channel command

* Check if we were passed a channel *
* If NO channel available issue an ABEND *

 EXEC CICS ASSIGN CHANNEL(CHN-NAME)
 END-EXEC
 IF CHN-NAME NOT = 'cmn-channel '
 MOVE ' NO CHANNEL RECEIVED ' TO EM-DETAIL
 PERFORM WRITE-ERROR-MESSAGE
 EXEC CICS ABEND ABCODE('EXCH') NODUMP END-EXEC
 END-IF
 Chapter 5. Sample application 161

4. If you have received the expected channel available, you can issue an EXEC
CICS GET CONTAINER(REQ) command to retrieve the required request ID.

Our example specifies CA-REQUEST-ID on the INTO parameter, which sets
up the COMMAREA structure used to call the VSAM data handler later on.
See Example 5-12.

Example 5-12 Get request ID

EXEC CICS GET CONTAINER(REQ)
CHANNEL(CMN-CHANNEL)
INTO(CA-REQUEST-ID)

END-EXEC

In the next step of the catalog manager migration, perform an evaluation of
the request ID.

5. In this example, arrange the three paragraphs that issue the EXEC CICS GET
CONTAINER commands to retrieve the necessary data structures required to
perform the corresponding functions:

– The inquire catalog request 01INQC uses paragraph CATALOG-INQUIRE.
– Inquire single request 01INQS uses paragraph CATALOG-INQUIRE-S.
– Place order request 01ORDR uses paragraph PLACE-ORDER.

Each of the paragraphs issue the relevant EXEC CICS GET CONTAINER
command and an EXEC CICS LINK command to the VSAM data handler
module passing a COMMAREA.

Example 5-13 shows how to evaluate the request ID to call the corresponding
paragraph.

Example 5-13 Evaluate request ID

--
* Check which operation is being requested
--
* Uppercase the value passed in the Request Id field
 MOVE FUNCTION UPPER-CASE(CA-REQUEST-ID) TO CA-REQUEST-ID

 EVALUATE CA-REQUEST-ID
 WHEN '01INQC'
 * Call routine to perform for inquire
 PERFORM CATALOG-INQUIRE

 WHEN '01INQS'
 * Call routine to perform for inquire for single item
 PERFORM CATALOG-INQUIRE-S

162 Using IBM CICS Transaction Server Channels and Containers

 WHEN '01ORDR'
 * Call routine to place order
 PERFORM PLACE-ORDER

 WHEN OTHER
 * Request is not recognised or supported
 PERFORM REQUEST-NOT-RECOGNISED

 END-EVALUATE

6. Example 5-14 shows the CATALOG-INQUIRE paragraph that our example
uses to get the inquire catalog request parameter from the INQC container.
Specify INQUIRE-CAT on the INTO parameter. INQUIRE-CAT is the structure
defined in the DFH0S02 copybook to map the data fields of the INQC
container.

7. Then, set up the COMMAREA for the VSAM data handler. Move the three
parameters from the INQC input container structure to the corresponding
fields in the COMMAREA.

8. After this, call the VSAM data handler using an EXEC CICS LINK command
passing the COMMAREA.

See Example 5-14 for details of these steps.

Example 5-14 Paragraph catalog-inquire

==
* Procedure to link to Datastore program to inquire *
* on the catalog data *
==
CATALOG-INQUIRE.
 MOVE 'EXCATMAN: CATALOG-INQUIRE' TO CA-RESPONSE-MESSAGE.
 EXEC CICS GET CONTAINER(INQC)
 CHANNEL(CMN-CHANNEL)
 INTO(INQUIRE-CAT)
 END-EXEC

 MOVE LIST-START-REF TO CA-LIST-START-REF.
 MOVE LAST-ITEM-REF TO CA-LAST-ITEM-REF.
 MOVE ITEM-COUNT TO CA-ITEM-COUNT.

 EXEC CICS LINK PROGRAM(WS-DATASTORE-PROG)
 COMMAREA(WS-CHN-DATA)
 END-EXEC.
 Chapter 5. Sample application 163

9. If the request type is inquire single, use paragraph
CATALOG-INQUIRE-SINGLE to get the inquire single parameter from the
INQS container.

Example 5-15 shows an EXEC CICS GET CONTAINER(INQS) command that you
can use to store the parameter in the INQUIRE-SINGLE structure.

10.The inquire single request only takes one parameter. Therefore, move
ITEM-REF-REQ to the relevant COMMAREA field, CA-ITEM-REF-REQ.

Example 5-15 Paragraph catalog-inquire-s

==
* Procedure to link to Datastore program to inquire a single item*
* on the catalog data *
==
CATALOG-INQUIRE-S.
 MOVE 'EXCATMAN: CATALOG-INQUIRE' TO CA-RESPONSE-MESSAGE
 EXEC CICS GET CONTAINER(INQS)
 CHANNEL(CMN-CHANNEL)
 INTO(INQUIRE-SINGLE)
 END-EXEC

 MOVE ITEM-REF-REQ TO CA-ITEM-REF-REQ.

 EXEC CICS LINK PROGRAM(WS-DATASTORE-PROG)
 COMMAREA(WS-CHN-DATA)
 END-EXEC

11.Use the third paragraph for the place order request type. Example 5-16 on
page 165 shows the EXEC CICS GET CONTAINER(ORDR) command that maps
the required input parameters to the ORDER-REQUEST structure, which is
specified on the INTO parameter.

Our example uses four parameters for the place order request type. You can
move them from the ORDER-REQUEST structure to the relevant fields in the
COMMAREA.

You can move the following parameters to the COMMAREA:

– USERID
– CHARGE-DEPT
– ITEM-REF
– QUANTITY-REF

12.When the parameters are set, issue an EXEC CICS LINK with COMMAREA
command to link to the VSAM data handler to perform the request.
164 Using IBM CICS Transaction Server Channels and Containers

See Example 5-16, which shows the paragraph place-order.

Example 5-16 Paragraph place-order

==
* Procedure to link to Datastore program to place order, *
* send request to dispatcher and notify stock manager *
* an order has been placed *
==
PLACE-ORDER.
 MOVE 'EXCATMAN: PLACE-ORDER' TO CA-RESPONSE-MESSAGE.
 EXEC CICS GET CONTAINER(ORDR)
 CHANNEL(CMN-CHANNEL)
 INTO(ORDER-REQUEST)
 END-EXEC

 MOVE USERID TO CA-USERID.
 MOVE CHARGE-DEPT TO CA-CHARGE-DEPT.
 MOVE ITEM-REF-NUMBER TO CA-ITEM-REF-NUMBER.
 MOVE QUANTITY-REQ TO CA-QUANTITY-REQ.

 EXEC CICS LINK PROGRAM(WS-DATASTORE-PROG)
 COMMAREA(WS-CHN-DATA)
 END-EXEC.

13.When the VSAM data handler returns, move the return code and response
message contents to the structure that maps the data fields of the RC-MSG
container. After that, issue an EXEC CICS PUT CONTAINER(RC-MSG) command
to provide the return and response messages to the caller of the catalog
manager.

Before you return to the caller of the catalog manager, create an output
container for the result of the corresponding request.

14.Evaluate the request ID again to set up the output container using the
appropriate structure that contains the result for the particular request-ID.

See Example 5-17, where our example issues the relevant EXEC CICS PUT
CONTAINER(RESULT) command, which returns to the caller of the catalog
manager.

Example 5-17 Set up result output container

MOVE CA-RETURN-CODE TO RC.
MOVE CA-RESPONSE-MESSAGE TO RESPONSE-MESSAGE.

EXEC CICS PUT CONTAINER(RC-MSG)
CHANNEL(CMN-CHANNEL)
 Chapter 5. Sample application 165

FROM(RETCODE-MSG)
FLENGTH(LENGTH OF RETCODE-MSG)
END-EXEC.

EVALUATE CA-REQUEST-ID
WHEN '01INQC'

EXEC CICS PUT CONTAINER(RESULT)

CHANNEL(CMN-CHANNEL)
FROM(CA-INQUIRE-REQUEST)
FLENGTH(LENGTH OF CA-INQUIRE-REQUEST)
END-EXEC

WHEN '01INQS'

EXEC CICS PUT CONTAINER(RESULT)

CHANNEL(CMN-CHANNEL)
FROM(CA-INQUIRE-SINGLE)
FLENGTH(LENGTH OF CA-INQUIRE-SINGLE)
END-EXEC

WHEN '01ORDR'

EXEC CICS PUT CONTAINER(RESULT)

CHANNEL(CMN-CHANNEL)
FROM(CA-ORDER-REQUEST)
FLENGTH(LENGTH OF CA-ORDER-REQUEST)
END-EXEC

WHEN OTHER
* Request is not recognized or supported

PERFORM REQUEST-NOT-RECOGNISED

END-EVALUATE.
* Return to caller
166 Using IBM CICS Transaction Server Channels and Containers

5.1.5 Installing and setting up the base application

Before you can run the ported version of the catalog manager application, you
must define two VSAM data sets, and install the relevant resource definitions for
the different migration stages. Our example describes the installation steps for
the following application scenarios:

� The original base application.

� The first approach to port to the new function using a single container to
replace the COMMAREA.

� The ported application at the stage 1 and stage 2 level.

Perform the following steps:

1. Define the VSAM KSDS data sets that the catalog manager example uses.
One data set contains configuration information for the application. The other
contains the sales catalog.

2. Use the job control language (JCL) shown in Example 5-18 to create the
VSAM KSDS data sets.

You can use the data sets for all application migration scenarios.

3. After this, copy the file resource definitions from CICS supplied group
DFH$EXBS. In our example, we specify the data set name on the DSNAME
option, and use the default values for all other attributes.

Example 5-18 JCL to create the VSAM KSDS data sets

//CICSPAZS JOB (999,POK),'CICS ZS',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=NOLIMIT,REGION=0M
/*JOBPARM L=999,SYSAFF=SC04
//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE CICSDSW.PAA1.EXMPLAPP.EXMPCONF
 DELETE CICSDSW.PAA1.EXMPLAPP.EXMPCAT
 SET MAXCC=0
/*
//DEFINE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 /* */
 /* DEFINE A CICS GLOBAL CATALOG */
 /* */
DEFINE CLUSTER(NAME(CICSDSW.PAA1.EXMPLAPP.EXMPCAT) -
 INDEXED -
 CYL(1 1)-
 Chapter 5. Sample application 167

 KEYS(4 0) -
 RECORDSIZE(80,80) -
 SHR(2 3)-
 VOLUME(TOTCIH) REUSE)) -
 DATA(NAME(CICSDSW.PAA1.EXMPLAPP.EXMPCAT.DATA)) -
 INDEX(NAME(CICSDSW.PAA1.EXMPLAPP.EXMPCAT.INDEX))
 DEFINE CLUSTER(NAME(CICSDSW.PAA1.EXMPLAPP.EXMPCONF) -
 INDEXED -
 CYL(1 1)-
 KEYS(9 0) -
 RECORDSIZE(350,350) -
 SHR(2 3)-
 VOLUME(TOTCIH) REUSE)) -
 DATA(NAME(CICSDSW.PAA1.EXMPLAPP.EXMPCONF.DATA)) -
 INDEX(NAME(CICSDSW.PAA1.EXMPLAPP.EXMPCONF.INDEX))

5.1.6 Defining the 3270 interface

Our example uses the following transaction definitions to run the different
migration scenarios. You can also use the following definitions:

� EGUI

The EGUI transaction is part of the original catalog manager application. It
runs program DFH0XGUI.

� SGUI

The SGUI transaction runs the application that uses a single container to
replace the COMMAREA. The transaction runs program EFH1XGUI, which
replaces DFH0XGUI.

� XGUI

The XGUI transaction runs program EFH2XGUI, which is the ported
application at the Stage 1 and Stage 2 level.

To install the original and ported applications, perform the following steps:

1. Install the original base application:

a. Define the two VSAM data sets that Example 5-18 on page 167 shows.

b. Copy the file definitions from DFH$EXBS and alter the DSNAME option.

c. Issue a CEDA DEFINE TRANSACTION(EGUI) PROG(DFH0XGUI) G(EXAMPLE)
command to define the transaction.

d. Issue a CEDA I G(EXAMPLE) command.
168 Using IBM CICS Transaction Server Channels and Containers

2. Install the first approach application (using a single container to replace the
COMMAREA):

a. Define the two VSAM data sets that Example 5-18 on page 167 shows, if
you have not defined them already.

b. Copy the file definitions from DFH$EXBS and alter the DSNAME option.

c. Compile and link programs EFH1XGUI, EFH1XSEP, and EFH1XCMN.

d. Issue a CEDA DEFINE TRANSACTION(SGUI) PROG(EFH1XGUI) G(EXAMPLE)
command to define the transaction.

e. Issue a CEDA I G(EXAMPLE) command.

3. Install the ported application at the Stage 1 and Stage 2 level:

a. Define the two VSAM data sets that Example 5-18 on page 167 shows, if
you have not defined them already.

b. Copy the file definitions from DFH$EXBS and alter the DSNAME option.

c. Compile and link programs EFH2XGUI, EFH2XSEP, and EFH2XCMN

d. Issue a CEDA DEFINE TRANSACTION(XGUI) PROG(EFH2XGUI) G(EXAMPLE)
command to define the transaction.

e. Issue a CEDA I G(EXAMPLE) command.

The applications are now ready to use. You can also use the CICS Information
Center to get a detailed installation description for the CICS catalog manager
example application. The name of the topic is Installing and setting up the base
application.

5.1.7 Running the application

To make sure that the ported version of the application works as expected, check
the flow of the programs.

After ensuring the basic function of the ported application, regression test your
changes to determine the performance of the ported catalog manager
application.

Before you start a regression test, this section shows you the sequence of the
3270 maps, and the operator input that you must simulate later on.
 Chapter 5. Sample application 169

Figure 5-7 shows the first panel that opens when you enter the transaction EGUI.
The transaction starts program DFH0XGUI, which sends the map.

Figure 5-7 shows you the main menu panel.

Figure 5-7 Main menu panel

There are three options available:

� List items

This function provides a list of the available catalog items. The inquire catalog
function provides the list.

� Order item number

This function enables you to order an item directly from the main menu panel.
Option number 2 calls the inquire single function first.

� Exit

This option ends the catalog manager example application.

To walk through the options, follow these steps:

1. Select option 1. Figure 5-8 on page 171 shows the result of the inquire
catalog function. It provides a list of the first 15 catalog items. The remaining
catalog items are provided if you scroll forward using the F8 key.

You can order an item from the inquire catalog panel from the main menu. If
you type a forward slash (/) next to the catalog item cost column, it calls the
inquire single function.

 CICS EXAMPLE CATALOG APPLICATION - Main Menu

 Select an action, then press ENTER

 Action 1 1. List Items
 2. Order Item Number
 3. Exit
170 Using IBM CICS Transaction Server Channels and Containers

2. Figure 5-8 shows how our example selects the Ball Pens Green 24pk item.
When you press Enter, it calls the inquire single function for item 0040.

The inquire single function displays additional information about the item, and
enables you to place the order for the item.

Figure 5-8 Inquire catalog map

 CICS EXAMPLE CATALOG APPLICATION - Inquire Catalog

 Select a single item to order with /, then press ENTER

 Item Description Cost Order

 0010 Ball Pens Black 24pk 2.90
 0020 Ball Pens Blue 24pk 2.90
 0030 Ball Pens Red 24pk 2.90
 0040 Ball Pens Green 24pk 2.90 /
 0050 Pencil with eraser 12pk 1.78
 0060 Highlighters Assorted 5pk 3.89
 0070 Laser Paper 28-lb 108 Bright 500/ream 7.44
 0080 Laser Paper 28-lb 108 Bright 2500/case 33.54
 0090 Blue Laser Paper 20lb 500/ream 5.35
 0100 Green Laser Paper 20lb 500/ream 5.35
 0110 IBM Network Printer 24 - Toner cart 169.56
 0120 Standard Diary: Week to view 8 1/4x5 3/4 25.99
 0130 Wall Planner: Eraseable 36x24 18.85
 0140 70 Sheet Hard Back wire bound notepad 5.89
 0150 Sticky Notes 3x3 Assorted Colors 5pk 5.35

 F3=EXIT F7=BACK F8=FORWARD F12=CANCEL
 Chapter 5. Sample application 171

3. Figure 5-9 shows the panel that opens when you select option 2 from the
main menu, or when you type a forward slash (/) next to an item in the list of
the catalog items.

The detail of your order panel shows additional information about the item. It
shows the number in stock, and the number of items that are currently on
order.

Figure 5-9 Order map

 CICS EXAMPLE CATALOG APPLICATION - Details of your order

 Enter order details, then press ENTER

 Item Description Cost Stock On Order
 --
 0040 Ball Pens Green 24pk 2.90 0063 000

 Order Quantity: 001
 User Name: CICSUSER
 Charge Dept: ITSO

 F3=EXIT F12=CANCEL
172 Using IBM CICS Transaction Server Channels and Containers

4. Specify the order details and press enter.

When the order is successful, the main menu returns. The message ORDER
SUCCESSFULLY PLACED indicates that you have placed the order, as shown in
Figure 5-10.

Figure 5-10 Main menu map

5.1.8 Stage2: Catalog item images support

This section describes how to extend the catalog manager to enable catalog item
image support.

When the Liberty catalog servlet links to the catalog manager, the corresponding
catalog item image is provided by a JCICS program. This is done to extend the
inquire single function of the catalog manager to provide the relevant images.
Our example stores the item image files to an HFS directory. The name of the
relevant image files corresponds to the item reference number, which the inquire
single function of the catalog manager module uses.

We create an Open Services Gateway Initiative (OSGi) JCICS program that
reads the image file from the HFS directory and puts its contents to an output
binary container. The catalog manager issues an EXEC CICS LINK command to
call the JCICS program. On return from the JCICS program, the item image is
provided in the output container.

 CICS EXAMPLE CATALOG APPLICATION - Main Menu

 Select an action, then press ENTER

 Action 1. List Items
 2. Order Item Number
 3. Exit

 ORDER SUCESSFULLY PLACED
 F3=EXIT F12=CANCEL
 Chapter 5. Sample application 173

Figure 5-11 illustrates the application migration environment at the stage 2 level.

Figure 5-11 Application migration environment at the stage 2 level

Additional containers
Similar to our example, you can use four additional containers for the catalog
item image support, which are as follows:

� Container ref-no
The catalog manager creates it within the inquire single paragraph. Put the
item reference number into the container and pass the channel to the JCICS
program.

� Container image-dir
The catalog manager creates it within the inquire single paragraph. Put the
name of the HFS directory into the container and pass the channel to the
JCICS program.
174 Using IBM CICS Transaction Server Channels and Containers

� Container gif-data
The JCICS program creates this channel. It is the binary output channel that
contains the image file.

� Container error-msg
The JCICS program creates this container if there is a problem reading the
image file from the HFS directory.

Extension to the catalog manager
Figure 5-12 on page 176 illustrates the new structure of the catalog manager
module. You can call the module from either the data separation module, or from
the CICS Liberty servlet web browser front end using an EXEC CICS LINK
command passing a channel. The following steps describe the process:

1. On module entry, determine if there is a channel available. If there is no
channel available, issue an EXEC CICS ABEND command. If the channel is
available, issue an EXEC CICS GET CONTAINER command to figure out which
request you are going to perform.

2. After that, issue an EXEC CICS READ command against the configuration file of
the catalog manager example application. Do not change the original part of
the code that reads the configuration file. However, if the read fails, put the
return code and error messages into the RC-MSG container rather than using
the COMMAREA to store the error information.

3. In the next step, evaluate the request ID that you got from the request
container earlier on.

4. Run the EXEC CICS GET CONTAINER command that corresponds to the request
ID. After that, issue an EXEC LINK PROGRAM command to call the VSAM
data handler.

5. If the inquire single request ID runs, you additionally call the JCICS catalog
server program to get the catalog item image from the HFS directory.
 Chapter 5. Sample application 175

Figure 5-12 shows the new structure of the catalog manager module.

Figure 5-12 DFH0XCMN structure

Figure 5-13 on page 177 illustrates the structure of the catalog manager module
before it returns to the caller. The steps are as follows:

1. Before you can return to the caller of the catalog manager, update the
RC-MSG container with return code and error message information that might
have occurred.

2. After that, evaluate the request ID and place the result to the output container
that corresponds to the request ID.

3. You still have the catalog item image in the gif-data output container available.
You do not have to take care of the item image within the catalog manager.
The caller of the catalog manager module manages the container and passes
the image to the web browser front end, which in this case is the CICS Liberty
servlet.

channel
available? abend

2 of 2

E.C. Link to
DFH0XVDS

INQS ?

ORDER?

INQC ?

Read configuration file

get
ORDER
container

get
INQC

container

Y

N

Y

Y

Y

N

N

DFH0XSEP

inv-request

DFH0XCMN structure 1 of 2

EXEC CICS LINK
PROGRAM(DFH0XCMN)

CHANNEL ...

get REQ container

get
INQS

container

E.C. Link to
DFH0XVDS

E.C. Link to
Image
server

E.C. Link to
DFH0XVDS

E.C. Link to
DFH0XVDS
176 Using IBM CICS Transaction Server Channels and Containers

Figure 5-13 shows the structure of the catalog manager module before it
returns to the caller.

Figure 5-13 DFH0XCMN structure

Example 5-19 on page 178 shows how our example updates the catalog inquire
single paragraph of the catalog manager program. It illustrates the following
steps:

1. Place the image reference of the item that you want to get from the HFS
directory to the ref-no container. Use the ITEM-REF-REQ data field of the
inquire single structure to identify the item.

2. Place the name of the HFS directory into the image-dir container. Specify the
IMG-DIR-CONTENTS data field on the INTO option of the put container
command. Data field IMG-DIR-CONTENTS contains HFS directory
/u/klein4/images/.

3. Issue an EXEC CICS LINK command passing the current channel, to call the
catalog server JCICS program.

INQS ?

ORDER?

INQC ?

put
RESULT
container

Y

Y

Y

N

N

From 1 0f 2

inv-request

DFH0XCMN structure 2 of 2

put RC-MSG container

E.C.
RETURN

put
RESULT
container

put
RESULT
container

E.C.
RETURN

E.C.
RETURN
 Chapter 5. Sample application 177

4. On return, the catalog server JCICS program places the image in the output
gif-data container. To check that there are no error messages available in the
error-msg container, run EXEC CICS GET CONTAINER(GET-IMG-ERROR).

You get a CONTAINERERROR condition if there are no error messages available.
Therefore, use the RESP option to check if the response is normal. A response
of DFHRESP(NORMAL) means that the container has been created and contains
an error message, as shown in Example 5-19.

Example 5-19 Extended catalog-inquire-s paragraph

CATALOG-INQUIRE-S.
 MOVE 'EXCATMAN: CATALOG-INQUIRE' TO CA-RESPONSE-MESSAGE
 EXEC CICS GET CONTAINER(INQS)
 CHANNEL(CMN-CHANNEL)
 INTO(INQUIRE-SINGLE)
 END-EXEC

 MOVE ITEM-REF-REQ TO CA-ITEM-REF-REQ.

 EXEC CICS LINK PROGRAM(WS-DATASTORE-PROG)
 COMMAREA(WS-CHN-DATA)
 END-EXEC

--
* before we return to the data separation routine we must *
* retrieve the corresponding image using the catalog server

--
 EXEC CICS PUT CONTAINER(IMAGE-REF)
 CHANNEL(CMN-CHANNEL)
 FROM(ITEM-REF-REQ)
 END-EXEC

* PUT CONTAINER command to pass the HFS directory name

EXEC CICS PUT CONTAINER(IMG-DIR)
CHANNEL(CMN-CHANNEL)
FROM(IMG-DIR-CONTENTS)

END-EXEC
EXEC CICS LINK PROGRAM(CATALOG-SERVER)

 CHANNEL(CMN-CHANNEL)
 END-EXEC

EXEC CICS GET CONTAINER(GET-IMG-ERROR)
 CHANNEL(CMN-CHANNEL)
 INTO(RESPONSE-MESSAGE)
 RESP(RESPONSE)
178 Using IBM CICS Transaction Server Channels and Containers

 END-EXEC
IF RESPONSE = DFHRESP(NORMAL)

 MOVE '54' TO RC
 END-IF

EXIT.

5.2 Running the stage 2 code

Before running the CICS Liberty catalog servlet in the Stage 2 environment, you
need to perform the steps that the following sections describe.

5.2.1 Installing and setting up the Stage 2 application

As Figure 5-11 on page 174 shows, the scenario now includes an image handler
program and a CICS Liberty profile servlet. You need to configure both of these
applications before running the scenario. You can find all Java source code and
compiled classes in the additional material that we supply, described in
Appendix B, “Additional material” on page 239.

Figure 5-14 on page 180 provides an overview of the applications and CICS
resource definitions that we are going to implement to set up the Stage 2
application. We use two CICS regions to install the Stage 2 scenario.

On region IV3A69A3, we run the OSGi Java image handler program. The Java
application requires a CICS JVMSERVER and a BUNDLE resource. In our
environment, we use the following resources:

� JVMSERVER=JVMSERVX
� BUNDLE=IMGHNDL

We describe how to bundle the Java application using the IBM CICS Explorer®
later on.

On CICS region IV3A69A4, we run the CICS Liberty profile servlet to get access
to the catalog manager.

The servlet requires a Liberty JVMSERVER and a CICS BUNDLE definition.

1. JVMSERVER=DDWWLP
2. BUNDLE=CATLGAPP

We also describe how we use the IBM CICS Explorer to bundle the catalog
server later on.
 Chapter 5. Sample application 179

Requirements
We used CICS Transaction Server V5.2, which is required to run the Liberty
profile servlet and, to deploy the servlet, we used IBM CICS Explorer V5.2.0.

The image handler program can be installed on any supported CICS version.
With CICS Transaction Server Version 4.2 and later, it must be installed as an
OSGi bundled application. We used a separate CICS region to run the image
handler program, which can be any supported version.

Figure 5-14 shows an overview of the applications and CICS resource
definitions.

Figure 5-14 Required resources to run the stage 2 application

5.2.2 JCICS image handler program installation

The image handler program is written in Java, and uses the JCICS class library. It
is linked to a channel that must have the following containers:

� ref-no

The reference number of the item. This is used to find the corresponding .gif
file for the item, for example, 0010.gif.

� img-dir

The HFS directory where item images are stored. The value for this is
configured in the COBOL copybook DFH0XS02.
180 Using IBM CICS Transaction Server Channels and Containers

Setting up the image handler in CICS Transaction Server Version 4.1
Here are the required steps for setting up this program:

1. Add saz099.catalog.jar to the Java class path in your CICS Java virtual
machine (JVM) Profile.

2. Define and install the following CICS resource:

PROGRAM(CTLGSERV)
GROUP(CATALOG)
JVM(Yes)
JVMClass(com.ibm.itso.saz099.catalog.server.ImageRetriever)

In CICS Transaction Server Version 4.2 and later, you need to install JCICS Java
programs in OSGi Bundles. We used the IBM CICS Explorer to create an OSGi
Bundle project, and then created a CICS Bundle that includes the OSGi Bundle
project. This enables the image handler classes within the bundle to run in a
CICS JVMServer.

In the following section, we describe how to set up the image handler Java
application in CICS Transaction Server Version 5.2.

Setting up the image handler in CICS Transaction Server Version 5.2
See section 5.2.8, “Workspace setup for developing OSGi servlets and JSP” on
page 203 for details about setting up your CICS Explorer workspace. After your
CICS Explorer workspace is set up, you can start to create an OSGi project that
contains the image handler JCICS program.
 Chapter 5. Sample application 181

You must open the plug-in Development Perspective to perform the following
steps:

1. From the Package Explorer view, right-click in an open area and select
New → plug-in Project.

Figure 5-15 Create a new plug-in project
182 Using IBM CICS Transaction Server Channels and Containers

2. In Figure 5-15 on page 182, click New → plug-in Project. You see a window
similar to Figure 5-16. We used com.sg247227.imagehandler as the name of
the project. We chose to run with a standard OSGi framework.

Figure 5-16 Create new plug-in Project
 Chapter 5. Sample application 183

3. Click Next to open the New Plug-in Project Content window (Figure 5-17). It is
important to remove the qualifier. The version we used is 1.0.0 without any
qualifier. We also had to clear the Generate an activator, a Java class that
controls the plug-in’s lifecycle option.

We chose an execution environment of JavaSE1.7, which is the default for
CICS Transaction Server version 5.2. You can modify the execution
environment if you run a different version of CICS Transaction Server.

Figure 5-17 New Plug-in Project content window
184 Using IBM CICS Transaction Server Channels and Containers

4. Click Next to get to the New plug-in Project Templates window (see
Figure 5-18).

Figure 5-18 New plug-in Project Templates
 Chapter 5. Sample application 185

5. We selected OSGi Declarative Services and clicked Next. Note that the
manifest editor opens automatically see Figure 5-19 on page 186.

Figure 5-19 Imported packages

6. Our image handler application contains CICS API commands, so we needed
to add a CICS dependency.

a. In the manifest editor (Figure 5-20 on page 187), we clicked the
Dependencies tab (along the bottom).

b. Under Imported Packages, we clicked the Add button.

c. Then, in the Package Selection dialog, we selected com.ibm.cics.server
(1.500.0), and clicked OK. Save and close the manifest editor.

Now we are ready to create a new package that contains the actual Java
image handler program.

7. Right-click com.sg247227.imagehandler → src. Select New → Package.

8. On the New Java Package window, insert the package name (images).
186 Using IBM CICS Transaction Server Channels and Containers

9. Click Finish to create the package.

10.Next, we created the Java class for the image handler program. In the
additional material, we supplied the Imageretriever.java file. We opened the
file using Windows Notepad and press Ctrl+A and Ctrl+C to copy the contents
to the clipboard.

11.After that, press Ctrl+V to paste the Java program to your
com.sg247227.imagehandler.src.images package.

12.In the Package Explorer view, expand the
com.sg247227.imagehandler\WebContent\META-INF directory and double-click
the MANIFEST.MF file (this is the project’s manifest file). We click the
MANIFEST.MF tab (along the bottom).

13.We had to add the Java class name manually in the manifest. We inserted
CICS-MAINCLASS: images.ImageRetriever.

Figure 5-20 Manifest editor

Note: The last statement of the manifest must include a line break.
Therefore, we added a new empty line before we saved the manifest. See
Figure 5-20, which shows our manifest.
 Chapter 5. Sample application 187

14.From the Package Explorer, right-click and select New → Other → CICS
Resources → CICS Bundle Project and click Next, as shown in Figure 5-21.

Figure 5-21 Create CICS Bundle Project
188 Using IBM CICS Transaction Server Channels and Containers

15.We used the name com.sg247227.imagehandler.bundle, as shown in
Figure 5-22. Click Finish.

Figure 5-22 Create CICS Bundle Project

The CICS Bundle has now been created. The idea was to include the OSGi
com.sg247227.imagehandler project to the CICS Bundle that we just created.

16.From the Package Explorer, right-click the
com.sg247227.imagehandler.bundle project.
 Chapter 5. Sample application 189

17.Select New → Other → CICS Resource → Include OSGi Project in
Bundle, as shown in Figure 5-23. Click Next.

Figure 5-23 Include OSGi Project in Bundle
190 Using IBM CICS Transaction Server Channels and Containers

18.We selected the com.sg247227.imagehandler OSGi project. We also specified
the name of a JVMSERVER resource definition. We wanted to install the
image handler JCICS program on another CICS region that uses a different
JVMSERVER. Therefore, we typed JVMSERVX, as shown in Figure 5-24.

19.Click Finish to include the OSGi project to the CICS Bundle.

Now, we can transfer the CICS Bundle to the z/OS UNIX System Services file
system.

Figure 5-24 Include OSGi project to the CICS bundle

5.2.3 Define a JVMSERVER definition in CICS TS

In this section, we create a CICS JVMSERVER definition in CICS Transaction
Server. Depending on your preference, you can use the IBM CICS Explorer or
the CICS-supplied CEDA transaction to create the definition.
 Chapter 5. Sample application 191

The following steps can be used to create the JVMSERVER definition, using
CEDA:

1. Copy the Liberty profile JVMProfile into your IBM z/OS UNIX System
Services files. You can find the JVMProfile that we used for the catalog servlet
in the additional material. The name of the file is DFHOSGI.jvmprofile. We
used the CICS-supplied directory to store the JVMProfile, as shown in
Example 5-20.

Example 5-20 JVMProfile directory

File Directory Special_file Commands Help
....
....
 EUID=0 /usr/lpp/cicsts/cicsts52/JVMProfiles/
 Type Filename
 _ Dir .
 _ Dir ..
 _ File DFHOSGI.jvmprofile

2. We used the following parameters as described in Example 5-21 to create a
JVMSERVER definition. We used CEDA to install the definition.

Example 5-21 CEDA JVMSERVER definition

OBJECT CHARACTERISTICS CICS
RELEASE = 0690
 CEDA View JVmserver(JVMSERVX)
 JVmserver : JVMSERVX
 Group : LIBPROF
 DEScription : JVM SERVER DEFINITION FOR OSGi BUNDLES
 Status : Enabled Enabled ! Disabled
 Jvmprofile : DFHOSGI
(Mixed Case)
 Lerunopts : DFHAXRO
 Threadlimit : 015 1-256
 DEFINITION SIGNATURE
 DEFinetime : 10/07/14 10:48:24
 CHANGETime : 10/07/14 16:30:46
 CHANGEUsrid : CICSUSER
 CHANGEAGEnt : CSDApi CSDApi ! CSDBatch
 CHANGEAGRel : 0690
192 Using IBM CICS Transaction Server Channels and Containers

5.2.4 Transfer the CICS Bundle to z/OS UNIX System Services

When deploying the image handler JCICS program to CICS, you define a CICS
BUNDLE and place your image handler OSGi Project into the BUNDLE. Then,
you export the CICS Bundle from your workstation to z/OS where it can be
accessed by your CICS region.

To export the CICS Bundle, we created a directory in the z/OS UNIX file system.
We used <home_directory>/cicslab/bundles/.

Export your CICS Bundle to UNIX System Services on z/OS
To export your CICS Bundle, complete the following steps:

1. In the Java Platform, Enterprise Edition (Java EE) perspective, in the
Enterprise Explorer view, right-click your com.sg247227.imagehandler.bundle
project and select Export Bundle Project to z/OS UNIX File System.

2. In the Export to z/OS UNIX File System dialog, click the Export to a specific
location in the file system radio button, and click Next.

3. In the Export Bundle dialog, verify the following information:

– In Bundle project, it should say com.sg247227.imagehandler.bundle.

– In the parent directory, ensure that it says
<home_directory>/cicslab/bundles/.

– In the Bundle directory, ensure that it says
<home_directory>/cicslab/bundles/com.sg247227.imagehandler.bundle_1.0.0,
as shown in Example 5-22.

Example 5-22 Exported Bundles

EUID=0 /u/klein4/cicslab/bundles/
 Type Filename
_ Dir .
_ Dir ..
_ Dir com.sg247227.catalog.cicsbundle_1.0.0
_ Dir com.sg247227.imagehandler.bundle_1.0.0

4. Still on the Export Bundle page, click Finish.
 Chapter 5. Sample application 193

5. After that we used the information in Example 5-23 to create a BUNDLE
definition in CICS Transaction Server by using the CEDA Transaction.This can
also be done with the IBM CICS Explorer.

Example 5-23 CEDA BUNDLE definition

OBJECT CHARACTERISTICS CICS
RELEASE = 0690
 CEDA View Bundle(IMGHNDL)
 Bundle : IMGHNDL
 Group : LIBPROF
 DEScription :
 Status : Enabled Enabled ! Disabled
 BUndledir :
/u/klein4/cicslab/bundles/com.sg247227.imagehandler.bundle
 (Mixed Case) : _1.0.0
 :
 :
 :
 BAsescope :
 (Mixed Case) :
 :
 :
 :
 DEFINITION SIGNATURE
 DEFinetime : 10/30/14 10:57:42
 CHANGETime : 10/30/14 10:58:30

 SYSID=69A3
APPLID=IV3A69A3

6. After that, we installed the BUNDLE definition. Both the JVMSERVER and
BUNDLE definition should be ready to use and should show status enabled.

You can also check the messages shown in Example 5-24 to make sure that
the JVMSERVER and the BUNDLE definition are ready to use.

Example 5-24 JVMServer and Bundle successfully installed

DFHSJ0915 10/30/2014 11:06:52 IV3A69A3 CICSUSER JVMSERVER JVMSERVX
is now enabled and is ready for use.
DFHRL0132 I 10/30/2014 11:06:57 IV3A69A3 CEDA All defined resources
for BUNDLE IMGHNDL are now in the enabled state.
194 Using IBM CICS Transaction Server Channels and Containers

Preparing files in the additional material
The supplied additional material contains five images for use with the scenario.
These are 0010.gif, 0020.gif, 0030.gif, 0040.gif, and NoImage.gif. You must
place these in a directory on UNIX System Services, and the directory must have
appropriate permissions to allow CICS to access them.

You must insert the explicit path of this directory into the IMG-DIR-CONTENTS
field in the COBOL copybook DFH0XS02. This value is picked up when the
catalog manager program EFH2XCMN is linked and compiled.

The path in the IMG-DIR-CONTENTS field must also be updated in two further
files to provide for the image support. The servlet uses a Fileoutputstream to
store the images from the img-dir container to an HFS directory. We do not use a
server path to store the images.

We want to display the dynamic contents of the images from the HFS path that
you specify, which can be the same path that you specify in the
IMG-DIR-CONTENTS field. We use a URIMAP and TCPIPSERVICE definition in
the IV3A69A4 region to supply the dynamic contents for the JSP file.

The following two files must be updated:

� The LinkProgOSGI.java file. Update the fileoutputstream statement. insert
your path that should contain the ximage.gif dynamic image file:

FileOutputStream outstr = new FileOutputStream ("/your
path/ximage.gif");

� The OrderItem2.JSP file. Update the link to the directory that contains the
dynamic image file. We insert the z/OS Internet Protocol (IP) address of the
image handler CICS region and a port that is specified in a TCPIPSERVE
definition. Note that the image that contains the dynamic contents does not
need to be specified:

<IMG src="http://9.155.11.209:4556/your path/" width="109"
height="110"></DIV>

In the additional material, we provide a DFHCSDUP job that contains SYSIN
statements to define the URIMAP and TCPIPSERVICE definitions. It also
contains all of the required CEDA definitions for the project. Also see the readme
file that we supply to get detailed instructions about what to modify.
 Chapter 5. Sample application 195

5.2.5 The Liberty profile servlet access to the catalog manager

CICS supports a subset of the Liberty profile, including servlets and JSP. See the
CICS Transaction Server version 5.2 Knowledge Center for a list of the CICS
supported parts of the Liberty profile:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics
.ts.java.doc/topics/liberty_features.html

To provide a browser-based front end to the catalog manager, we used a CICS
Liberty servlet. Within the servlet, we can issue a link to the catalog server using
channel and containers directly.

The servlet demonstrates how to develop a front end that can be used to place
an order from the catalog. We used a Hypertext Markup Language (HTML) page
to get the required data to place the order, as shown in Figure 5-25 on page 197:

� Item number
� A name
� Number of items

The catalog manager requires the following information in the channel and
containers that get passed to the program:

� The container request-type contains the order request, which is 01ORDR.

� The container order-item contains the customer name, department, item,
and number of items.

On return, we expect the result in the container return-code-msg.
196 Using IBM CICS Transaction Server Channels and Containers

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.java.doc/topics/liberty_features.html

Figure 5-25 OrderItem HTML page

The JCICS snippets in Example 5-25 on page 198 show how we stored the
required data to the containers, how we created the channel, and how we linked
to the catalog manager. As you can see, we used two strings to store the data to
the containers request-type and order-item. The strings ca2Name and ca3Name
were created from the input fields of the OrderItem.htm file. To get the data to the
container, we converted them to type byte[].

Note that we put the data to the container using the following statements:

cont2input = ca2Name.getBytes();
reqtype.put(cont2input , myccsid);

We used two parameters on the put method. The cont2input, which is the data
that is put to the container, and a string, which is the coded character set
identifier (CCSID). We defined a string for the CCSID, such as String myccsid =
"1208";.

When we issue the put method without myccsid, the catalog manager gets
American Standard Code for Information Interchange (ASCII) data from the
container. If we use the CCSID on the container put method, automatic code
page conversion to CICS local CCSID takes place.
 Chapter 5. Sample application 197

If you omit the CCSID on the container put method, it is not possible to convert
the data on the get container command in the CICS COBOL program. We tried
to use INTOCCSID and INTOCODEPAGE on the get container command in the
catalog manager, which results in the following response:

CODEPAGEERR
RESP2 value 3

The data was created with a data type of BIT. Code page conversion is not
possible. The data was returned without any code page conversion. Type of BIT
is the default, so we suggest using the CCSID on the container put method, as
shown in Example 5-25.

Example 5-25 JCICS snippets

// create the IMG-CHANNEL channel

 Channel imgchannel = t.createChannel("cmn-channel");

 // create containers

 Container reqtype = imgchannel.createContainer("request-type");

ca2Name = "01ORDR";

 cont2input = ca2Name.getBytes();

 reqtype.put(cont2input , myccsid);

 Container orderitem = imgchannel.createContainer("order-item");
 byte[] cont3input = ca3Name.getBytes();

 orderitem.put(cont3input , myccsid);

 // Link to the catalog program, passing the channel
 Program p = new Program();
 p.setName("EFH2XCMN");
 p.link(imgchannel);

Container returnmsgcont = imgchannel.getContainer("return-code-msg");
 byte[] catalogmsg = returnmsgcont.get(myccsid);

 String resultmsg = new String(catalogmsg, "UTF-8");

 result = "Catalog Server returned: " +resultmsg + "for item number "
+ca1Name + " ";
198 Using IBM CICS Transaction Server Channels and Containers

On return from the catalog manager, we get the result back from container
return-code-msg. The following statements are used to get the data from the
container:

Container returnmsgcont = imgchannel.getContainer("return-code-msg");
byte[] catalogmsg = returnmsgcont.get(myccsid);

The data does not get converted from Extended Binary Coded Decimal
Interchange Code (EBCDIC) to ASCII automatically. We use the INTOCCSID
string on the container get method to convert the data with the following result:

CODEPAGEERR
RESP2 value 3

The data was created with a data type of BIT. Code page conversion is not
possible. The data was returned without any code page conversion. The BIT type
is also the default when we issue the put container command from the catalog
manager. Therefore, we use the CHAR parameter on the put container command
in the Cobol catalog manager, as shown in Figure 5-26.

Figure 5-26 Code page conversion using the catalog servlet

See 2.6, “Data conversion and code page conversion” on page 44 for additional
information about code page conversion using channel and containers.
 Chapter 5. Sample application 199

We put the JSP pages and Java packages in Appendix B, “Additional material”
on page 239. You can look at them to see how we saved the data from the input
fields, and how the logic works. To get the catalog servlet started, you can read
through the next two sections, which describe how to run and deploy the servlet.

5.2.6 Running the catalog servlet

To run the catalog servlet, complete the following steps:

1. We use the following URL to start the catalog servlet application:

http://9.155.11.209:4555/catalog/OrderItem.htm

2. The port we use is defined in the JVMProfile used for JVMServer DDWWLP.
Note that there is no TCPIPSERVICE definition required to define the port to
CICS. Next to the port, we specify the path, which is the Context root. We
specified it on the web Module page of the New OSGi Bundle Project dialog.

3. After that, we specify the name of the first HTML page of the web application.
We start the URL. The first page of the application starts, as shown in
Figure 5-27.

Figure 5-27 Entry page of the catalog servlet
200 Using IBM CICS Transaction Server Channels and Containers

4. The input fields are already set. You can enter the item number, name, and
number of items if you want. We click Submit Query to get to the next page,
which is shown in Figure 5-28.

Figure 5-28 Info page of catalog servlet
 Chapter 5. Sample application 201

5. The next page opens, which provides some information about the scenario.
Next, click Continue and you see a window similar to Figure 5-29.

Figure 5-29 Result page of catalog servlet

6. The resulting page displays and informs us that there is insufficient stock to
complete the order. The image of the item is displayed as well.

The image handler retrieved the image file from the z/OS UNIX file system
directory and passed it back to the COBOL catalog manager in a container
called gif-data. On return, however, the catalog manager returned the image
to the servlet in the gif-data container.

The servlet uses a fileoutputstream to store the image to a z/OS UNIX File
directory that can be accessed by the JSP page we show in Figure 5-29.

5.2.7 Deploying the catalog servlet

In this section, we describe how to package the catalog servlet as an OSGi
bundle in CICS Transaction Server V5.2. CICS supports a subset of the Liberty
profile, including servlets and JSP. To run the servlet, you need to deploy the
OSGi Bundle in CICS Transaction Server V5.2.
202 Using IBM CICS Transaction Server Channels and Containers

Requirements to perform the following steps:
We used the IBM CICS Explorer V5.2.0.0 to create and package the application
as a CICS Bundle. To get instructions about how to set up the IBM CICS
Explorer, you can use the following link:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics
.ts.java.doc/topics/installingthelibertyprofile.html?lang=en

Alternatively, you can use the following path to the CICS Transaction Server
Version 5.2 Knowledge Center:

CICS Transaction Server 5.2.0 → Developing applications → Developing
Java applications for CICS → Developing Java web applications to run in
Liberty JVM server → Setting up the development environment

You also need to install the CICS Explorer software development kit (SDK) for
servlets within the Explorer. This SDK contains the CICS Explorer parts needed
to write Liberty applications. You also need to install additional tooling from IBM
WebSphere. To get the support, you can install the following packages from the
Eclipse Market Place:

� IBM CICS SDK for servlet and JSP support V5.2.0
� IBM WebSphere Application Server V8.5.5 Developer Tools for Eclipse Juno

and Kepler

5.2.8 Workspace setup for developing OSGi servlets and JSP

You need to configure your workstation for developing OSGi-based servlets and
JSP. We will change the OSGi support that is automatically added when you
create a project.

This only has to be done one time per workspace. However, if you change the
OSGi support to something else, or if you use a different workspace, you must
change the OSGi support back to support CICS technology-based OSGi
applications.

As described in the previous section, you need the IBM CICS Explorer 5.2.0.0
(includes the Java EE version of Eclipse), plus the WebSphere Application
Server Development tools. See the CICS TS V5.2 Information Center for a
comprehensive listing of how to set up your Eclipse environment to develop
OSGi-based servlets in CICS.
 Chapter 5. Sample application 203

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.java.doc/topics/installingthelibertyprofile.html?lang=en

You can use the following steps to set up the workspace for developing Liberty
profile applications:

1. Start the Eclipse workbench if not already started.

2. In Eclipse, from the menu bar, select Window → Preferences. On the left,
select Plug-in Development → Target Platform. On the right, select Add.

3. From the Target Definition dialog, select the radio button next to Template,
then use the pull-down menu to select CICS TS V5.2 with Liberty and PHP,
then click Next.

4. From the second page of the Target Content dialog, click the Finish button.

5. Back on the Target Platform page of the Preferences dialog, select the check
box next to CICS TS V5.2 with Liberty and PHP, then click the OK button.

5.2.9 Create the catalog OSGi Project

In this section, we set up the OSGi project by creating the following components:

1. A plug-in Project that contains your servlet (this is the part that the user
interacts with from their browser). The plug-in project contains JSP, cascading
style sheets (CSS), graphics, and the JavaScript code.

2. You create an enterprise bundle archive (EBA) application bundle that points
at the plug-in project containing your application.

3. A CICS BUNDLE that points to your EBA application bundle. This is the
BUNDLE that you install into CICS.

The result is a CICS BUNDLE that contains an EBA, which contains a web
application bundle (WAB). Your servlet is in the WAB.

Create a plug-in project
Perform the following steps:

1. Open or switch to the plug-in Development perspective.

2. From the Package Explorer view, right-click in an open area and select
New → OSGi Bundle Project.

3. From the OSGi Bundle Project dialog, enter the following information, as
shown in Figure 5-30 on page 205, then click the Next button.

– Project name, which is com.sg247227.catalog.servlet.
– Use default location must be selected.
– Add web support must be selected.
– We use Web3.0 support.
– Add bundle to application must be cleared.
– Add project to working sets must be cleared.
204 Using IBM CICS Transaction Server Channels and Containers

Figure 5-30 OSGi Bundle Project for catalog servlet

4. From the Java page of the New OSGi Bundle Project dialog, click Next.

5. From the Web Module page of the New OSGi Bundle Project dialog, change
the Context root to catalog. Let the Content directory default to WebContent.
Select the Generate web.xml deployment descriptor. Then click Next.

6. From the OSGi Bundle page of the New OSGi Bundle Project dialog, change
the Version to 1.0.0. Also clear the box next to Generate an activator, a Java
class that controls the lifecycle of the bundle.
 Chapter 5. Sample application 205

7. Then click Finish. You see a window similar to Figure 5-31.

Figure 5-31 Context root of web Module

5.2.10 Create an EBA project to the OSGi Bundle Project

Perform the following steps to create an EBA project:

1. From the Package Explorer view, right-click in an open area and select
New → OSGi Application Project.

2. From the OSGi Application Project dialog, enter the following information, as
shown in Figure 5-32 on page 207, then click Next:

– Project name, which is com.sg247227.catalog.app.
– Use default location must be selected.
– Clear Add project to working set.
206 Using IBM CICS Transaction Server Channels and Containers

Figure 5-32 OSGi application project for the catalog servlet

3. From the Contained OSGi Bundles and Composite Bundles dialog, select the
box next to com.sg247227.catalog.servlet 1.0.0 (see Figure 5-33 on
page 208), then click the Finish button. Note that you could put multiple OSGi
Bundle Projects into your OSGi Application Project, but we only have one.

4. From the Package Explorer view, expand the com.sg247227.catalog.app
project, and double-click the APPLICATION.MF manifest file.

5. On the Overview page of the manifest editor, toward the upper-left, change
the Version to 1.0.0.

6. Save and close the com.sg247227.catalog.app manifest editor.
 Chapter 5. Sample application 207

Figure 5-33 shows the window for creating the project.

Figure 5-33 New OSGi Application Project

5.2.11 Create a CICS BUNDLE to the EBA project

Perform the following steps to create a CICS BUNDLE:

1. From the Package Explorer view, right-click in an open area and select
New → Other, then from the Select a wizard dialog, select CICS
Resources → CICS Bundle Project. Click Next.

2. From the CICS Bundle Project dialog, enter the following information, then
click Finish:

– Project name, which is com.sg247227.catalog.cicsbundle.
– Use default location must be selected.
– ID is com.sg247227.catalog.cicsbundle.
– Version 1.0.0.

3. Note that the CICS bundle manifest editor opened.
208 Using IBM CICS Transaction Server Channels and Containers

4. From the CICS bundle manifest Overview view, in the Defined Resources
section, click New and select Include OSGi Application Project in Bundle.
Then, click Next.

From the Include OSGi Project in Bundle dialog (Figure 5-34), highlight
com.sg247227.catalog.app, and specify a JVM Server of DDWWLP.

Figure 5-34 Include OSGi Application Project in Bundle

5. Still on the Include OSGi Application Project in Bundle dialog, note the
verbiage in the parenthesis beneath the JVM Server (immediately under File
Name). Click the Back button, because we are going to change the name to
something other than app.ebabundle.

6. Still on the Include OSGi Application Project in Bundle dialog (you have
changed to a different page of this wizard), change the File name to
com.sg247227.catalog.app.ebabundle, then click Finish. You have just
created the OSGi web bundle, your application bundle, and the CICS bundle
for your servlet. Note that you could have put multiple EBA bundles in your
CICS BUNDLE, however, we only have one.

7. Save and close the CICS bundle manifest editor.
 Chapter 5. Sample application 209

5.2.12 Add the com.ibm.cics.server package to your OSGi project

In this section, we complete the parts of the OSGi project that you always
complete for every servlet. In our servlet, we want to use JCICS channel and
container commands. Therefore, the following steps can be used to see where to
put imported packages, such as the com.ibm.cics.server package:

1. In the Package Explorer view, expand the com.sg247227.catalog.servlet →
WebContent → META-INF directory and double-click the MANIFEST.MF file
(this is the project’s manifest file).

2. Our servlet contains CICS API commands, so we need to add a CICS
dependency. In the manifest editor, click the Dependencies tab (along the
bottom). Under Imported Packages, click Add. Then from the Package
Selection dialog, we would select com.ibm.cics.server (1.500.0) and click OK.

3. Save and close the manifest editor.

5.2.13 Create the dynamic web project

In the provided Eclipse workbench, you create a Dynamic Web Project. This is
the type of Eclipse project that is used to create a servlet and a JSP:

1. Right-click com.sg247227.catalog.servlet → src and select New →
Package.

2. In the New Java Package dialog, under Name, type
com.sg247227.catalog.servlet. Then click Finish.

From your desktop environment, copy the LinkProgOSGI.java program and paste
it into your Eclipse com.sg247227.catalog.servlet project’s
com.sg247227.catalog.servlet package.

From your desktop environment, copy the following files and paste them into your
Eclipse com.sg247221.catalog.servlet project’s WebContent directory:

– OrderItem.jsp program
– OrderItem1.jsp program
– OrderItem2.jsp program
– wsenv.gif
– ximage.gif
210 Using IBM CICS Transaction Server Channels and Containers

5.2.14 Define a CICS JVMSERVER with Liberty profile

In this section, we create a CICS JVMSERVER definition in CICS Transaction
Server. Depending on your preference, you can use the IBM CICS Explorer or
the CEDA transaction to create the definition. The following steps can be used to
create the JVMSERVER definition:

1. Copy the Liberty profile JVMProfile into your UNIX System Services files. You
can find the JVMProfile that we used for the catalog servlet in the additional
material. The name of the file is DDWWLP.jvmprofile. We used the CICS
supplied directory to store the JVMProfile, as shown in Example 5-26.

Example 5-26 JVMProfile directory

File Directory Special_file Commands Help
....
....
 EUID=0 /usr/lpp/cicsts/cicsts52/JVMProfiles/
 Type Filename
 _ Dir .
 _ Dir ..
 _ File DDWWLP.jvmprofile

2. We use the following parameters, described in Example 5-27, to create the
JVMPROFILE definition.

Example 5-27 CEDA JVMSERVER definition

OBJECT CHARACTERISTICS CICS
RELEASE = 0690
 CEDA View JVmserver(DDWWLP)
 JVmserver : DDWWLP
 Group : LIBPROF
 DEScription : JVM SERVER DEFINITION FOR LIBERTY PROFILE
 Status : Enabled Enabled ! Disabled
 Jvmprofile : DDWWLP
(Mixed Case)
 Lerunopts : DFHAXRO
 Threadlimit : 015 1-256
 DEFINITION SIGNATURE
 DEFinetime : 09/23/14 18:23:19
 CHANGETime : 10/07/14 16:56:26
 CHANGEUsrid : CICSUSER
 CHANGEAGEnt : CSDApi CSDApi ! CSDBatch
 CHANGEAGRel : 0690
 Chapter 5. Sample application 211

3. Before we install the JVMPROFILE, make sure that you have got a suitable
port defined within your JVMProfile. We use the following port definition, as
shown in Example 5-28. The port that we want to use must not be used
somewhere else, for example in an existing Transmission Control Protocol/
Internet Protocol (TCP/IP) Service.

Example 5-28 Liberty JVMProfile

#WLP_SERVER_HOST=*

WLP_SERVER_HTTP_PORT is used by CICS to configure the port used for
HTTP requests to the web server. The default value is 9080. If unset
in the JVM profile, CICS will set it to the
WebSphere Application Server Liberty profile default value.
In general you should not accept this default, instead set it to
a free port number on your z/OS system. Note, WLP does not use CICS
TCPIPServices, so you should take care not to use any port in use by
a CICS TCPIPService (or lsewhere).

WLP_SERVER_HTTP_PORT=4555
-Dcom.ibm.cics.jvmserver.wlp.server.http.port=4555

4. When the port is set, we are ready to install the new JVMSERVER definition.

5.2.15 Export the CICS Bundle to z/OS

When deploying a servlet to CICS, you define a CICS BUNDLE and place your
servlet into the BUNDLE. Then, you export the CICS Bundle from your
workstation to z/OS, where it can be accessed by your CICS region.

To export the CICS Bundle, we create a directory in the z/OS UNIX file system.
We use <home_directory>/cicslab/bundles/.

Note: Check that the following directives within the JVMProfile match your
environment requirements:

� JAVA_HOME=/usr/lpp/java/J7.0_64/
� WORK_DIR=/u/klein4/cicslab/logs/
� WLP_INSTALL_DIR=&USSHOME;/wlp
� WLP_SERVER_HTTP_PORT=4555
� -Dcom.ibm.cics.jvmserver.wlp.server.http.port=4555
212 Using IBM CICS Transaction Server Channels and Containers

Export your CICS Bundle to UNIX System Services on z/OS
To export your CICS Bundle, complete the following steps:

1. In the Java EE perspective, the Enterprise Explorer view, right-click your
com.sg247227.catalog.cicsbundle project and select Export Bundle
Project to z/OS UNIX file system.

2. In the Export to z/OS UNIX file system pop-up dialog, select the Export to a
specific location in the file system radio button, and then click Next.

3. Confirm the following information:

– In the Export Bundle pop-up dialog (Figure 5-35), in Bundle project, it
should say com.sg247227.catalog.cicsbundle.

– Still on the Export Bundle page, in the Parent Directory, ensure that it says
<home_directory>/cicslab/bundles/.

– Still on the Export Bundle page, in Bundle Directory, ensure that it says
<home_directory>/cicslab/bundles/com.sg247227.catalog.cicsbundle_1.0.0.

4. Still on the Export Bundle page, click Finish.

Figure 5-35 Export com.sg257227.catalog.cicsbundle Bundle
 Chapter 5. Sample application 213

5.2.16 Define a CICS Bundle definition for the catalog servlet
In this section, we create a CICS BUNDLE definition in CICS TS for the catalog
servlet. Depending on your preference, you can use the IBM CICS Explorer or
the CEDA transaction to create the definition. The following steps can be used to
create the BUNDLE definition that we use for the servlet:

1. First, we check if the com.sg247227.catalog.cicsbundle_1.0.0 directory
exists. See Example 5-29.

Example 5-29 Exported Bundle

EUID=0 /u/klein4/cicslab/bundles/
 Type Filename
_ Dir .
_ Dir com.sg247227.catalog.cicsbundle_1.0.0

2. After that, we use the information in Example 5-30 to create a BUNDLE
definition in CICS Transaction Server, by using either the IBM CICS Explorer
or the CEDA Transaction.

Example 5-30 CEDA BUNDLE definition

OBJECT CHARACTERISTICS CICS
RELEASE = 0690
 CEDA View Bundle(CATLGAPP)
 Bundle : CATLGAPP
 Group : LIBPROF
 DEScription :
 Status : Enabled Enabled ! Disabled
 BUndledir :
/u/klein4/cicslab/bundles/com.sg247227.catalog.cicsbundle_
 (Mixed Case) : 1.0.0
 :
 :
 :
 BAsescope :
 (Mixed Case) :
 :
 :
 :
 DEFINITION SIGNATURE
 DEFinetime : 10/22/14 15:08:22
 CHANGETime : 10/22/14 15:09:45

 SYSID=69A4
APPLID=IV3A69A4
214 Using IBM CICS Transaction Server Channels and Containers

3. After that, we install the BUNDLE definition. Both the JVMSERVER and
BUNDLE definition should be ready to use and should show a status
of enabled.

You can also check the messages shown in Example 5-31 to make sure that
the JVMSERVER and the BUNDLE definition are ready to use.

Example 5-31 JVMSERVER and BUNDLE successfully installed

DFHSJ0915 10/24/2014 13:22:52 IV3A69A4 CICSUSER JVMSERVER DDWWLP is
now enabled and is ready for use.
DFHRL0132 I 10/24/2014 13:22:52 IV3A69A4 CEDA All defined resources
for BUNDLE CATLGAPP are now in the enabled state.
 Chapter 5. Sample application 215

216 Using IBM CICS Transaction Server Channels and Containers

Chapter 6. Frequently asked questions

This chapter provides a list of the most frequently asked questions (FAQs). It
provides a short answer for each of these questions, and a possible reference to
certain chapters or sections in this book where you can access more detailed
information. You can use this chapter to navigate through this channels and
containers book, and start your investigation regarding this topic.

This chapter contains information about the following topics:

� 6.1, “Administration questions” on page 218
� 6.2, “Application programming questions” on page 219
� 6.3, “Performance questions” on page 221
� 6.4, “Functions not supporting channels and containers” on page 222
� 6.5, “Online information about channels and containers” on page 223
� 6.6, “Hints and tips” on page 223

6

© Copyright IBM Corp. 2006, 2015. All rights reserved. 217

6.1 Administration questions

Table 6-1 contains FAQs dealing with the administration of channels and
containers.

Table 6-1 Administration FAQs

No. Question Answer

1 How does IBM Customer
Information Control System
(CICS) resolve the restriction of
32 kilobytes (KB)?

CICS enhances inter-program data transfer using the
constructs of channels and containers.
A container is a named block of data that you can transfer to
another program or transaction. You can also think of it as a
named communication area (COMMAREA).
A channel is a set of containers that you can pass to another
program or transaction, and can be thought of as a parameter
list. See Chapter 2, “Application design and implementation”
on page 27.

2 Can a CICS program continue to
use a COMMAREA to pass data
while implementing the channel
and container constructs into its
design?

Before CICS Transaction Server version 5.2, Channels and
COMMAREA were mutually exclusive mechanisms for
transferring data on EXEC CICS LINK, EXEC CICS XCTL, EXEC
CICS START, and EXEC CICS RETURN commands.
You could use one technique or the other during each
operation, but not both at the same time. See Chapter 1,
“Introduction to channels and containers” on page 1.
However, with the introduction of the DFHTRANSACTION
channel in CICS Transaction Server version 5.2, it is now
possible to use both techniques at the same time. See 1.4.3,
“The DFHTRANSACTION transaction channel” on page 15.

3 Can a CICS transaction, using
channels to transfer data, be used
in a pseudo-conversational
mode?

Yes, you can use pseudo-conversational mode to preserve
the container data between transactions. On the highest
logical level return in the transaction flow (return to CICS),
use the command format EXEC CICS RETURN TRANSID
CHANNEL. To retrieve data passed to your program, use the
command format EXEC CICS GET CONTAINER CHANNEL. See
Chapter 3, “Programming” on page 65.

4 Is it possible to inquire against
containers in a channel?

No, It is not possible to inquire using the system
programming interface (SPI). This means that it is not
possible to know the number of containers on a channel using
EXEC CICS INQ CHANNEL(xxxxxxxx) CONTAINER COUNT.
218 Using IBM CICS Transaction Server Channels and Containers

6.2 Application programming questions

Table 6-2 contains FAQs regarding the application programming using channels
and containers.

Table 6-2 Application programming FAQs

5 Does the program free the storage
areas that EXEC CICS GET
CONTAINER acquires?

CICS manages the container storage. Do not issue a
FREEMAIN function against the storage area. If necessary, you
can use EXEC CICS DELETE CONTAINER to delete the container
and free the storage. Otherwise, the program reclaims the
container storage when the channel in which it was created
goes out of scope.
If you require to preserve some or all of the data, you can
copy it into your own application storage. See 3.1, “EXEC
CICS application programming interface” on page 66.

6 Are the containers recoverable? No they are not. If you require recoverability for the
container’s content, you must use business transaction
services (BTS). See Chapter 3, “Programming” on page 65.

7 Can you access channels and
containers using task-related user
exit (TRUE) or global user exit
(GLUE)?

TRUEs and GLUEs can create their own channels and,
additionally, access transaction channels.

8 Are channels and containers
suitable for dynamic transaction
routing in an IBM CICSPlex
System Manager environment?

Yes, but you must use a special container - DFHROUTE - if
you require to access the data for dynamic routing decisions.
See 2.9, “Best practices” on page 58.

No. Question Answer

No. Question Answer

1 How can you know if a
subroutine is started by
programs using COMMAREA or
channel, if both of the methods
are in use?

The EXEC CICS ASSIGN CHANNEL command is provided for this
scope. See 2.4, “STARTBROWSE application programming
interface” on page 40. Additionally, you can check EIBCALEN.

2 Can you use channels and
containers in Common Business
Oriented Language (COBOL)
dynamic calls?

Calling programs cannot pass channels and containers in the
call. The called program can access the current channel, if any.
 Chapter 6. Frequently asked questions 219

3 How do I know if I have a
transaction channel
(DFHTRANSACTION)?

Issue the following command:
EXEC CICS GET CHANNEL(‘DFHTRANSACTION’)
CONTAINER(‘DUMMY’) NODATA
‘CHANNELERR’ is returned if the transaction channel does not
exist.

4 Can I use transaction channels
on all link types?

Transaction channels can only be used on multiregion
operation (MRO) and Internet Protocol interconnectivity (IPIC)
link types.

5 Is the transaction channel
available after a remote DPL?

Yes it is, if the distributed program link (DPL) is made to a
region at CICS Transaction Server version 5.2

6 What happens if I create a
transaction channel and DPL to
a pre-CICS Transaction Server
version 5.2 region?

The transaction channel is not shipped.

7 When porting existing
COMMAREAs, is it better to use
channels with single or multiple
containers?

It is suggested to use multiple containers. See 4.4.1,
“Configuration” on page 103.

8 How can a program know what
are the containers associated to
the current channel?

Browse application programming interfaces (APIs) are
provided for this scope. See 2.4, “STARTBROWSE application
programming interface” on page 40 and 3.1.6, “Browsing the
current channel” on page 73.

9 Why must you use data
conversion in channel API rather
than the CICS-provided one?

The data conversion model offered by channel API is simpler to
manage compared to the CICS one. For more considerations
on the matter, see 2.6.1, “Data conversion with channels” on
page 44.

10 What are the factors that you
must consider when designing a
channel?

Consider the following factors when designing a channel:

� Use separate containers for input and output data.

� The server program, not the client, should create the
output containers.

� Use separate containers for read-only and read/write data.

� Use separate containers for CHAR and BIT data.

� If a structure is optional, make it a separate container.

� Use dedicated containers for error information.

More information about these factors is provided in 2.9.1,
“Designing a channel” on page 58.

No. Question Answer
220 Using IBM CICS Transaction Server Channels and Containers

6.3 Performance questions

Table 6-3 contains FAQs dealing with the performance of channels and
containers.

Table 6-3 Performance FAQs

11 Is it there any type of API used to
create a channel?

There is no explicit API to create a channel, but it is created
when performing certain commands.
More information about this topic is available in 3.1, “EXEC
CICS application programming interface” on page 66.

12 How can a program pass one
channel to another one?

EXEC CICS LINK, EXEC CICS XCTL, EXEC CICS START, and EXEC
CICS RETURN are the commands that you can use to pass
channels between programs. See 3.1.3, “Passing a channel to
another program or task” on page 69.

13 Are CICS Java classes (JCICS)
provided to manage channels
and containers?

Yes they are. See 3.2, “CICS Java” on page 76.

No. Question Answer

No. Question Answer

1 Does the terminal
input/output area
(TIOA) size interfere in
any way with channels
transmission over
MRO session?

The TIOA used to process messages over MRO links has a maximum
length of 32,767 bytes, as defined in the IOAREALEN parameter.
In case of channels and containers usage, where data can be larger than
32 KB, CICS splits the data into more 32 KB TIOAs as required, and
sends them to the remote region. In the remote region, CICS
reassembles the 32 KB chunks of TIOA and presents them to the
application as a channel.
Note that using intersystem communication (ISC) links between CICS to
pass container’s data can affect performance, depending on the amount
of data passed. The larger the data, the more response time is affected
by the process of sending them.
See 4.6, “Problem determination” on page 109.
 Chapter 6. Frequently asked questions 221

6.4 Functions not supporting channels and containers

Table 6-4 shows the functions and languages that currently do not support the
channels and containers API.

Table 6-4 Functions not supporting channels and containers

2 Any suggestion about
containers and storage
usage?

You must be careful when you use channels and containers to define the
amount of extended dynamic storage area (DSA) size. Also, in this case,
if large amounts of data are to be PUT in a container, it can affect the
extended dynamic storage area allocation.
The data area is subject to a GETMAIN function in user task storage above
the 16 megabyte (MB) line and associated to the task. When you issue
the put container command, it is also allocated in 64-bit storage, within
the PGCSCB subpool of the above-the-bar CICS dynamic storage area
(GCDSA) so that it can pass to the next program.
The use of 64-bit storage influences the value that you choose for the IBM
z/OS MEMLIMIT parameter that applies to the CICS region. You must also
consider other CICS facilities that use 64-bit storage. See 4.6, “Problem
determination” on page 109.

3 Is there any limitation
to the container size
used for data transfer
in CICS

CICS has a 2 gigabyte (GB) limit on container size, which is, in effect, no
limit. However, you are limited only by the available storage in the CICS
address spaces, and by any architected structure limits in the application
programming language. Container storage is acquired in the CICS
address space above the 4 GB bar in GCDSA, subpool PGCSDB. CICS
creates a copy of the container data within task storage above the 16 MB
line for user access.
Rather than using a single large container for transferring data between
programs, effective programming practice suggests defining multiple
containers within a channel, based on purpose, such as input, output,
data type, data size, and so on.
SeeChapter 4, “Systems management and configuration” on page 99.

No. Question Answer

No. Function Comment

1 C++ Channels and containers support for C or C++ foundation classes is not in
place.

2 External call
interface (ECI)

CICS Transaction Gateway using ECI is not yet able to use these new
enhancements.
222 Using IBM CICS Transaction Server Channels and Containers

6.5 Online information about channels and containers

The following list includes websites containing interesting information about
channels and containers:

� The following link goes to the Channels: Quick start section of the Knowledge
Center for CICS Transaction Server Version 5.2:

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.c
ics.ts.applicationprogramming.doc/topics/dfhp3_ch_quickst.html?lang=
en

� Find a white paper describing using channels and containers to enhance
CICS interprogram data transfer on the following File Transfer Protocol (FTP)
site:

ftp://service.boulder.ibm.com/software/htp/cics/pdf/cics-g224753500.
pdf

� Find a CICS Transaction Server product support page that you can use to
search for channels and containers, and obtain useful tips, on the following
website:

http://www-306.ibm.com/software/htp/cics/tserver/support/

6.6 Hints and tips

The following list provides some hints and tips:

� To determine if a container was put as a BIT or CHAR, perform a GET CONTAINER
NODATA CCSID(00037) and check the RESP code. If it comes back as RESP=X,
RESP2=Y, the container is of type BIT.

� To access the current channel in JCICS other than using
Task.getCurrentChannel(); you can try the following call.

If the name of the current channel is CURRCHAN, then the following JCICS call
explicitly returns a reference to the current channel:

Task.createChannel(“CURRCHAN”);

� To point at which the container is actually created in CICS while using JCICS
to create a container: When the data is put into the container using JCICS,
the container is created inside of CICS, as the following code snippet shows:

Channel myChannel = Task.createChannel();
Container myContainer = myChannel.createContainer();
myContainer.put(“Hello”); // It is at this point that the container
is created in CICS
 Chapter 6. Frequently asked questions 223

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.applicationprogramming.doc/topics/dfhp3_ch_quickst.html?lang=en
http://www-306.ibm.com/software/htp/cics/tserver/support/
ftp://service.boulder.ibm.com/software/htp/cics/pdf/cics-g224753500.pdf

224 Using IBM CICS Transaction Server Channels and Containers

Appendix A. CICS channels and
containers Liberty servlet
example

This appendix is a description of how to start an existing IBM Customer
Information Control System (CICS) assembly language application from a servlet
running in a CICS Transaction Server version 5.2 Liberty environment.

This is achieved using Java classes, from the CICS Java (JCICS) class library, to
link to the existing channel-aware business logic. We have developed a small
sample to demonstrate how to use the JCICS link with channel application
programming interface (API) within a servlet.

The CICS servlet issues a JCICS link request that passes a channel, rather than
a communication area (COMMAREA), to the CICS back-end application.

A

© Copyright IBM Corp. 2006, 2015. All rights reserved. 225

Channels and containers JCICS servlet example
The following components are used, and are prerequisites to run the application:

� IBM CICS Explorer v5.2.0

� IBM WebSphere Application Server Liberty profile technology built in IBM
CICS Transaction Server v5.2

� Web application and servlet implementation included in the additional
material

� CICS JVMServer and Bundle definition

The CICS region must be set up to run Liberty servlets.

� The CICS back-end program

Create an assembly language or Common Business Oriented Language
(COBOL) program LNKFRST1 that gets passed a channel from the servlet
JCICS link request.

Figure A-1 shows the flow of a CICS Liberty servlet that links to a CICS COBOL
program.

Figure A-1 Structure of the JCICS servlet sample

What the servlet channels and containers JCICS example does
The LinkProg servlet, which is deployed as a web application, requests an input
phrase from an Hypertext Markup Language (HTML) form, which is passed to
the servlet implementation. The phrase is copied to a container, which is passed
to a channel-aware CICS back-end program. The back end appends a string in
front of the phrase and returns to the web application.
226 Using IBM CICS Transaction Server Channels and Containers

The sample consists of the following components:

� An HTML form

� A Java servlet, which is supplied in the additional material. The servlet is
running in a CICS Transaction Server v5.2 Liberty profile environment.

� A Java class that contains the JCICS channels and containers API. The class
also uses a JCICS link request to call the back-end assembly language
program.

� A back-end assembly language program

The sample works according to the following steps:

1. The user starts the application from a web browser. A form is displayed.

2. The form prompts the user to input a phrase. When the user clicks the
Submit button, the servlet is started.

The servlet performs the following functions:

a. Set the response attributes

• response.setContentType(“text/xml”);
• response.setCharacterEncoding(ASCII);

b. Obtain the str name from the request:

• String str = request.getParameter(“str”);

c. starts a method that contains the JCICS API, passing the input
parameters entered by the user:

• LinkProgOSGi lnkprog = new LinkProgOSGi();
• result = lnkprog.linkProg(str);

d. Construct the response:

• // Construct the response
• ServletOutputStream out = response.getOutputStream();
• out.write("<result>".getBytes(ASCII));
• out.write(result.getBytes(ASCII));
• out.write("</result>".getBytes(ASCII));

3. The servlet runs method linkProg, which uses the JCICS classes to create a
channels and container. It copies the phrase in string str into the container.
After that, the servlet issues a JCICS link to the CICS back-end program,
passing the channel.

4. The CICS back-end program issues a get container command. It appends
the phrase to its program name and returns.
 Appendix A. CICS channels and containers Liberty servlet example 227

5. On return, the CICS servlet issues a get container JCICS API and returns
the data in a Byte[] array. After that we convert the Byte[] array to a string
and append it to the following result string:

result = "Program linked using channel and container " +resultmsg ;

6. The servlet uses the HTML page to display the result on the user’s browser.

HTML page and java script
As mentioned earlier, CICS Transaction Server V5.2 provides a web container
that can run Java servlets and JavaServer Pages (JSP). We can use the features
of the Java servlet and JSP specifications to write modern web applications for
CICS. The web container runs in a Java virtual machine (JVM) server, and is built
on the IBM WebSphere Application Server Liberty profile technology.

To demonstrate how to use the channels and containers API using a servlet we
use an HTML page to get a data string from the users browser. We pass the data
string to the servlet, which converts the data to a Byte[] array. After that, we
create a channel and put the Byte[] array to a container using the JCICS API.

We pass the channel on a JCICS link to the back-end CICS program. See
Figure A-2, which shows the HTML page. Within the HTML page, we use
JavaScript to call the servlet implementation.

Figure A-2 CICS Liberty servlet using channels and containers API

Figure A-2 also shows the resulting message that is returned from the servlet.
When you click Submit, the result is displayed below the Submit button.
228 Using IBM CICS Transaction Server Channels and Containers

Example A-1 shows the HTML that we use to call the CICS servlet
implementation. See the following lines in the HTML to get an idea about how we
pass the input string str when the servlet is called:

1. At this point, the JavaScript section starts. We use JavaScript within the
HTML page to get the input data from the form and to call the servlet.

2. We create variable str and read the value from the input field.

3. In this section, we submit the request to the servlet.

4. This line shows how we define the input field, which is used to get the data
string from the users browser.

Example: A-1 Define the input field used to get the data string

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>

<!-- <copyright --><!-- notice="cics-lm-source-asis" --><!-- pids="5655-Y04" --><!--
years="2009,2012" --><!-- crc="4151234751" > --><!-- Licensed Materials - Property of
IBM --><!-- 5655-Y04 --><!-- (C) Copyright IBM Corp. 2009, 2012 --><!-- This source
material is provided "AS-IS" under the terms and --><!-- conditions of the IBM Customer
Agreement and of the associated --><!-- Licensed Program Specifications documentation
for CICS Transaction --><!-- Server for z/OS. --><!-- --><!-- The terms and conditions
of this license permit users to modify this --><!-- source material and DO NOT provide
for any entitlement to defect --><!-- correction. --><!-- </copyright> -->
 <meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type">

 <style type="text/css">
<!--
body {
font-family: arial;
}
-->
.formClass {
width: 100px;
float: left;
position: relative;
}
.header {
background-image: url('images/banner.jpg');
background-repeat: no-repeat;
color: white;
}
<!--
A:visited {
color: blue;
text-decoration: underline;
}
-->
 Appendix A. CICS channels and containers Liberty servlet example 229

<!--
A:hover {
color: red;
text-decoration: underline;
}
-->
<!--
A:link {
color: blue;
text-decoration: underline;
}
-->
<!--
A:active {
color: green;
text-decoration: underline;
}
-->
 </style>
 <script type="text/javascript"> <<<<<<<<<<<<<<<< 1

/*
function to write a string to a container */
function postData() {
initPage(); // create the HTTP Request object
var xmlhttp = new XMLHttpRequest();
// read the values from the form
var str = document.myForm.str.value; <<<<<<<<<<<<<<<<<< 2

// build up the request string
var requestStr = "str=" + str;

// submit the request to the servlet
xmlhttp.open("POST", "LinkProg", true); <<<<<<<<<<<<<<<<<<<<<<<<<<<<< 3
xmlhttp.setRequestHeader("If-Modified-Since","0");
xmlhttp.setRequestHeader("Cache-Control","no-cache");
xmlhttp.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
xmlhttp.onreadystatechange=function()
{
if(xmlhttp.readyState==4 && xmlhttp.status == 200){
var xmlDoc = xmlhttp.responseText;
document.getElementById("messages").innerHTML = xmlDoc;
// refresh(str);
// myForm.elements["str"].value = '';
}
};
xmlhttp.send(requestStr);
}

function initPage()
{ document.getElementById("messages").innerHTML = '';
 }
 </script>
230 Using IBM CICS Transaction Server Channels and Containers

 <title>CICS WebSphere Liberty profile - Link Program Example</title>

</head>

<body>

<a href="https://www.ibm.com/developerworks/mydeveloperworks/blogs/cicsdev/"
style="text-decoration: none;"> <img src="images/banner.jpg" style="width: 70%; height:
150px;">
<div style="color: rgb(34, 69, 125); font-style: normal; font-size: x-large;
padding-top: 20px;">WebSphere Application Server Liberty profile - Link to back end
program</div>

<div style="padding-top: 10px; font-weight: bold; font-size: small;">
Use this application as a sample to link to a CICS back end application:

 Link to back end program

 Pass channel and container

 Display result message

</div>

<hr>
<div id="form" style="float: left; width: 50%; clear: right;">
<form name="myForm">
 <div class="formClass">String</div>

 <div> <input name="str" style="width: 60%;" type="text"> </div> <<<<<<<<<<<<< 4

 <div id="buttonsPanel" style="margin-top: 10px; clear: both;">
 <div> <input value="Submit" onclick="postData()" style="float: left;" type="button">
</div>

 <div>

 </div>

 </div>

</form>

<div id="messages" style="clear: both; padding-top: 5px;"></div>

</div>
 Appendix A. CICS channels and containers Liberty servlet example 231

<hr style="clear: both;"><!-- This div is for the results from the file -->
<div id="fileA" style="clear: both;">

</div>
</body>
</html>

Servlet implementation LinkProg
A servlet is a server-side web technology based on Java. A servlet extends some
prewritten code in the javax.servlet classes. Extending these classes provides
standard methods that a servlet can use to respond to web requests.

The servlet contains methods to get started when the Hypertext Transfer
Protocol (HTTP) requests issued from our HTML form arrives. A GET request
from the web browser is processed by the servlet’s doGet() method, a PUT by the
doPut() method, and a POST by the servlet’s doPost() method.

We use the doGet() and doPost() methods, which are the two most common
forms of input from a web browser, for GET and POST processing from a web page.

The code in Example A-2 demonstrates how we use the doGet() method to call
method linkProg to link to the CICS back-end program passing a channel. We
use the following Java statements in the doGet() method to obtain the data string
from the HTML form. After that, we call method linkProg and pass the data string.
In method linkProg, we create the channel and container using the JCICS API:

� // obtain the str name from the request
� String str = request.getParameter(“str”);
� LinkProgOSGi lnkprog = new LinkProgOSGi();
� result = lnkprog.linkProg(str);

Example A-2 shows the servlet implementation that we use.

Example: A-2 Servlet implementation class LinkProg

package com.sg247227.linkprog.servlet;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
232 Using IBM CICS Transaction Server Channels and Containers

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * servlet implementation class LinkProg
 */
@WebServlet("/LinkProg")
public class LinkProg extends HttpServlet
{

private static final long serialVersionUID = 1L;
private static final String ASCII = "ISO-8859-1";

/**
 * @see HttpServlet#HttpServlet()
 */

public LinkProg()
{

super();

}

/**
 * @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse response)
 */
protected void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException
{

// Set the response attributes
response.setContentType("text/xml");
response.setCharacterEncoding(ASCII);

// obtain the str name from the request
String str = request.getParameter("str");

// initialise a variable to hold the result of the action
String result = "";

// write the record
LinkProgOSGi lnkprog = new LinkProgOSGi();
result = lnkprog.linkProg(str);

// Construct the XML response
 Appendix A. CICS channels and containers Liberty servlet example 233

ServletOutputStream out = response.getOutputStream();
out.write("<result>".getBytes(ASCII));
out.write(result.getBytes(ASCII));
out.write("</result>".getBytes(ASCII));

}

/**
 * @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse response)
 */
protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

doGet(request, response);
}

}

JCICS business class LinkProgOSGI
We use Java class LinkProgOSGI that contains method linkProg to create a
channel and container that can be passed on the link to the back-end program. In
Example A-3, we show how we use the get and put methods on the container
that we create. We specify the coded character set identifier (CCSID) on the get
and put methods to make sure that we have data conversion in place. The
following lines show the key functions:

1. The line shows how we created the channel that we use to link to the
back-end program.

2. At next we create the container that contains the data string from the users
browser.

3. We convert string str to a Byte[] array.

4. The Byte[] array can now be put to the container. Note the CCSID.

5. In this section, we link to CICS program LNKPRG passing the channel.

6. On return, we get the data from the container into a Byte[] array.

7. We convert the Byte[] array to a string and append it to the result string.

Example: A-3 Use of the get and put methods on the container

package com.sg247227.linkprog.servlet;

import com.ibm.cics.server.*;

public class LinkProgOSGi

{

234 Using IBM CICS Transaction Server Channels and Containers

public String linkProg(String ca1Name)
{

String result = "";
String myccsid = "1208";

try
{

Task t = Task.getTask();

 // create the channel
 Channel mychannel = t.createChannel("MYCHANNEL");<<<<<<<<<<<<<<<< 1

 // create the MIGRCNT container
 Container migrcnt = mychannel.createContainer("MAINCNT1");<<<<<<<<<<< 2

 // put the data string into the container

 byte[] continput = ca1Name.getBytes();<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 3

 migrcnt.put(continput, myccsid);<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 4

 // Link to the LNKPRG program passing a channel<<<<<<<<<<<<<<<<<<<<< 5
 Program p = new Program();
 p.setName("LNKPRG");
 p.link(mychannel);

 // Get the returned data

 byte[] retdata = migrcnt.get(myccsid);<<<<<<<<<<<<<<<<<<<<<<<<<<<<< 6

 String resultmsg = new String(retdata, "UTF-8");<<<<<<<<<<<< 7

result = "Program linked using channel <mychannel> and container <migrcnt> "
+resultmsg ;

}
catch (ChannelErrorException e)
 Appendix A. CICS channels and containers Liberty servlet example 235

{
result = "Channel error";

}
catch (ContainerErrorException e)
{

result = "An IO Error occurred";
}
catch (InvalidRequestException e)
{

result = "Invalid Request";
}
catch (CCSIDErrorException e)
{

result = "Invalid CCSID.";
}

catch (Exception e)
{

result = "Invalid CCSID.";
}
// return the result to the calling servlet
return result;

}
}

CICS back end program
Example A-4 shows the assembly language program that gets called by the
CICS servlet. We issue an ASSIGN PROGRAM() command to get the program name
to which you append the hello string.

Then we issue a GET CONTAINER(CA1STR) command to append the string to the
program name. After this, we issue a put container command. We specified CA1
on the FROM option, which copies the assembled string into the container. After
this, return to the caller, which is the CICS servlet. See Example A-4.

Example: A-4 CICS back-end program

DFHEISTG DSECT
 RESP DS F
 RESP2 DS F
 CA1 DS 0CL50
 PROGRAM DS CL8
 RETMSG DS CL10
 CA1STR DS CL30
 MIGRCHN DS CL16
236 Using IBM CICS Transaction Server Channels and Containers

 MIGRCNT DS CL16
 *CA DSECT
 CASTRING DS CL30
 LINKFRST CSECT
 BEGIN DS 0H
 * L 4,DFHEICAP
 * USING CA,4
 MVC MIGRCNT,=CL16'MAINCNT1 '
 MVC RETMSG,=CL10' RETURNED='
EXEC CICS ASSIGN PROGRAM(PROGRAM) RESP(RESP) RESP2(RESP2)
 EXEC CICS GET CONTAINER(MIGRCNT) INTO(CA1STR)
 EXEC CICS PUT CONTAINER(MIGRCNT) FROM(CA1)
 RETURN DS 0H
 EXEC CICS RETURN
 END
 //LKED.SYSIN DD *
 MODE RMODE(ANY),AMODE(31)
 NAME LNKFRST1(R)
 /*
 //

Installation
To install the CICS servlet channels and containers example, complete the
following steps:

1. Compile and link the CICS back-end program LNKFRST1.

2. Install the servlet using the procedure that we use in Chapter 5, “Sample
application” on page 139 to install the catalog servlet. You can also use the
installation procedure that we provide in the additional material.

All of the required files needed for this example can be found in Appendix B,
“Additional material” on page 239.
 Appendix A. CICS channels and containers Liberty servlet example 237

238 Using IBM CICS Transaction Server Channels and Containers

Appendix B. Additional material

This chapter refers to the additional material that you can download from the
Internet. These additional materials provide you with further information about
the various aspects involving Customer Information Control System (CICS)
channels and containers, and also communication areas (COMMAREAs).

Locating the web material
The web material associated with this book is available in soft copy on the
Internet from the IBM Redbooks publication web server. Browse to the following
website:

ftp://www.redbooks.ibm.com/redbooks/SG247227

Alternatively, you can go to the IBM Redbooks publication website:

ibm.com/redbooks

Select the additional materials and open the directory that corresponds with the
IBM Redbooks publication form number, SG247227.

B

© Copyright IBM Corp. 2006, 2015. All rights reserved. 239

ftp://www.redbooks.ibm.com/redbooks/SG247227
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the web material
The additional web material that accompanies this IBM Redbooks publication
includes the following files:

File name Description
SG24-7227Web_Content.zip There are four compressed code samples. The

catalog.xls file shows the fluctuations in user
CPU time. The cattrace.xls file shows the
outputs for XEIIN and XEIOUT global user exit
points. The CICSHelloWorld.ear file and the
HelloWorldEJB.jar are figures that show sample
panels of CICS and JCICS Enterprise
JavaBeans (EJB).

System requirements for downloading the web material
The following system configuration is advised:

Hard disk space: 1.2 megabytes (MB) minimum
Operating System: Microsoft Windows
Processor: 500 megahertz (MHz) or higher
Memory: 256 MB preferably 512 MB

How to use the web material
Create a subdirectory or folder on your workstation and extract the contents of
the web material zip file into this folder.

Sample server program used in some examples
In some examples in Chapter 2, “Application design and implementation” on
page 27, we used a program that could receive a name in a channel or a
communication area (COMMAREA). This subroutine changes the name into a
phonetic string and returns the string to the caller through the channel or the
COMMAREA. This subroutine is provided in Example B-1.

Example: B-1 Subroutine to return string

PROCESS LIST CICS('SP,COBOL3') APOST TRUNC(BIN)
 IDENTIFICATION DIVISION.
 PROGRAM-ID. PHONETIC.

 * CHANGE A NAME (40Bytes) to a phonetic name (40Bytes) *
 * COMMAREA AND CHANNEL INTERFACDE *
240 Using IBM CICS Transaction Server Channels and Containers

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 ------- counter --------
 01 I PIC 9(2).
 01 K PIC 9(2).
 ------- TABLES ---------
 01 TAB1-1X PIC X(36) VALUE
 'SCSZCZTZTSDSKSQUPFPHUEAEOEEIEYEUAUOU'.
 01 TAB1-1 REDEFINES TAB1-1X.
 03 TAB1-1-FIELD PIC X(2) OCCURS 18 TIMES.
 01 TAB1-3X PIC X(36) VALUE
 'C C C C C C X KVV V Y E E AYAYOYA$$ '.
 01 TAB1-3 REDEFINES TAB1-3X.
 03 TAB1-3-FIELD PIC X(2) OCCURS 18 TIMES.

 01 TAB2-1X PIC X(15) VALUE "ZKGQ IJ FWPT$".
 01 TAB2-1 REDEFINES TAB2-1X.
 03 TAB2-1-FIELD PIC X OCCURS 15 TIMES.
 01 TAB2-3X PIC X(15) VALUE 'CCCCEYEYYSVVBDU'.
 01 TAB2-3 REDEFINES TAB2-3X.
 03 TAB2-3-FIELD PIC X OCCURS 15 TIMES.

 01 VALID-CHARACTERS PIC X(15) VALUE 'ABCDLMNORSUVSXY'.
 01 VALID-CHARACTERS-TAB REDEFINES VALID-CHARACTERS.
 03 ZEICHEN PIC X OCCURS 15 TIMES.

 01 P POINTER.
 ------- flags ------------------
 01 SWITCH PIC X(2).
 88 LETTER-OK VALUE IS 'OK'.

 ------- CHANNEL STUFF ---------
 01 CURRENTCHANNELNAME PIC X(16).
 01 MYBROWSETOKEN PIC 9(8) BINARY.
 01 INPUTCONTAINER PIC X(16) VALUE IS 'NAMECONTAINER '.
 01 OUTPUTCONTAINER PIC X(16) VALUE IS 'PHONETICNAMECONT'.
 ------- RETURN AND REASON CODES -----------
 01 RC PIC 9(8) BINARY.
 01 RSN PIC 9(8) BINARY.

 LINKAGE SECTION.
 01 DFHCOMMAREA.
 03 LNAME PIC X(40).
 03 PNAME PIC X(40).
 Appendix B. Additional material 241

 03 REDEFINES PNAME.
 05 LETTER PIC X OCCURS 40 TIMES.
 /
 PROCEDURE DIVISION USING DFHCOMMAREA.
 * establish addressibility.
 EXEC CICS ASSIGN CHANNEL(CURRENTCHANNELNAME)
 END-EXEC.
 IF CURRENTCHANNELNAME IS EQUAL TO SPACES
 THEN CONTINUE
 * continue with commarea
 ELSE
 * try to find out the name of the input container
 EXEC CICS GETMAIN SET(P)
 FLENGTH(LENGTH OF DFHCOMMAREA)
 INITIMG(X'40')
 END-EXEC
 SET ADDRESS OF DFHCOMMAREA TO P
 EXEC CICS GET CONTAINER(INPUTCONTAINER)
 CHANNEL(CURRENTCHANNELNAME)
 INTO(LNAME)
 END-EXEC
 END-IF.
 * uppercase the input string
 MOVE FUNCTION UPPER-CASE (LNAME) TO PNAME.
 * change double characters
 PERFORM WITH TEST BEFORE VARYING I FROM 1 BY 1
 UNTIL I > (LENGTH OF TAB1-1X / 2)
 INSPECT PNAME REPLACING ALL
 TAB1-1-FIELD (I) BY TAB1-3-FIELD (I)
 END-PERFORM.
 * change single characters
 MOVE X'0A3A39' TO TAB2-1X(5:3)
 MOVE X'45' TO TAB2-1X(10:1)
 PERFORM WITH TEST BEFORE VARYING I FROM 1 BY 1
 UNTIL I > LENGTH OF TAB2-1X
 INSPECT PNAME REPLACING ALL
 TAB2-1-FIELD (I) BY TAB2-3-FIELD (I)
 END-PERFORM.
 * delete non valid characters
 PERFORM WITH TEST BEFORE VARYING I FROM 1 BY 1
 UNTIL I > 40
 MOVE SPACE TO SWITCH
 PERFORM WITH TEST BEFORE VARYING K FROM 1 BY 1
 UNTIL K > LENGTH OF VALID-CHARACTERS-TAB
 IF LETTER (I) = ZEICHEN (K)
242 Using IBM CICS Transaction Server Channels and Containers

 THEN MOVE 'OK' TO SWITCH
 ELSE CONTINUE
 END-IF
 END-PERFORM
 IF LETTER-OK
 THEN CONTINUE
 ELSE MOVE SPACE TO LETTER (I)
 END-IF
 END-PERFORM.
 * delete double characters
 PERFORM COMPRESS-STRING.
 PERFORM WITH TEST BEFORE VARYING I FROM 1 BY 1
 UNTIL I = 40
 IF LETTER (I) = LETTER (I + 1)
 THEN MOVE SPACE TO LETTER (I)
 ELSE CONTINUE
 END-IF
 END-PERFORM.
 PERFORM COMPRESS-STRING.

 * if a channel is available, then move output into container
 IF CURRENTCHANNELNAME IS EQUAL TO SPACES
 THEN CONTINUE
 * continue with return to cics
 ELSE
 EXEC CICS PUT CONTAINER(OUTPUTCONTAINER)
 FROM(PNAME)
 END-EXEC
 END-IF.

 * return to caller
 EXEC CICS RETURN
 END-EXEC.

 GOBACK.

 * subroutine *

 * delete all blanks
 COMPRESS-STRING.
 PERFORM 40 TIMES
 PERFORM WITH TEST BEFORE
 VARYING I FROM 1 BY 1 UNTIL I = 40
 IF LETTER (I) = ' '
 Appendix B. Additional material 243

 THEN MOVE LETTER (I + 1) TO LETTER (I)
 MOVE ' ' TO LETTER (I + 1)
 ELSE CONTINUE
 END-IF
 END-PERFORM
 END-PERFORM.
 *
 END PROGRAM PHONETIC.
244 Using IBM CICS Transaction Server Channels and Containers

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed description of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 246. Note that some of the documents referenced here
might be available in soft copy only:

� Application Development for IBM CICS Web Services, SG24-7126
� Java Application Development for CICS, SG24-5275
� CICS Transaction Server V3R1 Channels and Containers Revealed,

SG24-7227

Online resources
These websites and Uniform Resource Locators (URLs) are also relevant as
further information sources:

� CICS family product support page

http://www-306.ibm.com/software/htp/cics/support/

� CICS product main page, a summary of the function

http://www-306.ibm.com/software/htp/cics/tserver/v31/apptrans/

� CICS Transaction Server product support page

http://www-306.ibm.com/software/htp/cics/tserver/support/

� Description of channels and containers that can be downloaded from the
following File Transfer Protocol (FTP) site

ftp://service.boulder.ibm.com/software/htp/cics/pdf/cics-g224753500.
pdf

� Information center for CICS Transaction Server V5.2 containing the learning
path to Introduction to Channels and Containers

http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.c
ics.ts.home.doc/welcomePage/welcomePage.html?cp=SSGMGV
© Copyright IBM Corp. 2006, 2015. All rights reserved. 245

http://www-306.ibm.com/software/htp/cics/support/
http://www-306.ibm.com/software/htp/cics/tserver/v31/apptrans/
http://www-306.ibm.com/software/htp/cics/tserver/support/
ftp://service.boulder.ibm.com/software/htp/cics/pdf/cics-g224753500.pdf
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html?cp=SSGMGV
http://www-01.ibm.com/support/knowledgecenter/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html?cp=SSGMGV

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, Redpapers, Hints and
Tips, draft publications, and Additional materials, and order hardcopy IBM
Redbooks or CD-ROMs, from the following website:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
246 Using IBM CICS Transaction Server Channels and Containers

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
32KB buffer 130, 134

container area 134
32KB COMMAREA

limit 8
restriction 5
size constraint 5

A
abend code 109
ACPR

parameter 111, 113
AOR 128, 133, 138
AOR (application-owning region) 133
APAR (authorized program analysis report) 65
APCR

parameter 110, 112, 114
parameter list 111–112

API 32, 43–45, 47, 60, 65, 76
API (application programming interface) 21
application

design 27
implementation 27
programmer 21, 27, 44, 101, 103

application programming interface (API) 21
application-owning region (AOR) 133
ASSIGN CHANNEL 70
authorized program analysis report (APAR) 65

B
base application 143

function test 146
new structure 144
Web service support extension 140

BIGR transaction 135, 137
binary data 22, 44, 67, 79
BIT 67, 77
BROWSETOKEN 73
BTS

activity 83, 92
program part 92

context 19, 91
© Copyright IBM Corp. 2006, 2015. All rights reserved
BTS (business transaction services) 20
business transaction services (BTS) 20

C
catalog item

cost column 170
image 140
image support 174

catalog manager 143
application 146
DFH0XCMN 145, 160

module 143–145, 149, 160
program 146
stage2 146

example 143
application 141, 175
business logic 143
program 144–145, 149

inquire single function 173
issue 173
item image 176
migrated version 161, 167
migration 143
module 143, 146
program 143
return 145, 159

CCSID 45, 48, 67, 102
particular conversion 102
value 67

CECI example 50
channel

example 29
name 10, 12, 60, 74, 153
solution 37

CHANNEL CHN 121
channels and containers 1

benefits 22
concepts 8
programming 65
storage 53
subroutines 43
tracing applications 116

CHAR 67, 77
. 247

character data 21, 44, 67
CICS

application 20, 139
catalog example 140
new programming approach 8, 20
request processing path 8

Java
class 221
class library 225
environment JCICS class 20

program 7–8, 11, 82, 218
region 7, 59, 102, 110, 226
system 22, 51, 55
Transaction Gateway 5
Transaction Server

C-language program 44
COBOL program 44
file application 49
program 44, 48
region 46
SOAP application 48
V3.1 4, 8, 11, 18
V3.1 EJB server 225
V3.1 information center 66, 76
V3.1 region 109

CICS (Customer Information Control System) 20
CICS Java (JCICS) 82
code page 22, 47, 79, 81, 101

character data 22
conversion 44, 101

COMMAREA 55, 69, 101, 225, 240
alternate solutions 5
application 21

data conversion 21
characteristics 2
constraints 5
data passing 2
example 28
overload 38
scenario 104
solution 35
structure 6, 64, 146, 148

COMMAREAs to channels
migration 60

CONTAINER
BROWSETOKEN 12, 41, 74

container
channel 18, 66, 74, 218
command 14, 46, 75, 100–101, 134, 159,

222–223, 227
data 15, 56, 110, 113, 218
name 18, 34, 60, 74, 114, 153
pool 122
usage 28

ContainerErrorException 76
containerIterator() 80
copybook 7
createChannel() 76
createContainer() 76
current channel 70, 80
Customer Information Control System (CICS) 20

D
data

conversion 21, 44–45, 101, 220
separation 103
type

varied mix 4
DATATYPE 48, 92
DATATYPE(DFHVALUE(BIT)) 67, 69
DATATYPE(DFHVALUE(CHAR)) 67
DBCS (double-byte character set) 45
debugging 116
default

CCSID 45
code page 77, 79, 81

DELETE CONTAINER 72, 75
delete() 81
deleteContainer() 81
DFHCOMMAREA 34, 242
DFHDYP 100
DFHDYPDS 100
DFHEISTG DSECT 88, 117, 236
DFHROUTE 100

container 57, 100–101
dfjcics.jar 76
DISPLAY PNAME 29, 39
distributed program link (DPL) 2, 48, 103
double-byte character set (DBCS) 45
DPL (distributed program link) 2
DPL call 58
dynamic routing 54

environment 55
exit 55
program 63, 100–101

dynamically-routed application 63
248 Using IBM CICS Transaction Server Channels and Containers

E
EBCDIC

encoding 44, 101
ECI (external call interface) 5
enterprise bean

new remote instance 227
error data 105
error information 7, 38, 58–59, 105, 146, 175, 220

dedicated container 58, 146
single 105

EXCI (external CICS interface) 5
EXEC

API
support 20
verb 8, 18

CICS 6, 9, 41, 101, 175, 237, 243
ABEND 149
ABEND ABCODE 161
API 66
CHECK activity 87
GETMAIN 242
GETNEXT Container 12, 41, 74
INQ Channel 218
link 10, 37, 61, 100, 162–163
link activity 87
link command 88, 144
link program 9, 88, 159
LINK PROGRAM channel 15
MOVE CONTAINER channel 15, 18
read 175
return 40, 84, 88, 118, 237, 243
RETURN ENDACTIVITY 85–86
RETURN TRANSID 33
RETURN TRANSID channel 15, 218
RETURN TRANSID COMMAREA 5
start 25, 63
WRITEQ transient data queue 90
XCTL 10, 15
XCTL program 69

CICS START
TRANSID 5, 15, 63, 69, 117

EXEC CICS 28–29, 46, 48–49, 62, 100
link 29
LINK PROGRAM channel 66
MOVE container 31
RETURN TRANSID 30

channel 66
WRITEQ transient data queue 50
XCTL program 62

XCTL PROGRAM channel 66
EXEC CICS START

TRANSID 66
Extended Binary Coded Decimal Interchange Code
(EBCDIC)EBCDIC (Extended Binary Coded Deci-
mal Interchange Code) 81
external call interface (ECI) 5
external CICS interface (EXCI) 5

F
file example 49
FLENGTH 66, 71
flow

intersystem communication 138
multiregion operation 128

FREEMAIN 73, 219
FROMCCSID 67

G
GET CONTAINER 71
get() 79
getCurrentChannel() 79
GETNEXT CONTAINER

call 74
call insert 74

H
HFS (hierarchical file system) 146
HFS directory 180

catalog item image 175
image file 173, 175

hierarchical file system (HFS) 146

I
input container 56, 103, 151, 242
inquire

catalog request
01INQC 162
parameter 163

single request
ID 175

INTO 71
INTOCCSID 71

option 48, 72
INVREQ 70

response 67
issue() 78
 Index 249

J
Java 76
JavaServer Page 227–228
JCICS

API 76
class 20, 225, 227, 232
program 80, 173–174, 177

JCICS (CICS Java) 82

L
LENGERR 72
link() 77
LOCALCCSID 67
LOCALCSSID 102

M
memory constraints 3
message queue 48
MODE RMODE 84, 88, 90–91, 237
monitoring 105

changes 106
MOVE CONTAINER 72, 75
MRO link 129, 221

export_all function 130
MYCOMMAREA 38, 56

N
non-BTS client 83, 90

O
output container 37, 56, 149, 220

P
performance 103
PG 1700 PGCH Entry 122, 125, 138
PG 1900 PGCR Entry 121
PIC 9 34, 37, 241
place order request

type 164
PLACE-ORDER 162, 165
presentation logic

DFH0XGUI 144
PROCEDURE division 34, 37, 242
program BIGREM 118–119

source code 118
pseudo-conversation 69

PUT CONTAINER 66
command 31, 73, 177–178
cycle 134
data 106
process 121, 134
request 106

put() 77

Q
QUANTITY-REQ 150, 154, 158, 165

R
RC (return code) 35
Redbooks Web site 246

Contact us xiii
request ID 151, 155, 175
response message 151, 155, 161, 165
return code 151

RC-MSG container 176
separate input container 149
structure items 149

return code (RC) 35
return transid 78
routing program 54, 63, 100

S
sample application

trace flow 117
separate container 18, 58–59, 104, 146, 151, 220

CA-INQUIRE-REQUEST structure 151
server program 12, 40, 82, 85, 103, 146, 149, 175,
220

issue 46
output containers 149
PAYR 89

servlet 227
SET 72
setNextChannel() 78
single container 25, 60, 103, 146, 151, 157
single-byte character

set 45
string 45

SOAP example 48
start transid 78
statistical changes 107
storage 100
String.getBytes() 77, 81
250 Using IBM CICS Transaction Server Channels and Containers

Systems management and configuration 99

T
terminal-owning region (TOR) 55
TOR 128, 132, 138
TOR (terminal-owning region) 55
trace entries 110
transaction BIGL 117, 119, 125, 127
TRN.SYSIN DD 84, 86, 88–90

U
Unicode 81
UTF-8 81

V
Virtual Storage Access Method (VSAM) 160
VSAM

data handler
DFH0XVDS 160
module 160, 162
module DFH0XVDS 160
return 165
stub DFH0XVDS 143

file 6, 141
VSAM (Virtual Storage Access Method) 160
VSAM data handler

module DFH0XVDS 160

W
WORKING-STORAGE section 38, 57, 241

X
XCTL 69

command 2, 62, 66
 Index 251

252 Using IBM CICS Transaction Server Channels and Containers

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Using IBM
 CICS Transaction Server Channels and Containers

®

SG24-7227-01 ISBN 0738440507

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, clients, and IBM
Business Partners from around
the world create timely
technical information based on
realistic scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Using IBM CICS Transaction
Server Channels and Containers

Convert a
COMMAREA-based
application to use
channels and
containers

Learn how to
configure systems
with a sample
application

Simplify the process
for code page
conversion

This IBM Redbooks publication describes the new channels and containers
support in IBM Customer Information Control System (CICS) Transaction
Server V5.2. The book begins with an overview of the techniques used to pass
data between applications running in CICS.
This book describes the constraints that these data techniques might be
subject to, and how a channels and containers solution can provide solid
advantages alongside these techniques. These capabilities enable CICS to
fully comply with emerging technology requirements in terms of sizing
and flexibility.
The book then goes on to describe application design, and looks at
implementing channels and containers from an application programmer point
of view. It provides examples to show how to evolve channels and containers
from communication areas (COMMAREAs).
Next, the book explains the channels and containers application
programming interface (API). It also describes how this API can be used in
both traditional CICS applications and a Java CICS (JCICS) applications.
The business transaction services (BTS) API is considered as a similar yet
recoverable alternative to channels and containers. Some authorized
program analysis reports (APARs) are introduced, which enable more flexible
web services features by using channels and containers.
The book also presents information from a systems management point of
view, describing the systems management and configuration tasks and
techniques that you must consider when implementing a channels and
containers solution.
The book chooses a sample application in the CICS catalog manager
example, and describes how you can port an existing CICS application to use
channels and containers rather than using COMMAREAs.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	IBM Redbooks promotions
	Preface
	Authors
	Now you can become a published author, too
	Comments welcome
	Stay connected to IBM Redbooks

	Summary of changes
	March 2015, Second Edition

	Chapter 1. Introduction to channels and containers
	1.1 Communication area for data passing
	1.2 The requirement for change
	1.2.1 Memory constraints
	1.2.2 Flexibility of the channels and containers approach

	1.3 COMMAREA constraints and alternative solutions
	1.3.1 32 KB size limit
	1.3.2 Methods of passing data larger than 32 KB before channels and containers
	1.3.3 The evolution of the 32 KB COMMAREA

	1.4 Channels and containers concepts
	1.4.1 General concepts
	1.4.2 Channels
	1.4.3 The DFHTRANSACTION transaction channel
	1.4.4 Containers
	1.4.5 Channels and business transaction services
	1.4.6 Channels and CICS Java
	1.4.7 Data conversion

	1.5 Benefits of using channels and containers
	1.6 Porting COMMAREA to channels and containers

	Chapter 2. Application design and implementation
	2.1 Container usage as a replacement to COMMAREAs
	2.1.1 Basic COMMAREA example
	2.1.2 Basic channel example
	2.1.3 Channel name character set
	2.1.4 Creating a channel

	2.2 Flexible way to pass multiple pieces of data
	2.2.1 COMMAREA solution
	2.2.2 Channel solution

	2.3 Overloaded COMMAREAs
	2.4 STARTBROWSE application programming interface
	2.5 Channels and containers in called subroutines
	2.6 Data conversion and code page conversion
	2.6.1 Data conversion with channels
	2.6.2 How to cause CICS to convert data automatically
	2.6.3 Using containers to do code page conversion
	2.6.4 SOAP example
	2.6.5 File example
	2.6.6 Command-level interpreter CICS-supplied transaction example

	2.7 Storage
	2.8 Dynamic routing application considerations
	2.8.1 COMMAREA
	2.8.2 Channel

	2.9 Best practices
	2.9.1 Designing a channel
	2.9.2 Naming a channel
	2.9.3 Porting from COMMAREAs to channels

	Chapter 3. Programming
	3.1 EXEC CICS application programming interface
	3.1.1 Creating a channel
	3.1.2 Placing data in a container
	3.1.3 Passing a channel to another program or task
	3.1.4 Receiving the current channel
	3.1.5 Getting data from a container
	3.1.6 Browsing the current channel
	3.1.7 Deleting a container
	3.1.8 Moving containers between channels

	3.2 CICS Java
	3.2.1 Creating channels and containers in JCICS
	3.2.2 Placing data in a container
	3.2.3 Passing a channel to another program or task
	3.2.4 Receiving the current channel
	3.2.5 Getting data from a container
	3.2.6 Browsing the current channel
	3.2.7 Browsing a name channel
	3.2.8 Deleting a container
	3.2.9 Code page considerations

	3.3 Business transaction services
	3.3.1 Application components
	3.3.2 Channel and container options

	3.4 Web services
	3.4.1 Using channels and containers in CICS web services

	3.5 CICS-WebSphere MQ bridge
	3.5.1 Channels and containers and the CICS-WebSphere MQ bridge

	Chapter 4. Systems management and configuration
	4.1 Storage
	4.2 The DFHROUTE container
	4.3 Code page conversion
	4.3.1 Simple code page conversion
	4.3.2 z/OS Unicode conversion services

	4.4 Performance considerations
	4.4.1 Configuration

	4.5 Monitoring and statistics
	4.5.1 Monitoring groups
	4.5.2 Statistics domain

	4.6 Problem determination
	4.6.1 Channels and containers abend codes
	4.6.2 Channels and containers trace entries
	4.6.3 Tracing channels and containers applications
	4.6.4 Sample application trace flow
	4.6.5 Multiregion operation flow
	4.6.6 Intersystem communication flow

	Chapter 5. Sample application
	5.1 Implementation scenario
	5.1.1 The CICS catalog manager example application
	5.1.2 The base application
	5.1.3 Porting steps: CICS back end
	5.1.4 Stage 1: Porting to channels and containers
	5.1.5 Installing and setting up the base application
	5.1.6 Defining the 3270 interface
	5.1.7 Running the application
	5.1.8 Stage2: Catalog item images support

	5.2 Running the stage 2 code
	5.2.1 Installing and setting up the Stage 2 application
	5.2.2 JCICS image handler program installation
	5.2.3 Define a JVMSERVER definition in CICS TS
	5.2.4 Transfer the CICS Bundle to z/OS UNIX System Services
	5.2.5 The Liberty profile servlet access to the catalog manager
	5.2.6 Running the catalog servlet
	5.2.7 Deploying the catalog servlet
	5.2.8 Workspace setup for developing OSGi servlets and JSP
	5.2.9 Create the catalog OSGi Project
	5.2.10 Create an EBA project to the OSGi Bundle Project
	5.2.11 Create a CICS BUNDLE to the EBA project
	5.2.12 Add the com.ibm.cics.server package to your OSGi project
	5.2.13 Create the dynamic web project
	5.2.14 Define a CICS JVMSERVER with Liberty profile
	5.2.15 Export the CICS Bundle to z/OS
	5.2.16 Define a CICS Bundle definition for the catalog servlet

	Chapter 6. Frequently asked questions
	6.1 Administration questions
	6.2 Application programming questions
	6.3 Performance questions
	6.4 Functions not supporting channels and containers
	6.5 Online information about channels and containers
	6.6 Hints and tips

	Appendix A. CICS channels and containers Liberty servlet example
	Channels and containers JCICS servlet example
	What the servlet channels and containers JCICS example does
	HTML page and java script

	Servlet implementation LinkProg
	JCICS business class LinkProgOSGI
	CICS back end program
	Installation

	Appendix B. Additional material
	Locating the web material
	Using the web material
	System requirements for downloading the web material
	How to use the web material

	Sample server program used in some examples

	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

