
ibm.com/redbooks

Implementing CICS
Web Services

Nigel Williams
Robert Herman

Luis Aused Lopez
Mike Ebbers

Configuring and securing Web services
in CICS Transaction Server

Connecting CICS to a service
integration bus

Enabling atomic Web
services

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Implementing CICS Web Services

October 2007

International Technical Support Organization

SG24-7206-02

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Third Edition (October 2007)

This edition applies to CICS Transaction Server Version 3.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xiv
Become a published author . xvii
Comments welcome. xvii

Summary of changes . xix
December 2006, Second Edition . xix
October 2007, Third Edition . xix

Part 1. Introduction . 1

Chapter 1. Overview of Web services . 3
1.1 Introduction . 4
1.2 Service-oriented architecture . 4

1.2.1 Characteristics . 5
1.2.2 Web services versus service-oriented architectures. 6

1.3 Web services. 7
1.3.1 Properties of a Web service . 7
1.3.2 Core standards . 8
1.3.3 Web Service Interoperability Basic Profile 1.0 10
1.3.4 Additional standards . 11

1.4 SOAP . 12
1.4.1 The envelope . 12
1.4.2 Communication styles . 17
1.4.3 Encodings . 17
1.4.4 Messaging modes . 17

1.5 WSDL . 18
1.5.1 WSDL Document . 19
1.5.2 WSDL document anatomy . 19
1.5.3 WSDL definition . 24
1.5.4 WSDL bindings . 30

1.6 Summary . 31

Chapter 2. CICS support for Web services . 33
2.1 Overview . 34
2.2 CICS as a service provider . 37

© Copyright IBM Corp. 2007. All rights reserved. iii

2.2.1 Preparing to run a CICS application as a service provider 38
2.2.2 Processing the inbound service request . 40

2.3 CICS as a service requester . 41
2.3.1 Preparing to run a CICS application as a service requester 42
2.3.2 Processing the outbound service request . 44
2.3.3 Local optimization . 45

2.4 CICS resources for Web services . 47
2.4.1 URIMAP . 47
2.4.2 PIPELINE . 49
2.4.3 WEBSERVICE . 53
2.4.4 TCPIPSERVICE . 55
2.4.5 Resources checklist . 55

2.5 Message handlers . 57
2.5.1 SOAP message handlers . 57
2.5.2 Channels and containers . 59

2.6 Tools for developing CICS Web services . 61
2.6.1 CICS Web services assistant . 62
2.6.2 Web services assistant utility programs . 63
2.6.3 WebSphere Developer for zSeries . 65

2.7 Catalog manager example application . 67
2.7.1 The base application . 67
2.7.2 Web services support for the catalog example application 69

Part 2. Web service configuration . 71

Chapter 3. Web services using HTTP . 73
3.1 Preparation . 74

3.1.1 Software checklist . 75
3.1.2 Definition checklist . 75
3.1.3 The sample application . 76

3.2 Configuring CICS as a service provider . 76
3.2.1 Configuring code page support . 77
3.2.2 Configuring CICS . 77
3.2.3 Configuring WebSphere Application Server on Windows 87
3.2.4 Testing the configuration. 90

3.3 Configuring CICS as a service requester . 94
3.3.1 Configuring CICS . 95
3.3.2 Configuring WebSphere Application Server for z/OS 98
3.3.3 Testing the configuration. 100

3.4 Configuring for high availability . 101
3.4.1 TCP/IP load balancing . 102
3.4.2 High availability configuration . 102
3.4.3 Routing inbound Web service requests . 102

iv Implementing CICS Web Services

3.5 Problem determination . 104
3.5.1 Error calling dispatch service - INVREQ . 104

Chapter 4. Web services using WebSphere MQ . 111
4.1 Preparation . 112

4.1.1 Software checklist . 113
4.1.2 Definition checklist . 113

4.2 WebSphere MQ configuration . 114
4.2.1 Adding WebSphere MQ support to CICS . 114
4.2.2 Defining the queues . 115
4.2.3 Defining the trigger process . 116

4.3 Configuring CICS as a service provider using WMQ 116
4.3.1 Configuring the service provider pipeline . 117

4.4 Configuring CICS as service requester using WMQ 121
4.4.1 Configuring the Catalog application . 122
4.4.2 Configuring WebSphere Application Server on Windows 124

4.5 Testing the WMQ configuration. 124
4.6 High availability with WMQ . 126

Chapter 5. Connecting CICS to the service integration bus 129
5.1 Overview of the service integration bus . 130

5.1.1 Why you would connect CICS to a bus. 131
5.2 Preparation . 132

5.2.1 Software checklist . 134
5.2.2 Definition checklist . 134

5.3 Configuring CICS for a gateway service . 135
5.3.1 Updating the CICS-supplied sample WSDL file 135
5.3.2 Creating a URIMAP for the WSDL file . 135
5.3.3 Testing the retrieval of the WSDL file from a Web browser 137

5.4 Creating a gateway service on the bus . 139
5.4.1 Identifying the bus to be used . 139
5.4.2 Creating a Web services gateway instance 140
5.4.3 Creating a gateway service. 141

5.5 Testing the CICS gateway service . 145
5.5.1 Publish the bus-generated WSDL. 145
5.5.2 Configuring the catalog manager J2EE application 146
5.5.3 Invoking the gateway service . 147

Part 3. Security management. 149

Chapter 6. Elements of cryptography . 151
6.1 The role of cryptography . 152
6.2 Secret key (or symmetric) cryptography . 153

6.2.1 DES. 155

 Contents v

6.2.2 Triple DES (TDEA) . 160
6.2.3 AES . 161

6.3 Public key (or asymmetric) cryptography . 162
6.3.1 RSA. 163

6.4 Hash functions. 167
6.5 Message authentication codes . 171

6.5.1 Block cipher-based MACs. 171
6.5.2 Hash function-based MACs . 172

6.6 Digital signatures. 173
6.6.1 Using DSA for digital signatures . 174
6.6.2 Using RSA for digital signatures . 176
6.6.3 Comparing RSA with DSA for digital signatures 179

6.7 Public key digital certificates . 180
6.7.1 tbsCertificate . 182
6.7.2 Standard extensions for X.509 V3 digital certificates 187
6.7.3 Certification paths . 189

6.8 Certificate revocation lists . 191
6.8.1 Extensions for entries in a CRL. 194
6.8.2 Extensions for a CRL . 195
6.8.3 Security considerations when using digital certificates 195

6.9 Key agreement protocols . 196
6.9.1 The RSA key agreement protocol . 197
6.9.2 The Diffie-Hellman key agreement protocol 197

6.10 Transport Layer Security (TLS) 1.0 protocol . 199
6.10.1 TLS overview . 200
6.10.2 Cipher suites . 202
6.10.3 Alert protocol . 206
6.10.4 Handshake protocol . 207

Chapter 7. Crypto hardware and ICSF. 219
7.1 Cryptographic hardware . 220

7.1.1 CP Assist for Cryptographic Functions (CPACF) 221
7.1.2 Crypto Express 2 feature . 222
7.1.3 Comparison of CPACF, CEX2C, and CEX2A. 223
7.1.4 Other cryptographic hardware. 224

7.2 ICSF . 225
7.2.1 ICSF callable services. 225
7.2.2 ICSF administration. 226

7.3 How CICS uses ICSF . 227
7.4 ICSF services used by CICS WS-Security support 229

Chapter 8. Securing Web services. 235
8.1 Traditional CICS security. 236

vi Implementing CICS Web Services

8.1.1 CICS user IDs . 236
8.2 Security exposures . 237
8.3 Transport security . 239

8.3.1 HTTP transport . 239
8.3.2 WebSphere MQ transport . 251

8.4 SOAP message security . 253
8.4.1 CICS and SOAP message security. 256
8.4.2 WebSphere and SOAP message security 266

8.5 Comparison of transport level and SOAP message security 269
8.6 Securing CICS Web services using the service integration bus 270
8.7 WebSphere Datapower SOA appliances . 272
8.8 Identity assertion . 273

8.8.1 Trust token model . 274
8.8.2 Presumed trust model . 274

Chapter 9. Security scenarios . 275
9.1 Preparation . 276

9.1.1 Software checklist . 276
9.1.2 Definition checklist . 277

9.2 Basic security configuration. 278
9.2.1 Setting up basic security configuration . 279
9.2.2 Testing the basic security configuration . 279

9.3 Setting the user ID on a URIMAP definition . 280
9.3.1 Defining the URIMAP . 281
9.3.2 Permitting access to user ID CICSNW . 284
9.3.3 Testing user ID on URIMAP resource definition 284

9.4 Enabling SOAP message security with HTTP. 285
9.4.1 Configuring the service requester . 286
9.4.2 Configuring CICS . 293
9.4.3 Testing SOAP message security . 298
9.4.4 SOAP fault messages . 299

9.5 Enabling SSL/TLS . 301
9.5.1 Creating a key ring and certificates on z/OS for CICS 302
9.5.2 Enabling an SSL/TLS connection from WebSphere 304
9.5.3 Configuring CICS support for SSL/TLS. 309
9.5.4 Testing SSL/TLS . 310

9.6 Enabling SOAP message security with WMQ. 312
9.6.1 Configuring CICS to use WMQ . 313
9.6.2 Configuring the service requester . 315
9.6.3 Header processing program . 315
9.6.4 Configuring the service provider . 316
9.6.5 Configuring WebSphere MQ for security . 318
9.6.6 Testing security with WMQ . 319

 Contents vii

Chapter 10. Security scenarios using CICS WS-Security support 323
10.1 Preparation . 324

10.1.1 Software checklist . 324
10.1.2 Definition checklist . 325

10.2 Basic security configuration. 327
10.2.1 Creating a RACF key ring . 327
10.2.2 Specifying the security SIT parameters . 328
10.2.3 Testing the basic security configuration . 328
10.2.4 Configuring the pipeline . 329
10.2.5 Setting a user ID on a URIMAP definition 330

10.3 Basic authentication . 330
10.3.1 Configuring the service requester for basic authentication 332
10.3.2 Configuring CICS . 339
10.3.3 Testing basic authentication . 341

10.4 Certificate and key pair generation . 347
10.5 Signing a SOAP message. 358

10.5.1 Configuring the service requester for signature processing 360
10.5.2 Configuring CICS for signature processing. 375
10.5.3 Testing the signature scenario . 378

10.6 Encrypting a SOAP message . 385
10.6.1 Configuring the service requester for encryption 387
10.6.2 Configuring CICS for encryption . 398
10.6.3 Testing the encryption scenario . 400

Part 4. Transaction management. 407

Chapter 11. Introduction to Web services: Atomic transactions 409
11.1 Beginner’s guide to atomic transactions . 410

11.1.1 What is a classic transaction. 411
11.1.2 Mapping from classic transactions to WS-Atomic Transaction . . . 415

11.2 WS-Addressing . 418
11.2.1 Endpoint references . 419
11.2.2 Message information headers. 422
11.2.3 SOAP binding for endpoint references . 424

11.3 WS-Coordination . 425
11.3.1 Coordination service . 426
11.3.2 CreateCoordinationContext. 427
11.3.3 CreateCoordinationContextResponse . 429
11.3.4 Register. 432
11.3.5 Register response . 434
11.3.6 Two applications with their own coordinators 434
11.3.7 Addressing requirements for WS-Coordination message types . . 436

11.4 WS-Atomic Transaction. 436
11.4.1 Completion protocol . 438

viii Implementing CICS Web Services

11.4.2 Two-Phase Commit protocol . 439
11.4.3 Two applications with their own coordinators (continued). 441
11.4.4 Addressing requirements for WS-AT message types 442
11.4.5 CICS TS V3.1 and resynchronization processing 443

Chapter 12. Enabling atomic transactions . 447
12.1 Enabling atomic transactions in CICS . 448

12.1.1 CICS to CICS configuration . 448
12.1.2 More elaborate CICS to CICS configuration 458

12.2 Enabling atomic transactions in WebSphere. 460

Chapter 13. Transaction scenarios . 463
13.1 Introduction to our scenarios . 464

13.1.1 Software checklist . 465
13.1.2 Definition checklist . 465

13.2 The simple atomic transaction scenario . 467
13.2.1 Setting up CICS for the simple scenario . 469
13.2.2 Creating the AtomicClient and ITSO.ORDER table 473
13.2.3 Testing the simple scenario . 489

13.3 The daisy chain atomic transaction scenario . 510
13.3.1 Setting up CICS for the daisy chain scenario 512
13.3.2 Creating DispatchOrderAtomic and the ITSO.DISPATCH table . . 514
13.3.3 Testing the daisy chain scenario. 517

13.4 Transaction scenario summary . 524

Part 5. Appendixes . 525

Appendix A. Sample handler programs . 527
A.1 Sample message handler program - CIWSMSGH 528
A.2 Sample header processing program - CIWSSECH 533
A.3 Sample handler program - SNIFFER . 539
A.4 Sample XML parser program - MYPARSER . 550
A.5 Sample header processing program - CIWSSECR 555
A.6 Sample header processing program - CIWSSECS 562
A.7 Sample header processing program - WSATHND 567

Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work . . 573
B.1 How DES works . 574
B.2 How AES works . 578
B.3 How SHA-1 works. 583

B.3.1 Definitions . 583
B.3.2 SHA-1 preprocessing . 584
B.3.3 SHA-1 hash computation . 586

B.4 How the HMAC algorithm of FIPS PUB 198 works. 588

 Contents ix

Abbreviations and acronyms . 591

Related publications . 593
IBM Redbooks . 593
Other publications . 593
Online resources . 594
How to get IBM Redbooks . 594
Help from IBM . 594

Index . 595

x Implementing CICS Web Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ®
developerWorks®
eServer™
iSeries®
z/OS®
zSeries®
z9™
Candle®
CICS®

CICSPlex®
DataPower®
DB2®
IBM®
IMS™
MVS™
OS/390®
Parallel Sysplex®
Rational®

Redbooks®
RACF®
RDN™
S/390®
System z™
System z9™
Tivoli®
VTAM®
WebSphere®

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaServer, JDBC,
JDK, JNI, JSP, JVM, J2EE, Sun, and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Internet Explorer, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii Implementing CICS Web Services

Preface

Today more and more companies are embracing the principles of on demand
business by integrating business processes end-to-end across the company and
with key partners, enabling them to respond flexibly and rapidly to new
circumstances. The move to an on demand business environment requires
technical transformation, moving the focus from discrete applications to
connected, interdependent information technology components.

Open standards such as Web services enable these components to be hosted in
the environments most appropriate to their requirements, while still being able to
interact easily — independent of hardware, run-time environment, and
programming language.

The Web services support in CICS® Transaction Server Version 3.1 enables
your CICS programs to be Web service providers and requesters. CICS supports
a number of specifications including SOAP Version 1.1 and Version 1.2, and
Web services distributed transactions (WS-Atomic Transaction).

This IBM® Redbook describes how to configure CICS Web services support for
HTTP-based and WebSphere® MQ-based solutions, and demonstrates how
Web services can be used to integrate J2EE™ applications running in
WebSphere Application Server with COBOL programs running in CICS.

It begins with an overview of Web services standards and the Web services
support provided by CICS TS V3.1. Complete details for configuring CICS Web
services using both HTTP and WebSphere MQ are provided next, along with the
steps for using Web services to connect to CICS from a service integration bus.
The book then shows how CICS Web services can be secured using a
combination of Web Services Security (WS-Security) and transport-level security
mechanisms such as SSL/TLS. Finally, it demonstrates how atomic Web
services transactions can be configured to allow WebSphere and CICS resource
updates to be synchronized.

In this book we concentrate on the implementation specifics such as security,
transactions, and availability. The companion book Developing CICS Web
Services (SG24-7126) presents detailed information about developing CICS
Web services.

© Copyright IBM Corp. 2007. All rights reserved. xiii

The team that wrote this book
This International Technical Support Organization (ITSO) IBM Redbooks®
publication (third edition) was produced by a team of specialists from around the
world working at the Product Solutions and Support Center in IBM Endicott, USA.

Nigel Williams was the project leader for this book. He is a Certified IT Specialist
working in the IBM Design Center for On Demand Business in Montpellier. He
specializes in core business transformation, connectors, and service-oriented
architectures. He is the author of several papers and IBM Redbooks
publications, and he speaks frequently on CICS and WebSphere topics.
Previously, Nigel worked at the Hursley software lab as a software developer, in
systems test, and as customer support for the CICS Early Support Program. He
holds a degree in Mathematics and Economics from Surrey University.

Luis Aused Lopez is an IT Specialist for IBM Global Services in Spain, working
in Business Consulting Services (BCS) in the travel and transportation sectors.
As an assignee he works in the zSeries® Benchmark Center in IBM Montpellier.
He has worked for IBM for over ten years. During this time, Luis has developed
several J2EE applications for WebSphere running on different platforms,
including zSeries, iSeries®, Linux®, and Windows®. His areas of expertise
include application development, WebSphere, Java™ performance, DB2®, and
eTicketing. He is an author of several IBM Redbooks publications and holds a
degree in Physics from Complutense University, Madrid, Spain.

Robert Herman was a Senior IT Specialist, Systems Management Integrator
with IBM Global Services in Endicott, New York until his death in 2007. He had
27 years of experience supporting CICS and related products for a variety of IBM
internal and external customer accounts. Bob worked on several IBM Redbooks,
including Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server
V2.2, SG24-6284.

Mike Ebbers is a certified Consulting IT Specialist in the ITSO Poughkeepsie
Center. He has spent 34 years with IBM doing technical support and education
for mainframe systems.

The first edition was produced by this team and several additional colleagues in
IBM Montpellier, France. Biographies of the additional first edition authors and a
photograph of the team follow.

Special note: This book is dedicated to Bob Herman. He died before his work on
this third edition could be published. Bob is remembered by the rest of the team
as a dedicated professional who paid meticulous attention to detail and was able
to write about complex topics such as cryptography in depth but with an elegant
simplicity. Bob was also appreciated as a mentor and a guardian of the English
language. He will be greatly missed on future ITSO residencies.

xiv Implementing CICS Web Services

The first edition team in the foyer at IBM Montpellier: Robert Herman, Luis Aused Lopez,
Grant Ward Able, Nigel Williams, Paolo Chieregatti, and Tommy Joergensen. Steve Wall
is missing from the picture.

Grant Ward Able is a Software Engineer working for IBM in Hursley, United
Kingdom. He has spent five years in the CICS Transaction Server team as a
developer and a tester and in the Solution Test team, working with CICS and
WebSphere. Previously, Grant worked for 15 years as a CICS systems
programmer. He currently works in the CICS Service Flow runtime team.

Paolo Chieregatti is an IT specialist working for IBM Software Group in Italy. He
has 20 years of experience in IT working mainly on IBM mainframes. His areas of
expertise include CICS, WebSphere MQ, WebSphere Application Server, and
legacy application transformation and integration. He speaks frequently on CICS
and WebSphere topics. Before joining IBM, Paolo worked for the Candle®
Corporation. He has worked as a CICS systems programmer and project
manager.

Tommy Joergensen is a Senior IT Specialist working for IBM Global Services in
IBM Denmark. He has more than 25 years of experience working in CICS

 Preface xv

technical support, including three years at IBM Hursley. In recent years he has
delivered services at large accounts in Denmark for both the CICS and
WebSphere products. Tommy is the IBM representative in the CICS working
group of the Nordic Share Guide organization.

Steve Wall is an IT specialist working in the System z™ Benchmark Center. He
worked for the CICS Transaction Server Development organization at Hursley,
United Kingdom, for over 20 years before joining the PSSC. Steve has a degree
in Linguistic and International Studies from the University of Surrey. He has
written and taught extensively about CICS e-business enablement using CICS
Web Support and the CICS Transaction Gateway.

Thanks to the following people for their contributions to this project:

Phil Hanson and Mark Cocker of IBM Hursley for supporting this project.

Pascal Tillard for his support setting up the WebSphere Application Server for
z/OS® environment and for assisting with the setup of the service integration
bus.

Mike Brooks of IBM Hursley for explaining the CICS WS-AtomicTransaction
support and making direct contributions to Part 4 of this book.

Ken Ray of IBM UK for his support in setting up WebSphere MQ.

Ian Noble and Oliver Fenton of IBM Hursley for supplying sample programs.

Mike Adams, Fraser Bohm, Ivan Hargreaves, Peter Havercan, Ian Mitchell,
Daniel Would and William Yates of IBM Hursley, Derek Ho and Peter Birk from
IBM Austin, and Jeff Oestrich of IBM Raleigh for supplying technical advice
during the residencies.

The team that wrote the Redbook Developing for CICS Web Services,
SG24-7126: Chris Rayns, Jim Hollingsworth, Chris Backhouse, David Evans,
and Isabel Arnold.

The team that wrote the Redbook Web Services Handbook for WebSphere
Application Server 6.1, SG24-7257: Ueli Wahli, Owen Burroughs, Owen Cline,
Alex Go and Larry Tung.

Tony Delmenico and Steve Webb from the team that worked on the Redbook
Securing Access to CICS Within an SOA (SG24-5756).

Philippe Richard of IBM Montpellier, and Rich Conway and Bob Haimowitz of the
ITSO Poughkeepsie, for providing excellent systems support.

xvi Implementing CICS Web Services

Arnauld Desprets and Patrick Kappeler of IBM Montpellier for advice on the
security scenarios.

Ella Buslovich and Alison Chandler of the ITSO Poughkeepsie for help with the
graphics and editing respectively.

The following people for the significant amount of time that they have spent
reviewing and for their detailed review comments: Cheryll Clark of IBM Australia,
Alan Roessle of IBM Montpellier, Phil Wakelin and Robert Harris of IBM Hursley.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbooks
document dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You'll team with IBM technical
professionals, Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ; HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii Implementing CICS Web Services

Summary of changes

This section describes the technical changes made in this edition of the book and in previous
editions. This edition may also include minor corrections and editorial changes that are not
identified.

Note: This book is based on the Web services support in CICS TS V3.1. For information about
the Web services enhancements in CICS TS V3.2 refer to Web Services Guide, SC34-6838.

December 2006, Second Edition
This revision reflects the addition or modification of the following information:

Part 3, Security Management has been greatly enlarged. Two new chapters were added, and the
existing material was reorganized and expanded as well.

New Chapter 6, “Elements of cryptography” on page 151 provides a discussion of basic concepts
in cryptography; Chapter 10, “Security scenarios using CICS WS-Security support” on page 323
demonstrates how you can secure CICS Web services using the CICS-supplied message
handler DFHWSSE1.

New Appendix B “How the DES, AES, and HMAC algorithms work” provides a detailed
explanation of how the algorithms work.

October 2007, Third Edition
Part 3, Security Management has been further enlarged with one new chapter and modifications
to the existing material.

New Chapter 7, “Crypto hardware and ICSF” on page 219 introduces IBM cryptographic
hardware and describes how CICS WS-Security support uses ICSF (the Integrated
Cryptographic Service Facility) and hardware cryptography.

The modifications made to existing chapters include:

� Enhancements to Chapter 6, “Elements of cryptography” on page 151.

� Additional information added to Chapter 8, “Securing Web services” on page 235.

� Additional information about how the SHA-1 algorithm works was added to Appendix B, “How
the DES, AES, SHA-1, and HMAC algorithms work” on page 573.

© Copyright IBM Corp. 2007 xix

xx Implementing CICS Web Services

Part 1 Introduction

In this part we give a broad overview of different Web services technologies and
then explain how to use Web services in CICS Transaction Server V3.1.

Part 1

© Copyright IBM Corp. 2007. All rights reserved. 1

2 Implementing CICS Web Services

Chapter 1. Overview of Web services

This chapter focuses on some of the architectural concepts that must be
considered on a Web services project. We define and discuss service-oriented
architecture (SOA) and the relationship between SOAs and Web services. We
then take a closer look at Web services, a technology that enables you to invoke
applications using Internet protocols and standards. The technology is called
“Web services” because it integrates services (applications) using Web
technologies (the Internet and its standards).

1

© Copyright IBM Corp. 2007. All rights reserved. 3

1.1 Introduction

There is a strong trend for companies to integrate existing systems to implement
IT support for business processes that cover the entire business cycle. Today,
interactions already exist using a variety of schemes that range from very rigid
point-to-point electronic data interchange (EDI) interactions to open Web
auctions. Many companies have already made some of their IT systems
available to all of their divisions and departments, or even their customers or
partners on the Web. However, techniques for collaboration vary from one case
to another and are thus proprietary solutions; systems often collaborate without
any vision or architecture.

Thus there is an increasing demand for technologies that support the connecting
or sharing of resources and data in a very flexible and standardized manner.
When technologies and implementations vary across companies and even within
divisions or departments, unified business processes cannot be smoothly
supported by technology. Integration has been developed only between units
that are already aware of each other and that use the same static applications.

Furthermore, there is a need to structure large applications into building blocks in
order to use well-defined components within different business processes. A shift
towards a service-oriented approach will not only standardize interaction, but
also allow for more flexibility in the process. The complete value chain within a
company is divided into small modular functional units, or services. A
service-oriented architecture thus has to focus on how services are described
and organized to support their dynamic, automated discovery and use.

Companies and their sub-units should be able to easily provide services. Other
business units can use these services to implement their business processes.
This integration can be ideally performed during the runtime of the system, not
just at the design time.

1.2 Service-oriented architecture

This section is a short introduction to the key concepts of a service-oriented
architecture. The architecture makes no statements about the infrastructure or
protocols it uses. Therefore, you can implement a service-oriented architecture
using technologies other than Web technologies.

4 Implementing CICS Web Services

As shown in Figure 1-1, a service-oriented architecture contains three basic
components:

� A service provider

The service provider creates a Web service and possibly publishes to the
service broker the information necessary to access and interface with the
Web service.

� A service broker

The service broker (also known as a service registry) makes the Web service
access and interface information available to any potential service requester.

� A service requester

The service requester binds to the service provider to invoke one of its Web
services, having optionally located entries in the broker registry using various
find operations.

Figure 1-1 Service-oriented architecture components and operations

Each component can also act as one of the two other components. For instance,
if a service provider needs information that it can only acquire from some other
service, it acts as a service requester while still serving the original request.

1.2.1 Characteristics

A service-oriented architecture enables a loose coupling between the
participants. Such a loose coupling provides greater flexibility because of the
following characteristics:

� Old and new functional blocks are encapsulated into components that work
as services.

Service
Broker

Service
Provider

Service
Requestor

Publish Discover

Request/Response

 Chapter 1. Overview of Web services 5

� Functional components and their interfaces are separated. Therefore, new
interfaces can be plugged in more easily.

� Within complex applications, the control of business processes can be
isolated. A business rules engine can be incorporated to control the workflow
of a defined business process. Depending on the state of the workflow, the
engine calls the respective services.

1.2.2 Web services versus service-oriented architectures

A service-oriented architecture has been used under various guises for many
years. It can be (and has been) implemented using a number of different
distributed computing technologies, such as CORBA and messaging
middleware. The effectiveness of service-oriented architectures in the past has
always been limited by the ability of the underlying technology to interoperate
across the enterprise.

Web services technology is an ideal technology choice for implementing a
service-oriented architecture because:

� Web services are based on standards, and standards promote
interoperability. Interoperability is a key business advantage within the
enterprise and is crucial in B2B scenarios.

� Web services are widely supported across the industry. For the very first time,
all major vendors are recognizing and providing support for Web services.
The Web Services Interoperability Organization (WS-I) is an organization that
promotes open interoperability between Web services regardless of the
platforms, operating systems, or programming languages used.

� Web services are platform and language neutral. There is no bias for or
against a particular hardware or software platform. Web services can be
implemented in any programming language or toolset. This is important
because there will be continued industry support for the development of
standards and interoperability between vendor implementations.

� This technology provides a migration path to gradually enable existing
business functions as Web services.

� This technology supports synchronous and asynchronous, RPC-based, and
complex message-oriented exchange patterns.

Conversely, there are many Web services implementations that are not a
service-oriented architecture. For example, the use of Web services to connect
two heterogeneous systems directly together is not an SOA. These uses of Web
services solve real problems and provide significant value on their own. They
may form the starting point of an SOA.

6 Implementing CICS Web Services

In general, an SOA has to be implemented at an enterprise or organizational
level in order to achieve many of the benefits.

For more information about the relationship between Web services and
service-oriented architectures refer to the IBM Redbook Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

1.3 Web services

If we had to describe Web services using just one sentence, we would use the
following:

Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network.

Web services perform encapsulated business functions, ranging from simple
request-reply to full business process interactions. These services can be new
applications or wrapped around existing business functions to make them
network-enabled. Services can rely on other services to achieve their goals.

The World Wide Web Consortium (W3C) Services Architecture Working Group
defines a Web service as follows:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

It is important to note from this definition that a Web service is not constrained to
use SOAP over HTTP/S as the transport mechanism. Web services are equally
at home in the messaging world.

1.3.1 Properties of a Web service

All Web services share the following properties:

� Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, merely an HTTP server and a SOAP server are required.

 Chapter 1. Overview of Web services 7

� Web services are self-describing.

A Web Service Description Language (WSDL) file provides all the information
you need to implement a Web service as a provider or to invoke a Web
service as a requester.

� Web services can be published, located, and invoked across the Web.

The service requester uses established lightweight Internet standards such
as HTTP to invoke the service provider. It leverages the existing
infrastructure.

� Web services are modular.

Simple Web services can be aggregated to form more complex ones, either
using workflow techniques or by calling lower-layer Web services from a Web
service implementation. Web services can be chained together to perform
higher-level business functions. This shortens development time and enables
best-of-breed implementations.

� Web services are language-independent and interoperable.

The client and server can be implemented in different environments. Any
language can be used to implement Web service clients and servers.

� Web services are inherently open and standards-based.

XML and HTTP are the major technical foundation for Web services. A large
part of the Web service technology has been built using open source projects.
Therefore, vendor independence and interoperability are realistic goals.

� Web services are loosely coupled.

A service requester has to know the interface to a Web service but not the
details of how it has been implemented.

� Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code
level.

� Web services provide the ability to wrap existing applications.

Existing applications can easily be integrated into the service-oriented
architecture by implementing a Web service as an interface to the application.

1.3.2 Core standards

Web services are built upon four core standards: XML, SOAP, WSDL, and UDDI.
Each standard is described briefly in this section.

8 Implementing CICS Web Services

Extensible Markup Language (XML)
XML is the foundation of Web services. However, since much information has
already been written about XML, we do not describe it in this document. You can
find information about XML at:

http://www.w3.org/XML/

SOAP
Originally proposed by Microsoft®, SOAP was designed to be a simple and
extensible specification for the exchange of structured, XML-based information in
a decentralized, distributed environment. As such, it represents the main means
of communication between the three actors in an SOA: the service provider, the
service requester, and the service broker. A group of companies, including IBM,
submitted SOAP to the W3C for consideration by its XML Protocol Working
Group. There are currently two versions of SOAP: Version 1.1 and Version 1.2.

The SOAP 1.1 specification contains three parts:

� An envelope that defines a framework for describing message content and
processing instructions. Each SOAP message consists of an envelope that
contains an arbitrary number of headers and one body that carries the
payload. SOAP messages might contain faults; faults report failures or
unexpected conditions.

� A set of encoding rules for expressing instances of application-defined data
types.

� A convention for representing remote procedure calls and responses.

A SOAP message is, in principle, independent of the transport protocol which is
used, and can, therefore, potentially be used with a variety of protocols such as
HTTP, JMS, SMTP, or FTP. Right now, the most common way of exchanging
SOAP messages is through HTTP.

The way SOAP applications communicate when exchanging messages is often
referred to as the message exchange pattern (MEP). The communication can be
either one-way messaging, where the SOAP message only goes in one
direction, or two-way messaging, where the receiver is expected to send back a
reply.

Due to the characteristics of SOAP, it does not matter what technology is used to
implement the client, as long as the client can issue XML messages. Similarly,
the service can be implemented in any language, as long as it can process XML
messages.

We discuss SOAP in more detail in “SOAP” on page 12.

 Chapter 1. Overview of Web services 9

http://www.w3.org/XML/
http://www.w3.org/XML/

Web Services Description Language (WSDL)
This standard describes Web services as abstract service endpoints that operate
on messages. Both the operations and the messages are defined in an abstract
manner, while the actual protocol used to carry the message and the endpoint’s
address are concrete.

WSDL is not bound to any particular protocol or network service. It can be
extended to support many different message formats and network protocols.
However, because Web services are mainly implemented using SOAP and
HTTP, the corresponding bindings are part of this standard.

As of this writing, WSDL 1.1 is in use and WSDL 2.0 is a working draft. We
discuss WSDL in more detail in “WSDL” on page 18.

Universal Description, Discovery, and Integration (UDDI)
The Universal Description, Discovery, and Integration standard defines a means
to publish and to discover Web services. As of this writing, UDDI Version 3.0 has
been finalized, but UDDI Version 2.0 is still more commonly used. For more
information, refer to:

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wssv1.0

1.3.3 Web Service Interoperability Basic Profile 1.0

Web services can be used to connect computer systems together across
organizational boundaries. Therefore, defining a set of open, non-proprietary
standards to which all Web services adhere maximizes the ability to connect
disparate systems together.

The Web Services Interoperability Organization (WS-I) is an organization that
promotes open interoperabiltity between Web services regardless of the
platforms, operating systems, or programming languages used. To support this
cause the WS-I has released a basic profile; this profile outlines a set of
specifications to which WSDL documents and SOAP messages sent over HTTP
must adhere in order to be WS-I compliant. The full list of specifications can be
found on the WS-I Web site:

http://www.ws-i.org/

Note: The authors of the SOAP 1.1 specification declared that the acronym
SOAP stands for Simple Object Access Protocol. The authors of the SOAP
1.2 specification decided not to give any meaning to the acronym SOAP.

10 Implementing CICS Web Services

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.ws-i.org/
http://www.ws-i.org/

CICS support for Web services conforms with WS-I Basic Profile 1.0. Because
SOAP 1.2 is not included in WS-I Basic Profile 1.0, most Web service runtimes
still support and recommend using SOAP 1.1. CICS TS V3.1 has support for
both SOAP 1.1 and SOAP 1.2.

1.3.4 Additional standards

Figure provides a snapshot of the rapidly changing landscape of Web
services-related standards and specifications. We do not intend it to be a strictly
correct stack diagram – it just attempts to show the various standards efforts in
terms of the general category to which they belong.

Web services standards
Given the current momentum behind Web services and the pace at which
standards are evolving, you may also wish to refer to an online compilation of
Web services standards. An online compilation is available on the IBM
developerWorks® Web site at:

http://www.ibm.com/developerworks/views/webservices/standards.jsp

Of particular interest to those developing Web services in CICS are:

� WS-Transactions (the family of specifications that relate to transactional Web
services)

� WS-Security (the family of specifications that relate to securing Web services)

WS-Policy

WS-Security
family of

specifications

UDDI

Quality
of Service

Messaging
and Encoding

Transport

Business
Processes

Other protocols
Other services

Business Process Execution Language (BPEL)

Description
and DiscoveryWSDL

SOAP, SOAP Attachments

XML, XML Infoset

Transports

WS-Coordination

WS-Transactions

WS-Reliable
Messaging

WS-Distributed
Management

WS-Policy

WS-Security
family of

specifications

UDDI

Quality
of Service

Messaging
and Encoding

Transport

Business
Processes

Other protocols
Other services

Business Process Execution Language (BPEL)

Description
and DiscoveryWSDL

SOAP, SOAP Attachments

XML, XML Infoset

Transports

WS-Coordination

WS-Transactions

WS-Reliable
Messaging

WS-Distributed
Management

 Chapter 1. Overview of Web services 11

http://www.ibm.com/developerworks/views/webservices/standards.jsp

1.4 SOAP

In this section we focus mainly on SOAP 1.1.

1.4.1 The envelope

A SOAP message is an envelope containing zero or more headers and exactly
one body:

� The envelope is the root element of the XML document, providing a container
for control information, the addressee of a message, and the message itself.

� Headers contain control information, such as quality of service attributes.

� The body contains the message identification and its parameters.

� Both the headers and the body are child elements of the envelope element.

Figure 1-2 shows a simple SOAP request message.

� The header tells who must deal with the message and how to deal with it.
When the actor is next or when actor is omitted, the receiver of the message
must do what the body says. Furthermore, the receiver must understand and
process the application-defined <TranID> element.

� The body tells what has to be done: Dispatch an order for quantityRequired
1 of itemRefNumber 0010 to customerID CB1 in chargeDepartment ITSO.

Figure 1-2 Example of a simple SOAP message

Namespaces
Namespaces play an important role in SOAP messages. A namespace is simply
a way of adding a qualifier to an element name to ensure that it is unique.

<Envelope>
<Header>

<actor>http:// ...org/soap/actor/next</actor>
<TranID mustUnderstand=”1”>ABCD</TranID>

</Header>
<Body>

<dispachOrderRequest>
<itemRefNumber>0010</itemRefNumber>
<quantityRequired>1</quantityRequired>
<customerID>CB1</customerID>
<chargeDepartment>ITSO</chargeDepartment>

</dispatchOrderRequest>
</Body>
</Envelope>

Envelope

Header
[0..n]

Body
[1]

12 Implementing CICS Web Services

For example we may have a message that contains an element <customer>.
Customers are fairly common so it is very likely that many Web services will have
customer elements. To ensure we know what customer we are talking about we
declare a namespace for it, for example as follows:

xmlns:itso=”http://itso.ibm.com/CICS/catalogApplication

This identifies the prefix itso with the declared namespace. Then whenever we
reference the element <customer> we prefix it with the namespace as follows:
<itso:customer>. This identifies it uniquely as a customer type for our
application. Namespaces can be defined as any unique string. They are often
defined as URLs since URLs are generally globally unique, and they have to be
in URL format. These URLs do not have to physically exist though.

The WS-I Basic Profile 1.0 requires that all application-specific elements in the
body must be namespace qualified to avoid collisions between names.

Table 1-1 shows the namespaces of SOAP and WS-I Basic Profile 1.0 used in
this book.

Table 1-1 SOAP namespaces

SOAP envelope
The Envelope is the root element of the XML document representing the
message; it has the following structure:

<SOAP-ENV:Envelope >
<SOAP-ENV:Header>

<SOAP-ENV:HeaderEntry.... />
</SOAP-ENV:Header>
<SOAP-ENV:Body>

[message payload]

Namespace URI Explanation

http://schemas.xmlsoap.org/soap/envelope/ SOAP 1.1 envelope namespace

http://schemas.xmlsoap.org/soap/encoding/ SOAP 1.1 encoding namespace

http://www.w3.org/2001/XMLSchema-instance Schema instance namespace

http://www.w3.org/2001/XMLSchema XML Schema namespace

http://schemas.xmlsoap.org/wsdl WSDL namespace for WSDL
framework

http://schemas.xmlsoap.org/wsdl/soap WSDL namespace for WSDL
SOAP binding

http://ws-i.org/schemas/conformanceClaim/ WS-I Basic Profile

 Chapter 1. Overview of Web services 13

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In general, a SOAP message is a (possibly empty) set of headers plus one body.
The SOAP envelope also defines the namespace for structuring messages. The
entire SOAP message (headers and body) is wrapped in this envelope.

Headers
Headers are a generic and flexible mechanism for extending a SOAP message
in a decentralized and modular way without prior agreement between the parties
involved. They allow control information to pass to the receiving SOAP server
and also provide extensibility for message structures.

Headers are optional elements in the envelope. If present, the Header element
must be the first immediate child element of a SOAP Envelope element. All
immediate child elements of the Header element are called header entries.

There is a predefined header attribute called SOAP-ENV:mustUnderstand. The
value of the mustUnderstand attribute is either 1 or 0. The absence of the SOAP
mustUnderstand attribute is semantically equivalent to the value 0.

If the mustUnderstand attribute is present in a header entry and set to 1, the
service provider must implement the semantics defined by the element:

<Header>
<thens:TranID mustUnderstand=”1”>ABCD</thens:TranID>

</Header>

In the example, the header entry specifies that a service invocation must fail if
the service provider does not support the ability to process the TranID header.

A SOAP intermediary is an application that is capable of both receiving and
forwarding SOAP messages on their way to the final destination. In realistic
situations, not all parts of a SOAP message may be intended for the ultimate
destination of the SOAP message, but, instead, may be intended for one or more
of the intermediaries on the message path. Therefore, a second predefined
header attribute, SOAP-ENV:actor, is used to identify the recipient of the header
information. In SOAP 1.2 the actor attribute is renamed SOAP-ENV:role. The
value of the SOAP actor attribute is the URI of the mediator, which is also the
final destination of the particular header element (the mediator does not forward
the header).

If the actor is omitted or set to the predefined default value, the header is for the
actual recipient and the actual recipient is also the final destination of the
message (body). The predefine value is:

http://schemas.xmlsoap.org/soap/actor/next

14 Implementing CICS Web Services

If a node on the message path does not recognize a mustUnderstand header and
the node plays the role specified by the actor attribute, the node must generate a
SOAP MustUnderstand fault. Whether the fault is sent back to the sender
depends on the message exchange pattern in use. For request/response, the
WS-I BP 1.0 requires the fault to be sent back to the sender. Also, according to
WS-I BP 1.0, the receiver node must discontinue normal processing of the SOAP
message after generating the fault message.

Headers can carry authentication data, digital signatures, encryption information,
and transactional settings. They can also carry client-specific or project-specific
controls and extensions to the protocol; the definition of headers is not just up to
standards bodies.

Body
The SOAP Body element provides a mechanism for exchanging information
intended for the ultimate recipient of the message. The Body element is encoded
as an immediate child element of the SOAP Envelope element. If a Header
element is present, then the Body element must immediately follow the Header
element. Otherwise it must be the first immediate child element of the Envelope
element.

All immediate child elements of the Body element are called body entries, and
each body entry is encoded as an independent element within the SOAP Body
element. In the most simple case, the body of a basic SOAP message consists of
an XML message as defined by the schema in the types section of the WSDL
document. It is legal to have any valid XML as the body of the SOAP message,
but WS-I conformance requires that the elements be namespace qualified.

Note: The header must not include service instructions (that would be used by
the service implementation).

 Chapter 1. Overview of Web services 15

Error handling
One area where there are significant differences between the SOAP 1.1 and 1.2
specifications is in the handling of errors. Here we focus on the SOAP 1.1
specification for error handling.

SOAP itself predefines one body element, which is the fault element used for
reporting errors. If present, the fault element must appear as a body entry and
must not appear more than once. The children of the fault element are defined
as follows:

� faultcode is a code that indicates the type of the fault. SOAP defines a small
set of SOAP fault codes covering basic SOAP faults:

– soapenv:Client, indicating that the client sent an incorrectly formatted
message

– soapenv:Server, for delivery problems

– soapenv:VersionMismatch, which can report any invalid namespaces
specified on the Envelope element

– soapenv:MustUnderstand, for errors regarding the processing of header
content

� faultstring is a human-readable description of the fault. It must be present
in a fault element.

� faultactor is an optional field that indicates the URI of the source of the fault.
The value of the faultactor attribute is a URI identifying the source that
caused the error. Applications that do not act as the ultimate destination of
the SOAP message must include the faultactor element in a SOAP fault
element.

� detail is an application-specific field that contains detailed information about
the fault. It must not be used to carry information about errors belonging to
header entries. Therefore, the absence of the detail element in the fault
element indicates that the fault is not related to the processing of the body
element (the actual message).

For example, a soapenv:Server fault message is returned if the service
implementation throws a SOAP Exception. The exception text is transmitted in the
faultstring field.

Although SOAP 1.1 permits the use of custom-defined faultcodes, the WS-I
Basic Profile only permits the use of the four codes defined in SOAP 1.1.

16 Implementing CICS Web Services

1.4.2 Communication styles

SOAP supports two different communication styles:

Document Also known as message-oriented style: This is a very flexible
communication style that provides the best interoperability. The
message body is any legal XML as defined in the types section
of the WSDL document.

RPC The remote procedure call is a synchronous invocation of an
operation which returns a result; it is conceptually similar to other
RPCs.

1.4.3 Encodings

In distributed computing environments, encodings define how data values
defined in the application can be translated to and from a protocol format. We
refer to these translation steps as serialization and deserialization, or,
synonymously, marshalling and unmarshalling.

When implementing a Web service, we have to choose one of the tools and
programming or scripting languages that support the Web services model.
However, the protocol format for Web services is XML, which is independent of
the programming language. Thus, SOAP encodings tell the SOAP runtime
environment how to translate from data structures constructed in a specific
programming language into SOAP XML and vice versa.

The following encodings are defined:

SOAP encoding The SOAP encoding enables marshalling/unmarshalling of
values of data types from the SOAP data model. This
encoding is defined in the SOAP 1.1 standard.

Literal The literal encoding is a simple XML message that does not
carry encoding information. Usually, an XML Schema
describes the format and data types of the XML message.

1.4.4 Messaging modes

The two styles (RPC and document) and the two common encodings (SOAP
encoding and literal) can be freely intermixed to produce what is called a SOAP
messaging mode. Although SOAP supports four modes, only three of the four

 Chapter 1. Overview of Web services 17

modes are generally used, and further, only two are preferred by the WS-I Basic
Profile.

� Document/literal—Provides the best interoperability between language
environments. The WS-I Basic Profile states that all Web service interactions
should use the Document/literal mode.

� RPC/literal—Possible choice between certain implementations. Although
RPC/literal is WS-I compliant, it is not frequently used in practice. There are a
number of usability issues associated with RPC/literal.

� RPC/encoded—Early Java implementations supported this combination, but
it does not provide interoperability with other implementations and is not
recommended

� Document/encoded—Not used in practice.

You can find the SOAP 1.1 specification at the following URL:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

The SOAP 1.2 specification is at the following URL:

http://www.w3.org/TR/SOAP12

1.5 WSDL

This section introduces Web Services Description Language (WSDL) 1.1. WSDL
uses XML to specify the characteristics of a Web service: what the Web service
can do, where it resides, and how it is invoked. WSDL can be extended to allow
descriptions of different bindings, regardless of what message formats or
network protocols are used to communicate.

WSDL enables a service provider to specify the following characteristics of a
Web service:

� Name of the Web service and addressing information

� Protocol and encoding style to be used when accessing the public operations
of the Web service

� Type information: Operations, parameters, and data types comprising the
interface of the Web service, plus a name for this interface

18 Implementing CICS Web Services

http://www.w3.org/2000/xp/Group/
http://www.w3.org/TR/SOAP12

1.5.1 WSDL Document

A WSDL document contains the following main elements:

Types A container for data type definitions using some type system,
usually XML Schema.

Message An abstract, typed definition of the data being communicated. A
message can have one or more typed parts.

Port type An abstract set of one or more operations supported by one or
more ports.

Operation An abstract description of an action supported by the service that
defines the input and output message and optional fault
message.

Binding A concrete protocol and data format specification for a particular
port type. The binding information contains the protocol name,
the invocation style, a service ID, and the encoding for each
operation.

Port A single endpoint, which is defined as an aggregation of a
binding and a network address.

Service A collection of related ports.

Note that WSDL does not introduce a new type definition language. WSDL
recognizes the need for rich type systems for describing message formats and
supports the XML Schema Definition (XSD) specification.

WSDL 1.1 introduces specific binding extensions for various protocols and
message formats. There is a WSDL SOAP binding, which is capable of
describing SOAP over HTTP. It is worth noting that WSDL does not define any
mappings to a programming language; rather, the bindings deal with transport
protocols. This is a major difference from interface description languages, such
as the CORBA Interface Definition Language (IDL), which has language
bindings.

You can find the WSDL 1.1 specification at the following URL:

http://www.w3.org/TR/wsdl

1.5.2 WSDL document anatomy

Figure 1-3 on page 21 shows the elements comprising a WSDL document and
the various relationships between them.

 Chapter 1. Overview of Web services 19

http://www.w3.org/TR/wsdl

The diagram should be interpreted in the following way:

� One WSDL document contains zero or more services. A service contains
zero or more port definitions (service endpoints), and a port definition
contains a specific protocol extension.

� The same WSDL document contains zero or more bindings. A binding is
referenced by zero or more ports. The binding contains one protocol
extension, where the style and transport are defined, and zero or more
operations bindings. Each of these operation bindings is composed of one
protocol extension, where the action and style are defined, and one to three
messages bindings, where the encoding is defined.

� The same WSDL document contains zero or more port types. A port type is
referenced by zero or more bindings. This port type contains zero or more
operations, which are referenced by zero or more operations bindings.

� The same WSDL document contains zero or more messages. An operation
usually points to an input and an output message, and optionally to some
faults. A message is composed of zero or more parts.

� The same WSDL document contains zero or more types. A type can be
referenced by zero or more parts.

� The same WSDL document points to zero or more XML Schemas. An XML
Schema contains zero or more XSD types that define the different data types.

20 Implementing CICS Web Services

Figure 1-3 WSDL elements and relationships

Example
We now give an example of a simple, complete, and valid WSDL file. As this
example shows, even a simple WSDL document contains quite a few elements
with various relationships to each other. Example 1-1 contains the WSDL file
example. This example is analyzed in detail later in this section.

Example 1-1 Complete WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:resns="http://www.exampleApp.dispatchOrder.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.exampleApp.dispatchOrder.com"
targetNamespace="http://www.exampleApp.dispatchOrder.com">

 <types>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Request.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"

type

binding

service
port

Input

Output

portType

message

definition

operation

abstract
service
interface
definition

how the
service is
implemented

location of
service

 Chapter 1. Overview of Web services 21

elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com">

 <xsd:element name="dispatchOrderRequest" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="itemReferenceNumber" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="quantityRequired" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Response.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Response.com">

 <xsd:element name="dispatchOrderResponse" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="confirmation" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>
 <message name="dispatchOrderResponse">
 <part element="resns:dispatchOrderResponse" name="ResponsePart"/>

22 Implementing CICS Web Services

 </message>
 <message name="dispatchOrderRequest">
 <part element="reqns:dispatchOrderRequest" name="RequestPart"/>
 </message>
 <portType name="dispatchOrderPort">
 <operation name="dispatchOrder">
 <input message="tns:dispatchOrderRequest" name="DFH0XODSRequest"/>
 <output message="tns:dispatchOrderResponse" name="DFH0XODSResponse"/>
 </operation>
 </portType>
 <binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="dispatchOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="DFH0XODSRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="DFH0XODSResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="dispatchOrderService">
 <port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">
 <soap:address

location="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>
 </port>
 </service>
</definitions>

Namespaces
WSDL uses the XML namespaces listed in Table 1-2.

Table 1-2 WSDL namespaces

Namespace URI Explanation

http://schemas.xmlsoap.org/wsdl/ Namespace for WSDL framework.

http://schemas.xmlsoap.org/wsdl/soap/ SOAP binding.

http://schemas.xmlsoap.org/wsdl/http/ HTTP binding.

http://www.w3.org/2000/10/
XMLSchema

Schema namespace as defined by XSD.

 Chapter 1. Overview of Web services 23

The first three namespaces are defined by the WSDL specification itself; the next
definition references a namespace that is defined in the SOAP and XSD
standards. The last one is local to each specification.

1.5.3 WSDL definition

The WSDL definition contains types, messages, operations, port types, bindings,
ports, and services.

Also, WSDL provides an optional element called wsdl:document as a container
for human-readable documentation.

Types
The types element encloses data type definitions used by the exchanged
messages. WSDL uses XML Schema Definition (XSD) as its canonical and
built-in type system:

<definitions >
<types>

<xsd:schema /> (0 or more)
</types>

</definitions>

The XSD type system can be used to define the types in a message regardless
of whether or not the resulting wire format is XML. In our example we have two
schema sections; one defines the message format for the input and the other
defines the message format for the output.

In our example, the types definition, shown in Example 1-2, is where we specify
that there is a complex type called dispatchOrderRequest, which is composed of
two elements: a itemReferenceNumber and a quantityRequired.

Example 1-2 Types definition of our WSDL example for the input

<types>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Request.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"

(URL to WSDL file) The this namespace (tns) prefix is used as
a convention to refer to the current
document. Do not confuse it with the XSD
target namespace, which is a different
concept.

Namespace URI Explanation

24 Implementing CICS Web Services

elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com">

 <xsd:element name="dispatchOrderRequest" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="itemReferenceNumber" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="quantityRequired" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
.
.
</types>

Messages
A message represents one interaction between a service requester and a service
provider. If an operation is bidirectional at least two message definitions are used
in order to specify the transmissions to and from the service provider. A message
consists of one or more logical parts.

<definitions >
<message name="nmtoken"> (0 or more)

<part name="nmtoken" element="qname"(0 or 1) type="qname" (0
or 1)/>

(0 or more)
</message>

</definitions>

The abstract message definitions are used by the operation element. Multiple
operations can refer to the same message definition.

 Chapter 1. Overview of Web services 25

Operations and messages are modeled separately in order to support flexibility
and simplify reuse of existing definitions. For example, two operations with the
same parameters can share one abstract message definition.

In our example, the messages definition, shown in Example 1-3, is where we
specify the different parts that compose each message. The request message
dispatchOrderRequest is composed of an element dispatchOrderRequest as
defined in the schema in the parts section. The response message
dispatchOrderResponse is similarly defined by the element
dispatchOrderResponse in the schema. There is no requirement for the names of
the message and the schema-defined element to match; in our example we did
this merely for convenience.

Example 1-3 Message definition in our WSDL document

<message name="dispatchOrderResponse">
<part element="resns:dispatchOrderResponse" name="ResponsePart"/>

</message>
<message name="dispatchOrderRequest">

<part element="reqns:dispatchOrderRequest" name="RequestPart"/>
</message>

Port types
A port type is a named set of abstract operations and the abstract messages
involved:

<definitions >
<portType name="nmtoken">

<operation name="nmtoken" /> (0 or more)
</portType>

</definitions>

WSDL defines four types of operations that a port can support:

One-way The port receives a message. There is an input message
only.

Request-response The port receives a message and sends a correlated
message. There is an input message followed by an
output message.

Solicit-response The port sends a message and receives a correlated
message. There is an output message followed by an
input message.

Notification The port sends a message. There is an output message
only. This type of operation could be used in a
publish/subscribe scenario.

26 Implementing CICS Web Services

Each of these operation types can be supported with variations of the following
syntax. Presence and order of the input, output, and fault messages
determine the type of message:

<definitions >
<portType > (0 or more)

<operation name="nmtoken" parameterOrder="nmtokens">
<input name="nmtoken"(0 or 1) message="qname"/> (0 or 1)
<output name="nmtoken"(0 or 1) message="qname"/> (0 or 1)
<fault name="nmtoken" message="qname"/> (0 or more)

</operation>
</portType >

</definitions>

Note that a request-response operation is an abstract notion. A particular binding
must be consulted to determine how the messages are actually sent:

� Within a single transport-level operation, such as an HTTP request/response
message pair, which is the preferred option

� As two independent transport-level operations, which can be required if the
transport protocol only supports one-way communication

In our example, the portType and operation definitions, shown in Example 1-4,
are where we specify the port type, called dispatchOrderPort, and a set of
operations. In this case, there is only one operation, called dispatchOrder.

We also specify the interface that the Web service provides to its possible
clients, with the input message DFH0XODSRequest and the output message
DFH0XODSResponse. Since the input element appears before the output element
in the operation element, our example shows a request-response type of
operation.

Example 1-4 Port type and operation definitions in our WSDL document example

<portType name="dispatchOrderPort">
<operation name="dispatchOrder">

<input message="tns:dispatchOrderRequest" name="DFH0XODSRequest"/>
<output message="tns:dispatchOrderResponse" name="DFH0XODSResponse"/>

</operation>
</portType>

Bindings
A binding contains:

� Protocol-specific general binding data, such as the underlying transport
protocol and the communication style for SOAP.

 Chapter 1. Overview of Web services 27

� Protocol extensions for operations and their messages.

Each binding references one port type; one port type can be used in multiple
bindings. All operations defined within the port type must be bound in the
binding. The pseudo XSD for the binding looks like this:

<definitions >
<binding name="nmtoken" type="qname"> (0 or more)

<-- extensibility element (1) --> (0 or more)
<operation name="nmtoken"> (0 or more)

<-- extensibility element (2) --> (0 or more)
<input name="nmtoken"(0 or 1) > (0 or 1)

<-- extensibility element (3) -->
</input>
<output name="nmtoken"(0 or 1) > (0 or 1)

<-- extensibility element (4) --> (0 or more)
</output>
<fault name="nmtoken"> (0 or more)

<-- extensibility element (5) --> (0 or more)
</fault>

</operation>
</binding>

</definitions>

As we have already seen, a port references a binding. The port and binding are
modeled as separate entities in order to support flexibility and location
transparency. Two ports that merely differ in their network address can share the
same protocol binding.

The extensibility elements <-- extensibility element (x) --> use XML
namespaces in order to incorporate protocol-specific information into the
language- and protocol-independent WSDL specification.

In our example, the binding definition, shown in Example 1-5, is where we specify
our binding name, dispatchOrderSoapBinding. The connection must be SOAP
HTTP, and the style must be document. We provide a reference to our operation,
dispatchOrder, and we define the input message DFH0XODSRequest and the
output message DFH0XODSResponse, both to be SOAP literal.

Example 1-5 Binding definition in our WSDL document example

<binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
<soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="dispatchOrder">
<soap:operation soapAction="" style="document"/>
<input name="DFH0XODSRequest">

28 Implementing CICS Web Services

<soap:body parts="RequestPart" use="literal"/>
</input>
<output name="DFH0XODSResponse">

<soap:body parts="ResponsePart" use="literal"/>
</output>

 </operation>
</binding>

Service definition
A service definition merely bundles a set of ports together under a name, as the
following pseudo XSD definition of the service element shows.

<definitions >
<service name="nmtoken"> (0 or more)

<port /> (0 or more)
</service>

</definitions>

Multiple service definitions can appear in a single WSDL document.

Port definition
A port definition describes an individual endpoint by specifying a single address
for a binding:

<definitions >
<service > (0 or more)

<port name="nmtoken" binding="qname"> (0 or more)
<-- extensibility element (1) -->
</port>

</service>
</definitions>

The binding attribute is of type QName, which is a qualified name (equivalent to the
one used in SOAP). It refers to a binding. A port contains exactly one network
address; all other protocol-specific information is contained in the binding.

Any port in the implementation part must reference exactly one binding in the
interface part.

The <-- extensibility element (1) --> is a placeholder for additional XML
elements that can hold protocol-specific information. This mechanism is required
because WSDL is designed to support multiple runtime protocols.

In our example, the service and port definition, shown in Example 1-6, is where
we specify our service, called dispatchOrderService, which contains a collection

 Chapter 1. Overview of Web services 29

of our ports. In this case, there is only one that uses the
dispatchOrderSoapBinding and is called dispatchOrderPort. In this port, we
specify our connection point as, for example,
http://myserver:54321/exampleApp/services/dispatchOrderPort.

Example 1-6 Service and port definition in our WSDL document example

<service name="dispatchOrderService">
<port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">

<soap:address
location="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>

</port>
</service>

1.5.4 WSDL bindings

We now investigate the WSDL extensibility elements supporting the SOAP
transport binding.

SOAP binding
WSDL includes a binding for SOAP 1.1 endpoints, which supports the
specification of the following protocol-specific information:

� An indication that a binding is bound to the SOAP 1.1 protocol

� A way of specifying an address for a SOAP endpoint

� The URI for the SOAPAction HTTP header for the HTTP binding of SOAP

� A list of definitions for headers that are transmitted as part of the SOAP
envelope

Table 1-3 lists the corresponding extension elements.

Table 1-3 SOAP extensibility elements in WSDL

Extension and attributes Explanation

<soap:binding ...> Binding level; specifies defaults for all operations.

 transport="uri"
(0 or 1)

Binding level; transport is the runtime transport
protocol used by SOAP (HTTP, SMTP, and so on).

style="rpc|document"
(0 or 1)

The style is one of the two SOAP communication
styles, rpc or document.

<soap:operation ... > Extends operation definition.

30 Implementing CICS Web Services

1.6 Summary

We began by discussing service-oriented architectures and how Web services
relate to SOAs. We continued by giving an overview of the major technologies
that make Web services possible: XML, SOAP, WSDL, and UDDI. We looked in
detail at SOAP, which provides an XML text-based, platform- and
language-neutral message format. Finally, we explained how WSDL defines the
application data to be conveyed in the SOAP message as well as the information

soapAction="uri"
(0 or 1)

URN.

style="rpc|document"
(0 or 1)

See binding level.

<soap:body ... > Extends operation definition; specifies how
message parts appear inside the SOAP body.

parts="nmtokens" Optional; allows externalizing message parts.

use="encoded|literal" literal: messages reference concrete XSD (no
WSDL type);
encoded: messages reference abstract WSDL type
elements;
encodingStyle extension used.

encodingStyle=
"uri-list"(0 or 1)

List of supported message encoding styles.

namespace="uri"
(0 or 1)

URN of the service.

<soap:fault ... > Extends operation definition; contents of fault
details element.

name="nmtoken" Relates soap:fault to wsdl:fault for operation.

use, encodingStyle,
namespace

See soap:body.

<soap:address ... > Extends port definition.

location="uri" Network address of RPC router.

<soap:header ... > Operation level; shaped after <soap:body ...>.

<soap:headerfault ... > Operation level; shaped after <soap:body ...>.

Extension and attributes Explanation

 Chapter 1. Overview of Web services 31

required to access the service, such as the transport protocol used and the
location of the service.

32 Implementing CICS Web Services

Chapter 2. CICS support for Web
services

In chapter 1 we introduced several Web services technologies. In this chapter we
explain how to use Web services in CICS TS V3.1.

First, we provide an overview of the different Web services functions provided by
CICS TS V3.1. We then look at how to prepare for running a CICS application as
a service provider and at what processing occurs when a service request arrives
in CICS. Similarly, we consider how to configure CICS as a service requester
and how CICS processes an outbound request from a service requester
application.

We also describe the new CICS resource definitions that are required to support
Web services, URIMAP, PIPELINE, WEBSERVICE, and TCPIPSERVICE. And
we explain how you can control the processing of a Web service request using
message handler and SOAP header processing programs.

2

© Copyright IBM Corp. 2007. All rights reserved. 33

2.1 Overview

What the World Wide Web did for interactions between programs and end users,
Web services can do for program-to-program interactions. CICS support for Web
services makes it possible for CICS applications to be integrated more rapidly,
easily, and cheaply than ever before.

Application programs running in CICS TS V3.1 can participate in a
heterogeneous Web services environment as service requesters, service
providers, or both, using either an HTTP transport or a WebSphere MQ
transport.

CICS TS V3.1 provides the following new functions:

� It includes a new Web services assistant utility.

The Web services assistant utility contains two programs, DFHWS2LS and
DFHLS2WS. DFHWS2LS helps you map an existing WSDL document into a
high-level programming language data structure, while DFHLS2WS creates a
new WSDL document from an existing language structure. The Web services
assistant supports the following programming languages:

– COBOL
– PL/I
– C
– C++

� It supports two different approaches to deploying your CICS applications in a
Web services environment.

– You can use the Web services assistant.

The Web services assistant helps you deploy an application with the least
amount of programming effort. For example, if you want to expose an
existing application as a Web service, you can start with a high-level
language data structure, and use DFHLS2WS to generate the Web
services description. Alternatively, if you want to communicate with an
existing Web service, you can start with its Web service description and
use DFHWS2LS to generate a high-level language structure that you can
use in your program.

Both DFHLS2WS and DFHWS2LS also generate a file called the wsbind
file. When your application runs, CICS uses the wsbind file to transform
your application data into a SOAP message on output and to transform the
SOAP message to application data on input.

– You can take complete control of the processing of your data.

You can write your own code to map between your application data and
the message that flows between the service requester and provider. For

34 Implementing CICS Web Services

example, if you want to use non-SOAP messages within the Web service
infrastructure, you can write your own code to transform between the
message format and the format used by your application.

� It reads a pipeline configuration file created by the CICS system programmer
to determine which message handlers should be invoked in a pipeline.

A message handler is a program in which you can perform your own
processing of Web service requests and responses. A pipeline is a set of
message handlers that are executed in sequence.

A pipeline can be configured as a service requester pipeline or a service
provider pipeline, but not both.

You can write your own message handlers to perform processing on request
and response messages.

� It supplies message handlers designed especially to help you process SOAP
messages.

CICS provides special SOAP message handler programs that can help you to
configure your pipeline as a SOAP node.

– A service requester pipeline is the initial SOAP sender for the request, and
the ultimate SOAP receiver for the response.

– A service provider pipeline is the ultimate SOAP receiver for the request,
and the initial SOAP sender for the response.

The CICS-provided SOAP message handlers can be configured to invoke
one or more user-written SOAP header processing programs and to enforce
the presence of particular headers in the SOAP message.

� It allows you to configure many different pipelines.

You can configure a pipeline to support SOAP 1.1 or SOAP 1.2. Within your
CICS system, you can have some pipelines that support SOAP 1.1 and
others that support SOAP 1.2.

� It provides the following new resource definitions to help you configure
support for Web services:

– PIPELINE

– URIMAP

– WEBSERVICE

Restriction: You cannot configure a CICS pipeline to function as an
intermediary node in a SOAP message path.

 Chapter 2. CICS support for Web services 35

� It provides the following new EXEC CICS application programming interface
(API) commands:

– SOAPFAULT ADD | CREATE | DELETE

– INQUIRE WEBSERVICE

– INVOKE WEBSERVICE

� It conforms to open standards including:

– SOAP 1.1 and 1.2

– HTTP 1.1

– WSDL 1.1

� It ensures maximum interoperability with other Web services implementations
by conforming with the Web Services Interoperability Organization (WS-I)
Basic Profile 1.0.

� It supports the WS-Atomic Transaction specification.

Note: CICS TS V3.1 includes some specific enhancements that are related to
Web services implementation using HTTP. In particular, Web Support in CICS
TS V3.1 contains the following improvements:

� HTTP

– Concurrent session limit raised from 900 (in CICS TS V2.3) to 65000
per region.

– There is no affinity to long running CWXN transactions.

� HTTPS

– Concurrent session limit raised from 250 (in CICS TS V2.3) to 65000
per region.

– No affinity to SSL TCB for duration of connection.

– SSL TCB per connection now not required.

– No affinity to long running CWXN transaction.

– Easy choice over Cipher suites specified on TCPIPSERVICE definition.

– Sysplex-wide cache for SSL session ID.

Customers using the Web interface can now exploit persistent sessions for
large networks, as opposed to having to make and break connections with
every request. These customers will make CPU savings. Customers who had
small networks and were already able to exploit persistent connections will
see up to about 4% increase on average size applications. They will however
benefit from a much greater number of concurrent sessions per region.

36 Implementing CICS Web Services

2.2 CICS as a service provider

When CICS is a service provider, it receives a service request, which is passed
through a pipeline to a target application program. The response from the
application is returned to the service requester through the same pipeline. In this
section we first discuss how to prepare for running a CICS application as a
service provider. Then we discuss how CICS processes the incoming service
request.

An existing COMMAREA-based application can be exposed as a service
provider, normally without any application changes. Figure 2-1 shows CICS as a
service provider.

Figure 2-1 CICS as a service provider

When CICS is in the role of service provider, it must perform the following
operations:

1. Receive the request from the service requester.

2. Examine the request, and extract the contents that are relevant to the target
application program.

3. Invoke the application program, passing data extracted from the request.

4. Construct a response (when the application program returns control) using
data returned by the application program.

5. Send a response to the service requester.

Note: This book deals with the implementation of CICS Web services created
from COMMAREA-based applications in which there is separation of business
logic and presentation logic.

CICS TS V3.1

Service

requester
CICS

application program

CICS Web

services
<XML SOAP

message>

COMMAREA

or CONTAINER

 Chapter 2. CICS support for Web services 37

2.2.1 Preparing to run a CICS application as a service provider

Suppose that you have an existing CICS application that you wish to expose as a
Web service which uses the HTTP transport. Suppose also that you wish to use
the Web services assistant rather than taking control of the processing
yourselves. You would perform the following steps:

1. Generate the wsbind and WSDL files.

a. Create an HFS directory in which to store the generated files. For
example, you might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceProvider.

b. Run the DFHLS2WS program. The input you provide to the program
includes the following:

• The names of the partitioned data set members that contain the
high-level language structures the application program uses to
describe the Web service request and the Web service response

• The fully qualified HFS names of the wsbind file and the file into which
the Web service description is to be written (the WSDL file)

• The relative URI that a client will use to access the Web service

• How CICS should pass data to the target application program
(COMMAREA or container)

2. Create a TCPIPSERVICE resource definition.

The resource definition should specify PROTOCOL(HTTP) and supply
information about the port on which inbound requests are received.

3. Create a PIPELINE resource definition.

a. Create a service provider pipeline configuration file.

A pipeline configuration file is an XML file that describes, among other
things, the message handler programs and the SOAP header processing
programs that CICS invokes when it processes the pipeline.

b. Create an HFS directory in which to store installable wsbind and WSDL
files.

Note: Typically, an application developer would perform this step.

Note: Typically, a systems programmer would perform this step and the
subsequent steps.

38 Implementing CICS Web Services

We call this directory the “pickup” directory since CICS will pick up the
wsbind and WSDL files from this directory and store them on a “shelf”
directory.

c. Create an HFS directory for CICS to store installed wsbind files in.

We call this directory the “shelf” directory.

d. Create a PIPELINE resource definition to handle the Web service request.

• Specify the CONFIGFILE attribute to point to the file created in step 3a.

• Specify the WSDIR attribute to point to the directory created in step 3b.

• Specify the SHELF attribute to point to the directory created in step 3c.

e. Copy the wsbind and WSDL files created in step 1 to the pickup directory
created in step 3b.

4. Install the TCPIPSERVICE and PIPELINE resource definitions.

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for wsbind files. When CICS finds the wsbind file
created in step 1, CICS dynamically creates and installs a WEBSERVICE
resource definition for it. CICS derives the name of the WEBSERVICE
definition from the name of the wsbind file. The WEBSERVICE definition
identifies the name of the associated PIPELINE definition and points to the
location of the wsbind file in the HFS.

During the installation of the WEBSERVICE resource:

– CICS dynamically creates and installs a URIMAP resource definition.
CICS bases the definition on the URI specified in the input to DFHLS2WS
in step 1 and stored by DFHLS2WS in the wsbind file.

– CICS uses the wsbind file to create main storage control blocks to map the
inbound service request (XML) to a COMMAREA or a container and to
map to XML the outbound COMMAREA or container that contains the
response data.

Note: As an alternative to using the PIPELINE scanning mechanism to install
URIMAP resources, you can create and install them using Resource
Definition Online (RDO).

5. Publish the WSDL files to the service requester clients.

a. Customize the location attribute on the <address> element in the WSDL
file so that its value specifies the TCP/IP server name of the machine
hosting the service and the port number defined in the TCPIPSERVICE
defined in step 2.

b. Publish the WSDL to any parties wishing to create clients to this Web
service.

 Chapter 2. CICS support for Web services 39

2.2.2 Processing the inbound service request

Figure 2-2 shows the processing that occurs when a service requester sends a
SOAP message over HTTP to a service provider application running in a CICS
TS V3.1 region.

Figure 2-2 Web service run-time service provider processing

The CICS-supplied sockets listener transaction (CSOL) monitors the port
specified in the TCPIPSERVICE resource definition for incoming HTTP requests.
When the SOAP message arrives, CSOL attaches the transaction specified in
the TRANSACTION attribute of the TCPIPSERVICE definition; normally, this will
be the CICS-supplied Web attach transaction CWXN.

CWXN finds the URI in the HTTP request and then scans the URIMAP resource
definitions for a URIMAP that has its USAGE attribute set to PIPELINE and its
PATH attribute set to the URI found in the HTTP request. If CWXN finds such a
URIMAP, it uses the PIPELINE and WEBSERVICE attributes of the URIMAP
definition to get the name of the PIPELINE and WEBSERVICE definitions, which
it will use to process the incoming request. CWXN also uses the TRANSACTION

ServiceService
ReguesterReguester

pipeline
config

WSBind

WSDL

HFS

SOAP
message

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers

TCPIPSERVICE

CSOL

CWXN

URIMAP

PIPELINE

WEBSERVICE

URIMAP matching

dynamic
install

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers

40 Implementing CICS Web Services

attribute of the URIMAP definition to determine the name of the transaction that it
should attach to process the pipeline; normally, this will be the CPIH transaction.

CPIH starts the pipeline processing. It uses the PIPELINE definition to find the
name of the pipeline configuration file. CPIH uses the pipeline configuration file
to determine which message handler programs and SOAP header processing
programs to invoke.

A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from the inbound request and passes the
SOAP body to the data mapper function.

CICS uses the DFHWS-WEBSERVICE container to pass the name of the
required WEBSERVICE definition to the data mapper. The data mapper uses the
WEBSERVICE definition to locate the main storage control blocks that it needs
to map the inbound service request (XML) to a COMMAREA or a container.

The data mapper links to the target service provider application program,
providing it with input in the format that it expects. The application program is not
aware that it is being executed as a Web service. The program performs its
normal processing and then returns an output COMMAREA or container to the
data mapper.

The output data from the CICS application program cannot just be sent back to
the pipeline code. The data mapper must first convert the output from the
COMMAREA or container format into a SOAP body.

2.3 CICS as a service requester

When CICS is a service requester, an application program sends a request,
which is passed through a pipeline to a target service provider. The response
from the service provider is returned to the application program through the same
pipeline. In this section we discuss how to prepare for running a CICS application
as a service requester. Then we discuss how CICS processes the outbound
service request.

Figure 2-3 on page 42 shows CICS as a service requester.

 Chapter 2. CICS support for Web services 41

Figure 2-3 CICS as a service requester

When CICS is in the role of service requester, it must perform the following
operations:

1. Build a request using data provided by the application program.

2. Send the request to the service provider.

3. Receive a response from the service provider.

4. Examine the response, and extract the contents that are relevant to the
original application program.

5. Return control to the application program.

2.3.1 Preparing to run a CICS application as a service requester

Suppose you wish to write a new CICS application that will invoke a Web service.
Suppose also that you wish to use the Web services assistant rather than taking
control of the processing yourselves. You would perform the following steps:

1. Generate the wsbind file and the language structures.

a. Create an HFS directory in which to store the wsbind file. For example,
you might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceRequester

b. Run the DFHWS2LS program. The input you provide to the program
includes the following:

• The fully qualified HFS name of the WSDL file that describes the Web
service you want to request.

Note: Local optimization is possible when a CICS service requester invokes a
CICS service provider application (see “Local optimization” on page 45).

Service

provider
<XML SOAP

message>

CICS TS V3.1

CICS

application program

CICS Web

servicesCOMMAREA

or CONTAINER

42 Implementing CICS Web Services

• The names of the partitioned data set members into which DFHWS2LS
should put the high-level language structures it generates. The
application program uses the language structures to describe the Web
service request and the Web service response.

2. Create a PIPELINE resource definition.

a. Create a service requester pipeline configuration file.

The pipeline configuration file describes the message handler programs
and the SOAP header processing programs that CICS will invoke when it
processes the pipeline.

b. Create an HFS directory in which to store installable wsbind files.

CICS will pick up the wsbind file from this directory and store it on a “shelf”
directory.

c. Create the shelf directory for CICS to store installed wsbind files in.

d. Create a PIPELINE resource definition to handle the Web service request:

• Specify the CONFIGFILE attribute to point to the file created in step 2a.

• Specify the WSDIR attribute to point to the directory created in step 2b.

• Specify the SHELF attribute to point to the directory created in step 2c.

e. Copy the wsbind file created in step 1to the pickup directory created in
step 2b.

3. Install the PIPELINE resource definition.

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for wsbind files. When CICS finds the wsbind file
created in step 1, CICS dynamically creates and installs a WEBSERVICE
resource definition for it. CICS derives the name of the WEBSERVICE
definition from the name of the wsbind file. The WEBSERVICE definition
identifies the name of the associated PIPELINE definition and points to the
location of the wsbind file in the HFS.

During the installation of the WEBSERVICE resource, CICS uses the wsbind
file to create main storage control blocks to map the outbound service request
to an XML document and to map the inbound XML response document to a
language structure.

Note: Typically, an application developer would perform this step.

Note: Typically, a systems programmer would perform this step.

 Chapter 2. CICS support for Web services 43

Note: As an alternative to using the PIPELINE scanning mechanism to install
URIMAP resources, you can create and install them using Resource
Definition Online (RDO).

4. Use the language structure generated in step 1 to write the application
program.

a. The application issues the following command to place the outbound data
into container DFHWS-DATA:

EXEC CICS PUT CONTAINER(DFHWS-DATA) CHANNEL(name_of_channel)
FROM(data_area)

b. It then issues the following command to invoke the Web service:

EXEC CICS INVOKE WEBSERVICE(name_of_WEBSERVICE_definition)
CHANNEL(name_of_channel) OPERATION(name_of_operation)

2.3.2 Processing the outbound service request

Figure 2-4 shows the processing that occurs when a service requester running in
a CICS TS V3.1 region sends a SOAP message to a service provider.

Note: Typically, a systems programmer would perform this step.

Note: Typically, an application developer would perform this step.

44 Implementing CICS Web Services

Figure 2-4 Web service run-time service requester processing

When the service requester issues the EXEC CICS INVOKE WEBSERVICE
command, CICS uses the information found in the wsbind file that is associated
with the specified WEBSERVICE definition to convert the language structure into
an XML document. CICS then invokes the message handlers specified in the
pipeline configuration file, and they convert the XML document into a SOAP
message.

CICS sends the SOAP request message to the remote service provider via either
HTTP or WebSphere MQ.

When the SOAP response message is received, CICS passes it back through
the pipeline. The message handlers extract the SOAP body from the SOAP
envelope, and the data mapping function converts the XML in the SOAP body
into a language structure, which is passed to the application program in container
DFHWS-DATA.

2.3.3 Local optimization

A special “local” optimization is possible when CICS is in the role of both service
requester and service provider. In this case, CICS avoids the overhead of

ServiceService
ProviderProvider

WSBind

WSDL

HFS

SOAP
message

CICS TS V3.1
User Transaction

Business
Logic

PIPELINE

WEBSERVICE

dynamic
install

Language
structure

CICS Web services
assistant

data mapping

Pipeline

handlers

handlers

handlers

pipeline
config

 Chapter 2. CICS support for Web services 45

converting a language structure into an XML document by simply converting the
EXEC CICS INVOKE WEBSERVICE command into an EXEC CICS LINK
command.

When an EXEC CICS INVOKE WEBSERVICE command is used to invoke a
CICS service provider application, the provider application name in the Web
service binding file associated with the WEBSERVICE resource is used to
enable the local optimization of the Web service request. If you use this
optimization, the request is optimized to an EXEC CICS LINK command
(Figure 2-5).

Figure 2-5 Invoking a CICS Web service using local optimization

The CICS service requester and service provider applications can be installed in
the same CICS region or different regions. If they are in different regions, then an
MRO or ISC connection must exist which enables the LINK request to be
shipped to the remote CICS region hosting the service provider application.

Note that this optimization has an effect on the behavior of the EXEC CICS
INVOKE WEBSERVICE command when the Web service is not expected to
send a response:

� When the optimization is not in effect, control returns from the EXEC CICS
INVOKE WEBSERVICE command as soon as the request message is sent.

� When the optimization is in effect, control returns from the EXEC CICS
INVOKE WEBSERVICE command only when the target program terminates.

When the Web service is expected to send a response, control returns from the
command when the response is available.

Important: Invoking a CICS Web service using local optimization results in a
significant performance benefit.

CICS TS V3.1

CICS

application program

CICS Web

services
<COMMAREA

or CONTAINER>

LINK

CICS TS V3.1

CICS Web

servicesCICS

application program

EXEC CICS INVOKE
WEBSERVICE

46 Implementing CICS Web Services

2.4 CICS resources for Web services

We now look in more detail at what CICS resources a systems programmer must
implement in order to enable Web services in a CICS environment. In Chapter 3,
“Web services using HTTP” on page 73 we describe the resources that we
created in order to enable Web services in our environment.

2.4.1 URIMAP

The URIMAP resource definition is used to define one of three different
Web-related facilities in CICS. It is the value of the USAGE attribute on a
URIMAP definition that determines which of the three facilities that particular
definition controls.

1. Requests from a Web client, to CICS as an HTTP server

URIMAP definitions for requests for CICS as an HTTP server have a USAGE
attribute of SERVER. These URIMAP definitions match the URLs of HTTP
requests that CICS expects to receive from a Web client, and they define how
CICS should provide a response to each request. You can use a URIMAP
definition to tell CICS to:

– Provide a static response to the HTTP request, using a document
template or z/OS UNIX® System Services HFS file

– Provide a dynamic response to the HTTP request, using an application
program that issues EXEC CICS WEB application programming interface
commands

– Redirect the request to another server, either temporarily or permanently

For CICS as an HTTP server, URIMAP definitions incorporate most of the
functions that were previously provided by the analyzer program specified on
the TCPIPSERVICE definition. An analyzer program may still be involved in
the processing path if required.

2. Requests to a server, from CICS as an HTTP client

URIMAP definitions for requests from CICS as an HTTP client have a USAGE
attribute of CLIENT. These URIMAP definitions specify URLs that are used
when a user application, acting as a Web client, makes a request through
CICS Web support to an HTTP server. Setting up a URIMAP definition for this

Restriction: You can use this optimization only if the service provider
application and the service requester application are deployed with the Web
services assistant.

 Chapter 2. CICS support for Web services 47

purpose means that you can avoid identifying the URL in your application
program.

3. Web service requests

URIMAP definitions for Web service requests have a USAGE attribute of
PIPELINE. These URIMAP definitions associate a URI for an inbound Web
service request (that is, a request by which a client invokes a Web service in
CICS) with a PIPELINE or WEBSERVICE resource that specifies the
processing to be performed.

You can use a URIMAP with a USAGE attribute of PIPELINE to specify:

– The name of the transaction that CICS uses for running the pipeline alias
transaction (the default is CPIH)

– The user ID under which the pipeline alias transaction runs

Figure 2-6 illustrates the purpose of a URIMAP resource definition for Web
service requests.

Figure 2-6 URIMAP resource relationships

You can create URIMAP resource definitions in the following ways:

� Use the CEDA transaction

pipeline
config

WSBind

WSDL

HFS

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers
URIMAP

PIPELINE

WEBSERVICE

dynamic
install

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers

48 Implementing CICS Web Services

� Use the DFHCSDUP batch utility

� Use CICSPlex® SM Business Application Services

� Use the EXEC CICS CREATE URIMAP command

When you install a PIPELINE resource, or when you issue a PERFORM
PIPELINE SCAN command (using CEMT or the CICS system programming
interface), CICS scans the directory specified in the PIPELINE’s WSDIR attribute
(the pickup directory), and creates URIMAP and WEBSERVICE resources
dynamically. For each Web service binding file in the directory, that is, for each
file with the wsbind suffix, CICS installs a WEBSERVICE and a URIMAP if one
does not already exist. Existing resources are replaced if the information in the
binding file is newer than the existing resources.

2.4.2 PIPELINE

A PIPELINE resource definition provides information about the message
handlers that will act on a service request and on the response. The information
about the message handlers is supplied indirectly; the PIPELINE definition
specifies the name of an HFS file, called the pipeline configuration file, which
contains an XML description of the message handlers and their configuration.

The most important attributes of the PIPELINE definition are as follows:

� WSDIR

The WSDIR attribute specifies the name of the Web service binding directory
(also known as the pickup directory). The Web service binding directory
contains Web service binding files that are associated with the PIPELINE,
and that are to be installed automatically by the CICS scanning mechanism.
When the PIPELINE definition is installed, CICS scans the directory and
automatically installs any Web service binding files it finds there.

If you specify a value for the WSDIR attribute, it must refer to a valid HFS
directory to which the CICS region has at least read access. If this is not the
case, any attempt to install the PIPELINE resource will fail.

If you do not specify a value for WSDIR, no automatic scan takes place on
installation of the PIPELINE, and PERFORM PIPELINE SCAN commands
will fail.

� SHELF

Note: If you allow CICS to install the URIMAP resource dynamically, you
cannot use the URIMAP definition to specify either the name of the transaction
or the user ID under which the pipeline will run.

 Chapter 2. CICS support for Web services 49

The SHELF attribute specifies the name of an HFS directory where CICS will
copy information about installed Web services. CICS regions into which the
PIPELINE definition is installed must have full permission to the shelf
directory: read, write, and the ability to create subdirectories.

A single shelf directory may be shared by multiple CICS regions and by
multiple PIPELINE definitions. Within a shelf directory, each CICS region
uses a separate subdirectory to keep its files separate from those of other
CICS regions. Within each region’s directory, each PIPELINE uses a
separate subdirectory.

After a CICS region performs a cold or initial start, it deletes its subdirectories
from the shelf before trying to use the shelf.

� CONFIGFILE

This attribute specifies the name of the PIPELINE configuration file.

Figure 2-7 illustrates the purpose of the PIPELINE resource definition.

Figure 2-7 PIPELINE resource relationships

You can create PIPELINE resource definitions in the following ways:

� Use the CEDA transaction

� Use the DFHCSDUP batch utility

pipeline
config

WSBind

WSDL

HFS

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers

PIPELINE

WEBSERVICE

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers

50 Implementing CICS Web Services

� Use CICSPlex SM Business Application Services

� Use the EXEC CICS CREATE PIPELINE command

Pipeline configuration file
When CICS processes a Web service request, it uses a pipeline of one or more
message handlers to handle the request. The configuration of a pipeline used to
handle a Web service request is specified in an XML document, known as a
pipeline configuration file. Use a suitable XML editor or text editor to work with
your pipeline configuration files. The exact configuration of the pipeline will
depend upon the specific needs of the application.

There are two kinds of pipeline configuration files: one describes the
configuration of a service provider pipeline, the other describes the configuration
of a service requester pipeline. Each is defined by its own schema, and each has
a different root element. The root element for a provider pipeline is
<provider_pipeline>, while the root element for a requester pipeline is
<requester_pipeline>.

The immediate child elements of the <provider_pipeline> element are:

� A mandatory <service> element, which specifies the message handlers that
are invoked for every request, including the terminal message handler. The
terminal message handler is the last handler in the pipeline.

� An optional <transport> element, which specifies message handlers that are
selected at run time based upon the resources that are being used for the
message transport. For example, for the HTTP transport, you can specify that
CICS should invoke the message handler only when the port on which the
request was received is defined on a specific TCPIPSERVICE definition. For
the WebSphere MQ transport, you can specify that CICS should invoke the
message handler only when the inbound message arrives at a specific
message queue.

� An optional <apphandler> element, which specifies the name of the program
that the terminal message handler will link to by default, that is, the name of
the target application program (or wrapper program) that provides the service.
Message handlers can specify a different program at run time by using the
DFHWS-APPHANDLER container, so the name coded here is not always the
program that is linked to.

Important: When you use DFHLS2WS or DFHWS2LS to deploy your
service provider, you must specify DFHPITP as the target program.
DFHPITP will get the name of your target application program (or wrapper
program) from the wsbind file.

 Chapter 2. CICS support for Web services 51

The <apphandler> element is used when the last message handler in the
pipeline (the terminal handler) is one of the CICS-supplied SOAP message
handlers.

If you do not code an <apphandler> element, one of the message handlers
must use the DFHWS-APPHANDLER container to specify the name of the
program.

� An optional <service_parameter_list> element, which contains parameters
that CICS will make available to the message handlers in the pipeline via
container DFH-SERVICEPLIST.

Example 2-1 shows the sample service provider pipeline configuration file
basicsoap11provider.xml.

Example 2-1 Configuration file for service provider

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The immediate sub-elements of a <requester_pipeline> element are:

� An optional <service> element, which specifies the message handlers that
are invoked for every request

� An optional <transport> element, which specifies message handlers that are
selected at run time, based upon the resources that are being used for the
message transport

� An optional <service_parameter_list> element, which contains parameters
that CICS will make available to the message handlers in the pipeline via
container DFH-SERVICEPLIST

Important: A pipeline can be configured to support SOAP 1.1 or SOAP 1.2.
Within your CICS system, you can have many pipelines, some of which
support SOAP 1.1 and some of which support SOAP 1.2.

52 Implementing CICS Web Services

Example 2-2 shows the sample service requester pipeline configuration file
basicsoap11requester.xml.

Example 2-2 Configuration file for service requester

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
requester.xsd ">
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler/>
 </service_handler_list>
 </service>
</requester_pipeline>

2.4.3 WEBSERVICE

Three objects define the execution environment that allows a CICS application
program to operate as a Web service provider or a Web service requester:

� The Web service description

� The Web service binding file

� The pipeline

These three objects are defined to CICS on the following attributes of the
WEBSERVICE resource definition:

� WSDLFILE

� WSBIND

� PIPELINE

The WEBSERVICE definition has a fourth attribute, VALIDATION, which
specifies whether full validation of SOAP messages against the corresponding
schema in the Web service description should be performed at run time.
VALIDATION(YES) ensures that all SOAP messages that are sent and received
are valid XML with respect to the XML schema.

Important: Validation of a SOAP message against a schema incurs
considerable processing overhead, and you should normally specify
VALIDATION(NO) in a production environment.

 Chapter 2. CICS support for Web services 53

If VALIDATION(NO) is specified, sufficient validation is performed to ensure that
the message contains well-formed XML.

Figure 2-8 on page 54 illustrates the purpose of the WEBSERVICE resource
definition.

Figure 2-8 WEBSERVICE resource relationships

You can create WEBSERVICE resource definitions in the following ways:

� Using the CEDA transaction

� Using the DFHCSDUP batch utility

� Using CICSPlex SM Business Application Services

� Using the EXEC CICS CREATE WEBSERVICE command

When you install a PIPELINE resource, or when you issue a PERFORM
PIPELINE SCAN command (using CEMT or the CICS system programming
interface), CICS scans the directory specified in the PIPELINE’s WSDIR attribute
(the pickup directory), and creates URIMAP and WEBSERVICE resources
dynamically. For each Web service binding file in the directory, that is, for each
file with the wsbind suffix, CICS installs a WEBSERVICE and a URIMAP if one
does not already exist. Existing resources are replaced if the information in the
binding file is newer than the existing resources.

pipeline
config

WSBind

WSDL

HFS

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers

WEBSERVICE

Language
structure

CICS Web services
assistant

handlers

handlers

54 Implementing CICS Web Services

The CEMT INQUIRE WEBSERVICE command is used to obtain information
about a WEBSERVICE resource definition. The data returned depends on the
type of Web service.

Web service binding file
A Web services description contains abstract representations of the input and
output messages used by the service. When a service provider or service
requester application executes, CICS needs information about how the content
of the messages maps to the data structures used by the application. This
information is held in a Web service binding file.

Web services binding files are created:

� By utility program DFHWS2LS when language structures are generated from
WSDL

� By utility program DFHLS2WS when WSDL is generated from a language
structure

At run time, CICS uses information in the Web service binding file to perform the
mapping between application data structures and SOAP messages.

2.4.4 TCPIPSERVICE

A TCPIPSERVICE definition is required in a service provider that uses the HTTP
transport, and contains information about the port on which inbound requests are
received.

You can create TCPIPSERVICE resource definitions in the following ways:

� Using the CEDA transaction

� Using the DFHCSDUP batch utility

� Using CICSPlex SM Business Application Services

� Using the EXEC CICS CREATE TCPIPSERVICE command

2.4.5 Resources checklist

The relationships between CICS Web services definitions are shown in
Figure 2-9 on page 56.

 Chapter 2. CICS support for Web services 55

Figure 2-9 CICS Web services resource interrelationships

The resources that are required to support a particular application program
depends upon the following:

� Whether the application program is a service provide or a service requester

� Whether the application is deployed with the CICS Web services assistant or
you write your own code to map between your application data and SOAP
messages

Table 2-1 is a checklist of resource definitions.

Table 2-1 Resource checklist

dynamic
install

CICS
URIMAP

USAGE(PIPELINE)
HOST
PATH

PIPELINE
WEBSERVICE

PIPELINE
CONFIGFILE

SHELF
WSDIR

WEBSERVICE
PIPELINE
WSBIND

WSDLFILE

config

WSBind

WSDL

pick-up directory

HFS

Web service assistant

COMMAREA
structure

BINDING=
URI=
PGMNAME=
PGMINT=

Service
requester or
provider

CICS Web
services
assistant used

PIPELINE
required

WEBSERVICE
required

URIMAP
required

TCPIPSERVICE
required

Provider yes yes yes (1) yes (1) (2)

no yes no yes (2)

Requester yes yes yes no no

no yes no no no

(1). When the CICS Web services assistant is used to deploy an application program, the WEBSERVICE and
URIMAP resources can be created automatically when the PIPELINE’s pickup directory is scanned. This happens
when the PIPELINE resource is installed, or as a result of a PERFORM PIPELINE SCAN command.

(2). A TCPIPSERVICE resource is required when the HTTP transport is used. When the WebSphere MQ transport is
used, you must define a queue.

56 Implementing CICS Web Services

2.5 Message handlers

When you want to perform specialized processing on the messages that flow
between a service requester and a service provider, and CICS does not supply a
message handler that meets your needs, you will need to supply your own.

The message handler interface lets you perform the following tasks in a message
handler program:

� Examine the contents of an XML request or response, without changing it

� Change the contents of an XML request or response

� In a non-terminal message handler, pass an XML request or response to the
next message handler in the pipeline

� In a terminal message handler (the last handler in the pipeline) call an
application program, and generate a response

� In the request phase of the pipeline, force a transition to the response phase,
by absorbing the request, and generating a response

� Handle errors

Message handlers can be used for specific custom functions like:

� Logging requests

� Changing the “context” of a request, for example, changing the name of the
transaction that CICS uses for running the pipeline alias transaction

Message handlers use channels and containers to interact with one another, and
with the system (see “Channels and containers” on page 59).

2.5.1 SOAP message handlers

CICS provides SOAP message handlers that you can include in your pipeline to
process SOAP 1.1 and SOAP 1.2 messages. You can use the SOAP message
handlers in a service requester or in a service provider pipeline.

On input, the SOAP message handlers parse inbound SOAP messages, and
extract the SOAP <Body> element for use by your application program. On
output, the handlers construct the complete SOAP message, using the <Body>
element that your application provides.

If you use SOAP headers in your messages, the SOAP handlers can invoke
user-written header processing programs that allow you to process the SOAP
headers on inbound messages, and to add them to outbound messages. For

 Chapter 2. CICS support for Web services 57

example, a header processing program could check security information in a
SOAP header or SOAP body.

A SOAP message handler, and optional header processing programs, are
specified in the pipeline configuration file using the <cics_soap_1.1_handler>
and the <cics_soap_1.2_handler> elements and their sub-elements.

Typically, you will need just one SOAP message handler in a pipeline. However,
there are some situations where more than one is needed. For example, you can
ensure that SOAP headers are processed in a particular sequence by defining
multiple SOAP message handlers.

SOAPFAULT commands
SOAP message handlers and header processing programs can use three API
commands which are new in CICS TS V3.1 to manage SOAP faults:

� EXEC CICS SOAPFAULT CREATE

Use this command to create a SOAP fault. If a SOAP fault already exists in
the context of the SOAP message that is being processed by the message
handler, the existing fault is overwritten.

� EXEC CICS SOAPFAULT ADD

Use this command to add either of the following items to a SOAPFAULT
object that was created with an earlier SOAPFAULT CREATE command:

– A subcode

– A fault string for a particular national language

If the fault already contains a fault string for the language, then this
command replaces the fault string for that language. In SOAP 1.1, only the
fault string for the original language is used.

� EXEC CICS SOAPFAULT DELETE

Use this command to delete a SOAPFAULT object that was created with an
earlier SOAPFAULT CREATE command.

These commands require information that is held in containers on the channel of
the CICS-supplied SOAP message handler. To use these commands, you must
have access to the channel. Only the following types of programs have this
access:

Tip: Do not confuse header processing programs with message handlers. A
header processing program can only be invoked by a CICS-supplied SOAP
message handler to process a specific kind of SOAP header.

58 Implementing CICS Web Services

� Programs that are invoked directly from a CICS-supplied SOAP message
handler, including SOAP header processing programs.

� Programs deployed with the Web services assistant that have a channel
interface. Programs with a COMMAREA interface do not have access to the
channel.

Many of the options on the SOAPFAULT CREATE and SOAPFAULT ADD
commands apply to SOAP 1.1 and SOAP 1.2 faults, although their behavior is
slightly different for each level of SOAP. Other options apply to one SOAP level
or the other, but not to both, and if you specify any of them when the message
uses a different level of SOAP, the command will raise an INVREQ condition. To
help you determine which SOAP level applies to the message, container
DFHWS-SOAPLEVEL contains a binary fullword with one of the following values:

– 1 - The request or response is a SOAP 1.1 message.

– 2 - The request or response is a SOAP 1.2 message.

– 10 - The request or response is not a SOAP message.

2.5.2 Channels and containers

Channels and containers are new resources in CICS TS V3.1 that provide the
capability to pass data from one application to another application.

� A channel is a logical resource that must contain one or more containers.

� A container is a named block of data designed for passing information
between programs.

The major advantage of using channels and containers compared to using a
COMMAREA is that the length of a container can exceed the 32 KB limit for
COMMAREA data. CICS uses channels and containers to pass data between
the message handlers of a pipeline.

All programs that are used as message handlers are invoked with the same
channel interface. The channel holds a number of containers. The containers
can be categorized as:

� Control containers

These are essential to the operation of the pipeline. Message handlers can
use the control containers to modify the sequence in which the message
handlers are processed.

� Context containers

In some situations, message handler programs need information about the
context in which they are invoked. CICS provides this information in a set of
context containers that are passed to the programs. Some of the context

 Chapter 2. CICS support for Web services 59

containers hold information that you can change in your message handler.
For example, in a service provider pipeline, you can change the user ID and
transaction ID of the target application program by modifying the contents of
the appropriate context containers.

� Header containers

Containers that are specific to the header processing program interface.

� User containers

These contain information that one message handler needs to pass to
another. The use of user containers is entirely a matter for the message
handlers.

For each container, Table 2-2 explains what the function of the container is and
the type of access permitted to message handlers and header processing
programs.

Table 2-2 CICS Web service containers

Name Message
handler

Header
processing
program

Comment

Control containers

DFHERROR Update Update Used to convey information about pipeline
errors to other message handlers.

DFHFUNCTION Update Update Indicates where in a pipeline a program is
being invoked.

DFHNORESPONSE Update Update In the request phase of a service requester
pipeline, indicates that the service provider is
not expected to return a response.

DFHREQUEST Update Read only Contains the request message that is
processed in the request phase of a pipeline.

DFHRESPONSE Update Read only Contains the response message that is
processed in the response phase of a pipeline.

Context containers

DFHWS-PIPELINE Read only Read only The name of the PIPELINE in which the
program is being run.

DFHWS-WEBSERVICE Update Update The name of the WEBSERVICE that specifies
the execution environment.

DFHWS-URI Update Update The URI of the service for a service provider
pipeline only.

60 Implementing CICS Web Services

2.6 Tools for developing CICS Web services

In this section, we provide a brief overview of the main tools for developing CICS
Web services. For more detailed information, see Application Development for
CICS Web Services, SG24-7126.

DFHWS-SOAPACTION Update Update The SOAPAction header associated with the
SOAP message in container DFHWS-BODY.

DFH-HANDLERPLIST Read only Read only The <handler_parameter_list> contents.

DFH-SERVICEPLIST Read only Read only The <service_parameter_list> contents.

DFHWS-APPHANDLER Update Update The <apphandler> contents.

DFHWS-DATA Update Update Used in INVOKE WEBSERVICE (outbound
only) deployed with the CICS Web services
assistant. It holds the top-level data structure
that is mapped to and from a SOAP request.

DFHWS-TRANID Update Update The transaction ID with which the task in the
pipeline is running.

DFHWS-USERID Update Update The user ID with which the task in the pipeline
is running.

DFHWS-SOAPLEVEL Read only Read only The level of SOAP used in the message that is
being processed.

DFHWS-OPERATION Read only Read only In the response phase of a service requester
pipeline, contains the name of the operation
that is specified in a SOAP request.

Header containers

DFHHEADER None Update The single header block that caused the
header processing program to be driven.

DFHWS-XMLNS None Read only The list of name-value pairs that map
namespace prefixes to namespaces for the
XML content of the request.

DFHWS-BODY None Update The contents of the SOAP body.

Name Message
handler

Header
processing
program

Comment

 Chapter 2. CICS support for Web services 61

2.6.1 CICS Web services assistant

The CICS Web services assistant is a set of batch utilities that can help you
transform existing CICS applications into Web services and enable CICS
applications to use Web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with minimal programming effort.

When you use the Web services assistant for CICS, you do not have to write
your own code for parsing inbound messages and for constructing outbound
messages; CICS maps data between the body of a SOAP message and the
application program’s data structure.

Resource definitions are, for the most part, generated and installed
automatically. You do have to define PIPELINE resources, but you can, in many
cases, use one of the pipeline configuration files that CICS provides.

The assistant can create a WSDL document from a simple language structure, or
a language structure from an existing WSDL document, and supports COBOL,
C/C++, and PL/I. It also generates information used to enable automatic run-time
conversion of the SOAP messages to containers and COMMAREAs, and vice
versa.

However, the assistant cannot deal with every possibility, and there are times
when you will need to take a different approach. For example:

� You don’t want to use SOAP messages.

If you prefer to use a non-SOAP protocol for your messages, you can do so.
However, your application programs will be responsible for parsing inbound
messages, and constructing outbound messages.

� You want to use SOAP messages, but don’t want CICS to parse them.

For an inbound message, the assistant maps the SOAP body to an
application data structure. In some applications, you may want to parse the
SOAP body yourself.

� The CICS Web services assistant does not support your application’s data
structure.

Although the CICS Web services assistant supports the most common data
types and structures, there are some that are not supported. For example,
OCCURS DEPENDING ON and REDEFINES on data description entries are
not supported. For full details on the data types and structures supported by
the CICS Web Services assistant, see the CICS Web Services Guide
(SC34-6458).

62 Implementing CICS Web Services

In this situation, you should consider one of the following alternatives:

– Provide a wrapper program that maps your application’s data to a format
that the assistant can support.

– Use WebSphere Developer for zSeries (see 2.6.3, “WebSphere Developer
for zSeries” on page 65).

2.6.2 Web services assistant utility programs

The CICS Web services assistant provides two utility programs: DFHLS2WS and
DFHWS2LS. They are described in detail in this section.

DFHLS2WS
This program generates a Web services description and Web services binding
file from a language structure. Example 2-3 shows sample JCL for running
DFHLS2WS.

Example 2-3 DFHLS2WS JCL sample

//LS2WS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’
//JAVAPROG EXEC DFHLS2WS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
PGMNAME=DFH0XCMN
URI=exampleApp/inquireSingle
PGMINT=COMMAREA
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
/*

The main input parameters are as follows:

� PDSLIB

Specifies the name of the partitioned data set that contains the high-level
language data structures to be processed.

� REQMEM

Specifies the name of the partitioned data set member that contains the
high-level language structure for the Web service request.

 Chapter 2. CICS support for Web services 63

– For a service provider, the Web service request is the input to the
application program.

– For a service requester, the Web service request is the output from the
application program.

� RESPMEM

Specifies the name of the partitioned data set member that contains the
high-level language structure for the Web service response:

– For a service provider, the Web service response is the output from the
application program.

– For a service requester, the Web service response is the input to the
application program.

� LANG

Specifies the language of the language structure to be created.

� PGMNAME

Specifies the name of the target CICS application program that is being
exposed as a Web service.

� URI

In a service provider, this parameter specifies the relative URI that a client will
use to access the Web service. CICS uses the value specified when it
generates a URIMAP resource from the Web service binding file created by
DFHLS2WS. The parameter specifies the path component of the URI to
which the URIMAP definition applies.

� PGMINT

For a service provider, specifies how CICS passes data to the target
application program (using a COMMAREA or a channel).

� WSBIND

Specifies the HFS name of the Web service binding file.

� WSDL

Specifies the HFS name of the Web service description file.

DFHWS2LS
This program generates a language structure and Web services binding file from
a Web services description. Example 2-4 shows sample JCL for running
DFHWS2LS.

Example 2-4 DFHWS2LS JCL sample

//WS2LS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’

64 Implementing CICS Web Services

//JAVAPROG EXEC DFHWS2LS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP
REQMEM=CPYBK1
RESPMEM=CPYBK2
LANG=COBOL
PGMNAME=DFH0XCMN
URI=exampleApp/inquireSingle
PGMINT=COMMAREA
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
/*

Mapping Level
Some restrictions that existed on data types supported by the CICS Web
services assistant when CICS TS V3.1 was shipped, were removed by APARs
PK15904 and PK23547. The MAPPING-LEVEL parameter for both DFHLS2WS
and DFHWS2LS specifies the level of mapping that the batch assistant should
use when generating the Web service binding file and Web service description.
The value of this parameter can be any of the following values:

� 1.0 - The original default mapping level of CICS TS V3.1.

� 1.1 - APAR PK15904 has been applied to the CICS TS V3.1 region where the
Web service binding file is deployed. At this level of mapping, there are
improvements to DFHWS2LS when mapping XML character and binary data
types, in particular when mapping data of variable length.

� 1.2 - Both APARs PK15904 and PK23547 have been applied to the CICS TS
V3.1 region where the Web service binding file is deployed.

2.6.3 WebSphere Developer for zSeries

WebSphere Developer for zSeries V6 is based on the IBM Rational® Software
Development Platform and facilitates the development of both Java- and
z/OS-based applications. It includes capabilities that make traditional z/OS
mainframe development, Web development, and integrated composite
development faster and more efficient. In particular, WebSphere Developer
contains tools that support the development of Web services and the XML
enablement of existing CICS COBOL applications.

The XML Services for the Enterprise (XSE) capability of WebSphere Developer
provides tools that let you adapt COBOL-based applications so that they can

 Chapter 2. CICS support for Web services 65

consume and produce XML messages. XSE supports the creation of driver
programs that work with existing CICS (or IMS™) applications.

The Web Services Enablement wizard is the XSE tool that supports the
bottom-up approach for creating Web services based on existing CICS COBOL
programs. It takes as input the COMMAREA copybook. The XML structure and
data types are then derived from the COBOL data declarations. Based on these,
the Web Services Enablement wizard generates the set of artifacts shown in
Figure 2-10 on page 66.

Figure 2-10 WebSphere Developer for zSeries

The artifacts generated by the Web Services Enablement wizard are:

� Input converter

A COBOL program that takes an incoming XML document and maps it into
the corresponding COBOL data structure that the existing CICS application
expects.

� Output converter

A COBOL program that takes the COBOL data results returned from the
CICS application and maps them to an XML document.

� Converter driver

COBOL copybook

Input converter

Conversion program

Output converter

Driver converter

WSBind

Document schema

definitions (.xsd)

WSDL

WebSphere
Developer for

zSeries
XSE

66 Implementing CICS Web Services

A COBOL program that shows how the input and output converters can be
used to interact with the existing CICS application.

� Input document XML schema definition (XSD)

XML schema that describes the incoming XML document.

� Output document XML schema definition (XSD)

XML schema that describes the outgoing XML document

� WSDL

Web service description file.

� WSBind

Web service binding file.

For additional information visit the WebSphere Developer for zSeries Web site at:

http://www.ibm.com/software/awdtools/devzseries/

2.7 Catalog manager example application

The CICS catalog manager example application is a COBOL application
designed to illustrate best practice when connecting CICS applications to
external clients and servers.

The example is constructed around a simple sales catalog and order processing
application, in which the end user can perform these functions:

� List the items in a catalog (implemented as a VSAM file)

� Inquire on individual items in the catalog

� Order items from the catalog

The base application has a 3270 user interface, but the modular structure, with
well-defined interfaces between the components, makes it possible to add further
components. In particular, the application comes with Web services support,
which is designed to illustrate how you can extend an existing application into the
Web services environment.

2.7.1 The base application

Figure 2-11 on page 68 shows the structure of the base application.

 Chapter 2. CICS support for Web services 67

Figure 2-11 Basic catalog manager application structure

The components of the base application are:

1. A BMS presentation manager (DFH0XGUI) that supports a 3270 terminal or
emulator, and that interacts with the main catalog manager program.

2. A catalog manager program (DFH0XCMN) that is the core of the example
application, and that interacts with several back-end components.

3. The back-end components are:

a. A data handler program that provides the interface between the catalog
manager program and the data store. The base application provides two
versions of this program. They are the VSAM data handler program
(DFH0XVDS), which stores data in a VSAM data set; and a dummy data
handler (DFH0XSDS), which does not store data, but simply returns valid
responses to its caller. Configuration options let you choose between the
two programs.

BMS
presentation manager

(DFH0XGUI)

Catalog manager
(DFH0XCMN)

commarea
01INQC.. 01INQS. 01ORDR.

.. ...

.. ...
01INQC.. 01INQS. 01ORDR.

Dummy
data handler
(DFH0XSDS)

VSAM
data handler
(DFH0XVDS)

Dummy
dispatch manager

(DFH0XSOD)

Dispatch
manager

(DFH0XWOD)

Dummy
stock manager
(DFH0XSSM)

mapsets
DFH0XS1
DFH0XS2

EGUI

Datastore Type =STUB VSAM

or

CICS1

.. ..
01DSPO.

or

N Y
Outbound WebService?

01STKO.

Pipeline
(EXPIPE02)

Order
dispatch
endpoint

(DFH0XODE)

Outbound WebService URI

SOAP RequestSOAP Request

Order
dispatch endpoint

(ExampleAppDispatch)

CICS2 WAS

Catalog
data
(EXMPCAT)

VSAM

68 Implementing CICS Web Services

b. A dispatch manager program that provides an interface for dispatching an
order to a customer. Again, configuration options let you choose between
the two versions of this program: DFHX0WOD is a service requester that
invokes a remote order dispatch endpoint, and DFHX0SOD is a dummy
program that simply returns valid responses to its caller. There are two
equivalent order dispatch endpoints: DFH0XODE is a CICS service
provider program; ExampleAppDispatchOrder.ear is an enterprise archive
that can be deployed in WebSphere Application Server or similar
environments.

c. A dummy stock manager program (DFH0XSSM) that returns valid
responses to its caller, but takes no other action.

2.7.2 Web services support for the catalog example application

The Web services support extends the example application, providing a Web
client front end and two versions of a Web services endpoint for the order
dispatcher component.

The Web client front end and one version of the Web services endpoint are
supplied as enterprise archives (EARs) that will run in the following
environments:

� WebSphere Application Server Version 5 Release 1 or later

� WebSphere Studio Application Developer Version 5 Release 1 or later with a
WebSphere unit test environment

� WebSphere Studio Enterprise Developer Version 5 Release 1 or later with a
WebSphere unit test environment

The second version of the Web services endpoint is supplied as a CICS service
provider application program (DFH0XODE).

Figure 2-12 on page 70 shows the structure of the Web services catalog
application.

 Chapter 2. CICS support for Web services 69

Figure 2-12 Web services catalog manager application structure

In this configuration, the application is accessed through:

� A Web browser client connected to WebSphere Application Server, in which
ExampleAppClient.ear is deployed.

The order dispatch endpoint can be:

� A CICS service provider application

� A J2EE service provider application (ExampleAppDispatchOrder.ear) running
in WebSphere Application Server

Catalog manager
(DFH0XCMN)

commarea 01INQC.. 01INQS. 01ORDR.
.. ...

.. ...
01INQC.. 01INQS. 01ORDR.

VSAM
data handler
(DFH0XVDS)

Dispatch
manager

(DFH0XWOD)

Dummy
stock manager
(DFH0XSSM)

.. ..

Pipeline
(EXPIPE02)

SOAP Request

Order
dispatch endpoint

CICS2 or WAS

Catalog
data

(EXMPCAT)

CPIHCPIH
Pipeline

(EXPIPE01)

01DSPO. 01STKO.

CICS1

SOAP Request

VSAM

Servlet JSPs

ExampleAppClient.earExampleAppClient.ear
Browser

Workstation

 WAS

70 Implementing CICS Web Services

Part 2 Web service
configuration

In this part we provide detailed instructions on how we configured our test CICS
environment to support Web services using both HTTP and WebSphere MQ as
transport mechanisms. We also describe how we deployed service requester
and service provider applications in WebSphere Application Server, and how we
used Web services to connect between WebSphere Application Server and
CICS.

In chapter 5, we introduce the service integration bus and we outline the
configuration steps for connecting to a CICS Web service via the bus.

Part 2

© Copyright IBM Corp. 2007. All rights reserved. 71

72 Implementing CICS Web Services

Chapter 3. Web services using HTTP

In this chapter we describe how we configured our test CICS environment to
support Web services using HTTP as the transport mechanism.

3

© Copyright IBM Corp. 2007. All rights reserved. 73

3.1 Preparation

After outlining our test configuration (Figure 3-1), we explain how we configured
CICS as a service provider. In Section 3.2, “Configuring CICS as a service
provider” on page 76, we show details of how we set up the environment,
including:

� Configuring code page support
� Configuring the HFS file system
� Enabling the service provider application in CICS
� Deploying the service requester client in WebSphere Application Server for

Windows
� Managing the WebSphere Application Server connection pool for Web

services outbound connections

In Section 3.3, “Configuring CICS as a service requester” on page 94, we show
how we configured the same CICS region to act as a service requester,
including:

� Enabling the service requester application in CICS
� Deploying the service provider application in WebSphere Application Server

for z/OS

Figure 3-1 Software components: Web services using HTTP transport

CICS TS V3.1

CIWSR3C1

WebSphere Application
Server V6

Windows 2000 Cam21-Pc3

z/OS V1.6 mvsg3.mop.ibm.com

z/OS V1.6 tx1.mop.ibm.com

WebSphere Application
Server V6.0.1 for z/OS

Catalog manager
(service provider)

Dispatch manager
(service requester)

Order dispatch
Endpoint

(service provider)

Catalog.ear

HTTP

HTTP

74 Implementing CICS Web Services

We do not provide information about how to install the software products and we
assume the reader has a working knowledge of both CICS and WebSphere
Application Server.

3.1.1 Software checklist

For the configuration shown in Figure 3-1 we used the levels of software shown
in Table 3-1.

Table 3-1 Software used in the HTTP scenarios

3.1.2 Definition checklist

The z/OS definitions we used to configure the scenario are listed in Table 3-2.

Table 3-2 Definition checklist

Windows z/OS

Windows 2000 SP4 z/OS V1.6

IBM WebSphere Application Server - ND
V6.0.2.0

WebSphere Application Server for z/OS
V6.0.1

CICS Transaction Server V3.1

Internet Explorer® V6.0

Our J2EE application
� Catalog.ear

Catalog manager service requester
application

CICS-supplied catalog Manager
application

Our user-supplied CICS programs
� SNIFFER (message handler program)
� CIWSMSGH (message handler

program)
Our J2EE application
� dispatchOrder.ear

Catalog application service provider

Value CICS TS WebSphere Application
Server

IP name mvsg3.mop.ibm.com tx1.mop.ibm.com

IP address 9.100.193.167 9.100.193.122

TCP/IP port 13301 13880

Job name CIWSR3C1 CITGRS1S

 Chapter 3. Web services using HTTP 75

3.1.3 The sample application

For our tests we used the sample program described in Section 2.7, “Catalog
manager example application” on page 67. We do not document how to install
the sample application itself, because this is explained in detail in CICS Web
Services Guide V3.1, SC34-6458.

3.2 Configuring CICS as a service provider

In this section we discuss how we configured CICS as a service provider. The
configuration we used is shown in Figure 3-2.

Figure 3-2 CICS as a service provider

APPLID A6POR3C1

TCPIPSERVICE R3C1

Provider PIPELINE EXPIPE01

Requester PIPELINE EXPIPE02

Value CICS TS WebSphere Application
Server

CICS TS V3.1 CIWSR3C1

WebSphere Application
Server V6

Windows 2000 Cam21-Pc3

z/OS V1.6 mvsg3.mop.ibm.com

Catalog manager
(service provider)

Catalog.ear

TCPIPSERVICE:
R3C1

PIPELINE:
EXPIPE01

HTTP

76 Implementing CICS Web Services

3.2.1 Configuring code page support

We configured our z/OS system to support conversions between the two coded
character sets used by the example application; these are shown in Example 3-1.

Example 3-1 CCSID description

037 EBCDIC Group 1: USA, Canada (z/OS), Netherlands, Portugal,
Brazil, Australia, New Zealand

1208 UTF-8 Level 3

To do this we added the statements shown in Example 3-2 to the conversion
image for our z/OS system.

Example 3-2 Required conversions

CONVERSION 037,1208;
CONVERSION 1208,037;

We used the SET UNI=31 z/OS command to activate the updated conversion
image, where 31 is the suffix of the CUNUNIxx member of SYS1.PARMLIB.

For more information about code page support, see CICS Installation Guide
V3.1, GC34-6426.

3.2.2 Configuring CICS

To enable CICS to receive Web service requests using HTTP we performed the
following tasks:

� Updating CICS system initialization table (SIT) parameters

� Creating the HFS directories

� Configuring the TCPIPSERVICE resource definition

� Customizing the pipeline configuration file

� Writing a message handler program that changes the transaction ID

� Configuring the PIPELINE resource definition

Tip: With z/OS V1R7, the Unicode Services environment can be dynamically
updated when a conversion service is requested. If the appropriate table
needed for the service is not already loaded into storage, Unicode Services
will load the table without requiring an IPL or disrupting the caller’s request.
For more information, see z/OS Support for Unicode: Unicode Services,
SA22-7649-06.

 Chapter 3. Web services using HTTP 77

� Installing the TCPIPSERVICE and PIPELINE definitions

Updating SIT parameters
Since we decided to use HTTP as the transport for the service request flows, we
added the following SIT parameter:

TCPIP=YES

We then restarted the CICS region to put the parameter into effect.

Creating the HFS directories
Next we created the HFS directories (Example 3-3) used in the PIPELINE
definition.

Example 3-3 HFS directories used in the PIPELINE definition

/CIWS/R3C1/config
/CIWS/R3C1/shelf
/CIWS/R3C1/wsbind/provider
/CIWS/R3C1/wsbind/requester

The CICS region user ID must have read permission to the /config directory, and
update permission to the /shelf directory.

Configuring the TCPIPSERVICE definition
Next we logged onto CICS and created the TCPIPSERVICE resource definition
in CICS using the command:

CEDA DEFINE TCPIPSERVICE(R3C1) GROUP(R3C1)

We defined the R3C1 TCPIPSERVICE as shown in Figure 3-3.

78 Implementing CICS Web Services

Figure 3-3 CEDA DEFINE TCPIPSERVICE

We set the PORTNUMBER to 13301, the PROTOCOL to HTTP, and the URM to
NONE. We allowed the other attributes to default, and we installed the R3C1
group.

The default setting for the SOCKETCLOSE attribute is NO. Therefore, when a
connection is made between a Web service client and CICS, by default CICS
keeps the connection open until the Web service client closes the connection.
You could set a value (in seconds) for the SOCKETCLOSE attribute if you want
to close a persistent connection after the timeout period is reached.

We used the default setting for SOCKETCLOSE and we configured WebSphere
Application Server to timeout idle persisting connections (see “Managing the
WebSphere Application Server connection pool” on page 89).

Recommendation: Do not set the SOCKETCLOSE attribute to 0 because
this will close the connection after each request.

OVERTYPE TO MODIFY CICS RELEASE = 0640
 CEDA DEFine TCpipservice(R3C1)
 TCpipservice : R3C1
 GROup : R3C1
 DEscription ==> TCPIPSERVICE DEFINITION FOR CATALOG APPLICATION
 Urm ==> NONE
 POrtnumber ==> 13301 1-65535
 STatus ==> Open Open | Closed
 PROtocol ==> Http Iiop | Http | Eci | User
 TRansaction ==> CWXN
 Backlog ==> 00001 0-32767
 TSqprefix ==>
 Ipaddress ==>
 SOcketclose ==> No No | 0-240000 (HHMMSS)
 Maxdatalen ==> 000032 3-524288
 SECURITY
 SSl ==> No Yes | No | Clientauth
 CErtificate ==>
 (Mixed Case)

SYSID=R3C1 APPLID=A6POR3C1

 Chapter 3. Web services using HTTP 79

Customizing the pipeline configuration file
The default pipeline alias transaction ID used for inbound HTTP Web service
requests is CPIH. We wanted to assign different transaction IDs to different
service requests. To do that, we wrote a message handler program CIWSMSGH
that replaced the transaction ID in the DFHWS-TRANID container with a
transaction ID based on the service request (which can be retrieved from the
DFHWS-WEBSERVICE container).

To activate the message handler program, we needed to make changes to the
PIPELINE configuration file. We copied the file, basicsoap12provider.xml to the
/CIWS/R3C1/config directory shown in Example 3-3 on page 78. The change we
made is shown in Example 3-4.

Example 3-4 Service provider configuration file

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline

provider.xsd ">
 <transport>
 <default_transport_handler_list>
 <handler>
 <program>CIWSMSGH</program>
 <handler_parameter_list/>
 </handler>

</default_transport_handler_list>
 </transport>
 <service>
 <terminal_handler>
 <cics_soap_1.2_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Writing the message handler program
In this section we show how we used a message handler program to change the
default transaction ID (CPIH) to a transaction ID based on the Web service
request in the DFHWS-WEBSERVICE container.

Note: The <default_transport_handler_list> specifies the message
handlers that are invoked by default when any transport is in use.

80 Implementing CICS Web Services

Table 3-3 shows the relationship that we established between the transaction ID
and the Web service request.

Table 3-3 Transaction ID to Web service name relationship

There are many reasons why you might want to change the transaction ID based
on the service request, for example:

Security You may want to use transaction security to control
access to specific services.

Priority You may want to assign different performance goals to
specific services.

Accounting You may need to charge users based on access to
different services.

We show how we used transaction security to control access to specific services
in Section 9.2, “Basic security configuration” on page 278.

Before we activated the message handler program we needed to create the new
TRANSACTION definitions with the same characteristics as the CICS-supplied
definition for CPIH. We used the CEDA COPY commands shown in Example 3-5
and then installed the definitions.

Example 3-5 CICS definitions - TRANSACTION

CEDA COPY TRANSACTION(CPIH) GROUP(DFHPIPE) TO(R3C1) AS(INQS)
CEDA COPY TRANSACTION(CPIH) GROUP(DFHPIPE) TO(R3C1) AS(INQC)
CEDA COPY TRANSACTION(CPIH) GROUP(DFHPIPE) TO(R3C1) AS(ORDR)

The program logic we used for the message handler program is shown in
Example 3-6 through Example 3-9. The full program is shown in Section A.1,
“Sample message handler program - CIWSMSGH” on page 528.

Transaction ID Web service request

INQS inquireSingle

INQC inquireCatalog

ORDR placeOrder

Note: A message handler can be written in any of the languages CICS
supports. The CICS commands in the DPL subset can be used.

 Chapter 3. Web services using HTTP 81

Example 3-6 shows the flow of control of the message handler program. The
program will only execute for Web service requests.

Example 3-6 Message handler program - Flow of control

007700 IF WS-DFHFUNCTION equal 'RECEIVE-REQUEST'
007800 PERFORM VALIDATE-REQUEST THRU END-VAL-REQUEST
007900 PERFORM CHANGE-TRANID THRU END-CHANGE-TRANID
008000 EXEC CICS
008100 DELETE CONTAINER('DFHRESPONSE')
008200 END-EXEC
008300 END-IF
008400 EXEC CICS RETURN END-EXEC.

Example 3-7 shows the code to get the Web service request from the
DFHWS-WEBSERVICE container.

Example 3-7 Message handler program - Get the DFHWS-WEBSERVICE container

010300 EXEC CICS
010400 GET CONTAINER('DFHWS-WEBSERVICE')
010500 SET(ADDRESS OF CONTAINER-DATA)
010600 FLENGTH(CONTAINER-LEN)
010700 END-EXEC.

Example 3-8 shows the code that determines the new transaction ID, replacing
the default transaction ID in the DFHWS-TRANID container.

Example 3-8 Message handler program - Determine new transaction ID

011400*---------------- CHANGE DEFAULT TRANID CPIH/CPIL ---------
011500 CHANGE-TRANID.
011600 EXEC CICS GET CONTAINER('DFHWS-TRANID')
011700 SET(ADDRESS OF CONTAINER-DATA)
011800 FLENGTH(CONTAINER-LEN)
011900 END-EXEC.
012000 IF WS-WEBSERVICES = 'inquireSingle'
012100 MOVE 'INQS' TO CA-TRANID
012200 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
012300 END-IF
012400 IF WS-WEBSERVICES = 'inquireCatalog'

Tip: When the message handler processes a request, it must delete the
DFHRESPONSE container if a transition to the response phase of the pipeline
will not take place.

82 Implementing CICS Web Services

012500 MOVE 'INQC' TO CA-TRANID
012600 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
012700 END-IF
012800 IF WS-WEBSERVICES = 'placeOrder'
012900 MOVE 'ORDR' TO CA-TRANID
013000 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
013100 END-IF.
013200 END-CHANGE-TRANID. EXIT.

Example 3-9 shows how the program changes the transaction ID in the
DFHWS-TRANID container, and performs an EXEC CICS PUT CONTAINER.

Example 3-9 Message handler program - Change transaction ID

013600 CHANGE-CONTAINER.
013700 MOVE CA-TRANID TO CONTAINER-DATA(1:4)
013800 EXEC CICS PUT CONTAINER('DFHWS-TRANID')
013900 FROM(CONTAINER-DATA)
014000 FLENGTH(CONTAINER-LEN)
014100 END-EXEC.
015000 END-CHANGE-CONTAINER. EXIT.

Configuring the PIPELINE definition
We then defined the pipeline for the CICS service provider using the following
CICS command:

CEDA DEFINE PIPELINE(EXPIPE01) GROUP(R3C1)

We defined the EXPIPE01 pipeline as shown in Figure 3-4 on page 84.

 Chapter 3. Web services using HTTP 83

Figure 3-4 CEDA DEFINE PIPELINE

� We set CONFIGFILE to the name of our pipeline configuration file:

/CIWS/R3C1/config/ITSO_7206_basicsoap12provider.xml

� We set SHELF to the name of the shelf directory:

/CIWS/R3C1/shelf

Tip: The colons in front of Wsdir on the CEDA screen in Figure 3-4 mean that
you are not able to enter input on the lines. You must press F8 to be able to
enter the path for the directory.

Note: In a subsequent section we show how we modified the
basicsoap12provider.xml file, which is why we did not use the pipeline
configuration file provided in the /usr/lpp/cicsts/cicsts31/samples/pipelines
directory.

OVERTYPE TO MODIFY CICS RELEASE = 0640
 CEDA DEFine PIpeline(EXPIPE01)
 PIpeline : EXPIPE01
 Group : R3C1
 Description ==>
 STatus ==> Enabled Enabled | Disabled
 Configfile ==> /CIWS/R3C1/config/ITSO_7206_basicsoap12provider.xml
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 SHelf ==> /CIWS/R3C1/shelf
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 Wsdir : /CIWS/R3C1/wsbind/provider/
 (Mixed Case) :
 :

 SYSID=R3C1 APPLID=A6POR3C1

84 Implementing CICS Web Services

� We copied the following wsbind files to directory
/CIWS/R3C1/wsbind/provider from the CICS supplied directory
/usr/lpp/cicsts/cicsts31/samples/webservices/wsbind/provider/:

– inquireSingle.wsbind
– inquireCatalog.wsbind
– placeOrder.wsbind

� We set WSDIR to the Web service binding directory that contains the wsbind
files for the sample application:

/CIWS/R3C1/wsbind/provider/

Installing the PIPELINE definition
We then used CEDA to install the PIPELINE definition. When the PIPELINE is
installed CICS scans the wsdir directory, and dynamically creates
WEBSERVICE and URIMAP definitions for the wsbind files found.

Figure 3-5 shows a CEMT INQUIRE PIPELINE for EXPIPE01.

Figure 3-5 CEMT INQUIRE PIPELINE - EXPIPE01

WEBSERVICE resource definitions
In our configuration the WEBSERVICE resource definitions are dynamically
installed when the PIPELINE is installed. Optionally, we could define and install
the Web services using the CEDA DEFINE WEBSERVICE command; however,
this is not normally necessary when using the CICS Web services assistant.

Note: /usr/lpp/cicsts/cicsts31 is our CICS HFS install root.

Note: The name for an explicitly defined WEBSERVICE is limited to 8
characters in length, whereas the automatically installed Web service names
can be up to 32 characters in length.

INQUIRE PIPELINE
RESULT - OVERTYPE TO MODIFY
 Pipeline(EXPIPE01)
 Enablestatus(Enabled)
 Configfile(/CIWS/R3C1/config/ITSO_7206_basicsoap12provider.xml)
 Shelf(/CIWS/R3C1/shelf/)
 Wsdir(/CIWS/R3C1/wsbind/provider/)

 SYSID=R3C1 APPLID=A6POR3C1

 Chapter 3. Web services using HTTP 85

When a Web service is dynamically installed, the name of the service is taken
from the wsbind file. Figure 3-6 shows the Catalog manager application Web
services dispatchOrder, inquireCatalog, inquireSingle and placeOrder.

Figure 3-6 CEMT INQUIRE WEBSERVICE

URIMAP resource definition
In our configuration the URIMAP resource definitions are dynamically installed
when the PIPELINE is installed. Optionally, we could define and install them
manually using the CEDA DEFINE URIMAP command; however, this is not
normally necessary when using the CICS Web services assistant.

Using the URIMAP to change the default transaction ID
As an alternative to using the message handler program to change the
transaction IDs the services run under, we could have used the URIMAP
resource definition. That would, however, mean that we would need to define a
URIMAP for each deployed Web service.

A sample resource definition that could have been used is shown in
Example 3-10.

Example 3-10 CEDA URIMAP definitions

CEDA DEFINE URIMAP(INQS) GROUP(R3C1) HOST(*)
PATH(/exampleApp/inquireSingle)

PIPELINE(EXPIPE01) TRANSACTION(INQS) USAGE(PIPELINE)
WEBSERVICE(inquireSingle)

CEDA DEFINE URIMAP(INQC) GROUP(R3C1) HOST(*)
PATH(/exampleApp/inquireCatalog)

PIPELINE(EXPIPE01) TRANSACTION(INQC) USAGE(PIPELINE)
WEBSERVICE(inquireCatalog)

CEDA DEFINE URIMAP(ORDR) GROUP(R3C1) HOST(*)
PATH(/exampleApp/placeOrder)

PIPELINE(EXPIPE01) TRANSACTION(ORDR) USAGE(PIPELINE)
WEBSERVICE(placeOrder)

INQUIRE WEBSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
Webs(inquireCatalog) Pip(EXPIPE01)
 Ins Uri($606021) Pro(DFH0XCMN) Com Dat(20050408)
Webs(inquireSingle) Pip(EXPIPE01)
 Ins Uri($606023) Pro(DFH0XCMN) Com Dat(20050408)
 Webs(placeOrder) Pip(EXPIPE01)
 Ins Uri($606025) Pro(DFH0XCMN) Com Dat(20050408)

 SYSID=R3C1 APPLID=A6POR3C1

86 Implementing CICS Web Services

Figure 3-7 shows a URIMAP resource definition dynamically installed when the
PIPELINE is installed.

Figure 3-7 CEMT INQUIRE URIMAP

3.2.3 Configuring WebSphere Application Server on Windows

In this section we discuss how we deployed the Web service client on
WebSphere Application Server for Windows. We discuss how we used the
WebSphere administrative console to install the Web service client.

Installing the service requester
CICS TS V3.1 provides a sample Web service client, ExampleAppClient.ear.
This application archive is built at the J2EE 1.3 level. We planned to use the
client in a J2EE 1.4 environment (WebSphere Application Server V6), therefore
we migrated the client. We called the new application archive file Catalog.ear.

INQUIRE URIMAP
RESULT - OVERTYPE TO MODIFY
 Urimap($606021)
 Usage(Pipe)
 Enablestatus(Enabled)
 Analyzerstat(Noanalyzer)
 Scheme(Http)
 Redirecttype(None)
 Tcpipservice()
 Host(*)
 Path(/exampleApp/inquireCatalog)
 Transaction(CPIH)
 Converter()
 Program()
 Pipeline(EXPIPE01)
 Webservice(inquireCatalog)
 Userid()
 Certificate()
 Ciphers()
 Templatename()
 SYSID=R3C1 APPLID=A6POR3C1

Note: The CICS-supplied ExampleAppClient.ear file is located in the
/usr/lpp/cicsts/cicsts31/samples/webservices/client directory.

 Chapter 3. Web services using HTTP 87

Deploying the Catalog.ear file on WebSphere Application Server
Next we deployed the Catalog.ear file on WebSphere Application Server for
Windows. To log on to the WebSphere administrative console, we opened a Web
browser window and entered the following url:

http://cam21-pc11:9060/admin

We entered a user ID and were presented with the window shown in Figure 3-8.
We clicked Local file system and then clicked Browse to locate the EAR file:

F:\Web Services Sysprog\LAN book\addmat\src\ears\Catalog.ear
.

Figure 3-8 WebSphere administrative console - Install new application

We clicked Next → Next → Next → Next → Finish and then saved the
configuration.

Next we clicked Enterprise Applications, selected the Catalog application, and
clicked Start to start the application.

88 Implementing CICS Web Services

Managing the WebSphere Application Server connection pool
Since our service requester runs in WebSphere Application Server, the
application can take advantage of the connection pooling for Web services HTTP
outbound connections.

The HTTP transport properties are set using the JVM™ custom property panel in
the WebSphere administrative console. The following properties apply to our
scenario:

� com.ibm.websphere.webservices.http.connectionTimeout

This property specifies the interval, in seconds, after which a connection
request times out and the WebServicesFault("Connection timed out") error
occurs. The wait time is needed when the maximum number of connections in
the connection pool is reached. For example, if the property is set to 300 and
the maximum number of connections is reached, the connector waits for 300
seconds until a connection is available. After 300 seconds, the
WebServicesFault("Connection timed out") error occurs if a connection is not
available. If the property is set to 0 (zero), the connector waits until a
connection is available.

We allowed this property setting to default to 300 seconds.

� com.ibm.websphere.webservices.http.maxConnection

This property specifies the maximum number of connections that are created
in the HTTP outbound connector connection pool. If the property is set to 0
(zero), the com.ibm.websphere.webservices.http.connectionTimeout property
is ignored. The connector attempts to create as many connections as allowed
by the system.

We allowed this property setting to default to 50.

� com.ibm.websphere.webservices.http.connectionPoolCleanUp

This property specifies the interval, in seconds, between runs of the
connection pool maintenance thread. When the pool maintenance thread
runs, the connector discards any connections remaining idle for longer than
the time set in com.ibm.websphere.webservices.http.connectionIdleTimeout
property.

We allowed this property setting to default to180 seconds.

� com.ibm.websphere.webservices.http.connectionIdleTimeout

This property specifies the interval, in seconds, after which an idle connection
is discarded.

We changed this property setting from the default (5 seconds) to 60 seconds
because we wanted the connections to persist for a longer period.

 Chapter 3. Web services using HTTP 89

We used the WebSphere administrative console to change the connection idle
timeout from the default 5 seconds to 60 seconds:

We clicked Servers → Application servers → server1 → Java and Process
management → Environment Entries → New, and on the presented window,
we entered the value shown in Figure 3-9.

We restarted the application server to activate the change.

Figure 3-9 WebSphere admin console - Setting connection idle timeout

3.2.4 Testing the configuration

In this section we discuss how we tested the configuration by invoking the Web
client application running on WebSphere Application Server for Windows.

Running the Web client application
We started a browser session and entered the url:

http://cam21-pc11:9080/CatalogWeb/Welcome.jsp

Tip: For more information about the WebSphere Application Server
connection pooling properties see “Additional HTTP transport properties for
Web services applications” in the WebSphere Application Server information
center.

90 Implementing CICS Web Services

The window shown in Figure 3-10 was displayed.

Figure 3-10 CICS - Catalog application

We clicked CONFIGURE, and the window in Figure 3-11 was presented. We
entered the following addresses:

� Inquire catalog
http://mvsg3.mop.ibm.com:13301/exampleApp/inquireCatalog

� Inquire item
http://mvsg3.mop.ibm.com:13301/exampleApp/inquireSingle

� Place order
http://mvsg3.mop.ibm.com:13301/exampleApp/placeOrder

and clicked SUBMIT.

 Chapter 3. Web services using HTTP 91

Figure 3-11 CICS - Catalog application configuration

Next we started three Web browser sessions and entered the URL for each
browser:

http://cam21-pc11:9080/CatalogWeb/Welcome.jsp

The Catalog application welcome page (Figure 3-10 on page 91) was presented.
We then invoked a different service in each of the browsers:

� LIST ITEMS in browser one

� INQUIRE in browser two

� ORDER ITEM in browser three

From a CICS 3270 screen we used the CICS Execution Diagnostic Facility (EDF)
to intercept each of the INQC, INQS and ORDR transactions. We then used the
CEMT INQUIRE TASK command to view the in-flight transactions (Figure 3-12).

92 Implementing CICS Web Services

Figure 3-12 CEMT INQUIRE TASK

Figure 3-12 shows one instance of each of the INQC, INQS, and ORDR
transactions. For each transaction there is an associated pipeline alias
transaction CPIH. We noted that these transactions are currently all running
under the CICS default user ID CICSUSER.

Example 3-11 shows the output from our message handler program CIWSMSGH
for the three service requests. Both the DFHWS-WEBSERVICE and
DFHWS-TRANID containers are logged. See Section A.1, “Sample message
handler program - CIWSMSGH” on page 528 for more information about the
CIWSMSGH program.

Example 3-11 Sample output from message handler program - CIWSMSGH

CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireCatalog
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQC
CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireSingle
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQS
CIWSMSGH: >================================<

 INQUIRE TASK
 STATUS: RESULTS - OVERTYPE TO MODIFY
Tas(0000052) Tra(CPIH) Sus Tas Pri(001)

 Sta(U) Use(CICSUSER) Uow(BE06893FAF5D9305) Hty(RZCBNOTI)
 Tas(0000053) Tra(INQC) Sus Tas Pri(001)
 Sta(U) Use(CICSUSER) Uow(BE06893FDD7796AE) Hty(EDF)
Tas(0000057) Tra(CPIH) Sus Tas Pri(001)

 Sta(U) Use(CICSUSER) Uow(BE06895367D28546) Hty(RZCBNOTI)
 Tas(0000058) Tra(INQS) Sus Tas Pri(001)
 Sta(U) Use(CICSUSER) Uow(BE06895368907606) Hty(EDF)
Tas(0000062) Tra(CPIH) Sus Tas Pri(001)

 Sta(U) Use(CICSUSER) Uow(BE068962FFC04308) Hty(RZCBNOTI)
Tas(0000063) Tra(ORDR) Sus Tas Pri(001)

 Sta(U) Use(CICSUSER) Uow(BE06896300499061) Hty(EDF)

SYSID=R3C1 APPLID=A6POR3C1

 Chapter 3. Web services using HTTP 93

CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: placeOrder
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: ORDR

3.3 Configuring CICS as a service requester

In this section we discuss how we configured CICS to support outbound Web
service requests. The configuration we used is shown in Figure 3-13.

Figure 3-13 CICS as service requester

Figure 3-13 shows the TCPIPSERVICE R3C1 used for inbound HTTP Web
service requests. Note that a TCPIPSERVICE is not required for outbound HTTP
Web service requests from CICS.

CICS TS V3.1 CIWSR3C1

WebSphere Application
Server V6

Windows 2000 Cam21-Pc3

z/OS V1.6 mvsg3.mop.ibm.com

Catalog manager
(service provider)

Catalog.ear

TCPIPSERVICE:
R3C1

PIPELINE:
EXPIPE01

Dispatch manager
(service requester)PIPELINE:

EXPIPE02

z/OS V1.6 tx1.mop.ibm.com

WebSphere Application
Server for z/OS V6

Dispatch manager
service provider

(dispatchOrder.ear

94 Implementing CICS Web Services

3.3.1 Configuring CICS

To enable CICS to generate Web service requests using HTTP, we performed
the following tasks:

� Configuring the PIPELINE definition

� Configuring the requester TRANSACTION definition

� Configuring the sample application

Configuring the PIPELINE definition
We defined the PIPELINE for the CICS service requester using the following
CICS command:

CEDA DEFINE PIPELINE(EXPIPE02) GROUP(R3C1)

We defined the EXPIPE02 pipeline as shown in Figure 3-14.

Figure 3-14 CEDA DEFINE PIPELINE command

� We set the CONFIGFILE attribute to:

/CIWS/R3C1/config/ITSO_7206_basicsoap11requester.xml

OVERTYPE TO MODIFY CICS RELEASE = 0640
 CEDA DEFine PIpeline(EXPIPE02)
 PIpeline : EXPIPE02
 Group : R3C1
 Description ==> PIPELINE DEFINITION FOR DISPATCH ORDER REQUESTER
 STatus ==> Enabled Enabled | Disabled
 Configfile ==> /CIWS/R3C1/config/ITSO_7206_basicsoap11requester.xml
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 SHelf ==> /CIWS/R3C1/shelf
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 Wsdir : /CIWS/R3C1/wsbind/requester/
 (Mixed Case) :
 :

SYSID=R3C1 APPLID=A6POR3C1

 Chapter 3. Web services using HTTP 95

� We set the SHELF attribute to:

/CIWS/R3C1/shelf

� We copied the wsbind file dispatchOrder.wsbind to directory
/CIWS/R3C1/wsbind/requester from the CICS-supplied directory:
/usr/lpp/cicsts/cicsts31/samples/webservices/wsbind/requester/

� We set WSDIR to the Web service binding directory that contains the wsbind
files for the sample application:

/CIWS/R3C1/wsbind/requester/

Figure 3-15 shows a CEMT INQUIRE PIPELINE for EXPIPE02.

Figure 3-15 CEMT INQUIRE PIPELINE - EXPIPE02

Configuring the requester transaction
The duration a Web service requester task will wait for a response is controlled
by the DTIMOUT attribute on the TRANSACTION definition. The CICS default is
NO, meaning that the request will wait indefinitely. We used the CEDA ALTER
command to change the DTIMOUT value for the ORDR transaction to 30
seconds:

CEDA ALTER TRANSACTION(ORDR) GROUP(R3C1) DTIMOUT(30)

Timeout considerations
When a CICS application is the service provider, normal resource timeout
mechanisms such as RTIMEOUT (read timeout) apply. If, however, the
requester decides to time out before CICS is ready to send the response, the

Note: In 3.2, “Configuring CICS as a service provider” on page 76, we used
the basicsoap12provider.xml configuration file, which supports both SOAP 1.1
and SOAP 1.2 inbound service requests. CICS only supplies a
basicsoap11requester.xml configuration file for SOAP 1.1 outbound requests.

INQUIRE PIPELINE
RESULT - OVERTYPE TO MODIFY
 Pipeline(EXPIPE02)
 Enablestatus(Enabled)
 Configfile(/CIWS/R3C1/config/ITSO_7206_basicsoap11requester.xml)
 Shelf(/CIWS/R3C1/shelf/)
 Wsdir(/CIWS/R3C1/wsbind/requester/)

 SYSID=R3C1 APPLID=A6POR3C1

96 Implementing CICS Web Services

provider transaction abends and CICS issues the messages shown in
Example 3-12.

Example 3-12 CICS service provider error message

DFHPI0401 12/15/2005 15:51:12 A6POR3C1 ORDR The CICS pipeline HTTP transport
mechanism failed to send a response or receive a request because the connection
was closed.
 DFHPI0503 12/15/2005 15:51:12 A6POR3C1 ORDR The CICS Pipeline Manager has
failed to send a response on the underlying transport. TRANSPORT: HTTP,
PIPELINE: EXPIPE01.

For a CICS application which is a service requester (Figure 3-16), timeout is
controlled by the DTIMOUT attribute on the TRANSACTION definition.

Figure 3-16 CICS timeout considerations

If the request times out, CICS issues the message shown in Example 3-13.

Example 3-13 CICS service requester error message

DFHPI0504 12/15/2005 15:55:33 A6POR3C1 ORDR The CICS Pipeline Manager has
failed to communicate with a remote server due to an error in the underlying
transport. TRANSPORT: HTTP, PIPELINE: EXPIPE02.

Configuring the sample application
We used the catalog manager configuration transaction (ECFG) to configure the
example application. Figure 3-17 shows how we changed the setting of Outbound

Note: The DTIMOUT attribute on the TRANSACTION definition only controls
service requester timeout if HTTP is used as the transport mechanism.

Requester Provider

CICS TS V3.1

Provider

Requester
HTTP HTTP

DTIMEOUT controls how long
CICS waits for a response

 Chapter 3. Web services using HTTP 97

WebService to Yes, and entered the URI of the service provider for our outbound
service request:

http://tx1.mop.ibm.com:13880/exampleApp/services/dispatchOrderPort

We then pressed PF3 to save the configuration.

Figure 3-17 Catalog application configuration screen

With this configuration, the sample application uses the command EXEC CICS
INVOKE WEBSERVICE(“dispatchOrder”) to invoke the dispatchOrder service
which in our configuration runs in WebSphere Application Server for z/OS.

3.3.2 Configuring WebSphere Application Server for z/OS

In this section we discuss how we deployed the ExampleAppDispatchOrder
service provider application on WebSphere Application Server, including:

� How we used FTP to download the ear file

Tip: The 3270 terminal we used to configure the sample application had to be
set to NOUCTRAN. We used the following CICS command:

CEOT NOUCTRAN

 CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> YES YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==>
 Outbound WebService URI ==> http://tx1.mop.ibm.com:13880/exampleApp/serv
 ==> ices/dispatchOrderPort
 ==>
 ==>
 ==>
 APPLICATION CONFIGURATION UPDATED

PF 3 END 12 CNCL

98 Implementing CICS Web Services

� How we used the WebSphere administrative console to install the application

Downloading the EAR file
The CICS-supplied ExampleAppDispatchOrder.ear file is located in directory:

/usr/lpp/cicsts/cicsts31/samples/webservices/client

We used the Windows ftp command shown in Example 3-14 to download the file
to the workstation.

Example 3-14 Using ftp to download the EAR file

F:\>cd F:\Web Services Sysprog\LAN book\addmat\src\Catalog
Application\Configuration part
F:\Web Services Sysprog\LAN book\addmat\src\Catalog Application\Configuration
part>ftp mvsg3.mop.ibm.com
Connected to 9.100.193.167.
220-FTPD1 IBM FTP CS V1R6 at MVSG3.pssc.mop.ibm.com, 17:39:13 on 2005-11-24.
220 Connection will close if idle for more than 5 minutes.
User (9.100.193.167:(none)): CIWSTJ
331 Send password please.
Password:
230 CIWSTJ is logged on. Working directory is "CIWSTJ.".
ftp> cd /usr/lpp/cicsts/cicsts31/samples/webservices/client
250 HFS directory /usr/lpp/cicsts/cicsts31/samples/webservices/client is the
current working directory
ftp> get ExampleAppDispatchOrder.ear
200 Port request OK.
125 Sending data set
/usr/lpp/cicsts/cicsts31/samples/webservices/client/Example
AppDispatchOrder.ear
250 Transfer completed successfully.
ftp: 50623 bytes received in 0,03Seconds 1687,43Kbytes/sec.
ftp> bye
221 Quit command received. Goodbye.

Installing the service provider
CICS TS V3.1 provides a sample Web service provider application
ExampleAppDispatchOrder.ear. This application archive is built at the J2EE 1.3
level. We planned to use the application in a J2EE 1.4 environment (WebSphere
Application Server V6), therefore we migrated the application. We called the new
application archive file dispatchOrder.ear.

Next we installed the dispatchOrder.ear file on WebSphere Application Server for
z/OS. We opened a Web browser window and entered the URL:

http://tx1.mop.ibm.com:13880/ibm/console

 Chapter 3. Web services using HTTP 99

After logging in, we clicked Applications → Install New Application. On the
next window (Figure 3-18) we clicked Local file system and entered the path of
the EAR file:

F:\Web Services Sysprog\LAN book\addmat\src\ears\dispatchOrder.ear

Figure 3-18 WebSphere Administrative console

We clicked Next → Next → Next → Next → Next → Finish, and then saved the
changes to the master configuration.

3.3.3 Testing the configuration

In this section we discuss how we tested the configuration using the same
method described in 3.2.4, “Testing the configuration” on page 90.

Running the Web client application
We started a Web browser session and entered the URL:

http://cam21-pc11:9080/CatalogWeb/Welcome.jsp

The window in Figure 3-10 on page 91 was presented, and we clicked ORDER
ITEM.

The window in Figure 3-19 was presented. We entered values for User Name and
Department Name and clicked SUBMIT.

100 Implementing CICS Web Services

Figure 3-19 CICS - Catalog application order window

We received a message back saying “ORDER SUCCESFULLY PLACED.” We also
noted that the service provider application wrote a message confirming the order
to the WebSphere Application Server for z/OS SYSPRINT DD (Example 3-15).

Example 3-15 ExampleAppDispatchOrder output from WebSphere Application Server

DispatchOrderSoapBindingImpl: dispatchOrder(): ItemRef=10 Quantity=1
CustomerName=Tommy Dept=ITSO

3.4 Configuring for high availability

After you have successfully configured and tested your CICS Web service
configuration, you should consider how you can clone the CICS regions in order
to improve scalability and availability.

The principal areas for consideration are:

� How to load balance TCP/IP requests across multiple CICS listener regions

� How to load balance Web service requests dynamically across multiple CICS
AORs

 Chapter 3. Web services using HTTP 101

3.4.1 TCP/IP load balancing

CICS is designed to work with Sysplex Distributor. Sysplex Distributor is an
integral part of z/OS Communications Manager, which offers the ability to load
balance incoming socket open requests across different address spaces running
on different IP stacks (usually on different LPARs). The routing decision is based
on real-time socket status and z/OS Quality of Service (QoS) criteria. This
provides the benefit of balancing work across different MVS™ images, providing
enhanced scalability and failover in a z/OS Parallel Sysplex®.

3.4.2 High availability configuration

Figure 3-20 shows the recommended high availability configuration. CICSPlex
SM provides a dynamic routing program that supports the dynamic routing of
transactions. This provides the ability for applications invoked by Web service
requests to be dynamically routed across a CICSplex.

Figure 3-20 High scalability and availability configuration

3.4.3 Routing inbound Web service requests

Inbound Web service requests can be routed to a different CICS region than the
one that receives the request using one of two routing models:

� Distributed routing

� Dynamic program routing

HTTP Sysplex

Distributor

LPAR-1

LPAR-2

LPAR-3

CICS
listener
region 1

CICS
listener
region 2

CICS AORs

z/OS sysplex

CICS
programSOAP

102 Implementing CICS Web Services

The distributed routing model
The transaction that runs the target application program is eligible for routing
when one of the following is true:

� The content of the DFHWS-USERID container has been changed by a
program in the pipeline.

� The content of the DFHWS-TRANID container has been changed by a
program in the pipeline.

� The transaction is defined as DYNAMIC or with REMOTESYSTEM(sysid).

Figure 3-21 shows how the distributed routing model can be used to route
requests for the ORDR transaction. The routing can be controlled by the routing
program specified in the DSRTPGM system initialization parameter. CICSPlex
SM can be used to balance the routing requests across multiple AORs.

Figure 3-21 Web service provider - Distributed routing

Pipeline configuration
Special considerations have to be made when configuring a pipeline to be used
in a distributed routing environment. Table 3-4 shows the resource definition
requirements for both the listener region and AOR, and whether each resource
definition can be shared between the regions.

Table 3-4 Pipeline resource definitions in dynamic routing configuration

Resource Listener region AOR

TCPIPSERVICE Required Not required

PIPELINE Required, shared Required, shared

WEBSERVICE Automatically installed
from PIPELINE, shared

Required, automatically
installed from PIPELINE,
shared

Pipeline configuration file Required, shared Required, shared

TRANSACTION definition DYNAMIC(YES) DYNAMIC(NO)

CSOL
Sockets
listener task

CWXN
Web attach
task

CPIH
Pipeline alias
task

ORDR
transaction

DFHPITP

Distributed routing

(DSRTPGM)

 Chapter 3. Web services using HTTP 103

The dynamic routing model
An alternative way to dynamically route a Web service request, is at the point
where CICS links to the user program, in our case DFH0XCMN. At this point
(Figure 3-22) the request is routed using the dynamic routing model. In this
scenario, the routing can be controlled by the program specified in the DTRPGM
system initialization parameter. CICSPlex SM can be used to balance the
program link requests across multiple AORs.

Figure 3-22 Web service provider - Dynamic routing

3.5 Problem determination

In this section we highlight different ways of diagnosing problems that occur
when an incorrect URI is used in a Web services call.

3.5.1 Error calling dispatch service - INVREQ

During testing of the CICS service requester scenario we experienced the
problem shown in Figure 3-23.

Figure 3-23 CICS - Catalog application INVREQ

Figure 3-24 shows the catalog manager configuration (including the URI for the
outbound Web service).

CSOL
Sockets
listener task

CWXN
Web attach
task

CPIH
Pipeline alias
task

DFHPITP

Dynamic routing

(DTRPGM)

DFH0XCMN

104 Implementing CICS Web Services

.

Figure 3-24 CICS - Catalog application ECFG screen

CICS trace
To help diagnose the problem we turned on CICS auxiliary trace using the CETR
transaction. In trace entry 002142 of Example 3-16 we see the error returned
from WebSphere Application Server:

“Error 404: SRVE0190E: File not found /services/dispatchOrder.”

Example 3-16 Sample DispatchOrder CICS trace

PI 0A31 PIIS EVENT - REQUEST_CNT - TASK-00182 KE_NUM-008C TCB-L8003/00ADC0A8 RET-9753E4F2
TIME-12:13:58.4376239562 INTERVAL-00.0000008750 =002137=

1-0000 3C534F41 502D454E 563A456E 76656C6F 70652078 6D6C6E73 3A534F41 502D454E
<SOAP-ENV:Envelope xmlns:SOAP-EN

0020 563D2268 7474703A 2F2F7363 68656D61 732E786D 6C736F61 702E6F72 672F736F
V="http://schemas.xmlsoap.org/so

0040 61702F65 6E76656C 6F70652F 22203E3C 534F4150 2D454E56 3A426F64 793E3C64
ap/envelope/" ><SOAP-ENV:Body><d

0060 69737061 7463684F 72646572 52657175 65737420 786D6C6E 733D2268 7474703A
ispatchOrderRequest xmlns="http:

0080 2F2F7777 772E6578 616D706C 65417070 2E646973 70617463 684F7264 65722E52
//www.exampleApp.dispatchOrder.R

00A0 65717565 73742E63 6F6D223E 3C697465 6D526566 6572656E 63654E75 6D626572
equest.com"><itemReferenceNumber

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> YES YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
 Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==>
 Outbound WebService URI ==> http://tx1.mop.ibm.com:13880/exampleApp/dispat
 ==> hOrder
 ==>
 ==>
 ==>
 APPLICATION CONFIGURATION UPDATED

 PF 3 END 12 CNCL

 Chapter 3. Web services using HTTP 105

00C0 3E31303C 2F697465 6D526566 6572656E 63654E75 6D626572 3E3C7175 616E7469
>10</itemReferenceNumber><quanti

00E0 74795265 71756972 65643E31 3C2F7175 616E7469 74795265 71756972 65643E3C
tyRequired>1</quantityRequired><

0100 63757374 6F6D6572 49643E54 6F6D6D79 2020203C 2F637573 746F6D65 7249643E
customerId>Tommy </customerId>

0120 3C636861 72676544 65706172 746D656E 743E4954 534F2020 20203C2F 63686172
<chargeDepartment>ITSO </char

0140 67654465 70617274 6D656E74 3E3C2F64 69737061 7463684F 72646572 52657175
geDepartment></dispatchOrderRequ

0160 6573743E 3C2F534F 41502D45 4E563A42 6F64793E 3C2F534F 41502D45 4E563A45
est></SOAP-ENV:Body></SOAP-ENV:E

0180 6E76656C 6F70653E *nvelope> *

PI 0A32 PIIS EVENT - RESPONSE_CNT - TASK-00182 KE_NUM-008C TCB-L8003/00ADC0A8 RET-9753E4F2
TIME-12:13:58.4376326594 INTERVAL-00.0000006562 =002142=

1-0000 4572726F 72203430 343A2053 52564530 31393045 3A204669 6C65206E 6F742066
Error 404: SRVE0190E: File not f

0020 6F756E64 3A202F73 65727669 6365732F 64697370 61746368 4F726465 720A
*ound: /services/dispatchOrder. *

Using SNIFFER
The user-written SNIFFER handler program is a simple program that browses
through the containers available in the pipeline. It can be used as a message
handler program or a header processing program.

It browses the containers by issuing a STARTBROWSE CONTAINER command
followed by GETNEXT CONTAINER until all containers have been browsed. It
then issues an ENDBROWSE CONTAINER command. For each container
browsed, it writes the container name and contents to the CICS transient data
queue CESE.

We added the SNIFFER message handler program to the requester pipeline
EXPIPE02. Example 3-17 shows the pipeline configuration file with SNIFFER
added as a message handler program.

Example 3-17 Pipeline configuration file with SNIFFER

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
requester.xsd ">

 <service>
 <service_handler_list>
 <cics_soap_1.1_handler/>
 </service_handler_list>

106 Implementing CICS Web Services

 </service>
 <default_transport_handler_list>
 <handler>
 <program>SNIFFER</program>
 <handler_parameter_list/>
 </handler>
 </default_transport_handler_list>
</requester_pipeline>

The full program is shown in Appendix A.3, “Sample handler program -
SNIFFER” on page 539. Example 3-18 shows the containers in the requester
pipeline as listed by SNIFFER. The container of interest is DFHWS-URI:

http://tx1.mop.ibm.com:13880/exampleApp/dispatchOrder

Example 3-18 sample SNIFFER output

SNIFFER : *** Start ***
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content length : 00000016
SNIFFER : Container content: SEND-REQUEST
SNIFFER : Containers on channel: List starts.
SNIFFER : >================================<
SNIFFER : Container Name : DFHHEADER
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-XMLNS
SNIFFER : Content length : 00000059
SNIFFER : Container content: xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/

envelope/"
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-SOAPLEVEL
SNIFFER : Content length : 00000004
SNIFFER : Container content:
SNIFFER : >================================<
SNIFFER : Container Name : DFH-HANDLERPLIST
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHRESPONSE
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content length : 00000016
SNIFFER : Container content: SEND-REQUEST
SNIFFER : >================================<

 Chapter 3. Web services using HTTP 107

SNIFFER : Container Name : DFH-SERVICEPLIST
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-USERID
SNIFFER : Content length : 00000008
SNIFFER : Container content: CICSUSER
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-TRANID
SNIFFER : Content length : 00000004
SNIFFER : Container content: ORDR
SNIFFER : >================================<
SNIFFER : Container Name : DFHREQUEST
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-BODY
SNIFFER : Content length : 00000293
SNIFFER : Container content: <SOAP-ENV:Body><dispatchOrderRequest
xmlns="http://www.exampleApp.dispatchOrder.Request.com"><itemRefe
renceNumber>10</itemReferenceNumber><quantityRequired>1</quantityRequired><cust
omerId>Tommy </customerId><chargeDepartment>ITSO
 </chargeDepartment></dispatchOrderRequest></SOAP-ENV:Body>
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-URI
SNIFFER : Content length : 00000255
SNIFFER : Container content:

http://tx1.mop.ibm.com:13880/exampleApp/dispatchOrder
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-SOAPACTION
SNIFFER : Content length : 00000002
SNIFFER : Container content: ""
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-OPERATION
SNIFFER : Content length : 00000255
SNIFFER : Container content: dispatchOrder
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-PIPELINE
SNIFFER : Content length : 00000008
SNIFFER : Container content: EXPIPE02
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-DATA
SNIFFER : Content length : 00000023
SNIFFER : Container content: 0010001Tommy ITSO
SNIFFER : Containers on channel: List ends
SNIFFER : in a SOAP header processing program.....
SNIFFER : **** End ****

108 Implementing CICS Web Services

Checking the SOAP address in the WSDL
Next we checked the SOAP address in the WSDL file of the deployed EAR file.
In the WebSphere administrative console we clicked Applications →
Enterprise applications → dispatchOrder → Publish WSDL file →
DispatchOrder_WSDLFiles.zip and saved the file to disk. We unzipped the file
into the directory structure shown in Figure 3-25.

Figure 3-25 ExampleAppDispatchOrder path

In the WSDL file dispatchOrder.wsdl (Example 3-19) we noted the URI of the
Web service as found in the soap: address location.

Example 3-19 dispatchOrder sample wsdl

<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace="http://www.exampleApp.dispatchOrder.com"

xmlns:tns="http://www.exampleApp.dispatchOrder.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:resns="http://www.exampleApp.dispatchOrder.Response.com"
xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <xsd:schema attributeFormDefault="qualified"

elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:tns="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 Chapter 3. Web services using HTTP 109

<xsd:element name="dispatchOrderRequest" nillable="false">
.
. Part of wsdl not included
.
 <binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/

soap/http"/>
 <operation name="dispatchOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="DFH0XODSRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="DFH0XODSResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="dispatchOrderService">
 <port name="dispatchOrderPort" binding="tns:dispatchOrderSoapBinding">
 <soap:address location="http://tx1.mop.ibm.com:13880/

exampleApp/services/dispatchOrderPort"/>
 </port>
 </service>
</definitions>

The error shown in Figure 3-24 on page 105 was caused by specifying an
incorrect URI for the dispatchOrder Web service. In the catalog manager
configuration (Figure 3-24) we specified the URI /exampleApp/dispatchOrderPort
for the outbound Web service. This is the correct URI for the dispatchOrder
service provider deployed inside CICS, but a URI of
/exampleApp/services/dispatchOrderPort is the correct URI for our
dispatchOrder service deployed in WebSphere Application Server.

110 Implementing CICS Web Services

Chapter 4. Web services using
WebSphere MQ

In this chapter we describe how we configured our test CICS environment to
support Web services using WebSphere MQ as the transport mechanism.

4

© Copyright IBM Corp. 2007. All rights reserved. 111

4.1 Preparation

After outlining our test configuration (Figure 4-1), we show how we enabled
WebSphere MQ (WMQ) support in a CICS region. We next explain how we
configured CICS as a service provider for incoming WMQ message requests.
Finally, we show how we configured a CICS region to act as a service requester,
sending requests in WMQ messages.

Figure 4-1 Software components: Web services using HTTP and WMQ

We do not provide details on how to install the software components, and we
also assume the reader has a working knowledge of CICS and WebSphere MQ.

Note: We used a CICS-to-CICS scenario in order to demonstrate how WMQ
can be used with a CICS service provider and a service requester. You can
also use WMQ to pass SOAP messages between WebSphere Application
Server and CICS.

CICS TS V3.1

CIWSR3C1

WebSphere Application
Server V6

Windows 2000 Cam21-Pc3

z/OS V1.6 mvsg3.mop.ibm.com

CICS TS V3.1

CIWSR3C2

Catalog manager
(service provider)

Dispatch manager
(service requester)

Order dispatch
Endpoint

(service provider)

Catalog.ear

HTTP

WMQQueue Manager

MQS3

112 Implementing CICS Web Services

4.1.1 Software checklist

For the configuration shown in Figure 4-1 we used the levels of software shown
in Table 4-1.

Table 4-1 Software used in the WebSphere MQ scenarios

4.1.2 Definition checklist

The z/OS definitions we used to configure the scenarios are listed in Table 4-2.

Table 4-2 Definition checklist

Windows z/OS

Windows 2000 SP4 z/OS V1.6

IBM WebSphere Application Server - ND
V6.0.2.0

CICS Transaction Server V3.1

Internet Explorer V6.0

WebSphere MQ V5R3M1

Our J2EE applications
� Catalog.ear

Catalog manager service requester
application

Our user-supplied CICS programs
� CIWSMSGH (message handler

program)

Tip: If you use WMQ to pass SOAP messages between WebSphere
Application Server and CICS, you should install the fix for APAR PK20393.

Value CICS region 1 CICS region 2

IP name mvsg3.mop.ibm.com mvsg3.mop.ibm.com

IP address 9.100.193.167 9.100.193.167

TCP/IP port 13301

Job name CIWSR3C1 CIWSR3C2

APPLID A6POR3C1 A6POR3C2

TCPIPSERVICE R3C1

Provider PIPELINE EXPIPE01 EXPIPEP03

Requester PIPELINE EXPIPE02

WMQ queue manager MQS3 MQS3

 Chapter 4. Web services using WebSphere MQ 113

The WMQ definitions we used to configure the scenarios are listed in Table 4-3.

Table 4-3 WMQ definition checklistt

4.2 WebSphere MQ configuration

We completed the following tasks in order to enable WMQ support in the two
CICS regions CIWSR3C1 and CIWSR3C2:

� Adding WMQ support to CICS

� Defining the queues

� Defining the trigger process

4.2.1 Adding WebSphere MQ support to CICS

We updated the CICS startup procedure for each CICS region by adding the
WMQ libraries to the STEPLIB and DFHRPL as shown in Example 4-1.

Example 4-1 CICS startup JCL

//STEPLIB DD DSN=CICSTS31.CICS.SDFHAUTH,DISP=SHR
// DD DSN=CICSTS31.CICS.SDFJAUTH,DISP=SHR
// DD DSN=MQM.SCSQANLE,DISP=SHR
// DD DSN=MQM.SCSQAUTH,DISP=SHR
//DFHRPL DD DSN=CIWS.CICS.USERLOAD,DISP=SHR
// DD DSN=CEE.SCEECICS,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CICSTS31.CICS.SDFHLOAD,DISP=SHR
// DD DSN=MQM.SCSQLOAD,DISP=SHR
// DD DSN=MQM.SCSQANLE,DISP=SHR
// DD DSN=MQM.SCSQCICS,DISP=SHR
// DD DSN=MQM.SCSQAUTH,DISP=SHR

� We updated the SIT parameters on CICS region CIWSR3C1:

– MQCONN=YES

– INITPARM=(CSQCPARM='SN=MQS3,TN=1,IQ=VSG3.R3C1.INITQ')

Value Queue manager MQS3

Queues V3G3.R3C2.PIPE3.REQUEST
V3G3.R3C2.PIPE3.RESPONSE

Process VSG3.R3C2.PROCESS

114 Implementing CICS Web Services

� We updated the SIT parameters on CICS region CIWSR3C2:

– MQCONN=YES

– INITPARM=(CSQCPARM='SN=MQS3,TN=1,IQ=VSG3.R3C2.INITQ')

� We added the WMQ RDO groups to the startup LIST on CICS region 1 using
the following commands, and then we restarted the CICS region:

CEDA ADD GROUP(CSQCAT1) TO LIST(LISTR3C1)
CEDA ADD GROUP(CSQKDQ1) TO LIST(LISTR3C1

� We added the WMQ RDO groups to the startup LIST on CICS region 2 using
the following commands, and then we restarted the CICS region:

CEDA ADD GROUP(CSQCAT1) TO LIST(LISTR3C2)
CEDA ADD GROUP(CSQKDQ1) TO LIST(LISTR3C2)

4.2.2 Defining the queues

Example 4-2 shows the JCL that we used to define two QUEUE resources of
type local in the MQS3 queue manager region. One queue is for incoming
requests and the other is for responses.

Example 4-2 JCL for defining the queues

//CHIQUEUE JOB 1,CIWS,TIME=1440,NOTIFY=&SYSUID,REGION=4M,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//*
//CSQUTIL EXEC PGM=CSQUTIL,PARM='MQS3'
//STEPLIB DD DSN=MQM.SCSQLOAD,DISP=SHR
// DD DSN=MQM.SCSQANLE,DISP=SHR
// DD DSN=MQM.SCSQAUTH,DISP=SHR
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
COMMAND DDNAME(CMDINP)
/*
//CMDINP DD *
*
DEFINE QLOCAL(VSG3.R3C2.PIPE3.REQUEST) -
DESCR('QUEUE SOAP INCOMING REQUEST') -
PROCESS(VSG3.R3C2.PROCESS) -
TRIGGER -
TRIGTYPE(FIRST) -
INITQ('VSG3.R3C2.INITQ') -
*
DEFINE QLOCAL(VSG3.R3C2.PIPE3.RESPONSE) -

 Chapter 4. Web services using WebSphere MQ 115

DESCR('QUEUE SOAP RESPONSE') -
*
/*

The INITQ VSG3.R3C2.INITQ is the same name as specified in the INITPARM
parameter for the CIWSR3C2 region.

4.2.3 Defining the trigger process

Example 4-3 shows the command that we used to define a PROCESS.

Example 4-3 WMQ definition of PROCESS

DEFINE PROCESS(VSG3.R3C2.PROCESS)
APPLTYPE(CICS)
APPLICID(CPIL)

The process name is the same name specified when defining the request queue
VSG3.R3C2.PIPE3.REQUEST in Example 4-2. APPLICID is specified as CPIL
(the SOAP MQ inbound listener transaction) which means that this transaction
will be started in CICS when a service request arrives. CPIL matches an
incoming URI to a URIMAP definition in order to match the URI to a
WEBSERVICE, and attaches the CPIQ transaction (the SOAP MQ inbound
router transaction).

4.3 Configuring CICS as a service provider using WMQ

In this section we discuss how we configured the CICS region CIWSR3C2 as a
service provider using WMQ (Figure 4-2).

The catalog manager application provides a dispatch manager program that
provides an interface for dispatching an order to an external partner. In this
scenario, we configured a remote order dispatch endpoint, such that the dispatch
request is sent to a CICS service provider program DFH0XODE using WMQ.

116 Implementing CICS Web Services

Figure 4-2 CICS as a service provider using WMQ

4.3.1 Configuring the service provider pipeline

To enable CICS to receive Web service requests using WMQ we performed the
following tasks:

� Creating the HFS directories

� Configuring the pipeline configuration file

� Updating the message handler program CIWSMSGH

� Creating and installing the PIPELINE resource definition

Creating the HFS directories
We created the HFS directories shown in Example 4-4.

Note: On our system the two CICS regions are actually running on the same
z/OS image. In practice they would normally be running on two different
systems.

CIWSR3C1

WebSphere Application
Server V6

Windows 2000 Cam21-Pc3

z/OS V1.6 mvsg3.mop.ibm.com

CIWSR3C2

Catalog manager
(service provider)

Dispatch manager
(service requester)

Order dispatch
Endpoint

(service provider)

Catalog.ear

HTTP

Request Queue
VSG3.R3C2.PIPE3.REQUEST

Response Queue
VSG3.R3C2.PIPE3.RESPONSE

CICS TS V3.1

PIPELINE:
EXPIPE02

PIPELINE:
EXPIPE03

CICS TS V3.1 DFH0XODE

 Chapter 4. Web services using WebSphere MQ 117

Example 4-4 HFS directories used in the PIPELINE definition

/CIWS/R3C2/config
/CIWS/R3C2/shelf
/CIWS/R3C2/wsbind/provider

We copied the dispatchOrderEndpoint.wsbind file from the CICS-supplied
directory /usr/lpp/cicsts/cicsts31/samples/webservices/wsbind/provider to our
wsbind directory /CIWS/R3C2/wsbind/provider.

The config directory is used for the pipeline configuration file that we create in a
subsequent step, while CICS uses the shelf directory to store installed wsbind
files.

We gave the CICS region user ID read permission to the config and wsbind
directories, and update permission to the shelf directory.

Configuring the pipeline configuration file
In order to add the CIWSMSGH message handler program to the pipeline for the
service provider, we used the same pipeline configuration file that is described in
“Customizing the pipeline configuration file” on page 80.

Updating the message handler program
The default transaction ID assigned to inbound WMQ Web services transactions
is CPIQ. We wanted to assign a different transaction ID to the dispatch request.
To do this, we updated the CIWSMSGH message handler program that we first
introduced in “Writing the message handler program” on page 80. We replaced
the transaction ID in the DFHWS-TRANID container with an ID based on the
service requester (which can be found in the DFHWS-WEBSERVICE container).

Table 4-4 shows the relationship between the transaction ID and the Web service
request.

Table 4-4 Transaction ID to Web services name relationship

Before we activated the message handler program we needed to create the new
TRANSACTION definition with the same characteristics as the CICS-supplied
definition for CPIQ.

Transaction ID Web services request

DISP dispatchOrderEndPoint

118 Implementing CICS Web Services

We used the following CEDA COPY command to create the transaction
definition:

CEDA COPY TRANSACTION(CPIQ) GROUP(DFHPIPE) TO(R3C2) AS(DISP)

Then we installed the definition.

Creating the PIPELINE resource definition
We then defined the PIPELINE for the CICS service provider using the following
CICS command:

CEDA DEFINE PIPELINE(EXPIPE03) GROUP(R3C2)

We defined EXPIPE03 as shown in Figure 4-3.

Figure 4-3 CEDA DEFINE PIPELINE EXPIPE03

� We set CONFIGFILE to the name of our pipeline configuration file.

/CIWS/R3C2/config/basicsoap12provider.xml

� We set SHELF to the name of the shelf directory.

/CIWS/R3C2/shelf

OVERTYPE TO MODIFY CICS RELEASE = 0640
 CEDA DEFine PIpeline(EXPIPE03)
 PIpeline : EXPIPE03
 Group : R3C2
 Description ==>
 STatus ==> Enabled Enabled | Disabled
 Configfile ==> /CIWS/R3C2/config/basicsoap12provider.xml
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 SHelf ==> /CIWS/R3C2/shelf
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 Wsdir : /CIWS/R3C2/wsbind/provider
 (Mixed Case) :
 :

SYSID=R3C2 APPLID=A6POR3C2

 Chapter 4. Web services using WebSphere MQ 119

� We set WSDIR to the Web service binding directory that contains the wsbind
files for the sample application.

/CIWS/R3C2/wsbind/provider

Installing the PIPELINE resource
We used CEDA to install the PIPELINE definition. When the PIPELINE is
installed, CICS scans the wsdir directory and dynamically creates a
WEBSERVICE and a URIMAP definition for each wsbind file that it finds.

Figure 4-4 shows a CEMT INQUIRE PIPELINE for EXPIPE03.

Figure 4-4 CEMT INQUIRE PIPELINE - EXPIPE03

After installing the pipeline, we used the CEMT INQUIRE WEBSERVICE
command to view the dynamically installed Web service. In Figure 4-5, we noted
that the name of the service (namely, dispatchOrderEndpoint) is taken from the
wsbind file.

Figure 4-5 CEMT INQUIRE WEBSERVICE

Figure 4-6 shows the dynamically installed URIMAP that is associated with the
Web service.

INQUIRE PIPELINE
RESULT - OVERTYPE TO MODIFY
 Pipeline(EXPIPE03)
 Enablestatus(Enabled)
 Configfile(/CIWS/R3C2/config/basicsoap12provider.xml)
 Shelf(/CIWS/R3C2/shelf/)
Wsdir(/CIWS/R3C2/wsbind/provider/)

 SYSID=R3C2 APPLID=A6POR3C2

INQUIRE WEBSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
 Webs(dispatchOrderEndpoint) Pip(EXPIPE03)
 Ins Uri(£439310) Pro(DFH0XODE) Com Dat(20051209)

 SYSID=R3C2 APPLID=A6POR3C2

120 Implementing CICS Web Services

Figure 4-6 CEMT INQUIRE URIMAP

4.4 Configuring CICS as service requester using WMQ

In this section we explain how we configured CICS region CIWSR3C1 as a
service requester using WMQ. In this particular scenario CICS region
CIWSR3C1 is both a service provider for the catalog manager application (as
detailed in “Configuring CICS as a service provider” on page 76) and a service
requester of the Dispatch manager application.

Figure 4-7 on page 122 shows the Dispatch manager order dispatch program
DFH0XWOD, which issues an EXEC CICS INVOKE WEBSERVICE command to
make an outbound Web service call to the order dispatcher running in CICS
region CIWSR3C2.

When communication between the service requester and service provider uses
WMQ, the URI of the target is in a form that identifies the target as a queue, and
includes information to specify how the request and response should be handled
by WMQ.

INQUIRE URIMAP
RESULT - OVERTYPE TO MODIFY
 Urimap(£439310)
 Usage(Pipe)
 Enablestatus(Enabled)
 Analyzerstat(Noanalyzer)
 Scheme(Http)
 Redirecttype(None)
 Tcpipservice()
 Host(*)
 Path(/exampleApp/dispatchOrder)
 Transaction(CPIH)
 Converter()
 Program()
 Pipeline(EXPIPE03)
 Webservice(dispatchOrderEndpoint)
 Userid()
 Certificate()
 Ciphers()
 Templatename()

SYSID=R3C2 APPLID=A6POR3C2

 Chapter 4. Web services using WebSphere MQ 121

Figure 4-7 CICS as a service provider using WMQ

4.4.1 Configuring the Catalog application

We configured the catalog application to activate the outbound Web services
feature using WMQ. We used the CICS-supplied catalog manager configuration
transaction ECFG to configure the example application (Figure 4-8).

CICS TS V3.1 CIWSR3C1

WebSphere Application
Server V6

Windows 2000 Cam21-Pc3

z/OS V1.6 mvsg3.mop.ibm.com

CICS TS V3.1

CIWSR3C2

Catalog manager
(service provider)

Dispatch manager
DFH0XWOD

(service requester)

Order dispatch
Endpoint

(service provider)

Catalog.ear

HTTP

Request Queue
VSG3.R3C2.PIPE3.REQUEST

Response Queue
VSG3.R3C2.PIPE3.RESPONSE

LINK

122 Implementing CICS Web Services

Figure 4-8 Catalog application configuration screen for WMQ

We changed Outbound WebService to Yes, and entered the URI of the service
provider for our outbound service request:

jms:/queue?destination=VSG3.R3C2.PIPE3.REQUEST@MQS3&targetService=/e
xampleApp/dispatchOrder&replyDestination=VSG3.R3C2.PIPE3.RESPONSE

We then pressed PF3 to save the configuration.

The Dispatch manager module DFH0XWOD uses the value of the Outbound
WebService URI parameter as the URI of the Web service to be invoked when it
invokes the dispatch service with an EXEC CICS INVOKE WEBSERVICE
command.

The main parameters for the Outbound WebService URI are as follows:

� jms:/ : A specific URI format to use WMQ.

� destination: VSG3.R3C2.PIPE3.REQUEST@MQS3 is a concatenation of
the target queue name and the queue manager name.

Tip: You must use the ampersand (&) character as a separator between
options; otherwise CICS does not recognize the parameters.

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> YES YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> 9.100.193.167:13301
 Outbound WebService URI ==> jms:/queue?destination=VSG3.R3C2.PIPE3.REQUE
 ==> ST@MQS3&targetService=/exampleApp/dispatchOr
 ==> der&replyDestination=VSG3.R3C2.PIPE3.RESPONS
 ==> E
 ==>

PF 3 END 12 CNCL

 Chapter 4. Web services using WebSphere MQ 123

� targetService: /exampleApp/dispatchOrder is the target service in
CIWSR3C2 (it matches the dynamically installed URIMAP shown in
Figure 4-6 on page 121)

� replyDestination: VSG3.R3C2.PIPE3.RESPONSE is the reply queue name
for the response.

Timeout considerations
It is not possible to manage timeout for a WMQ service requester application by
specifying a timeout value on the URI. We tested different values for the timeout
parameter and found that it always timed out after one minute.

For further information about using WMQ to transport SOAP messages, see
WebSphere MQ - Transport for SOAP, SC34-6651.

4.4.2 Configuring WebSphere Application Server on Windows

We deployed the catalog manager service requester application (catalog.ear) to
WebSphere Application Server for Windows 2000 as documented in 3.2.3,
“Configuring WebSphere Application Server on Windows” on page 87.

4.5 Testing the WMQ configuration

To test our WMQ setup we used a Web browser to run the Catalog application as
described in “Testing the configuration” on page 100.

Figure 4-9 shows order details for our request.

Tip: If you do not want to specify the targetService in URI data, you can
pass the same information by setting /exampleApp/dispatchOrder as the
TRIGDATA attribute of the receive queue VSG3.R3C2.PIPE3.REQUEST.

Important: When the URI specified on a EXEC CICS INVOKE WEBSERVICE
command begins with jms:/, CICS uses WMQ rather than HTTP to send the
request. The application program itself does not need to be aware that WMQ
is being used as the transport mechanism in place of HTTP.

124 Implementing CICS Web Services

Figure 4-9 Catalog application - ORDER function

From a CICS 3270 screen we used the CICS Execution Diagnostic Facility (EDF)
to intercept the DISP transaction on CICS region CIWSR3C2. We then used the
CEMT INQUIRE TASK command to view the inflight transactions (Figure 4-10).

Figure 4-10 CEMT INQUIRE TASK

 INQUIRE TASK
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tas(0000026) Tra(CKAM) Sus Tas Pri(255)
 Sta(SD) Use(CIWS3D) Uow(BE0772E8804C9C2B)
 Tas(0000344) Tra(CKTI) Sus Tas Pri(001)
 Sta(SD) Use(CICSUSER) Uow(BE0CE7454196FC8B) Hty(MQSeries)
 Tas(0000386) Tra(CEMT) Fac(G350) Run Ter Pri(255)
 Sta(TO) Use(CICSUSER) Uow(BE0CE689E4ECE06F)
 Tas(0000388) Tra(CPIL) Sus Tas Pri(001)
 Sta(SD) Use(CICSUSER) Uow(BE0CE7454267F84B) Hty(MQSeries)
 Tas(0000389) Tra(CPIQ) Sus Tas Pri(001)
 Sta(S) Use(CICSUSER) Uow(BE0CE745420A3860) Hty(RZCBNOTI)
 Tas(0000390) Tra(DISP) Sus Tas Pri(001)
 Sta(U) Use(CICSUSER) Uow(BE0CE74542800740) Hty(EDF)
 Tas(0000392) Tra(CEDF) Fac(G353) Sus Ter Pri(001)
 Sta(SD) Use(CICSUSER) Uow(BE0CE74542C74820) Hty(ZCIOWAIT)

SYSID=R3C2 APPLID=A6POR3C2

 Chapter 4. Web services using WebSphere MQ 125

Figure 4-10 shows the inflight transactions:

� The SOAP MQ inbound listener transaction (CPIL)

� The SOAP MQ inbound router transaction (CPIQ)

� The transaction used for running the business logic program (DISP)

After ending the EDF session, we received the ORDER SUCCESFULLY PLACED
response in the browser.

We noted the SYSPRINT messages by the CIWSMSGH message handler for
CICS region CIWSR3C2 (Example 4-5).

Example 4-5 CICS CIWSR3C2 - SYSPRINT

CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: dispatchOrderEndpoint
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: DISP
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-URI
CIWSMSGH: Container content: wmq:VSG3.R3C2.PIPE3.REQUEST/exampleApp/dispatchOrder

Note that after the request for the dispatchOrderEndpoint service arrives, the
message handler changes the transaction ID to DISP. In particular, note that the
DFHWS-URI container shows the URI in WMQ format.

4.6 High availability with WMQ

In Section 3.4, “Configuring for high availability” on page 101 we outlined how
HTTP Web service requests can be balanced across multiple CICS regions in
order to provide a high availability configuration. Here we take a brief look at how
WMQ Web service requests can be balanced across multiple CICS regions.

On page 101, we also discussed how once a request is received by a specific
CICS region, it can be dynamically routed within a CICSPlex. These transaction
and program routing mechanisms can be used irrespective of how the SOAP
message is transported.

The principal areas for consideration when designing a high availability
configuration for WebSphere MQ are:

� How to share access to queues across multiple CICS regions

126 Implementing CICS Web Services

� How to load balance WMQ connections across multiple queue managers

Figure 4-11 shows an example high availability configuration for WMQ, in which
queues shared in the coupling facility can be accessed by CICS regions running
on different LPARs, and WMQ connections are balanced across different queue
managers using shared channels.

Figure 4-11 High availability configuration for WMQ

Figure 4-11 shows an example WMQ configuration that takes advantage of
several parallel sysplex high availability capabilities, specifically:

� Shared queues

A shared queue is a type of queue in which messages on that queue can be
accessed by one or more queue managers that are identified to the sysplex.
The queue managers that can access the same set of shared queues form a
group called a queue-sharing group (QSG).

A QSG controls which queue managers can access which coupling facility list
structures and hence, which shared queues. Each coupling facility list
structure is owned by a QSG and can only be accessed by queue managers
in that QSG.

Multiple queue managers on multiple MVS images within the same
queue-sharing group can put messages to and get messages from the same
shared queue. This is achieved by storing all the messages in a shared
queue in the same coupling facility list structure.

Shared
channel

Connect to
Queue Sharing Group

Queue Manager A

DB2
Data Sharing

Shared
channel

MQ GET

MQ GET

WMQ CONNECT

LPAR 1

CICS

Listener Region 2

CICS

Listener Region 1IP Load balancing
Queue Manager B

LPAR 2
Coupling
Facility

 Chapter 4. Web services using WebSphere MQ 127

Multiple queue managers on multiple MVS images within the same
queue-sharing group can access the same WebSphere MQ objects. This is
achieved by storing the object definitions in tables of a DB2 data-sharing
group.

The use of shared queues provides a highly available solution because the
failure of a single MVS image does not prevent access to shared queues.
Another benefit is a capability to implement pull workload balancing. It means
that by defining the input queue of an application (such as a CICS service
provider application) as a shared queue, you make any message put to that
queue available to be retrieved by any queue manager in the queue-sharing
group.

� Shared channels

The advantage of using shared channels is high availability when compared
to being connected to a single queue manager. An inbound channel is
classed as shared if it is connected to the queue manager through a group
listener. A group listener is an additional task started on each channel initiator
in the queue-sharing group. This task listens on an ip address/port
combination, specific to that queue manager, known as its group address.
Each group address can then be registered with an IP routing mechanism
such as Sysplex Distributor.

� Sysplex Distributor

Sysplex Distributor is designed to address the requirement of one single
network-visible IP address for a service. Sysplex distributor can be used to
map a queue-sharing group-wide generic IP address/port to a specific group
address.

For more information about configuring high availability with WMQ refer to
WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864.

128 Implementing CICS Web Services

Chapter 5. Connecting CICS to the
service integration bus

This chapter introduces the service integration bus (or bus) and the benefits of
connecting your CICS Web service applications to a bus. It then goes on to
explain the steps involved in accessing a CICS Web service over a bus.

5

© Copyright IBM Corp. 2007. All rights reserved. 129

5.1 Overview of the service integration bus

WebSphere Application Server V6 provides the ability to use the service
integration bus as an intermediary between service requestors and service
providers, allowing control over the flow, routing, and transformation of
messages.

The use of Web services with the service integration bus is an evolution of the
Web Services Gateway (WSGW) provided in WebSphere Application Server
Version 5. Whereas the Web Services Gateway was a stand-alone application in
V5, the bus is more tightly integrated into the application server, enabling users
to use the WebSphere Application Server administration and scalability options,
and also build on top of the asynchronous messaging features provided by
WebSphere Application Server.

The bus allows the system administrator to create a level of indirection between
service requesters and providers by exposing existing services at new
destinations. The bus also provides options for managing these services through
mediations, which can access and manipulate incoming and outgoing message
content, or even route the message to a different service. Support for JAX-RPC
(the Java API for XML-based Remote Procedure Calls) handlers is also included
in the bus.

Figure 5-1 is an overview of the bus and how it can be used to enable Web
services clients to access a CICS Web service. Clients can use bus-generated
WSDL to access the service, and appropriate mediations could be used for
message logging or transformation purposes.

Figure 5-1 Exposing a CICS Web service over the service integration bus

It is possible for CICS to interoperate with the bus both as a service provider and
as a service requester. The use of bus-generated WSDL means that the service
requester does not need to know the location of the CICS service provider; it only
needs to know the location of the bus. The bus itself knows the location of the
CICS service provider. Similarly, a CICS service requester does not need to

W S -S ec urity
b in d in gs
W S -S ec urity
co n fig ura tio n

W S -S ecu rity
b in d in g s

W S -S ecu rity
co n fig u ra tio n

O u tb o u n d
P o rt

S erv ice
R eques to r

S erv ice In teg ra tio n B u s

C IC S
S e rv ice
P rov ide r

E n d p o in t
L is ten er

Inbound se rv ice reques t

Inbound se rv ice respon se

O u tb ound se rv ice reques t

O utbo und se rv ice response

G atew ay
S erv ice

W eb S ph ere A pp lica tio n S erver

M ed ia tionM ed ia tion

130 Implementing CICS Web Services

know the location of the service provider; it only needs to know the location of the
bus.

Among the components you may come across in discussions and
implementations of buses are the following:

� Bus: The “intelligent network” on which inbound and outbound services and
gateway resources are defined.

� Endpoint listener: Entry points to the bus for Web services clients. Endpoint
listeners allow clients to connect over SOAP/HTTP or SOAP/JMS. They are
associated with inbound services and gateway resources.

� Inbound service: Destinations within the bus exposed as Web services (a
gateway service can be thought of as a special kind of inbound service).

� Outbound service: Destinations within the bus that represent external Web
services. CICS is invoked via an outbound service.

� Gateway instance: Enables a user to create gateway services.

� Gateway service: Exposes a target Web service that is external to the bus,
as a bus-managed Web service. (We will be deploying our CICS service
provider application as a gateway service.)

� Mediation: A stateless session EJB™ attached to a service destination that
can apply processing to messages that pass through it, for example, logging
or message transformation.

� JAX-RPC handler: JAX-RPC is a J2EE standard for intercepting and
manipulating Web services messages.

5.1.1 Why you would connect CICS to a bus

We describe here some reasons why you might want to use the Web services
features of a WebSphere Application Server service integration bus with your
CICS service provider and service requester applications.

� Service location independence

You may not want to publish details of the location (TCP/IP addresses) of
your CICS service provider applications. Indirect access from the service
requester to the service provider via a bus means that a change in the
address of the service provider requires a configuration update of the bus, but
not the service requesters. This service location independence enables a
more flexible configuration and eases the task of service administration.

� Securely externalizing existing applications

Businesses can deploy CICS Web services as secure gateway services on
the bus. This enables applications deployed on a CICS deep inside an

 Chapter 5. Connecting CICS to the service integration bus 131

enterprise to be made available as Web services on the Internet to
customers, suppliers, and business partners.

� Return on investment

Any number of business partners can reuse an existing CICS application
process that you make available as a gateway service using the bus. This
provides great opportunity for the reuse of existing assets.

� Protocol transformation

The bus allows a protocol switch between the service requester and the
service provider. For example, if CICS exposes a service provider application
using HTTP as the transport mechanism, a service requester accessing CICS
via the bus can connect to the bus using JMS, and the bus will transparently
forward the request on to CICS over HTTP. This function is invaluable for
ensuring smooth interoperability between businesses that may implement
Web services with different transport mechanisms.

� Standards-based integration

The bus provides support for the major Web services standards, giving
businesses confidence that they can use it to build flexible and interoperable
solutions.

5.2 Preparation

After outlining our test configuration (Figure 5-2), we show how we:

� Configured CICS for a gateway service

� Created a gateway service on the bus

� Tested access to a CICS service provider application via the bus

132 Implementing CICS Web Services

Figure 5-2 The catalog application accessed via a service integration bus

The configuration in Figure 5-2 shows:

� The Catalog manager application Web service inquireSingle deployed in
CICS region CIWSR3C1

� The inquireSingle.wsdl file of the inquireSingle service used by the bus to
locate the CICS service

� A gateway service inquireSingle used by the bus to access the CICS service

� An endpoint listener created in the bus and accessed by the service requester

� The catalog manager service requester deployed in WebSphere Application
Server for Windows

In our tests, we configured a service integration bus within a WebSphere
Application Server running on z/OS (TCP/IP address 9.212.128.94).

CICS TS V3.1

CIWSR3C1

WebSphere Application
Server V6

Windows 2000 Cam21-Pc11

z/OS V1.6 mvsg3.mop.ibm.com

z/OS V1.6 9.212.128.94

WebSphere Application Server V6.0.1 for z/OS

inquireSingle.wsdl

inquireSingle
(ServiceProvider)

SI Bus
Gateway Service

inquireSingle
(Outbound Port)

Catalog.ear

HTTP HTTP

SI Bus
Endpoint Listener

inquireSingle
(Gateway Service)

Service Integration Bus

 Chapter 5. Connecting CICS to the service integration bus 133

5.2.1 Software checklist

For the configuration shown in Figure 5-2 we used the levels of software shown
in Table 5-1.

Table 5-1 Software used in the service integration bus scenarios

5.2.2 Definition checklist

The z/OS definitions we used to configure the scenario are listed in Table 5-2.

Table 5-2 Definition checklist

Windows z/OS

Windows 2000 SP4 z/OS V1.6

IBM WebSphere Application Server - ND
V6.0.2.0

� CICS Transaction Server V3.1
� WebSphere Application Server V6.01

for z/OS in a Network Deployment
configuration

Internet Explorer V6.0

Our J2EE application
� Catalog.ear

Catalog manager service requester
application

CICS-supplied Catalog Manager
application

Note: You require a WebSphere Application Server Network Deployment
configuration if you want to use the Web services gateway functionality.

Value CICS TS WebSphere Application Server
for z/OS (used for the bus)

IP name mvsg3.mop.ibm.com

IP address 9.100.193.167 9.212.128.94

TCP/IP port 13301 9080

Job name CIWSR3C1 PTS001S

APPLID A6POR3C1

TCPIPSERVICE WSGW

Provider PIPELINE EXPIPE01

URIMAP INQSINGW

134 Implementing CICS Web Services

5.3 Configuring CICS for a gateway service

In order to enable access to the inquireSingle service of the CICS catalog
manager application using a gateway service, the WSDL file describing the CICS
service must be made available to the WebSphere Application Server that is
hosting the bus. To do this, we performed the following tasks:

� Updated the catalog manager inquireSingle WSDL file

� Created a URIMAP for serving the WSDL file

� Tested the retrieval of the WSDL file from a Web browser

For all IP requests from the bus to CICS we used the same TCPIPSERVICE
R3C1 that we configured in “Configuring the TCPIPSERVICE definition” on
page 78.

For the Web service request that is passed from the bus to CICS, we used the
EXPIPE01 pipeline that we configured in “Configuring the PIPELINE definition”
on page 83. An alternative approach is to create a pipeline to be used for all
requests from the bus. You may chose to take this approach if you want a
separation of bus requests from non-bus requests, for example, if you want to
run different message handlers for the two different types of request.

5.3.1 Updating the CICS-supplied sample WSDL file

We changed the endpoint information in the CICS-supplied inquireSingle.wsdl to
point to the IP address and port used by the R3C1 TCPIPSERVICE. We copied
the sample WSDL file provided by CICS into file
/u/exampleApp/inquireSingle.wsdl, and updated the location attribute of the
service element as shown in Example 5-1.

Example 5-1 Specifying the CICS service location in inquireSingle WSDL

<service name="DFH0XCMNService">
 <port binding="tns:DFH0XCMNHTTPSoapBinding" name="DFH0XCMNPort">

<soap:address
location="http://mvsg3.mop.ibm.com:13301/exampleApp/inquireSingle"/>

 </port>
</service>

5.3.2 Creating a URIMAP for the WSDL file

CICS allows us to map incoming HTTP requests to an HFS file, and then serve
the file (just like an HTTP server). Figure 5-3 and Figure 5-4 show the URIMAP
that we used to serve the file /u/exampleApp/inquireSingle.wsdl.

 Chapter 5. Connecting CICS to the service integration bus 135

Figure 5-3 URIMAP for serving inquireSingle.wsdl (page 1 of 2)

Figure 5-4 URIMAP for serving inquireSingle.wsdl (page 2 of 2)

OBJECT CHARACTERISTICS CICS RELEASE = 0640
 CEDA View Urimap(INQSINGW)
 Urimap : INQSINGW
 Group : WSGW
 Description :
 STatus : Enabled Enabled | Disabled
 USAge : Server Server | Client | Pipeline
 UNIVERSAL RESOURCE IDENTIFIER
 SCheme : HTTP HTTP | HTTPS
 HOST : *
 (Lower Case) :
 PAth : /exampleApp/inquireSingle.wsdl
 (Mixed Case) :

:
 :
 ASSOCIATED CICS RESOURCES
 TCpipservice :
+ Analyzer : No No | Yes

SYSID=R3C1 APPLID=A6POR3C1

OBJECT CHARACTERISTICS CICS RELEASE = 0640
 CEDA View Urimap(INQSINGW)
+ COnverter :
 TRansaction :
 PRogram :
 PIpeline :
 Webservice : (Mixed Case)
 SECURITY ATTRIBUTES
 USErid :
 CIphers :
 CErtificate : (Mixed Case)
 STATIC DOCUMENT PROPERTIES
 Mediatype : text/xml
 (Lower Case)
 CHaracterset : iso-8859-1 (Mixed Case)
 HOSTCodepage : 037
 TEmplatename :
 (Mixed Case)
+ HFsfile : /u/exampleApp/inquireSingle.wsdl

SYSID=R3C1 APPLID=A6POR3C1

136 Implementing CICS Web Services

We used the following values:

� URIMAP name was set to INQSINGW.

� USAGE was set to SERVER, indicating that CICS is to act like an HTTP
server, in this case serving a static file.

� SCHEME was set to HTTP because no transport security was being used.

� HOST was set to an asterisk (*) to indicate that the URIMAP definition is to be
used as a wildcard to match on any host name.

� PATH was set to /exampleApp/inquireSingle.wsdl. Together with the HOST
and SCHEME values this means that the URIMAP resource will cater to any
HTTP request of the form http://*/exampleApp/inquireSingle.wsdl.

� TCPIPSERVICE was not set so that the URIMAP definition applies to a
request on any inbound port.

� MEDIATYPE was set to text/xml to indicate that an XML file is being served.
CICS creates a Content-Type header for the response using the value of this
attribute.

� CHARACTERSET was set to iso-8859-1 so that CICS converts the body of
the response that is sent to the bus into ASCII.

� HOSTCODEPAGE was set to 037 to indicate the EBCDIC code page in
which the WSDL file is encoded. This information is needed by CICS to
perform code page conversion for the body of the response.

� HFSFILE was set to /u/exampleApp/inquireSingle.wsdl, which is the fully
qualified name of the HFS file containing the WSDL.

� All other values were allowed to default.

5.3.3 Testing the retrieval of the WSDL file from a Web browser

Prior to configuring the gateway service on the bus, we tested the CICS
configuration by retrieving the inquireSingle.wsdl file from a Web browser using
the URL:

http://mvsg3.mop.ibm.com:13301/exampleApp/inquireSingle.wsdl

Figure 5-5 shows the WSDL file displayed in the Web browser.

Note: If the MEDIATYPE attribute specifies a text type, the
CHARACTERSET and HOSTCODEPAGE attributes must also be
specified so that code page conversion can take place.

 Chapter 5. Connecting CICS to the service integration bus 137

Figure 5-5 inquireSingle.wsdl from Web browser

This test demonstrates that CICS is successfully serving the WSDL file. After
configuring the bus, the bus itself will be able to retrieve this WSDL file from
CICS.

138 Implementing CICS Web Services

5.4 Creating a gateway service on the bus

At this point, you need to ask your WebSphere Application Server administrator
for their assistance in defining a CICS gateway service on the bus.

For the purposes of this book, we assume that you have access to a WebSphere
Application Server running in Network Deployment mode (in our case the
WebSphere Application Server was running on z/OS), and that the WebSphere
administrator has done the following:

� Created a service integration bus

� Configured the SOAPHTTPChannel1

� Created an endpoint listener

For information about these and other bus administration tasks, see WebSphere
Version 6 Web Services Handbook Development and Deployment, SG24-6461.

In this section we explain how we created a CICS gateway service. To do this,
we performed the following tasks:

� Identified the bus to be used

� Created a Web services gateway instance

� Created the gateway service

5.4.1 Identifying the bus to be used

We logged on to the Administrative console of the WebSphere Application
Server, which is hosting our bus, using the URL:

http://9.212.128.94:9060/admin

We selected Service Integration → Buses to see what buses were currently
defined on this application server. Figure 5-6 shows the bus CICSBus that was
previously created by our WebSphere administrator. This is the bus that we will
now use for creating a gateway instance and a gateway service.

 Chapter 5. Connecting CICS to the service integration bus 139

Figure 5-6 Service integration bus CICSBus

5.4.2 Creating a Web services gateway instance

A gateway instance is the base on which you create gateway and proxy services;
these services cannot be created until an instance exists. Within a bus, you can
create multiple gateway instances in order to partition these services into logical
groups to allow simpler management.

We clicked CICSBus and then selected Web service gateway instances. We
then selected New to create a new Web service gateway instance. In the
General Properties, we entered the following information:

� The name for the gateway instance CICSBus_GatewayInstance.
� The Gateway namespace urn:com.ibm.ws.CICSBUS_Gateway. This is the

namespace that will be used in all gateway-generated WSDL.

140 Implementing CICS Web Services

� We entered the location for the Default proxy WSDL URL:
http://9.212.128.94:9080/sibws/proxywsdl/ProxyServiceTemplate.wsdl

� We clicked OK and then Save to save our new gateway instance.

Figure 5-7 Create a gateway instance CICSBus_GatewayInstance

5.4.3 Creating a gateway service

Gateway services are used to take an existing WSDL-described Web service
external to the bus (such as the inquireSingle CICS service) and expose it as a
new Web service at a new endpoint, enabling you to relocate the underlying
target service (if needed) without changing the details of the gateway service.

Tip: It is good practice to use a namespace that you are happy with from
the start, because changing it later will require you to redeploy any
associated gateway services.

Note: We will not use this proxy service, but the admin console requires
that one be specified.

 Chapter 5. Connecting CICS to the service integration bus 141

We used the WebSphere admin console to create our gateway service:

� We selected Service integration → Buses and clicked the name of our bus
CICSBus.

� From the additional properties list of CICSBus, we clicked Web service
gateway instances and then clicked again on our gateway instance
CICSBus_GatewayInstance.

� From the additional properties list of CICSBus_GatewayInstance, we clicked
Gateway Services and then New.

� We selected the type of gateway service as a WSDL-defined web service
provider and clicked Next.

� In step 1, we entered the name of the gateway service inquireSingle
(Figure 5-8) and clicked Next.

Figure 5-8 Create gateway service - Step 1

142 Implementing CICS Web Services

� In step 2 we specified the location of the inquireSingle WSDL
(http://mvsg3.mop.ibm.com:13301/exampleApp/inquireSingle.wsdl) which
allows the bus to locate the CICS service (Figure 5-9).

Figure 5-9 Create gateway service - Step 2

� When we clicked Next, WebSphere retrieved the WSDL file (in our case, by
sending an HTTP request to CICS requesting the WSDL file).

� We were then prompted to chose the operation defined in the WSDL which
we want to enable as a gateway service (Figure 5-10). In this case there is
only one option to chose from:

{http://www.DFH0XCMN.DFH0XCP4.com}DFH0XCMNService

We selected the operation and clicked Next.

 Chapter 5. Connecting CICS to the service integration bus 143

Figure 5-10 Create gateway service - Step 3

� For each of the steps 4 through 6 we accepted the default options.

� In step 7 (Select endpoint listeners), we selected the
servernameSOAPHTTPChannel1 endpoint listener (the only one associated
with our bus).

� For step 8 (Define UDDI publication properties), we accepted the default
(no UDDI reference), clicked Finish and saved our changes.

We have now successfully defined our CICS gateway service (Figure 5-11).

Figure 5-11 inquireSingle gateway service

144 Implementing CICS Web Services

5.5 Testing the CICS gateway service

In this section we discuss how we tested the gateway service configuration using
the catalog manager application. We cover the following tasks:

� Publishing the bus-generated WSDL for the inquireSingle gateway service

� Configuring the Catalog manager J2EE application

� Invoking the gateway service

5.5.1 Publish the bus-generated WSDL

In order to test the gateway service, we needed to publish the bus-generated
WSDL by requesting a zip file from WebSphere, which we then saved on the
local machine.

� Using the WebSphere admin console we clicked Service integration →
Buses and then clicked on our bus CICSBus.

� From the additional properties list of CICSBus, we clicked Web service
Gateway instances and then clicked again on our gateway instance
CICSBus_GatewayInstance.

� From the additional properties list of CICSBus_GatewayInstance, we clicked
Gateway Services and then chose our gateway service inquireSingle.

� From the additional properties list of inquireSingle, we clicked Inbound web
service enablement.

� From the additional properties list, we clicked Publish WSDL files to ZIP file
(Figure 5-12).

Figure 5-12 Publish inquireSingle WSDL to ZIP file

� We clicked inquireSingle.zip and saved the file on the local machine.

 Chapter 5. Connecting CICS to the service integration bus 145

� We unzipped the file and noted that the following files were contained in the
zip:

– CICSBus.inquireSingleBindings.wsdl
– CICSBusinquireSingleNonBound.wsdl
– CICSBus.inquireSinglePortTypes.wsdl
– CICSBus.inquireSingleService.wsdl

� The endpoint information (for the inquireSingle gateway service) is stored in
file CICSBus.inquireSingleService.wsdl. We opened the file and located the
SOAP address in the service element (Example 5-2). This is the endpoint
address for our gateway service.

Example 5-2 Gateway service inquireSingle endpoint address

<soap:address
location="http://9.212.128.94:9080/wsgwsoaphttp1/soaphttpengine/CICSBus
/inquireSingle/MVO6_server1_SOAPHTTPChannel1_InboundPort"/>

5.5.2 Configuring the catalog manager J2EE application

Next we needed to configure the catalog manager J2EE application so that it
accesses the inquireSingle gateway service. We started a Web browser session
and entered the URL:

http://cam21-pc11:9080/CatalogWeb/Welcome.jsp

We clicked CONFIGURE and specified the endpoint address of the inquireSingle
gateway service for the Catalog manager Inquire Item Service Endpoint
(Figure 5-13). We clicked SUBMIT to complete the update.

146 Implementing CICS Web Services

Figure 5-13 Configure Catalog manager application to invoke gateway service

5.5.3 Invoking the gateway service

We clicked INQUIRE to submit a catalog single item inquiry. Figure 5-14 shows
the results of the inquireSingle Web service call.

 Chapter 5. Connecting CICS to the service integration bus 147

Figure 5-14 Calling the gateway service inquireSingle

Example 5-3 shows the output from our message handler program CIWSMSGH
for the inquireSingle service request.

Example 5-3 CIWSMSGH message handler output for inquireSingle request

CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireSingle
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQS
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-URI
CIWSMSGH: Container content:
/exampleApp/inquireSingle

Note that this request is treated by CICS in exactly the same way as though it
had been sent directly from the service requester, rather than having been sent
over the SiBus.

148 Implementing CICS Web Services

Part 3 Security
management

We begin this section by introducing you to some basic cryptography concepts
and to some algorithms and protocols that are used to protect computing
resources. The concepts include secret key cryptography, public key
cryptography, hashing functions, message authentication codes, digital
signatures, digital certificates, and certificate revocation lists. The algorithms and
protocols include DES, AES, RSA, SHA-1, DSS, and TLS/SSL.

A CICS application may use one of these algorithms by calling one of the
services provided by the Integrated Cryptographic Service Facility (ICSF). The
service might implement the requested algorithm by invoking either a software
routine or some cryptographic hardware. Therefore, we include in this section
some information about IBM cryptographic hardware.

Next we explain how you can use transport layer security or SOAP message
security, or both, to secure Web services running in CICS both when you use

Part 3

© Copyright IBM Corp. 2007. All rights reserved. 149

HTTP as the transport mechanism and when you use WebSphere MQ as the
transport mechanism.

Finally, we discuss security scenarios that we implemented to demonstrate how
you can secure a CICS Web services environment.

150 Implementing CICS Web Services

Chapter 6. Elements of cryptography

When implementing security for a CICS Web services solution, it is useful to
understand some basic cryptography terminology and concepts such as:

� What we mean by identification, authentication, authorization, integrity,
confidentiality, and non-repudiation

� The difference between secret key cryptography and public key cryptography

� The definition of a hashing function, a digital signature, a digital certificate, a
certificate authority, and a certificate revocation list

The purpose of this chapter is to provide some background information about
cryptography to help you when reading the following chapters in this book, in
which we explain how cryptographic functions can be used with CICS and
describe the scenarios that we tested.

6

© Copyright IBM Corp. 2007. All rights reserved. 151

6.1 The role of cryptography

A complete security policy will put mechanisms in place to achieve the following
objectives:

� Identification

Identification is the ability to assign an identity to the entity accessing the
system. Typically the identity is used to control access to resources.
Depending on the security model in which the identification is performed, the
identity can be called a user ID, a UID, or a principal.

� Authentication

Authentication is the process of validating the identity claimed by the
accessing entity. Authentication is performed by verifying authentication
information provided with the claimed identity. The authentication information
is generally referred to as the accessor’s credentials. A credential can be the
accessor’s name and password; it can also be a token provided by a trusted
party, such as a Kerberos ticket or an X.509 certificate.

You need authentication when you want to give different rights to access
resources (such as files and databases) to different requesting identities.

� Authorization

Authorization is the process of checking whether an identity that has already
been authenticated should be given access to a resource that it is requesting.
A typical implementation of authorization is to pass to the access control
mechanism a security context that contains the identity that has been
authenticated.

� Integrity

Integrity ensures that transmitted or stored information has not been altered
in an unauthorized or accidental manner. Typically it is a mechanism to verify
that what is received over a network is the same as what was sent.

� Confidentiality

Confidentiality ensures that an unauthorized party cannot obtain the meaning
of the transferred or stored data. Typically confidentiality is achieved by
encrypting the data.

Note: Authentication is usually one of the earliest steps in a request
workflow. When authenticated, an identity can be asserted to the
downstream process steps, meaning that these steps trust the upstream
steps to have already successfully authenticated the identity.

152 Implementing CICS Web Services

� Auditing

With auditing, you capture and record security-related events (such as a user
signing onto or off of a system) so that you can analyze them later, perhaps
after a breach of your security has occurred.

� Non-repudiation

Non-repudiation means that a sender and a receiver of data are able to
provide legal proof to a third party that the sender did send the information,
and the receiver received the identical information. Neither side is able to
deny.

As used in computer security, cryptography provides the following processes:

� Encrypting converts plaintext (that is, data in normal, readable form) into
ciphertext, which conceals the meaning of the data to any unauthorized
recipient. Encrypting is also called enciphering.

Most cryptographic systems combine two elements:

– An algorithm that specifies the mathematical steps needed to encrypt the
data.

– A cryptographic key (a string of numbers or characters), or keys. The
algorithm uses the key to select one relationship between plaintext and
ciphertext out of the many possible relationships the algorithm provides.
The selected relationship determines the composition of the algorithm’s
result.

� Decrypting converts ciphertext back into plaintext. Decrypting is also called
deciphering.

� Hashing uses a one-way (irreversible) calculation to condense a long
message into a compact bit string called a message digest.

� Generating a digital signature involves encrypting a message digest with a
private key to create the electronic equivalent of a handwritten signature. You
can use a digital signature to verify the identity of the signer and to ensure
that nothing has altered the signed document since it was signed.

In this chapter we show how you can use cryptography to achieve authentication,
data integrity, confidentiality, and non-repudiation.

6.2 Secret key (or symmetric) cryptography

In secret key cryptography the sender and receiver of a message know and use
the same secret key; the sender uses the secret key to encrypt the message, and

 Chapter 6. Elements of cryptography 153

the receiver uses the same secret key to decrypt the message. See Figure 6-1.
Secret key cryptography is also known as symmetric cryptography.

Figure 6-1 Secret key (or symmetric) cryptography

The main challenge of secret key cryptography is getting the sender and receiver
to agree on the secret key without anyone else finding out. If the sender and
receiver are in separate physical locations, they must trust a courier, a phone
system, or some other transmission medium to prevent the disclosure of the
secret key. Anyone who overhears or intercepts the key in transit can later read,
modify, and forge all messages encrypted using that key.

Block ciphers
A block cipher is a type of secret key encryption algorithm that transforms a
fixed-length block of plaintext data into a block of ciphertext data of the same
length. This transformation takes place under the action of a user-provided
secret key. Decryption is performed by applying the reverse transformation to the
ciphertext block using the same secret key. The fixed length is called the block
size. Common block sizes include 64 bits and 128 bits.

Iterated block ciphers
Iterated block ciphers encrypt a plaintext block by a process that has several
rounds. In each round, the same transformation (also known as a round function)
is applied to the data using a subkey. The set of subkeys is usually derived from
the user-provided secret key by a special function. The set of subkeys is called
the key schedule. The number of rounds in an iterated cipher depends on the
desired security level and the consequent trade-off with performance. In most
cases, an increased number of rounds will improve the security offered by a
block cipher.

ciphertext plaintext

Bob

decryption
algorithm

D

Secret Key

plaintext

Alice

E

encryption
algorithm

Secret Key

154 Implementing CICS Web Services

6.2.1 DES

The Data Encryption Algorithm (DEA), developed by IBM, is one example of an
iterated block cipher. IBM submitted the DEA to the National Bureau of
Standards (NBS) during an NBS public solicitation for cryptographic algorithms
to be used in a Federal Information Processing Standard (FIPS). In 1977 the
NBS issued FIPS Publication 46 Data Encryption Standard (DES) which
specified that the DEA be used within the United States Federal Government for
the cryptographic protection of sensitive, but unclassified, computer data. As a
result, the DEA is often called DES.

The DES was reaffirmed in 1983, 1988, 1993, and 1999. As time passed the
NBS became the National Institute of Standards and Technology or NIST; it is a
division of the U. S. Department of Commerce.

The DES has a 64-bit block size. A DES key consists of 64 bits, of which 56 bits
are randomly generated and used directly by the algorithm. The other 8 bits,
which are not used by the algorithm, can be used for error detection. The binary
format of the key is:

(B1,B2,...,B7,P1,B8,...,B14,P2,B15,...,B49,P7,B50,...,B56,P8)

where (B1,B2,...,B56) are the independent bits of a DES key and (P1,P2,...,P8)
are reserved for parity bits computed on the preceding seven independent bits
and set so that the parity of the octet is odd, that is, there is an odd number of “1”
bits in the octet.

How DES works
Readers who want or need to have an overview of how the DES algorithm works
should consult B.1, “How DES works” on page 574.

DES modes of operation
When we use a block cipher to encrypt a message of arbitrary length, we use
techniques known as modes of operation for the block cipher. In December,
1980, FIPS Publication 81 DES Modes of Operation announced four modes of
operation for DES:

� Electronic Codebook (ECB)

� Cipher Block Chaining (CBC)

� Cipher Feedback (CFB)

� Output Feedback (OFB)

We now describe the first two of these modes of operation.

 Chapter 6. Elements of cryptography 155

ECB
In ECB mode, the message M of arbitrary length is first divided into blocks mi.
Each block contains 64 bits, the block size of the DES algorithm. Each plaintext
block mi is used directly as the input block to the DES encryption algorithm with
key k. The resultant output block is used directly as ciphertext. See Figure 6-2,
where Ek represents encryption using the DES algorithm with k as the key.

Figure 6-2 Electronic codebook (ECB) mode of operation

The analogy to a codebook arises because the same plaintext block always
produces the same ciphertext block for a given cryptographic key. Thus a list (or
codebook) of plaintext blocks and corresponding ciphertext blocks theoretically
could be constructed for any given key.

Since the ECB mode is a 64-bit block cipher, an ECB device must encrypt data in
integral multiples of 64 bits. If a user has less than 64 bits to encrypt, then the
least significant bits of the unused portion of the input data block must be
padded, for example, filled with random or pseudo-random bits prior to ECB
encryption. The corresponding decrypting device must then discard these
padding bits after decryption of the ciphertext block.

c2

Ek

m2

Ek

c1

m1

Ek

c3

m3

 Plaintext
message M

64 bits64 bits

m2 ... mn-1 mnm1 pad
64 bits <64 bits

m3

64 bits

Ciphertext
 C

c2 ...c3 cn-1c1 cn

156 Implementing CICS Web Services

CBC
In practice, CBC is the most widely used mode of DES. In CBC, the message M
of arbitrary length is first divided into blocks mi. Each block contains 64 bits, the
block size of the DES algorithm. Each plaintext block mi is XORed (exclusive
ORed) with the previous ciphertext block ci-1 and then encrypted. A 64-bit
initialization vector c0 is used as a “seed” for the process. See Figure 6-3, where
a circle enclosing a cross represents an XOR operation.

Figure 6-3 DES encryption using the Cipher Block Chaining (CBC) mode of operation

Thus, the encryption of each block depends on previous blocks, and the same
64-bit plaintext block can encrypt to different ciphertext blocks depending on its
context in the overall message. XORing of the previous ciphertext block with the
plaintext block conceals any patterns in the plaintext.

Partial data blocks (blocks of less than 64 bits) require special handling. One
method of encrypting a final partial data block of a message is described next.

The following method can be used for applications where the length of the
ciphertext can be greater than the length of the plaintext. In this case the final

c2

Ek

m2

Ek

c1

c0

m1

Ek

c3

m3

64 bits64 bits
 Plaintext
message M m2 ... mn-1 mnm1 pad

64 bits <64 bits

m3

64 bits

Cipher
 text C c2 ...c3 cn-1c1 cn

 Chapter 6. Elements of cryptography 157

partial data block of a message is padded in the least significant bits positions
with “0”s, “1”s, or pseudo-random bits. The decrypter will have to know when and
to what extent padding has occurred. This can be accomplished explicitly, for
example, using a padding indicator, or implicitly, for example, using constant
length transactions.

The padding indicator will depend on the data being encrypted.

� Binary

If the data is pure binary, then the partial data block should be left justified in
the input block and the unused bits of the block set to the complement of the
last data bit, that is, if the last data bit of the message is “0” then “1”s are used
as padding bits and if the last data bit is “1” then “0”s are used. The input
block is then encrypted.

The resulting output block is the ciphertext. The ciphertext message must be
marked as being padded so that the decrypter can reverse the padding
process, remove the padding bits and produce the original plaintext. The
decrypter scans the decrypted padded block and discards the least significant
bits that are all identical.

� Bytes

If the data consists of bytes (for example, 8-bit ASCII characters) then the
padding indicator should be a character denoting the number of padding
bytes, including itself, and should be placed in the least significant byte of the
input block before encrypting. For example, if there are five ASCII data
characters in the final partial block of a message to be encrypted, then an
ASCII “3” is put in the least significant byte of the input block (any pad
characters may be used in the other two pad positions) before encryption.
Again the ciphertext message must be marked as being padded.

Figure 6-4 shows the decryption of a message using the CBC mode of operation;
Dk represents decryption using the DES algorithm with key k.

158 Implementing CICS Web Services

Figure 6-4 DES decryption using the CBC mode of operation

Status of DES
Because the speed of computers has increased significantly since 1977, it may
now be possible to try every possible DES 56-bit key in turn until the correct key
is identified. This technique of attempting to decipher a message is called
exhaustive key search or brute force search. Indeed, a DES cracking machine
has been used to recover a DES key in 22 hours.

Therefore, the consensus of the cryptographic community is that DES is no
longer secure. FIPS 46-3 reaffirmed DES usage as of October 1999, but
permitted single DES only for legacy systems. FIPS 46-3 included a definition of
triple-DES (TDEA) which became “the FIPS approved symmetric encryption
algorithm of choice.” On November 26, 2001, the NIST published FIPS 197
announcing the Advanced Encryption Standard (AES); the standard became
effective on May 26, 2002. The NIST withdrew FIPS 46-3 on May 19, 2005.

m 2

c2

D k

m 1

c1

D k

c0

D k

m 3

c3

C iphertext
m essage C

64 bits

c 2 ...
64 b its

c 1 cn

64 b its64 b its

c 3 cn-1

64 b its

P la in text
m essage M m 2 ...m 3 m n-1m 1 m n

 Chapter 6. Elements of cryptography 159

6.2.2 Triple DES (TDEA)

For some time it has been common practice to protect information with
triple-DES instead of DES. This means that the input data is, in effect, encrypted
three times. There are a variety of ways of doing this; FIPS Pub 46-3 defines
triple-DES encryption with keys k1, k2, and k3 as:

C = Ek3(Dk2(Ek1(M)))

where Ek(I) and Dk(I) denote DES encryption and DES decryption, respectively,
of the input I with the key k. See Figure 6-5.

Figure 6-5 Triple DES - EDE

This mode of encryption is sometimes referred to as DES-EDE (encrypt, decrypt,
encrypt). FIPS Pub 46-3 defines three keying options for DES-EDE:

� k1, k2 and k3 are independent.

Since each key has a length of 64 bits, this is sometimes referred to as
TDEA-192. However, since only 56 bits of the 64 bits of each key are actually
used, it is sometimes also called TDEA-168.

� k1 and k2 are independent, but k3 = k1.

This may be called TDEA-128 or TDEA-112.

� k1 = k2 = k3.

Another variant is DES-EEE, which consists of three consecutive encryptions.

TDEA modes of operation
Like all block ciphers, triple-DES can be used in a variety of modes. The
American National Standards Institute (ANSI) X9.52 standard Triple Data
Encryption Algorithm Modes of Operation describes seven different modes:

� TDEA Electronic Codebook (TECB)

� TDEA Cipher Block Chaining (TCBC)

� TDEA Cipher Block Chaining - Interleaved (TCBC - I)

� TDEA Cipher Feedback (TCFB)

 DES
Encrypt

 DES
Encrypt

 DES
Decrypt C

k3k1 k2

M

160 Implementing CICS Web Services

� TDEA Cipher Feedback - Pipelined (TCFB-P)

� TDEA Output Feedback (TOFB)

� TDEA Output Feedback - Interleaved (TOFB-I)

Figure 6-6 shows TDEA running in TECB mode.

Figure 6-6 Triple DES running in TECB mode

6.2.3 AES

The Advanced Encryption Standard (AES) is another example of an iterated
block cipher. The AES algorithm resulted from a multi-year evaluation process
led by the NIST with submissions and review by an international community of
cryptography experts. The Rijndael algorithm, invented by Joan Daemen and
Vincent Rijmen, was selected as the standard. The NIST specified the AES in
FIPS PUB 197 in November, 2001.

The AES processes data blocks of 128 bits. That is, the input and the output for
the AES algorithm each consists of a sequence of 128 bits (16 bytes or 4 words).

 Plaintext
message M

64 bits

m2 ...
64 bits

m1 mn

64 bits64 bits

m3 mn-1

64 bits

Cipher
 text C c2 ...c3 cn-1c1 cn

m1

c1

Dk2

Ek1

Ek3

m2

c2

Ek1

Dk2

Ek3

m3

Ek1

c3

Dk2

Ek3

 Chapter 6. Elements of cryptography 161

The cipher key for the AES algorithm is a sequence of 128, 192, or 256 bits.
These different “flavors” of AES can be referred to as “AES-128”, “AES-192”, and
“AES-256”. The number of words Nk in the key is thus 4, 6, or 8.

The number of rounds Nr to be performed during the execution of the algorithm
depends on the key size. When Nk = 4, then Nr = 10. If Nk=6, then Nr=12, and
when Nk=8, then Nr=14.

How AES works
Readers who want or need to have an overview of how the AES algorithm works
should consult B.2, “How AES works” on page 578.

6.3 Public key (or asymmetric) cryptography

In public key cryptography each person gets a pair of keys, one called the public
key and the other called the private key. The public key is published, while the
private key is kept secret. The need for the sender and receiver to share secret
information is eliminated; all communications involve only public keys, and no
private key is ever transmitted or shared. In this system, it is no longer necessary
to trust the security of some means of communication. The only requirement is
that public keys be associated with their users in a trusted manner (for instance,
in a trusted directory).

In public key cryptography:

� Data encrypted with a public key can only be decrypted with the
corresponding private key. This guarantees data privacy for the receiver,
since he is the only one able to decrypt the data. But the receiver cannot be
sure who the sender is; it could be anyone.

� Data encrypted with a private key can only be decrypted with the
corresponding public key. Anyone can decrypt the data, but the receiver
knows who the sender is because the data can come only from one sender,
the owner of the private key.

When Alice wishes to send a secret message to Bob, she looks up Bob’s public
key in a directory, uses it to encrypt the message and sends it off. Bob then uses
his private key to decrypt the message and read it. No one listening in can
decrypt the message. Anyone can send an encrypted message to Bob, but only
Bob can read it (because only Bob knows Bob’s private key). See Figure 6-7.
Public key cryptography is also known as asymmetric cryptography.

162 Implementing CICS Web Services

Figure 6-7 Public key (or asymmetric) cryptography

Note that public key cryptography solves the problem of how to safely transmit a
secret key. When Alice wishes to send a secret key to Bob, she looks up Bob’s
public key in a directory, uses it to encrypt the secret key and sends it off. Bob
then uses his private key to decrypt the secret key and read it. No one listening in
can decrypt the secret key.

In a public key cryptosystem, the private key is always linked mathematically to
the public key. Therefore, it is always possible to attack a public key system by
deriving the private key from the public key. Typically, the defense against this is
to make the problem of deriving the private key from the public key as difficult as
possible. For instance, some public key cryptosystems are designed such that
deriving the private key from the public key requires the attacker to factor a large
number; in this case it is computationally not feasible to perform the derivation.

6.3.1 RSA

The RSA cryptosystem is a public key cryptosystem developed in 1977 by
Ronald Rivest, Adi Shamir, and Leonard Adleman. RSA stands for the first letter
in each of its inventors’ last names. The RSA algorithm is by far the most widely
used public key cryptosystem in the world.

plaintextplaintext

Alice

E

encryption
algorithm

Bob's public key

ciphertext

Bob

decryption
algorithm

D

Bob's private key

Note: Some information in this section was derived from the RSA Web site at
www.rsasecurity.com/rsalabs/. The authors would like to thank RSA for
permission to use this material.

 Chapter 6. Elements of cryptography 163

Before we discuss how the RSA algorithm works, we review the following
definitions:

� Prime number

A prime number is any integer greater than 1 that is divisible only by 1 and
itself. The first twelve primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 37.

� Factor

Given an integer n, any number that divides it is called a factor of n. For
example, 7 is a factor of 91, because 91/7 is an integer.

� Factoring

Factoring is the breaking down of an integer into its prime factors. For
example, 140 = 22 x 5 x 7. This is a hard problem (that is, a computationally
intensive problem; one that is computationally difficult to solve).

� Relatively prime

Two integers are relatively prime if they have no common factors except 1.
For example, 14 and 25 are relatively prime, while 14 and 91 are not (7 is a
common factor of 14 and 91).

� Congruent modulo n

Given integers a, b, and n with n > 0, we say that a and b are congruent
modulo n if a-b is divisible by n, that is, if (a-b)/n = i, an integer. Equivalently, a
and b are congruent modulo n if there is an integer i such that a-b = i x n, that
is, such that a = b + (i x n). If a and b are congruent modulo n, we write

a = b mod n

For example, 50 = 0 mod 5 because (50 - 0)/5 =10, an integer. But 50 is not
congruent to 1 mod 5 because (50-1)/5 is not an integer. However, 51 is
congruent to 1 mod 5.

In arithmetic mod n, integers between 0 and n - 1 are used with normal
addition, subtraction, multiplication, and exponentiation, except that after
each operation the result keeps only the remainder after dividing by n. For
example, 56 mod 23 = 8 because 56=5 x 5 x 5 x 5 x 5 x 5 = 15,625 and
15,625 divided by 23 gives a quotient of 679 and a remainder of 8. Also, 3 + 4
= 2 mod 5 because 3 + 4 = 7 and 7 divided by 5 gives a quotient of 1and a
remainder of 2.

The RSA algorithm works as follows: take two large primes, p and q, and
compute their product n = pq. Choose a number, e, less than n and relatively
prime to (p-1)(q-1). Find another number d such that (ed - 1) is divisible by
(p-1)(q-1), that is, ed = 1 mod[(p-1)(q-1)] or d = e-1mod[(p-1)(q-1)]. The public
key is the pair (n, e); the private key is (n, d). For example, suppose we take the
two primes p = 7 and q = 17. Their product is n = 119. The number e = 5 is

164 Implementing CICS Web Services

relatively prime to (7-1)(17-1) = 96. The number d = 77 is such that ed-1 = 385-1
= 384 is divisible by 96. The public key is the pair (119, 5) and the private key is
the pair (119,77). The factors p and q may be destroyed or kept with the private
key.

RSA uses the following terminology:

� n is called the modulus

� e is called the public exponent

� d is called the private exponent

It is currently difficult to obtain the private exponent d from the public key (n, e).
However if one could factor n into p and q, then one could obtain the private
exponent d. Thus the security of the RSA system is based on the assumption
that factoring is difficult. The discovery of an easy method of factoring would
“break” RSA.

Here is how the RSA system could be used for encryption. Suppose Alice wants
to send a message m to Bob. Alice creates the ciphertext c by exponentiating: c
= me mod n, where e and n are Bob’s public key. She sends c to Bob. To
decrypt, Bob also exponentiates: m = cd mod n; the relationship between e and d
ensures that Bob correctly recovers m. Since only Bob knows d, only Bob can
decrypt this message.

As an example, let’s encrypt the message “sell” using the public key (119, 5). If
we use the convention that a=1, b=2, c=3, and so forth to convert the letters to
numbers, we find that the plaintext “sell” becomes 19 5 12 12.

� Raising 19 to the 5th power gives 2,476,099. Dividing 2,476,099 by n=119,
we get a remainder of 66.

� Raising 5 to the 5th power gives 3125. Dividing 3125 by n=119, we get a
remainder of 31.

� Raising 12 to the 5th power gives 248,832. Dividing 248,832 by n=119, we
get a remainder of 3.

Thus our ciphertext is 66 31 3 3.

To decrypt 66 31 3 3, we use the private key (119, 77).

� Raising 66 to the 77th power gives 127316015002712725024996... (a very
large number). Dividing that very large number by n=119, we get a remainder
of 19.

� Raising 31 to the 77th power gives 683676142775442000196395... (another
very large number). Dividing that number by n=119, we get a remainder of 5.

 Chapter 6. Elements of cryptography 165

� Raising 3 to the 77th power gives 547440108942021938207715.... Dividing
that number by n=119, we get a remainder of 12.

Thus our plaintext is 19 5 12 12 or “sell”.

Digital envelopes
In practice the RSA system is often used together with a secret-key
cryptosystem, such as DES. Suppose Alice wishes to send an encrypted
message to Bob. She first encrypts the message with DES, using a randomly
chosen DES key. Then she looks up Bob's public key and uses it to encrypt the
DES key. The DES-encrypted message and the RSA-encrypted DES key are
sent to Bob. Upon receiving them, Bob decrypts the DES key with his private
key, then uses the DES key to decrypt the message itself. See Figure 6-8. This
process is sometimes referred to as sending a digital envelope; it combines the
high speed of DES with the key management convenience of the RSA system.

Figure 6-8 Using DES to encrypt data and RSA to manage the DES key

What is the appropriate key size in the RSA cryptosystem?
The size of a key in the RSA algorithm typically refers to the size of n. The two
primes, p and q, which compose n should be of roughly equal length; this makes
n harder to factor than if one of the primes is much smaller than the other. If one

C
i
p
h
e
r
t
e
x
t

Enc
D ES
key

A lice

P la in text

 Sending system

 D ES
Encryption

 R SA
Encryption

D ES key

Bob's public key

R ece iv ing system

 R SA
D ecryption

 D ES
D ecryption

P la intext

D ecrypted D ES
key

Bob's priva te key

166 Implementing CICS Web Services

chooses to use a 768-bit value for n, the primes should each have a length of
approximately 384 bits.

The best size for n depends on the user’s security needs. The larger the value of
n, the greater the security, but also the slower the RSA algorithm operations.
Choose a length for n upon consideration, first, of the value of the protected data
and how long it needs to be protected, and, second, of how powerful the potential
threats might be.

Key sizes of 512-bits no longer provide sufficient security for anything more than
very short-term security needs. RSA Laboratories currently recommends key
sizes of 1024 bits for corporate use and 2048 bits for extremely valuable keys
like the root key pair used by a certifying authority. Less valuable information
may well be encrypted using a 768-bit key, since such a key is still beyond the
reach of all known key breaking algorithms. RSA Laboratories publishes
recommended key lengths on a regular basis.

As for the slowdown caused by increasing the key size, doubling the length of n
will, on average, increase the time required for public key operations (encryption
and signature verification) by a factor of four, and increase the time taken by
private key operations (decrypting and signing) by a factor of eight. Key
generation time would increase by a factor of 16 upon doubling the length of n,
but this is a relatively infrequent operation for most users.

6.4 Hash functions

A hash function H is a transformation that takes an input message m and returns
a fixed-size string, which is called the hash value h. Using mathematical notation
for functions, we express this as h=H(m). See Figure 6-9.

Figure 6-9 A hash function

Figure 6-10 shows an example of a hash function at work.

hh

Message digestMessage digest
(short, fixed length(short, fixed length))

HH

 Hash Hash
functionfunction

Message m of length Message m of length nn

 Chapter 6. Elements of cryptography 167

Figure 6-10 A hash function at work

Notice that the hash function in Figure 6-10 produces a message digest whose
length is 20 bytes regardless of the length of the message. Notice also that if we
make a small change in the message we get a very different message digest.

When employed in cryptography, hash functions are usually chosen to have
some additional properties. The basic requirements for a cryptographic hash
function are as follows:

� The input can be of any length.

� The output has a fixed length.

� H(m) is relatively easy to compute for any given m.

� H(m) is one-way.

A hash function H is said to be one-way if it is hard to invert, where “hard to
invert” means that given a hash value h, it is computationally not feasible to
find some input m such that H(m)=h. An everyday example of a one-way
function is mashing a potato; you can do it easily, but once you have mashed
the potato, you will find it rather difficult to reconstruct the original potato.

� H(m) is collision-free.

A collision-free hash function H is one for which it is computationally not
feasible to find any two messages x and y such that H(x)=h and H(y)=h; that
is, it is computationally not feasible to find any two messages that hash to the
same value.

The hash value represents concisely the longer message or document from
which it was computed; this value is called the message digest. One can think of a
message digest as a digital fingerprint of the larger document; it identifies the

DFCD3454BBEA7BBA
751A696C24D97005
CA992D17

 Hash
functionFox

46042841935C7FB0
9158585A894AE214
26EB3CEA

 Hash
function

The red fox walks across
the ice

52ED879E70F71D92
5EB6957008E03CE4
CA6945D3

 Hash
function

The red fox runs across
the ice

168 Implementing CICS Web Services

message much like a real fingerprint identifies a person. Thus a good
cryptographic hash function ensures that it is very difficult to:

� Recover the message from the message digest

� Construct a block of data M2 that has the same message digest h as another
given block M1

You can use a hashing function to verify that data has not been altered during
transmission. The sender of the data calculates the message digest using the
data itself and the hashing function. The sender then ensures that the message
digest is transmitted with integrity to the intended receiver of the data; one way
to do this is to publish the message digest in a reliable source of public
information. When the receiver gets the data, he can generate the message
digest and compare it to the original one. If the two are equal, he can accept the
data as genuine; if they differ, he can assume the data is bogus. See Figure 6-11.

Figure 6-11 Using a hash function to verify that data has not been altered

In the preceding example, the message digest should not be sent in the clear.
Since the hash functions are well-known and no key is involved, a
man-in-the-middle could not only forge the message but also replace the
message digest with that of the forged message. This would make it impossible
for the receiver to detect the forgery.

I. Damgard and R.C. Merkle greatly influenced cryptographic hash function
design by defining a hash function in terms of what is called a compression
function. A compression function takes a fixed-length input (for example, 512
bits) and returns a shorter, fixed-length output (for example, 160 bits). Given a
compression function F, a hash function can be defined by repeated applications
of the compression function F until the entire message has been processed. In
this process, a message of arbitrary length is broken into blocks whose length
depends on the compression function, and padded (for security reasons) so the

P
l
a
i
n
t
e
x
t

M
D

Receiving system

Plain text

MD

Hashing
function

Plaintext not altered

No

Yes

Equal? Altered

 Sending system

Plain text

MD

Hashing
function

 Chapter 6. Elements of cryptography 169

size of the message is a multiple of the block size. The blocks are then
processed sequentially, taking as input the result of the hash so far and the
current message block, with the final output being the hash value for the
message. See Figure 6-12.

Figure 6-12 Iterative structure for hash functions

Among the well-known hash functions are the following:

� MD2 and MD5

MD2 and MD5 were developed by Ronald Rivest of the Laboratory for
Computer Science at the Massachusetts Institute of Technology (MIT). Both
functions take a message of arbitrary length and produce a 128-bit message
digest. MD2 was optimized for 8-bit machines, whereas MD5 was aimed at
32-bit machines. Description and source code for MD2 and MD5 can be
found as Internet RFCs 1319 and 1321, respectively.

� SHA-1

The Secure Hash Algorithm (SHA) was developed by the NIST and specified
in the Secure Hash Standard (FIPS PUB 180). SHA-1 corrected an
unpublished flaw in SHA and was published in 1994 as FIPS PUB 180-1.

SHA-1 is an iterative hash function, as shown in Figure 6-12. It operates on
messages whose length is less than 264 bits. The message is first padded so
that the length in bits of the message is a multiple of 512. Then the message
is parsed into 512-bit message blocks.

SHA-1 produces a 160-bit (20-byte) message digest. Readers who want or
need to have an overview of how the SHA-1 algorithm works should consult
B.3, “How SHA-1 works” on page 583.

The algorithm is slightly slower than MD5 but the larger message digest
makes it more secure against brute-force collision and inversion attacks.

Message
 block 1

Message
 block 2

P
a
d

 Last
 part of
 message

F HashF F
HnInitial hash

value H0
H1 H2

170 Implementing CICS Web Services

� SHA-256

FIPS PUB 180-2 specifies the SHA-256 algorithm. This algorithm also takes a
message of less than 264 bits in length but it produces a 256-bit message
digest.

6.5 Message authentication codes

A message authentication code (MAC) is a short piece of information used to
authenticate a message. It is an authentication tag derived by applying an
authentication scheme, together with a secret key, to a message. Unlike digital
signatures, MACs are computed and verified with the same key, so that they can
only be verified by the intended recipient. The MAC value protects both a
message’s integrity and its authenticity.

There are four types of MACs:

� Unconditionally secure

� Stream cipher-based

� Block cipher-based

� Hash function-based

We briefly discuss block cipher-based MACs and hash function-based MACs.

6.5.1 Block cipher-based MACs

Figure 6-13 shows how we might use the DES algorithm to compute a MAC on a
message M. We begin by dividing the message M into blocks mi. Each block
contains 64 bits, the block size of the DES algorithm. We XOR each block mi
with the previous ciphertext block ci-1 and then encrypt it by using the DES
encryption algorithm with key k. A 64-bit initialization vector c0 is used as a
“seed” for the process. The output from the last step is the MAC.

 Chapter 6. Elements of cryptography 171

Figure 6-13 Computing a MAC by using the DES block cipher

6.5.2 Hash function-based MACs

MACs based on cryptographic hash functions are known as HMACs. HMACs
have two functionally distinct parameters: a message input, and a secret key
known only to the message originator and intended receivers.

An HMAC function is used by the message sender to produce a value (the MAC)
that is formed by condensing the secret key and the message input. The MAC is
typically sent to the message receiver along with the message. The receiver
computes the MAC on the received message using the same key and HMAC
function as was used by the sender, and compares the result computed with the
received MAC. If the two values match, the message has been correctly
received, and the receiver is assured that the sender is a member of the
community of users that share the key. See Figure 6-14.

mn

64 bits

 Message M ...
64 bits

m2

64 bits

m1

64 bits

m3 mn-1

64 bits

m2

Ek

c2

Ek

MAC

mn

c0

m1

Ek

c1

172 Implementing CICS Web Services

Figure 6-14 Keyed-hash message authentication code (HMAC)

Note that, since the receiver has the key that is used in creation of the MAC, this
process does not offer a guarantee of non-repudiation because it is theoretically
possible for the receiver to forge a message and claim it was sent by the sender.

For an overview of the HMAC function described in FIPS PUB 198, see B.4,
“How the HMAC algorithm of FIPS PUB 198 works” on page 588.

6.6 Digital signatures

In this book digital signature is used to mean a cryptographically-based
signature assurance scheme. We discuss two such schemes: the Digital
Signature Algorithm (DSA) and RSA. While the DSA can only be used to provide

P
l
a
i
n
t
e
x
t

M
A
C

Receiving system

Plaintext

MAC

Hashing
function

Secret key

Plaintext not altered
Sender was Alice

No

Yes

Equal? Altered

Alice

 Sending system

Plaintext

MAC

Hashing
function

Secret key

 Chapter 6. Elements of cryptography 173

digital signatures, the RSA system can be used for both encryption and digital
signatures.

6.6.1 Using DSA for digital signatures

The NIST published the first version of the DSA in the Digital Signature Standard
(DSS) FIPS PUB 186 in May, 1994. The current version was published in FIPS
PUB 186-2 in January, 2000; in October, 2001, Change Notice 1 amended FIPS
PUB 186-2.

DSA parameters
The DSA makes use of the following parameters:

� p = a prime number where 21023 < p < 21024

� q = a prime divisor of p-1, where 2159 < q < 2160

� g = h(p-1)/q mod p, where h is any integer with 1 < h < p-1 such that h(p-1)/q
mod p > 1

� x = a randomly or pseudo randomly generated integer with 0 < x < q

� y = gx mod p

� k = a randomly or pseudo randomly generated integer with 0 < k < q

Appendix 2 and Appendix 3 of FIPS PUB 186-2 specify methods for generating
p, q, x, and k.

The integers p, q, and g can be public and can be common to a group of users.
The integers x and y are a user’s private and public keys, respectively.
Parameters x and k are used for signature generation only, and must be kept
secret. Parameter k must be regenerated for each signature.

DSA signature generation
The signature of a message M is the pair of numbers r and s computed
according to the equations:

r = (gk mod p) mod q

s = (k-1(SHA-1(M) + xr)) mod q

In these equations, k-1 is the multiplicative inverse of k, mod q; that is, (k-1 k)
mod q = 1 and 0 < k-1 < q. The value of SHA-1(M) is a 160-bit string output by
the Secure Hash Algorithm SHA-1. For use in computing s, this string must be
converted to an integer.

174 Implementing CICS Web Services

DSA signature verification
Prior to verifying the signature in a signed message, p, q, and g plus the sender’s
public key y and identity are made available to the verifier in an authenticated
manner.

Let M', r', and s' be the received versions of M, r, and s respectively. See
Figure 6-15.

Figure 6-15 Verifying a DSA signature

Alice

P
l
a
i
n
t
e
x
t

r
s

 Sending system

Plain text M

SHA-1

Hash value

Alices' private
key x

DSA Sign
generation

Receiving system

Only Alice could have signed
Plaintext didn't change

v
No

Yes

Message
 not
authentic

v=r '

Plain text M '

SHA-1

DSA Sign
verification

Hash value

r '
s'

Alices' public
key y

 Chapter 6. Elements of cryptography 175

To verify the signature, the verifier first checks to see that 0 < r' < q and 0 < s' < q;
if either condition is violated the signature should be rejected. If these two
conditions are satisfied, the verifier computes:

w = (s')-1mod q

u1 = ((SHA-1(M'))w) mod q

u2 = ((r')w) mod q

v = ((gu1 yu2) mod p) mod q

If v = r', then the signature is verified and the verifier can have high confidence
that the received message was sent by the party holding the secret key x
corresponding to y.

If v does not equal r', then the message may have been modified, the message
may have been incorrectly signed by the signatory, or the message may have
been signed by an impostor. The message should be considered invalid.

The ANSI X9.62 standard Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) specifies a
method of providing digital signatures that makes use of the properties of
mathematical objects known as elliptic curves. Since CICS TS V3.1 does not
support this method, we do not discuss it here.

6.6.2 Using RSA for digital signatures

When RSA cryptography is used to calculate a digital signature, the sender
encrypts the message digest of the document with his or her own private key.
Anyone with access to the public key of the signer can verify the signature.

Suppose Alice wants to send a signed document or message to Bob. She
applies a hash function to the message, creating a message digest. She then
encrypts the message digest with her private key, thereby creating the digital
signature. (Since the message digest is usually considerably shorter than the
original message, Alice saves a considerable amount of time when she encrypts
the message digest rather than the message itself). Alice sends Bob the
encrypted message digest (digital signature) and the message. Bob, upon
receiving the message and signature, decrypts the signature with Alice's public
key to recover the message digest. He then hashes the message with the same
hash function Alice used and compares the result to the message digest
decrypted from the signature. If they are exactly equal, the signature has been
successfully verified and he can be confident the message did indeed come from
Alice. If they are not equal, then the message either originated elsewhere or was
altered after it was signed, and he rejects the message. See Figure 6-16.

176 Implementing CICS Web Services

Figure 6-16 Creating and verifying a digital signature using RSA

In mathematical terminology, when Alice wants to send a message m to Bob,
she applies a hash function H to the message m, creating a message digest
h=H(m). She then creates a digital signature s by exponentiating: s = hd mod n,
where d and n are Alice's private key. She sends m and s to Bob. To verify the
signature, Bob exponentiates and checks that the message digest h is
recovered: h = se mod n, where e and n are Alice's public key.

In practice, the public exponent in the RSA algorithm is usually much smaller
than the private exponent. This means that verification of a signature is faster
than signing. This is desirable when a message will be signed by an individual
only once, but the signature may be verified many times.

Note that the recipient of signed data can use a digital signature to prove to a
third party that the signature was in fact generated by the signatory. This is

P
l
a
i
n
t
e
x
t

DS

Alice

 Sending system

Plain text

Hash value

Hashing
function

 RSA
Encryption

Alice's private key

Receiving system

Only Alice could have signed
Plaintext didn't change

Hash value

Equal? No

Yes

Message
 not
authentic

 RSA
Decryption

Hash value

Plain text

Hashing
function

Alice's public key

 Chapter 6. Elements of cryptography 177

known as non-repudiation since the signatory cannot, at a later time, repudiate
the signature.

There is a potential problem with this type of digital signature. Alice not only
signed the message she intended to sign, but she also signed all other
messages that happen to hash to the same message digest. When two
messages hash to the same message digest it is called a collision; the
collision-free properties of hash functions are a necessary security requirement
for most digital signature schemes. A hash function is secure if it is very time
consuming, if at all possible, to figure out the original message given its digest.

In addition, someone could pretend to be Alice and sign documents with a key
pair he claims is Alice’s. To avoid scenarios such as this, there are digital
documents called certificates that associate a person with a specific public key.
We discuss digital certificates in 6.7, “Public key digital certificates” on page 180.

Suppose that Alice wishes to keep the contents of the document secret instead
of sending the document in the clear as in Figure 6-16. In this case she may wish
to sign the document, then encrypt it using Bob's public key. Bob will then need to
decrypt the document using his private key and verify the signature on the
recovered message using Alice's public key. See Figure 6-17.

178 Implementing CICS Web Services

Figure 6-17 Creating and verifying a digital signature while encrypting the message

Alternatively, if it is necessary for intermediary third parties to validate the
integrity of the message without being able to decrypt its content, a message
digest can be computed on the encrypted message, rather than on its plaintext
form.

6.6.3 Comparing RSA with DSA for digital signatures

In DSA, signature generation is faster than signature verification, whereas with
the RSA algorithm, signature verification is very much faster than signature
generation (if the public and private exponents, respectively, are chosen for this
property, which is the usual case). It might be claimed that it is advantageous for
signing to be the faster operation, but since in many applications a piece of digital
information is signed once, but verified often, it may well be more advantageous
to have faster verification.

C
i
p
h
e
r
t
e
x
t

DS

Alice

 Sending system

Plain text

Hashing
function Bob's public

key

Encryption
algorithm

Hash value RSA
Encryption

Alice's private key

Receiving system

Hash
value

Only Alice could have signed
Plaintext didn't change

Equal? No

Yes

Bogus
msg

 RSA
Decryption

Hash value

Decryption

Hashing

Plain text

Alice's public key

Bob's private key

 Chapter 6. Elements of cryptography 179

6.7 Public key digital certificates

The tricky aspect of digital signatures is the trustworthy distribution of public
keys, since the receiver requires a genuine copy of the sender’s public key. This
is provided by public key digital certificates.

A digital certificate is analogous to a passport in the following ways:

� Passports are issued by a trusted authority such as a government passport
office. Digital certificates are issued by trusted authorities known as
Certificate Authorities or CAs.

� A government passport office does not issue a passport unless the person
who requests it has proven his identity and citizenship to the passport office.
CAs have a responsibility to check the credentials provided in an application
for a digital certificate. The CA might, for example, require the person who is
requesting the certificate to appear in person and show a birth certificate.

� A passport certifies the bearer’s name, address, and citizenship. A digital
certificate establishes the subject’s distinguished name (DN) and public key.

� Specialized equipment is used in the creation of a passport to make it very
difficult to alter the information in it or to forge a passport altogether. CAs sign
the digital certificates they issue with their private key.

� If other authorities, such as the border police in other countries, trust the
authority that issued the passport, they implicitly trust the passport. If a Web
user trusts a CA, he implicitly trusts digital certificates issued by the CA.

� Both passports and digital certificates are valid for a limited time.

Certificate issuance proceeds as follows. The requester generates a public and
private key pair and then sends the public key to an appropriate CA with some
proof of identification. The CA checks the identification and takes any other
necessary steps to assure itself that the request really did come from the
requester and that the public key was not modified in transit. Then the CA sends
the requester a certificate which attests that the public key belongs to the
requester.

In the following discussion of digital certificates we use the description of the
version 3 format of a digital certificate as given in RFC 3280 Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile.

The certificate is a sequence of three required fields:

� tbsCertificate

The tbsCertificate field contains the name of the subject of the certificate, a
public key associated with the subject, the name of the issuer of the

180 Implementing CICS Web Services

certificate, a validity period, and other associated information which we
describe in Section 6.7.1, “tbsCertificate” on page 182.

� signatureAlgorithm

The signatureAlgorithm field contains the identifier for the cryptographic
algorithm used by the CA to sign this certificate. RFC 3279 Algorithms and
Identifiers for the Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile lists the supported algorithms:

– md2WithRSAEncryption

This algorithm uses md2 for the hash function and RSA for the encryption
algorithm.

– md5WithRSAEncryption

– sha-1WithRSAEncryption

– id-dsa-with-sha1

This algorithm uses SHA-1 for the hash function, and its uses the Digital
Signature Algorithm.

– ecdsa-with-SHA1

� signatureValue

The signatureValue field contains a digital signature computed upon the
tbsCertificate. The ASN.1 DER encoded tbsCertificate is used as the
input to the signature function. This signature value is encoded as a BIT
STRING and included in the signature field as shown in Figure 6-18.

 Chapter 6. Elements of cryptography 181

Figure 6-18 X.509 V3 public key digital certificate

By generating this signature, a CA certifies the validity of the information in
the tbsCertificate field. In particular, the CA certifies the binding between
the public key material and the subject of the certificate.

6.7.1 tbsCertificate

A tbsCertificate contains the following fields:

� version

ITU-T X.509, which was first published in 1988 as part of the X.500 Directory
recommendations, defines a standard certificate format. (ITU-T is the
International Telecommunications Union; it was formerly known as CCITT
and is a multinational union that provides standards for telecommunications
equipment and systems.) The certificate format in the 1988 standard is called

tbsCertificate

subject's name (Alice)
subject's public key (AKey)
issuer's name (CA1)
start/stop validity dates
etc.

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate (DC1)

a8&%#pq3)...

signatureValue

Hashing
function

CA1's private key
(CA1PrKey)

Encryption
algorithm

signatureAlgorithm

hash value

182 Implementing CICS Web Services

the version 1 format. When X.500 was revised in 1993, two more fields were
added, resulting in the version 2 format. Experience gained in attempts to
deploy RFC 1422 Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management revealed the need to develop a third
version. In June, 1996, standardization of the basic version 3 format was
completed. The value stored in the version field is one less than the version
number; for example, when the version is 3, the value stored in the version
field is 2.

� serialNumber

The serial number is a positive integer assigned by the CA to the certificate. It
is unique for each certificate issued by a CA; that is, the issuer name and
serial number identify a unique certificate.

� signature

This field contains the algorithm identifier for the algorithm used by the CA to
sign the certificate. This field must contain the same algorithm identifier as the
signatureAlgorithm field.

� issuer

The issuer field identifies the entity that has signed and issued the certificate.
It contains a distinguished name (DN). We explain what a distinguished name
is in “Distinguished names” on page 185.

� validity

The certificate validity period is the time interval during which the CA warrants
that it will maintain information about the status of the certificate. The field is
represented as a sequence of two dates:

– notBefore - The date on which the certificate validity period begins.
– notAfter - The date on which the certificate validity period ends.

Both notBefore and notAfter can be encoded YYMMDDHHMMSSZ or
YYYYMMDDHHMMSSZ.

� subject

The subject field identifies the entity associated with the public key stored in
the subjectPublicKeyInfo field. The subject field contains a DN.

If the subject is a CA, then the subject field must contain a DN that matches
the contents of the issuer field in all certificates issued by the subject CA.

� subjectPublicKeyInfo

This field is used to carry the public key and identify the algorithm with which
the key is used. RFC 3279 lists the following supported algorithm identifiers:

– rsaEncryption

When the algorithmIdentifier is rsaEncryption, the public key must be

 Chapter 6. Elements of cryptography 183

encoded as a sequence of two integers: the modulus n and the public
exponent e.

– id-dsa

When the algorithmIdentifier is id-dsa, the public key must be
encoded as the integer y.

– dhpublicnumber

This identifies the Diffie-Hellman key exchange algorithm. The public key
is the integer y = gx mod p. We discuss the Diffie-Hellman key exchange
algorithm in Section 6.9.2, “The Diffie-Hellman key agreement protocol” on
page 197.

– id-keyExchangeAlgorithm

This identifies the Key Exchange Algorithm (KEA), which is a key
agreement algorithm. We do not discuss it further.

– id-ecPublicKey

When the algorithmIdentifier is id-ecPublicKey, the public key is
intended for use in either the Elliptic Curve Digital Signature Algorithm
(ECDSA) or the Elliptic Curve Diffie-Hellman (ECDH) key exchange
algorithm, neither of which is discussed further.

� issuerUniqueId (optional)

This field is used to handle the possibility of reuse of issuer names over time.
RFC 3280 recommends that names not be reused for different entities and
that Internet certificates not make use of unique identifiers.

� subjectUniqueId (optional)

This field is used to handle the possibility of reuse of subject names over time.
RFC 3280 also recommends against the use of this field.

� extensions (optional)

If present, this field is a sequence of one or more certificate extensions. The
extensions defined for X.509 V3 certificates provide methods for associating
additional attributes with users or public keys and for managing a certification
hierarchy. We discuss a few of the standard extensions defined in RFC 3280
in Section 6.7.2, “Standard extensions for X.509 V3 digital certificates” on
page 187.

Example 6-1 shows the decode of an X.509 certificate as found at:
http://en.wikipedia.org/wiki/X.509

184 Implementing CICS Web Services

Example 6-1 Sample X.509 certificate

Certificate:
Data:

 Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,

OU=Certification Services Division,
CN=Thawte Server CA/Email=server-certs@thawte.com

Validity
 Not Before: Jul 9 16:04:02 1998 GMT
 Not After : Jul 9 16:04:02 1999 GMT

 Subject: C=US, SP=Maryland, L=Pasadena, O=Brent Baccala,
OU=FreeSoft, CN=www.freesoft.org/Email=baccala@freesoft.org

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
e8:35:1c:9e:27:52:7e:41:8f:

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:
d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:
5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:
68:9f

Distinguished names
Both the issuer field and the subject field of tbsCertificate must contain an
X.520 Distinguished Name (DN). A DN is a sequence of Relative Distinguished
Names (RDNs). An RDN™ has the form <attribute type> = <value>. Table 6-1
shows the string representations of common attribute types.

 Chapter 6. Elements of cryptography 185

Table 6-1 Attribute types and their string representations

You can think of a DN as a unique name that unambiguously identifies a single
entry in a directory information tree. Each RDN in a DN corresponds to a branch
in the tree leading from the root of the tree to the directory entry. As shown in
Figure 6-19, the distinguished name C=US, O=IBM, OU=IO, SP=NY, L=End,
CN=Bob Herman describes Bob Herman, who works in the village of Endicott in
the state of New York, USA, for the Integrated Operations unit of IBM; while the
distinguished name C=FR, O=IBM, OU=S&D, SP=Her, L=MOP, CN=Nigel
Williams describes Nigel Williams, who works in the city of Montpellier in the
province of Herault, France, for the Sales and Distribution unit of IBM.

Figure 6-19 Distinguished names

Attribute Type String

countryName C

organizationName O

organizationalUnitName OU

stateOrProvinceName SP

localityName L

commonName CN

C=FRC=US

Directory Root

CN=Nigel WilliamsCN=

O=SFRO=IBM

ou=GBSou=S&D

SP=BorSP=Her

L=MopL=Nim

O=IBMO=AT&T

OU=IOou=SWG

SP=NYSP=CA

L=End L=Pok

CN=Bob Herman CN=

186 Implementing CICS Web Services

6.7.2 Standard extensions for X.509 V3 digital certificates

RFC3280 defines sixteen standard extensions, but we limit our discussion here
to only the most relevant ones; specifically, those supported by the RACF®
RACDERT command that you can use to generate a digital certificate. These
extensions are:

� Key usage

The key usage extension defines the purpose of the subject public key
contained in the certificate:

– digitalSignature (0)

The key is used with a digital signature mechanism to support security
services other than certificate signing (bit 5) or certificate revocation list
(CRL) signing (bit 6). Digital signature mechanisms are often used for
entity authentication and data origin authentication with integrity. (We
explain what a CRL is in Section 6.8, “Certificate revocation lists” on
page 191.)

– nonRepudiation (1)

The key is used to verify digital signatures used to provide a
non-repudiation service, which protects against the signing entity falsely
denying some action, excluding certificate or CRL signing. In case of later
conflict, a reliable third party may determine the authenticity of the signed
data.

– keyEncipherment (2)

The key is used for key transport. For example, when an RSA key is to be
used for key management, then this bit is set.

– dataEncipherment (3)

The key is used for enciphering user data, other than cryptographic keys.

– keyAgreement (4)

The key is used for key agreement. For example, when a Diffie-Hellman
key is to be used for key management, then this bit is set.

– keyCertSign (5)

The key is used for verifying a signature on public key certificates.

– cRLSign (6)

The key is used for verifying a signature on a CRL.

– encipherOnly (7)

The meaning of the encipherOnly bit is undefined in the absence of the
keyAgreement bit. When the encipherOnly bit is asserted and the

 Chapter 6. Elements of cryptography 187

keyAgreement bit is also set, the key may be used only for enciphering
data while performing key agreement.

– decipherOnly (8)

The meaning of this bit is the same as the encipherOnly bit except that it
applies to a decipher operation.

The usage restriction might be employed when a key that could be used for
more than one operation is to be restricted.

� Subject alternative name

The subject alternative name extension allows additional identities to be
bound to the subject of the certificate. Defined options include:

– An Internet electronic mail address
– A domain name system (DNS) name
– An IP address
– A uniform resource identifier (URI)

The subject alternative name is considered to be definitively bound to the
public key.

Example 6-2 shows the main options of a RACF RACDCERT command that you
can use to generate a digital certificate.

Example 6-2 RACF command for generating a digital certificate

RACDCERT ID(userid) GENCERT
SUBJECTSDN(

CN(‘common-name’)
T(‘title’)
OU(‘organizational-unit-name1’,...)
O(‘organization-name’)
L(‘locality’)
SP(‘state-or-province’)
C(‘country’))

SIZE(size-of-new-private-key-in-decimal-bits)
NOTBEFORE(DATE(yyyy-mm-dd) TIME(hh:mm:ss))
NOTAFTER (DATE(yyyy-mm-dd) TIME(hh:mm:ss))
WITHLABEL(‘label-name’)
SIGNWITH(CERTAUTH|SITE LABEL(‘label-name’))
PCICC | ICSF | DSA
KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN CERTSIGN)
ALTNAME(IP(numeric-ip-address)

DOMAIN(‘internet-domain-name’)
EMAIL(‘email-address’)
URI(‘universal-resource-identifier’))

188 Implementing CICS Web Services

The values that you specify for the KEYUSAGE parameter specify the values for
the KeyUsage certificate extension as follows:

� HANDSHAKE

The key facilitates identification and key exchange during security
handshakes, such as SSL. RACF sets the digitalSignature and
keyEncipherment indicators in the extension.

� DATAENCRYPT

The key is used to encrypt data. RACF sets the dataEncipherment indicator in
the extension.

� DOCSIGN

The key is used to produce a legally binding signature. RACF sets the
nonRepudiation indicator in the extension.

� CERTSIGN

The key is used to sign other digital certificates and CRLs. RACF sets the
keyCertSign and cRLSign indicators in the extension.

When you choose either PCICC or ICSF, the resulting private key is generated
with the RSA algorithm and stored in the ICSF PKDS.

� If you choose PCICC, the key pair is generated using cryptographic hardware
and the resulting private key is stored in the Integrated Cryptographic
Services Facility (ICSF) Private Key Data Set (PKDS).

� If you choose ICSF, the key pair is generated using software and the resulting
private key is stored in the ICSF PKDS.

If DSA is specified, the key pair is generated using software with DSA algorithm
and the private key is stored in the RACF database as a non-ICSF DSA key. If
you omit both, the key pair is generated using software and the private key is
stored in the RACF database.

The ICSF PKDS is recommended for the storage of a private key associated with
a digital certificate. ICSF ensures that private keys are encrypted under a master
key and that access to them is controlled by profiles in the RACF general
resource classes CSFKEYS and CSFSERV. See Chapter 7, “Crypto hardware
and ICSF” on page 219 for a discussion of cryptographic hardware and ICSF.

6.7.3 Certification paths

In Figure 6-18 on page 182 certificate authority CA1 issued digital certificate
DC1 to certify that public key AKey belongs to Alice. But how do we know that we
can trust digital certificate DC1? Well, since DC1 is essentially the message
tbsCertificate signed with CA1’s private key, we must verify the digital signature

 Chapter 6. Elements of cryptography 189

just like we verified the digital signature in Figure 6-16 on page 177. That is, if we
hold an assured copy of CA1’s public key, we must use it to proceed as shown in
Figure 6-20.

Figure 6-20 Verifying digital certificate

If we do not already hold an assured copy of CA1’s public key, then we need a
digital certificate signed by another CA to certify that CA1PuKey belongs to CA1.
See Figure 6-21.

tbsCertificate

subject's name (Alice)
subject's public key (AKey)
issuer's name (CA1)
start/stop validity dates
etc.

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate (DC1)

signatureValue

a8&%#pq3)...

Hashing
function

Decryption
algorithm

CA1's public key
(CA1PuKey)

Hash value

Only CA1 could have signed!
tbsCertificate didn't change!

Hash value

No

Yes

DC1 not
authenticEqual?

190 Implementing CICS Web Services

Figure 6-21 Certification path

In general, we need a sequence of n certificates, which satisfies the following
conditions:

� Certificate 1 is the certificate to be validated.

� For all x in {1, 2,..., n-1}, the issuer of certificate x is the subject of certificate
x+1.

� Certificate n is issued by a certificate authority that is trusted without a
certificate from any other certifying authority. The certificate may be a
self-signed certificate (one in which the CA uses its own private key to attest
that the subject public key belongs to the CA).

� For all x in {1,2,...n} the certificate is valid at the time in question.

Such a sequence is called a certification path.

6.8 Certificate revocation lists

When a certificate is issued, it is expected to be in use for its entire validity
period. However, various circumstances may cause a certificate to become
invalid prior to the expiration of the validity period. Such circumstances include
change of name, change of association between subject and CA (for example,

tbsCertificate

subject's name: Alice
subject's public key: AKey
issuer's name: CA1
start/stop validity dates
etc.

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate DC1

signatureValue

a8&%#pq3)...

tbsCertificate

subject's name: CA1
subject's public key:
CA1PuKey
issuer's name: CA2
start/stop validity dates

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate DC2

b0hq7kj39om...

signatureValue

 Chapter 6. Elements of cryptography 191

an employee terminates employment with an organization), and compromise or
suspected compromise of the corresponding private key. Under such
circumstances, the CA needs to revoke the certificate.

RFC 3280 defines one method of certificate revocation. This method involves
each CA periodically issuing a signed data structure called a certificate
revocation list (CRL). A CRL is a time-stamped list identifying revoked
certificates that is signed by a CA and made freely available in a public
repository. Each revoked certificate is identified in a CRL by its certificate serial
number. When a certificate-using system uses a certificate, that system not only
checks the certificate signature and validity but also acquires a suitably-recent
CRL and checks that the certificate serial number is not on that CRL. A new CRL
is issued on a regular periodic basis. An entry is added to the CRL as part of the
next update following notification of revocation.

Each CRL has a particular scope. The CRL scope is the set of certificates that
could appear on a given CRL. For example, the scope could be “all certificates
issued by CA X,” “all CA certificates issued by CA X,” or “all certificates issued by
CA X that have been revoked for reasons of key compromise and CA
compromise.”

A complete CRL lists all unexpired certificates, within its scope, that have been
revoked for one of the revocation reasons covered by the CRL scope. The CRL
issuer might also generate delta CRLs. A delta CRL only lists those certificates,
within its scope, whose revocation status has changed since the issuance of a
referenced complete CRL (known as the base CRL).

A CRL is a sequence of three required fields:

� tbsCertList

The tbsCertList is itself a sequence of required and optional fields:

– version (optional)

The version field describes the version of the encoded CRL. When the
version is 2, the integer value for the field is 1.

– signature

The signature field contains the algorithm identifier for the algorithm used
to sign the CRL.

– issuer

The issuer field contains an X.500 distinguished name (DN) that identifies
the entity that has signed and issued the CRL.

– thisUpdate

This field indicates the issue date of this CRL.

192 Implementing CICS Web Services

– nextUpdate

This field indicates the date by which the next CRL will be issued. The next
CRL could be issued before the indicated date, but it will not be issued any
later than the indicated date.

– revokedCertificates (optional)

The revoked certificate list is optional to support the case where a CA has
not revoked any unexpired certificates that it has issued. The
revokedCertificates field is a sequence of three fields:

• userCertificate

This field contains the serial number of the revoked certificate.
Certificates revoked by the CA are uniquely identified by the certificate
serial number.

• revocationDate

This field contains the date on which the revocation occurred.

• crlEntryExtensions (optional)

We discuss some of the extensions for CRL entries in Section 6.8.1,
“Extensions for entries in a CRL” on page 194.

– crlExtensions (optional)

We discuss some of the extensions for CRLs in Section 6.8.2, “Extensions
for a CRL” on page 195.

� signatureAlgorithm

The signatureAlgorithm field contains the algorithm identifier for the
algorithm used by the CRL issuer to sign the CRL.

� signatureValue

The signatureValue field contains a digital signature computed upon the
tbsCertList. The ASN.1 DER encoded tbsCertList is used as the input to
the signature function. This signature value is encoded as a BIT STRING and
included in the CRL signatureValue field.

You can find an example of a certificate revocation list at:

crl.geotrust.com/crls/secureca.crl

 Chapter 6. Elements of cryptography 193

6.8.1 Extensions for entries in a CRL

The extensions for CRL entries, which are defined in RFC 3280, include the
following:

� reasonCode

This extension identifies the reason for the certificate revocation as follows:

– unspecified (0)

– keyCompromise (1)

– caCompromise (2)

– affiliationChanged (3)

– superseded (4)

– cessationOfOperation (5)

– certificateHold (6)

– removeFromCRL (8)

– privilegeWithdrawn (9)

– aACompromise (10)

Apparently the certificateHold status is a reversible status that can be used
to note the temporary invalidity of the certificate, for instance when the user is
not sure if the private key has been lost. If, in this example, the private key
was found again and nobody had access to it, the status can be reinstated,
and the certificate is valid again, thus removing the certificate from further
CRLs.

� holdInstructionCode

This extension indicates the action to be taken after encountering a certificate
that has been placed on hold:

– reject

Reject the certificate.

– callissuer

Call the certificate issuer or reject the certificate.

� invalidityDate

This extension provides the date on which it is known or suspected that the
private key was compromised or that the certificate otherwise became invalid.
This date can be earlier than the revocation date in the CRL entry, which is
the date on which the CA processed the revocation. When a revocation is first
posted by a CRL issuer in a CRL, the invalidity date may precede the date of
issue of earlier CRLs.

194 Implementing CICS Web Services

6.8.2 Extensions for a CRL

The CRL extensions defined in RFC 3280 include the following:

� authorityKeyIdentifier

This extension provides a means of identifying the public key corresponding
to the private key used to sign a CRL.

� issuerAltName

This extension allows the following additional identities to be associated with
the issuer of the CRL: an electronic mail address, a DNS name, an IP
address, and a URI.

� cRLNumber

This extension conveys a monotonically increasing sequence number for a
given CRL scope and CRL issuer. It allows users to easily determine when a
particular CRL supersedes another CRL. CRL numbers also support the
identification of complementary complete CRLs and delta CRLs.

� issuingDistributionPoint

This extension identifies the CRL distribution point and scope for a particular
CRL and indicates whether the CRL covers revocation for end entity
certificates only, CA certificates only, attribute certificates only, or a limited set
of reason codes.

� freshestCRL

This extension identifies how delta CRL information for this complete CRL is
obtained.

� deltaCRLIndicator

This extension identifies a CRL as being a delta CRL. Delta CRLs contain
updates to revocation information previously distributed, rather than all the
information that would appear in a complete CRL. The use of delta CRLs can
sometimes reduce network load and processing time. The extension contains
the number of the base CRL, that is, it contains the number that identifies the
CRL, complete for a given scope, that was used as the starting point in the
generation of this delta CRL.

6.8.3 Security considerations when using digital certificates

RFC 3280 advises users to consider the following points when using digital
certificates:

� The procedures performed by CAs to validate the binding of the subject’s
identity to their public key greatly affect the confidence that ought to be placed
in the certificate. Different CAs may issue certificates with varying levels of

 Chapter 6. Elements of cryptography 195

identification requirements. One CA may insist on seeing a driver’s license,
another may want the certificate request form to be notarized, yet another
may want fingerprints of anyone requesting a certificate.

Relying parties might wish to review the CA’s certificate practice statement in
order to avoid situations such as the following. Suppose Mallory wishes to
impersonate Alice. If Mallory can convincingly sign messages as Alice, he
can send a message to Alice’s bank saying “I wish to withdraw $10,000 from
my account. Send me the money.” To carry out this attack, Mallory generates
a key pair and sends the public key to a CA saying “I’m Alice. Here is my
public key. Please send me a certificate.” If the CA is fooled and sends him
such a certificate, he can then fool the bank.

� The use of a single key pair for both signature and other purposes is strongly
discouraged. Use of separate key pairs for signature and key management
provides several benefits to the users. The ramifications associated with loss
or disclosure of a signature key are different from loss or disclosure of a key
management key. Using separate key pairs permits a balanced and flexible
response.

� The protection afforded private keys is a critical security factor. Failure of
users to protect their private keys will permit an attacker to masquerade as
them, or decrypt their personal information.

� The availability and freshness of revocation information affects the degree of
assurance that ought to be placed in a certificate. If revocation information is
untimely or unavailable, the assurance associated with the binding is clearly
reduced.

� The certification path validation algorithm depends on the certain knowledge
of the public keys (and other information) about one or more trusted CAs. The
decision to trust a CA is an important decision as it ultimately determines the
trust afforded a certificate.

� The binding between a key and certificate subject cannot be stronger than the
cryptographic module implementation and algorithms used to generate the
signature. Short key lengths or weak hash algorithms will limit the utility of a
certificate.

6.9 Key agreement protocols

A key agreement protocol, also called a key exchange protocol, is a protocol that
allows two parties that have no prior knowledge of each other to jointly establish
a shared secret key over an insecure communications channel. This key can
then be used to encrypt subsequent communications using a secret key
algorithm. We discuss two key agreement protocols: RSA and Diffie-Hellman.

196 Implementing CICS Web Services

6.9.1 The RSA key agreement protocol

In Section 6.3, “Public key (or asymmetric) cryptography” on page 162 we noted
that public key cryptography can be used to safely transmit a secret key. When
Alice wishes to send a secret key to Bob, she looks up Bob’s public key in a
directory, uses it to encrypt the secret key and sends it off to Bob. Bob then uses
his private key to decrypt the secret key and read it. No one listening in can
decrypt the secret key.

Since RSA is a public key cryptosystem, we can use RSA to safely transmit a
secret key. See Figure 6-22.

Figure 6-22 RSA key agreement protocol

6.9.2 The Diffie-Hellman key agreement protocol

The Diffie-Hellman key agreement protocol was first published by Whitfield Diffie
and Martin Hellman in 1976. The protocol has two system parameters p and g.
They are both public and can be used by all the users in a system.

� Parameter p is a prime number.

� Parameter g (usually called a generator) is an integer less than p, with the
following property: for every integer n between 1 and p-1 inclusive, there is a
power k of g such that n = gk mod p.

For example, if p = 7, then g = 3 is a generator because: 1 = 30 mod 7, 2 = 32
mod 7, 3 =31 mod 7, 4 = 34 mod 7, 5 = 35 mod 7, and 6 = 33 mod 7.

Suppose Alice and Bob want to agree on a shared secret key using the
Diffie-Hellman key agreement protocol. They proceed as follows:

� They agree upon a prime number p and a generator g.

� Alice generates a random private integer a and then derives her public value
ga mod p.

ciphertext

E

encryption
algorithm

Bob's public key

decryption
algorithm

D

Bob's private key

Bob

plaintext
(secret key)

Alice

plaintext
(secret key)

 Chapter 6. Elements of cryptography 197

� Alice sends her public value to Bob.

� Bob generates a random private integer b and then derives his public value
gb mod p.

� Bob sends his public value to Alice.

� Alice computes (gb)a mod p.

� Bob computes (ga)b mod p.

Since (gb)a mod p = gba mod p = gab mod p = (ga)b mod p, Bob and Alice now
have a shared secret key.

As an example, suppose that Alice and Bob agree to use a prime number p = 23
and a generator g = 5.

� Suppose Alice chooses a secret integer a = 6. She then computes her public
value 56 mod 23 = 8.

� Alice sends her public value 8 to Bob.

� Suppose Bob chooses a secret integer b = 15. He then computes his public
value 515 mod 23 = 19

� Bob sends his public value 19 to Alice.

� Alice computes 196 mod 23 = 2.

� Bob computes 815 mod 23 = 2.

Alice and Bob now have the shared secret key 2.

The Diffie-Hellman key agreement protocol as just described is vulnerable to a
man-in-the-middle attack. In this attack, Eve (for eavesdropper) intercepts Alice’s
public value and sends her own public value to Bob. When Bob transmits his
public value, Eve substitutes it with her own and sends it to Alice. Eve and Alice
thus agree on one shared key and Eve and Bob agree on another shared key.
After this exchange, Eve simply decrypts any messages sent out by Alice or Bob,
and then reads and possibly modifies them before re-encrypting with the
appropriate key and transmitting them to the other party. This vulnerability is
present because the protocol does not authenticate the participants. The
protocol as described is sometimes called anonymous Diffie-Hellman.

The authenticated Diffie-Hellman key agreement protocol, or Station-to-Station
(STS) protocol, was presented by Diffie, van Oorschot, and Wiener in 1992. Prior
to execution of this protocol, Alice and Bob each obtain a public/private key pair
and a certificate for the public key; they also agree upon the two system
parameters p and g. The protocol then proceeds as follows:

1. Alice generates a random number a and computes and sends ga mod p to
Bob.

198 Implementing CICS Web Services

2. Bob generates a random number b and computes gb mod p.

3. Bob computes the shared secret key K = (ga)bmod p.

4. Bob concatenates the exponentials (gb mod p, ga mod p) (order is important),
signs them using his private key B, and then encrypts them with K. He sends
the ciphertext along with his own exponential gb mod p to Alice.

5. Alice computes the shared secret key K = (gb)a mod p.

6. Alice decrypts (gb mod p , ga mod p) using the shared secret key K and
verifies Bob’s signature using Bob’s public key.

7. Alice concatenates the exponentials (ga mod p , gb mod p) (order is
important), signs them using her private key A, and then encrypts them with
K. She sends the ciphertext to Bob.

8. Bob decrypts and verifies Alice's signature.

Alice and Bob are now mutually authenticated and have a shared secret. This
secret, K, can then be used to encrypt further communication.

6.10 Transport Layer Security (TLS) 1.0 protocol

The primary goal of the Transport Layer Security (TLS) protocol is to provide
privacy (confidentiality) and data integrity between two applications
communicating over the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdropping, tampering, or
message forgery.

At the time we are writing this book, there are two versions of the TLS protocol.
The Internet Society’s Request For Comments (RFC) 2246 specified the TLS 1.0
protocol in January, 1999. RFC 4346 specified the TLS 1.1 protocol in April,
2006. CICS TS V3.1 added support for the TLS protocol; however, since CICS
TS V3.1 became generally available before TLS 1.1, CICS TS V3.1 supports
only TLS 1.0. Therefore, we limit our discussion of TLS to TLS 1.0.

TLS 1.0 is based on the SSL 3.0 Protocol Specification as published by
Netscape. TLS provides the following enhancements over SSL 3.0:

� Key-Hashing for Message Authentication

TLS uses Key-Hashing for Message Authentication Code (HMAC), which
ensures that a record cannot be altered while travelling over an open network
such as the Internet. SSL Version 3.0 also provides keyed message
authentication, but HMAC is considered more secure than the Message
Authentication Code (MAC) function that SSL 3.0 uses.

 Chapter 6. Elements of cryptography 199

� Enhanced Pseudorandom Function (PRF)

PRF is used for generating key data. In TLS, the PRF is defined with the
HMAC. The PRF uses two hash algorithms in a way that guarantees its
security. If either algorithm is exposed then the data remains secure as long
as the second algorithm is not exposed.

� Improved finished message verification

Both TLS 1.0 and SSL 3.0 provide a finished message to both endpoints that
authenticates that the exchanged messages were not altered. However, TLS
bases this finished message on the PRF and HMAC values, which is more
secure than SSL 3.0.

� Consistent certificate handling

Unlike SSL 3.0, TLS specifies the type of certificate which must be
exchanged between TLS implementations.

� Specific alert messages

TLS provides more specific and additional alerts to indicate problems that
either session endpoint detects. TLS also documents when certain alerts
should be sent.

The differences between TLS 1.0 and SSL 3.0 are significant enough that TLS
1.0 and SSL 3.0 do not interoperate (although TLS 1.0 does incorporate a
mechanism by which a TLS implementation can back down to SSL 3.0).

6.10.1 TLS overview

The TLS protocol is composed of two layers: the TLS Record Protocol and the
TLS Handshake Protocol. At the lowest level, layered on top of some reliable
transport protocol (for example, TCP), is the TLS Record Protocol. The TLS
Record Protocol provides connection security that has two basic properties:

� The connection is private. Secret key cryptography is used for data
encryption. The keys for this secret key encryption are generated uniquely for
each connection and are based on a secret negotiated by another protocol
(such as the TLS Handshake Protocol).

� The connection is reliable. Message transport includes a message integrity
check using a keyed MAC (HMAC). Secure hash functions (for example,
SHA-1 or MD5) are used for MAC computations.

200 Implementing CICS Web Services

The TLS Handshake Protocol operates on top of the TLS Record Protocol and
allows the server and client to authenticate each other and to negotiate an
encryption algorithm and cryptographic keys before the application protocol
(such as http) transmits or receives its first byte of data. The TLS Handshake
Protocol provides connection security that has three basic properties:

� The peer’s identity can be authenticated using public key cryptography.

� The negotiation of a shared secret is secure: the negotiated secret is
unavailable to eavesdroppers, and for any authenticated connection the
secret cannot be obtained, even by an attacker who can place himself in the
middle of the connection.

� The negotiation is reliable: no attacker can modify the negotiation
communication without being detected by the parties to the communication.

The Record Protocol takes messages to be transmitted, fragments the data into
manageable blocks, optionally compresses the data, applies a MAC, encrypts,
and transmits the result. Received data is decrypted, verified, decompressed,
reassembled, and then delivered to higher level clients. See Figure 6-23, which
shows a client sending a message to a server.

Figure 6-23 Overview of TLS

TCP

TLS record layer
1. Receive data from higher layer
2. Fragment data into blocks
3. Compress
4. Apply a MAC
5. Encrypt
6. Transmit to server

Client

application (e.g. HTTP)

TLS handshake layer

TCP

TLS record layer
12. Deliver data to higher layer
11. Reassemble blocks into data
10. Decompress
 9. Verify MAC
 8 .Decrypt
 7. Receive from client

Server

application (e.g. HTTP)

TLS handshake layer

 Chapter 6. Elements of cryptography 201

The TLS Handshake Protocol consists of a suite of three sub-protocols:

� Change cipher spec protocol

� Alert protocol

� Handshake protocol

Before we examine the Handshake protocol, we explain what a cipher suite is.

6.10.2 Cipher suites

One dictionary defines a suite as “a group of things forming a unit or constituting
a collection”. A cipher suite then is a collection of cipher algorithms. More
specifically, RFC 2246 defines a cipher suite as a collection consisting of one key
exchange algorithm, one encryption algorithm, and one hash algorithm.

The hash algorithm must come from the following set:

� NULL (no hash algorithm)

� MD5

� SHA (meaning SHA-1)

The encryption algorithm must come from the following set:

� NULL (no encryption)

� IDEA_CBC

IDEA is a 64-bit block cipher designed by Xuejia Lai and James Massey; it
uses a 128 bit key. IDEA_CBC is IDEA running in cipher block chaining
mode.

� RC2_CBC_40

RC2 is a variable key-size block cipher designed by Ronald Rivest for RSA
Security; it uses a 64-bit block size. RC2_CBC_40 is RC2 running with a
40-bit key in cipher block chaining mode. (“RC” stands for “Ron’s Code” or
“Rivest’s Cipher”.)

� RC4_40

RC4 is a variable key-size stream cipher designed by Rivest for RSA
Security. RC4_40 is RC4 running with a 40-bit key.

� RC4_128

RC4_128 is RC4 running with a 128-bit key. When RFC 2246 was published,
RC4_40 was “exportable” but RC4_128 was not. (For many years, the U.S.
government did not approve export of cryptographic products unless the key
size was strictly limited.)

202 Implementing CICS Web Services

� DES40_CBC

DES40_CBC is DES running with a 40-bit key in cipher block chaining mode.

� DES_CBC

DES_CBC is DES running with a 56-bit key in cipher block chaining mode.
When RFC 2246 was published, DES40_CBC was exportable but DES_CBC
was not.

� 3DES_EDE_CBC

3DES_EDE_CBC is TDEA running in cipher block chaining mode. The first
use of DES is for encryption, the second for decryption, and the third for
encryption.

The key exchange algorithm must come from the following set:

� DHE_DSS

� DHE_DSS_EXPORT

� DHE_RSA

� DHE_RSA_EXPORT

� DH_anon

� DH_anon_EXPORT

� DH_DSS

� DH_DSS_EXPORT

� DH_RSA

� DH_RSA_EXPORT

� NULL

� RSA

� RSA_EXPORT

DH denotes key exchange algorithms in which the server’s certificate contains
the Diffie-Hellman parameters signed by the certificate authority. DHE denotes
ephemeral Diffie-Hellman, where the Diffie-Hellman parameters are signed by a
DSS or RSA certificate, which in turn has been signed by the CA. The signing
algorithm used is specified after DH or DHE.

DH_anon indicates completely anonymous Diffie-Hellman communications in
which neither party is authenticated. RSA indicates that the server should
provide an RSA certificate that can be used for key exchange. (An RSA
certificate is an X.509 certificate that has been signed by using the RSA
algorithm.)

 Chapter 6. Elements of cryptography 203

RFC 2246 assigns names to the 27 cipher suites which contain an acceptable
combination of algorithms from the sets identified previously. The names have
the form:

TLS_key-exchange-algorithm_WITH_encryption-algorithm_hash-algorithm

For example, the cipher suite TLS_RSA_WITH_DES_CBC_SHA contains the
RSA key exchange algorithm, the DES_CBC encryption algorithm, and the SHA
hash algorithm. The cipher suite TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
contains the DH_DSS key exchange algorithm, the 3DES_EDE_CBC encryption
algorithm, and the SHA hash algorithm.

The TLS 1.0 protocol seeks to provide a framework into which new public key
and secret key encryption methods can be incorporated. This prevents the need
to create a new protocol (which would risk the introduction of possible new
weaknesses). The TLS 1.0 protocol allows additional cipher suites to be
registered by publishing an RFC that specifies the cipher suite. Indeed, several
such RFCs have been published, including the following:

� RFC 2712 Addition of Kerberos Cipher Suites to Transport Layer Security
(TLS)

� RFC 3268 Advanced Encryption Standard (AES) Ciphersuites for Transport
Layer Security (TLS)

� RFC 4132 Addition of Camellia Cipher Suites to Transport Layer Security
(TLS)

� RFC 4162 Addition of SEED Cipher Suites to Transport Layer Security (TLS)
� RFC 4279 Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)
� RFC 4492 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport

Layer Security (TLS)

These RFCs and RFC 2246 assign a number to each cipher suite. Table 6-2
shows the numbers assigned to the cipher suites supported by Cryptographic
Services System SSL or Cryptographic Services Security Level 3, or both, in
z/OS V1.4.

Table 6-2 Cipher suites supported by System SSL in z/OS V1.4

Number Name

01 TLS_RSA_WITH_NULL_MD5

02 TLS_RSA_WITH_NULL_SHA

03 TLS_RSA_EXPORT_WITH_RC4_40_MD5

04 TLS_RSA_WITH_RC4_128_MD5

05 TLS_RSA_WITH_RC4_128_SHA

204 Implementing CICS Web Services

Cryptographic Services System SSL or Cryptographic Services Security Level 3,
or both, in z/OS V1.6, z/OS V1.7, and z/OS V1.8 support the cipher suites shown
in Table 6-2 plus the additional cipher suites shown in Table 6-3.

Table 6-3 Cipher suites supported by System SSL in z/OS V1.6, V1.7, and V1.8

06 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

09 TLS_RSA_WITH_DES_CBC_SHA

0A TLS_RSA_WITH_3DES_EDE_CBC_SHA

2F TLS_RSA_WITH_AES_128_CBC_SHA

35 TLS_RSA_WITH_AES_256_CBC_SHA

Number Name

0C TLS_DH_DSS_WITH_DES_CBC_SHA

0D TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA

0F TLS_DH_RSA_WITH_DES_CBC_SHA

10 TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA

12 TLS_DHE_DSS_WITH_DES_CBC_SHA

13 TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

15 TLS_DHE_RSA_WITH_DES_CBC_SHA

16 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

30 TLS_DH_DSS_WITH_AES_128_CBC_SHA

31 TLS_DH_RSA_WITH_AES_128_CBC_SHA

32 TLS_DHE_DSS_WITH_AES_128_CBC_SHA

33 TLS_DHE_RSA_WITH_AES_128_CBC_SHA

36 TLS_DH_DSS_WITH_AES_256_CBC_SHA

37 TLS_DH_RSA_WITH_AES_256_CBC_SHA

38 TLS_DHE_DSS_WITH_AES_256_CBC_SHA

39 TLS_DHE_RSA_WITH_AES_256_CBC_SHA

Number Name

 Chapter 6. Elements of cryptography 205

In “Defining a TCPIPSERVICE resource for SSL” on page 244 we explain how
you can control which cipher suites are used by CICS with the CIPHERS
attribute of the TCPIPSERVICE resource definition.

6.10.3 Alert protocol

Error handling in the TLS Handshake protocol is very simple. When an error is
detected, the detecting party sends a message called an alert message to the
other party. An alert message conveys the severity of the message and a
description of the alert.

The severity of the message must be one of the following:

� warning (1)

� fatal (2)

Upon transmission or receipt of a fatal alert message, both parties immediately
close the connection. Servers and clients are required to forget any session
identifiers, keys, and secrets associated with a failed connection.

The description of the alert must be one of the following:

� close_notify (0)

� unexpected_message (10)

� bad_record_mac (20)

� decryption_failed (21)

� record_overflow (22)

� decompression_failure (30)

� handshake_failure (40)

� bad_certificate (42)

� unsupported_certificate (43)

� certificate_revoked (44)

� certificate_expired (45)

� certificate_unknown (46)

� illegal_parameter (47)

� unknown_ca (48)

� access_denied (49)

� decode_error (50)

� decrypt_error (51)

206 Implementing CICS Web Services

� export_restriction (60)

� protocol_version (70)

� insufficient_security (71)

� internal_error (80)

� user_canceled (90)

� no_renegotiation (100)

RFC 2246 provides a short explanation of each of these descriptions.

The user-canceled and no-renegotiation alerts carry a level of warning. The
sender may determine at its discretion whether the following alerts are fatal or
not: bad_certificate, unsupported_certificate, certificate_revoked,
certificate_expired, certificate_unknown, and decrypt_error. The remaining
alerts always carry a level of fatal.

6.10.4 Handshake protocol

When a TLS client and server first start communicating, they agree on which
version of the TLS protocol they will use, select a cipher suite, optionally
authenticate each other, and use public key encryption techniques to generate
shared secrets.

The TLS Handshake Protocol involves the following steps:

� Exchange hello messages to agree on a cipher suite and a compression
algorithm, exchange random values, and check for session resumption.

� Exchange the necessary cryptographic parameters to allow the client and
server to agree on a premaster secret.

� Exchange certificates and cryptographic information to allow the client and
server to authenticate themselves.

� Generate a master secret from the premaster secret and exchanged random
values.

� Provide security parameters to the record layer as shown in Figure 6-24.

� Allow the client and server to verify that their peer has calculated the same
security parameters and that the handshake occurred without tampering by
an attacker.

 Chapter 6. Elements of cryptography 207

Figure 6-24 Handshake protocol passes security parameters to the record layer

Starting a new session
When the client and server wish to start a new session, they begin by
exchanging hello messages as shown in Figure 6-25.

Figure 6-25 Starting a new TLS session(1): Establishing algorithms

TCP

TLS record layer

TLS
alert
protocol

TLS
change
cipher
spec
protocol

TLS
hand
shake
protocol

application (e.g. HTTP)

secret key encryption algorithm
cipher type (block or stream)
key size
key material length
MAC algorithm, hash size
compression algorithm
master secret
client and server random numbers

ciphertext

E

encryption
algorithm

Bob's public key

decryption
algorithm

D

Bob's private key

Bob

plaintext
(secret key)

Alice

plaintext
(secret key)

208 Implementing CICS Web Services

The server can send the hello_request message at any time. It is a simple
notification that the client should begin the negotiation process anew by sending
a client_hello message when convenient.

The client_hello message includes the following parameters:

� The version of the TLS protocol by which the client wishes to communicate
during this session. This should be the highest valued version supported by
the client. For TLS 1.0 the version should be 3.1. (The version value 3.1 is
historical: TLS version 1.0 is a minor modification to the SSL 3.0 protocol,
which bears the version value 3.0.)

� The current time and date according to the client’s internal clock, followed by
28 bytes generated by a secure random number generator.

� A list of the cipher suites supported by the client in order of the client’s
preference (favorite choice first). Recall that each cipher suite contains a key
exchange algorithm, a secret key encryption algorithm (including secret key
length), and a MAC algorithm.

� A list of the compression methods supported by the client, sorted by client
preference.

The server will send a server_hello message in response to a client_hello
message when it is able to find an acceptable set of algorithms. If it cannot find
such a match, it will respond with a handshake failure alert. The server_hello
message includes the following parameters:

� Either the TLS protocol version suggested by the client or the highest TLS
protocol version supported by the server, whichever is lower.

� The current time and date according to the server’s internal clock, followed by
28 bytes generated by a secure random number generator.

� The identity of the session corresponding to this connection. The actual
contents of the sessionID are defined by the server.

� The single cipher suite selected by the server from the list supplied by the
client.

� The single compression algorithm selected by the server from the list
supplied by the client.

Thus the client_hello and server_hello messages establish the following
connection attributes: the TLS protocol version, the sessionID, the key exchange
algorithm, the secret key encryption algorithm, the key length for the secret key
encryption algorithm, and the compression method. Additionally, two random
values are generated and exchanged: client_hello.random and
server_hello.random. Comparing this list of items with the list of items shown in
Figure 6-24 on page 208, which the TLS Handshake Protocol must pass to the

 Chapter 6. Elements of cryptography 209

Record layer, we see that the TLS Handshake Protocol must still come up with a
master secret.

The master secret is generated by using, among other things, a pre-master
secret. The general goal of the key exchange process shown in Figure 6-26 is to
create a pre-master secret known to the communicating parties and not to
attackers. Note that the italicized lines in Figure 6-26 represent actions taken by
the client and server rather than protocol messages.

Figure 6-26 Starting a new TLS session(2): Establishing the pre-master secret

The server_certificate message sends a chain of X.509v3 certificates. The
server’s certificate must come first in the chain. Each following certificate must
directly certify the one preceding it. The server’s certificate must contain a key
that matches the key exchange method that was specified in the negotiated
cipher suite; see Table 6-4.

(1) optional
(2) only if server requested client certificate in (1)

For RSA key exchange:
 encrypted pre-master secret
For DH key exchange:
 client's DH public value

For DH key exchange: p, g, gs mod p
For RSA key exchange: (n, e)
In either case: digital signature

List of types of certificates requested
DNs of acceptables CAs

Server's certificate (public key)
Chain of X.509v3 certificates

Client's certificate (public key)
Chain of X.509v3 certificates

Server

decrypt pre-master secr
 or
gen pre-master secret

...
gen master secret

gen encryption keys, IVs

server_certificate

server_key_exchange

certificate_request (1)

server_hello_done

...
Client

verify server certificate

client_certificate (2)

gen pre-master secret

client_key_exchange

gen master secret

gen encryption keys, IVs...

...

210 Implementing CICS Web Services

Table 6-4 Key exchange methods and corresponding certificate key types

The server_key_exchange message is sent by the server only when the
server_certificate message does not contain enough data to allow the client to
exchange a pre-master secret. This is true for the following key exchange
methods: RSA_EXPORT (if the public key in the server certificate is longer than
512 bits), DHE_DSS, DHE_DSS_EXPORT, DHE_RSA, DHE_RSA_EXPORT,
and DH_anon.

The server_key_exchange message conveys cryptographic information to allow
the client to confidentially communicate the pre-master secret to the server:
either an RSA public key with which to encrypt the pre-master secret, or a
Diffie-Hellman public key with which the client can complete a key exchange
(with the result being the pre-master secret).

Key exchange method of
negotiated cipher suite

Type of key in server certificate

RSA RSA public key; the keyUsage field of the certificate
must allow the key to be used for encryption.

RSA_EXPORT RSA public key of length greater than 512 bits which
can be used for signing, or a key of 512 bits or shorter
which can be used for either encryption or signing.

DHE_DSS DSS public key.

DHE_DSS_EXPORT DSS public key.

DHE_RSA RSA public key which can be used for signing.

DHE_RSA_EXPORT RSA public key which can be used for signing.

DH_DSS Diffie_Hellman key. The algorithm used to sign the
certificate should be DSS.

DH_RSA Diffie_Hellman key. The algorithm used to sign the
certificate should be RSA.

Note: At the time RFC 2246 was written, United States export restrictions
limited RSA keys used for encryption to 512 bits, but did not place any limit on
lengths of RSA keys used for signing operations.

 Chapter 6. Elements of cryptography 211

When the key exchange method is RSA_EXPORT, the server_key_exchange
message includes the following parameters:

� The modulus n of the server’s temporary RSA key.

According to US export law at the time RFC 2246 was written, RSA moduli
larger than 512 bits could not be used for key exchange in software exported
from the US. This message allows the larger RSA keys encoded in
certificates to be used to sign temporary shorter RSA keys.

� The public exponent e of the server’s temporary RSA key.

� A 36 byte structure of two hashes (one SHA-1 and one MD5), which has been
signed with the server’s private key. The SHA-1 hash takes as input the
concatenation of client_hello.random, server_hello.random, and (n,e); it
produces 20 bytes of output. The MD5 hash takes the same input and
produces 16 bytes of output.

When the key exchange method is DHE_DSS, DHE_DSS_EXPORT,
DHE_RSA, or DHE_RSA_EXPORT, the server_key_exchange message
includes the following parameters:

� The prime modulus p used for the Diffie-Hellman operation.

� The generator g used for the Diffie-Hellman operation.

� The server’s Diffie-Hellman public value gs mod p.

� Two integers r and s produced as follows. An SHA-1 hash takes as input the
concatenation of client_hello.random, server_hello.random, p, g, and gs
mod p; it produces 20 bytes of output. The 20 bytes are run through the
Digital Signature Algorithm.

A non-anonymous server can optionally request a certificate from the client. The
certificate_request message includes the following parameters:

� A list of the types of certificates requested, sorted in order of the server’s
preference

� A list of the distinguished names (DNs) of acceptable certificate authorities
(CAs)

The server sends the server_hello_done message to indicate that it is done
sending messages to support the key exchange, and the client can proceed with
its phase of the key exchange. Upon receipt of this message, the client should
verify that the server provided a valid certificate and that the certificate has not
expired or been revoked. The client should also check that the server hello
parameters are acceptable.

The client_certificate message is the first message the client can send after
receiving the server_hello_done message. The client only sends the

212 Implementing CICS Web Services

client_certificate message if the server requests a certificate. If the client
does not have a suitable certificate to send to the server, it sends a message
containing no certificates. If the server requires client authentication in order to
continue the handshake, it may respond with a fatal_handshake failure alert.

The structure of the client_key_exchange message depends on which key
exchange method has been selected.

� If RSA is being used for key agreement and authentication, the client
generates a 48-byte pre-master secret, encrypts it using either the public key
from the server’s certificate or the temporary RSA key provided in a
server_key_exchange message, and then sends the result in an encrypted
pre-master secret message. Since the pre-master secret has been encrypted
using the server’s public key, the server can decrypt it. In fact, only the server
can decrypt it. The pre-master secret consists of two bytes that indicate the
latest (newest) version of the TLS protocol supported by the client followed by
46 securely-generated random bytes.

� If Diffie-Hellman is being used for key agreement, the client_key_exchange
message conveys the client’s Diffie-Hellman public value gc mod p. Having
the client’s Diffie-Hellman public value allows the server to compute the same
pre-master secret as the client. (In the event that the key exchange method is
DH_RSA or DH_DSS, and the server requested client certification, and the
client was able to respond with a certificate that contained a Diffie-Hellman
public key whose group and generator matched those specified by the server
in its certificate, then the client will send an empty client_key_exchange
message.)

Now that the client and the server have agreed upon the pre-master secret they
can compute the master secret. For all key exchange methods, the same
algorithm is used to convert the pre-master secret into the master secret.

Example 6-3 Computing the master secret

master_secret=PRF(pre_master_secret, “master secret”,
client_hello.random+server_hello.random)

In Example 6-3 PRF is a pseudo-random function defined in RFC 2246, and +
represents the concatenation operation. PRF takes as input a secret (such as
our pre-master secret), an identifying label (such as “master secret”), and a seed
(such as the concatenation of the random numbers generated by the client and
the server).

Having computed the master secret, the Record Protocol layer for the client and
the Record Protocol layer for the server can now each use PRF to compute a
key_block as shown in Example 6-4.

 Chapter 6. Elements of cryptography 213

Example 6-4 Computing the key_block

key_block=PRF(master_secret, “key expansion”,
client_hello.random+server_hello.random)

Then the key_block is partitioned as follows:

� client_write_MAC_secret

The first SecurityParameters.hash_size bytes of the key_block become the
secret data used to authenticate data written by the client.

� server_write_MAC_secret

The next SecurityParameters.hash_size bytes of the key_block become the
secret data used to authenticate data written by the server.

� client_write_key

The next SecurityParameters.key_material_length bytes become the key
used to encrypt data written by the client.

� server_write_key

The next SecurityParameters.key_material_length bytes become the key
used to encrypt data written by the server.

� client_write_IV

The next bytes become the initialization vector for the encryption algorithm
when the client encrypts data. The required number of bytes is equal to the
block size for block ciphers and zero for stream ciphers.

� server_write_IV

The next bytes become the initialization vector for the encryption algorithm
when the server encrypts data.

Figure 6-27 on page 215 shows the final phase of starting a new TLS session.

Note: Since the client_hello.random and server_hello.random values are
unique for each connection, the data encryption keys and MAC secrets will be
unique for each connection. Also note that the server_write_key and the
client_write_key are independent of each other.

214 Implementing CICS Web Services

Figure 6-27 Starting a new TLS session (3): Verification

The certificate_verify message is used to provide explicit verification of a
client certificate. This message is only sent following a client certificate that has
signing capability (that is, all certificates except those containing fixed
Diffie-Hellman parameters).

When the key exchange method is RSA, the certificate_verify message
includes a 36-byte structure of two hashes (one SHA-1 and one MD5), which has
been signed with the client’s private key. The SHA-1 hash takes as input the
concatenation of all handshake messages sent or received starting at
client_hello up to but not including this message; it produces 20 bytes of
output. The MD5 hash takes the same input and produces 16 bytes of output.
These handshake messages include the server certificate, which binds the
signature to the server, and server_hello.random, which binds the signature to
the current handshake process.

When the key exchange method is Diffie-Hellman, the certificate_verify
message includes a SHA-1 hash that takes the input described in the preceding
paragraph and produces 20 bytes of output. The 20 bytes are then signed using
the Digital Signature Algorithm.

The change_cipher_spec message is sent by both the client and server to notify
the receiving party that subsequent records will be protected under the newly
negotiated encryption and MAC algorithms and keys. The message consists of a
single byte of value 1.

Uses negotiated encryption and MAC
algorithms, keys, and secrets

Digital signature computed over
hash of handshake messages

Uses negotiated encryption and MAC
algorithms, keys, and secrets

Server

finished

change_cipher_spec

validate finished msg

...
Client

certificate_verify

finished

change_cipher_spec

validate finished msg

...

 Chapter 6. Elements of cryptography 215

A finished message is always sent immediately after a change_cipher_spec
message to verify that the key exchange and authentication processes were
successful. The finished message is the first protected with the just-negotiated
algorithms, keys, and secrets. The content of the finished message is
generated using PRF as shown in Example 6-5.

Example 6-5 Computing the verify_data

PRF(master_secret, finished_label,
MD5(handshake_messages)+SHA-1(handshake_messages))

In Example 6-5:

� The value of finished_label is the string “client finished” for finished
messages sent by the client and “server finished” for finished messages
sent by the server.

� The value of handshake_messages is all of the data from all handshake
messages up to but not including this message.

Recipients of finished messages must verify that the contents are correct. Once
a side has sent its finished message and received and validated the finished
message from its peer, it may begin to send and receive application data over
the connection.

Outgoing data is protected with a MAC before transmission. To prevent message
replay or modification attacks, the MAC is computed from the MAC secret, the
message contents, the message length, and the sequence number of the
message.

Resuming a session
Cryptographic operations tend to be highly CPU intensive, particularly public key
operations. For this reason, the TLS protocol has incorporated an optional
session caching scheme to reduce the number of connections that need to be
established from scratch. When the client and server decide to resume a
previous session, the message flow is as shown in Figure 6-28 on page 217.

216 Implementing CICS Web Services

Figure 6-28 Resuming a session

The client sends a client_hello using the session ID of the session to be
resumed. The server then checks its session cache for a match.

� If a match is found, and the server is willing to re-establish the connection
under the specified session state, it will send a server_hello with the same
session ID value plus the cipher suite and compression method from the state
of the session being resumed. At this point both client and server must send
change_cipher_spec messages and proceed directly to finished messages.

� If a session ID match is not found, the server generates a new session ID and
the TLS client and server perform a full handshake.

When a connection is established by resuming a session, new
client_hello.random and server_hello.random values are used with the
session’s master secret to produce a new key_block (see Example 6-4) and
hence new encryption keys and MAC secrets.

Highest protocol version supported
Random number (28 bytes)
Session ID
Cipher suites supported
Compression methods supported

Protocol version selected
Random number (28 bytes)
Session ID
Cipher suite selected
Compression method selected

Client

client_hello

finished

application data

change_cipher_spec

validate finished msg

generate random number

gen encryption keys, IVs

Server

server_hello

validate finished msg

change_cipher_spec

application data

finished

generate random number

gen encryption keys, IVs

 Chapter 6. Elements of cryptography 217

218 Implementing CICS Web Services

Chapter 7. Crypto hardware and ICSF

If you want to use the CICS-supplied module DFHWSSE1 to implement
WS-Security in CICS TS V3.1, your system will have to meet certain hardware
and software requirements. These requirements vary among the various server
models (z900, z990, z9™, and so forth).

In this chapter we introduce you to IBM cryptographic hardware and to ICSF, the
software product through which DFHWSSE1 invokes the cryptographic
hardware. We then describe how CICS WS-Security support uses ICSF and
hardware cryptography.

7

© Copyright IBM Corp. 2007. All rights reserved. 219

7.1 Cryptographic hardware

A cryptographic hardware feature is a secure, high-speed device that performs
cryptographic functions. The cryptographic hardware features available to your
CICS regions depend on the server that you have. This section provides a
summary of the cryptographic hardware features currently available on System z
hardware.

In recent years IBM has shipped the following cryptographic hardware products
for mainframe servers:

� Central Processor Assist for Cryptographic Functions (CPACF)

� Cryptographic Express 2 Coprocessor (CEX2C)

� Cryptographic Express 2 Accelerator (CEX2A)

� Peripheral Component Interconnect Cryptographic Coprocessor (PCICC)

� Peripheral Component Interconnect Cryptographic Accelerator (PCICA)

� Peripheral Component Interconnect - Extended Cryptographic Coprocessor
(PCIXCC)

� Cryptographic Coprocessor Feature (CCF)

Table 7-1 shows which of these cryptographic hardware products are available
for each of several mainframe servers.

Table 7-1 Cryptographic hardware per server type

Server 9672
G5,G6

z800, z900 z890, z990 z9 109, z9 BC, z9 EC

CPACF No No Yes (Requires z/OS 1.4 or
later)

Yes (Requires z/OS 1.6 or
later)

CEX2C
(feature 0863)

No No Yes (Requires feature
3863 and z/OS 1.4 or later
with ICSF FMID HCR7720

or later)

Yes (Requires feature
3863 and z/OS 1.6 or later
with ICSF FMID HCR7730

or later)

CEX2A
(feature 0863)

No No No Yes (Requires feature
3863 and z/OS 1.6 or later
with ICSF FMID HCR7730
or later)

PCICC
(feature 0861)

Yes Yes (requires
CCF)

No No

PCICA
(feature 0862)

No Yes (requires
CCF)

Yes (Requires feature
3863)

No

220 Implementing CICS Web Services

Next we summarize the main features of the most recent cryptographic hardware
options, the CPACF and CEX2.

7.1.1 CP Assist for Cryptographic Functions (CPACF)

CPACF offers a set of symmetric cryptographic functions available on all CPs of
a z990, z890, z9-109, z9 Enterprise Class (EC), and z9 Business Class (BC).

The CPACF feature provides hardware acceleration for DES, triple-DES, AES
(128 bit), MAC, SHA-1, and SHA-256 cryptographic services. It provides
high-performance hardware encryption, decryption, and hashing support.

The SHA-1 algorithm is always available. The SHA-256 algorithm is available on
the z9-109, z9 EC, and z9 BC. CPACF DES/triple-DES enablement is provided
with feature 3863. It provides for clear key DES and triple-DES instructions. On
the z9-109, z9 EC, and z9 BC, this feature includes clear key AES for 128-bit
keys.

Use of the CPACF instructions provides improved performance. Since the
CPACF cryptographic functions are implemented in each CP, the potential
throughput scales with the number of CPs in the server.

The CPACF feature can be used indirectly by z/OS applications and subsystems
(such as CICS) that use the Integrated Cryptographic Service Facility (ICSF) for
cryptographic functions (see “ICSF” on page 225).

PCIXCC
(feature 0868)

No No Yes (Requires feature
3863 and ICSF FMID
HCR770A or later)

No

CCF (feature
0800)

Yes Yes No No

Server 9672
G5,G6

z800, z900 z890, z990 z9 109, z9 BC, z9 EC

Important: The CPACF operates with clear keys only. A clear key is a key
that has not been encrypted under another key and has no additional
protection within the cryptographic environment.

 Chapter 7. Crypto hardware and ICSF 221

7.1.2 Crypto Express 2 feature

The optional Crypto Express 2 (CEX2) comes as a PCI-X (Peripheral
Component Interconnect eXtended) pluggable feature that provides a high
performance and secure cryptographic environment.

An installation can configure the CEX2 feature as an asynchronous
cryptographic coprocessor (CEX2C) or accelerator (CEX2A). The CEX2C is
available on the System z9™ servers, z890 and z990. The CEX2A is available on
the System z9 servers only.

� The Crypto Express 2 Coprocessor (CEX2C) feature is designed to secure
the cryptographic keys.

Security-relevant cryptographic keys are encrypted under a Master Key when
outside of the secure boundary of the CEX2C card. The Master Keys are
always kept in battery backed-up memory within the tamper-protected
boundary of the CEX2C, and are destroyed if the hardware module detects an
attempt to penetrate it. The tamper-responding hardware has been certified at
the highest level under the FIPS 140-2 standard.

The CEX2C allows the user to do the following, using secure keys:

– Encrypt and decrypt data utilizing shared secret-key algorithms.

– Generate, install, and distribute cryptographic keys securely using both
public and secret-key cryptographic methods.

– Generate, verify, and translate personal identification numbers (PINs).

– Ensure the integrity of data by using MACs, hashing algorithms, and RSA
public key algorithm (PKA) digital signatures.

Clear key PKA operations are also supported by the CEX2C, and are often
used to provide SSL protocol communications.

The CEX2C consolidates the functions previously offered on the z900 by the
Cryptographic Coprocessor feature (CCF), the PCI Cryptographic
Coprocessor (PCICC), and the PCI Cryptographic Accelerator (PCICA)
feature.

� The Crypto Express 2 Accelerator (CEX2A) is actually a CEX2C that has
been reconfigured by the user to only provide a subset of the CEX2C
functions at enhanced speed.

The CEX2A provides hardware support to accelerate certain cryptographic
operations that occur frequently in the e-business environment.

Note: A secure key is a key that has been encrypted under another key
(usually the master key).

222 Implementing CICS Web Services

Computationally intensive public key operations as used by the SSL/TLS
protocol can be offloaded from the CP to the CEX2A, potentially increasing
system throughput.

The CEX2A is used for the following RSA cryptographic operations (with clear
keys only):

– PKA Decrypt (CSNDPKD), with PKCS-1.2 formatting

– PKA Encrypt (CSNDPKE), with ZERO-PAD formatting

– Digital Signature Verify

A z9 109, z9 BC, or z9 EC server can support a maximum of eight CEX2
features. Since each feature provides two coprocessors or accelerators, a z9
server can support a maximum of 16 cryptographic coprocessors or
accelerators.

7.1.3 Comparison of CPACF, CEX2C, and CEX2A

Table 7-2 summarizes the functions and attributes of the cryptographic hardware
that is available for a System z9.

Table 7-2 Comparison of System z9 cryptographic hardware

Important: The CEX2 feature requires ICSF to be active.

Function or attribute CPACF CEX2C CEX2A

DES/TDES encrypt/decrypt with clear key X

AES-128 encrypt/decrypt with clear key X

DES/TDES encrypt/decrypt with secure key X

AES encrypt/decrypt with secure key X

Generate pseudo random numbers X X

Provide hashing and message authentication X X

Secure key RSA X

Clear key RSA X X

Provide highest performance for SSL
handshaking with clear key

X

Provide highest performance for asymmetric
encryption with secure key

X

 Chapter 7. Crypto hardware and ICSF 223

7.1.4 Other cryptographic hardware

In this section we identify the cryptographic hardware that is available with
System z servers prior to the z9.

PCI Cryptographic Accelerator (PCICC)
The PCI Cryptographic Coprocessor (PCICC) is an orderable feature that adds
additional cryptographic function and cryptographic performance to the z800 and
z900 servers, and S/390® G5/G6 servers.

PCI Cryptographic Accelerator (PCICA)
The Peripheral Component Interconnect Cryptographic Accelerator (PCICA) is
an orderable feature on the z990 and other zSeries servers. The PCICA feature
is used for the acceleration of modular arithmetic operations, in particular the
complex RSA cryptographic operations used with the SSL protocol.

PCI-X Cryptographic Coprocessor (PCIXCC)
The PCIXCC is a single coprocessor card that replaced the CCF and PCICC for
the z890 and z990 servers. For more information about the PCIXCC see the
article “The IBM PCIXCC: A new cryptographic coprocessor for the IBM
eServer™” which appeared in volume 48 of the IBM Journal of Research and
Development for May/July, 2004.

Cryptographic Coprocessor Feature (CCF)
The CCF is a single-chip cryptographic coprocessor that was imbedded as a
standard, no-cost component in the early CMOS mainframe systems. Depending
on its size, each CMOS mainframe has one or two CCFs. Each CCF contains
both DES and Public Key Algorithm (PKA) cryptographic processing units.

Physically imbedded on each CP X

Tamper-resistant hardware packaging X

Designed for FIPS 140-2 Level 4 certification X

Requires ICSF to be active X X

Storage for system master keys X

Requires system master keys to be loaded X

Usable for key management operations X

Function or attribute CPACF CEX2C CEX2A

224 Implementing CICS Web Services

7.2 ICSF

The Integrated Cryptographic Service Facility (ICSF) is a software element of
z/OS that works with cryptographic hardware features and RACF to provide
secure, high-speed cryptographic services in the z/OS environment. ICSF
provides the application programming interfaces by which applications, and
subsystems such as CICS, request the cryptographic services.

ICSF provides support for a number of cryptography services, including:

� DES and triple-DES encryption for privacy

� The transport of symmetric data keys through the use of the RSA public key
algorithm

� The generation and verification of digital signatures through the use of both
the RSA and the DSA algorithms

� The generation of RSA and DSA keys

� The PKA Encrypt and PKA Decrypt callable services that can be used to
enhance the security and performance of SSL/TLS security protocol
applications

� AES encryption and decryption

7.2.1 ICSF callable services

The format for invoking an ICSF callable service depends on the programming
language, for example:

� C

CSNBxxxx (return_code,reason_code,exit_data_length,exit_data,
parameter_5,parameter_6,...,parameter_N)

� COBOL

CALL ‘CSNBxxxx’ USING return_code,reason_code,exit_data_length,
exit_data,parameter_5,parameter_6,...,parameter_N

� PL/I

DCL CSNBxxxx ENTRY OPTIONS(ASM);

CALL CSNBxxxx return_code,reason_code,exit_data_length,exit_data,
parameter_5,parameter_6,...,parameter_N

� Assembler

CALL CSNBxxxx,(return_code,reason_code,exit_data_length,exit_data,
parameter_5,parameter_6,...,parameter_N)

 Chapter 7. Crypto hardware and ICSF 225

Controlling who can use cryptographic keys and services
The ICSF administrator can use RACF to control which applications can use
specific keys and services. To set up these controls, the ICSF administrator must
create RACF general resource profiles in the CSFKEYS resource class and in
the CSFSERV resource class. The CSFKEYS class controls access to
cryptographic keys, and the CSFSERV class controls access to ICSF services.

The following RACF command defines a profile in the CSFKEYS class:

RDEFINE CSFKEYS label UACC(NONE) other-optional-operands

where label is the label by which the key is defined in the CKDS or PKDS. Use
the RACF PERMIT command to give user IDs or groups access to the profile:

PERMIT label CLASS(CSFKEYS) ID(groupID) ACCESS(READ)

To refresh the in-storage RACF profiles, issue a SETROPTS command:

SETROPTS RACLIST(CSFKEYS) REFRESH

The following RACF command defines a profile in the CSFSERV class:

RDEFINE CSFSERV service-name UACC(NONE) other-optional-operands

where service-name is chosen from a list in the ICSF Administrator’s Guide,
SA22-7521. (If the application program called the CSNBxxxx service, you should
generally specify CSFxxxx as the service-name in the RDEFINE command.
Note, however, that access to ICSF services CSNBSYE and CSNBSYD is not
protected by profiles in the CSFSERV class.) Use the RACF PERMIT command
to give user IDs or groups access to the profile:

PERMIT service-name CLASS(CSFSERV) ID(groupID) ACCESS(READ)

To refresh the in-storage RACF profiles, issue a SETROPTS command:

SETROPTS RACLIST(CSFSERV) REFRESH

7.2.2 ICSF administration

You define installation options and configure ICSF using the ICSF panels. You
can use the ICSF panels to activate or deactivate your PCICC, PCIXCC, CEX2C,
PCICA, and CEX2A coprocessors.

Note: You cannot use Java to invoke an ICSF callable service, but Java
applications can indirectly use the callable services via JSSE and JCECCA.

226 Implementing CICS Web Services

Example 7-1 shows a sample ICSF Coprocessor Management panel. The panel
prefixes the coprocessor serial ID with a letter that indicates the type of
coprocessor as follows: A for PCICA, E for CEX2C, F for CEX2A, and X for
PCIXCC.

Example 7-1 Sample ICSF Coprocessor Management panel

------------------------- ICSF Coprocessor Management -------- Row 1 to 4 of 4

Select the coprocessors to be processed and press ENTER.

Action characters are: A, D, E, K, R and S. See the help panel for details.

COPROCESSOR SERIAL NUMBER STATUS

----------- ------------- ------

. E00 95000224 ACTIVE

. E01 95000225 DEACTIVATED

. E02 95000182 DEACTIVATED

. E03 95000180 DEACTIVATED
******************************* Bottom of data ********************************

7.3 How CICS uses ICSF

The CICS support for XML digital signature processing and XML encryption is
dependent on ICSF services and therefore the configuration and startup of ICSF
is a requirement for using this support.

Figure 7-1 shows how the CICS-supplied message handler, DFHWSSE1, issues
a cryptographic API call to the ICSF started task. The ICSF started task invokes
RACF to determine whether the user ID associated with the request is authorized
to use the requested cryptographic service and any keys associated with the
request. If the user ID has the proper authority, the ICSF started task will decide
whether it should perform the request using ICSF software or cryptographic
hardware.

If ICSF decides to use cryptographic hardware, it gives control to its routines that
contain the crypto instructions. If ICSF routes the request to the CEX2C and the
request is, for instance, a request to encrypt data, the ICSF started task provides
the CEX2C with the data to be encrypted and the key to be used by the

Note: ICSF recognizes the CEX2A beginning with the FMID HCR7730 level of
ICSF. Previous levels of ICSF ignore the CEX2A cards.

 Chapter 7. Crypto hardware and ICSF 227

encryption algorithm. Recall that the key is encrypted, in this case under a
variant of the Symmetric Keys Master Key(SYM-MK) stored in the CEX2C.

Figure 7-1 Overview of how CICS uses ICSF

The keys can be stored in ICSF-managed VSAM data sets and pointed to by the
application program by using the label under which they are stored. The
Cryptographic Key Data Set (CKDS) is used to store the symmetric keys in their
encrypted form, and the Public Key Data Set (PKDS) is used to store the
asymmetric keys. If the level of ICSF that you are using is HCR7720 or higher,
you can also store keys in the CKDS in clear (unencrypted) form.

ICSF

Callable
services
APIs

z/OS

Clear application
key in storage

DFHWSSE1

CICS

CALL CSNxxxx

System z9

PKDS
Application's public/private
keys encrypted under
the ASYM-MK

CKDS
Application's DES keys
encrypted under
the SYM-MK

Hardware Crypto

CPACF

Asymmetric-keys
Master Key

CEX2C
Symmetric-keys
Master Key

Segment 0

Segment 3
Segment 2
Segment 1

Ciphertext

Plaintext

Key to use

Crypto instruction

or instructions
in the application

RACF

228 Implementing CICS Web Services

7.4 ICSF services used by CICS WS-Security support

This section provides information about which ICSF services are used by CICS
and the cryptographic hardware requirements for each ICSF service.

ICSF callable services
This section describes the ICSF callable services used by CICS WS-Security.

� CSNBCKM
Usage: XML encryption/decryption with DES algorithms

The multiple clear key import callable service imports a clear 64-bit, 128-bit,
or 192-bit DATA key that is to be used to encipher or decipher data. This
service accepts a clear DATA key, enciphers it under the master key, and
returns the encrypted DATA key in operational form in an internal key token.

� CSNBDEC
Usage: XML decryption with DES algorithms

The decipher callable service decrypts data in the caller’s primary address
space using either DES or TDES in the cipher block chaining mode. The
caller must supply a 64-byte string that is an internal key token containing the
data-encrypting key, or the label of a CKDS record containing a
data-encrypting key, to be used for decrypting the data. Thus CSNBDEC
uses a secure key. If the key token or CKDS record contains a 64-bit key, a
DES decryption is performed. If the key token or CKDS record contains a
128-bit or 192-bit key, TDES decryption is performed.

� CSNBENC
Usage: XML encryption with DES algorithms

The encipher callable service encrypts data in the caller’s primary address
space using either DES or TDES in the cipher block chaining mode. The
caller must supply a 64-byte string that is an internal key token containing the
data-encrypting key, or the label of a CKDS record containing a
data-encrypting key, to be used for encrypting the data. Thus CSNBENC
uses a secure key. If the key token or CKDS record contains a 64-bit key, a
DES encryption is performed. If the key token or key label contains a 128-bit
or 192-bit key, TDES encryption is performed.

� CSNBOWH
Usage: XML encryption/decryption and XML digital signature processing

The one-way hash generate callable service generates a one-way hash on
specified text. This service supports the following methods: MD5 (software
only), SHA-1, RIPEMD-160 (software only), and SHA-256.

 Chapter 7. Crypto hardware and ICSF 229

� CSNBRNG
Usage: XML encryption/decryption and XML digital signature processing

The random number generate callable service generates a 64-bit random
number. If the caller requests, the service will generate a number with either
even parity or odd parity in each byte. Parity is calculated on the 7 high-order
bits in each byte and is presented in the low-order bit in the byte. (Note that a
64-bit random number with odd parity in each byte would be suitable for use
as a DES key.)

� CSNBSYD
Usage: XML decryption

The symmetric key decipher callable service decrypts data in the caller’s
primary address space using one of the following algorithms: DES,
TDES-128, TDES-192, AES-128, AES-192, AES-256. The caller can specify
the use of either the electronic code book mode or the cipher block chaining
mode. The caller must supply a key to be used for decrypting the data. The
key must be supplied in one of the following ways: a clear key, a 64-byte
string that is an internal key token containing a clear key, or a 64-byte string
that is the label of a CKDS record containing a clear key.

� CSNBSYE
Usage: XML encryption

The symmetric key encipher callable service encrypts data in the caller’s
primary address space using one of the following algorithms: DES,
TDES-128, TDES-192, AES-128, AES-192, AES-256. The caller can specify
the use of either the electronic code book mode or the cipher block chaining
mode. The caller must supply a key to be used for encrypting the data. The
key must be supplied in one of the following ways: a clear key, a 64-byte
string that is an internal key token containing a clear key, or a 64-byte string
that is the label of a CKDS record containing a clear key.

� CSNDDSG
Usage: XML digital signature generation

The digital signature generate callable service generates a digital signature
using an RSA private key. The private key must be valid for signature usage.
The caller must supply input text that has been previously hashed using the
one-way hash generate callable service.

� CSNDDSV
Usage: XML digital signature validation

The digital signature verify callable service verifies a digital signature using an
RSA public key. The caller must supply input text that has been previously
hashed using the one-way hash generate callable service. The caller must
also supply the digital signature that is to be verified.

230 Implementing CICS Web Services

� CSNDPKB
Usage: XML digital signature validation

The PKA key token build callable service can be used to do one of the
following:

– Take a clear public key and a clear private key as input and build a PKA
private external key token that contains a clear public key and a clear
private key. You can use this token as input to the PKA key import service
to obtain a private internal key token containing an enciphered private key.

– Take a clear public key as input and build a PKA public external key token
containing a clear public key. You can use this token directly in other PKA
services.

A “PKA key” means either an RSA key or a DSS key.

� CSNDPKD
Usage: XML decryption

The PKA decrypt service decrypts a formatted key, deformats it, and returns
the deformatted value to the application in the clear.

� CSNDPKE
Usage: XML encryption

The PKA encrypt service encrypts a supplied clear key value under an RSA
public key.

Cryptographic hardware required
The z/OS 1.8 ICSF Application Programmer's Guide, SA22-7522-08 provides
details about the cryptographic hardware required by each callable service for a
given server model.

Table 7-3 shows the cryptographic hardware required for each callable service
listed in the previous section.

 Chapter 7. Crypto hardware and ICSF 231

Table 7-3 Cryptographic hardware required by ICSF callable services used by CICS

Our discussion in this chapter leads to the conclusion that for DFHWSSE1 to run
successfully on a z9-109, z9 BC, or z9 EC server, the following statements must
all be true:

� Feature 3863 is installed on the server.

� At least one Feature 0863 (CEX2) is installed on the server.

Service IBM eServer
zSeries 800 or 900

IBM eServer zSeries
890 or 990

IBM System
z9-109

IBM System z9 BC
or EC

CSNBCKM CCF PCIXCC
CEX2C

CEX2C CEX2C

CSNBDEC CCF PCIXCC
CEX2C

CEX2C CEX2C

CSNBENC CCF PCIXCC
CEX2C

CEX2C CEX2C

CSNBOWH SHA-1 requires
CCF (SHA-256 not
supported by CCF)

SHA-1 requires
CPACF (SHA-256
not supported by
CPACF)

SHA-1 and
SHA-256 require
CPACF

SHA-1 and SHA-256
require CPACF

CSNBRNG CCF PCIXCC
CEX2C

CEX2C CEX2C

CSNBSYD CCF CPACF None1 None1

CSNBSYE CCF CPACF None1 None1

CSNDDSG CCF
PCICC

PCIXCC
CEX2C

CEX2C CEX2C

CSNDDSV CCF PCICA
PCIXCC
CEX2C

CEX2C
CEX2A

CEX2C
CEX2A

CSNDPKB None None None None

CSNDPKD CCF
PCICC
PCICA

PCICA
PCIXCC
CEX2C

CEX2C
CEX2A

CEX2C
CEX2A

CSNDPKE CCF
PCICC

PCICA
PCIXCC
CEX2C

CEX2C
CEX2A

CEX2C
CEX2A

Note 1. ICSF implements the AES algorithm in software. However, if hardware is available, ICSF
will implement AES in hardware.

232 Implementing CICS Web Services

� At least one of the PCIXCC cards of the CEX2 feature is configured as a
coprocessor (CEX2C) rather than an accelerator (CEX2A).

� The operating system level is z/OS 1.6 or higher.

� The ICSF level is FMID HCR7730 or higher.

� ICSF is active.

� The CEX2C is online to z/OS.

� The CEX2C is active to ICSF.

� The user ID under which the CICS region runs has READ access to the
RACF profiles in the CSFSERV class which protect the callable services
shown in “ICSF callable services” on page 229.

Furthermore, you should specify API(OPENAPI) on the PROGRAM definition for
the DFHWSSE1 program so that CICS will execute the program on an open
TCB.

 Chapter 7. Crypto hardware and ICSF 233

234 Implementing CICS Web Services

Chapter 8. Securing Web services

While you can exercise very strict control over the access to your applications
from conventional 3270 terminals, your Web services clients are likely to be in
remote locations, and you will be faced with new security issues.

When implementing a CICS Web services solution, you need to consider
questions like the following:

� Will authentication be done by CICS itself or in an external server such as
WebSphere Application Server?

� What authorization mechanisms will be used to protect access to the CICS
system and access to resources such as transactions, files, and databases?

� How will you protect the confidentiality of data that is transported between
the different tiers of the physical configuration?

� Should you use transport security, for example SSL/TLS, or SOAP message
security to protect your CICS Web services?

In this chapter, we explain what security mechanisms can be used to protect
CICS Web services, and we give practical advice on which technologies to use.

8

© Copyright IBM Corp. 2007. All rights reserved. 235

8.1 Traditional CICS security

In a CICS environment, the assets you normally want to protect are the
application programs and the resources that are accessed by the application
programs. To prevent disclosure, destruction, or corruption of these assets, you
must control access to the CICS region and to different CICS components.

You can limit the activities of a CICS user to only those functions that the user is
authorized to use by implementing one or more of the following CICS security
mechanisms:

� Transaction security

This ensures that users who attempt to run a transaction are entitled to do so.

� Resource security

This ensures that users who use CICS resources, such as files and transient
data queues, are entitled to do so.

� Command security

This ensures that users who use CICS system programming commands are
entitled to do so.

� Surrogate security

This ensures that a surrogate user is authorized to act on behalf of another
user.

When CICS security is active, requests to attach transactions, and requests by
transactions to access resources, are associated with a user ID. When a user
makes such a request, CICS calls the external security manager (such as RACF)
to determine if the user ID has the authority to complete the request. If the user
ID does not have the correct authority, CICS denies the request.

In many cases, a user is a human operator, interacting with CICS through a
terminal or a workstation. However, the user can also be a Web browser user or,
in a Web services solution, a program executing in a client system.

8.1.1 CICS user IDs

When a human operator signs on to a CICS region at the start of a terminal
session, he or she is challenged to provide a user ID and password. The user ID
remains associated with the terminal until the terminal operator signs off.
Transactions executed from the terminal, and requests made by those
transactions, are associated with that user ID.

236 Implementing CICS Web Services

For connections from Web users, there are other ways that the user of a CICS
transaction can be identified, including:

� An HTTP client can provide HTTP basic authentication information (a user ID
and password). The transaction that services the client’s request, and further
requests made by that transaction, are associated with that user ID.

� A client program that is communicating with CICS using the Secure Sockets
Layer (SSL) supplies a client certificate to identify itself. The security manager
maps the certificate to a user ID. The transaction that services the client’s
request, and further requests made by that transaction, are associated with
that user ID.

In addition to these transport-level authentication mechanisms, Web service
clients can also pass authentication data in the SOAP message.

Special CICS user IDs
There are two particular user IDs that CICS uses in addition to those that identify
individual end users. These are:

Region user ID The CICS region user ID is used for authorization checking
when the CICS system (rather than an individual user of the
system) requests access to system resources such as CICS
data sets and other servers.

Default user ID When a user does not sign on, CICS assigns a default user
ID to the user. It is specified in the SIT parameter
DFLTUSER. In the absence of more explicit identification, it
is used to identify TCP/IP clients that connect to CICS. You
should give very little authority to the default user ID.

For a complete discussion of traditional CICS security, refer to CICS TS V3.1
RACF Security Guide, SC34-6249.

8.2 Security exposures

An end-to-end security solution addresses the security exposures found along
the path of a request from an end client to a target service, including any
intermediary services that route, or participate in, the service request.

To illustrate potential security exposures in a Web services environment, we use
the bank teller scenario shown in Figure 8-1. The bank teller (Web service
requester or client) connects over the Internet to the bank’s data center where
the Web service provider runs.

 Chapter 8. Securing Web services 237

Figure 8-1 Potential security exposures in a Web services environment

If the bank has not applied any security, it has the following exposures:

� Spoofing

An attacker posing as the bank teller could send a SOAP message to the
service provider to get confidential information or to withdraw money from
another customer’s account.

The bank can eliminate this security exposure by requiring that the bank teller
authenticate herself.

� Tampering

An attacker could intercept the SOAP message between the Web service
requester and provider and modify the message, for example, to deposit the
money into another account by changing the account number. Because there
is no integrity constraint, the Web service provider does not verify whether the
message has been altered and accepts the modified transaction.

The bank can eliminate this security exposure by implementing digital
signatures.

� Eavesdropping

An attacker could intercept the SOAP message and read the information
contained in the message because it has been sent in clear text. The attacker

<SOAPMessage
in clear text>

User: Teller1
Account No.1234

Balance

<SOAPMessage
in clear text>

User: Teller1
Account No.1234

Balance

Network

Bank Teller 1

Attacker

Bank Data
Center

Spoofing:
No authentication

Tampering:
No integrity

Eavesdropping:
No confidentiality

238 Implementing CICS Web Services

could obtain confidential customer or bank information such as account
numbers and balances.

The bank can eliminate this security exposure by encrypting the SOAP
message.

In order to protect against the risk of these security exposures, the bank can use
either or both of the following types of security to secure its Web services
environment:

� Transport-level security

Transport-level security mechanisms such as SSL/TLS can be used to secure
Web services. In the next section we review how different transport-level
security mechanisms can be used to secure a CICS Web services solution.

� SOAP message security

The Web Services Security model introduces a set of interrelated
specifications to form a layering approach to security. When products
implement these specifications, they send security information within the
SOAP message itself as SOAP message headers. In “SOAP message
security” on page 253 we discuss how SOAP headers can be used to secure
a CICS Web services solution.

We discuss some factors to consider when choosing between transport-level
security and SOAP message security in “Comparison of transport level and
SOAP message security” on page 269.

8.3 Transport security

In this section we review how basic authentication and SSL/TLS can be used to
secure a CICS Web services solution when HTTP is the transport and then when
MQ is the transport.

8.3.1 HTTP transport

When a CICS Web service is invoked using HTTP, you can use basic
authentication to authenticate the Web service client, and you can use SSL/TLS
to both authenticate the Web service client and to ensure message integrity and
confidentiality.

Basic authentication
HTTP basic authentication is a simple challenge and response mechanism with
which a server can request authentication information (a user ID and password)
from a client. The client passes the authentication information to the server in an

 Chapter 8. Securing Web services 239

HTTP Authorization header. The authentication information is in base-64
encoding.

The AUTHENTICATE attribute on the CICS TCPIPSERVICE resource definition
specifies the authentication and identification scheme to be used for inbound
TCP/IP connections for the HTTP protocol. You enable HTTP basic
authentication by specifying BASIC for the AUTHENTICATE attribute.

A CICS service provider application can be protected by HTTP basic
authentication. However, the HTTP basic authentication scheme can only be
considered a secure means of authentication when the connection between the
Web service client and the CICS region is secure. If the connection is insecure,
the scheme does not provide sufficient security to prevent unauthorized users
from discovering and using the authentication information for a server. If there is
a possibility of a password being intercepted, basic authentication should be
used in combination with SSL/TLS, so that SSL encryption is used to protect the
user ID and password information.

CICS support for SSL/TLS
CICS uses System SSL to support both the SSL 3.0 and TLS 1.0 protocols.
HTTPS connections will automatically use the TLS 1.0 protocol, unless the client
specifically requires SSL 3.0.

A CICS service provider application can be secured using HTTPS, and a CICS
service requester application can use HTTPS to invoke a service provider
application. HTTPS has the following advantages:

� It provides a very fast and secure transport for CICS Web services.

� It provides for authentication through either HTTP basic authentication or a
client X.509 certificate.

� It provides integrity for the data passed between the service requester and
the service provider.

� It provides confidentiality for the data passed between the service requester
and the service provider by using efficient secret key cryptography.

� It can be used with hardware cryptographic devices that can significantly
reduce the cost of SSL handshakes. You can customize your encryption
settings to use only the cipher suites that use the Integrated Cryptographic
Service Facility (ICSF). See “ICSF” on page 225 for information about ICSF.

� It is mature and similarly implemented by most vendors, and therefore, is
subject to few interoperability problems.

240 Implementing CICS Web Services

To activate SSL/TLS support in a CICS TS V3.1 region, you must perform the
following tasks:

� Obtain a server certificate if CICS is the service provider. If CICS is the
service requester, you may need to get a client certificate.

� Create a key ring.

The CICS TS V3.1 RACF Guide describes how to do this.

� Ensure that your CICS region has access to the z/OS System SSL library.

You can do this by using a STEPLIB or JOBLIB statement in the startup JCL
for your CICS region or by putting the z/OS System SSL library in the MVS
link list. The final qualifier of the name for the z/OS System SSL library is
SGSKLOAD for z/OS V1.4 and SIEALNKE for z/OS V1.6 and later releases.

� Specify values for the CICS system initialization parameters related to SSL.

We discuss these parameters in the next section.

� Define a TCPIPSERVICE resource for inbound requests or a URIMAP
resource for outbound requests.

We discuss how to do this in “Defining a TCPIPSERVICE resource for SSL”
on page 244 and in “Defining a URIMAP resource for SSL” on page 246.

System initialization parameters related to SSL
To activate SSL/TLS support in a CICS TS V3.1 region, you must specify values
for the following system initialization parameters:

� ENCRYPTION={STRONG | WEAK | MEDIUM}

Specifies the cipher suites that CICS uses for secure TCP/IP connections.
When a secure connection is established between a service requester and a
service provider, the most secure cipher suite supported by both is used.

– Use ENCRYPTION=STRONG when you can tolerate the overhead of
using high encryption if the other system requires it.

– Use ENCRYPTION=WEAK when you want to use encryption keys up to
40 bits in length.

– Use ENCRYPTION=MEDIUM when you want to use encryption keys up to
56 bits in length.

When you use the CICS CEDA transaction to define a TCPIPSERVICE or
URIMAP resource, CICS automatically initializes the CIPHERS attribute of
that resource definition with a default list of acceptable cipher suites; the
contents of the default list depends on the value of the ENCRYPTION
parameter.

 Chapter 8. Securing Web services 241

� KEYRING=key-ring-name

Specifies the name of a key ring in the RACF database that contains keys
and certificates used by CICS. It must be owned by the CICS region user ID.

When CICS finds the KEYRING parameter in the system initialization table, it
knows that SSL/TLS processing is required and creates one open transaction
environment (OTE) TCB, called the SP TCB, that is used to own socket
pthread tasks. The SP TCB manages a pool of S8 TCBs that are used to
process SSL connections. Each SSL connection uses an S8 TCB, which is
allocated from the SSL pool and requires a UNIX pthread. All of the S8 TCBs
run within a single LE enclave, which is owned by the SP TCB and contains
the SSL cache.

� MAXSSLTCBS={8 | number}

Specifies the maximum number of S8 TCBs that are available to CICS to
process SSL connections. The S8 TCBs are created and managed in the SSL
pool.

S8 TCBs are now locked to a transaction only for the amount of time that it
needs to perform SSL functions. After the SSL negotiation is complete, the
TCB is released back into the SSL pool to be reused.

Increasing the number of available TCBs allows more simultaneous SSL
connections to take place. However, increasing the number of TCBs too
much will impact storage below the line.

The maximum value that you can specify for the MAXSSLTCBS parameter is
1024.

� SSLDELAY={600 | number}

Specifies the length of time in seconds for which CICS retains session IDs for
secure socket connections in the SSL cache. Session IDs are tokens that
represent a secure connection between CICS and an SSL client. The session
ID is created and exchanged between the SSL client and CICS during the
SSL handshake.

While the session ID is retained by CICS within the SSLDELAY period, CICS
will re-establish an SSL connection with a client by using only a partial
handshake as discussed in “Resuming a session” on page 216. The value is
a number of seconds in the range 0 through 86400. The default value is 600.

Increasing the value of the SSLDELAY parameter retains the session IDs in
the cache for longer, thereby optimizing the time it takes to perform SSL
negotiations.

The SSLDELAY parameter only applies when the SSLCACHE parameter has
the value CICS.

242 Implementing CICS Web Services

� SSLCACHE={CICS | SYSPLEX}

Specifies whether CICS should use the local SSL cache in the CICS region,
or share the cache across multiple CICS regions by using the sysplex session
cache support provided by System SSL.

When SSLCACHE=CICS, a client who successfully connects to CICS region
1 on z/OS system 1 and then connects to CICS region 2 on z/OS system 2
must go through a full SSL handshake in both cases; this is because CICS
stores the SSL session id in a cache that is local to the CICS address space.

When SSLCACHE=SYSPLEX, an SSL session established with a CICS
region on one system in the sysplex can be resumed using a CICS region on
another system in the sysplex as long as the SSL client presents the session
identifier obtained for the first session when initiating the second session.
CICS uses the sysplex session cache support provided by the System SSL
started task (GSKSRVR), an optional component of System SSL. GSKSRVR
processes the following environment variables:

– GSK_LOCAL_THREADS

This variable specifies the maximum number of threads which will be used
to handle program call requests from SSL applications running on the
same system as the GSKSRVR started task.

– GSK_SIDCACHE_SIZE

This variable specifies the size of the sysplex session cache in
megabytes.

– GSK_SIDCACHE_TIMEOUT

This variable specifies the sysplex session cache entry timeout in minutes.

Sharing SSL session ids across different CICS regions is particularly useful
when Web service requests are being routed across a set of CICS regions
using TCP/IP connection workload balancing techniques, such as TCP/IP
port sharing or Sysplex Distributor. If the cache is shared between the CICS
regions, the number of full SSL handshakes can be significantly reduced.

In order to use the sysplex session cache, each system in the sysplex must
be using the same external security manager (for example, z/OS Security
Server RACF) and a userid on one system in the sysplex must represent the
same user on all other systems in the sysplex (that is, userid ZED on System
A has the same access rights as userid ZED on System B). The external
security manager must support the RACROUTE
REQUEST=EXTRACT,TYPE=ENVRXTR and RACROUTE
REQUEST=FASTAUTH functions. Refer to System SSL Programming,
SC24-5901, for additonal information about the System SSL started task.

Caching across a sysplex can only take place when the regions accept SSL
connections at the same IP address.

 Chapter 8. Securing Web services 243

In “Enabling SSL/TLS” on page 301 we show how we enabled our CICS region to
support SSL connections from our Web service client running in WebSphere
Application Server.

Defining a TCPIPSERVICE resource for SSL
The following attributes of the TCPIPSERVICE resource definition relate to using
SSL for inbound requests when the transport is HTTP:

� AUTHENTICATE(NO | BASIC | CERTIFICATE | AUTOREGISTER |
AUTOMATIC)

Specifies the authentication and identification scheme to be used.

– NO
The client is not required to send authentication or identification
information. However, if the client sends a valid certificate that is already
registered to the security manager, and associated with a user ID, then the
user ID identifies the client.

– BASIC
HTTP basic authentication is used to obtain a user ID and password from
the client.

– CERTIFICATE
SSL client certificate authentication is used to authenticate and identify the
client. The client must send a valid certificate that is already registered to
RACF and associated with a user ID. If a valid certificate is not received,
or the certificate is not associated with a user ID, the connection is
rejected.

When the end user has been successfully authenticated, the user ID
associated with the certificate identifies the client.

– AUTOREGISTER
SSL client certificate authentication is used to authenticate and identify the
client.

• If the client sends a valid certificate that is not registered to the security
manager, then HTTP Basic authentication is used to obtain a user ID
and password from the client. If the password is valid, CICS registers
the certificate with the security manager and associates it with the user
ID. The user ID identifies the client.

• If the client sends a valid certificate that is already registered to the
security manager, and associated with a user ID, then that user ID
identifies the client.

– AUTOMATIC
This combines the AUTOREGISTER and BASIC functions.

244 Implementing CICS Web Services

• If the client sends a certificate that is already registered to the security
manager, and associated with a user ID, then that user ID identifies the
client.

• If the client sends a certificate that is not registered to the security
manager, then HTTP Basic authentication is used to obtain a user ID
and password from the client. Provided that the password is valid,
CICS registers the certificate with the security manager, and
associates it with the user ID. The user ID identifies the client.

• If the client does not send a certificate, then HTTP Basic authentication
is used to obtain a user ID and password from the user. When the end
user has been successfully authenticated, the user ID supplied
identifies the client.

� CERTIFICATE

Specifies the label of an X.509 certificate that is used as a server certificate
during the SSL handshake. If this attribute is omitted, the default certificate
defined in the key ring for the CICS region user ID is used.

� CIPHERS

Specifies a string of up to 56 hexadecimal digits that is interpreted as a list of
up to 28 2-digit cipher suite numbers (the tables in “Cipher suites” on
page 202 show the cipher suite numbers assigned to each cipher suite).

When you use CEDA to define the resource, CICS automatically initializes
this attribute with a default list of acceptable numbers. The contents of the
default list depends on the level of encryption that is specified by the
ENCRYPTION system initialization parameter.

– For ENCRYPTION=WEAK, the default value is 03060102.

– For ENCRYPTION=MEDIUM, the default value is 0903060102.

– For ENCRYPTION=STRONG, the default value is:

• 0504352F0A0903060102 for z/OS V1.4.

• 050435363738392F303132330A1613100D0915120F0C03060102 for
z/OS V1.6, z/OS V1.7, and z/OS V1.8.

Note: When you use CEDA to define a resource using CIPHERS, and
ENCRYPTION=STRONG is specified, the field is automatically filled in
from the list of ciphers supported by the underlying z/OS (with the
exception of cipher 00, which is removed). When you upgrade z/OS, you
can use CEDA ALTER to clear the cipher list; it will then be upgraded to
the currently-supported list of ciphers.

 Chapter 8. Securing Web services 245

You can customize the default list to set a minimum level as well as a
maximum level of encryption to be used in the encryption negotiation process
of the SSL/TLS handshake.

• You can reorder the cipher suite numbers or remove one or more of
them from the initial list. For example, if the system initialization
parameter ENCRYPTION is set to STRONG and z/OS is at the V1.4
level, you could remove the suites 09, 03, 06, 02, and 01 and reorder
the remaining suites to specify 352F0A0504. Specifying these
numbers means that CICS will not negotiate below 128-bit encryption
for connections using this resource; if the client does not have this level
of encryption, CICS will close the connection. It also means that CICS
will start by trying to negotiate using the AES-128 and AES_256 cipher
suites (35 and 2F) because these are first in the list of cipher suite
numbers.

• You cannot include cipher suites that are not in the default values for
that level of encryption. For example, if you have a MEDIUM level of
encryption specified, you cannot add the AES cipher suites 2F and 35
to the CIPHERS attribute.

� SSL(NO | YES | CLIENTAUTH)

Specifies whether the TCPIPSERVICE is to use SSL for encryption and
authentication.

– NO
SSL is not to be used

– YES
An SSL session is to be used; CICS will send a server certificate to the
client.

– CLIENTAUTH
An SSL session is to be used; CICS will send a server certificate to the
client, and the client must send a client certificate to CICS.

Defining a URIMAP resource for SSL
The following attributes of the URIMAP resource definition relate to using SSL for
outbound requests when the transport is HTTP:

� USAGE(CLIENT)
Specifying CLIENT creates a URIMAP definition for CICS as an HTTP client.

Important: If the SSL handshake negotiates down to using cipher suite 01 or
02, there is no encryption and data will be transmitted in the clear. If you
require encryption, you may therefore want to remove 01 and 02 from the list
of cipher suites.

246 Implementing CICS Web Services

This type of URIMAP definition is used when CICS makes a request for an
HTTP resource on a server.

� SCHEME(HTTPS)

� CERTIFICATE(label)
This attribute specifies the label of the X.509 certificate that is to be used as
the SSL client certificate during the SSL handshake. It is up to the server to
request an SSL client certificate, and if this happens, CICS supplies the
certificate identified by the label that is specified in the CERTIFICATE
attribute. If this attribute is omitted, the default certificate defined in the key
ring for the CICS region user ID is used.

� CIPHERS
The description of the CIPHERS attribute for the URIMAP resource is the
same as the description of the CIPHERS attribute for the TCPIPSERVICE
resource; see “Defining a TCPIPSERVICE resource for SSL” on page 244.

Using hardware cryptographic features with System SSL
The use of cryptographic hardware by System SSL is required in order to
maximize performance of using SSL/TLS with CICS. During its runtime
initialization processing, System SSL checks to see what cryptographic
hardware is available. Whenever possible, it will use the hardware rather than its
own software algorithms to perform a cryptographic algorithm.

In “Cryptographic hardware” on page 220 we introduced you to IBM
cryptographic hardware and to Integrated Cryptographic Service Facility (ICSF).
In this section we highlight some of the encryption algorithms that can be used
with different cryptographic features by System SSL.

System SSL handshake processing utilizes both RSA encryption and digital
signature functions. These functions are very expensive functions when
performed in software. For installations that have high volumes of SSL
handshake processing, utilizing the capabilities of the hardware will provide
maximum performance and throughput, and it will also reduce CPU costs.

For installations that are more concerned with the transfer of encrypted data than
with SSL handshakes, moving the encrypt/decrypt processing to hardware will
provide maximum performance. The encryption algorithm is determined by the
SSL cipher suite. To utilize hardware, the cipher suite’s encryption algorithm
must be available in hardware. For example, on a z9-109, if you specify a cipher
suite that uses TDES to encrypt/decrypt data, then you will benefit from the

Note: The number of full handshakes can be minimized by setting the
SOCKETCLOSE attribute of the TCPIPSERVICE definition to No or to a high
value (see “Configuring the TCPIPSERVICE definition” on page 78).

 Chapter 8. Securing Web services 247

processing being done in the hardware (using the CPACF). On the other hand, if
you specify a cipher suite that uses AES-256 to encrypt/decrypt data, then the
processing will be done in software.

In Table 8-1 each row represents a cryptographic algorithm or function that
System SSL supports, and each column represents a common server and
cryptographic hardware combination. If an X appears at the intersection of a row
and a column, then System SSL is able to implement the algorithm or function
represented by the row using the hardware represented by the column.

Table 8-1 Hardware cryptographic functions used by System SSL

In order for System SSL to use the hardware support provided through ICSF, the
ICSF started task must be running prior to CICS initialization and the CICS user
ID must be authorized to the appropriate resources in the CSFSERV class, if

z800 z900 z890 z990 z9 109 z9 BC z9 EC

Algorithm
or function

CCF CPACF PCIXCC/
CEX2C

CPACF CEX2C CEX2A

RC2

RC4

DES X X X

TDES X X X

AES-128 X

AES-256

MD5

SHA-1 X X

SHA-256 X

PKA (RSA)
Decrypt

X X X X

PKA (RSA)
Encrypt

X X X X

Digital
Signature
Generate

X X X

Digital
Signature
Verify

X X X X

248 Implementing CICS Web Services

defined (see “Controlling who can use cryptographic keys and services” on
page 226).

Table 8-2 identifies the required CSFSERV resource class accesses for different
cryptographic algorithms and functions.

Table 8-2 CSFSERV resource class access

The resource classes are the following:

� CSFCKI - Clear key import
� CSFCKM - Multiple clear key import
� CSFDEC - Symmetric key decrypt
� CSFDSG - Digital signature generate
� CSFDSV - Digital signature verify
� CSFENC - Symmetric key encrypt
� CSFPKD - PKA decrypt
� CSFPKE - PKA encrypt
� CSFPKI - PKA key import

In addition to the CSFSERV class, the CICS user ID needs access to the RACF
CSFKEYS class when key rings are being used and the certificate keys are
stored in an ICSF data set.

Optimizing SSL
Implementing SSL will cause an increase in CPU usage. You should only use
SSL for applications that need this level of security. For these applications, you
should consider the following techniques for optimizing the performance of SSL
in your environment:

� Utilizing the zSeries cryptographic hardware as discussed in Using hardware
cryptographic features with System SSL.

� Increasing the value of the CICS system initialization table parameter
SSLDELAY so the session IDs remain in the SSLCACHE longer, which will
result in only partial SSL handshakes.

Function z800, z900 z890, z990, z9-109, z9 BC, z9 EC

DES CSFCKI, CSFDEC, CSFENC

TDES CSFCKM, CSFDEC, CSFENC

PKA (RSA) Decrypt CSFPKD CSFPKD

PKA (RSA) Encrypt CSFPKE CSFPKE

Digital Signature Generate CSFPKI, CSFDSG CSFPKI, CSFDSG

Digital Signature Verify CSFDSV CSFDSV

 Chapter 8. Securing Web services 249

� Increasing the value of the CICS system initialization table parameter
MAXSSLTCBS so there are more S8 TCBs in the SSL pool for the SSL
handshake negotiation.

� Using the CICS SSLCACHE system initialization table parameter to
implement SSL caching across a sysplex if Web service requests are being
routed across a set of CICS regions. However, if you are using a single CICS
region then you should specify SSLCACHE(CICS) as opposed to
SSLCACHE(SYSPLEX) in order to avoid the additional cost of making the
SSL session ID shareable.

� Keeping the socket open by coding SOCKETCLOSE NO on the
TCPIPSERVICE definition for the PIPELINE. This is the default for HTTP 1.1
persistent sessions and removes the need to perform a full SSL handshake
on the second or subsequent HTTP request.

� Only using client authentication by specifying SSL(CLIENTAUTH) on the
TCPIPSERVICE definition when you really need your clients to identify
themselves with a client certificate. Client authentication requires more
network transmissions during the SSL handshake, and more processing by
CICS to handle the received certificate.

Setting the user ID on the URIMAP
You can specify a user ID on a URIMAP that is defined with USAGE(PIPELINE).
You do this by setting the USERID attribute of the URIMAP definition. It specifies
the 1 to 8 character user ID under which the Web services pipeline alias
transaction is attached. See “Setting the user ID on a URIMAP definition” on
page 280 for an example of how to set the user ID on the URIMAP definition.

A user ID that you specify in the URIMAP definition is overridden by any user ID
that is obtained directly from the client.

Order of precedence for determining the user ID when using HTTP
It is possible that for a single Web service request transported by HTTP, multiple
methods for setting the user ID will be used at the same time. In this event, CICS
uses the following order of precedence for determining the user ID under which
the target business logic program runs:

1. A user ID specified by a message handler, or a SOAP header processing
program, that is included in the pipeline that processes the SOAP message.
For example, a SOAP header processing program could extract a username

Important: If you use a URIMAP definition to set a user ID, there is no
authentication of the client’s identity. You should only do this when
communicating with your own client system, which has already authenticated
its users and communicates with the server in a secure environment.

250 Implementing CICS Web Services

from the SOAP message and specify that the CICS task should run with this
user ID. See “SOAP message security” on page 253 for more information
about how SOAP message security can be used with CICS and HTTP.

2. A user ID obtained from the Web client using basic authentication, or a user
ID associated with a client certificate.

3. A user ID specified in the URIMAP definition for the request.

4. The CICS default user ID, if no other can be determined.

8.3.2 WebSphere MQ transport

To control security checking performed by WebSphere MQ (WMQ), you must
define switch profiles. When a queue manager is started (or when the WMQ
REFRESH SECURITY command is issued), WMQ first checks the status of
RACF and the MQADMIN class. It sets the subsystem security switch off if it
discovers one of these conditions:

� RACF is inactive or not installed.

� The MQADMIN class is not defined to RACF.

� The MQADMIN class has not been activated.

If both RACF and the MQADMIN class are active, WMQ checks the MQADMIN
class to see whether any of the switch profiles have been defined. If subsystem
security is not required, WMQ sets the internal subsystem security switch off and
performs no further checks. The sequence of subsystem security checks is
shown in Figure 8-2.

 Chapter 8. Securing Web services 251

Figure 8-2 Sequence for deciding if security is on for WebSphere MQ

Switch profiles can be set at the queue manager level and at the queue-sharing
group level, but the queue manager level is always checked first. If your queue
manager is not a member of a queue-sharing group, then no queue-sharing
group checks are made. Switch profiles are not subject to any access list checks
and are merely used to indicate to WebSphere MQ whether a particular security
switch is on or off. A number of switch profiles exist that can be used to control
the security checking for your WebSphere MQ environment.

When using WebSphere MQ as the transport mechanism for accessing Web
services in CICS, you need to consider the following points:

� The SOAP MQ inbound listener transaction (CPIL) is started by the trigger
monitor using the same user ID as the trigger monitor transaction. This user
ID must have UPDATE authority to the request queue and the backout queue
(if this is specified).

� If AUTH=IDENTIFY is specified in the USERDATA parameter of the WMQ
PROCESS definition for CPIL, then the user ID under which CPIL runs must
have surrogate authority to allow it to start transactions on behalf of the user
IDs in the MQ message descriptors (MQMDs) of the messages.

More information about security for WMQ can be found in WebSphere MQ
Security, SC34-6588 and in the book WebSphere MQ Security in an Enterprise
Environment, SG24-6814.

START

No further security checks

qmgr-name.YES.SUBSYS.SECURITY

Security on

present absent

qsg-name.NO.SUBSYS.SECURITY

present absent

Security on

qmgr-name.NO.SUBSYS.SECURITY

present absent

No further security checks

252 Implementing CICS Web Services

SSL/TLS with WebSphere MQ

SSL/TLS can be used to secure SOAP messages that are transported using
WMQ. WMQ supports both the SSL 3.0 and TLS 1.0 protocols. You specify the
cryptographic algorithms that are used by the SSL protocol by supplying a
CipherSpec as part of the channel definition. WMQ also supports Version 1.0 of
the Transport Layer Security (TLS) protocol.

See WebSphere MQ Security, SC34-6588 for more information about using
SSL/TLS with WMQ.

Order of precedence for determining user ID when using WMQ
It is possible that for a single Web service request transported by WMQ, multiple
methods for setting the user ID will be used at the same time. In this event, CICS
uses the following order of precedence to determine the user ID under which the
target business logic program runs:

1. A user ID specified by a message handler, or a SOAP header processing
program, that is included in the pipeline that processes the SOAP message

For example, a SOAP header processing program could extract a username
from the SOAP message and specify that the CICS task should run with this
user ID. See “Enabling SOAP message security with WMQ” on page 312 for
more information about how SOAP message security can be used with CICS
and WMQ.

2. A user ID obtained from the MQ message descriptor

A message can contain message context information, such as a user ID. This
information is held in the message descriptor and can be generated by the
queue manager when a message is put on a queue by an application, or by
the application itself. This allows the receiving application to run with the
same identity as the application that put the message on the queue.

3. The CICS default user ID, if no other can be determined

8.4 SOAP message security

The first version of the WS-Security specification was proposed by IBM,
Microsoft, and VeriSign in April 2002. After the formalization of the April 2002
specification, the specification was transferred to the OASIS consortium:

Note: We found that although URIMAP resources are required for service
providers using WMQ, the USERID and TRANSACTION attributes were
ignored.

 Chapter 8. Securing Web services 253

http://www.oasis-open.org

The latest core specification, Web Services Security: SOAP Message Security
1.0 (WS-Security 2004) was standardized in March 2004.

WS-Security provides a foundational set of SOAP message extensions for
building secure Web services by defining new elements to be used in the SOAP
header for message-level security. It specifies the use of security tokens, digital
signatures, and XML encryption to protect and authenticate SOAP messages. It
specifies the use of digital signatures to provide integrity for XML elements in a
SOAP message, and it specifies the use of encryption to provide confidentiality
for XML elements in a SOAP message. The specification allows you to protect
the body of the message or any XML elements within the body or the header.
You can give different levels of protection to different elements within the SOAP
message.

The advantage of using WS-Security over SSL is that it can provide end-to-end
message-level security. This means that the message security can be protected
even if the message goes through multiple services, called intermediaries. SSL
security is considered to be point-to-point, and the data may be decrypted prior
to reaching the intended recipient.

As illustrated in Figure 8-3, if the service requester identifies itself to the
intermediate gateway, and the intermediate gateway identifies itself to the service
provider, the target service will normally run with the identity of the intermediate
gateway rather than the service requester.

Figure 8-3 Transport-level security with an intermediate gateway

WS-Security addresses this problem by allowing security credentials to be
passed within the SOAP message, so that the credentials of the service
requester can be passed via an intermediate gateway, and can still be used to
identify the requester to the service provider. See Figure 8-4.

 Service
 provider

 Intermediate
 gateway

 Security
credentials

 Service
requester

 Security
credentials

254 Implementing CICS Web Services

Figure 8-4 SOAP message security with an intermediate gateway

Figure 8-5 shows how a SOAP message can be extended with security data that
is used to authenticate the service requester and to protect the message as it
passes between the requester and the service provider. The network portion of
the diagram could contain any number of intermediate nodes, some of which
may not be trusted.

Figure 8-5 An example of a typical scenario with WS-Security

The SOAP message shown in Figure 8-5 contains three pieces of security data:

� A security token used to authenticate and identify user Teller1

� A digital signature to ensure that no one modifies the message while it is in
transit without the modification being detected

� An account balance XML element that is encrypted to ensure confidentiality

To read more about the Web services security specifications, refer to:

� Specification: Web Services Security (WS-Security) Version 1.0 (April 2002):

http://www.ibm.com/developerworks/webservices/library/ws-secure/

 Service
 provider

 Intermediate
 gateway

 Service
requester

 Security
credentials

<SOAPMessage
with WS-Sec>

Account
No.
Balance

Network

Bank Teller 1

Bank Data
Center

[Security Token]
User: Teller1

Password: XYZ

Digital Signature

Authentication
Security Token

Integrity
Signature

Confidentiality
Encryption

 Chapter 8. Securing Web services 255

� Web Services Security Addendum (August 2002):

http://www.ibm.com/developerworks/webservices/library/ws-secureadd.html

� Web Services Security: SOAP Message Security V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf

8.4.1 CICS and SOAP message security

Using WS-Security, you can apply authentication, integrity, and confidentiality at
the message level. CICS TS V3.1 provides support for WSS: SOAP Message
Security through the use of a CICS-supplied message handler, DFHWSSE1,
which was shipped by APAR PK22736.

The WS-Security implementation in CICS TS V3.1 contains code derived from
the Apache XML Security project. The licensing terms associated with that code
mean that the WS-Security implementation in CICS TS V3.1 is not licensed on
the same basis as the rest of the CICS TS V3.1 product.

Except for the WS-Security implementation, CICS TS V3.1 is an “ICA Program,”
licensed under the relevant terms and conditions of the IBM Customer
Agreement (ICA) or IBM International Customer Agreement (IICA). The
WS-Security implementation is licensed under the terms and conditions of the
IBM International Program License Agreement (IPLA). IPLA licensing is widely
used in IBM, especially for products on distributed platforms and for one-time
charge products on z/OS.

The WS-Security implementation, known as the CICS WS-Security Component,
is packaged as a unique FMID with the identifier JCI640W. FMID JCI640W is
licensed under the IPLA.

For this reason, the Licensed Program Specification (LPS) for CICS TS V3.1
includes a section explaining that the CICS WS-Security Component has a
different licensing basis from the rest of CICS TS V3.1. Specifically, the licensing
of the CICS WS-Security Component is addressed by the following three
additional paper items:

� The IPLA (multi-language booklet)

� License Information (LI) document for CICS WS-Security Component
(multi-language booklet)

Important: When we wrote the first edition of this book, CICS did not provide
support for WS-Security. However, it was still possible for a user-written SOAP
header processing program to process WS-Security security tokens in CICS.
We show how to do this in Chapter 9, “Security scenarios” on page 275.

256 Implementing CICS Web Services

� Proof of Entitlement for CICS WS-Security Component (multi-language sheet
of paper)

Deliveries of CICS TS V3.1 after June 2, 2006 contain the additional material.
Customers who ordered and received CICS TS V3.1 before that date were sent
the material separately, together with the updated LPS.

There are several options available with the CICS WS-Security support, and
which ones you choose will depend on the level of security required for the data
and the transmission path of the data. The options that you can choose from are:

� Basic authentication

In service provider mode, CICS can accept a UsernameToken in the SOAP
message header for authentication on inbound SOAP messages. The
UsernameToken contains a Username element and a Password element.
CICS verifies the Username and Password using an external security
manager such as RACF. If this is successful, CICS places the Username in
container DFHWS-USERID and processes the SOAP message in the
pipeline. If CICS is unable to verify the UsernameToken, it returns a SOAP
fault message to the service requester.

Username tokens are not supported on outbound SOAP messages when
CICS is the service requester.

� Signing with X.509 certificates

In service provider and service requester modes, you can provide an X.509
certificate in the SOAP message header to sign the body of the SOAP
message for authentication. An X.509 certificate is an example of a binary
security token.

– Inbound SOAP messages

To accept binary security tokens from inbound SOAP messages you must
import the public key associated with the certificate into RACF and
associate it with the keyring that is specified in the KEYRING system
initialization parameter for the CICS region.

– Outbound SOAP messages

For outbound SOAP messages you need to generate and publish the
public key to the intended recipients. The Integrated Cryptographic
Service Facility (ICSF) is used to generate private keys.

Important: The WS-Security implementation in CICS Transaction Server for
z/OS Version 3.1 is not licensed on the same basis as is used for the rest of
the CICS TS V3.1 product.

 Chapter 8. Securing Web services 257

� Encrypting

In service provider and service requester modes, you can encrypt the SOAP
message body using either the Triple DES algorithm or the AES algorithm. It
is then included in the message and encrypted using the intended recipient’s
public key with the asymmetric key encryption algorithm RSA 1.5.

CICS does not support inbound SOAP messages that only have an encrypted
element in the message header and no encrypted elements in the SOAP
body.

� Signing and encrypting

In service provider and service requester modes, you can choose to both sign
and encrypt a SOAP message. CICS always signs the SOAP message body
first and then encrypts it. This provides both message integrity and
confidentiality.

Implementing CICS WS-Security support will cause an increase in CPU usage,
particularly when using XML digital signatures and XML encryption. The CICS
support for these functions is dependent on ICSF services and therefore the
configuration and startup of ICSF is a requirement for using this support. See
“ICSF services used by CICS WS-Security support” on page 229 for information
about what hardware cryptographic devices are required for CICS WS-Security
support, and for guidance on how to optimize WS-Security processing.

Authentication
In this section, we provide an example of a SOAP message with WS-Security
used for authentication.

WS-Security provides a general purpose mechanism to associate security
tokens with messages for single message authentication. It does not require you
to use a specific type of security token. Instead it is designed to be extensible
and support multiple security token formats to accommodate a variety of
authentication mechanisms. For example, a client might provide proof of identity
and proof of a particular business certification.

Important: ICSF must be started and configured with cryptographic
devices in order to use the CICS WS-Security XML digital signature
support.

Important: ICSF must be started and configured with cryptographic
devices in order to use the CICS WS-Security XML encryption support.

258 Implementing CICS Web Services

Example 8-1 shows a sample SOAP message without applying WS-Security.
The SOAP message is an Order request for our sample catalog application.

Example 8-1 SOAP message without WS-Security

<soapenv:Envelope
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header/>
<soapenv:Body>

<p635:DFH0XCMN xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">
 <p635:ca_request_id>01ORDR</p635:ca_request_id>
 <p635:ca_return_code>0</p635:ca_return_code>
 <p635:ca_response_message></p635:ca_response_message>

<p635:ca_order_request>
 <p635:ca_userid>srthstrh</p635:ca_userid>
 <p635:ca_charge_dept>hbhhhh</p635:ca_charge_dept>
 <p635:ca_item_ref_number>10</p635:ca_item_ref_number>
 <p635:ca_quantity_req>1</p635:ca_quantity_req>
 <p635:filler1 xsi:nil="true" />
 </p635:ca_order_request>

</p635:DFH0XCMN>
 </soapenv:Body>
</soapenv:Envelope>

As you can see in Example 8-1, the SOAP message does not have any SOAP
headers. We will apply WS-Security by inserting a SOAP security header.

WS-Security defines a vocabulary that can be used inside the SOAP envelope.
The XML element <wsse:Security> is the container for security-related
information. (Note that wsse stands for Web services security extension.)

When you use WS-Security for authentication, a security token is embedded in
the SOAP header and is propagated from the message sender to the intended
message receiver. On the receiving side, it is the responsibility of the server
security handler to authenticate the security token and to set up the caller identity
for the request.

In Example 8-2 we show the same SOAP message, but this time with
authentication. As you can see, we have user name and password information
contained in the <UsernameToken> element.

 Chapter 8. Securing Web services 259

Example 8-2 SOAP message with WS-Security

<soapenv:Envelope
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.
xsd">
<wsse:UsernameToken>

 <wsse:Username>WEBUSER</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1
.0#PasswordText">
REDB00KS

</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
<p635:DFH0XCMN xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">

 <p635:ca_request_id>01ORDR</p635:ca_request_id>
 <p635:ca_return_code>0</p635:ca_return_code>
 <p635:ca_response_message></p635:ca_response_message>

<p635:ca_order_request>
 <p635:ca_userid>srthstrh</p635:ca_userid>
 <p635:ca_charge_dept>hbhhhh</p635:ca_charge_dept>
 <p635:ca_item_ref_number>10</p635:ca_item_ref_number>
 <p635:ca_quantity_req>1</p635:ca_quantity_req>
 <p635:filler1 xsi:nil="true" />
 </p635:ca_order_request>

</p635:DFH0XCMN>
 </soapenv:Body>
</soapenv:Envelope>

The <UsernameToken> element of the SOAP message in Example 8-2 contains
credentials that can be used to authenticate the user WEBUSER.

The simplest form of security token is the UsernameToken, which is used to
provide a user name and password for basic authentication. In “The WS-Security
header processing program” on page 295, we show an example of how a header
processing program can extract a UsernameToken from a SOAP header, validate
the username and password, and set the user ID of the CICS task to the
username passed in the header.

260 Implementing CICS Web Services

A signed security token is one that is cryptographically signed by a specific
authority. For example, an X.509 certificate is a signed security token.

Security token usage for WS-Security is defined in separate profiles such as the
Username token profile and the X.509 token profile.

To read more about these security token standards, refer to:

� Web Services Security: UsernameToken Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0.pdf

� Web Services Security: X.509 Token Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0.pdf

Implementing SOAP message security in CICS
To implement WS-Security in CICS TS for either a service provider or a service
requester, you must include a <wsse_handler> element in the configuration file
for the appropriate pipeline. Use the following sub-elements of <wsse_handler>
to provide configuration information to DFHWSSE1:

� <dfhwsse_configuration>

This element can be used in either a service provider or a service requester
pipeline. It may contain the following optional elements:

– <authentication>

– <expect_signed_body/>

– <expect_encrypted_body/>

– <sign_body>

– <encrypt_body>

We now discuss each of these optional elements.

� <authentication>

Specifies the use of security tokens in the headers of inbound and outbound
SOAP messages. It can be used in either a service provider or a service
requester pipeline. In a service provider pipeline, the element specifies
whether CICS should use the security tokens in an inbound SOAP message
to determine the user ID under which work will be processed. In a service
requester pipeline, it specifies that CICS should add an X.509 certificate to
the security header for outbound SOAP messages.

The <authentication> element has two attributes: trust and mode. These
attributes determine whether asserted identity is used and the combination of

 Chapter 8. Securing Web services 261

security tokens used in a SOAP message. The trust attribute can be set to
either none, basic or signature. The mode attribute can also be set to either
none, basic, or signature. For more information about the meaning and valid
combinations of these attributes, refer to the CICS Transaction Server for
z/OS V3.1 Web Services Guide, SG34-6458.

Asserted identity allows a trusted user to assert, or declare, that work should
run under a different identity (the asserted identity), without the trusted user
having the credentials associated with that identity. Messages contain a trust
token and an identity token. The adjectives trust and identity indicate how the
token is used rather than the kind of token. A trust token, for example, could
be a UsernameToken or an X.509 token. The trust token is used to check that
the sender has the correct permissions to assert identities, and the identity
token holds the asserted identity (user ID) under which the request is to run.

The <authentication> element can contain the following elements:

– <certificate_label>
Optional. Specifies the label associated with an X.509 digital certificate.
Ignored in a service provider pipeline.

– <suppress/>
Optional. For a service provider, the handler will not use any security
tokens in the message to determine under which user ID to run. For a
service requester, the handler will not add to the SOAP message any of
the security tokens required for authentication.

– <algorithm>
Specifies the URI of the signature algorithm. CICS currently supports the
signature algorithms for inbound SOAP messages shown in Table 8-3.

Table 8-3 Signature algorithms for inbound SOAP messages

Note: If you use asserted identity, it requires that the service provider
trusts the requester to make this assertion. In CICS, the trust relationship is
established with security manager surrogate definitions: the requesting
identity must have the correct authority to start work on behalf of the
asserted identity.

Algorithm URI

Digital Signature Algorithm with
Secure Hash Algorithm 1 (DSA with
SHA1)

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Rivest-Shamir-Adleman algorithm
with Secure Hash Algorithm 1 (RSA
with SHA1)

http://www.w3.org/2000/09/xmldsig#rsa-sha1

262 Implementing CICS Web Services

� <expect_signed_body/>

Indicates that the <body> of the inbound message must be properly signed. If
it is not, CICS rejects the message with a security fault.

� <expect_encrypted_body/>

Indicates that the <body> of the inbound message must be properly
encrypted. If it is not, CICS rejects the message with a security fault.

� <sign_body>

Directs DFHWSSE1 to sign the body of outbound SOAP messages, and
provides information regarding how the messages are to be signed. It can be
used in either a service provider or a service requester pipeline. It contains
the following elements:

– <algorithm>

Specifies the URI of the algorithm used to sign the body of the SOAP
message.

CICS currently supports the following signature algorithm for outbound
SOAP messages:

• Rivest-Shamir-Adleman algorithm with Secure Hash Algorithm 1 (RSA
with SHA1), which is specified using the URI
http://www.w3.org/2000/09/xmldsig#rsa-sha1

– <certificate_label>

Specifies the label associated with an X.509 digital certificate. The digital
certificate should contain the private key since this was used to sign the
message. The public key associated with the private key is then sent in
the SOAP message, which allows the signature to be validated.

� <encrypt_body>

Directs DFHWSSE1 to encrypt the body of outbound SOAP messages, and
provides information regarding how the messages are to be encrypted. It can
be used in both a service provider and service requester pipeline. It contains
the following elements:

– <algorithm>

Specifies the URI identifying the algorithm used to encrypt the body of the
SOAP message. CICS currently supports the encryption algorithms shown
in Table 8-4.

 Chapter 8. Securing Web services 263

Table 8-4 Encryption algorithms

– <certificate_label>

Specifies the label associated with an X.509 digital certificate. The digital
certificate should contain the public key of the intended recipient of the
SOAP message so that it can be decrypted with the private key when the
message is received.

Example 8-3 shows a <wsse_handler> element with all of the optional elements
present. You would add this to your configuration file for the pipeline.

Example 8-3 <wsse_handler>

<wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <certificate_label>AUTHCERT03</certificate_label>
 <suppress/>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
</wsse_handler>

Algorithm URI

Triple DES in cipher block
chaining mode

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

AES with a key length of 128 bits
in cipher block chaining mode

http://www.w3.org/2001/04/xmlenc#aes128-cbc

AES with a key length of 192 bits
in cipher block chaining mode

http://www.w3.org/2001/04/xmlenc#aes192-cbc

AES with a key length of 256 bits
in cipher block chaining mode

http://www.w3.org/2001/04/xmlenc#aes256-cbc

264 Implementing CICS Web Services

Example 8-4 shows the pipeline configuration file basicsoap11provider.xml for
the EXPIPE01 service provider pipeline associated with the sample catalog
application.

Example 8-4 CICS-supplied sample pipeline configuration file basicsoap11provider.xml

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd">

 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Example 8-5 shows how you would modify the pipeline configuration file to add
the <service_handler_list> and <wsse_handler> elements to implement
WS-Security. CICS will read the pipeline configuration file and when it finds the
<wsse_handler> element it will load program DFHWSSE1 from library
SDFHWSLD in your DFHRPL concatenation to process the security information.
For more information about the elements for the pipeline configuration file, and
which ones are contained by other elements (high-level structure diagrams),
refer to the most current version of CICS Transaction Server for z/OS V3.1 Web
Services Guide, SG34-6458.

Example 8-5 <wsse_handler> element added to configuration file basicsoap11provider.xml

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd ">

 <service>
 <service_handler_list>
 <wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <certificate_label>AUTHCERT03</certificate_label>
 <suppress/>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>

 Chapter 8. Securing Web services 265

 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>

<certificate_label>SIGCERT01</certificate_label>
 </sign_body>

<encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>

<certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
 </wsse_handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

If CICS is the service provider, CICS will decrypt any inbound encrypted SOAP
message automatically when it processes the message, provided you have the
<wsse_handler> element in the pipeline configuration file. The security header in
the received message provides all of the information needed for CICS to decrypt
it. In other words, the <encrypt_body> and <sign_body> elements do not need to
be specified in the provider pipeline configuration file in order to decrypt the
inbound SOAP message. But you can (and probably will want to) include the
<encrypt_body> or <sign_body>, or both, in the provider pipeline configuration
file if you want to encrypt or sign the reply body sent back to the requester. This
is what we have shown in Example 8-5.

8.4.2 WebSphere and SOAP message security

WebSphere Application Server V6.1 is based on the implementation of
WS-Security in the following OASIS specification and profiles:

� WS-I Basic Security Profile

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

� Web Services Security: SOAP Message Security 1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf

� Web Services Security: UsernameToken Profile 1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0.pdf

266 Implementing CICS Web Services

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

� Web Services Security: X.509 Certificate Token Profile V1.0 (March 2004):

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0.pdf

WebSphere Application Server uses the J2EE 1.4 Web services deployment
model to implement WS-Security. The Web services security constraints are
specified in the IBM extension of the Web services deployment descriptors and
bindings. The Web services security runtime enforces the security constraints
specified in the deployment descriptors. One of the advantages of this
deployment model is that you can define the Web services security requirements
outside of the application business logic. With the separation of roles, the
application developer can focus on the business logic, and the security expert
can specify the security requirement.

Figure 8-6 shows the high-level architecture model that is used to secure Web
services in WebSphere Application Server.

Figure 8-6 WebSphere Application Server support for WS-Security

As shown in the figure, there are two sets of configurations on both the client side
and the server side.

JavaBean
EJB

Server
Deployment

Descriptor

Decrypt Message
Digital Signature Validation
Security Token Validation
Setup Security Context

Digital Signature Generation
Encrypt Message

 App Server

Response
generator

matching definitions

ibm-webservices-xxx.xmi

Request
consumer

Client

Client
Deployment
Descriptor

Security Token Generation
Digital Signature Generation
Encrypt Message

Decrypt Message
Digital Signature Validation

Response
consumer

Request
generator

A
P
P
L
I
C

SOAP Request +
WS-Security Headers +
Transport Headers

ibm-webservicesclient-xxx.xmi

 Chapter 8. Securing Web services 267

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

� Request generator

This client-side configuration defines the Web services security requirements
for the outgoing SOAP message request. These requirements might involve
generating a SOAP message request that uses a digital signature,
incorporates encryption, and attaches a security token.

� Request consumer

This server-side configuration defines the Web services security
requirements for the incoming SOAP message request. These requirements
might involve verifying that the required integrity parts are digitally signed,
verifying the digital signature, verifying that the required confidential parts
were encrypted by the request generator, decrypting the required confidential
parts, validating the security token, and verifying that the security context is
set up with the appropriate identity.

� Response generator

This server-side configuration defines the Web services security
requirements for the outgoing SOAP message response. These requirements
might involve generating the SOAP message response with Web services
security, including digital signature; and encrypting and attaching a security
token, if necessary.

� Response consumer

This client-side configuration defines the Web services security requirements
for the incoming SOAP response. The requirements might involve verifying
that the integrity parts are signed and the signature is verified; verifying that
the required confidential parts are encrypted and that the parts are decrypted;
and validating the security token, if necessary.

The Web services security requirements that are defined in the request
generator must match the request consumer. The requirements that are defined
in the response generator must match the response consumer. Otherwise, the
request or response is rejected because the Web services security constraints
cannot be met by the request consumer and response consumer.

The format of the Web services security deployment descriptors and bindings
are IBM proprietary. However, the following tools are available to edit the
deployment descriptors and bindings:

� Rational Application Developer V6.0 (RAD)

In Chapter 9, “Security scenarios” on page 275 we show how we configured
WS-Security for our sample catalog manager application using RAD.

� Application Server Toolkit V6.1 (AST)

268 Implementing CICS Web Services

In Chapter 10, “Security scenarios using CICS WS-Security support” on
page 323 we show how we configured WS-Security using the AST.

8.5 Comparison of transport level and SOAP message
security

We have shown in this chapter that it is possible to implement Web services
security at two levels: the transport level and the SOAP message level. If your
Web services environment is simple (for example, it does not span multiple
nodes) a security solution based on transport-level security alone may be all that
you need. For more complex scenarios, however, it may not be enough on its
own.

In this section, we provide general guidelines to help you decide what type of
security solution to implement.

� You might chose to use only transport-level security to secure your CICS
Web services environment when:

– No intermediaries are used in the Web service environment or, if there are
intermediaries, then you can guarantee that once the data is decrypted, it
cannot be accessed by an untrusted node or process.

– The transport is only based on HTTP.

– Performance is your primary concern

SSL/TLS is a mature technology that has been optimized over a long
period of time and there are ways of optimizing performance such as
persistent TCP/IP connections and SSL session ID reuse. These
optimizations mean that expensive security functions, such as SSL
handshaking, can be avoided for service requests following the initial
handshake.

WS-Security support, in comparison, is completely stateless, and
expensive security functions, such as XML digitital signature validation,
are repeated for each service request.

– The Web services client is a stand-alone Java program.

WS-Security can only be applied to clients that run in a Web services
environment that supports the WS-Security specification (for example,
WebSphere Application Server).

� You might chose to use WS-Security (possibly in addition to transport-level
security) when:

– Intermediaries are used, some of which may be untrusted.

 Chapter 8. Securing Web services 269

Security credentials that flow in the SOAP message can pass through any
number of intermediaries. Protecting confidential information in the actual
SOAP message may avoid the overhead of encrypting and decrypting via
SSL at every intermediary node.

Furthermore, an intermediary may be able to provide an authentication
service to CICS, such that the intermediary server authenticates the Web
service client and then flows an asserted identity to CICS.

– Multiple transport protocols are used.

WS-Security works across multiple transports and is independent of the
underlying transport protocol.

– The Web service partners support WS-Security and a general decision
has been taken to flow security tokens in accordance with the
WS-Security specification.

– You choose to implement your own security procedures and processing
by writing a custom message handler program that can process secure
SOAP messages in the pipeline.

8.6 Securing CICS Web services using the service
integration bus

WebSphere Application Server provides the ability to use the service integration
bus as an intermediary between service requesters and service providers,
allowing you to control the flow, routing, and transformation of messages through
mediations and JAX-RPC handlers (see Chapter 5, “Connecting CICS to the
service integration bus” on page 129).

The bus provides a flexible way to expose and call services located in an intranet
from the Internet (and vice versa), while also providing mechanisms for protocol
switching and security, including extensive support for the WS-Security
specification.

Figure 8-7 illustrates how the bus could be used to enable service requesters to
access CICS Web services via a gateway service. See “Creating a gateway
service on the bus” on page 139 for information about how we enabled the
inquireSingle Web service of the CICS sample catalog application to be invoked
via a gateway service.

270 Implementing CICS Web Services

Figure 8-7 Securing a CICS Web service using the service integration bus

One advantage of such a configuration is that you can configure the bus for
secure transmission of SOAP messages using tokens, digital signatures, and
encryption, in accordance with the WS-Security specification. For each service,
you can select the security settings that are applied between the service
requester and the gateway service, and between the gateway service and the
service provider (in this case, CICS).

WS-Security security constraints can be configured for the following:

� Request consumer - used on inbound requests from a client to a service.

� Request generator - used when generating outbound requests from a service
to a target Web service.

� Response consumer - used on outbound responses from a target Web
service to a service.

� Response generator - used when generating inbound responses from a
service to a client.

The bus can also invoke Web services that include https:// in their addresses.
This provides message integrity and confidentiality while the message is
transmitted between the bus and the CICS region.

G atew a y
S e rv ice

S e rv ice
R e q ues to r

Inbou n d se rv ice
requ e s t

In bo und se rv ice
resp onse

C IC S
S e rv ice
P rov ide r

O utb o und se rv ice
req u es t

O u tbou nd se rv ice
re spo nse

U ses response
gene ra to r
secu rity cons tra in t

U ses request
consum er
secu rity cons tra in t

U ses response
consum er
secu rity cons tra in t

U ses reques t
gene ra to r
secu rity cons tra in t

W S -S ec u rity
b in d in g s
W S -S ec u rity
c o n fig u ra tio n

W S -S ecu rity
b in d in g s

W S -S ecu rity
co n fig u ra tio n

O u tb o u n d
P o rt

S e rv ice In teg ra tio n B u s

E n d p o in t
L is ten e r

W eb S p h e re A p p lica tio n S e rve r

 Chapter 8. Securing Web services 271

8.7 WebSphere Datapower SOA appliances

IBM WebSphere Datapower SOA appliances are purpose-built, easy-to-deploy
network devices that simplify and accelerate XML and Web services
deployments.

There are three types of DataPower® appliances available, each building on the
features of the last:

� IBM WebSphere DataPower XML Accelerator XA35

Accelerates common types of XML processing by offloading this processing
from servers and networks. It can perform XML parsing, XML Schema
validation, XPath routing, Extensible Stylesheet Language Transformations
(XSLT), XML compression, and other essential XML processing with
wirespeed XML performance.

� IBM WebSphere DataPower XML Security Gateway XS40

Provides a security-enforcement point for XML and Web services
transactions, including encryption, firewall filtering, digital signatures, schema
validation, WS-Security, XML access control, XPath, and detailed logging.

� IBM WebSphere DataPower Integration Appliance XI50

Transport-independent transformations between binary, flat text files, and
XML message formats. Visual tools are used to describe data formats, create
mappings between different formats, and define message choreography.

For full product information about IBM WebSphere DataPower SOA Appliances
see:

http://www-306.ibm.com/software/integration/datapower/index.html

A Datapower SOA appliance can be used in conjunction with CICS Web services
to help secure the services and to offload expensive operations by processing
the complex part of XML messages (such as an XML signature) at wirespeed
(see Figure 8-8).

272 Implementing CICS Web Services

Figure 8-8 Using a WebSphere Datapower SOA Appliance with CICS Web services

8.8 Identity assertion

Identity assertion is an authentication mechanism that is applied among three
parties: a client, an intermediary server, and a target server:

� A request message is sent to an intermediary server with a client’s security
token.

� The intermediary server (for example, a service integration bus or a
Datapower SOA appliance) authenticates the client and transfers the client’s
request message and identity to the target server with the intermediary’s
security token.

Identity assertion is an extended security mechanism supported by WebSphere
Application Server Version V6 and the service integration bus. There are several
options for sending the client’s identity with the intermediary’s token to the target
server.

It is possible to use identity assertion to secure a CICS Web service via the bus.
For example, for the Gateway service shown in Figure 8-7, we could:

� Define a security requirement for the request consumer such that the
requester must provide a binary security token, such as an X.509 certificate.

� Configure the bus (WebSphere Application Server) to map the certificate to a
user identity.

� Define a security requirement for the request generator such that the bus
propagates the service requester’s identity to CICS in a UsernameToken.

SOAP/HTTP

CICS
apps

WebSphere Datapower
SOA appliance XI50

Service
Requesters

SOAP/HTTP
with WS-Security

z/OS

 Chapter 8. Securing Web services 273

The bus must establish a trust relationship with the CICS region by
authenticating itself and then by being recognized as a trusted partner of the
CICS region. This can be done using one of two different models:

Trust token The bus sends a trust token to CICS.

Presumed trust Trust is established at the transport level rather than at
the SOAP message level.

8.8.1 Trust token model

In this model, SOAP messages that flow between the bus and CICS contain a
trust token and an identity token. The trust token is used to check that the sender
has the correct permissions to assert identities, and the identity token holds the
asserted identity (user ID) under which the request is to run. When using the
CICS-provided support for WS-Security, a trust token can be a UsernameToken
or an X.509 token.

The advantage of the trust token model is that it is independent of the
mechanism used to transport the SOAP messages. The disadvantage, however,
is the overhead of validating the trust token for each SOAP request.

8.8.2 Presumed trust model

In this model, SOAP messages that flow between the bus and CICS contain only
an identity token. The trust relationship between the bus and CICS must be
established using a transport-based mechanism such as SSL client
authentication.

The CICS-provided support for WS-Security does not support the presumed trust
model. To implement such a model, you need to write a custom handler. The
user-written header processing program CIWSSECS described in “Configuring
the service provider” on page 316 is an example of such a custom handler.

The advantage of the presumed trust model is that the trust established between
the bus and CICS can be persistent (for example, by using SSL persistent
connections) and does not need to re-established for each SOAP message. The
disadvantage, however, is that it is dependent on the mechanism used to
transport the SOAP messages.

Recommendation: The presumed trust model offers significant performance
advantages over the trust token model.

274 Implementing CICS Web Services

Chapter 9. Security scenarios

In this chapter we outline several security scenarios that demonstrate how you
can secure a CICS Web services environment. We start with an explanation of
how we prepared the system and the settings that we used for the basic security
configuration of our CICS system. We then provide step-by-step security
configuration for a number of scenarios, including:

� Setting the user ID on a URIMAP resource definition

� Enabling SOAP message security with HTTP

� Enabling SSL/TLS

� Enabling SOAP message security with WebSphere MQ

We show how we configured both CICS and WebSphere Application Server for
these security scenarios.

9

Important: The SOAP message security scenarios documented in this
chapter were tested on a version of CICS TS V3.1 which did not have the
CICS WS-Security PTFs installed. See Chapter 10, “Security scenarios using
CICS WS-Security support” on page 323 for scenarios using the CICS
supplied WS-Security support.

© Copyright IBM Corp. 2007. All rights reserved. 275

9.1 Preparation

Security techniques for securing Web services were discussed in Chapter 8,
“Securing Web services” on page 235. In this chapter, we describe the following
security scenarios:

� Setting the user ID on a URIMAP definition

The user ID is then used for Web service requests that match the URIMAP.
No authentication of the clint’s credentials takes place. See “Setting the user
ID on a URIMAP definition” on page 280 for details of this scenario.

� Enabling SOAP message security with HTTP

In this scenario, we show how a header processing program in a service
provider pipeline can extract a WS-Security UsernameToken from a SOAP
header, validate the username and password, and set the user ID of the CICS
task to the username passed in the header. This scenario is described in
“Enabling SOAP message security with HTTP” on page 285.

� Enabling SSL/TLS

In this scenario, we show how SSL/TLS can be used in combination with
SOAP message security to secure a connection between WebSphere
Application Server and CICS. See “Enabling SSL/TLS” on page 301.

� Enabling SOAP message security with WebSphere MQ (WMQ)

In this scenario, we show how a header processing program in a service
requester pipeline can attach a WS-Security header to a SOAP message,
which is then sent, using WMQ, to a CICS service provider. This scenario is
described in “Enabling SOAP message security with WMQ” on page 312.

9.1.1 Software checklist

The software we used is listed in Table 9-1.

Table 9-1 Software used in the security scenarios

Windows z/OS

Internet Explorer V6.0 z/OS V1.6

Windows 2000 SP4 CICS Transaction Server V3.1a

IBM WebSphere Application Server - ND
V6.0.2.0

RACF V1.6

276 Implementing CICS Web Services

9.1.2 Definition checklist

The definitions we used are listed in Table 9-2.

Table 9-2 Settings used in the security scenarios

Our J2EE applications
� CatalogSec.ear

Catalog manager service requester
application with no security enabled

� CatalogSec_WS-Security.ear
Catalog manager service requester
application with WS-security enabled

� CatalogSec_WS-Security_HTTPS.ear
Catalog manager service requester
application with WS-security and
HTTPS enabled

Our user-written CICS programs
� CIWSMSGH (message handler

program)
� CIWSSECH (header processing

program)
� CIWSSECR (header processing

program)
� CIWSSECS (header processing

program)
� MYPARSER (COBOL XML parsing

program)

a. The version of CICS TS V3.1 used in these security scenarios does not include
the CICS support for WS-Security which was introduced later in PTFs UK15271
and UK15261.

Windows z/OS

Value CICS TS WebSphere Application
Server

IP name mvsg3.mop.ibm.com cam21-pc3.mop.ibm.com

IP address 9.100.193.167 9.100.199.171

TCP/IP port 14301 9080

SSL/TLS port 14303

Jobname CIWSS3C1

APPLID A6POS3C1

TCPIPSERVICE S3C1

Provider PIPELINE PIPE1

Configuration files ITSO_7206_secprovider.xml
ITSO_7206_secrequester.xml
ITSO_7206_secprovider_dispat
ch.xml

MQ queue manager MQS3

 Chapter 9. Security scenarios 277

The user IDs we used in our configuration are listed in Table 9-3.

Table 9-3 User IDs

9.2 Basic security configuration

First we discuss our basic security configuration, taking a CICS region with no
security and configuring it to enable transaction security (we do not implement
other types of CICS security such as resource security and command security).
We document the system initialization table parameters necessary to set up
basic CICS security and then we test our basic security configuration.

For detailed information about CICS security, see CICS Transaction Server for
z/OS RACF Security Guide, SC34-6454.

Because the INQC and INQS transactions are browse-only transactions, we
chose not to secure them. The ORDR transaction updates the database, so we
decided to protect it from unauthorized use.

URIMAP SECPORDR
SECICATA
SECISING

Value CICS TS

CICS region user ID CIWS3D

CICS default user ID CICSUSER

User IDs to which we wish to permit access CIWSNW
WEBAS3

Tip: For the examples described in this book, we permit access to single user
IDs. In a production environment, you will probably create a group of users
requiring common access. Once a group is built, you can permit access to the
group. This allows users’ access to be controlled by the group to which they
belong, rather than by individual permissions. This simplifies the security
definitions required.

Value CICS TS WebSphere Application
Server

278 Implementing CICS Web Services

Our starting point is a CICS region with no security configured. This means that
all transactions run under the CICS default user ID, as shown in Figure 3-12 on
page 93.

9.2.1 Setting up basic security configuration

We configured our CICS region with security prefixing, transaction security, and
surrogate user security active using the following SIT parameters:

� SEC=YES
� SECPRFX=YES
� XTRAN=YES
� XUSER=YES

SEC=YES was specified to indicate that we wanted RACF services to control
access to CICS resources.

We used security prefixing (SECPRFX=YES) in our CICS region, which prevents
our RACF security profiles from affecting other CICS regions. This is useful in a
production environment since it means all security profiles are unique to an
individual region; however, it can mean more work for the security administrator
because more profiles must be defined.

XTRAN=YES was specified so CICS would control who could start transactions
and XUSER=YES specifies that CICS is to perform surrogate user checking.

9.2.2 Testing the basic security configuration

After enabling security in our CICS region, we attempted to place an order with
the sample catalog application. The Web browser received an error message
indicating that the use of some transaction is forbidden (Figure 9-1).

 Chapter 9. Security scenarios 279

Figure 9-1 Browser - Service call forbidden

Example 9-1 shows the security violation highlighting that the CICS default user
ID does not have access to the CPIH transaction.

Example 9-1 CICSUSER security violation messages running CPIH

DFHXS1111 11/24/2005 12:33:04 A6POS3C1 CPIH Security violation by user CICSUSER for resource
CIWS3D.CPIH in class TCICSTRN. SAF codes are (X'00000008',X'00000000'). ESM codes
are (X'00000008',X'00000000').

DFHWB0361 11/24/2005 12:33:04 A6POS3C1 An attempt to attach a CICS Web alias transaction for
userid CICSUSER has failed because the user is not authorized to execute transaction
CPIH. Host IP address: 9.100.193.167. Client IP address: 9.100.199.171.
TCPIPSERVICE: S3C1.

DFHAC2003 11/24/2005 12:33:04 A6POS3C1 Security violation has been detected term id = ????,
trans id = CPIH, userid = CICSUSER.

9.3 Setting the user ID on a URIMAP definition

With this option the security identity used for the transaction is based on a
statically defined user ID. We achieved this preset identification by using a
URIMAP resource definition in which we specified a valid user ID (CIWSNW) in
the USERID parameter. This is shown in Figure 9-2.

280 Implementing CICS Web Services

Figure 9-2 Setting user ID on a URIMAP scenario

At this stage, the only security check is to validate whether or not the user ID
specified in the URIMAP attribute (CIWSNW) has permission to execute both the
CPIH and ORDR transactions.

9.3.1 Defining the URIMAP

We used the following command to define a URIMAP resource:

CEDA DEFINE URIMAP(SECPORDR) GROUP(S3C1)

We then set the attributes as shown in Figure 9-3 and Figure 9-4.

Service requester
 Serv ice provider

Response R esponse

A
P
P

Request Request

W ebSphere
A pplication

Server V6.0.2
 C IC S TS V3.1

HTTP

B row ser

S O A P /H TTP

O
R
D
R

C
P
I
H

C PIH and
O R D R run
w ith user ID

C IW SN W

U R IM AP
w ith

U SER ID

W indow s 2000 z/O S V1.6

 Chapter 9. Security scenarios 281

Figure 9-3 CEDA DEFINE URIMAP (page 1 of 2)

Figure 9-4 CEDA DEFINE URIMAP (page 2 of 2)

 OVERTYPE TO MODIFY CICS RELEASE = 0640
 CEDA DEFine Urimap(SECPORDR)
 Urimap : SECPORDR
 Group : S3C1
 Description ==>
 STatus ==> Enabled Enabled | Disabled
 USAge ==> Pipeline Server | Client | Pipeline
 UNIVERSAL RESOURCE IDENTIFIER
 SCheme ==> HTTP HTTP | HTTPS
 HOST ==> *
 (Lower Case) ==>
 PAth ==> /exampleApp/placeOrder
 (Mixed Case) ==>
 ==>
 ==>
ASSOCIATED CICS RESOURCES
 TCpipservice ==>
 + Analyzer ==> No No | Yes

SYSID=S3C1 APPLID=A6POS3C1

 OVERTYPE TO MODIFY CICS RELEASE = 0640
 CEDA DEFine Urimap(SECPORDR)
 + COnverter ==>
 TRansaction ==> CPIH
 PRogram ==>
 PIpeline ==> PIPE1
 Webservice ==> placeOrder (Mixed Case)
 SECURITY ATTRIBUTES
 USErid ==> CIWSNW
 CIphers ==>
 CErtificate ==> (Mixed Case)
 STATIC DOCUMENT PROPERTIES
 Mediatype ==>
 (Lower Case)
 CHaracterset ==> (Mixed Case)
 HOSTCodepage ==>
 TEmplatename ==>
 (Mixed Case)
 + HFsfile :

SYSID=S3C1 APPLID=A6POS3C1

282 Implementing CICS Web Services

We used the following values:

� URIMAP name was set to SECPORDR.

� USAGE was set to PIPELINE, indicating that it is to be used for incoming
Web service requests.

� SCHEME was set to HTTP because no transport security is being used.

� HOST attribute was set to the wildcard (*), meaning that the URIMAP
definition matches on any host name.

� PATH was set as /exampleApp/placeOrder. Together with the HOST and
SCHEME values this means that the URIMAP resource caters to any Web
service request originating from http://*/exampleApp/placeOrder.

� TRANSACTION is automatically defaulted to CPIH by CICS when
USAGE(PIPELINE) is specified.

� PIPELINE was set to PIPE1, the name of the pipeline for which this URIMAP
definition is being made.

� WEBSERVICE can only be specified when USAGE(PIPELINE) is in effect
and specifies the name of the Web service to be invoked. We set the value to
placeOrder.

� USERID was set with the value of CIWSNW, the user ID under which we
have decided to execute the ORDR transaction.

� All other values were allowed to default.

Two other URIMAP resources were defined with similar definitions. First
SECPORDR was copied as SECICATA and as SECISING, then these resource
definitions were altered as shown in Example 9-2.

Example 9-2 Creating URIMAP definitions for SECICATA and SECISING

CEDA COPY URIMAP(SECPORDR) GROUP(S3C1) AS(SECICATA)
CEDA COPY URIMAP(SECPORDR) GROUP(S3C1) AS(SECISING)
CEDA ALTER URIMAP(SECICATA) GROUP(S3C1) PATH(/exampleApp/inquireCatalog)

WEBSERVICE(inquireCatalog)
CEDA ALTER URIMAP(SECISING) GROUP(S3C1) PATH(/exampleApp/inquireSingle)

WEBSERVICE(inquireSingle)

This ensures that the transactions INQC, INQS, and ORDR all execute with the
same user ID CICSNW.

Example 9-3 shows the RACF commands that we used to permit the CICS
region user ID (CIWS3D) to start transactions (such as ORDR) with the user ID
CIWSNW.

 Chapter 9. Security scenarios 283

Example 9-3 RACF commands to allow CIWS3D to act as surrogate for CIWSNW

RDEFINE SURROGAT CIWSNW.DFHSTART UACC(NONE) OWNER(CIWSNW)
PERMIT CIWSNW.DFHSTART CLASS(SURROGAT) ID(CIWS3D) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

For more information regarding surrogate user security, see CICS Transaction
Server for z/OS RACF Security Guide, SC34-6454.

9.3.2 Permitting access to user ID CICSNW

In “Writing the message handler program” on page 80 we explained how the
message handler program CIWSMSGH is used to change the default transaction
ID (CPIH) to a transaction ID based on the Web service request in the
DFHWS-WEBSERVICE container. Example 9-4 shows the RACF commands
that we used to limit access to the ORDR transaction to a single user ID
(CIWSNW).

Example 9-4 RACF commands to allow access to CPIH and ORDR transactions

RDEFINE GCICSTRN CIWS3D ADDMEM(CIWS3D.CPIH) UACC(NONE) OWNER(IBMUSER)
RALTER GCICSTRN CIWS3D ADDMEM(CIWS3D.ORDR)
PERMIT CIWS3D CLASS(GCICSTRN) ID(CIWSNW) ACCESS(READ)
SETROPTS RACLIST(TCICSTRN) REFRESH

In Example 9-4 we:

� Define the transaction group CIWS3D and add the CPIH and ORDR
transactions to the group

� Permit access to the group for user ID CIWSNW
� Refresh the RACF CICS transaction class TCICSTRN

9.3.3 Testing user ID on URIMAP resource definition

With these definitions installed, both the CPIH and ORDR transactions now
execute with the user ID as supplied in the URIMAP. This is shown in Figure 9-5.

284 Implementing CICS Web Services

Figure 9-5 ORDR executing with preset user ID

9.4 Enabling SOAP message security with HTTP

In Section 8.4, “SOAP message security” on page 253, we explained how
WS-Security extends the SOAP specification by defining new elements to be
used in the SOAP header for message-level security. We also provided an
outline of how WebSphere Application Server supports WS-Security, including
support for generating security tokens that are passed in the WS-Security SOAP
header. This scenario is shown in Figure 9-6 on page 286.

In this section we show how a simple UsernameToken security token, passed in
a Web service call from WebSphere Application Server, can be processed in
CICS by a user-written header processing program. The header processing
program extracts the UsernameToken from the SOAP header, validates the
username and password, and sets the user ID of the CICS task to the username
passed in the header.

 INQUIRE TASK
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tas(0000050) Tra(CEMT) Fac(G312) Run Ter Pri(255)
 Sta(TO) Use(CIWSGA) Uow(BDF617FA8ADB8006)
 Tas(0000052) Tra(CPIH) Sus Tas Pri(001)
 Sta(U) Use(CIWSNW) Uow(BDF617FF222CDF0D) Hty(RZCBNOTI)
 Tas(0000053) Tra(ORDR) Sus Tas Pri(001)
 Sta(U) Use(CIWSNW) Uow(BDF617FF55DCA22A) Hty(EDF)
 Tas(0000055) Tra(CEDF) Fac(G343) Sus Ter Pri(001)
 Sta(SD) Use(CIWSGA) Uow(BDF617FF7D31E968) Hty(ZCIOWAIT)

 Chapter 9. Security scenarios 285

Figure 9-6 Enabling SOAP message security scenario

9.4.1 Configuring the service requester

In “Installing the service requester” on page 87 we showed how we installed our
sample Web service client in WebSphere Application Server. The service
requester setup tasks that we cover here are as follows:

� Defining the WebSphere WS-Security constraint for the Web service client

� Re-deploying the Web service client application

WebSphere WS-Security configuration files
The WebSphere WS-Security constraints are defined in the IBM extension of the
J2EE Web services deployment descriptor. There are four configuration files:
application-level deployment descriptor extensions for a client and a server, and
binding files for a client and a server (Figure 9-7).

S e rv ic e re q u e s te r S e rv ic e p ro v id e r

R e s p o n s e R e s p o n s e

A
P
P

R e q u e s t R e q u e s t

W e b S p h e re
A p p lic a tio n

S e rv e r

 C IC S T S V 3 .1

H T T P

B ro w s e r

S O A P /H T T P

 < w s s e :S e c u r ity >
 < w s s e :U s e rn a m e To k e n >

 < w s s e :U s e rn a m e > W E B A S 3 < /w s s e :U s e rn a m e >
 < w s s e :P a s s w o rd > R E D B 0 0 K S < /w s s e :P a s s w o rd >

 < /w s s e :U s e rn a m e To k e n >
 < /w s s e :S e c u r ity >

O
R
D
R

C
P
I

H

W S S e c u r ity
h e a d e r
c re a te d

W S -S e c u rity
in c lu d e d in

S O A P
m e s s a g e

O R D R ru n s
w ith u s e r ID

W E B A S 3

C P IH ru n s
w ith u s e r ID

C IW S N W

W in d o w s 2 0 0 0
 c a m 2 1 -p c 3

z /O S V 1 .6

286 Implementing CICS Web Services

Figure 9-7 Structure of WS-Security configuration files

The configuration files are:

� Client deployment descriptor extension file - includes request generator and
response consumer constraints:

ibm-webservicesclient-ext.xmi

� Client binding configuration file - includes how to apply request generator and
response consumer constraints:

ibm-webservicesclient-bnd.xmi

� Server deployment descriptor extension file - includes request consumer and
response generator constraints:

ibm-webservices-ext.xmi

� Server binding configuration file - includes how to apply request consumer
and response generator constraints:

ibm-webservices-bnd.xmi

Note: The .xmi in the file names stands for XML metadata interchange.

WSS Runtime

Request
Generator

Response
Consumer

WSS Runtime

Request
Consumer

Response
Generator

Client Server

Client Deployment Descriptor

Client Binding configuration

Server Deployment Descriptor

Server Binding configuration

Request Generator Configuration

Response Consumer Configuration

Request Generator Configuration

Response Consumer Configuration

Request Consumer Configuration

Response Generator Configuration

Request Consumer Configuration

Response Generator Configuration

 Chapter 9. Security scenarios 287

The deployment descriptor extension files specify what security constraints are
required, for example, what type of security token and whether to sign the
message. The binding files specify how to apply the required security constraints
defined in the deployment descriptor extension, for example, which security
token is inserted and which keys are used for signing.

These deployment descriptor extension and binding files define the
application-level security constraints and they belong to each application.

For our scenario, we needed to configure the client deployment descriptor and
the client binding only, since our service provider is running in CICS and not in
WebSphere Application Server.

Editing the client configuration
To configure our Web service client to use WS-Security, we used Rational
Application Developer V6.0 (RAD).

We imported the client application archive CatalogSec.ear into RAD. We then
expanded the Dynamic Web Project (CatalogSecWeb) in the Project Explorer
and opened (double-clicked) the deployment descriptor.

After the Deployment Descriptor Editor opened, we selected the WS Extension
page. The WS Extension page is used for editing the client’s deployment
descriptor extension file, so you can specify what security is required. Figure 9-8
shows the WS Extension page in the Deployment Descriptor Editor.

Note: You can also use the Application Server Toolkit to configure
WS-Security for WebSphere applications.

288 Implementing CICS Web Services

Figure 9-8 WS Extension page in Web service client Deployment Descriptor Editor

� We clicked the service/DFH0XCMNService3 reference (for our Order
service) and DFH0XCMNPort (the port binding for the service reference).

� In the Request Generator Configuration, we expanded Security Token and
clicked Add. We entered the name basicauth.

We selected the Username Token type from the drop-down list. When you
select a Token type, the Local name is filled in automatically (Figure 9-9 on
page 290). We left the URI empty.

Client Deployment Descriptor

Request Generator Configuration

Response Consumer Configuration

Client Binding configuration

Request Generator Configuration

Response Consumer Configuration

 Chapter 9. Security scenarios 289

Figure 9-9 Security Token Dialog for specifying basic authentication

We clicked OK and a security token was created. We then saved the
configuration.

After specifying the security token, a corresponding token generator must be
specified in the binding configuration. The WS Binding page is for editing the
client’s binding file, so you can specify how to apply the required security. We
clicked the WS Binding tab. Figure 9-10 shows the WS Binding page in the
Deployment Descriptor Editor.

290 Implementing CICS Web Services

Figure 9-10 WS Binding page in the Deployment Descriptor Editor

� We selected Token Generator and clicked Add. We entered a Token
generator name basicauthToken and allowed the Token generator class to
default as com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

� To select the security token, we expanded the drop-down list and selected the
basicauth security token that we defined previously on the WS Extension
page.

� We checked Use value type and selected the Username Token value type
from the drop-down list. This selection filled the local name and callback
handler.

Client Deployment Descriptor

Request Generator Configuration

Response Consumer Configuration

Client Binding configuration

Request Generator Configuration

Response Consumer Configuration

 Chapter 9. Security scenarios 291

� We entered the user ID WEBAS3 and password REDBOOKS that we wanted to use
to identify the Web service client (Figure 9-11).

Figure 9-11 Token Generator dialog

� We clicked OK, and the token generator was created. We then saved the
configuration.

Note: The User ID and Password in Figure 9-11 represent the credentials of
the application server, not the browser user. The same credentials are passed
to CICS in the SOAP message irrespective of the identity of the end user.

292 Implementing CICS Web Services

Redeploying the Web service application
After configuring a security constraint for the service requester application, we
exported a new EAR file called CatalogSec_WS-Security.ear. We followed the
same process that is described in “Installing the service requester” on page 87 to
deploy the CatalogSec_WS-Security.ear.

9.4.2 Configuring CICS

The credentials configured using Rational Application Developer are used to
form the WS-Security header that is contained in the SOAP message. An
example of this message is shown in Example 9-5.

Example 9-5 SOAP security header extracted from a SOAP message

<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>WEBAS3</wsse:Username>

<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0#PasswordText">REDB00KS</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

This header includes the mustUnderstand="1" attribute, which indicates that
either this header must be processed or a SOAP fault thrown.

In order for CICS to process the security token in the SOAP header, the pipeline
configuration file must be updated to include a SOAP header processing
program. Example 9-6 shows the pipeline configuration file that activates our
sample security header processing program CIWSSECH.

Example 9-6 Pipeline config file, ITSO_7206_secprovider.xml

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd ">
 <transport>
 <default_transport_handler_list>
 <handler>
 <program>CIWSMSGH</program>

Note: See CICS Transaction Server for z/OS CICS Web Services Guide,
SC34-6458, for details on mustUnderstand and other SOAP-defined header
block attributes.

 Chapter 9. Security scenarios 293

 <handler_parameter_list/>
 </handler>
 </default_transport_handler_list>
 </transport>
 <service>
 <terminal_handler>
 <cics_soap_1.2_handler>
 <headerprogram>
 <program_name>CIWSSECH</program_name>

<namespace>http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd</namespace>

 <localname>Security</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.2_handler>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <headerprogram> element shown in Example 9-6 introduces four new
elements, <program name>, <namespace>, <localname> and <mandatory>:

� The <program name> element contains the name of the header processing
program CIWSSECH, which is to be invoked to process the security token.

� The <namespace> element is used with the <localname> element to determine
which header blocks in a SOAP message should be processed by the header
processing program.

� A <localname> element is also used to determine which header blocks in a
SOAP message should be processed by the header processing program. The
<localname> contains the element name of the header block, in our case,
Security (see Example 9-5 on page 293).

� The <mandatory> element indicates that the header processing program must
be invoked at least once, regardless of whether or not such a header has
been found.

<mandatory>true</mandatory> has the following meaning:

During request processing in a service provider pipeline, and response
processing in a service requester pipeline, the header processing program is
to be invoked at least once, even if none of the headers in the SOAP
message matches the <namespace> and <localname> elements:

– If none of the headers matches, the header processing program is invoked
once.

– If any of the headers match, the header processing program is invoked
once for each matching header.

294 Implementing CICS Web Services

During request processing in a service requester pipeline, and response
processing in a service provider pipeline, the header processing program is to
be invoked at least once, even though the SOAP message that CICS creates
has no headers initially. If you want to add headers to your message, you
must ensure that at least one header processing program is invoked, by
specifying <mandatory>true</mandatory> or <mandatory>1</mandatory>.

Example 9-7 shows the fault message that CICS created when we had not
specified a header processing program for the Security header.

Example 9-7 SOAP fault message created when no header program provided

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header>
 <SOAP-ENV:NotUnderstood qname="wsse:Security"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecu
rity-secext-1.0.xsd" />

 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault xmlns="">
 <faultcode>SOAP-ENV:MustUnderstand</faultcode>
 <faultstring>Header block local name 'Security' is not defined to CICS.

Mustunderstand check failed for the header block.</faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The WS-Security header processing program
The header processing program CIWSSECH is invoked at every invocation of
this pipeline because of the <mandatory>true</mandatory> element, but only
executes entirely if the DFHFUNCTION container holds the value
RECEIVE-REQUEST. Example 9-8 gives an overview of the program.

Example 9-8 Pseudo code overview of the CIWSSECH program

Check if invoked for RECEIVE-REQUEST, else exit
Check for correct URI, else exit
Obtain WS-Security header from DFHHEADER container
Invoke MYPARSER to parse the header
Verify the credentials extracted by MYPARSER
Put user ID into DFHWS-USERID container

Important: If a Web service request that contains the attribute
mustUnderstand="1" (or ="true") is received by CICS, and you have not
coded a <headerprogram> element in your configuration file for this header,
a SOAP fault message will be created by CICS.

 Chapter 9. Security scenarios 295

Example 9-9 shows how this is done. The full program is shown in Section A.2,
“Sample header processing program - CIWSSECH” on page 533.

Example 9-9 Determining if invoked to process an inbound request message

GET-DFHFUNCTION.
 EXEC CICS
 GET CONTAINER('DFHFUNCTION')
 INTO(WS-FUNC-AREA)
 FLENGTH(WS-FUNC-LEN)
 RESP(WS-RESP)
 END-EXEC.

 * Copy the input container to our storage
 IF WS-FUNC-LEN NOT = 16
 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
 PERFORM FAULT-MESSAGE
 ELSE
 IF WS-FUNC-AREA NOT = 'RECEIVE-REQUEST '
 EXEC CICS RETURN END-EXEC
 END-IF
 END-IF.

Example 9-10 shows how we determined that a specific request is for the
placeOrder service.

Example 9-10 Determining the requester URI

PERFORM GET-DFHWS-URI.
 IF WS-URI-AREA(1:WS-URI-LEN) NOT = '/exampleApp/placeOrder'
 EXEC CICS RETURN END-EXEC
 END-IF

After verifying that we are processing a placeOrder request, the Security header
(see Example 9-5 on page 293) is parsed by calling the MYPARSER program.
MYPARSER is a user-written COBOL program that uses the COBOL XML
PARSE statement to parse through the Security header, extracting the user ID
and password. This extracted data is then returned in a COMMAREA for the

Note: You should not install CIWSSECH into a production environment in its
present form. It has only been coded as a example and does not contain
sufficient error checking. If you wish to use it in production, you must review
the code and make whatever changes are required for your environment.

Note: The value in the DFHWS-URI container is the same value that we
specified previously for the PATH attribute of the SECPORDR URIMAP.

296 Implementing CICS Web Services

calling program to use. Example 9-11 shows the procedure division for the
MYPARSER program.

Example 9-11 MYPARSER COBOL program procedure division

PROCEDURE DIVISION.
 MAIN-PROCESSING SECTION.
 * Validate the commarea
 PERFORM INIT-AND-VALIDATE.
 * Received a valid COMMAREA so invoke the XML parser
 * passing it the XML message
 XML PARSE XML-DOCUMENT
 PROCESSING PROCEDURE XML-HANDLER
 END-XML.

PERFORM RETURN-RESPONSE.
EXEC CICS RETURN END-EXEC.

 MAIN-PROCESSING-END. EXIT.

The XML PARSE statement parses the data in XML-DOCUMENT, using the
XML-HANDLER procedure. The XML-EVENT field is evaluated and if a match is
found, the code for that event is executed. The START-OF-ELEMENT and
CONTENT-CHARACTERS events are handled as shown in Example 9-12.

Example 9-12 Extract of code from MYPARSER program

XML-HANDLER SECTION.
 EVALUATE XML-EVENT
 WHEN 'START-OF-ELEMENT'
 * check if we have an element of interest
 * i.e. Username and Password
 IF XML-TEXT = 'wsse:Username'
 MOVE 'Y' TO IN-ELEM USERNAME-XMLTAG-FOUND
 ELSE
 if XML-TEXT = 'wsse:Password'
 move 'Y' to in-ref-req
 end-if
 END-IF
 WHEN 'CONTENT-CHARACTERS'
 * If we are in an element we are interested in,
 * then extract its value
 IF IN-ELEM = 'Y'
 PERFORM EXTRACT-USER-ID
 ELSE
 IF IN-REF-REQ = 'Y'
 PERFORM EXTRACT-PASSWORD
 END-IF
 END-IF
 WHEN 'END-OF-ELEMENT'
 CONTINUE

 Chapter 9. Security scenarios 297

 WHEN 'START-OF-DOCUMENT'
 CONTINUE

Most of the other XML event types are handled with the CONTINUE statement
because we have no need to process them. The full MYPARSER program is
shown in Section A.4, “Sample XML parser program - MYPARSER” on page 550.

The parsed credentials are then verified, as shown in Example 9-13. If the user
ID and password verify successfully, then the user ID is stored into the
DFHWS-USERID container. This causes the business logic transaction ORDR to
be executed with this user ID.

Example 9-13 Verifying the flowed credentials

EXEC CICS VERIFY
 PASSWORD(CA-PASSWORD)
 USERID(CA-USER-ID)
 RESP(WS-RESP)
 END-EXEC
* Succesful ?
 IF WS-RESP = DFHRESP(NORMAL)
 PERFORM SET-USER-ID
 ELSE
 MOVE WS-NOT-AUTH TO WS-FAULT-STRING
 PERFORM FAULT-MESSAGE
 END-IF

We completed the CICS setup for this scenario by permitting access to the
ORDR transaction to the user ID WEBAS3:

PERMIT CIWS3D.ORDR CLASS(GCICSTRN) ID(WEBAS3) ACCESS(READ)

9.4.3 Testing SOAP message security

Now when we submit an order request on the Web browser, the credentials are
added to the SOAP Security header and are extracted by the header processing
program CIWSSECH. Figure 9-12 shows the ORDR transaction running with the
user ID WEBAS3, while the CPIH transaction continues to execute with the
CIWSNW user ID.

Note: In the same way that we are using the header processing program for
validating security credentials, it is quite feasible to use such a program to
provide some form of audit trail.

298 Implementing CICS Web Services

Figure 9-12 ORDR executing with SOAP security header user ID

9.4.4 SOAP fault messages

The <Fault> element in a SOAP message is used for reporting errors. CICS
provides an application programming interface for creating, adding, or deleting
SOAP fault messages. See the CICS Transaction Server for z/OS CICS
Application Programming Reference, SC34-6434, and CICS Transaction Server
for z/OS CICS Web Services Guide, SC34-6458, for further details on these
commands.

If the credentials extracted do not validate, then CIWSSECH creates a SOAP
fault message (Example 9-14) which is returned to the service requester.

Example 9-14 Generating a SOAP fault

EXEC CICS VERIFY
 PASSWORD(CA-PASSWORD)
 USERID(CA-USER-ID)
 RESP(WS-RESP)
 END-EXEC
 * Successful ?
 IF WS-RESP = DFHRESP(NORMAL)
 PERFORM SET-USER-ID
 ELSE
 MOVE WS-NOT-AUTH TO WS-FAULT-STRING
 PERFORM FAULT-MESSAGE
 END-IF

.

.

.

 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tas(0000139) Tra(CEMT) Fac(G335) Run Ter Pri(255)
 Sta(TO) Use(CIWSGA) Uow(BDFAD26B6FEF8767)
 Tas(0000459) Tra(CPIH) Sus Tas Pri(001)
 Sta(U) Use(CIWSNW) Uow(BDFAD304E2ED1740) Hty(RZCBNOTI)
 Tas(0000460) Tra(ORDR) Sus Tas Pri(001)
 Sta(U) Use(WEBAS3) Uow(BDFAD304E4DEE18E) Hty(EDF)
 Tas(0000462) Tra(CEDF) Fac(G333) Sus Ter Pri(001)
 Sta(SD) Use(CIWSGA) Uow(BDFAD304E52AE48E) Hty(ZCIOWAIT)

SYSID=S3C1 APPLID=A6POS3C1

 Chapter 9. Security scenarios 299

FAULT-MESSAGE SECTION.

* Generate a SOAP Fault

 EXEC CICS
 GET CONTAINER('DFHWS-SOAPLEVEL')
 INTO(WS-SOAP-LEVEL)
 FLENGTH(WS-HEAD-LEN)
 RESP(WS-RESP)
 END-EXEC.

 * MOVE CORRECT VERSION OF FAULTCODE
 IF WS-SOAP-11 MOVE DFHVALUE(CLIENT) to WS-FAULT-CODE
 ELSE
 MOVE DFHVALUE(SENDER) to WS-FAULT-CODE
 END-IF

 EXEC CICS SOAPFAULT CREATE
 FAULTSTRING(WS-FAULT-STRING)
 FAULTSTRLEN(length of WS-FAULT-STRING)
 FAULTCODE(WS-FAULT-CODE)
 END-EXEC.
 FAULT-MESSAGE-END. EXIT.

Figure 9-13 shows the fault string Not authorized to place order, which occurs
when the user’s credentials are invalid.

Figure 9-13 Browser - SOAP fault message for ‘not authorized’ error

300 Implementing CICS Web Services

If the user ID and password supplied in the SOAP Security header validate
correctly, but the user ID has no access to the ORDR transaction, then a RACF
error message is issued, as seen in Example 9-15.

Example 9-15 RACF messages for insufficient access

ICH408I USER(CIWSPC) GROUP(SYS1) NAME(PAOLO)
 CIWS3D.ORDR CL(TCICSTRN)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

Figure 9-14 shows the fault string that is generated by CICS for this error.

Figure 9-14 Browser - Internal server error

9.5 Enabling SSL/TLS

By default, SOAP messages are flowed in clear text. This is likely to be
unacceptable in many cases. In order to address this, some form of encryption is
required. SSL/TLS is a well understood and popular way of encrypting message
flows. When the client connects with SSL/TLS, privacy of the data is obtained by
encrypting the data.

In this section we show how we configured both the CICS and WebSphere
environments to use an SSL/TLS connection (Figure 9-15).

 Chapter 9. Security scenarios 301

Figure 9-15 Enabling SSL/TLS scenario

We document the following steps that we followed to enable SSL/TLS:

� Creating a key ring and certificates on z/OS for CICS

� Enabling an SSL/TLS connection from WebSphere

� Configuring CICS support for SSL/TLS

9.5.1 Creating a key ring and certificates on z/OS for CICS

In order to create the certificates required for using SSL/TLS, we first needed to
prepare RACF. We issued the commands shown in Example 9-16. For more
information, see the chapter titled “Configuring CICS to use SSL” in CICS
Transaction Server for z/OS RACF Security Guide, SC34-6454.

Example 9-16 RACF commands to prepare for running the DFH$RING exec

RDEFINE FACILITY (IRR.DIGTCERT.ADD)
 RDEFINE FACILITY (IRR.DIGTCERT.CONNECT)
 RDEFINE FACILITY (IRR.DIGTCERT.GENCERT)

SETROPTS RACLIST(FACILITY) REFRESH
 SETROPTS GENERIC(FACILITY) REFRESH

PERMIT IRR.DIGTCERT.* CLASS(FACILITY) ID(CIWS3D) ACCESS(READ)
PERMIT IRR.DIGTCERT.CONNECT CLASS(FACILITY) ID(CIWS3D) ACCESS(CONTROL)
 PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ID(CIWS3D) ACCESS(CONTROL)

S e rv ic e re q u e s te r S e rv ic e p ro v id e r

R e s p o n s e R e s p o n s e

A
P
P

R e q u e s t R e q u e s t

W e b S p h e re
A p p lic a tio n

S e rv e r

 C IC S T S V 3 .1

H T T P

B ro w s e r

S O A P /H T T P S

W S S e c u r ity
h e a d e r
c re a te d

O R D R ru n s
w ith u s e r ID

W E B A S 3

 e G + 9 iK s o p 0 Q ija g h fty .\ 2 "fh Y H S g tD u

O
R
D
R

C
P
I

H

A ll o f m e s s a g e
is n o w

e n c ry p te d

C P IH ru n s
w ith u s e r ID

C IW S N W

z /O S V 1 .6W in d o w s 2 0 0 0

302 Implementing CICS Web Services

The sample clist DFH$RING is provided by CICS TS to help you build a RACF
KEYRING for CICS SSL use. We copied the DFH$RING clist from
hlq.SDFHSAMP into our own private library and modified the clist using the
customization values shown in Table 9-4.

Table 9-4 Customizing the DFH$RING clist - Site settings

These values represent the entity for which we are creating the certificates and
key ring. As can be seen, these were chosen to indicate the IBM site where the
Redbook residency was held.

Further parameters were supplied as input to the clist for the specific key ring to
be created (Table 9-5).

Table 9-5 Customizing the DFH$RING clist - Key ring settings

The name of the key ring to be created is Ciws.Ciwss3c1. The userid parameter
was supplied as CIWS3D (the CICS region user ID). The ipname is the address of
the z/OS on which our CICS region CIWSS3C1 runs.

Further modifications were made to the clist because we chose not to generate
certificates for a Web server or for an EJB container. Instead we generated
certificates for a Web service Client, Web service Server, and a default
certificate. These changes are shown in Example 9-17.

Name Value

organization ITSO

department PSSC

certifier CICS-Sample-Certification

city Montpellier

state Herault

country FR

Name Value

firstname Ciws

lastname Ciwss3c1

ipname mvsg3.mop.ibm.com

userid CIWS3D

 Chapter 9. Security scenarios 303

Example 9-17 Customizing the DFH$RING EXEC - certificate labels

"RACDCERT ID("foruser") DELETE(LABEL('"lastname"-Web-service-Client'))"
"RACDCERT ID("foruser") DELETE(LABEL('"lastname"-Web-service-Server'))"
"RACDCERT ID("foruser") DELETE(LABEL('"lastname"-Default-Certificate'))"

We used the batch job shown in Example 9-18 to execute the DFH$RING clist in
order to create the required RACF profiles.

Example 9-18 Batch job to invoke the DFH$RING clist

//REXXJOB JOB 1,CIWS,TIME=1440,NOTIFY=&SYSUID,REGION=4M,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//*
//REXX EXEC PGM=IKJEFT01
//SYSPROC DD DISP=SHR,DSN=CIWS.CICS.JCL
//SYSTSPRT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSTSIN DD *
 %DFH$RING CIWS CIWSS3C1 mvsg3.mop.ibm.com FORUSER(CIWS3D)
/*

To complete this part of the configuration we exported the Certificate Authority
(CA) certificate in Base64 X.509 format using the RACF RACDCERT command:

RACDCERT CERTAUTH EXPORT(LABEL(‘CICS-Sample-Certification’)) +
DSN(CIWSGA.CERTAUTH.X509) FORMAT(CERTB64)

9.5.2 Enabling an SSL/TLS connection from WebSphere

To enable an SSL/TLS connection from WebSphere we did the following:

� FTPed the certificate from z/OS to our client machine

� Imported the certificate into the WebSphere Application Server keystore

� Enabled the service requester to use HTTPS

FTP the certificate from z/OS
We used FTP as shown in Example 9-19 to send the exported certificate in
ASCII format to our client machine.

Example 9-19 Using FTP to send an exported CA certificate to a client workstation

C:\>ftp mvsg3.mop.ibm.com
Connected to mvsg3.mop.ibm.com.
220-FTPD1 IBM FTP CS V1R6 at MVSG3.pssc.mop.ibm.com, 13:23:10 on 2005-11-30.
220 Connection will close if idle for more than 5 minutes.
User (mvsg3.mop.ibm.com:(none)): ciwsga

304 Implementing CICS Web Services

331 Send password please.
Password:
230 CIWSGA is logged on. Working directory is "CIWSGA.".
ftp> ascii
200 Representation type is Ascii NonPrint
ftp> get CERTAUTH.X509
200 Port request OK.
125 Sending data set CIWSGA.CERTAUTH.X509
250 Transfer completed successfully.
ftp: 1022 bytes received in 0.00Seconds 1022000.00Kbytes/sec.
ftp> quit
221 Quit command received. Goodbye.

Importing the certificate
Next, we needed to make the CERTAUTH.X509 certificate available for use by
WebSphere Application Server. To do this, we imported the CERTAUTH.X509
certificate to the WebSphere Application Server keystore
(DummyServerKeyFile.jks) using iKeyMan.

After opening a command prompt window we set the PATH variable and typed
ikeyman to invoke the iKeyMan GUI.

set PATH=C:\Program Files\IBM\Java142\jre\bin\;%PATH%
ikeyman

We used iKeyMan to add the CERTAUTH.X509 file to the WebSphere
Application Server keystore (ServerKeyFile.jks) as shown in Figure 9-16.

Note: The iKeyMan tool is provided by the IBM Java SDK. On our workstation
the tool was located in directory C:\Program Files\IBM\Java142\jre\bin.

 Chapter 9. Security scenarios 305

Figure 9-16 IKeyman - Add CICS CA certificate from an X509 file

After we clicked OK to proceed with this action, we were prompted to enter a
label for this certificate. Figure 9-17 shows the CICS CA certificate added to the
WebSphere keystore.

306 Implementing CICS Web Services

Figure 9-17 IKeyMan - After adding CICS CA certificate to keystore

Next we created a new JSSE repertoire by logging onto the admin console and
clicking Security → SSL → New JSSE repertoire. We entered the Alias name
as CICS-SSLSettings and defaulted the Protocol to SSL_TLS. The Key file and
Trust file names were both specified as c:\Program Files\IBM\WebSphere
\Appserver\profiles\AppSrv01\bin\ServerKeyFile.jks and the password
specified was WebAS. Changed fields are shown in Table 9-6, all other values
were allowed to default.

Table 9-6 Altered values for new JSSE repertoire

Field name Value

Alias CICS-SSLSettings

Key file name C:\Program Files\IBM\WebSphere\AppServer\profiles\
AppSrv01\bin\ServerKeyFile.jks

Key file password WebAS

Trust file name C:\Program Files\IBM\WebSphere\AppServer\profiles\
AppSrv01\bin\ServerKeyFile.jks

Trust file password WebAS

 Chapter 9. Security scenarios 307

We clicked OK → Save → Save to save the configuration. Next we stopped and
restarted the application server, in order to have the new repertoire recognized.

Enabling the service requester to use HTTPS
In Section 9.4.1, “Configuring the service requester” on page 286 we showed
that to configure our Web service client to use WS-Security, we used Rational
Application Developer V6.0. We next used a similar process to enable the
service requester to use HTTPS:

1. We imported the client application archive CatalogSec_WS-Security.ear into
RAD. We then expanded the Dynamic Web Project (CatalogSecWeb) in the
Project Explorer and opened (double-clicked) the deployment descriptor.

2. After the Deployment Descriptor Editor opened, we selected the WS Binding
page. The WS Binding page is for editing the client’s binding file, so you can
specify how to apply the required security.

3. We clicked the service reference service/DFH0XCMNService and then the
Port Qualified Name Binding DFH0XCMNPort.

4. In the Port Qualified Name Binding Details section we specified our SSL
repertoire name Alp3-ITSO1Node01/CICS-SSLSettings for the name of the
HTTP SSL Configuration (Figure 9-18).

Figure 9-18 RAD - Enabling HTTPS for service requester

308 Implementing CICS Web Services

5. We repeated steps 3 and 4 for our other CICS Web services
service/DFH0XCMNService2 and service/DFH0XCMNService3.

6. We then saved the configuration and exported a new EAR file called
CatalogSec_WS-Security_HTTPS.ear.

After enabling the service requester to use HTTPS, we needed to re-deploy the
application using the WebSphere admin console. We followed the same process
that is described in “Installing the service requester” on page 87 to deploy the
CatalogSec_WS-Security_HTTPS.ear.

See “Testing SSL/TLS” on page 310 for information about how we tested
SSL/TLS connectivity from WebSphere Application Server to CICS.

9.5.3 Configuring CICS support for SSL/TLS

To activate SSL/TLS support in our CICS TS V3.1 region, we specified the
following system initialization parameter:

� KEYRING=Ciws.Ciwss3c1

This specifies the name of a key ring we created in the RACF database that
contains keys and certificates used by this CICS region.

We allowed the ENCRYPTION, MAXSSLTCBS, SSLCACHE and SSLDELAY
system initialization parameters to default. We then restarted the CICS region.

Changing the TCPIPSERVICE
To enable SSL connections in CICS we created a new TCPIPSERVICE with the
PORTNUMBER, CERTIFICATE and SSL attributes set as shown in Figure 9-19.

Note: The fully qualified name, including the node name, must be specified for
HTTP SSL configuration: Name in order for this to be recognized by
WebSphere Application Server when the application is deployed.

Tip: You should restart your CICS region after updating the system
initialization parameter and before creating the TCPIPSERVICE for SSL. The
CIPHERS attribute of the TCPIPSERVICE resource is only automatically
updated by CICS if CICS has been started with SSL support active.

 Chapter 9. Security scenarios 309

Figure 9-19 TCPIPSERVICE - Updated for SSL support

We noticed that CICS automatically initialized the CIPHERS attribute with a
default list of acceptable codes (Example 9-20).

Example 9-20 TCPIPSERVICE CIPHERS attribute

CIphers ==> 050435363738392F303132330A1613100D0915120F0C03060201

9.5.4 Testing SSL/TLS

To test the SSL/TLS scenario, we needed to configure the catalog manager
J2EE application so that it accesses the catalog services using HTTPS. We
started a Web browser session and entered the URL:

http://cam21-pc3:9080/CatalogWeb/Welcome.jsp

We clicked CONFIGURE and specified the endpoint addresses of the Catalog
services (Figure 9-20). We clicked SUBMIT to complete the update.

 OVERTYPE TO MODIFY CICS RELEASE = 0640
 CEDA ALter TCpipservice(S3C1SSL)
 TCpipservice : S3C1SSL
 GROup : S3C1
 DEscription ==> TCPIPSERVICE
 Urm ==> DFHWBADX
 POrtnumber ==> 14303 1-65535
 STatus ==> Open Open ! Closed
 PROtocol ==> Http Iiop ! Http ! Eci ! User
 TRansaction ==> CWXN
 Backlog ==> 00005 0-32767
 TSqprefix ==>
 Ipaddress ==>
 SOcketclose ==> No No ! 0-240000 (HHMMSS)
 Maxdatalen ==> 000032 3-524288
 SECURITY
 SSl ==> Yes Yes ! No ! Clientauth
 CErtificate ==> Ciwss3c1-Web-service-Server
+ (Mixed Case)

SYSID=S3C1 APPLID=A6POS3C1

310 Implementing CICS Web Services

Figure 9-20 Web browser - Updating the Catalog application to use https

We then tested each of the three services (inquireCatalog, inquireSingle, and
placeOrder) to ensure that all worked correctly. A display of TCP/IP connections
on z/OS showed a connection to CICS region CIWSS3C1 on port 14303
(Example 9-21).

Example 9-21 Display of IP connections

Display Filter View Print Options Help

SDSF ULOG CONSOLE CIWSGA LINE 42 COLUMNS 42- 121
COMMAND INPUT ===> SCROLL ===> CSR
 -D TCPIP,,NETSTAT,CONN
 EZZ2500I NETSTAT CS V1R6 TCPIP 328
 USER ID CONN LOCAL SOCKET FOREIGN SOCKET STATE
 BPXOINIT 00000011 0.0.0.0..10007 0.0.0.0..0 LISTEN
 CIWSR3C1 00008C23 0.0.0.0..13301 0.0.0.0..0 LISTEN
 CIWSR3C1 00008C87 9.100.193.167..13301 9.100.199.156..4338 ESTBLSH

 Chapter 9. Security scenarios 311

 CIWSR3C2 00008C25 0.0.0.0..13302 0.0.0.0..0 LISTEN
 CIWSS3C1 00008B96 9.100.193.167..14303 9.100.192.237..1086 ESTBLSH
 CIWSS3C1 00008B71 0.0.0.0..14303 0.0.0.0..0 LISTEN

A CEMT INQ TCPIPSERVICE command shows that this port has the SSL attribute
and that one connection has been established (Figure 9-21).

Figure 9-21 TCPIPSERVICE - SSL support installed and active

9.6 Enabling SOAP message security with WMQ

In this scenario, we show how SOAP Security headers can be used with WMQ.
We customize the catalog application so that when the ORDR transaction
executes, it calls a Web service to dispatch the order. This Web service is
located in a separate CICS region and the transport mechanism used is WMQ.
To make the dispatchOrder service (CICS transaction DISP) run with the same
user ID as the calling transaction (ORDR), we transfer the caller’s identity in a
SOAP Security header.

This scenario was chosen for two reasons:

� To demonstrate the use of a SOAP Security header in a CICS service request

� To demonstrate the use of SOAP Security headers with WMQ

Figure 9-22 shows how we configured the environment.

 INQUIRE TCPIPSERVICE
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Tcpips(S3C1SSL) Ope Por(14303) Http Ssl Tra(CWXN)
 Con(00001) Bac(00005) Max(000032) Urm(DFHWBADX) Sup

SYSID=S3C1 APPLID=A6POS3C1

312 Implementing CICS Web Services

Figure 9-22 SOAP message security with WebSphere MQ scenario

We document the following steps necessary to set up this security scenario:

� Configuring CICS to use WMQ

� Configuring the service requester

� Configuring the service provider

� Configuring security for WMQ

9.6.1 Configuring CICS to use WMQ

For this, we rely heavily upon the work already done and described in Chapter 4,
“Web services using WebSphere MQ” on page 111. We note only where
differences occur, otherwise we used the same values.

Service requester Service provider/requester

Response Response

A
P
P

Request Request

WebSphere
Application

Server

 CICS Region 1

HTTP
Browser

SOAP/HTTPS

C
P
I
H

ORDR runs
with user ID

WEBAS3

z/OS V1.6Windows
2000
 cam21-pc3

C
P
I
L

D
I
S
P

 CICS Region 2

Region user ID CIWS3E

Region user ID CIWS3D

z/OS V1.6

DISP runs
with user ID

WEBAS3
WMQ

Request

Request

Response

Response

WS-Security
included in

SOAP
message

O
R
D
R

Note: This scenario is an example of identity assertion, in which an
intermediary server (CICS region 1) authenticates the client and transfers the
request message and identity to the target server (CICS region 2). See
“Identity assertion” on page 273 for more information about the concept of
identity assertion.

 Chapter 9. Security scenarios 313

We added WebSphere MQ support to our two CICS regions, CIWSS3C1 and
CIWSS3C2. For the dispatchOrder service, the service provider is CIWSS3C2
and the service requester is CIWSS3C1. Table 9-7 shows the different settings,
parameters, and values used for these two CICS regions.

Table 9-7 Different settings for the two CICS regions

The WebSphere MQ queuenames used were VSG3.S3C2.PIPE3.REQUEST and
VSG3.S3C2.PIPE3.RESPONSE while the process name was VSG3.S3C2.PROCESS.

The security of the CICS transactions supplied by WebSphere MQ resources
was protected by issuing the RACF commands shown in Example 9-22.

Example 9-22 RACF commands to protect WebSphere MQ CICS transactions

RDEFINE GCICSTRN WS3MQUSR UACC(NONE) +
 ADDMEM(CIWS3E.CKBM, CIWS3E.CKCN, CIWS3E.CKDL, +

CIWS3E.CKDP, CIWS3E.CKQC, CIWS3E.CKRS, +
CIWS3E.CKRT, CIWS3E.CKSD, CIWS3E.CKSQ, +
CIWS3E.CKMC, CIWS3E.CKMH, CIWS3E.CKRC, +
CIWS3E.CKRQ, CIWS3E.CKSG, CIWS3E.CKSV) +

OWNER(IBMUSER)

PERMIT WS3MQUSR CLASS(GCICSTRN) ID(SYS1)
RALTER GCICSTRN CIWS3E ADDMEM(CIWS3E.CKTI, CIWS3E.CKAM) OWNER(IBMUSER)
SETROPTS RACLIST(TCICSTRN) REFRESH

In Example 9-22 we:

CICS Region 1 CICS Region 2

WMQ queue manager MQS3 MQS3

INITQ VSG3.S3C1.INITQ VSG3.S3C2.INITQ

Pipeline PIPE2 PIPE3

Configuration file /CIWS/S3C1/config/ITSO_
7206_secrequester.xml

/CIWS/S3C2/config/ITSO_72
06_secprovider_dispatch.xml

HFS structure /CIWS/S3C1/.... /CIWS/S3C2/....

Header processing
program

CIWSSECR CIWSSECS

Region user ID CIWS3D CIWS3E

Jobname CIWSS3C1 CIWSS3C2

Applid A6POS3C1 A6POS3C2

314 Implementing CICS Web Services

� Define the transaction group WS3MQUSR and add transactions CKBM,
CKCN, CKDL, CKDP, CKQC, CKRS, CKRT, CKSD, CKSQ, CKMC, CKMH,
CKRC, CKRQ, CKSG and CKSV to the group.

� Permit access to the transaction group WS3MQUSR to the RACF user group
SYS1 (SYS1 is the group of administration user IDs on our system).

� Alter the transaction group CIWS3E (used for CICS region CIWSS3C2) by
adding transactions CKTI and CKAM to the group.

� Refresh the RACF CICS transaction class TCICSTRN.

These commands were repeated with the prefix of CIWS3D for the CIWSS3C1
CICS region.

9.6.2 Configuring the service requester

In this scenario the service requester is the ORDR transaction itself. This
demonstrates that a transaction can act as both a service provider and a service
requester.

Configuring the sample application
We configured the catalog application in the same way as in “Configuring the
Catalog application” on page 122, except that we specified the Outbound
WebService URI as:

jms:/queue?destination=VSG3.S3C2.PIPE3.REQUEST@MQS3&targetService=/e
xampleApp/dispatchOrder&replyDestination=VSG3.S3C2.PIPE3.RESPONSE

This means that the SOAP request for the dispathOrder service is sent using
WMQ, via the WMQ queue VSG3.S3C2.PIPE3.REQUEST, to an application
servicing that queue. The response is returned to the ORDR transaction via the
queue VSG3.S3C2.PIPE3.RESPONSE.

9.6.3 Header processing program

In order to add a Security header to the orderDispatch SOAP message, we wrote
a new header processing program CIWSSECR that inserts a <wsse:Security>
header into the message. A synopsis of this program is shown in Example 9-23.

Example 9-23 Header processing program to insert the SOAP security header

Check if invoked for SEND-REQUEST, else exit
Check for correct URI, else exit
Obtain user ID from DFHWS-USERID container and insert into Security header
Put Security header to DFHHEADER container

 Chapter 9. Security scenarios 315

The full CIWSSECR program is shown in A.5, “Sample header processing
program - CIWSSECR” on page 555.

Pipeline configuration file
A new requester pipeline configuration file was created by copying the
CICS-supplied sample from basicsoap11requester.xml to
/CIWS/S3C2/config/ITSO_7206_secrequester.xml. The header processing
program was then added to the configuration file as shown in Example 9-24. The
<program name> element contains the name of the header processing program
CIWSSECR, which is to be invoked to create the security token.

Example 9-24 Configuration file for pipeline PIPE2

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline”
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation="http://www.ibm.com/software/htp/cics/
pipeline requester.xsd ">

 <service>
 <service_handler_list>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>CIWSSECR</program_name>

<namespace>http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-ws
security-secext-1.0.xsd</namespace>

 <localname>Security</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </service_handler_list>
 </service>
</requester_pipeline>

In CICS, the new PIPELINE resource definition was created by copying PIPE1
as PIPE2 and modifying the CONFIGFILE attribute to the name of the new
pipeline configuration file.

9.6.4 Configuring the service provider

A new header processing program CIWSSECS and pipeline configuration file
were required.

316 Implementing CICS Web Services

Header processing program
Program CIWSSECS is similar to CIWSSECH except that no password
verification is done because no password has been sent. A short description of
this program is shown in Example 9-25.

Example 9-25 Header processing program logic to change user ID

Check if invoked for RECEIVE-REQUEST, else exit
Check for correct URI, else exit
Obtain Security header from DFHHEADER container
Parse the header and obtain user ID
Put user ID into DFHWS-USERID container

Pipeline configuration file
The new configuration file
/CIWS/S3C2/config/ITSO_7206_secprovider_dispatch.xml, was created by
copying /CIWS/S3C1/config/ITSO_7206_secprovider.xml (see Example 9-6 on
page 293). The CIWSSECS program was specified in place of CIWSSECH.

Example 9-26 Configuration file for pipeline PIPE3

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

 <transport>
 <default_transport_handler_list>
 <handler>
 <program>CIWSMSGH</program>
 <handler_parameter_list/>
 </handler>

</default_transport_handler_list>
 </transport>
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>CIWSSECS</program_name>

<namespace>http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-ws
security-secext-1.0.xsd</namespace>

 <localname>Security</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </terminal_handler>

 Chapter 9. Security scenarios 317

 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

9.6.5 Configuring WebSphere MQ for security

Since in this scenario we are passing a user ID from CICS region 1 to CICS
region 2 without re-authenticating, it is necessary to establish a trust relationship
between the CICS regions. We can do this by restricting access to the specific
WMQ queues used to transport the dispatchOrder request.

We secured the WMQ connection between CICS region 1 and CICS region 2 as
follows:

� Configure general security for WMQ.

The RACF commands that we issued in order to configure general security
for WMQ are listed in Example 9-27.

Example 9-27 RACF commands to configure WebSphere MQ security

SETROPTS CLASSACT(MQADMIN,MQQUEUE,MQPROC,MQNLIST,MQCONN,MQCMDS)
SETROPTS GENERIC(MQADMIN,MQQUEUE,MQPROC,MQNLIST,MQCONN,MQCMDS)
RDEFINE MQADMIN MQS3.NO.CMD.CHECKS
RDEFINE MQADMIN MQS3.NO.CMD.RESC.CHECKS
RDEFINE MQADMIN MQS3.NO.PROCESS.CHECKS
RDEFINE MQADMIN MQS3.NO.NLIST.CHECKS
RDEFINE MQADMIN MQS3.NO.CONTEXT.CHECKS
RDEFINE MQADMIN MQS3.NO.ALTERNATE.USER.CHECKS
RDEFINE MQADMIN MQS3.YES.SUBSYS.SECURITY
RDEFINE MQCONN MQS3.CICS UACC(NONE)
PERMIT MQS3.CICS CLASS(MQCONN) ID(CIWS3D,CIWS3E) ACCESS(READ)
SETROPTS RACLIST(MQQUEUE) REFRESH
SETROPTS GENERIC(MQQUEUE) REFRESH
SETROPTS RACLIST(MQCONN) REFRESH
SETROPTS GENERIC(MQCONN) REFRESH
SETROPTS RACLIST(MQADMIN) REFRESH
SETROPTS GENERIC(MQADMIN) REFRESH

The SETROPTS CLASSACT and SETROPTS GENERIC commands activate
the specific and generic WMQ security classes. All classes were activated.

� Turn security on for the queue manager.

We set the switch qmgr-name.YES.SUBSYS.SECURITY to ON for our queue
manager MQS3 (see “WebSphere MQ transport” on page 251).

318 Implementing CICS Web Services

� Grant access to the WMQ queues.

We granted both CICS region user IDs connect access to the queue manager
and then refreshed the RACF profiles. Once these definitions were active, we
then secured access to the queues, using the commands shown in
Example 9-28.

Example 9-28 RACF commands to secure WebSphere MQ queues

RDEFINE GMQQUEUE ORDR.DISPATCH UACC(NONE) +
 ADDMEM(MQS3.VSG3.S3C2.PIPE3.REQUEST, +
 MQS3.VSG3.S3C2.PIPE3.RESPONSE)
PERMIT ORDR.DISPATCH CLASS(GMQQUEUE) ID(CIWS3D,CIWS3E) ACCESS(UPDATE)
RDEFINE GMQQUEUE S3C1.INITQ UACC(NONE) +
 ADDMEM(MQS3.VSG3.S3C1.INITQ)
RDEFINE GMQQUEUE S3C2.INITQ UACC(NONE) +
 ADDMEM(MQS3.VSG3.S3C2.INITQ)
PERMIT S3C1.INITQ CLASS(GMQQUEUE) ID(CIWS3D) ACCESS(UPDATE)
PERMIT S3C2.INITQ CLASS(GMQQUEUE) ID(CIWS3E) ACCESS(UPDATE)
PERMIT ORDR.DISPATCH CLASS(GMQQUEUE) ID(CIWS3D) ACCESS(UPDATE)
PERMIT ORDR.DISPATCH CLASS(GMQQUEUE) ID(CIWS3E) ACCESS(UPDATE)
PERMIT ORDR.DISPATCH CLASS(GMQQUEUE) ID(WEBAS3) ACCESS(UPDATE)

In Example 9-28 we add the response and request queues to the generic group
ORDR.DISPATCH. By default, when CICS makes an API-resource security
check on a CICS connection, it checks to see if two user IDs have access to the
resource. The first user ID checked is the CICS region user ID. The second user
ID checked is the user ID associated with the CICS transaction. The CICS region
user IDs (CIWS3D and CIWS3E) are permitted UPDATE access to the group.
The user ID WEBAS3 is also granted UPDATE access.

For full details on securing access to WMQ queues, see WebSphere MQ for
z/OS System Setup Guide V6.0, SC34-6583.

9.6.6 Testing security with WMQ

To test the WMQ security scenario, we started a Web browser session and
entered the URL:

http://cam21-pc3:9080/CatalogWeb/Welcome.jsp

Figure 9-23 shows the result of the initial ORDER ITEM request.

 Chapter 9. Security scenarios 319

Figure 9-23 Browser - INVREQ calling dispatch server

We noticed the following RACF message in the CICS log of region CIWSS3C2
(Example 9-29).

Example 9-29 RACF message when WEBAS3 has no access to DISP

ICH408I USER(WEBAS3) GROUP(CIWS) NAME(WEB USER1
 CIWS3E.DISP CL(TCICSTRN)
 INSUFFICIENT ACCESS AUTHORITY
 ACCESS INTENT(READ) ACCESS ALLOWED(NONE)

This error shows that user ID WEBAS does not have access to the DISP
transaction. We permitted access to the DISP transaction to the user ID
WEBAS3 using the RACF commands shown in Example 9-30.

Example 9-30 RACF commands to define DISP and grant access to it

RDEFINE GCICSTRN WS3DISP ADDMEM(CIWS3E.DISP) UACC(NONE) OWNER(IBMUSER)
PERMIT WS3DISP CLASS(GCICSTRN) ID(WEBAS3) ACCESS(READ)
SETROPTS RACLIST(TCICSTRN) REFRESH
RDEFINE SURROGAT WEBAS3.DFHSTART UACC(NONE) OWNER(WEBAS3)
PERMIT WEBAS3.DFHSTART CLASS(SURROGAT) ID(CIWS3E) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

We then repeated the ORDER ITEM request successfully. Figure 9-24 on
page 321 shows the DISP transaction executing with the user ID of WEBAS3 on
CIWSS3C2, with CPIQ and CPIL executing with the user ID of CIWS3E.

320 Implementing CICS Web Services

Figure 9-24 DISP transaction running in CIWSS3C2

 I TAS
 STATUS: RESULTS - OVERTYPE TO MODIFY
Tas(0001242) Tra(CPIL) Sus Tas Pri(001)

 Sta(SD) Use(CIWS3E) Uow(BE07E790763F2B65) Hty(MQSeries)
 Tas(0001243) Tra(CPIQ) Sus Tas Pri(001)
 Sta(S) Use(CIWS3E) Uow(BE07E79075898505) Hty(RZCBNOTI)
 Tas(0001244) Tra(DISP) Sus Tas Pri(001)
 Sta(U) Use(WEBAS3) Uow(BE07E79076A61846) Hty(EDF)

SYSID=S3C2 APPLID=A6POS3C2

 Chapter 9. Security scenarios 321

322 Implementing CICS Web Services

Chapter 10. Security scenarios using
CICS WS-Security support

In this chapter we outline several security scenarios that demonstrate how you
can secure CICS Web services using the CICS-supplied message handler,
DFHWSSE1.

We provide step-by-step security configuration for a number of scenarios,
including:

� Basic authentication

� Signing a SOAP message

� Encrypting a SOAP message

We show how we configured both CICS and WebSphere Application Server for
these security scenarios.

10

Note: The security scenarios documented in this chapter use the
CICS-supplied WS-Security support. See Chapter 9, “Security scenarios” on
page 275 for WS-Security scenarios using custom message handlers.

© Copyright IBM Corp. 2007. All rights reserved. 323

10.1 Preparation

Security techniques for securing Web services were discussed in Chapter 8,
“Securing Web services” on page 235. In this chapter, we describe the following
security scenarios:

� Basic authentication

In this scenario we show how the CICS-supplied message handler
DFHWSSE1 can extract a WS-Security UsernameToken from a SOAP
header, validate the username and password, and set the user ID of the CICS
task to the username passed in the header. This scenario is described in
“Basic authentication” on page 330.

� Signing a SOAP message

In this scenario we show how CICS and WebSphere Application Server can
be configured to exchange signed SOAP messages. The SOAP message
sent by WebSphere Application Server contains an X.509 certificate that
allows the CICS transaction to run under a user ID associated with the X.509
certificate. See “Signing a SOAP message” on page 358 for details of this
scenario.

� Encrypting a SOAP message

In this scenario we show how CICS and WebSphere Application Server can
be configured to exchange encrypted SOAP messages. The SOAP message
contains an encrypted body so that the content of the message cannot be
understood by an unauthorized party. This scenario is described in 10.6,
“Encrypting a SOAP message” on page 385.

10.1.1 Software checklist

The software we used is listed in Table 10-1.

Table 10-1 Software used in the WS-Security security scenarios

Windows z/OS

Internet Explorer V6.0 z/OS V1.7

Windows XP V5.1 SP2 CICS Transaction Server V3.1
(with PTFs UK15271 and
UK15261 installed)

IBM WebSphere Application Server - ND V6.1.0.0 RACF V1.7

324 Implementing CICS Web Services

For this chapter we use a slightly different version of the Catalog application than
the version used in Chapter 9. In the wsdl created by CICS the names of the Web
service binding ports are the same for each of the three Web services. We
noticed that this caused some problems in AST when editing the WebSphere
WS-Security configuration files. We changed the name of the binding ports in the
corresponding wsdl files from the default DFH0XCMNPort to DFH0XCMNPortPO
for the placeOrder service, DFH0XCMNPortIS for inquireSingle and
DFH0XCMNPortIC for inquireCatalog. We then recreated the Web services
using our development tool (Rational Application Developer),

10.1.2 Definition checklist

The definitions we used are listed in Table 10-2.

Table 10-2 Settings used in the WS-Security security scenarios

Our J2EE applications
� CatalogSec2.ear

Catalog manager service requester application
with no security enabled

� CatalogSec2_WS-Security_BasicAuth.ear
Catalog manager service requester application
with WS-security basic authentication enabled

� CatalogSec2_WS-Security_Signature.ear

Catalog manager service requester application
with WS-security signature enabled

� CatalogSec2_WS-Security_Encryption.ear
Catalog manager service requester application
with WS-security encryption enabled

Our user-written CICS programs
� CIWSMSGH (message

handler program)
This program changes the
transaction ID for the Web
service requests received in
the pipeline.

� SNIFFER (message handler
program)
This program browses
through the containers
available in the pipeline.

Windows z/OS

Value CICS TS WebSphere
Application
Server

IP name wtsc.itso.ibm.com mikee01

IP address 9.12.4.75 9.12.4.217

TCP/IP port 14301 9081

Jobname CIWSS3C1

APPLID A6POS3C1

TCPIPSERVICE S3C1

 Chapter 10. Security scenarios using CICS WS-Security support 325

The user IDs we used in our configuration are listed in Table 10-3.

Table 10-3 User IDs

Because the Catalog application inquireSingle and inquireCatalog services are
read-only services, whereas the placeOrder service updates the database, we
show here how to secure the placeOrder service. We run the inquireSingle and
inquireCatalog services under a predefined user D (CIWSNW). The placeOrder
service is run under the caller’s user ID (WEBAS1).

Provider PIPELINEs PIPE1 used for inquireSingle and
inquireCatalog services
PIPEWSSE used for placeOrder service

Configuration files ITSO_7206_basicsoap12provider.xml
ITSO_7206_wssec_basicauth_provider.xml
ITSO_7206_wssec_signature_provider.xml
ITSO_7206_wssec_encryption_provider.xml

URIMAP SECPORDR
SECICATA
SECISING

Value CICS TS

CICS region user ID CIWS3D

CICS default user ID CICSUSER

User IDs for which we wish to permit access CIWSNW
WEBAS1

Tip: For the examples described in this book, we permit access for single user
IDs. In a production environment, you will probably create a group of users
requiring common access. Once a group is built, you can permit access for the
group. This allows users’ access to be controlled by the group to which they
belong, rather than by individual permissions. This simplifies the security
definitions required.

Value CICS TS WebSphere
Application
Server

326 Implementing CICS Web Services

10.2 Basic security configuration

First we discuss our basic security configuration, taking a CICS region with no
security and configuring it to enable transaction security (we do not implement
other types of CICS security such as resource security and command security).

In this section, we document the following steps:

� Creating a RACF key ring

� System initialization table parameters necessary to set up basic CICS
security

� Testing the basic security configuration

� Configuring the pipeline

� Setting a user ID on a URIMAP definition

10.2.1 Creating a RACF key ring

In order to use the CICS WS-Security support for signing and encryption, it is
necessary to create a RACF key ring, public-private key pairs, and X.509
certificates. In 10.4, “Certificate and key pair generation” on page 347 we show
how to create certificates and key pairs for the signing and encryption scenarios.
In the basic CICS security setup, however, we created a key ring for use by CICS
region CIWSS3C1.

The sample clist DFH$RING is provided by CICS TS to help you build a RACF
key ring and sample X.509 certificates for SSL usage. We used the DFH$RING
clist to create the key ring Ciws.Ciwss3c1. See 9.5.1, “Creating a key ring and
certificates on z/OS for CICS” on page 302 for information about using the
DFH$RING sample clist.

Note: The security scenarios in this chapter are based on a different MVS
system that those documented in Chapter 9, “Security scenarios” on
page 275. We therefore repeat some of the security setup steps for CICS
region CIWSS3C1 here.

Note: In our tests we found that the CICS region must be connected to a
RACF key ring even if the only CICS WS-Security support being used is basic
authentication.

 Chapter 10. Security scenarios using CICS WS-Security support 327

10.2.2 Specifying the security SIT parameters

We specified the following security SIT parameters for our CICS region:

� KEYRING=Ciws.Ciwss3c1

This specifies the name of a key ring we created in the RACF database that
contains keys and certificates used by this CICS region.

� SEC=YES

SEC=YES was specified to indicate that we wanted RACF services to control
access to CICS resources.

� SECPRFX=YES

We used security prefixing (SECPRFX=YES) in our CICS region, which
prevents our RACF security profiles from affecting other CICS regions. This is
useful in a production environment since it means all security profiles are
unique to an individual region; however, it can mean more work for the
security administrator because more profiles must be defined.

� XTRAN=YES

XTRAN=YES was specified so CICS would control who could start
transactions.

� XUSER=YES

XUSER=YES specifies that CICS is to perform surrogate user checking.

For detailed information about CICS security, see CICS Transaction Server for
z/OS RACF Security Guide, SC34-6454.

10.2.3 Testing the basic security configuration

In our testing, we followed the same process that is described in “Installing the
service requester” on page 87 to deploy the CatalogSec2.ear.

When attempting to place an order with the catalog application, the Web browser
received an error message and the cause of the error was reported by CICS as a
security violation (Example 10-1).

Example 10-1 CICSUSER security violation messages running CPIH

DFHXS1111 08/09/2006 18:05:38 A6POS3C1 CPIH Security violation by user CICSUSER for resource
CIWS3D.CPIH in class TCICSTRN. SAF codes are (X'00000008',X'00000000'). ESM codes
are (X'00000008',X'00000000').

DFHWB0361 08/09/2006 18:05:38 A6POS3C1 An attempt to attach a CICS Web alias transaction for
userid CICSUSER has failed because the user is not authorized to execute transaction
CPIH. Host IP address: 9.12.4.75. Client IP address: 9.12.4.217.
TCPIPSERVICE: S3C1.

328 Implementing CICS Web Services

DFHAC2003 08/09/2006 18:05:38 A6POS3C1 Security violation has been detected term id = ????,
trans id = CPIH, userid = CICSUSER.

The CICS default user ID does not have access to the CPIH transaction. This
shows that the CICS default user ID is not authorized to access the placeOrder
service. In the following scenarios, we enable placeOrder service access to a set
of authorized user IDs.

10.2.4 Configuring the pipeline

Example 10-2 shows the initial pipeline configuration file used for our CICS
WS-Security test setup.

Example 10-2 Pipeline configuration file ITSO_7206_basicsoap12provider.xml

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

 <transport>
 <default_transport_handler_list>
 <handler>
 <program>CIWSMSGH</program>
 <handler_parameter_list/>
 </handler>

</default_transport_handler_list>
 </transport>
 <service>

<service_handler_list>
<handler>

 <program>SNIFFER</program>
 <handler_parameter_list/>
 </handler>

</service_handler_list>
</terminal_handler>
<cics_soap_1.2_handler/>

 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

� The message handler program CIWSMSGH is used to change the
transaction ID to INQS, INQC, or ORDR based on the service request. See
“Customizing the pipeline configuration file” on page 80 for more information
about the CIWSMSGH program.

 Chapter 10. Security scenarios using CICS WS-Security support 329

� The message handler program SNIFFER is a simple program that browses
through the containers available in the pipeline. See “Using SNIFFER” on
page 106 for more information about the SNIFFER program.

10.2.5 Setting a user ID on a URIMAP definition

We initially want to run the CPIH, INQS, INQC, and ORDR transactions under a
predefined user ID, other than the default CICS user ID. In the security scenarios
that follow, we then show how to run ORDR transactions for specific placeOrder
service requests under user IDs which flow in the SOAP messages.

To set the predefined user ID for the CPIH and ORDR transactions, we created a
URIMAP definition for the placeOrder service such that the transactions run with
the user ID CICSNW. See Section 9.3, “Setting the user ID on a URIMAP
definition” on page 280 for more information about defining URIMAPs. We then
permitted RACF access to the CPIH and ORDR transactions for the user ID
CIWSNW.

Figure 10-1 shows the CPIH and ORDR transactions running under user ID
CIWSNW.

.

Figure 10-1 ORDR executing with preset user ID

We also created URIMAP resources for the inquireSingle and inquireCatalog
services such that the INQS and INQC transactions also run with user ID
CIWSNW, and we permitted RACF access to the INQS and INQC transactions
for the user ID CIWSNW.

10.3 Basic authentication

WebSphere Application Server supports the generation of security tokens that
are passed in the WS-Security SOAP header. A UsernameToken is a token for

INQUIRE TASK
STATUS: RESULTS - OVERTYPE TO MODIFY
 Tas(0000081) Tra(CPIH) Sus Tas Pri(001)
 Sta(U) Use(CIWSNW) Uow(BF3BFA8462A2600C) Hty(RZCBNOTI)
 Tas(0000082) Tra(ORDR) Sus Tas Pri(001)
 Sta(U) Use(CIWSNW) Uow(BF3BFA8474FD05C9) Hty(EDF)
 Tas(0000084) Tra(CEDF) Fac(E022) Sus Ter Pri(001)
 Sta(SD) Use(NIGELW) Uow(BF3BFA847A218343) Hty(ZCIOWAIT)
 Tas(0000085) Tra(CEMT) Fac(E021) Run Ter Pri(255)
 Sta(TO) Use(NIGELW) Uow(BF3BFA90A97D2601)

330 Implementing CICS Web Services

basic authentication; it has a user name and password. In 9.4, “Enabling SOAP
message security with HTTP” on page 285 we show how we wrote the message
handler program CIWSSECS, which we then used to process a UsernameToken
passed in a Web service call from WebSphere Application Server.

In this section we show how a UsernameToken can also be processed by the
CICS-supplied message handler, DFHWSSE1. DFHWSSE1 extracts the
UsernameToken from the SOAP header, validates the username and password,
and sets the user ID of the CICS task to the username passed in the header.

This scenario is shown in Figure 10-2.

Figure 10-2 Enabling CICS WS-Security basic authentication

Note: CICS supports UserNameToken in service provider mode only.

Service requester
 Service provider

Response Response

A
P
P

Request Request

WebSphere
Application

Server

 CICS TS V3.1

HTTP

Browser

SOAP/HTTP

O
R
D
R

C
P
I
H

Windows XP
 mikee01

z/OS V1.7

P
I
P
E
W
S
S
E

<soapenv:Body>
 <EncryptedData xmlns="..." Id="wssecurity_encryption_id_xxxx"
 Type="http://www.w3.org/2001/04/xmlenc#Content">
 <EncryptionMethod Algorithm="..."></EncryptionMethod>
 <CipherData>

 <CipherValue>6LPA6MFTI5dc2xtnjiiJ...</CipherValue>
 </CipherData>

 </EncryptedData>
</soapenv:Body>

Encrypt message with random secret key
Encrypt secret key with public key of CICS

certificate

Decrypt secret key
with private key of
WebSphere
certificate
Decrypt message
response with
secret key

Decrypt secret key with private
key of CICS certificate
Decrypt message with secret key

Encrypt message
response with random
secret key
Encrypt secret key
with public key of
WebSphere certificate

1

4

2

3

 Chapter 10. Security scenarios using CICS WS-Security support 331

We document the following steps that we performed to enable support for basic
authentication:

� Configuring the service requester for basic authentication

� Configuring CICS for basic authentication

� Testing the basic authentication scenario

10.3.1 Configuring the service requester for basic authentication

The service requester setup tasks that we cover here are as follows:

� Defining the WebSphere WS-Security constraint for the Web service client

� Re-deploying the Web service client application

WebSphere WS-Security configuration files
The WebSphere WS-Security constraints are defined in the IBM extension of the
J2EE Web services deployment descriptor. There are four configuration files:

� Client deployment descriptor extension file - includes request generator and
response consumer constraints:

ibm-webservicesclient-ext.xmi

� Client binding configuration file - includes how to apply request generator and
response consumer constraints:

ibm-webservicesclient-bnd.xmi

� Server deployment descriptor extension file - includes request consumer and
response generator constraints:

ibm-webservices-ext.xmi

� Server binding configuration file - includes how to apply request consumer
and response generator constraints:

ibm-webservices-bnd.xmi

Recommendation: Internal tests have shown that the performance of a
user-written message handler program such as CIWSSECS for processing a
UsernameToken is significantly better than DFHWSSE1. If throughput is
expected to be high and performance is a priority, we recommend that you
use a user-written message handler program for basic authentication. If,
however, you do not want to write custom handlers, or if performance is not a
priority, then enabling basic authentication using the CICS-supplied
DFHWSSE1 is a simpler solution.

332 Implementing CICS Web Services

The deployment descriptor extension files specify what security constraints are
required, for example, what type of security token and whether to sign the
message. The binding files specify how to apply the required security constraints
defined in the deployment descriptor extension, for example, which security
token is inserted and which keys are used for signing.

These deployment descriptor extension and binding files define the
application-level security constraints and they belong to each application. See
“WebSphere and SOAP message security” on page 266 for more information
about configuring WebSphere WS-Security.

For our scenario, we needed to configure the client deployment descriptor and
the client binding only, since our service provider is running in CICS and not in
WebSphere Application Server.

Importing the base application
To configure our Web Service client to use WS-Security, we used the IBM
WebSphere Application Server Toolkit V6.1 (AST).

We performed the following steps:

1. We opened the AST in a new workspace. In Windows we clicked:

Start → Programs → IBM WebSphere → Application Server Toolkit
V6.1 → Application Server Toolkit

We specified a new workspace for this scenario called

C:\AST\CatalogSec2\CatalogSec2BasicAuth

2. To import the CatalogSec2 base application we clicked the File menu and
then Import.

3. We selected EAR file in the list of options and clicked Next.

4. We clicked Browse to select the CatalogSec2.ear file. This file contains the
Catalog base application.

5. We also changed the EAR project name to CatalogSec2BasicAuth as shown
in Figure 10-3.

Note: You can also use Rational Application Developer V6.0 (RAD) to
configure WS-Security for WebSphere applications.

 Chapter 10. Security scenarios using CICS WS-Security support 333

Figure 10-3 Importing the CatalogSec2 ear file

6. Finally, we clicked Next → Next → Finish.

Editing the client configuration
We performed the following steps to edit the client configuration:

1. We expanded the Dynamic Web Project (CatalogSec2Web) in the Project
Explorer and opened (double-clicked) the deployment descriptor as shown in
Figure 10-4.

Figure 10-4 Opening the CatalogSec2Web Deployment Descriptor.

2. After the Deployment Descriptor Editor opened, we selected the WS
Extension page. The WS Extension page is used for editing the client’s

334 Implementing CICS Web Services

deployment descriptor extension file (ibm-webservicesclient-ext.xmi), so you
can specify what security is required. Figure 10-5 shows the WS Extension
page in the Deployment Descriptor Editor.

Figure 10-5 WS Extension page in Web service client Deployment Descriptor Editor

3. We clicked the service/DFH0XCMNService3 reference (for the placeOrder
service) and DFH0XCMNPortPO (the port binding for the service reference).

4. In the Request Generator Configuration, we expanded Security Token and
clicked Add. We entered the name basicauth.

Client Deployment Descriptor

Request Generator Configuration

Response Consumer Configuration

Client Binding configuration

Request Generator Configuration

Response Consumer Configuration

 Chapter 10. Security scenarios using CICS WS-Security support 335

5. We selected the Username Token token type from the drop-down list. When
you select a Token type, the Local name is filled in automatically
(Figure 10-6). We left the URI empty.

Figure 10-6 Security Token Dialog for specifying basic authentication

6. We clicked OK and a security token was created. We then saved the
configuration by pressing Ctrl+s.

7. After specifying the security token, a corresponding token generator must be
specified in the binding configuration. The WS Binding page is for editing the
client’s binding file, so you can specify how to apply the required security. We
clicked the WS Binding tab. Figure 10-7 shows the WS Binding page in the
Deployment Descriptor Editor.

336 Implementing CICS Web Services

Figure 10-7 WS Binding page in the Deployment Descriptor Editor

8. We selected Token Generator and clicked Add. We entered a Token
generator name basicauthToken and allowed the Token generator class to
default as com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

9. To select the security token, we expanded the drop-down list and selected the
basicauth security token that we defined previously on the WS Extension
page.

10.We checked Use value type and selected the Username Token value type
from the drop-down list. This selection filled the local name and callback
handler.

Client Deployment Descriptor

Request Generator Configuration

Response Consumer Configuration

Client Binding configuration

Request Generator Configuration

Response Consumer Configuration

 Chapter 10. Security scenarios using CICS WS-Security support 337

11.We entered the user ID WEBAS1 and password REDBOOKS that we wanted to use
to identify the Web service client (Figure 10-8).

Figure 10-8 Token Generator dialog

12.We clicked OK, and the token generator was created. We then saved the
configuration.

Note: The User ID and Password in Figure 10-8 represent the credentials of
the application server, not the browser user. The same credentials are passed
to CICS in the SOAP message irrespective of the identity of the end user.

338 Implementing CICS Web Services

Redeploying the Web service application
After configuring a basic authentication security constraint for the service
requester application, we exported a new EAR file called
CatalogSec2_WS-Security_BasicAuth.ear. We followed the same process that is
described in “Installing the service requester” on page 87 to deploy the
CatalogSec2_WS-Security_BasicAuth.ear.

For further information about configuring WS-Security in WebSphere, refer to
Web Services Handbook for WebSphere Application Server 6.1, SG24-7257.

10.3.2 Configuring CICS

The credentials configured using the Application Server Toolkit are used to form
the WS-Security header that is contained in the SOAP message. An example of
this message is shown in Example 10-3.

Example 10-3 SOAP security header extracted from a SOAP message

<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>WEBAS1</wsse:Username>

<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0#PasswordText">REDB00KS</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

This header includes the mustUnderstand="1" attribute, which indicates that
either this header must be processed or a SOAP fault thrown.

In order for CICS to process the security token in the SOAP header of the
placeOrder service request, we made the following changes to the CICS
configuration:

� Created a pipeline configuration file for basic authentication

� Created a new pipeline to process placeOrder requests and altered the
URIMAP for the placeOrder service to use the new pipeline

� Permitted access to the ORDR transaction for user ID WEBAS1

� Permitted surrogate access for the user ID WEBAS1

The details for these procedures are presented in the following sections.

 Chapter 10. Security scenarios using CICS WS-Security support 339

Creating a pipeline configuration file for basic authentication
Example 10-4 shows the basic authentication pipeline configuration file that
includes the message handler DFHWSSE1, and the configuration information for
the handler.

Example 10-4 Pipeline config file, ITSO_7206_wssec_basicauth_provider.xml

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

 <transport>
 <default_transport_handler_list>
 <handler>
 <program>CIWSMSGH</program>
 <handler_parameter_list/>
 </handler>

</default_transport_handler_list>
 </transport>
 <service>

<service_handler_list>
<handler>

 <program>SNIFFER</program>
 <handler_parameter_list/>
 </handler>

<wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication mode="basic">
 </authentication>
 </dfhwsse_configuration>

</wsse_handler>
</service_handler_list>
</terminal_handler>
<cics_soap_1.2_handler/>

 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <wsse_handler> element shown in Example 10-4 contains a
<dfhwsse_configuration> element that specifies configuration information for
DFHWSSE1.

The <authentication mode="basic"> specifies that inbound messages must
contain a UserNameToken.

340 Implementing CICS Web Services

Creating a new pipeline to process placeOrder requests
Since the inquireCatalog and inquireSingle service requests will not be subject to
basic authentication, we need to create a new pipeline specifically for the
placeOrder requests. We also need to change the SECPORDR URIMAP
definition to link the placeOrder service to the new pipeline. We do this using the
RDO commands in Example 10-5 and then re-installing the PIPELINE and
URIMAP resource definitions.

Example 10-5 Create pipeline for WS-Security basic authentication

CEDA COPY PIPELINE(PIPE1) GROUP(S3C1EXWS) AS(PIPEWSSE)
CEDA ALTER PIPELINE(PIPEWSSE) GROUP(S3C1EXWS)
Configfile(/CIWS/S3C1/config/ITSO_7206_wssec_basicauth_provider.xml)
CEDA ALTER URIMAP(SECPORDR) GROUP(S3C1EXWS) PIPELINE(PIPEWSSE)

Permitting access to the ORDR transaction
We permitted access to the ORDR transaction for the user ID WEBAS1 with the
following:

PERMIT CIWS3D.ORDR CLASS(TCICSTRN) ID(WEBAS1) ACCESS(READ)
SETROPTS RACLIST(TCICSTRN) REFRESH

Permitting surrogate access
Example 10-6 shows the RACF commands that we used to permit the predefined
user ID (CIWSNW) to start transactions (such as ORDR) with the user ID
WEBAS1.

Example 10-6 RACF commands to allow CIWSNW to act as surrogate for WEBAS1

RDEFINE SURROGAT WEBAS1.DFHSTART UACC(NONE) OWNER(NIGELW)
PERMIT WEBAS1.DFHSTART CLASS(SURROGAT) ID(CIWSNW) ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

For more information regarding surrogate user security, see CICS Transaction
Server for z/OS RACF Security Guide, SC34-6454.

10.3.3 Testing basic authentication

Now when we submit an order request on the Web browser, the credentials are
added to the SOAP Security header and are extracted by the DFHWSSE1
program.

Figure 10-9 shows the ORDR transaction running with the user ID WEBAS1,
while the CPIH transaction continues to execute with the CIWSNW user ID.

 Chapter 10. Security scenarios using CICS WS-Security support 341

Figure 10-9 ORDR executing with basic authentication user ID

SOAP fault messages
In this section we show some of the SOAP faults that you may see after enabling
CICS WS-Security basic authentication.

� Service requester does not send UserNameToken

If the service requester does not send a UsernameToken, DFHWSSE1
returns a SOAP fault as shown in Figure 10-10.

Figure 10-10 DFHWSSE1 SOAP fault: No UsernameToken

� UserNameToken credentials are invalid

If the credentials extracted do not validate, then DFHWSSE1 creates a SOAP
fault message as shown in Figure 10-11.

INQUIRE TASK
STATUS: RESULTS - OVERTYPE TO MODIFY
 Tas(0000055) Tra(CPIH) Sus Tas Pri(001)
 Sta(U) Use(CIWSNW) Uow(BF3C2E9E2114284E) Hty(RZCBNOTI)
 Tas(0000056) Tra(ORDR) Sus Tas Pri(001)
 Sta(U) Use(WEBAS1) Uow(BF3C2E9E24801B8B) Hty(EDF)
 Tas(0000058) Tra(CEDF) Fac(E024) Sus Ter Pri(001)
 Sta(SD) Use(NIGELW) Uow(BF3C2E9E28D4A149) Hty(ZCIOWAIT)
 Tas(0000059) Tra(CEMT) Fac(E025) Run Ter Pri(255)
 Sta(TO) Use(NIGELW) Uow(BF3C2EA64198CCCE)

SYSID=S3C1 APPLID=A6POS3C1

342 Implementing CICS Web Services

Figure 10-11 DFHWSSE1 SOAP fault: UsernameToken credentials invalid

The SOAP fault for this message, shown in Example 10-7, highlights that the
user credentials are invalid and that the RACF revoke count is incremented
for this user ID.

Example 10-7 SOAP fault for invalid basic authentication credentials

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>wsse:FailedAuthentication
</faultcode>
<faultstring>NOTAUTH
</faultstring>
<detail>
<e:myfaultdetails xmlns:e="http://www.ibm.com/software/htp/cics/wssec">
<message>The supplied password is wrong. If the external security
manager is RACF, the revoke count maintained by RACF is incremented
</message>
<errorcode>3
</errorcode>

</e:myfaultdetails>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

 Chapter 10. Security scenarios using CICS WS-Security support 343

� WebSphere rejects SOAP response sent by CICS due to empty security
header.

During our testing we experienced the problem shown in Figure 10-12.

Figure 10-12 DFHWSSE1 SOAP fault: Empty security token

In this case CICS has returned the empty security header shown in
Example 10-8.

Example 10-8 Empty security header returned from CICS

<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd" SOAP-ENV:mustUnderstand="1"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-u
tility-1.0.xsd" xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"/>

We found that, depending on the version of WebSphere Application Server
and the maintenance level of CICS TS V3.1, it is possible that WebSphere
will reject this SOAP response from CICS due to it containing an empty
security header.

The WebSphere exception for this error, shown in Example 10-9, highlights
that WebSphere is not expecting a security header and is rejecting the empty
one sent by CICS because it contains the mustUnderstand="1" attribute.

344 Implementing CICS Web Services

Example 10-9 WebSphere exception for empty security header

Exception: WSWS3173E: Error: Did not understand "MustUnderstand"
header(s):{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-s
ecext-1.0.xsd}Security:

We were able to bypass this problem by configuring WebSphere to optionally
receive a security token sent in the CICS response.

Perform the following steps to configure WebSphere to tolerate an empty
security header sent in the CICS response:

1. Open the CatalogSec2Web Deployment Descriptor.

2. Select the WS Extension page.

3. In Service References select the service/DFH0XCMNService3 reference.
then click DFH0XCMNPortPO in Port Qualified Name Bindings.

4. Expand Response Consumer Configuration.

5. Expand Required Security Token and click Add.

6. In the Required Security Token window returned (Figure 10-13), make the
following entries and selections:

– Enter a name for this required security token, for example, requntoken.

– Select Username Token from the Token type drop-down list.

– Select Optional for the Usage type from the drop-down list.
The available choices are Required or Optional. If you select Required, a
SOAP fault is thrown if a required security token is not included in a
client’s request message. If you select Optional, the process of consuming
a request message continues without throwing a SOAP fault.

7. Click OK.

Figure 10-13 WS Extension page Required Security Token dialog box

8. Save the configuration by pressing Ctrl+s.

 Chapter 10. Security scenarios using CICS WS-Security support 345

9. Open the WS Binding page.

10.In Service References select the service/DFH0XCMNService3 reference,
then click DFH0XCMNPortPO in Port Qualified Name Bindings.

11.Expand Security Response Consumer Binding Configuration.

12.Expand Token Consumer and click Add.

13.In the Token Consumer dialog box returned (Figure 10-14) make the following
entries and selections:

– Enter a Token consumer name, for example con_untcon.

– Select com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer
as the Token consumer class.

– From the Security token drop-down list select the security token specified
in the WS Extension page. In our case this was requntoken.

– Select the Use jaas.config option and enter
system.wssecurity.UsernameToken as the jaas.config name.

14.Click OK.

Figure 10-14 Token Consumer dialog box in WS Binding page

15.Save the Deployment Descriptor.

16.Export the application as an ear file and install it in the WebSphere
Application Server.

Important: APAR PK31924 has been raised for this problem. If you
experience this problem and no fix is available for PK31924 at the time, you
will need to configure WebSphere to tolerate an empty security header sent by
CICS. This problem can also occur for digital signature processing.

346 Implementing CICS Web Services

10.4 Certificate and key pair generation

In this section we show how we created the certificates and key pairs that are
used in the WS-Security signature and encryption test scenarios that follow.

When setting up a WS-Security environment you have a choice between
self-signed certificates and CA-signed certificates:

� Self-signed certificates

A self-signed certificate is an identity certificate that is signed by its creator,
so the creator is verifying that the certificate is valid.

� Certificating authority (CA) signed certificates

CA-signed certificates are created by a user organization and sent to a CA to
be signed. Before signing a certificate the CA verifies that the organization
requesting the certificate is actually who they claim to be, so the CA is
verifying that the certificate is valid.

In the examples in this chapter, we use self-signed certificates because they are
more easily and quickly generated. In a production environment, it is expected
that CA-signed certificates will be used because they provide a more secure
solution.

Figure 10-15 shows the certificates and key pairs used in the signature and
encryption test scenarios.

 Chapter 10. Security scenarios using CICS WS-Security support 347

Figure 10-15 Certificates and key pairs used in signature and encryption scenarios

Figure 10-15 shows two stores for our certificates and key pairs:

� The WebSphere key store

– The WebSphere key store contains the WebSphere certificate and holds
the WebSphere public and private key pair.

– The key store also contains the CICS certificate with the public key only.

� RACF

– RACF contains the CICS certificate and holds the CICS public key. The
associated private key is stored in a Private Key Data Set (PKDS).

In a public key cryptographic system, it is a priority to maintain the security
of the private key. It is vital that only the intended user or application have
access to the private key.

ICSF and the cryptographic hardware features ensure this by enciphering
PKA private keys under a unique PKA object protection key. The PKA
object protection key has itself been enciphered under a PKA master key.
Each PKA private key also has a name that is cryptographically bound to

Service requester Service provider

Response Response

A
P
P

Request Request

 CICS TS V3.1

SOAP/HTTP

O
R
D
R

C
P
I
H

 WebSphere Application
Server V6.1

cert cert

key store

CICS certificate
and public key

WebSphere
private key WebSphere

certificate and
public key

key store name = c:\SG247206\keystore\was.jks

RACF

WebSphere
certificate and public
key (owned by
user ID WEBAS1)

cert cert

PKDS key labelCICS certificate
and public key
(owned by user
ID CIWS3D)

key ring

KEYRING=Ciws.Ciwss3c1

label

 PKDS

Encrypted CICS
private key

348 Implementing CICS Web Services

the private key and cannot be altered. ICSF uses the private key name or
the PKDS key label to control access to the private key. This combination
of hardware-enforced coupling of cryptographic protection and access
control, through the use of RACF, is unique to ICSF. It provides a
significant level of security and integrity for PKA applications.

– RACF also contains the WebSphere certificate with the public key only.

In this section, we document the following steps:

� Validating the cryptography hardware environment

� Creating the CICS certificate and key pair

� Creating the key store, WebSphere certificate, and key pair

� Adding the CICS certificate to the key store

� Adding the WebSphere certificate to RACF

Validating the cryptography hardware environment
CICS support for WS-Security signature and encryption processing benefits from
the hardware acceleration capabilities of System z. It is a requirement, therefore,
to run CICS on a system that has the appropriate cryptographic hardware
configured. The specific cryptographic hardware requirement is dependent on
the server type and z/OS level. See Section 7.4, “ICSF services used by CICS
WS-Security support” on page 229 for more information about cryptographic
hardware requirements.

The SC66 host system used for our signature and encryption test scenarios was
a z9 EC (Enterprise Class) with 18 CPs. The SC66 had the following
cryptographic hardware functions enabled:

� CP Assist for Cryptographic Function (CPACF)

� Crypto Express2 (CEX2) feature

Three CEX2C coprocessors and one CEX2A accelerator were configured.

Integrated Cryptographic Service facility
The Integrated Cryptographic Service Facility (ICSF) is a software element of
z/OS that works with hardware cryptographic features and RACF to provide

Note: If you use CA-signed certificates, you also need to add the CA
certificates to the WebSphere key store and RACF key ring.

Important: The CEX2 feature requires ICSF to be active.

 Chapter 10. Security scenarios using CICS WS-Security support 349

secure, high-speed cryptographic services in the z/OS environment. See
Section 7.2, “ICSF” on page 225 for more information.

Example 10-10 shows the startup messages of ICSF on the SC66 system. It
shows that 3 CEX2C coprocessors and 1 CEX2A coprocessor are configured.

Example 10-10 ICSF startup messages

S CSF
IEF695I START CSF WITH JOBNAME CSF IS ASSIGNED TO USER STC , GROUP SYS1
IEF403I CSF - STARTED - ASID=009A - SC66
CSFM441I CRYPTO EXPRESS2 COPROCESSOR E01, SERIAL NUMBER 94000264, ACTIVE
CSFM441I CRYPTO EXPRESS2 COPROCESSOR E02, SERIAL NUMBER 95001434, ACTIVE
CSFM441I CRYPTO EXPRESS2 COPROCESSOR E03, SERIAL NUMBER 95001437, ACTIVE
CSFM435I CRYPTO EXPRESS2 ACCELERATOR F00 IS ACTIVE
CSFM001I ICSF INITIALIZATION COMPLETE
CSFM400I CRYPTOGRAPHY - SERVICES ARE NOW AVAILABLE.

ICSF must be configured and started in order to create public/private key pairs to
be used by CICS for XML signature or encryption processing.

Creating the CICS certificate and key pair
In order to enable signature and encryption processing, we need to create a
certificate and key pair to be used by CICS, and then connect the certificate to
the CICS key ring.

Example 10-11 shows the RACF command that we used to create the CICS
X.509 certificate.

Example 10-11 Create the CICS X.509 certificate (CICSCERT)

RACDCERT ID(CIWS3D) GENCERT
 SUBJECTSDN(CN('CICSCERT')
 T ('Ciwss3c1-cert')
 OU('PSSC')
 O ('ITSO')
 L ('Endicott')
 SP('New York')
 C ('US'))
 NOTBEFORE(DATE(2005-01-01) TIME(00:00:00))
 NOTAFTER (DATE(2014-12-31) TIME(23:59:59))
 KEYUSAGE (DOCSIGN DATAENCRYPT)
 WITHLABEL('CICSCERT')
SIZE(1024)
 ICSF

350 Implementing CICS Web Services

� The RACDCERT GENCERT command creates the certificate and a
public/private key pair.

� ID specifies that the CICS region user ID CIWS3D is to be associated with the
certificate.

� SUBJECTDSN specifies the subject’s X.509 distinguished name.

� NOTBEFORE and NOTAFTER specify the certificate validity range.

� KEYUSAGE specifies how the keys associated with the certificate are to be
used. We specify:

– DOCSIGN specifies that the certificate will be used for signing.

– DATAENCRYPT specifies that the certificate will be used for encryption.

� WITHLABEL specifies the label name to be associated with the certificate.

� SIZE specifies the size of the private key expressed in decimal bits. We
specified a high strength key length of 1024.

� ICSF specifies that the private key to be generated is an RSA key to be
stored in the ICSF PKDS (public key data set).

A certificate that CICS uses to sign SOAP messages (or decrypt encrypted
SOAP messages) must be created with the ICSF option and ICSF must be
configured and started in order for the certificate to be created or used by
CICS. If ICSF is not operational, or does not have access to any
cryptographic coprocessors or accelerators, you will receive the message
ICSF is not operational when attempting to create the X.509 certificate.

Example 10-12 shows the RACF commands that we used to connect the CICS
X.509 certificate to the key ring and to list the certificate.

Example 10-12 RACF command to connect CICS certificate to RACF key ring

RACDCERT ID(CIWS3D) CONNECT(ID(CIWS3D) LABEL('CICSCERT') RING(Ciws.Ciwss3c1))
RACDCERT ID(CIWS3D) LIST

Example 10-13 shows the output of the RACDCERT LIST command.

Example 10-13 Listing of CICS X.509 certificate (CICSCERT)

Digital certificate information for user CIWS3D:

 Label: CICSCERT
 Certificate ID: 2QbDyebi88TDycPiw8XZ40BA

Important: A certificate that CICS uses to sign SOAP messages, or to
decrypt encrypted SOAP messages, must be created with the ICSF option.

 Chapter 10. Security scenarios using CICS WS-Security support 351

 Status: TRUST
 Start Date: 2005/01/01 00:00:00
 End Date: 2014/12/31 23:59:59
 Serial Number:
 >00<
 Issuer's Name:
 >CN=CICSCERT.T=Ciwss3c1-cert.OU=PSSC.O=ITSO.L=ENDICOTT.SP=NEW YORK.C=U<
 >S<
 Subject's Name:
 >CN=CICSCERT.T=Ciwss3c1-cert.OU=PSSC.O=ITSO.L=ENDICOTT.SP=NEW YORK.C=U<
 >S<
 Key Usage: DATAENCRYPT, DOCSIGN
 Private Key Type: ICSF
 Private Key Size: 1024
 PKDS Label: IRR.DIGTCERT.CIWS3D.SC66.BF386E434BD53FC9
 Ring Associations:
 Ring Owner: CIWS3D
 Ring:
 >Ciws.Ciwss3c1<

Creating the key store and WebSphere certificate
In order to enable signature and encryption processing, we need to create a
certificate and key pair to be used by WebSphere. The certificate and key pair
are stored in a key store.

Table 10-4 shows the data used to create the key store and the WebSphere
certificate.

Table 10-4 Client key store and certificate values

Both the WebSphere public and private keys are associated to the certificate.

Field Value

Key store name wasks

Filename was.jks

Storepass itso

Storetype JKS

Distinguished Name CN=wascert, O=IBM, C=US

Key size 1024

Alias wascert_rsa

Certificate file wascert_rsa.der

352 Implementing CICS Web Services

We performed the following tasks using the WebSphere Administration Console:

� Generating the client key store

� Creating the client certificate

� Extracting the client certificate file

Creating the client keystore
Perform the following steps to create the client key store:

1. Select Security → SSL certificate and key management.

2. Under Related Items select Key stores and certificates.

3. The resulting panel shows you all the keystores that you have configured
through the administrative console. Click New and enter these values:

Name: wasks
Path: c:\SG247206\keystore\was.jks
Password: itso
Type: JKS

4. Click OK.

Creating the client certificate
Use the following steps to create the personal certificate for the client key store:

� Select the wasks key store.

� Under Additional Properties click Personal certificates.

� Click Create self-signed certificate and enter these values:

Alias: wascert_rsa
Key size: 1024
Common name: wascert
Validity Period: 365 (days)
Organization: IBM
Country: US

� Click OK.

Be sure to save the configuration changes in the administrative console.

Note: The capability to create certificates and key stores using the
WebSphere admin console is new in WebSphere Application Server V6.1. If
you are using an earlier version of WebSphere, you can use a key
management tool such as iKeyMan or keytool. See “Importing the certificate”
on page 305 for an example of using iKeyMan.

 Chapter 10. Security scenarios using CICS WS-Security support 353

The Java keytool command can be used to list the contents of a key store:

keytool -list -keystore was.jks -storepass itso -v

The keytool command comes with the Java runtime environment. You might
need to add the path to your java jre using the command:

set PATH=<WAS_HOME>\java\jre\bin;%PATH%

In this command, <WAS_HOME> is the directory where your WebSphere is
installed (usually C:\Program Files\IBM\WebSphere\AppServer).

Adding the CICS certificate to the WebSphere key store
To make the public key of the CICS certificate available to WebSphere, we
performed the following steps:

1. We used the RACF command shown in Example 10-14 to extract the
certificate from the RACF database to a sequential data set.

Example 10-14 RACF command to extract CICS certificate from RACF

RACDCERT ID(CIWS3D) EXPORT (LABEL('CICSCERT')) DSN('CIWS.CICSCERT.DER')
FORMAT(CERTDER)

The RACDCERT EXPORT command exports the certificate with label
'CICSCERT' to the MVS data set CIWS.CICSCERT.DER as a DER encoded
X.509 certificate.

2. We FTPed the CICS certificate to the WebSphere machine.

Example 10-15 shows how we used FTP to send the exported certificate (in
binary format) to our WebSphere machine.

Example 10-15 FTP CICS certificate to WebSphere machine

C:\Documents and Settings\Resident>ftp wtsc66.itso.ibm.com
Connected to wtsc66.itso.ibm.com.
220-FTPMVS1 IBM FTP CS V1R7 at wtsc66.itso.ibm.com, 21:50:57 on 2006-08-15.
220 Connection will close if idle for more than 5 minutes.
User (wtsc66.itso.ibm.com:(none)): NIGELW
331 Send password please.
Password:
230 NIGELW is logged on. Working directory is "NIGELW.".
ftp> lcd c:\SG247206\keystore
Local directory now C:\SG247206\keystore.
ftp> bin
200 Representation type is Image
ftp> cd 'CIWS'
250 "CIWS." is the working directory name prefix.
ftp> get CICSCERT.DER

354 Implementing CICS Web Services

200 Port request OK.
125 Sending data set CIWS.CICSCERT.DER
250 Transfer completed successfully.
ftp: 740 bytes received in 0.00Seconds 740000.00Kbytes/sec.
ftp> bye
221 Quit command received.
Goodbye.

3. We imported the CICS certificate into the WebSphere key store using the
admin console.

Figure 10-16 shows the certificate being imported using the admin console.

Figure 10-16 Import CICS certificate into key store

Adding the WebSphere certificate to RACF
Perform the following steps to make the public key of the WebSphere certificate
available to CICS:

1. Extract the certificate from the key store using the WebSphere administration
console.

In “Creating the key store and WebSphere certificate” on page 352 we show
how we created the WebSphere certificate. We now extract the certificate
from the jks to file wascert.der (a Binary DER file).

The certificate has both public and private keys. However, if you distribute the
certificate, you must ensure that you only send the public key and not the
private key.

 Chapter 10. Security scenarios using CICS WS-Security support 355

Follow these steps to export the public key from the wasks key store:

a. Locate the client personal certificates by selecting SSL certificate and
key management → Key stores and certificates → wasks → Personal
certificates.

b. Select the check box next to the newly created certificate wascert_rsa.

c. Click Extract.

d. For Certificate file name, specify
c:\SG247206\keystore\wascert.der

e. For Data Type select Binary DER data.

f. Click OK.

Figure 10-17 shows the certificate being extracted using the admin console.

Figure 10-17 Extract client X.509 certificate from key store

2. FTP the WebSphere certificate to the host system.

Before performing the FTP, we first allocated a sequential data set on the
host machine SCTS66 to receive the certificate. This data set is allocated with
a record format VB, record length 84 and block size 27998.

We then used FTP as shown in Example 10-16 to send the exported
certificate (in binary format) to our host machine.

Example 10-16 FTP client X.509 certificate to host

C:\Documents and Settings\Resident>ftp wtsc66.itso.ibm.com
Connected to wtsc66.itso.ibm.com.
220-FTPMVS1 IBM FTP CS V1R7 at wtsc66.itso.ibm.com, 21:04:02 on 2006-08-11.
220 Connection will close if idle for more than 5 minutes.
User (wtsc66.itso.ibm.com:(none)): NIGELW
331 Send password please.
Password:

356 Implementing CICS Web Services

230 NIGELW is logged on. Working directory is "NIGELW.".
ftp> lcd C:\SG247206\keystore
Local directory now C:\SG247206\keystore.
ftp> cd 'CIWS'
250 "CIWS." is the working directory name prefix.
ftp> bin
200 Representation type is Image
ftp> put wascert.der
200 Port request OK.
125 Storing data set CIWS.WASCERT.DER
250 Transfer completed successfully.
ftp: 580 bytes sent in 0.00Seconds 580000.00Kbytes/sec.
ftp> bye
221 Quit command received.
Goodbye.

3. Import the client certificate into RACF and connect it to the CICS key ring.

We used the RACF commands shown in Example 10-17.

Example 10-17 RACF commands to import WebSphere certificate into RACF

RACDCERT ID(WEBAS1) ADD('CIWS.WASCERT.DER') WITHLABEL('WASCERT') TRUST
RACDCERT ID(CIWS3D) CONNECT(ID(WEBAS1) LABEL('WASCERT') RING(Ciws.Ciwss3c1))

– The RACDCERT ADD command adds the client certificate with label
'WASCERT' as a trusted certificate.

– The RACDCERT CONNECT command connects the client certificate to
the CICS key ring. ID(WEBAS1) indicates that the certificate being added
to the key ring is a user certificate, and WEBAS1 is the user ID that is
associated with this certificate.

The certificate can be listed using this command:

RACDCERT ID(WEBAS1) LIST

Example 10-18 shows the output of the RACDCERT LIST command.

Example 10-18 Listing of client X.509 certificate (WASCERT)

Digital certificate information for user WEBAS1:

 Label: WASCERT
 Certificate ID: 2QbmxcLB4vHmweLDxdnj
 Status: TRUST
 Start Date: 2006/08/09 15:16:07
 End Date: 2007/08/09 15:16:07
 Serial Number:
 >44DA3477<
 Issuer's Name:

 Chapter 10. Security scenarios using CICS WS-Security support 357

 >CN=wascert.OU=.O=IBM.L=.SP=..C=US<
 Subject's Name:
 >CN=wascert.OU=.O=IBM.L=.SP=..C=US<
 Private Key Type: None
 Ring Associations:
 Ring Owner: CIWS3D
 Ring:
 >Ciws.Ciwss3c1<

10.5 Signing a SOAP message

To provide integrity on the client’s request message, we can add an XML digital
signature to the message. CICS supports digital signatures in both service
provider and service requester modes.

In this section we show how a SOAP request message can be signed by
WebSphere Application Server and how the signature can be verified by CICS,
and how the response message can be signed by CICS and verified by
WebSphere.

� The SOAP request message contains an X.509 certificate (the WebSphere
certificate) that is used to sign the body of the message.

� The SOAP response message also contains an X.509 certificate (the CICS
certificate) that is used to sign the body of the message.

The X.509 certificates are transported within a BinarySecurityToken element.

We also show how the WebSphere certificate can be used to authenticate the
service requester. DFHWSSE1 verifies the signature and uses the certificate to
determine the user ID under which the ORDR transaction will be run. This
scenario is shown in Figure 10-18.

358 Implementing CICS Web Services

Figure 10-18 Enabling CICS WS-Security support for signatures

1. The service requester (WebSphere in our example) generates a
BinarySecurityToken element from the WebSphere X.509 certificate. It then
signs the message with its private key so the service provider (CICS in our
example) knows that the message can only be sent by the WebSphere
application server.

2. CICS validates the signature with the WebSphere public key. It also uses the
owning user ID of the WebSphere X.509 certificate (WEBAS1) to run the
ORDR transaction for the placeOrder service.

3. CICS then signs the response message with its private key so that
WebSphere knows that the message can only be sent by the CICS region.

4. WebSphere validates the signature with the public key of CICS.

Service requester
 Service provider

Response Response

A
P
P

Request Request

WebSphere
Application

Server

 CICS TS V3.1

HTTP

Browser

SOAP/HTTP

O
R
D
R

C
P
I
H

Windows XP
 mikee01

z/OS V1.7

P
I
P
E
W
S
S
E

<soapenv:Body>
 <EncryptedData xmlns="..." Id="wssecurity_encryption_id_xxxx"
 Type="http://www.w3.org/2001/04/xmlenc#Content">
 <EncryptionMethod Algorithm="..."></EncryptionMethod>
 <CipherData>

 <CipherValue>6LPA6MFTI5dc2xtnjiiJ...</CipherValue>
 </CipherData>

 </EncryptedData>
</soapenv:Body>

Encrypt message with random secret key
Encrypt secret key with public key of CICS

certificate

Decrypt secret key
with private key of
WebSphere
certificate
Decrypt message
response with
secret key

Decrypt secret key with private
key of CICS certificate
Decrypt message with secret key

Encrypt message
response with random
secret key
Encrypt secret key
with public key of
WebSphere certificate

1

4

2

3

 Chapter 10. Security scenarios using CICS WS-Security support 359

We document the following procedures to enable support for XML signature
processing:

� Configuring the service requester for signature processing

� Configuring CICS for signature processing

� Testing the signature test scenario

10.5.1 Configuring the service requester for signature processing

In this section we show how to configure the client J2EE application to send and
receive signed SOAP messages. At a high level, the steps to do this are:

� Import the CatalogSec2 WebSphere Application to the Application Server
Toolkit (AST).

� Configure the request generator for signing.

� Configure the response consumer for signing.

� Re-deploy the Web Service client application.

In the following sub-sections we provide step-by-step details for each procedure.

Importing the base application
To configure our Web Service client to use WS-Security, we used the IBM
WebSphere Application Server Toolkit V6.1 (AST).

See “Importing the base application” on page 333 for instructions on how to
import the application. For the signature test scenario, we specified:

� The name of the workspace folder as
C:\AST\CatalogSec2\CatalogSec2Signing

� The name of the EAR project as CatalogSec2Sign.

Important: There is a significant performance overhead when using
WS-Security and XML digital signatures. See 8.5, “Comparison of transport
level and SOAP message security” on page 269 for recommendations on
choosing between WS-Security and SSL when implementing an integrity
security solution.

Note: In our signature test scenario we sign both the request and response
messages. It is also possible to sign only the request, or to sign only the
response.

360 Implementing CICS Web Services

Configuring the request generator for signing
Perform the following steps to configure the request generator for signing:

1. Expand the Dynamic Web Project (CatalogSec2Web) in the Project
Explorer and open (double-click) the deployment descriptor as shown in
Figure 10-19.

Figure 10-19 Opening the CatalogSec2Web Deployment Descriptor

2. Go to the WS Extension page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Request Generator Configuration.

c. Expand Integrity, click Add, and in the Integrity dialog box (Figure 10-20)
enter the following data:

• Enter a name identifying the part, for example, int_body.

• Select the order in which the signature is generated. Multiple integrity
parts can be specified. In our case, we selected 1.

• Click Add for the Message Parts, and one integrity part is created. The
default created part is the SOAP body. We accepted the default.

d. Click OK and save the configuration by pressing Ctrl+s.

 Chapter 10. Security scenarios using CICS WS-Security support 361

Figure 10-20 Integrity dialog in the WS Extensions page

3. Open the WS Binding page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Security Request Generator Binding Configuration.

c. Expand Token Generator and click Add. In the Token Generator dialog
box (Figure 10-21) enter the following data:

• Enter a Token generator name, for example, gen_dsigtgen.

• For the Token generator class, select the X509TokenGenerator.

• Do not select a Security Token.

• Select Use value type, and then select X509 certificate token v3 and
the X509CallbackHandler.

• Select Use key store and make the appropriate entries. Ours were:

Password: itso
Path: C:\SG247206\keystore\was.jks
Type: JKS

• Click Add under Key and make the appropriate entries. Ours were:

Alias: wascert_rsa
Key password: itso
Key name: CN=wascert, O=IBM, C=US

• Click OK.

Note: This is the key name of the WebSphere certificate whose
private key is used to sign the request message.

362 Implementing CICS Web Services

Figure 10-21 Token Generator dialog in the WS Binding page

4. Expand Key Locators, click Add, and in the Key Locator dialog box
(Figure 10-22) enter the following data:

a. Enter a Key locator name, for example, gen_dsigklocator.

b. Select KeyStoreKeyLocator as the Key locator class.

c. Select Use key store and make the appropriate entries. Ours were:

Password: itso
Path: C:\SG247206\keystore\was.jks
Type: JKS

d. Click Add under Key and make the appropriate entries. Ours were:

Alias: wascert_rsa
Key password: itso
Key name: CN=wascert, O=IBM, C=US

e. Click OK.

 Chapter 10. Security scenarios using CICS WS-Security support 363

Figure 10-22 The Key Locator dialog in the WS Binding page

5. Expand Key Information, click Add, and in the Key Information dialog box
(Figure 10-23) enter the following data:

a. Enter a Key information name, for example, gen_dsigkeyinfo.

b. Select STRREF (Direct reference) as the Key information type. The Key
information class is filled automatically.

The possible Key information types are:

• STRREF Direct reference

• EMB Embedded reference

• KEYID Key identifier reference

• KEYNAME Key name reference

• X509ISSUER x.509 issuer and serial number reference

364 Implementing CICS Web Services

It is also possible to configure an indirect reference to the public key, such
as the key identifier or the key name. In this case, CICS uses the key
reference to identify the RACF certificate that contains the public key.

c. Select Use key locator and select gen_dsigklocator from the Key
locator drop-down list. Select the predefined Key name CN=wascert,
O=IBM, C=US.

d. Select Use token, and select gen_dsigtgen from the drop-down list.

e. Click OK.

Figure 10-23 The Key Information dialog in the WS Binding page

6. Expand Signing Information, click Add, and in the Signing Information
dialog box (Figure 10-24) enter the following data:

a. Enter a Signing Information Name, for example, sign_body.

b. Enter a Key information name, for example, sign_kinfo.

Note: We specify STRREF because we want WebSphere to send the
public key as part of the complete certificate, since we will use the
certificate for authentication in addition to decrypting the signed
message.

 Chapter 10. Security scenarios using CICS WS-Security support 365

c. Select the Key information element previously defined. In our case this
was gen_dsigkeyinfo.

d. Click OK.

Figure 10-24 The Signing Information dialog in the WS Binding page

7. Expand Part References, click Add, and in the Part Reference dialog box
(Figure 10-25) enter the following data:

a. Enter a Part reference name, for example, sign_part.

b. Select the Integrity part from the list of parts defined on the WS Extensions
page. In our case, we select int_body.

c. Click OK.

366 Implementing CICS Web Services

Figure 10-25 The Part Reference dialog in the WS Binding page

8. Expand Transforms, click Add, and in the Transform dialog box
(Figure 10-26) enter the following data:

a. Enter a name, for example, sign_trans.

b. Click OK.

Figure 10-26 The Transform dialog in the WS Binding page

9. Save the configuration by pressing Ctrl+s.

Configure the response consumer for signing
In this section we show how to configure the client J2EE application in order to
receive a signed SOAP message.

 Chapter 10. Security scenarios using CICS WS-Security support 367

Use the following steps to do this:

1. Expand the Dynamic Web Project (CatalogSec2Web) in the Project
Explorer and open (double-click) the deployment descriptor.

2. Go to the WS Extension page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Response Consumer Configuration.

c. Expand Required Integrity and click Add. In the Required Integrity dialog
box (Figure 10-27) enter the following data:

• Enter a Required integrity name, for example, reqint_body.

• Select the Usage type, either Required or Optional. If the usage type is
Required, an unsigned response message throws a SOAP fault. If the
usage type is Optional, an unsigned message is received. We selected
Required.

• Click Add for Message Parts, and one message part is created. The
default created part is the SOAP body. We accepted the default.

d. Click OK and save the configuration by pressing Ctrl+s.

Figure 10-27 Required integrity in the WS Extension page for response consumer

3. Open the WS Binding page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Security Response Consumer Binding Configuration.

c. Expand Token Consumer, click Add, and in the Token Consumer dialog
box (Figure 10-28) enter the following data:

• Enter a Token consumer name, for example, con_dsigtcon.

368 Implementing CICS Web Services

• Select com.ibm.wsspi.wssecurity.token.X509TokenConsumer as
the Token consumer class.

• Select Use value type.

• Select X509 certificate token. The Local name is selected
automatically.

• Select Use jaas.config and enter system.wssecurity.X509BST as
jaas.config name.

• Select Use certificate path settings.

• Select Trust any certificate.

d. Click OK.

Note: It is important to specify X509 certificate token for the token
value type. An error occurred in our test when we specified X509
certificate token v3.

Important: We specified Trust any certificate for our test. By selecting
this option, the signature is validated by the certificate sent with the
message without the certificate itself being validated.

However, in a production environment you are unlikely to use this
option because it allows any client with a valid XML digital signature
certificate to have access to your WebSphere application server.

WebSphere provides different ways of specifying trust for digital
signature certificates.

� If you use a self-signed certificate, you can specify the issuer name
or serial number of trusted certificates in a jaas.config property.

� For both self-signed and CA-signed certificates, you can specify a
trust anchor and a trusted certificate store using a Certificate path
reference.

 Chapter 10. Security scenarios using CICS WS-Security support 369

Figure 10-28 Token Consumer dialog in the WS Binding page for Response Consumer

4. Expand Key Locators, click Add, and in the Key Locator dialog box
(Figure 10-29) enter the following data:

a. Enter a Key locator name, for example, con_dsigklocator.

b. Select KeyStoreKeyLocator as the Key locator class.

370 Implementing CICS Web Services

c. Select Use key store and make the appropriate entries. Ours were:

Password: itso
Path: C:\SG247206\keystore\was.jks
Type: JKS

d. Click Add under Key and make the appropriate entries. Ours were:

Alias: cicscert
Key password: itso
Key name: CN=CICSCERT, O=ITSO, C=US

e. Click OK.

Figure 10-29 Key Locator dialog in the WS Binding page for response consumer

Note: This is the key name of the CICS certificate. The private key of
this certificate is used to sign the response message.

 Chapter 10. Security scenarios using CICS WS-Security support 371

5. Expand Key Information, click Add, and in the Key Information dialog box
(Figure 10-30) enter the following data:

a. Enter a Key information name, for example, con_dsigkeyinfo.

b. Select STRREF as the Key information type. The Key information class is
filled automatically.

c. Select Use key locator and select con_dsigklocator from the Key
locator drop-down list. Select the predefined Key name as
CN=CICSCERT, O=ITSO, C=US.

d. Select Use token and select con_dsigtcon from the Token drop-down
list.

e. Click OK.

Figure 10-30 Key Information dialog in the WS Binding page for response consumer

Note: We specify STRREF because CICS always sends the complete
certificate when signing an outbound message; therefore, the
WebSphere response consumer must be configured to expect the
CICS certificate in the security header of the response message.

372 Implementing CICS Web Services

6. Expand Signing Information, click Add, and in the Signing Information
dialog box (Figure 10-31) enter the following data:

a. Enter a Signing Information Name, for example, sign_body.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as the
Canonicalization method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as the Signature
method algorithm.

d. Click Add in Signing key information.

• Enter a Key information name, for example, sign_kinfo.

• Select the con_dsigkeyinfo from the Key information element
drop-down list.

e. Click OK.

Figure 10-31 Signing Information dialog in the WS Binding page for response consumer

7. Expand Part References, click Add, and in the Part Reference dialog box
(Figure 10-32) enter the following data:

a. Enter a Part reference Name, for example, sign_part.

b. Select reqint_body as the Required integrity.

c. Click OK.

 Chapter 10. Security scenarios using CICS WS-Security support 373

Figure 10-32 The Part Reference dialog in the WS Binding page for response consumer

8. Expand Transforms, click Add, and in the Transform dialog box
(Figure 10-33) enter the following data:

a. Enter a Name, for example, sign_trans.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as the algorithm.

c. Click OK.

Figure 10-33 The Transform dialog in the WS Binding page for response consumer

9. Save the configuration by pressing Ctrl+s.

Redeploying the Web service application
After configuring a signature security constraint for the service requester
application, we exported a new EAR file called
CatalogSec2_WS-Security_Signature.ear. We followed the same process that is

374 Implementing CICS Web Services

described in “Installing the service requester” on page 87 to deploy the
CatalogSec2_WS-Security_Signature.ear.

For further information about configuring WS-Security in WebSphere refer to
Web Services Handbook for WebSphere Application Server 6.1, SG24-7257.

10.5.2 Configuring CICS for signature processing

In this section we show how to configure the CICS pipeline to receive and send
signed SOAP messages, and to run the placeOrder request under the user ID
associated with the WebSphere certificate contained in the request message.

Example 10-19 shows the pipeline configuration file that we used for the
signature test scenario. It includes the message handler DFHWSSE1, and the
configuration information for the handler.

Example 10-19 Pipeline config file, ITSO_7206_wssec_signature_provider.xml

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

 <transport>
 <default_transport_handler_list>
 <handler>
 <program>CIWSMSGH</program>
 <handler_parameter_list/>
 </handler>

</default_transport_handler_list>
 </transport>
 <service>

<service_handler_list>
<handler>

 <program>SNIFFER</program>
 <handler_parameter_list/>
 </handler>

<wsse_handler>
<dfhwsse_configuration version="1">
<authentication mode="signature">
<algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
</authentication>
<expect_signed_body/>
<sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>CICSCERT</certificate_label>
</sign_body>

</dfhwsse_configuration>

 Chapter 10. Security scenarios using CICS WS-Security support 375

</wsse_handler>
</service_handler_list>
</terminal_handler>
<cics_soap_1.2_handler/>

 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The <wsse_handler> element shown in Example 10-19 contains a
<dfhwsse_configuration> element that specifies configuration information for
DFHWSSE1.

� The <authentication mode="signature"> element specifies that inbound
messages must contain an X.509 certificate in a BinarySecurityToken.

If <authentication mode="signature"> is specified then the client X.509
certificate must be imported to RACF and attached to the CICS key ring since
CICS runs the service request under the user ID associated with the client
certificate.

If <authentication mode="signature"> is not specified, and if the complete
X.509 certificate is included in the request message, then the client X.509
certificate does not need to be imported to RACF since the public key
required to validate the signature is extracted from the X.509 certificate
contained in the SOAP message.

� <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm> is
a child element of the <authentication> element that specifies the URI of the
signature algorithm.

Important: If the <wsse-handler> element is included in a provider pipeline
configuration, CICS processes signed SOAP messages by default.

Note: CICS does not support certificate name filtering for signed SOAP
messages.

Note: We found that it is necessary to specify a valid signature algorithm in
service provider mode even if the algorithm used in the decryption of the
signature is the one specified in the SOAP message rather than in the
pipeline configuration file.

376 Implementing CICS Web Services

� The <expect_signed_body/> element indicates that the <body> of the
inbound message must be signed. If the body of an inbound message is not
correctly signed, CICS rejects the message with a security fault.

We specify <expect_signed_body/> because we want to prevent the
placeOrder service being accessed unless the body of the SOAP message is
signed.

� The <sign_body/> element indicates that the <body> of the outbound
message must be signed, and provides information about how the message
is to be signed.

� <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm> is
a child element of the <sign-body> element which specifies the URI of the
signature algorithm to be used for signing the response message. This is the
only signature algorithm supported by CICS for outbound messages.

� <certificate_label>CICSCERT</certificate_label> is a child element of the
<sign-body> element that specifies the label associated with the CICS
certificate installed in RACF. This certificate contains the PKDS key label of
the private key that is used to sign the message response. The public key
associated with the private key is then sent in the SOAP response message,
allowing the signature to be validated by WebSphere.

We completed the CICS configuration by changing the pipeline PIPEWSSE
(used for the placeOrder service) to specify the pipeline configuration file that we
have created for signature processing. We used the following CEDA command:

CEDA ALTER PIPELINE(PIPEWSSE) GROUP(S3C1EXWS)
Configfile(/CIWS/S3C1/config/ITSO_7206_wssec_signature_provider.xml)

We then re-installed the changed pipeline resource definition.

Attention: During our tests we encountered codepage issues when
specifying the <algorithm> element. The configuration file should be coded
in an English encoding such as EBCDIC-CP-US. When using a terminal
emulation session with a non-English codepage, we noticed that the
symbol ‘#’ was a different hex value in the non-English codepage than in
the EBCDIC-CP-US codepage (in which the symbol ‘#’ is x'7B'). This
resulted in error DFHPI0723 with the message:

'The value for the algorithm specified for the authentication is
not supported'.

We recommend that you use a terminal emulation session with an English
codepage when editing the pipeline configuration file.

 Chapter 10. Security scenarios using CICS WS-Security support 377

10.5.3 Testing the signature scenario

An example of the signed request message sent by WebSphere is shown in
Example 10-20.

Example 10-20 Signed SOAP request message

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssec
urity-secext-1.0.xsd">
<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-s
oap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509v3" wsu:Id="x509bst_1"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">MIICQDCCAamgAwIBAgIERNo0dzANBgkqhkiG9w0BAQUFADB
ZMQswCQYDVQQGEwJVUzEJMAcGA1UEERMAMQkwBwYDVQQIEwAxCTAHBgNVBAcTADEMMAoGA1
UEChMDSUJNMQkwBwYDVQQLEwAxEDAOBgNVBAMTB3dhc2NlcnQwHhcNMDYwODA5MTkxNjA3W
hcNMDcwODA5MTkxNjA3WjBZMQswCQYDVQQGEwJVUzEJMAcGA1UEERMAMQkwBwYDVQQIEwAx
CTAHBgNVBAcTADEMMAoGA1UEChMDSUJNMQkwBwYDVQQLEwAxEDAOBgNVBAMTB3dhc2NlcnQ
wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAIEMtFDoacSSCWTqNYVPDd3yMGMIq4GpSN
UVajzLdW+hlNIgaKzZfhiOo6BJxQcD+Ty+pKRSlbPLyG9B+9LGo+O6dNJmAXDVGNQiSgkNY
xl12oWRBCJciU5nBIB3a+TUOe2wYEak+rJ3MblB/TjA3ottykjft0yjRohl97wT65j/AgMB
AAGjFTATMBEGA1UdDgQKBAhJYPbuSs76STANBgkqhkiG9w0BAQUFAAOBgQBP1SEGGNW4ruu
a80hItdXERBA356OnzLwO5n+eb2JdZuOilyYHNGfp8+k4b+9F9Dj0PzGEJzgspqMTraHKOJ
P1co7yIG/RUuX+gicGN+dI2A8frLsIS2IUMB66FqQR/uA0YjGJCuYfzKm2Cc0PUFTQYqMMk
nuj+DBTcAoDp+GP4Q==

</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethodAlgorithm="http://www.w3.org/2001/10/xml-ex
c-c14n#">
<ec:InclusiveNamespaces PrefixList="xsi xsd soapenv soapenc wsse
ds" xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" />

</ds:CanonicalizationMethod>
<ds:SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<ds:Reference URI="#wssecurity_signature_id_0">
<ds:Transforms>
<ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<ec:InclusiveNamespaces PrefixList="xsi xsd soapenv soapenc wsu
p635" xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" />

378 Implementing CICS Web Services

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#sha1" />

<ds:DigestValue>fh93yxjxoa8CwZ9ROqH2mleWdY0=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>
<ds:SignatureValue>I53NN8zcbfRmnz3LwVf3vZeFFDpp2WAkgBU9+Sfu/I71G3Wh8tsH
3fRngwt7qLmRH3qGzjpsMWCbxKssyOP+drSyBwvUIz4FukxyJ5pASVot7qPNRfj9pG0/Y
OTu26z0W9GQScljFqRpl6+tNZqHwLiMfpmQyJggIF8izQU8nkQ=

</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference>
<wsse:Reference URI="#x509bst_1"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-ws
s-x509-token-profile-1.0#X509v3" />

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</soapenv:Header>
<soapenv:Body wsu:Id="wssecurity_signature_id_0"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuri
ty-utility-1.0.xsd">
<p635:DFH0XCMN xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">
<p635:ca_request_id>01ORDR</p635:ca_request_id>
<p635:ca_return_code>0</p635:ca_return_code>
<p635:ca_response_message>[C@752a752a</p635:ca_response_message>
<p635:ca_order_request>
<p635:ca_userid>luis1106</p635:ca_userid>
<p635:ca_charge_dept>itso</p635:ca_charge_dept>
<p635:ca_item_ref_number>10</p635:ca_item_ref_number>
<p635:ca_quantity_req>1</p635:ca_quantity_req>
<p635:filler1 xsi:nil="true" />

</p635:ca_order_request>
</p635:DFH0XCMN>

</soapenv:Body>
</soapenv:Envelope>

� The header includes the mustUnderstand="1" attribute, which indicates that
either this header must be processed or a SOAP fault thrown.

� The <wsse:BinarySecurityToken> contains the base64binary encoding of the
WebSphere certificate. This includes the public key that CICS uses to verify
the signature.

� The <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" /> element
specifies the algorithm used to sign the message digest.

 Chapter 10. Security scenarios using CICS WS-Security support 379

� The <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#
sha1" /> element specifies the algorithm used to produce the message
digest.

� The <ds:DigestValue> element contains the value of the message digest.

� The <ds:SignatureValue> element contains the value of the signed message
digest. It is the digest value encrypted with the requester’s private key.

Figure 10-34 shows the ORDR transaction running with the user ID WEBAS1
(the user ID associated with the WebSphere certificate), while the CPIH
transaction continues to execute with the CIWSNW user ID.

Figure 10-34 ORDR executing with user ID associated with WebSphere certificate

The corresponding signed response message sent by CICS is shown in
Example 10-21.

Example 10-21 Signed SOAP response message

<?xml version="1.0" encoding="UTF8" standalone="no" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header>
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis
-200401-wss-wssecurity-secext-1.0.xsd" SOAP-ENV:mustUnderstand="1"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
-soap-message-security-1.0#Base64Binary"

INQUIRE TASK
STATUS: RESULTS - OVERTYPE TO MODIFY
 Tas(0000055) Tra(CPIH) Sus Tas Pri(001)
 Sta(U) Use(CIWSNW) Uow(BF3C2E9E2114284E) Hty(RZCBNOTI)
 Tas(0000056) Tra(ORDR) Sus Tas Pri(001)
 Sta(U) Use(WEBAS1) Uow(BF3C2E9E24801B8B) Hty(EDF)
 Tas(0000058) Tra(CEDF) Fac(E024) Sus Ter Pri(001)
 Sta(SD) Use(NIGELW) Uow(BF3C2E9E28D4A149) Hty(ZCIOWAIT)
 Tas(0000059) Tra(CEMT) Fac(E025) Run Ter Pri(255)
 Sta(TO) Use(NIGELW) Uow(BF3C2EA64198CCCE)

SYSID=S3C1 APPLID=A6POS3C1

380 Implementing CICS Web Services

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x5
09-token-profile-1.0#X509"
wsu:Id="x509cert00">MIIC4DCCAkmgAwIBAgIBADANBgkqhkiG9w0BAQUFADB8MQswC
QYDVQQGEwJVUzERMA8GA1UECBMITkVXIFlPUksxETAPBgNVBAcTCEVORElDT1RUMQ0w
CwYDVQQKEwRJVFNPMQ0wCwYDVQQLEwRQU1NDMRYwFAYDVQQMEw1NQURFIFVQIFRJVEx
FMREwDwYDVQQDEwhDSUNTQ0VSVDAeFw0wNTAxMDEwNDAwMDBaFw0xNTAxMDEwMzU5NT
laMHwxCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhORVcgWU9SSzERMA8GA1UEBxMIRU5ES
UNPVFQxDTALBgNVBAoTBElUU08xDTALBgNVBAsTBFBTU0MxFjAUBgNVBAwTDU1BREUg
VVAgVElUTEUxETAPBgNVBAMTCENJQ1NDRVJUMIGfMA0GCSqGSIb3DQEBAQUAA4GNADC
BiQKBgQC5EHPavGQtIkVbP0+qNaBFF79tNk3aXDur3Pup4KIycA7JueLtm6sLOyQDNF
snZgw8llW97EUKIsT55jwYHZcGSR2TjNxswdGrt4rt8EPgwtN3WSl609uWrhVTug4Uu
MEOXpivdcNDTwRbQgvMtXdOKOWvdSmrbEwBiB4LSdm2pQIDAQABo3IwcDA/BglghkgB
hvhCAQ0EMhMwR2VuZXJhdGVkIGJ5IHRoZSBTZWN1cml0eSBTZXJ2ZXIgZm9yIHovT1M
gKFJBQ0YpMA4GA1UdDwEB/wQEAwIEUDAdBgNVHQ4EFgQU6ztx+OkFbSysc93LQBZkSh
ymaPgwDQYJKoZIhvcNAQEFBQADgYEATtVMjr2pTz47TF92RoTpUneZxq2eMz7LJJSLD
u37ya+qCLaxbTPB7XfKgqn+egYyYXDYi4mIsfpRq3MHBM/nFIvWtPONpcmCeZ8hfHlq
Gp3mze+NfuRV4iLpXtHJR9rDPTQsvgwpuIrWfeMX+/IrxYXtY39lh4L78G8s/CQj23U
=

</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:SignedInfo
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<c14n:InclusiveNamespaces
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"
PrefixList="ds wsu xenc SOAP-ENV soapenc soapenv xsd xsi "/>

</ds:CanonicalizationMethod>
<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<ds:Reference URI="#TheBody">
<ds:Transforms>
<ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
<c14n:InclusiveNamespaces
xmlns:c14n="http://www.w3.org/2001/10/xml-exc-c14n#"
PrefixList="wsu SOAP-ENV soapenc soapenv xsd xsi "/>

</ds:Transform>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>tLbsdlSPsgrzGZ5bDOdtyRoHDW0=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

 Chapter 10. Security scenarios using CICS WS-Security support 381

<ds:SignatureValue>Zyxxxq/n7yDaGDYwsIIS21MFbDdMWNruFJ/tT5HuWiODb6N7kS
DFccM27mQb1uEVFjkNjkKzOn0LNWgIzGqoBU4cV3hu6V0Kr4Qg8CnwL06yDpyQYYC/e
5rcjfCQUycgJ1JVKdqd+ERN9hwbXX3wZZX3PVZSH5Qs0mH/aJ0eSME=

</ds:SignatureValue>
<ds:KeyInfo>
<wsse:SecurityTokenReference><wsse:Reference URI="#x509cert00"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509"/>

</wsse:SecurityTokenReference>
</ds:KeyInfo>

</ds:Signature>
</wsse:Security>

</SOAP-ENV:Header>
<SOAP-ENV:Body
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="TheBody">
<DFH0XCMNResponse
xmlns="http://www.DFH0XCMN.DFH0XCP5.Response.com">
<ca_request_id>01ORDR</ca_request_id>
<ca_return_code>0</ca_return_code>
<ca_response_message>ORDER SUCESSFULLY PLACED
</ca_response_message>
<ca_order_request>
<ca_userid>luis1106</ca_userid>
<ca_charge_dept>itso </ca_charge_dept>
<ca_item_ref_number>10</ca_item_ref_number>
<ca_quantity_req>1</ca_quantity_req>
<filler1>...</filler1>

</ca_order_request>
</DFH0XCMNResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The <wsse:BinarySecurityToken> contains the base64binary encoding of the
CICS certificate. This includes the public key that WebSphere uses to verify the
signature. The rest of the SOAP headers in the response message are similar to
those in the request message.

SOAP fault messages
In this section we show some of the SOAP faults that you may see when testing
signature processing.

� Figure 10-35 shows the browser response when CICS is expecting a signed
message but the service requester does not sign the request.

382 Implementing CICS Web Services

Figure 10-35 DFHWSSE1 SOAP fault - X.509 certificate not known

The SOAP fault for this message, shown in Example 10-22, highlights that
CICS is expecting a BinarySecurityToken, which is not sent by WebSphere.

Example 10-22 DFHWSSE1 SOAP fault - X.509 certificate not known

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>wsse:InvalidSecurity</faultcode>
<faultstring>ERROR: Caught *XSECException* during operation:
processMessage()</faultstring>

<detail>
<e:myfaultdetails xmlns:e="http://www.ibm.com/software/htp/cics/wssec">
<message>SecurityContext::processCredentials - Expected
BinarySecurityToken does not exist</message>

<errorcode>1</errorcode>
</e:myfaultdetails>

</detail>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 Chapter 10. Security scenarios using CICS WS-Security support 383

� Figure 10-36 shows the browser response when the client certificate is not
associated to a user ID.

Figure 10-36 DFHWSSE1 SOAP fault - X.509 certificate not known

The SOAP fault for this message, shown in Example 10-23, highlights that
there is no RACF user ID defined for the WebSphere certificate.

Example 10-23 DFHWSSE1 SOAP fault - X.509 certificate not known

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>wsse:FailedAuthentication</faultcode>
<faultstring>ERROR: Caught *XSECException* during operation:
processMessage()</faultstring>

<detail>
<e:myfaultdetails xmlns:e="http://www.ibm.com/software/htp/cics/wssec">
<message>XSECKeyInfoResolverZos::extractUserId - Either no RACF user
ID is defined for this certificate, or the certificate status is
NOTRUST.</message>

<errorcode>1</errorcode>
</e:myfaultdetails>

</detail>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

384 Implementing CICS Web Services

10.6 Encrypting a SOAP message

To provide confidentiality we can encrypt the contents of a SOAP message using
XML encryption. If the SOAP message is encrypted, only a service consumer
that knows the key for confidentiality can decrypt and read the message.

CICS supports XML encryption in both service provider and service requester
modes.

In this section we show how a SOAP message can be encrypted by WebSphere
Application Server and how the SOAP message can be decrypted by CICS. We
also show how the response message can be encrypted by CICS and decrypted
by WebSphere. This scenario is shown in Figure 10-37.

Figure 10-37 Enabling CICS WS-Security support for encryption

1. The WebSphere application server generates a random secret key and uses
it to encrypt the SOAP message body. It also encrypts the secret key with the

Service requester
 Service provider

Response Response

A
P
P

Request Request

WebSphere
Application

Server

 CICS TS V3.1

HTTP

Browser

SOAP/HTTP

O
R
D
R

C
P
I
H

Windows XP
 mikee01

z/OS V1.7

P
I
P
E
W
S
S
E

<soapenv:Body>
 <EncryptedData xmlns="..." Id="wssecurity_encryption_id_xxxx"
 Type="http://www.w3.org/2001/04/xmlenc#Content">
 <EncryptionMethod Algorithm="..."></EncryptionMethod>
 <CipherData>

 <CipherValue>6LPA6MFTI5dc2xtnjiiJ...</CipherValue>
 </CipherData>

 </EncryptedData>
</soapenv:Body>

Encrypt message with random secret key
Encrypt secret key with public key of CICS

certificate

Decrypt secret key
with private key of
WebSphere
certificate
Decrypt message
response with
secret key

Decrypt secret key with private
key of CICS certificate
Decrypt message with secret key

Encrypt message
response with random
secret key
Encrypt secret key
with public key of
WebSphere certificate

1

4

2

3

 Chapter 10. Security scenarios using CICS WS-Security support 385

CICS public key so only the CICS region can decrypt it. Both the encrypted
data and the encrypted secret key are attached to the SOAP message.

2. CICS decrypts the secret key with its private key and uses it to decrypt the
SOAP body.

3. CICS then encrypts the SOAP body of the response message with a different
randomly generated secret key. It also encrypts the secret key with the public
key of WebSphere so only the WebSphere application server can decrypt it.

4. The WebSphere application server decrypts the secret key with its private key
and uses it to decrypt the SOAP body of the message response.

At a high level, the steps to enable support for XML encryption processing are
the following:

� Configure the service requester for encryption.

� Configure CICS for encryption.

� Test the encryption test scenario.

Step-by-step details to accomplish these tasks are presented in the following
sections.

Recommendation: In our encryption scenario we use the same key pairs that
we used in the signature scenario. In a production environment, however, we
recommend that you use different key pairs for signature and encryption
processing.

Important: There is a significant performance overhead when using
WS-Security and XML encryption. See “Comparison of transport level and
SOAP message security” on page 269 for recommendations on choosing
between WS-Security and SSL when implementing a confidentiality security
solution.

Note: In our encryption test scenario we encrypt both the request and
response messages. It is also possible to encrypt only the request, or to
encrypt only the response. Equally, it is possible to both encrypt and sign a
message request or response.

386 Implementing CICS Web Services

10.6.1 Configuring the service requester for encryption

In this section we show how to configure the client J2EE application in order to
send an encrypted SOAP message. At a high level the steps are:

� Import the Web service client application into AST.

� Configure the request generator for encryption.

� Configure the response consumer for encryption.

� Re-deploy the Web Service client application.

Import the Web service client application into AST
To configure our J2EE application for encryption, we used the IBM WebSphere
Application Server Toolkit V6.1 (AST).

See “Importing the base application” on page 333 for instructions on how to
import the application. For the signature test scenario, we specified:

� The name of the workspace folder as:
C:\AST\CatalogSec2\CatalogSec2Encrypt

� The name of the EAR project as:
CatalogSec2Encrypt

Configure the request generator for encryption
Perform the following steps to configure the request generator for encryption:

1. Expand the Dynamic Web Project (CatalogSec2Web) in the Project
Explorer and open (double-click) the deployment descriptor as shown in
Figure 10-38.

 Chapter 10. Security scenarios using CICS WS-Security support 387

Figure 10-38 Opening the CatalogSec2Web Deployment Descriptor

2. Go to the WS Extension page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Request Generator Configuration.

c. Expand Confidentiality and click Add. In the Confidentiality dialog box
(Figure 10-39) enter the following data:

• Enter a Confidentiality name, for example, conf_body.

• Select the order in which the encryption is generated. Multiple
confidentiality parts can be specified, and you have to specify the order
of generating the encryption. In our case, we select 1.

• Click Add for Message Parts, and one confidentiality part is created.
The default created part is the SOAP body. We accepted the default.

Note: The WS-Security runtime of WebSphere V6.1 supports multiple
signature and encryption parts in one SOAP message. For multiple
signature and encryption parts, you need to specify the processing
order. For example, if you want to sign and encrypt the SOAP body, you
should specify 1 in the Integrity dialog and 2 in the Confidentiality
dialog.

388 Implementing CICS Web Services

d. Click OK and save the configuration by pressing Ctrl+s.

Figure 10-39 Confidentiality dialog in the WS Extensions page

3. Open the WS Binding page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Security Request Generator Binding Configuration.

c. Expand Key Locators and click Add. In the Key Locator dialog box
(Figure 10-40) enter the following data:

• Enter a Key locator name, for example, gen_encklocator.

• Select KeyStoreKeyLocator as the Key locator class.

d. Select Use key store. For key-related information refer to “Importing the
base application” on page 360. Make the appropriate entries. In our case
the values were:

Password: itso
Path: C:\SG247206\keystore\was.jks
Type: JKS

e. Click Add under Key and make the appropriate entries. Ours were:

Alias: CICSCERT
Key password: itso
Key name: CN=CICSCERT, O=ITSO, C=US

f. Click OK.

Note: This is the key name of the CICS certificate. The public key of
this certificate is used by WebSphere to encrypt the request message.

 Chapter 10. Security scenarios using CICS WS-Security support 389

Figure 10-40 Key Locator dialog in the WS Binding page

4. Expand Key Information and click Add. In the Key Information dialog box
(Figure 10-41) enter the following data:

a. Enter a Key information name, for example, gen_enckeyinfo.

b. Select KEYNAME as the Key information type. The Key information class
is filled automatically. The Key information types are:

• STRREF Direct reference

• EMB Embedded reference

• KEYID Key identifier reference

• KEYNAME Key name reference

• X509ISSUER x.509 issuer and serial number reference

We specify KEYNAME because we want WebSphere to send the key
information using the distinguished name of the CICS certificate.

390 Implementing CICS Web Services

c. Select Use key locator and select gen_encklocator from the Key locator
drop-down list. Select the predefined Key name CN=CICSCERT,
O=ITSO, C=US.

d. Click OK.

Figure 10-41 Key Information dialog in the WS Binding page

5. Expand Encryption Information and click Add. In the Encryption
Information dialog box (Figure 10-42) enter the following data:

a. Enter an Encryption Name, for example, enc_body.

b. Enter a Key information name, for example, enc_keyinfo.

c. Select gen_enckey as a Key information element.

d. Select conf_body as a Confidentiality part.

e. Allow the encryption algorithms to default.

f. Click OK.

Recommendation: Use of KEYNAME for the key information type
allows CICS to reference the RACF certificate directly because each
certificate has a unique distinguished name and RACF provides an API
for accessing the certificate using the distinguished name.

 Chapter 10. Security scenarios using CICS WS-Security support 391

Figure 10-42 The Encryption Information dialog in the WS Binding page

6. Save the configuration by pressing Ctrl+s.

Configure the response consumer for encryption
In this section we show how to configure the client J2EE application in order to
receive an encrypted SOAP message. To do this, perform the following steps:

1. Expand the Dynamic Web Project (CatalogSec2Web) in the Project
Explorer and open (double-click) the deployment descriptor.

2. Go to the WS Extension page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Response Consumer Configuration.

c. Expand Required Confidentiality and click Add. In the Required
Confidentiality dialog box (Figure 10-43) enter the following data:

• Enter a Required confidentiality name, for example, reqconf_body.

• Select the Usage type, either Required or Optional. If the usage type is
Required, an unencrypted request message throws a SOAP fault. If the

392 Implementing CICS Web Services

usage type is Optional, an unencrypted message is received. Select
Required.

d. Click Add for Message Parts, and one message part is created. The
default created part is the SOAP body. We accepted the default.

e. Click OK and save the configuration by pressing Ctrl+s.

Figure 10-43 Required Confidentiality in the WS Extension page for response consumer

3. Open the WS Binding page.

a. Select the service/DFH0XCMNService3 reference (for our Order service)
and DFH0XCMNPortPO (the port binding for the service reference).

b. Expand the Security Response Consumer Binding Configuration.

c. Expand Token Consumer and click Add. In the Token Consumer dialog
box (Figure 10-44) enter the following data:

• Enter a Token consumer name, for example, con_enctcon.

• Select com.ibm.wsspi.wssecurity.token.X509TokenConsumer as
the Token consumer class.

• Select Use value type.

• Select X509 certificate token. The Local name is selected
automatically.

• Select Use jaas.config and enter system.wssecurity.X509BST as the
jaas.config name.

• Select Trust any certificate.

Note: It is important to specify X509 certificate token for the token value
type. An error occurred in our test when we specified X509 certificate
token v3.

 Chapter 10. Security scenarios using CICS WS-Security support 393

d. Click OK.

Figure 10-44 Token Consumer dialog in the WS Binding page for response consumer

4. Expand Key Locators and click Add. In the Key Locator dialog box
(Figure 10-45) enter the following data:

a. Enter a Key locator name, for example, con_encklocator.

394 Implementing CICS Web Services

b. Select KeyStoreKeyLocator as the Key locator class.

c. Select Use key store and make the appropriate entries. Ours were:

Password: itso
Path: C:\SG247206\keystore\was.jks
Type: JKS

d. Click Add under Key and make the appropriate entries. Ours were:

Alias: wascert_rsa
Key password: itso
Key name: CN=wascert, O=IBM, C=US

e. Click OK.

Figure 10-45 Key Locator dialog in the WS Binding page for response consumer

Note: This is the key name of the WebSphere certificate. The public
key of this certificate is used by CICS to encrypt the response
message.

 Chapter 10. Security scenarios using CICS WS-Security support 395

5. Expand Key Information and click Add. In the Key Information dialog box
(Figure 10-46) enter the following data:

a. Enter a Key information name, for example, con_enckeyinfo.

b. Select STRREF as the Key information type. The Key information class is
filled automatically.

We specify STRREF because CICS always sends the complete certificate
when encrypting an outbound message. Therefore, the WebSphere
response consumer must be configured to expect the WebSphere
certificate in the security header of the response message.

c. Select Use key locator and select con_encklocator from the Key locator
drop-down list. Select the predefined Key name CN=wascert, O=IBM,
C=US.

d. Select Use token and select con_enctcon from the Token drop-down list.

e. Click OK.

Figure 10-46 Key Information dialog in the WS Binding page for response consumer

6. Expand Encryption Information and click Add. In the Encryption
Information dialog box (Figure 10-47) enter the following data:

a. Enter a Encryption Name, for example, enc_body.

396 Implementing CICS Web Services

b. Click Add in Encryption key information and make the appropriate entries:

• Enter a Key information name, for example, enc_kinfo.

• Select the con_enckeyinfo from the Key information element
drop-down list.

c. Select reqconf_body as a Required Confidentiality part.

d. Allow the encryption algorithms to default.

e. Click OK.

Figure 10-47 Encryption Information dialog in WS Binding page for Response Consumer

7. Save the configuration by pressing Ctrl+s.

 Chapter 10. Security scenarios using CICS WS-Security support 397

Redeploying the Web service application
After configuring an encryption security constraint for the service requester
application, we exported a new EAR file called
CatalogSec2_WS-Security_Encryption.ear. We followed the same process that
is described in “Installing the service requester” on page 87 to deploy the
CatalogSec2_WS-Security_Encryption.ear.

For further information about configuring WS-Security in WebSphere refer to
Web Services Handbook for WebSphere Application Server 6.1, SG24-7257.

10.6.2 Configuring CICS for encryption

In this section we show how to configure the CICS pipeline to receive and send
encrypted SOAP messages.

Example 10-24 shows the pipeline configuration file that we used for the
encryption test scenario. It includes the message handler DFHWSSE1, and the
configuration information for the handler.

Example 10-24 Pipeline config file, ITSO_7206_wssec_signature_provider.xml

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

 <transport>
 <default_transport_handler_list>
 <handler>
 <program>CIWSMSGH</program>
 <handler_parameter_list/>
 </handler>

</default_transport_handler_list>
 </transport>
 <service>

<service_handler_list>
<handler>

 <program>SNIFFER</program>
 <handler_parameter_list/>
 </handler>

<wsse_handler>
<dfhwsse_configuration version="1">
<expect_encrypted_body/>
<encrypt_body>
<algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc
</algorithm>
<certificate_label>WASCERT</certificate_label>

398 Implementing CICS Web Services

</encrypt_body>
</dfhwsse_configuration>

</wsse_handler>
</service_handler_list>
</terminal_handler>
<cics_soap_1.2_handler/>

 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

� The <wsse_handler> element contains a <dfhwsse_configuration> element
that specifies configuration information for DFHWSSE1.

� The <expect_encrypted_body/> element indicates that the <body> of the
inbound message must be encrypted. If the body of an inbound message is
not correctly encrypted, CICS rejects the message with a security fault.

We specify <expect_encrypted_body/> because we want to prevent the
placeOrder service being accessed unless the body of the SOAP message is
encrypted.

� The <encrypt_body/> element indicates that the <body> of the outbound
message will be encrypted, and provides information about how the message
is to be encrypted.

� <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
is a child element of the <encrypt-body> element that specifies the URI of the
encryption algorithm to be used for encrypting the response message. We
specified the triple-DES algorithm.

� <certificate_label>WASCERT</certificate_label> is a child element of the
<encrypt-body> element that specifies the label associated with the
WebSphere certificate installed in RACF. This certificate contains the public
key that is used by CICS to encrypt the secret (or symmetric) key. The
encrypted secret key is then sent in the SOAP message response.

We completed the CICS configuration by changing the pipeline PIPEWSSE
(used for the placeOrder service) to specify the pipeline configuration file that we
have created for encryption processing. We used the following CEDA command:

CEDA ALTER PIPELINE(PIPEWSSE) GROUP(S3C1EXWS)
Configfile(/CIWS/S3C1/config/ITSO_7206_wssec_encryption_provider.xml)

Important: The encryption algorithm must match the data encryption
method algorithm specified in the WebSphere application service response
consumer configuration.

 Chapter 10. Security scenarios using CICS WS-Security support 399

We then re-installed the changed pipeline resource definition.

10.6.3 Testing the encryption scenario

An example of an encrypted SOAP request message for the placeOrder service
is shown in Example 10-25.

Example 10-25 Encrypted SOAP request message

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd">
<EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"
/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName>CN=CICSCERT, T=Ciwss3c1-cert, OU=PSSC, O=ITSO,
L=ENDICOTT, ST=NEW YORK, C=US</ds:KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>rN8nTy+IlIPN/g4ezibEMaxtnfxEZzQBCGgQQ8HSRMbqy6uy6bhhsty9
4CZuxDzdKV53vSAxprBgrEYExAIB2Ynn33xo8X4SkYlKKkV/BdiUSjC3x+yEYUKKTDx
aT4Swi/OINkmxOrT9KU2vSIoqaYA+PTHGn336ldbcDGZjdPo=</CipherValue>

</CipherData>
<ReferenceList>
<DataReference URI="#wssecurity_encryption_id_29" />

</ReferenceList>
</EncryptedKey>

</wsse:Security>
</soapenv:Header>
<soapenv:Body>
<EncryptedData Id="wssecurity_encryption_id_29"
Type="http://www.w3.org/2001/04/xmlenc#Content"
xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />

<CipherData>
<CipherValue>y3FFMZ4ckOZjfpydskgrNHQP9PrFy9kdT9axDeKjqbyj1j6eNeE6nmPpt1
/UvpGKsEwBchUWvIbIuanXujgc9MGjzcX7lD+xYjAgczoCrykXhO/l53eHgNp445BkPQl
plV7lea3Q957FLHq1XCa7wIWMwzxZnTkdjzZg8bwKDNJElDNRJCDjtP7wcxK17rJTWKrg
lRx8bMBWUzEcrHDfFK/Y4FRFmyL9FDKRZFIDnYQ6NSJXqxULZbW9p7vtQmkSvB0teF44X
iDouMEJCl9Sk6Cf6Nd3xhaxidt2EZYGGK8zrsL8mWrmLPQxfeHxwGuQ6PyM0DsvxsPdQN
m2/s43Hov4VD0YgvWcPd8Q6OONoPcSzPcJoi/kHZnxya7b9vNV1obe+IXX8sej3qFqByW

400 Implementing CICS Web Services

uUoEz6nwqDpbHltUfsGUVp36VHUuo91Q7CTcLgLnsZbWLFSqdZLNeRgKIygpVueThLIIp
ihWNnopZbC9LAag3KmddnCWrw2zw1GV1+alEI4g8rQq4EtlIY5MNqqyDXVyzy2dNn0TiI
l3fVWOU4r3/Lhl7Yz2HQU8NbDqSEnWptzBJ6xwYD9AcEzQY+kBvuC4Z5AHJMzVHhkV0cu
glhNjtSxlrcI8K7oVI+HNYL91D6saxF6Aq24zwsoPZJI8F0ujWfUCh+G4qzn388u1TnXd
y2bfpZlo4vpE+r90YSbZitpqb

</CipherValue>
</CipherData>

</EncryptedData>
</soapenv:Body>

</soapenv:Envelope>

� The header includes the mustUnderstand="1" attribute, which indicates that
either this header must be processed or a SOAP fault thrown.

� The <EncryptionMethod Algorithm="http://www.w3.org/2001/04/
xmlenc#rsa-1_5"/> child element of the <EncryptedKey> element in the SOAP
header specifies the algorithm used to encrypt the secret key.

� The <ds:KeyName> element contains the distinguished name that uniquely
identifies the CICS certificate that has been used to encrypt the message.
This is used by CICS to identify the CICSCERT X.509 certificate, the private
key of which CICS uses to decrypt the message.

� The <CipherValue> element in the SOAP header contains the encrypted
secret key that was used to encrypt the message.

� The <EncryptionMethod Algorithm="http://www.w3.org/2001/04/
xmlenc#tripledes-cbc"/> child element of the <EncryptedData> element in
the SOAP body specifies the algorithm used to encrypt the message.

� The <CipherValue> element in the SOAP body contains the encrypted
message.

The corresponding encrypted response message sent by CICS is shown in
Example 10-26.

Example 10-26 Encrypted SOAP response message

<?xml version="1.0" encoding="UTF8" standalone="no" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header>
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis
-200401-wss-wssecurity-secext-1.0.xsd" SOAP-ENV:mustUnderstand="1"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse

 Chapter 10. Security scenarios using CICS WS-Security support 401

curity-utility-1.0.xsd"
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
-soap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss
-x509-token-profile-1.0#X509"
wsu:Id="x509cert00">MIICQDCCAamgAwIBAgIERNo0dzANBgkqhkiG9w0BAQUFADBZM
QswCQYDVQQGEwJVUzEJMAcGA1UEERMAMQkwBwYDVQQIEwAxCTAHBgNVBAcTADEMMAoG
A1UEChMDSUJNMQkwBwYDVQQLEwAxEDAOBgNVBAMTB3dhc2NlcnQwHhcNMDYwODA5MTk
xNjA3WhcNMDcwODA5MTkxNjA3WjBZMQswCQYDVQQGEwJVUzEJMAcGA1UEERMAMQkwBw
YDVQQIEwAxCTAHBgNVBAcTADEMMAoGA1UEChMDSUJNMQkwBwYDVQQLEwAxEDAOBgNVB
AMTB3dhc2NlcnQwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAIEMtFDoacSSCWTq
NYVPDd3yMGMIq4GpSNUVajzLdW+hlNIgaKzZfhiOo6BJxQcD+Ty+pKRSlbPLyG9B+9L
Go+O6dNJmAXDVGNQiSgkNYxl12oWRBCJciU5nBIB3a+TUOe2wYEak+rJ3MblB/TjA3o
ttykjft0yjRohl97wT65j/AgMBAAGjFTATMBEGA1UdDgQKBAhJYPbuSs76STANBgkqh
kiG9w0BAQUFAAOBgQBP1SEGGNW4ruua80hItdXERBA356OnzLwO5n+eb2JdZuOilyYH
NGfp8+k4b+9F9Dj0PzGEJzgspqMTraHKOJP1co7yIG/RUuX+gicGN+dI2A8frLsIS2I
UMB66FqQR/uA0YjGJCuYfzKm2Cc0PUFTQYqMMknuj+DBTcAoDp+GP4Q==

</wsse:BinarySecurityToken>
<xenc:EncryptedKey xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>
<wsse:Reference URI="#x509cert00"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-x509-token-profile-1.0#X509"/>

</wsse:SecurityTokenReference>
</ds:KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>SLqhQ7hIdj2CugP94jRO63DA6uEJO82NBVsrF8SKWLyYCsaRJ
mocHahVoUAqTeyYCr7ihPSJifGmC6bbqkxOvLA5nSuKC4IPSzPdK4k7BqB025wyrJ
2RCWmKm3M0z6IDRwXvwn9U/0gfsUuXEU3+9CwmddLrM9KisCC8BndvCHE=

</xenc:CipherValue>
</xenc:CipherData>
<xenc:ReferenceList>
<xenc:DataReference URI="#Enc1"/>

</xenc:ReferenceList>
</xenc:EncryptedKey>

</wsse:Security>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
Id="Enc1" Type="http://www.w3.org/2001/04/xmlenc#Content">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<xenc:CipherData>

402 Implementing CICS Web Services

<xenc:CipherValue>zZJhly8C0D1lRF7aSd53yJzi+6XYv4kCw/+y+s9rQm7/yXzK41W
J6frbz4hv/EN37yYRRzhMJaMz5aTI/wmj5ztTLeUev5J9DNxxGovtBVRiM4iJts2Kby
QUw//Ig7e7hotYAoHas2lrpR0V9tnJUuhkgbLrzOr7J6SsyPwxl6vJLC8txDrJiZS0E
lAKt9wcDesozuCBJ23kj6A2qwAp2BJzXmVr0UhXVBwmkjqRQn+K5gq/fpnhZwnXSWmM
n6b0tYhc1a9QkzztJUTdO2PmXjxZEGu6GCt/amh9RxqkmwPwfX22biWUbbHjLrQD4VU
e3MJnLeimdmP9fENoJ0f4Tp/5Cf8hXhdULrdnlKiHFHiSLG3HaSHkBPabWmUMNkXdjk
p/b2VxfmqRuLuEXIh1qlLDN+oGnQKPQUI9nBt7PNZ4acoFtdjRYGpZavHyTIwvbditY
SnH+RTpmp16RKsDwmT7/225mhFFfrddc35e0/FeZGnKR1+F+GcLDOWdmSEp/CYcOvqg
r8Yxq+Huy6r4nbcCxXNI54O4RlxJ8cXiOWIF5ocWXjSDqdFVBGoH573OfTPrMXj6T1F
5FoX48BboqCUSGggo3TsWKYWyUGZzMQRz7qBgdLcWw/r8gTBVHEEgp7juXlaxqMykcT
jsvrCO5AxteBhq6zmpqBAS5SuomgUAZ8CtBwVu026WRF4NHdKbWi+4Sj5MVmsL8ALkZ
fyKdGOTy5X7nDCGCyY1viqyrGwx/eHCJrkEieqG/lksgrUKUcMPUQlRpyTI7pgcFSIL
gFUOKqdzrXXCGMJarOmodcLFMSfjPWgnYlIcrZl+IuPRa3LCePGFGiuwYBob+h7Va8w
5+Wp+ukdsljEpvTXhsAeOnTmQgHrUdV9bblhryGc7b65HIK40Nf3H9nayNlqABW1cqn
eGVzG02xGdfjSRSf/G5w9m15sQt/89irNUM5odxaQMiwIYY7woi4DhzKyqM8HftmlnX
3T8izIzhaT2OjnOKKxrIE+CzWqyIpYgF7GRuyVRJRMPh/xQNFxE6bLspcWazNtsWF0l
dHZZe6uy0Q7TH6DXvyIa9feDawZ3aSIERTN/garMKFimoYAVH5ShoBH3UvJQ23ixU2J
z8N7HLVBpw0aHDGpaLBqoM/Lqii4mLG8B9jNIzBV7iXVaB6vUBgcJhYd/FZ3bEn2kp/
kc1j2YKRSQhRCLKosFBY1KXmNCt7IClfu1XzyTiofnb7kEI3dM3Us7tuf0OefmyG/jM
UzED5f3y6en1fhmvEGNV7+R7luc1gvTT2Rs9V8cBrUzSriaJQr2NZgJY7jTnnULDzUU
FI7TLygbpVjCRNu/hkjDHarFRgnzixocUdAHhMuiWil+Hwyms3//osjQ8+VTFfQRVee
Y3Rwk0kEnceunyFOH/ICQdJCJdgxyAQ/0btOP0AnUR3SCpcWV8jcjM5LlGB7a+TSPQB
poVb/P9hzQNTiekYpTWkaTITM96nktUvtmXq6ymAhkcCbXvqbstUd0EJn1d73hMuCkK
OX9oBSY0mbLsTsTV6yfS5Q3nSlPv12sSf3ogxzrzX8T0Wp/yhhFdW4bnb1Cyckkn2Ya
NTLcmrlCYsMRpVMZWIkvNesK8pDZijyprDjMmaezBv6DcnNqn3WntgUrkFsBvI7EySC
OgW1MqvFV6/E3hD+mIJItSWhvU4i4gBZGKNggtAuItJ4oWV+DCSP0PgiJ/FV3MhNCX0
xyyQlcg+uFXXXQpkDjOs5pHruWnMF5FULQCq6cSVF+bXqN1EzGrxK5F64rh74INJjBe
nm6AwEVGWyEiTT9ZRysfD9wvbZMd2fzlTOF0A6yJXz7bnqAB2oAng==

</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

� The <wsse:BinarySecurityToken> contains the base64binary encoding of the
WebSphere certificate. This includes the public key that WebSphere uses to
decrypt the secret key.

� <wsse:SecurityTokenReference> is a child element of the <ds:KeyInfo>
element which contains a reference to the BinarySecurityToken.

The rest of the SOAP headers in the response message are similar to those in
the request message.

SOAP fault messages
In this section we show some of the SOAP faults that you may see when testing
encryption processing.

 Chapter 10. Security scenarios using CICS WS-Security support 403

� Figure 10-48 shows the browser response when CICS is expecting an
encrypted message but the service requester does not encrypt the request.

Figure 10-48 DFHWSSE1 SOAP fault: X.509 certificate not known

The SOAP fault for this message, shown in Example 10-27, highlights that
CICS is expecting an encrypted message.

Example 10-27 DFHWSSE1 SOAP fault - X.509 certificate not known

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>wsse:FailedCheck</faultcode>
<faultstring>INVALID_SOAP_REQUEST</faultstring>
<detail>
<e:myfaultdetails xmlns:e="http://www.ibm.com/software/htp/cics/wssec">
<message>The SOAP message is expected to have an encrypted body
</message>
<errorcode>4</errorcode>

</e:myfaultdetails>
</detail>

</SOAP-ENV:Fault>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

404 Implementing CICS Web Services

� Figure 10-49 shows the browser response when CICS is attempting to
decrypt an encrypted message but ICSF is not available.

Figure 10-49 DFHWSSE1 SOAP fault: ICSF not available

The SOAP fault for this message, shown in Example 10-28, shows that there
is an error creating RSA key token.

Example 10-28 DFHWSSE1 SOAP fault - ICSF not available

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>wsse:FailedCheck</faultcode>
<faultstring>ERROR: Caught *XSECCryptoException* during operation:
processMessage()</faultstring>

<detail>
<e:myfaultdetails xmlns:e="http://www.ibm.com/software/htp/cics/wssec">
<message>ZosCryptoKeyRSA::privateDecrypt - Error encoding under RSA
key</message>

<errorcode>1</errorcode>
</e:myfaultdetails>

</detail>
</SOAP-ENV:Fault>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

 Chapter 10. Security scenarios using CICS WS-Security support 405

406 Implementing CICS Web Services

Part 4 Transaction
management

In this part, we begin by providing an introduction to Web services atomic
transactions. We then outline the steps for enabling WS-Atomic Transaction
(WS-AT) support in CICS. Finally, we show several scenarios that demonstrate
how you can synchronize WebSphere and CICS updates using the WS-AT
standard.

Part 4

© Copyright IBM Corp. 2007. All rights reserved. 407

408 Implementing CICS Web Services

Chapter 11. Introduction to Web
services: Atomic
transactions

We begin this chapter by describing an example of a classic transaction. We
expect that most of our readers will be familiar with examples similar to ours.
Then we map our classical transaction to a Web services atomic transaction as
a means of introducing the new terminology that we use in this and succeeding
chapters: coordinator, transactional context, activation service, registration
service, and completion protocol. We continue by providing an overview of the
flows and message contents prescribed by the three specifications upon which
CICS TS V3.1 support for atomic transactions is built:

� Web Services - Addressing (WS-Addressing or WS-A)

� Web Services - Coordination (WS-Coordination or WS-C)

� Web Services - Atomic Transaction (WS-Atomic Transaction or WS-AT)

11

© Copyright IBM Corp. 2007. All rights reserved. 409

11.1 Beginner’s guide to atomic transactions

We begin by describing an example of a classic transaction. For this discussion
we borrow freely from the paper Tour Web Services Atomic Transaction
operations: Beginner’s guide to classic transactions, data recovery, and mapping
to WS-Atomic Transactions which Thomas Freund and Daniel House published
on September 2, 2004, on the IBM developerWorks Web site at:

http://www-128.ibm.com/developerworks/webservices/library/ws-introwsat

Not losing money is quite important. Just ask Waldo. Waldo’s situation typifies
the need for a transaction. Waldo uses a Web browser or an Automatic Teller
Machine (ATM) to move some money from one account to another account.
These accounts may be in different branches of the same financial institution, or
they may be in different institutions.

It is never acceptable to Waldo for his money to disappear. Should Waldo ever
doubt the safety of his money, he would probably switch financial institutions.

Waldo’s money is represented by data in two databases that cooperate to ensure
that the data they contain is always in a known and consistent state. That is,
these two databases allow actions or tasks between them to be within a common
activity or work scope as shown in Figure 11-1. Put yet another way, a single
transaction can manipulate data in both databases and something will guarantee
that only one of two possible outcomes occurs: all the changes are successfully
made or none of them is made at all.

Figure 11-1 Common activity encompasses various recoverable actions

The something that guarantees the common outcome of all the actions is a
protocol supported by both databases, and some supporting middleware. The

Common activity or work scope

Action

Put $ in account-2 database

Action

All or none outcome

Take $ out of account-1 database

410 Implementing CICS Web Services

protocol the databases use to keep data (such as Waldo’s balances) coordinated
is called two phase commit, or simply 2PC. Our example uses a common
variation of 2PC called presumed abort, where the default behavior in the
absence of a successful outcome is to rollback or undo all the actions in the
activity.

From a programming perspective, there are different ways to specify that
multiple actions should be within the scope of a single transaction. One
particularly clear way to specify transactional behavior is shown in Example 11-1.
The code is the small piece of logic running somewhere behind the ATM Waldo is
using–perhaps in the data center of one of the financial institutions involved.

Example 11-1 Pseudo-code for Waldo’s transaction

TransferCash(fromAcct, toAcct, amount)
 BeginTransaction
 fromAcct = fromAcct - amount
 toAcct = toAcct + amount
 CommitTransaction
Return

11.1.1 What is a classic transaction

For our simple purposes, a recoverable action is anything that modifies protected
data. For example, taking money out of one of Waldo’s accounts (fromAcct =
fromAcct - amount) is a recoverable action that can be reversed up to the end of
the transaction. A classic transaction, then, is just a grouping of recoverable
actions, the guaranteed outcome of which is that either all the actions are taken,
or none of them is taken (see Figure 11-1).

In Waldo’s case, his transaction is composed of two actions: taking money out of
one account and putting money into another account. It’s okay for both of these
actions to occur, and it’s even okay if neither of these actions occurs. It’s never
okay for one action to occur without the other also occurring, which would result
in corrupt data and either Waldo’s net worth or the bank’s assets disappearing or
appearing from nowhere. Hence, both actions need to be within a single
transaction with a single outcome: either both actions occur (a commit outcome),
or neither action occurs (a rollback outcome).

Assuming no errors happen, the code in Example 11-1 shows that a commit
outcome is desired. The code could just as easily have specified rollback instead
of commit (for when Waldo presses the Cancel key on the ATM), which means
reverse all actions in the transactional work scope (between beginning and end).
The transaction monitor, which is the underlying middleware helping the code in
Example 11-1 support transaction processing, would automatically specify

 Chapter 11. Introduction to Web services: Atomic transactions 411

rollback if the program suffered an unhandled exception. Such an automatic
rollback on the part of the transaction monitor is a protection mechanism to make
sure that data is not corrupted. For example, even if the ATM application fails
unexpectedly, the middleware will “clean up” and guarantee the outcome.

Now let’s see how one common variant of 2PC, presumed abort, can be used to
effect Waldo’s transaction and move money from one account to another in a
recoverable way. A key part of this illustration is to see that no matter what kind
of failure occurs, data integrity is preserved and Waldo remains a loyal customer.

Figure 11-2 shows Waldo’s transaction on a time line with all of the interacting
components needed to execute the logic shown in Example 11-1.

Figure 11-2 Behind the scenes of Waldo’s ATM transaction

The top line represents the ATM application itself. The next two lines represent
the account databases that the application manipulates. The databases will be
transactional participants. The next line is a transactional coordinator, or
middleware, which will orchestrate the 2PC protocol. The line at the very bottom
indicates the state of Waldo’s transaction at different points in time. The state of
the transaction dictates recovery processing in the event of a failure.

ATM APP
Begin
Tran

Database-1
(fromAcct)

Database-2
(toAcct)

Coordinator

Time

CommitTran

1.
2.

3.

4. 6. 9. 10. 16.

5.

8.

7. 11.

12.

13. 17.

15.

UR DR S

P P T01 T02 End

UR DR S

State=Active
State=In Doubt

State=In Commit
(or In Rollback)

Prepare
Prepare

Prepared

C
om

m
it

14.

C
om

m
it

C
om

m
ited

-$ +$

UR = Undo record
DR = Do record
S = State information
P = Participant information
T01 = Transition to Phase 1
T02 = transition tp Phase 2

412 Implementing CICS Web Services

The lines for Database-1, Database-2, and Coordinator represent both time
(flowing left to right) and also some key records recorded onto a recovery log.
These records include images of the data before it is modified (Undo records),
images of the data after it has been modified (Do records), and state information.
The recovery log is used to insure data integrity during recovery processing.

Now let’s walk through Waldo’s transaction. In the following discussion, when we
talk about the ATM application, take it to mean either the application itself, or
some middleware supporting the application. For example, when we say the
application begins a transactional scope, it could be that middleware begins the
transactional scope on behalf of the application.

Here is narration to explain the numbered steps shown in Figure 11-2:

1. The ATM application indicates the beginning of a transactional scope. The
Coordinator creates a context for this transaction; the context includes a
unique identifier and some other information about the transaction.
Importantly, this transaction context flows back to the application. The context
flows with other interactions between the application and resource managers;
it is the context that helps glue together a whole set of actions into one
transactional activity.

2. The application takes money out of Database-1. The context (from step 1) is
inserted into this flow.

3. Database-1 sees the request for action, but also sees the transactional
context. Database-1 uses this context to contact the transactional
Coordinator and register interest in this transaction or activity (so that the
Coordinator will help Database-1 through 2PC processing later to guarantee
a commit or rollback outcome of all actions). The Coordinator remembers that
Database-1 is a participant in the transaction.

4. Database-1 looks at the request to modify recoverable data. It writes records
to a recovery log, plus transaction state information. One record describes the
database change to be made if the decision later is to commit (the Do record).
The other record describes the database change to be made if the decision is
to rollback (the Undo record).

– In this case, the Undo record says make Waldo’s balance = x and the Do
record says make Waldo’s balance = x - $. (X is the amount of the balance
before this transaction ever started and $ is the amount to transfer). Notice
that we are only looking at the recovery log – not database files.

– The Do records are not strictly required if Database-1 makes database file
updates when the application requests it to, instead of waiting. However,
waiting to write the data can have advantages for performance and
concurrency. In addition, the Do records may be used for audit or other
advanced reasons. Since they are so useful, our example databases use
them.

 Chapter 11. Introduction to Web services: Atomic transactions 413

5. Return to the application.

6. Similarly to step 2, the application makes a request to manipulate the other
database, Database-2. The application wants to add in the amount taken out
of Database-1.

7. Database-2 registers interest in the transaction with the Coordinator the same
way Database-1 did. The Coordinator remembers that Database-2 is a
participant in the transaction.

8. Database-2 writes Undo and Do records and state information to its recovery
log, again just as Database-1 did.

9. Return to the application.

10.The application chooses to commit the transaction. The Coordinator now
takes over. When Commit is received, the Coordinator writes a log record
indicating that Phase 1 of 2PC has begun.

11.In Phase 1, the Coordinator goes down the list of all participants (Database-1
and Database-2 in this example) who expressed interest in this transaction,
asking each one to Prepare. Prepare means get ready to receive the order to
either commit or rollback.

12.Database-1 and Database-2 both respond with Prepared, meaning that they
are ready to be told the final outcome (commit or rollback all the changes
made) and support it.

– They must have committed something (at least on their logs) by this point,
because responding Prepared means they guarantee being able to
commit or rollback when told - actions up to this point were just tentative.

– If either Database had some kind of failure preparing, it would respond
Aborted instead of Prepared, and the Coordinator would broadcast
Rollback to all participants.

13.The Coordinator forces a log record indicating a Transition to Phase 2 (T02).

– Once this record is hardened on a log, we know and have recorded that:

• All participants are prepared to go either way (commit or rollback).

• The ultimate outcome of the transaction is known (commit in our
example).

• The outcome is guaranteed by recovery processing.

– If this record fails to make it to the log for any reason, the ultimate outcome
will be to rollback (we are using presumed abort in this example). The
recovery processing will enforce the outcome.

14.The Coordinator informs each participant that the decision is to commit the
changes. The participants can then do whatever they need to do, such as
perhaps writing the results to the real database data.

414 Implementing CICS Web Services

15.The participants return to the Coordinator with Committed. Once the
Coordinator knows that all the participants acknowledged the Commit order
with Committed, it can forget about this transaction because the transaction
was acknowledged by all to be done.

16.Return to the application.

17.At some point, since it knows the participants have succeeded in the 2PC
flow by acknowledging the common outcome, the Coordinator writes an End
indicator on its log.

11.1.2 Mapping from classic transactions to WS-Atomic Transaction

In Figure 11-2 on page 412 we did not mention how Database-1 contacted the
Coordinator, nor did we specify how the application called the databases. In fact,
we didn’t specify the mechanisms for anything to contact anything else. In the
past, these were mostly non-universal mechanisms that sometimes only worked
between certain combinations of entities (applications, resource managers, and
coordinators or transaction monitors).

The combination of Web services, WS-Coordination (WS-C) and WS-Atomic
Transaction (WS-AT) maps all of the flows shown in Figure 11-2 on page 412 and
specifies precise communications mechanisms for achieving the same results.
However, instead of only working between certain combinations, the Web
services based flows can work with just about anything.

Figure 11-3 illustrates how the classic flows are converted to Web services.
Significantly changed steps are described following the figure. As before, when
we say application, take it to mean the application or some helper middleware.
Likewise, when we say database, it might mean the actual database, or some
helper middleware.

 Chapter 11. Introduction to Web services: Atomic transactions 415

Figure 11-3 Waldo’s transaction revisited

1. The application uses the Activation Service defined in WS-C to obtain a
transactional context.

2. The application invokes a Web service exposed by Database-1 (alternatively,
exposed by an application server that then talks to Database-1) to subtract
money from Waldo’s balance. The context flows along with the Web service
invocation, although the application is not aware of that.

3. Database-1 uses information in the context to invoke the Registration Service
defined in WS-C to register interest in this transaction.

4. No change.

5. No change.

6. The application invokes a Web service exposed by Database-2 to add money
to Waldo’s balance. Just like in step 2, the context flows along with the Web
service invocation.

ATM APP
Begin
Tran

Database-1
(fromAcct)

Database-2
(toAcct)

Coordinator

CommitTran

1.
2

3.

4.

5.
6. 9.

8.

7.

10.

11.

12.

13.

14.

15.

16.

17.

P P T01 T02 End

UR

UR DR S

DR S

WS-C
Activation Service

for Context

WS-C
Registration Service

WS-AT
Completion Protocol

WS-AT
2PC Protocol

P
repare

Prepare

Prepared

C
om

m
it

C
om

m
it

C
om

m
ited

-$ +$

UR = Undo record
DR = Do record
S = State information
P = Participant information
T01 = Transition to Phase 1
T02 = transition tp Phase 2

416 Implementing CICS Web Services

7. Just like step 3, Database-2 uses information in the context to invoke the
Registration Service and register interest in this transaction.

8. No change.

9. No change.

10.The application uses the Completion Protocol defined in WS-AT to indicate
that it wishes to commit the transaction.

11.to 15. Databases and the Coordinator participate in 2PC flows as defined in
the WS-AT 2PC Protocol.

From Figure 11-3 it is clear that atomic transactions using Web services (WS-C
and WS-AT) are substantially the same as without Web services (Figure 11-2 on
page 412, for example). The primary differences are almost cosmetic from the
outside and involve how entities communicate with each other, not the substance
of what they communicate. However, these differences in how the entities
communicate have a big impact on flexibility and interoperability.

You can achieve universal interoperability with Web services because instead of
changing resource manager X to interoperate with transaction monitor Y, you
can change both X and Y to use Web services and then interoperate with many
other resource managers and transaction monitors. So instead of two-at-a-time
interoperability, or interoperability only within a specific kind of domain, n-way
universal interoperability is possible.

Recovery processing using Web services between the interested parties is the
same as before Web services. Resource managers are the only ones who know
their resources and how to commit them or roll them back.

As an example, suppose that Database-1 fails between steps 5 and 6 in
Figure 11-3. Database-1 comes back up and, just like before Web services, it
reads its log, notices that it has an incomplete transaction, and realizes that it
needs to contact the Coordinator. Information about how to contact the
Coordinator is in the state saved on its recovery log; with Web services it will be
an endpoint reference (as defined in WS-Addressing; see “Endpoint references”
on page 419). Database-1 contacts the Coordinator at that endpoint reference
with a message defined in WS-AT called Replay. Replay causes the Coordinator
to resend the last protocol message to Database-1, which lets Database-1
deduce the transaction state and then apply the appropriate recovery rule. In our
example the Coordinator tells Database-1 that it has no knowledge of this
transaction. Database-1 therefore applies its Undo record, making the data
consistent again.

 Chapter 11. Introduction to Web services: Atomic transactions 417

11.2 WS-Addressing

Figure 11-3 on page 416 shows several messages flowing:

� The application sends a message to the Activation Service asking for a
transactional context.

� The Activation Service sends a response containing a transactional context to
the application.

� Database-1 and Database-2 each send a Register message to the
Registration Service and receives a reply.

� The application sends a Commit message to the Coordinator.

� The Coordinator sends Prepare and Commit messages to Database-1 and
Database-2.

� Database-1 and Database-2 each send Prepared and Committed messages
to the Coordinator.

The application, Database-1, Database-2, the Activation Service, the
Registration Service, and the Coordinator are endpoints for these messages. As
with messages in the everyday business world, we need a way to identify the
recipient of each message, the sender of the message, what previous message
(if any) the message relates to, what action we want the recipient to take, and
where the recipient should send the reply (if any) to the message. Furthermore,
we want to be able to do this in a way that does not depend on the transport
mechanism (such as HTTP or WebSphere MQ) that we use to send the
message.

To this end IBM, Microsoft, Sun™ Microsystems, BEA, and SAP® formally
submitted the Web Services- Addressing (WS - Addressing) specification to the
World Wide Web Consortium (W3C) on 10 August 2004. You can find this
specification at:

http://www.w3.org/Submission/ws-addressing

Important: WS-AT is a two-phase commit transaction protocol that is suitable
for short duration transactions only. WS-AT is well suited for distributed
transactions within a single enterprise, but is it is generally not recommended
that WS-AT transactions be distributed across enterprise domains.
Inter-enterprise transactions typically require a looser semantic than
two-phase commit.

418 Implementing CICS Web Services

All information items defined by the 10 August 2004 specification are identified
by the XML namespace URI:

http://schemas.xmlsoap.org/ws/2004/08/addressing

We associate the namespace prefix wsa with this namespace by using the
attribute

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

The specification defines two constructs:

� Endpoint references

� Message information headers

11.2.1 Endpoint references

A Web service endpoint is a (referenceable) entity, processor, or resource to
which Web services messages can be addressed.

An endpoint reference conveys the information needed to address a Web service
endpoint. As we shall see later:

� An endpoint reference for the Registration Service forms part of the
coordination context.

� An endpoint reference for the participant’s Protocol Service forms part of the
Register request.

Note: As the specification has moved through the W3C standards process, it
has been divided into three parts:

� Web Services Addressing 1.0 - Core

This is currently a W3C Candidate Recommendation dated 17 August
2005.

� Web Services Addressing 1.0 - SOAP Binding

This is also currently a W3C Candidate Recommendation dated 17 August
2005.

� Web Services Addressing 1.0 - WSDL Binding

This is currently a W3C Working Draft dated 13 April 2005.

However, the WS-Coordination and WS-Atomic Transaction specifications
that we discuss later in this chapter are based on the 10 August 2004
specification, and, therefore, so is CICS TS V3.1 support for Web services.

 Chapter 11. Introduction to Web services: Atomic transactions 419

� An endpoint reference for the coordinator’s Protocol Service forms part of the
response to a Register request.

Example 11-2 shows the pseudo schema for an EndpointReference element.

Example 11-2 Pseudo schema for EndpointReference element

<wsa:EndpointReference>
 <wsa:Address>.......................</wsa:Address>
 <wsa:ReferenceProperties>............</wsa:ReferenceProperties>
 <wsa:ReferenceParameters>............</wsa:ReferenceParameters>
 <wsa:PortType>.......................</wsa:PortType>
 <wsa:ServiceName PortName=“...”>.....</wsa:ServiceName>
 <wsp:Policy>.........................</wsp:Policy>
</wsa:EndpointReference>

For each child element of EndpointReference, Table 11-1 describes what the
element contains, the minimum number of times the element can be used, and
the maximum number of times the element can be used.

Table 11-1 Children of the Endpoint Reference element

Element Description Min Max

Address Contains an address URI that identifies the endpoint. This may
be a network address or a logical address.

1 1

ReferenceProperties Contains child elements each of which represents an
individual reference property. The number of child elements is
not limited.

0 1

ReferenceParameters Contains child elements each of which represents an
individual reference parameter. The number of child elements
is not limited.

0 1

PortType Contains the name of the primary portType of the endpoint
being conveyed.

0 1

ServiceName Contains the name of the WSDL <service> element that
contains a WSDL description of the endpoint being
referenced. The service name provides a link to a full
description of the service endpoint.
The ServiceName element may optionally have a PortName
attribute which specifies the name of the specific WSDL
<port> definition in that service which corresponds to the
endpoint being referenced.

0 1

Policy Contains an XML policy element as described in WS-Policy
that describes the behavior, requirements, and capabilities of
the endpoint.

0 No
limit

420 Implementing CICS Web Services

Here is the difference between a reference property and a reference parameter:

� A reference property is required to identify the endpoint. It is required to
properly dispatch a message to an endpoint at the endpoint side of the
interaction.

� A reference parameter is required to facilitate a particular interaction with the
endpoint. It is required to properly interact with the endpoint.

Example 11-3 shows an endpoint reference for the Registration Service running
in a CICS TS V3.1 region that is monitoring port 15301 on a z/OS system whose
IP address is MVSG3.mop.ibm.com. The endpoint reference has two reference
properties: UOWID and PublicID. We replaced the ending characters of the
PublicID property with ... for brevity.

Example 11-3 Sample EndpointReference element for Registration Service in CICS

<wsa:EndpointReference
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:cicswsat="http://www.ibm.com/xmlns/prod/CICS/pipeline">
 <wsa:Address>
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </wsa:Address>
 <wsa:ReferenceProperties>
 <cicswsat:UOWID>BDFC52CD7C57D466</cicswsat:UOWID>
 <cicswsat:PublicId>310FD7E2E2...</cicswsat:PublicId>
 </wsa:ReferenceProperties>
</wsa:EndpointReference>

Example 11-4 shows an endpoint reference for the Registration Coordinator Port
running in a WebSphere Application Server V6.0 region that is monitoring port
9080 on a Windows system whose IP address is 9.100.199.156. The endpoint
reference has two reference properties: txID and instanceID. We replaced the
ending characters of these properties with ... for brevity.

Example 11-4 Sample EndpointReference element for Registration Service in WAS

<wsa:EndpointReference
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension">

Tip: In “Transaction scenarios” on page 463 we look at the messages that flow
between CICS TS V3.1 and WebSphere Application Server V6.0. In these
messages we see only the following children of the EndpointReference
element:

� Address

� ReferenceProperties

 Chapter 11. Introduction to Web services: Atomic transactions 421

 <wsa:Address>
 http://9.100.199.156:9080/_IBMSYSAPP/wscoor/services/Registration
 CoordinatorPort
 </wsa:Address>
 <wsa:ReferenceProperties>
 <websphere-wsat:txID>
 com.ibm.ws.wstx:00000107d70ad26c0000000700000005cbb17a7d5f7e...
 </websphere-wsat:txID>
 <websphere-wsat:instanceID>
 com.ibm.ws.wstx:00000107d70ad26c0000000700000005cbb17a7d5f7e...
 </websphere-wsat:instanceID>
 </wsa:ReferenceProperties>
</wsa:EndpointReference>

11.2.2 Message information headers

Example 11-5 shows pseudo schema for the message information headers
defined in the WS-Addressing specification.

Example 11-5 Pseudo schema for message information header elements

<wsa:MessageID>..........................</wsa:MessageID>
<wsa:RelatesTo RelationshipType="...">...</wsa:RelatesTo>
<wsa:To>.................................</wsa:To>
<wsa:Action>.............................</wsa:Action>
<wsa:From>..............................</wsa:From>
<wsa:ReplyTo>............................</wsa:ReplyTo>
<wsa:FaultTo>............................</wsa:FaultTo>

Table 11-2 describes what each message information header element contains,
the minimum number of times the element may be used, and the maximum
number of times the element may be used.

Table 11-2 Message information header elements

Element Description Min Max

MessageID Contains a URI that uniquely identifies this message in space
and time.

0 (but see
Note 1)

1

RelatesTo Contains a URI that corresponds to a related message’s
MessageID property.
The RelatesTo element has an optional RelationshipType
attribute that indicate the type of relationship this message has
to the related message.
The specification defines one relationship type, namely
wsa:Reply.
When absent, the implied value of this attribute is wsa:Reply.

0 No limit

422 Implementing CICS Web Services

Table notes:

1. If ReplyTo or FaultTo is present, MessageID must be present.

2. If a reply is expected, ReplyTo must be present.

3. When formulating a fault message, the sender must use the contents of the
FaultTo element of the message to which the Fault reply is being sent. If the
FaultTo element is absent, the sender may use the contents of the ReplyTo
element to formulate the fault message. If both the FaultTo element and the
ReplyTo element are absent, the sender may use the contents of the From
element to formulate the fault message. The FaultTo element may be absent
if the sender cannot receive fault messages.

Example 11-6 shows an example of a set of message information headers.

Example 11-6 Sample message information header elements

<wsa:To>
 http://9.100.199.156:9080/_IBMSYSAPP/wscoor/services/Registration
 CoordinatorPort
</wsa:To>
<wsa:Action>
 http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register
</wsa:Action>
<wsa:MessageID>PIAT-MSG-A6POT3C1-003342266297785C</wsa:MessageID>
<wsa:ReplyTo>
 <wsa:Address>
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </wsa:Address>
 <wsa:ReferenceProperties>
 <cicswsat:UOWID>BDFC52CD7C57D466</cicswsat:UOWID>
 <cicswsat:PublicId>

To Contains a URI that specifies the address of the intended
receiver of this message.

1 1

Action Contains a URI that uniquely identifies the semantics implied by
this message.

1 1

From Contains an endpoint reference that identifies the endpoint from
which the message originated.

0 1

ReplyTo Contains an endpoint reference that identifies the intended
receiver for replies to this message.

0 (but see
Note 2)

1

FaultTo Contains an endpoint reference that identifies the intended
receiver for faults related to this message.

0 (see also
Note 3)

1

Element Description Min Max

 Chapter 11. Introduction to Web services: Atomic transactions 423

 310FD7E2E2...
 </cicswsat:PublicId>
 </wsa:ReferenceProperties>
</wsa:ReplyTo>

The To header shows that the message is being sent to the Registration
Coordinator Port running in a WebSphere Application Server V6.0 region that is
monitoring port 9080 on a Windows system whose IP address is 9.100.199.156.

The Action header indicates that the sender wishes to register with the
Registration Coordinator Port.

The ID of the message, PIAT-MSG-A6POT3C1-003342266297785C, uniquely identifies
the message in space and time:

� A6POT3C1 is the VTAM® APPLID of the CICS TS V3.1 region that sent the
message.

� 003342266297785C is the abstime value returned by an EXEC CICS INQUIRE
TIME issued in that CICS TS V3.1 region.

The ReplyTo header shows that the reply to this message should be sent to the
Registration Service running in a CICS TS V3.1 region that is monitoring port
15301 on a z/OS system whose IP address is MVSG3.mop.ibm.com.

11.2.3 SOAP binding for endpoint references

When a SOAP message must be addressed to an endpoint, the information
contained in the endpoint reference is mapped to the SOAP message by the
following two rules:

� The contents of the Address element in the endpoint reference is copied to
the To message information header of the SOAP message.

� Each reference property or reference parameter is added as a header block
in the new message.

Example 11-7 shows how we use these rules to address a message to the CICS
Registration Service endpoint whose endpoint reference is given in
Example 11-3 on page 421.

Example 11-7 SOAP message addressed to CICS RegistrationService endpoint

<S:Envelope xmlns:S=”...” xmlns:wsa=”...” xmlns:cicswsat=”...”>
 <S:Header>

...
<wsa:To>

http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService

424 Implementing CICS Web Services

 </wsa:To>
 <cicswsat:UOWID>BDFC52CD7C57D466</cicswsat:UOWID>
 <cicswsat:PublicId>310FD7E2E2...</cicswsat:PublicId>
...

</S:Header>
<S:Body>

...
</S:Body>

</S:Envelope>

11.3 WS-Coordination

In Section 11.1, “Beginner’s guide to atomic transactions” on page 410 and
Section 11.2, “WS-Addressing” on page 418 we see that the application,
Database-1, Database-2, the Activation service, the Registration service, and the
Coordinator are endpoints for messages. We also see that:

� The application sends a message to the Activation service asking for a
transactional context.

� The Activation service sends a response containing a transactional context to
the application.

� Database-1 and Database-2 each sends a Register message to the
Registration service and receives a reply.

We still need to define what these messages should contain.

For this purpose IBM, Microsoft, and BEA published the Web Services-
Coordination (WS - Coordination) specification in September of 2003; they
updated it in November of 2004. Arjuna Technologies Ltd., Hitachi Ltd., and
IONA Technologies joined IBM, Microsoft, and BEA in publishing Web
Services-Coordination (WS-Coordination) Version 1.0 in August of 2005. You
can find these at:

http://www-128.ibm.com/developerworks/library/specification/ws-tx

Although CICS TS V3.1 was developed and tested when the November, 2004
version was the current version, the nature of the differences between the
November, 2004 version and the August, 2005 version is such that it may
accurately be said that CICS TS V3.1 also supports the August, 2005 version.

All information items defined by the November, 2004 and August, 2005 versions
are identified by the XML namespace URI:

http://schemas.xmlsoap.org/ws/2004/10/wscoor

 Chapter 11. Introduction to Web services: Atomic transactions 425

We associate the namespace prefix wscoor with this namespace by using the
attribute:

xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor"

The specification defines:

� A coordination service

� The following messages:

– CreateCoordinationContext

– CreateCoordinationContextResponse

– Register

– RegisterResponse

11.3.1 Coordination service

As shown in Figure 11-4, a Coordination service (or Coordinator) is an
aggregation of the following services:

� Activation service

When the application sends a CreateCoordinationContext element, the
Activation service creates a new activity and returns its coordination context
in a CreateCoordinationContextResponse element.

The Coordination service may, but does not have to, support the Activation
service.

� Registration service

The Registration service defines a Register operation that allows a Web
service to register to participate in a coordination protocol.

The Coordination service must support the Registration service.

� A set of coordination Protocol services for each supported coordination type.

These are defined in the specification that defines the coordination type (for
example, in the WS-Atomic Transaction specification).

Note: Some products provide this as an external service, for others to call.
CICS does not do this, and only supports the creation of coordination
contexts internally, for use by the workloads that it manages.

426 Implementing CICS Web Services

Figure 11-4 A Coordination service (or Coordinator)

11.3.2 CreateCoordinationContext

Example 11-8 shows the pseudo schema for the CreateCoordinationContext
element.

Example 11-8 Pseudo schema for CreateCoordinationContext element

<wscoor:CreateCoordinationContext...>
<wscoor:CoordinationType>............</wscoor:CoordinationType>
<wscoor:Expires>.....................</wscoor:Expires>
<wscoor:CurrentContext>..............</wscoor:CurrentContext>

</wscoor:CreateCoordinationContext>

For each child element of CreateCoordinationContext, Table 11-3 describes
what the element contains, the minimum number of times the element can be
used, and the maximum number of times the element can be used.

Coordinator

Application

Registration
 service

Protocol services
for protocol X

Protocol X

protocol service

CreateCoordinationContextResponse
RegisterResponse

CreateCoordinationContext Register

Activation
 service

requesting service

Protocol services
for protocol Y

Protocol Y

 Chapter 11. Introduction to Web services: Atomic transactions 427

Table 11-3 Children of the CreateCoordinationContext element

Currently there are two specifications that define coordination types:

� WS-Atomic Transaction

This specification defines the coordination type for atomic transactions where
the results of operations are not made visible until the completion of the unit
of work:

http://schemas.xmlsoap.org/ws/2004/10/wsat

� WS-Business Activity

This specification defines two coordination types for business activities:

http://schemas.xmlsoap.org/ws/2004/10/wsba/AtomicOutcome

http://schemas.xmlsoap.org/ws/2004/10/wsba/MixedOutcome

Business activities have the following characteristics:

– A business activity may consume many resources over a long duration.

– There may be a significant number of atomic transactions involved.

– Individual tasks within a business activity can be seen prior to the
completion of the business activity; their results may have an impact
outside of the computer system.

– Responding to a request may take a very long time. Human approval,
assembly, manufacturing, or delivery may have to take place before a
response can be sent.

– In the case where a business exception requires an activity to be logically
undone, abort is typically not sufficient. Exception handling mechanisms
may require business logic, for example in the form of a compensation
task, to reverse the effects of a previously completed task.

For example, selling a vacation is a business activity that may involve the
travel agent in actions such as recording customer details, booking seats on

Element Description Min Max

CoordinationType The unique identifier for the desired
coordination type for the activity.

1 1

Expires The expiration for the returned
CoordinationContext expressed as an
unsigned integer in milliseconds. Specifies
the earliest point in time at which a
transaction may be terminated solely due to
its length of operation.

0 1

CurrentContext The current Coordination Context. 0 1

428 Implementing CICS Web Services

an aircraft, booking a hotel, booking a rental car, invoicing the customer,
checking for receipt of payment, processing the payment, and arranging
foreign currency.

Table 11-4 compares an atomic transaction with a business activity.

Table 11-4 Comparison of features of atomic transaction and business activity

Example 11-9 shows an example of a CreateCoordinationContext element in
which the coordination type is WS-Atomic Transaction.

Example 11-9 Sample CreateCoordinationContext element

<wscoor:CreateCoordinationContext>
<wscoor:CoordinationType>

http://schemas.xmlsoap.org/ws/2004/10/wsat
</wscoor:CoordinationType>
<wscoor:Expires>5000</wscoor:Expires>

</wscoor:CreateCoordinationContext>

11.3.3 CreateCoordinationContextResponse

The CreateCoordinationContextResponse element contains the
CoordinationContext element.

Atomic transaction Business activity

Short duration Longer duration

Locks Avoid locks

Suited for a more controlled environment Suited for a loosely coupled environment

Classical resource manager mapping -
think database (not business processes
crossing business boundaries)

Business process mapping

Easier to think about and program
� Rollback or Commit
� Automatic rollback in case of

abnormal termination

More complex
� Compensate

All resource managers move in one
direction (everybody commits or rolls back
in unison)

More flexible resource manager
participation. They don’t have to trust
applications so much.

Note: CICS TS V3.1 does not support the WS-Business Activity specification.
At this time there are no plans for future releases of CICS to support it either.

 Chapter 11. Introduction to Web services: Atomic transactions 429

The CoordinationContext element contains four elements:

� A URI which identifies the CoordinationContext.

� The CoordinationType.

� The expiration period for the CoordinationContext.

� An endpoint reference for the Registration Service which is part of this
Coordination service. Recall from “Endpoint references” on page 419 that this
means that the CoordinationContext must contain the address of the
Registration Service and may contain reference properties for the
Registration Service.

Example 11-10 shows the pseudo schema for the
CreateCoordinationContextResponse element.

Example 11-10 Pseudo schema for CreateCoordinationContext Response element

<wscoor:CreateCoordinationContextResponse>
<wscoor:CoordinationContext>

<wscoor:Identifier>........................</wscoor:Identifier>
<wscoor:CoordinationType>..................</wscoor:CoordinationType>
<wscoor:Expires>...........................</wscoor:Expires>
<wscoor:RegistrationService>...............</wscoor:RegistrationService>

</wscoor:CoordinationContext>
</wscoor:CreateCoordinationContextResponse>

The application will place the CoordinationContext element within an application
message to pass the coordination information to other parties. Conveying a
CoordinationContext on an application message is commonly referred to as
flowing the context. When a context is flowed as a SOAP header, the header
must have the mustUnderstand attribute and the value of the mustUnderstand
attribute must be true.

Example 11-11 shows a CoordinationContext created by a CICS TS V3.1
region.

Example 11-11 Sample CoordinationContext created by CICS

<wscoor:CoordinationContext>
<wscoor:Identifier>

PIAT-CCON-A6POT3C1-003322404576825C
</wscoor:Identifier>
<wscoor:CoordinationType

http://schemas.xmlsoap.org/ws/2004/10/wsat

Note: When an application flows the context, it passes the address of its
Registration Service and the coordination type.

430 Implementing CICS Web Services

</wscoor:CoordinationType>
<wscoor:RegistrationService>

<wsa:Address>
http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService

</wsa:Address>
<wsa:ReferenceProperties>

<cicswsat:NetName>A6POT3C1</cicswsat:NetName>
<cicswsat:Token>F0F0F0F0</cicswsat:Token>
<cicswsat:UOWID>BCDB8F2E852B924C</cicswsat:UOWID>

</wsa:ReferenceProperties>
</wscoor:RegistrationService>

</wscoor:CoordinationContext>

Example 11-12 shows a CoordinationContext created by WebSphere
Application Server V6.0.

Example 11-12 Sample CoordinationContext created by WebSphere

<wscoor:CoordinationContext>
<wscoor:Expires>Never</wscoor:Expires>
<wscoor:Identifier>

com.ibm.ws.wstx:00000107d70ad2...
</wscoor:Identifier>
<wscoor:CoordinationType

http://schemas.xmlsoap.org/ws/2004/10/wsat
</wscoor:CoordinationType>
<wscoor:RegistrationService>

<wsa:Address>
http://9.100.199.156:9080/_IBMSYSAPP/wscoor/services/RegistrationCoord
inatorPort

</wsa:Address>
<wsa:ReferenceProperties>

<websphere-wsat:txID xmlns:websphere-wsat=”......”>
com.ibm.ws.wstx:00000107d70ad2...

</websphere-wsat:txID>
<websphere-wsat:instanceID xmlns:websphere-wsat=”......”

com.ibm.ws.wstx:00000107d70ad2...
</websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wscoor:RegistrationService>

</wscoor:CoordinationContext>

Note: We noted from our tests that the content of the Expires element (that is,
Never) is not an unsigned integer as required by the specification. This is
planned to be changed in a future release of WebSphere Application Server.

 Chapter 11. Introduction to Web services: Atomic transactions 431

11.3.4 Register

Before we provide the details of the Register request, we consider some
concepts in this section so that you don’t lose sight of the “big picture.”

The Coordinator provides the application with the Endpoint reference of its
Registration service in the CreateCoordinationContextResponse. The application
then knows where and how to send a Register request.

Figure 11-5 shows how Endpoint references are used during and after
registration.

1. The Register message targets the Endpoint reference of the Coordinator’s
Registration Service and includes the Endpoint reference of the application’s
Protocol service as a parameter.

2. The Register Response includes the Endpoint reference of the Coordinator’s
Protocol service.

3. At this point, both sides have the Endpoint Reference of the other’s Protocol
service, so the protocol messages can target the other side.

Figure 11-5 Using Endpoint references during and after registration

Now that you understand the big picture, we provide the details. Example 11-13
shows the pseudo schema for the Register element.

Example 11-13 Pseudo schema for the Register element

<wscoor:Register>
<wscoor:ProtocolIdentifier>.............</wscoor:ProtocolIdentifier>
<wscoor:ParticipantProtocolService>.....</wscoor:ParticipantProtocolService>

</wscoor:Register>

Protocol
service

4. Protocol messages

Registration
service

Protocol
service

 2. RegisterResponse
(Endpoint reference of Coordinator's protocol service)

 1. Register
(Endpoint reference of application's protocol service)

requesting
service

applicationCoordinator

3. Protocol messages

432 Implementing CICS Web Services

The ProtocolIdentifier element contains a URI that provides the identifier of
the coordination protocol selected for registration. The contents of the
CoordinationType element of the CoordinationContext element determine the
possible choices for the ProtocolIdentifier element as follows:

� If the CoordinationType is atomic transaction, then the ProtocolIdentifier
must be one of the following:

– http://schemas.xmlsoap.org/ws/2004/10/wsat/Completion

– http://schemas.xmlsoap.org/ws/2004/10/wsat/Volatile2PC

– http://schemas.xmlsoap.org/ws/2004/10/wsat/Durable2PC

� If the CoordinationType is business activity (either AtomicOutcome or
MixedOutcome), then the ProtocolIdentifier must be one of the following:

– http://schemas.xmlsoap.org/ws/2004/10/wsba/BusinessAgreementWithPar
ticipantCompletion

– http://schemas.xmlsoap.org/ws/2004/10/wsba/BusinessAgreementWithCoo
rdinatorCompletion

The ParticipantProtocolService element contains the EndpointReference that
the registering participant wants the Coordinator to use for the Protocol service.

Example 11-14 shows a Register element created by a CICS TS V3.1 region.

Example 11-14 Sample Register element

<wscoor:Register>
<wscoor:ProtocolIdentifier>

http://schemas.xmlsoap.org/ws/2004/10/wsat/Durable2PC
</wscoor:ProtocolIdentifier>
<wscoor:ParticipantProtocolService>

<wsa:Address>
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </wsa:Address>
 <wsa:ReferenceProperties>
 <cicswsat:UOWID>BDFC52CD7C57D466</cicswsat:UOWID>
 <cicswsat:PublicId>310FD7E2E2...</cicswsat:PublicId>
 </wsa:ReferenceProperties>

</wscoor:ParticipantProtocolService>
</wscoor:Register>

Note: As we noted earlier, CICS TS V3.1 does not support the WS-Business
Activity specification. Therefore, it does not support either the
BusinessAgreementWithParticipantCompletion or the
BusinessAgreementWithCoordinatorCompletion protocol identifiers.

 Chapter 11. Introduction to Web services: Atomic transactions 433

11.3.5 Register response

Example 11-15 shows the pseudo schema for the RegisterResponse element.

Example 11-15 Pseudo schema for the RegisterResponse element

<wscoor:RegisterResponse>
<wscoor:CoordinatorProtocolService>.....</wscoor:CoordinatorProtocolService>

</wscoor:RegisterResponse>

The CoordinatorProtocolService element contains the EndpointReference that
the Coordination service wants the registered participant to use for the Protocol
service.

We note, once again, that when the application has received the
RegisterResponse, each side has the EndpointReference of the other’s Protocol
Service.

11.3.6 Two applications with their own coordinators

In this section we see how two application services (App1 and App2) with their
own coordinators (Coordinator A and Coordinator B) interact as an activity
propagates between them. Coordinator A provides Activation service ASa,
Registration service RSa, and Protocol service Pa. Coordinator B provides
Activation service ASb, Registration service RSb, and Protocol service Pb.
Figure 11-6 shows the two applications with their own coordinators.

Note: CICS TS V3.1 uses a single endpoint address for its Registration
service, Protocol service, and fault messages. Other products, such as
WebSphere Application Server V6.0, use separate addresses for each of
these.

434 Implementing CICS Web Services

Figure 11-6 Two applications with their own coordinators

1. App1 sends to ASa a CreateCoordinationContext element that specifies a
CoordinationType of wsat.

2. ASa sends to App1 a CreateCoordinationContextResponse element that
includes CoordinationContext CCa. CCa contains an Identifier element
whose content is A1, a CoordinationType element whose content is wsat,
and a RegistrationService element that contains an EndpointReference to
Coordinator A’s Registration service RSa.

3. App1 then sends to App2 a SOAP message that has a SOAP header that
contains CCa and that has a mustUnderstand attribute with a value of True.

4. App2 prefers Coordinator B, so it sends to ASb a CreateCoordinationContext
element that specifies a CurrentContext of CCa.

5. Coordinator B creates its own CoordinationContext element CCb that
contains the same Identifier and CoordinationType as CCa but with an
EndpointReference to its own RegistrationService RSb.

Registration
 service
 RSb

Protocol
 service
 Pb

Activation
 service
 ASb

Coordinator A

Registration
 service
 RSa

Protocol
 service
 Pa

Activation
 service
 ASa

Coordinator B

7.Register
Response
 - @Pb

5. CreateCC
 Response
 -CCb
 - ID A1
 - Type wsat
 - @RSb

4. CreateCC
 -Type wsat
 - CCa

2. CreateCCResponse
 -CCa
 - ID A1
 - Type wsat
 - @RSa

1. CreateCC
 -Type
wsat

6. Register
 - Durable2PC
 - @App2

3. App 1 sends App 2
 application msg
 containing CCa App 2 Protocol serviceApp 1

Logical connection
Message

9..RegisterResponse
 - @Pa

8. Register
 - Durable2PC
 - @Pb

Durable2PC

 Chapter 11. Introduction to Web services: Atomic transactions 435

The WS-Atomic Transaction specification which we discuss in detail in
“WS-Atomic Transaction” on page 436 states that:

– If the CreateCoordinationContext request includes the CurrentContext
element, then the target coordinator is interposed as a subordinate to the
coordinator stipulated inside the CurrentContext element.

– If the CreateCoordinationContext request does not include a
CurrentContext element, then the target coordinator creates a new
transaction and acts as the root coordinator.

6. App2 determines the coordination protocols supported by the wsat
coordination type and then sends a Register element to RSb. This Register
element contains a ProtocolIdentifier of Durable2PC and an
EndpointReference to App2’s Protocol service.

7. RSb sends back to App2 a RegisterResponse element that contains an
EndpointReference to Protocol service Pb. This forms a logical connection
(which the Durable2PC protocol can use) between the Endpoint reference for
App2’s Protocol service and the Endpoint reference for Coordinator B’s
Protocol service Pb.

8. This registration causes Coordinator B to forward the registration on to
Coordinator A’s Registration service RSa.

9. RSa sends back to Coordinator B a RegisterResponse element that contains
an EndpointReference to Protocol Service Pa. This forms a logical connection
between the EndpointReferences for Pa and Pb that the Durable2PC protocol
can use.

11.3.7 Addressing requirements for WS-Coordination message types

CreateCoordinationContext and Register messages:

� Must include a wsa:MessageID header

� Must include a wsa:ReplyTo header

CreateCoordinationContextResponse and RegisterResponse messages:

� Must include a wsa:RelatesTo header that specifies the MessageID from the
corresponding request message

11.4 WS-Atomic Transaction

As we discussed in Section 11.3, “WS-Coordination” on page 425, the
WS-Coordination specification defines an extensible framework for defining
coordination types. The WS-Atomic Transaction specification builds on

436 Implementing CICS Web Services

WS-Coordination by providing the definition of the atomic transaction
coordination type.

Atomic transactions have an all-or-nothing property. The actions taken prior to
commit are only tentative (that is, not persistent and not visible to other
activities). When an application finishes, it requests the Coordinator to determine
the outcome for the transaction. The Coordinator determines if there were any
processing failures by asking the participants to vote. If the participants all vote
that they were able to execute successfully, the Coordinator commits all actions
taken. If a participant votes that it needs to abort or a participant does not
respond at all, the Coordinator aborts all actions taken. Commit makes the
tentative actions visible to other transactions. Abort makes the tentative actions
appear as though the actions never happened.

IBM, Microsoft, and BEA published the Web Services- Atomic Transaction (WS -
Atomic Transaction) specification in September, 2003; they updated it in
November, 2004. Arjuna Technologies Ltd., Hitachi Ltd., and IONA Technologies
joined IBM, Microsoft, and BEA in publishing Web Services - Atomic Transaction
(WS - Atomic Transaction) Version 1.0 in August, 2005. You can find these at:

http://www-128.ibm.com/developerworks/library/specification/ws-tx

Although CICS TS V3.1 was developed and tested when the November, 2004,
version was the current version, the nature of the differences between the
November, 2004 version and the August, 2005 version is such that it may
accurately be said that CICS TS V3.1 also supports the August, 2005 version.

All information items defined by the November, 2004 and August, 2005 versions
are identified by the XML namespace URI:

http://schemas.xmlsoap.org/ws/2004/10/wsat

We associate the namespace prefix wsat with this namespace by using the
attribute:

xmlns:wsat="http://schemas.xmlsoap.org/ws/2004/10/wsat"

The WS-AT specification defines the following protocols for atomic transactions:

� Completion

� Volatile Two-Phase Commit

� Durable Two-Phase Commit

 Chapter 11. Introduction to Web services: Atomic transactions 437

11.4.1 Completion protocol

The Completion protocol is used by an application to tell the Coordinator to try to
either commit or abort an atomic transaction. The Completion protocol initiates
commitment processing. Based on each protocol’s registered participants, the
Coordinator begins with Volatile 2PC and then proceeds through Durable 2PC.
After the transaction has completed, a status (Committed or Aborted) is returned
to the application.

An initiator registers for this protocol by specifying the following URI for the
contents of the ProtocolIdentifier element in the Register element:

http://schemas.xmlsoap.org/ws/2004/10/wsat/Completion

Figure 11-7 illustrates the protocol abstractly.

Figure 11-7 Completion protocol

The initiator generates:

� Commit

Upon receipt of this notification, the Coordinator knows that the initiator has
completed application processing and that it should attempt to commit the
transaction.

� Rollback

Upon receipt of this notification, the Coordinator knows that the initiator has
terminated application processing and that it should abort the transaction.

Ended
Commited

Aborting

CompletingActive

Aborted

Commit

Rollback Aborted

Coordinator generated

notification message

Initiator generated

notification message
stateKey:

438 Implementing CICS Web Services

The Coordinator generates:

� Committed

Upon receipt of this notification, the initiator knows that the Coordinator
reached a decision to commit.

� Aborted

Upon receipt of this notification, the initiator knows that the Coordinator
reached a decision to abort.

11.4.2 Two-Phase Commit protocol

The Two-Phase Commit (2PC) protocol defines how multiple registered
participants reach agreement on the outcome of an atomic transaction. The 2PC
protocol has two variants: Volatile 2PC and Durable 2PC.

Participants managing volatile resources such as a cache should register for this
protocol by using the following protocol identifier:

http://schemas.xmlsoap.org/ws/2004/10/wsat/Volatile2PC

Participants managing durable resources such as a database should register for
this protocol by using the following protocol identifier:

http://schemas.xmlsoap.org/ws/2004/10/wsat/Durable2PC

After receiving a Commit notification in the Completion protocol, the root
Coordinator begins the Prepare phase of all participants registered for the
Volatile 2PC protocol. All participants registered for this protocol must respond
before a Prepare is issued to a participant registered for the Durable 2PC
protocol. We illustrate this in Figure 11-8, where participants P1 and P3
registered for the Volatile 2PC protocol and participant P2 registered for the
Durable 2PC protocol. Both P1 and P3 must respond to the Prepare notification
before the Coordinator can send Prepare to P2.

Note: When CICS TS V3.1 is a participant in an atomic transaction, it always
requests the Durable2PC protocol when it sends a Register request. When
CICS TS V3.1 is the coordinator of an atomic transaction, it will tolerate a
Register request for Volatile2PC but it will treat it as a Durable2PC request.

 Chapter 11. Introduction to Web services: Atomic transactions 439

Figure 11-8 Mixture of participants registered for Durable 2PC and Volatile 2PC

Upon successfully completing the prepare phase for Volatile 2PC participants,
the root Coordinator begins the Prepare phase for Durable 2PC participants. All
participants registered for this protocol must respond Prepared or ReadOnly
before a Commit notification is issued to a participant registered for either
protocol. A volatile participant is not guaranteed to receive a notification of the
transaction’s outcome.

Figure 11-9 illustrates the 2PC protocol abstractly.

Figure 11-9 Two-Phase Commit protocol

The Coordinator generates:

� Prepare

Upon receipt of this notification, the participant should enter phase 1 and vote
on the outcome of the transaction.

– If the participant has already voted, it should resend the same vote.

V2PC

D 2PC

V2PC

P 3

P 2

P 1

Applica tion C oord
C om m it 5 . P repare

1. P repare

4 . P repared

2 . P repare

3. P repared

Coordinator generated

notification message

Participant generated

notification message

 state of
participant Key:

Aborting

Active Prepared EndedPreparing Committing

ReadOnly or Aborted

Prepare

Rollback

Aborted

Prepared Commit Commited

440 Implementing CICS Web Services

– If the participant does not know of the transaction, it must vote to abort.

� Rollback

Upon receipt of this notification, the participant should abort, and forget, the
transaction. This notification can be sent in either phase 1 or phase 2. Once
sent, the Coordinator may forget all knowledge of this transaction.

� Commit

Upon receipt of this notification, the participant should commit the
transaction.This notification can only be sent after phase 1, and if the
participant voted to commit. If the participant does not know of the
transaction, it must send a Committed notification to the Coordinator.

The participant generates:

� Prepared

The participant is prepared and votes to commit the transaction.

� ReadOnly

The participant votes to commit the transaction and has forgotten the
transaction. The participant does not wish to participate in phase two.

Suppose, for example, that the participant received an account number that it
could not match to an entry in a database. It might return an error to the
requesting application, but, having registered as a participant in the atomic
transaction, it would then go on to be coordinated during 2PC processing.
When the Coordinator sends Prepare, the participant replies ReadOnly and
then terminates without waiting for the Commit. The Coordinator, on receipt of
the ReadOnly, would then delete its own record of the interaction with the
participant and would not attempt to send a Commit to it.

� Aborted

The participant has aborted, and forgotten, the transaction.

� Committed

The participant has committed the transaction. The Coordinator may safely
forget that participant.

� Replay

The participant has suffered a recoverable failure. The Coordinator should
resend the last appropriate protocol notification.

11.4.3 Two applications with their own coordinators (continued)

In Section 11.3.6, “Two applications with their own coordinators” on page 434 we
saw how two application services (App1 and App2) with their own coordinators

 Chapter 11. Introduction to Web services: Atomic transactions 441

(Coordinator A and Coordinator B) used the WS-Coordination specification to
interact as an activity propagated between them. Figure 11-10 shows how they
use the WS-AT specification to complete their global unit of work.

Figure 11-10 Two applications with their own coordinators (continued)

After completing its work, App2 sends its response back to App1 (step 10 in
Figure 11-10). When App1 completes its work, its sends a Commit message to
Coordinator A (step 11). This causes Coordinator A’s Durable 2PC Protocol
service Pa to send a Prepare notification to Coordinator B’s Durable 2PC
Protocol service Pb (step 12). We assume that Pb responds with a Prepared
notification. If Pa encounters no other errors, it makes the decision to commit the
atomic transaction and sends a Commit notification to Pb (step 14). Pb returns a
Committed notification and then completes its updates before terminating. When
Coordinator A receives this notification, it commits its own updates and notifies
App1 of the outcome (step 16).

11.4.4 Addressing requirements for WS-AT message types

The messages defined in the WS-AT specification are notification messages;
that is, they are one-way messages. There are two types of notification
messages:

Registration
 service
 RSb

Protocol
 service
 Pb

Activation
 service
 ASb

Coordinator B

2. CreateCCResponse
 -CCa
 - ID A1
 - Type wsat
 - @RSa 16. Committed

Coordinator A

Registration
 service
 RSa

Protocol
 service
 Pa

Activation
 service
 ASa

App 2 Protocol serviceApp 1

1. CreateCC
 -Type wsat

11. Commit

6. Register
 - Durable2PC
 - @App2

10. App 2 sends resp
 to App1

3. App 1 sends App 2
 application msg
 containing CCa

7.Register
Response
 - @Pb

5. CreateCC
 Response
 -CCb
 - ID A1
 - Type wsat
 - @RSb

4. CreateCC
 -Type wsat
 - CCa

9..RegisterResponse
 - @Pa

8. Register
 - Durable2PC
 - @Pb

15. Committed
14. Commit

12. Prepare
13. Prepared

442 Implementing CICS Web Services

� A notification message is a terminal message when it indicates the end of a
coordinator/participant relationship. Committed, Aborted, and ReadOnly are
terminal messages.

� A notification message is a non-terminal message when it does not indicate
the end of a coordinator/participant relationship. Commit, Rollback, Prepare,
Prepared, and Replay are non-terminal messages.

Non-terminal notification messages must include a wsa:ReplyTo header.

11.4.5 CICS TS V3.1 and resynchronization processing

We have completed our discussion of the WS-AT specification. Unfortunately,
the current version of the specification does not completely cover all of the issues
surrounding the use of the 2PC protocol. In particular, it does not completely
describe the resynchronization processing that should take place following a
failure in one of the systems involved in the 2PC protocol or in the network
connections that link the systems together. The only thing that the specification
mentions relating to resynchronization is the Replay notification. Therefore, in
this section we describe some aspects of how CICS TS V3.1 handles
resynchronization processing for transactions that use the 2PC protocol.

Network failures can result in messages not being delivered in a timely manner.
System failures prevent processing altogether until a restart takes place.

Within the 2PC processing sequence there is a period of time, known as the
in-doubt window, during which one system is unable to complete processing
because it does not know what the other system has done. The distributed UOW
is said to be in-doubt when:

� A participant Protocol service has replied Prepared in response to a Prepare
notification, and

� Has written a log record of its response to signify that it has entered the
in-doubt state, and

� Does not yet know the decision of its coordinator (to Commit or to Rollback).

Barring system or network failures, the UOW remains in-doubt until the
coordinator issues either the Commit or Rollback request as a result of responses

Note: For the sake of brevity we do not describe all of the possible issues. For
example, we do not describe:

� What happens when resync processing is driven from both sides and a
race condition results

� What happens when a resync request fails

 Chapter 11. Introduction to Web services: Atomic transactions 443

received from all UOW participants. If a failure occurs that causes loss of
connectivity between a participant and its coordinator, the UOW remains
in-doubt until either:

� Recovery from the failure has taken place and synchronization can resume,
or

� The in-doubt waiting period is terminated by some built-in control mechanism,
and an arbitrary (heuristic) decision is then taken (to commit or back out).

Note that while the UOW remains in-doubt, the recoverable resources that it
owns remain locked.

If a system or network failure occurs during the in-doubt window, additional steps
must be taken to ensure that the updates are completed in a consistent manner
by both systems. This is known as resynchronization processing.

Previous releases of CICS provided a Recovery Manager that dealt with
resynchronization processing for distributed workloads that made use of VTAM
networks or that used MRO connections. These releases dealt with failures
during the in-doubt window in one of three ways:

� Automatic heuristic decision

You could cause CICS to make an automatic heuristic decision by specifying
the WAIT, WAITTIME, and ACTION attributes on a TRANSACTION definition
as follows:

– If you set the WAIT attribute to NO, then CICS took whatever action was
specified on the ACTION attribute (either COMMIT or BACKOUT)
immediately.

– If you set the WAIT attribute to YES and the WAITTIME attribute to a
non-zero value, then CICS took whatever action was specified on the
ACTION attribute after waiting for the amount of time specified in
WAITTIME (assuming normal recovery and resynchronization had not
already taken place).

� Manual heuristic decision

You could force an in-doubt UOW to complete by issuing a CEMT SET
UOW(uowid) [COMMIT | BACKOUT] command or its EXEC CICS equivalent.

� Automatic resynchronization

If you set the WAIT attribute to YES and the WAITTIME attribute to 00.00.00,
the transaction would wait until it could communicate with its partner system,
after which it could either explicitly request that the message it was waiting for
be sent again, or it could resend the last message that it generated.

444 Implementing CICS Web Services

CICS TS V3.1 extends the Recovery Manager for use by WS-AT workloads.
CICS applications that form part of a WS-AT workload can be controlled by any
of these mechanisms. However, automatic resynchronization is somewhat
different for WS-AT workloads.

The principle difference arises from the fact that WS-AT processing takes place
over a TCP/IP network.

� Other forms of distributed transactions make use of communication
mechanisms such as VTAM, and resynchronization across a VTAM network
can be triggered when the connection between a pair of systems is
re-established.

� CICS does not currently support TCP/IP connections in the same way that it
does its VTAM connections, and so CICS can only drive resynchronization of
WS-AT requests when a region starts.

During any type of startup except an initial start, CICS reads the system log to
discover any units of work that were in-doubt when the region previously shut
down or failed. While reading through the log, CICS may find that it has
outstanding units of work that indicate they were involved in an atomic
transaction. These log records also indicate whether the UOW was acting as a
coordinator or a participant.

� Coordinator

If it is a coordinator and the log record indicates that the UOW was waiting for
a Committed or Aborted response from a participant when CICS shut down,
then the UOW is reactivated (unshunted) and sends out its decision message
(Commit or Rollback) to the participant identified in the log record.

– If a response is received, then the UOW completes its processing and
terminates.

– If a response is not received before the coordination UOW times out, then
CICS shunts the UOW (moves it aside for processing later on). The UOW
then persists until another resynchronization attempt takes place or until
someone manually forces it to complete. (The coordination UOW times
out after 30 seconds, a value set internally by CICS).

� Participant

If it is a participant and the log record indicates that the UOW had voted in
response to a Prepare message and was waiting for a Commit or Rollback
decision from its coordinator when communication was lost, then the UOW is

Important: CICS only drives resynchronization of WS-AT requests during a
CICS region restart.

 Chapter 11. Introduction to Web services: Atomic transactions 445

reactivated, sends a Replay message to its coordinator, and once again waits
for the decision message to arrive.

– If the decision message is then received, the participant acts on it and
sends a Committed or Aborted message back to the coordinator before
terminating.

– If the decision message does not arrive before the participant UOW times
out, then CICS shunts the participant UOW. The UOW then persists until
another resynchronization attempt takes place or until someone manually
forces it to complete.

446 Implementing CICS Web Services

Chapter 12. Enabling atomic
transactions

We begin this chapter by showing you how to enable atomic transactions in
CICS. We start with the simple case where we have a service requester
application running in CICS AOR1 invoking a service provider application
running in CICS AOR2. Then we move to the more elaborate case where two
CICSplexes are working together, one acting as service requester and the other
as service provider. We conclude the chapter by showing you how to enable
atomic transactions in WebSphere Application Server.

12

© Copyright IBM Corp. 2007. All rights reserved. 447

12.1 Enabling atomic transactions in CICS

We recognize that it is not likely that many customers will choose to use WS-AT
for workloads distributed entirely within CICS. More typically, CICS would
participate in an atomic transaction as a Web service provider with the service
requester running under the control of another product such as WebSphere
Application Server V6 or later. Customers might also use a CICS transaction
acting as a Web service requester to participate in an atomic transaction with a
service provider running under the control of another product.

Nevertheless, we start with the special case of one CICS region acting as a
service requester participating in an atomic transaction with another CICS region
acting as a service provider. This will illustrate the capacity of CICS to undertake
both the role of a coordinator of an atomic transaction and the role of a
participant in an atomic transaction.

12.1.1 CICS to CICS configuration

Figure 12-1 shows two CICS regions: AOR1 and AOR2. A service requester
application running in AOR1 invokes a service provider application running in
AOR2.

In AOR1 the request passes through a pipeline that contains a CICS-provided
message handler module (either DFHPISN1, if SOAP 1.1 is being used; or
DFHPISN2, if SOAP 1.2 is being used). DFHPISNx invokes the CICS-provided
header processing program DFHWSATH. DFHWSATH adds a SOAP header
containing a CoordinationContext to each message that it sends out.

In AOR2 the request passes through a pipeline that supports the Web service
that AOR1’s application is calling and also invokes DFHPISNx. DFHPISNx
invokes the header processing program DFHWSATH when it detects a SOAP
header that contains a CoordinationContext.

448 Implementing CICS Web Services

Figure 12-1 The special case: CICS to CICS

Both regions have a requester pipeline named DFHWSATR and a provider
pipeline named DFHWSATP for registration and protocol processing. The
DFHWSATP pipeline invokes the CICS-supplied message handler DFHWSATX
as the last message handler in the pipeline.

For the workload we have shown, AOR1’s DFHWSATP pipeline receives
registration requests and protocol notifications, while its DFHWSATR pipeline
sends registration responses and protocol instructions.

AOR2’s DFHWSATP pipeline receives registration responses and protocol
instructions, while its DFHWSATR pipeline sends registration requests and
protocol notifications.

CICS TS V3.1 provides a new resource group DFHWSAT to assist customers
with setting up WS-AT support in CICS. The DFHWSAT group contains the
resources shown in Table 12-1.

Note: The DFHWSATP pipeline acts as the registration endpoint for CICS.

requester.example.com

CICS AOR1 CICS AOR2

provider.example.com

WS Requester pipeline

Web service
requester app DFHWSATH

Web service
provider app

WS Provider pipeline

DFHWSATH

RS Provider pipeline
 (DFHWSATP)

RS Requester pipeline
 (DFHWSATR)

DFHWSATX

Registration
 and
 Protocol
 services
(DFHPIRS)

RS Requester pipeline
 (DFHWSATR)

RS Provider pipeline
 (DFHWSATP)

DFHWSATX

1. Invoke WS with
CoordinationContext

4. WS response

8.Committed

2.Register
6.Prepared

7.Commit

3.RegisterResponse
5.Prepare

Registration
 and
 Protocol
 services
(DFHPIRS)

 Chapter 12. Enabling atomic transactions 449

Table 12-1 CICS supplied resource definitions for WS-AT

Since DFHLIST does not include the DFHWSAT group and you cannot add the
DFHWSAT group to DFHLIST, specifying DFHLIST in the system initialization
table GRPLIST parameter will not cause CICS to install DFHWSAT automatically
during an initial start.

Figure 12-2 shows the definition of the DFHWSATP PIPELINE resource.

Resource Resource name Description

Pipeline DFHWSATP Registration services provider
PIPELINE

Pipeline DFHWSATR Registration services requester
PIPELINE

Urimap DFHRSURI URIMAP used by the Registration
services provider

Program DFHPIRS Registration and protocol services
program

Program DFHWSATH SOAP header processing program

Program DFHWSATR Registration and coordination services
handler program

Program DFHWSATX CICS message handler program

450 Implementing CICS Web Services

Figure 12-2 Definition of the DFHWSATP PIPELINE resource

Note that the definition contains the fully-qualified name of the pipeline
configuration file. If you install the CICS-supplied registrationservicePROV.xml
configuration file in a different directory when you install CICS (as we did), then
you must make a copy of the entire DFHWSAT group, change the definition of
the DFHWSATP pipeline, and install the modified group.

OBJECT CHARACTERISTICS CICS RELEASE = 0640
 CEDA View PIpeline(DFHWSATP)
 PIpeline : DFHWSATP
 Group : DFHWSAT
 Description :
 STatus : Enabled Enabled | Disabled
 Configfile : /usr/lpp/cicsts/cicsts31/pipeline/configs/registrationserv
 (Mixed Case) : icePROV.xml
 :
 :
 :
 SHelf : /var/cicsts/
 (Mixed Case) :
 :
 :
 :
 Wsdir :
 (Mixed Case) :
 :

 SYSID=T3C1 APPLID=A6POT3C1

 Chapter 12. Enabling atomic transactions 451

Example 12-1 shows the contents of the registrationservicePROV.xml file. This
configuration file defines a pipeline that contains only one message handler
program, DFHWSATX.

Example 12-1 The registrationservicePROV.xml pipeline configuration file

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

 <service>
 <terminal_handler>
 <handler>
 <program>DFHWSATX</program>
 <handler_parameter_list/>
 </handler>
 </terminal_handler>
 </service>
 <service_parameter_list/>
</provider_pipeline>

Figure 12-3 shows the definition of the DFHWSATR PIPELINE resource.

Tip: If you attempt to modify the definition of the DFHWSATP pipeline in group
DFHWSAT, you will get the message "Unable to perform operation:
DFHWSAT is IBM protected."

If you add the DFHWSAT group to your startup list and then attempt to
override the definition of DFHWSATP that is provided in the DFHWSAT group
by adding a modified DFHWSATP definition that appears later in the startup
list, then you will get message DFHAM4892 W indicating that the install of the
second group completed with errors.

If you copy only the DFHWSATP, DFHWSATR, and DFHRSURI definitions to
a new group and try to let program autoinstall automatically install the
definitions of the programs DFHWSATH, DFHWSATR, DFHWSATX, and
DFHPIRS, you may also have problems. These four programs need access to
containers which use CICS-key storage, and therefore they must run with
EXECKEY(CICS) unless storage protection is turned off. You would have a
problem if the model for the program you use for program autoinstall does not
specify EXECKEY(CICS).

452 Implementing CICS Web Services

Figure 12-3 Definition of the DFHWSATR PIPELINE resource

Example 12-2 shows the contents of the registrationserviceREQ.xml file. This
configuration file defines a pipeline that does not contain any message handlers.

Example 12-2 The registrationserviceREQ.xml pipeline configuration file

<?xml version="1.0" encoding="UTF-8"?>
<requester_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
requester.xsd">

</requester_pipeline>

Important: We recommend that you do not modify the
registrationserviceREQ.xml pipeline configuration file or the
registrationservicePROV.xml pipeline configuration file. If you modify one of
these files, you might inadvertently alter the flow of the registration or protocol
service messages and thereby affect the integrity of your data.

OBJECT CHARACTERISTICS CICS RELEASE = 0640
 CEDA View PIpeline(DFHWSATR)
 PIpeline : DFHWSATR
 Group : DFHWSAT
 Description :
 STatus : Enabled Enabled | Disabled
 Configfile : /usr/lpp/cicsts/cicsts31/pipeline/configs/registrationserv
 (Mixed Case) : iceREQ.xml
 :
 :
 :
 SHelf : /var/cicsts/
 (Mixed Case) :
 :
 :
 :
 Wsdir :
 (Mixed Case) :
 :

SYSID=T3C1 APPLID=A6POT3C1

 Chapter 12. Enabling atomic transactions 453

Figure 12-4 shows the definition of the DFHRSURI URIMAP resource.

Figure 12-4 Definition of the DFHRSURI URIMAP resource

When the CICS-supplied CWXN transaction finds that the URI in an HTTP
request matches the PATH attribute of the DFHRSURI URIMAP definition, it
uses the PIPELINE attribute of that definition to get the name of the PIPELINE
definition that it will use to process the incoming request. As Figure 12-4 shows,
this is the DFHWSATP pipeline. As we have already seen, the DFHWSATP
PIPELINE definition specifies that CICS should use registrationservicePROV.xml
as the pipeline configuration file. As we have also already seen, this
configuration file defines a pipeline that contains only one message handler
program, DFHWSATX. Thus when the URI in an HTTP request contains
/cicswsat/RegistrationService, CICS invokes the DFHWSATX message handler.

This raises the question: What causes CICS to receive an HTTP request whose
URI field contains /cicswsat/RegistrationService?

OBJECT CHARACTERISTICS CICS RELEASE = 0640
 CEDA View Urimap(DFHRSURI)
 Urimap : DFHRSURI
 Group : DFHWSAT
 Description :
 STatus : Enabled Enabled | Disabled
 USAge : Pipeline Server | Client | Pipeline
 UNIVERSAL RESOURCE IDENTIFIER
 SCheme : HTTP HTTP | HTTPS
 HOST : *
 (Lower Case) :
 PAth : /cicswsat/RegistrationService
 (Mixed Case) :
 :
 :
 :
 ASSOCIATED CICS RESOURCES
 TCpipservice :
 Analyzer : No No | Yes
COnverter :

 TRansaction : CPIH
 PRogram :
 PIpeline : DFHWSATP
 Webservice : (Mixed Case)
 SECURITY ATTRIBUTES
 USErid :
 CIphers :

454 Implementing CICS Web Services

The answer is that the pipeline configuration file for the service requester
application (running in CICS AOR1) must specify:

� One of the CICS-provided SOAP message handlers (cics_soap_1.1_handler
or cics_soap_1.2_handler)

� The mandatory invocation of the DFHWSATH header processing program to
add a CoordinationContext header to the SOAP request

� A <registration_service_endpoint> element within a
<service_parameter_list>

This is shown in Example 12-3.

Example 12-3 Service requester pipeline configuration file which supports WS-AT

<?xml version="1.0" encoding="UTF-8"?>
<requester_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline

requester.xsd">
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>
 http://schemas.xmlsoap.org/ws/2004/10/wscoor
 </namespace>
 <localname>CoordinationContext</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </service_handler_list>
 </service>
 <service_parameter_list>
 <registration_service_endpoint>
 http://requester.example.com:3207/cicswsat/RegistrationService
 </registration_service_endpoint>
 </service_parameter_list>
</requester_pipeline>

The <registration_service_endpoint> element contains the address of the
Registration service endpoint that runs in the requesting CICS region (AOR1).
The path component of this address matches the PATH attribute defined in the
DFHRSURI URIMAP resource definition of AOR1. Participant Web services
should send Register requests and Prepared and Committed (or Aborted)
notifications to this address.

 Chapter 12. Enabling atomic transactions 455

In the service requester pipeline in Example 12-3:

� Since the <mandatory> element contains True, the pipeline will flow a
CoordinationContext with the message.

� If you change the <mandatory> element to False or remove DFHWSATH from
the pipeline, the pipeline will not flow a CoordinationContext with the
message.

The pipeline configuration file (Example 12-4) for the service provider application
must specify:

� One of the CICS-provided SOAP message handlers (cics_soap_1.1_handler
or cics_soap_1.2_handler)

� Invocation of the DFHWSATH header processing program whenever the
SOAP message contains a CoordinationContext header

� A <registration_service_endpoint> element within a
<service_parameter_list>

Example 12-4 Service provider pipeline configuration file that supports WS-AT

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline

provider.xsd ">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>
 http://schemas.xmlsoap.org/ws/2004/10/wscoor
 </namespace>
 <localname>CoordinationContext</localname>
 <mandatory>false</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
 <service_parameter_list>
 <registration_service_endpoint>
 http://provider.example.com:3207/cicswsat/RegistrationService
 </registration_service_endpoint>
 </service_parameter_list>
</provider_pipeline>

456 Implementing CICS Web Services

This time the <registration_service_endpoint> element contains the address
of the Registration service endpoint that runs in the provider CICS region. The
Coordinator should send RegisterResponse messages and Prepare and Commit
(or Abort) notifications to this address.

In the service provider pipeline in Example 12-4:

� The pipeline will accept flows with a CoordinationContext, and such flows will
be treated as part of a WS-AT transaction.

� Since the <mandatory> element contains False, the pipeline will also accept
messages without a CoordinationContext but they will not be part of any
WS-AT transaction.

� If you change the <mandatory> element to True, the pipeline will require that a
CoordinationContext flow with the message. A Fault will be raised if a
requester attempts to use the service without a CoordinationContext.

� If you remove DFHWSATH from the pipeline, the pipeline will raise a
mustUnderstand fault when a CoordinationContext arrives with
mustUnderstand set to True.

We conclude this section with a few remarks on the function provided by two
programs in the CICS-supplied DFHWSAT group.

DFHPIRS
DFHPIRS is the central component of CICS support for WS-AT. It provides the
bulk of the function that is needed for registration and protocol processing. The
actions that it can be called to service include the following: Register,
RegisterResponse, Prepare, Prepared, Aborted, ReadOnly, Commit, Rollback,
Committed, and Replay.

If DFHPIRS encounters an unrecoverable error, it abends with an abend code of
APIO.

DFHWSATH
When included in the configuration file for a Web service requester pipeline,
DFHWSATH controls the processing that causes a CoordinationContext to be
created and added to the SOAP message before it is sent. To do this
DFHWSATH calls DFHPIAT, which finds the local netname, the unit-of-work ID
(UOWID), and the value of the DTIMOUT attribute on the TRANSACTION
definition for the transaction ID under which the requesting application is running.
DFHPIAT also finds the endpoint address of the Registration service for the
requesting region. From all of this information DFHPIAT creates a
CoordinationContext.

 Chapter 12. Enabling atomic transactions 457

When included in the configuration file for a Web service provider pipeline, this
program is invoked if the CICS-supplied SOAP message handler detects a
CoordinationContext header in a message. When called, DFHWSATH controls
the processing that extracts data from the CoordinationContext header.

If DFHWSATH encounters an unrecoverable error, it abends with an APIP
abend, which causes the pipeline manager to terminate the processing of the
current request.

12.1.2 More elaborate CICS to CICS configuration

In the simple CICS to CICS configuration shown in 12.1.1, “CICS to CICS
configuration” on page 448, all the requester registration endpoints reside in the
same region as the service requester application, and all the provider registration
endpoints reside in the same region as the service provider application. This
does not have to be the case, and a number of different configurations are
possible, including the one shown in Figure 12-5.

Figure 12-5 More elaborate configuration

The service requester pipeline (WS pipeline 1) must run in the same region as
the service requester application that it supports. However, the service provider
pipeline (WS pipeline 2) does not have to run in the same region as the service

CICS Listener 1

CICS AOR2CICS AOR1

Service
Requester
Application

Service
Provider
Application

WS
pipeline 1

RS
requester
pipeline 2

WS
pipeline 2

RS
provider
pipeline 2

RS
provider
pipeline 1

RS
requester
pipeline 1

MRO Connection MRO Connection3
- R

eg
ist

er
-R

es
p

5
- P

re
pa

re
7

- C
om

m
it

1 -
Se

nd
_R

eq
ue

st

4 -
Re

ce
ive

_R
es

po
ns

e

2 - Register

6 - Prepared

8 - Committed

TCP/IP Connections
CICSplex 1 CICSplex 2

CICS Listener 2

458 Implementing CICS Web Services

provider application that it manages. Instead, these applications are eligible for
dynamic routing as described in 3.4, “Configuring for high availability” on
page 101. Similarly, Registration services provider pipelines, such as RS
provider pipeline 1 and RS provider pipeline 2 in Figure 12-5, do not have to be
located in the same region as the applications that they service.

In the case of RS provider pipeline 1, the requests arriving there are for
registration with the service requester application running in AOR1, and protocol
response messages that refer to this application’s role in coordinating the atomic
transaction. The RS provider pipeline 2 receives registration response messages
and protocol notification messages intended for the service provider application
running in AOR2.

Since eventually these messages must be processed in the same region as the
service provider application, the WS-AT implementation in CICS TS makes use
of RequestStreams to pass these messages from one region to another.
RequestStreams are dependent on MRO connections when they exchange
information between CICS regions.

The use of RequestStreams means that individual Registration services provider
pipelines can be used by different applications, and those applications do not
have to reside in the same region. A set of cloned AORs can share a common
Registration services provider pipeline that is located in a specific WS-AT CICS
region. Work can then be distributed across the AORs and each of the WS-AT
messages, arriving at the Registration services provider pipeline, contains
sufficient information to allow it to be forwarded to the correct AOR.

Figure 12-5 shows the Registration services requester pipelines are in the same
region as the applications that they service. RS requester pipeline 1 services the
service requester application in AOR1, and RS requester pipeline 2 services the
service provider application in AOR2. This configuration cannot be changed
because CICS requires that each WS-AT message must be dispatched from the
same region as the application that it relates to. This means that each AOR in a

Note: If a Registration Service provider pipeline is configured in a different
region than the application that it services, then an MRO connection is
required between the CICS regions.

Tip: A set of cloned AORs can share a common RS provider pipeline located
in a specific WS-AT region, thus reducing the number of pipeline
configurations required. In this configuration, it is recommended that you do
not run applications in the specific WS-AT region and that you create clones
for improved failover and availability.

 Chapter 12. Enabling atomic transactions 459

cloned set of AORs used to support a common Web services workload, must
have it’s own Registration services requester pipeline configured.

12.2 Enabling atomic transactions in WebSphere

WebSphere Application Server Version 6 implements the WS-AT specification. A
J2EE application programmer demarcates a global transaction in a program by
using the Java Transaction API (JTA) UserTransaction interface as shown in
Example 12-5.

Example 12-5 Demarcating a global transaction using the JTA

UserTransaction userTransaction = null;
try {

 InitialContext context = new InitialContext();
userTransaction = (UserTransaction)

context.lookup(“java:comp/UserTransaction”);
userTransaction.begin();

// insert record into database
.
.
.

// commit
userTransaction.commit();

} catch (java.rmi.RemoteException re) {
try {

userTransaction.rollback();
 }

.....
}

If a Web service request is made by an application component running under a
global transaction, WebSphere Application Server implicitly propagates a
CoordinationContext to the target Web service if the appropriate application
deployment descriptors have been specified.

If WebSphere Application Server is the system hosting the target endpoint for a
Web service request that contains a WS-AT CoordinationContext, WebSphere
automatically establishes a subordinate JTA transaction in the target run-time
environment that becomes the transactional context under which the target Web
service application executes.

Note: A Registration services requester pipeline must be configured in each
AOR that hosts applications which participate in atomic transactions.

460 Implementing CICS Web Services

Application developers do not have to explicitly register WS-AT participants. The
WebSphere Application Server run time takes responsibility for the registration of
WS-AT participants. At transaction completion time, all WS-AT participants are
atomically coordinated by the WebSphere Application Server transaction service.

There are no specific development tasks required for Web service applications to
take advantage of WS-AT; however, there are some application deployment
descriptors that have to be set appropriately:

� In a Web module that invokes a Web service, specify Send Web Services
Atomic Transactions on requests to propagate the transaction to the target
Web service.

See “Change the deployment descriptor” on page 478 for information about
how we enabled our Web application to send WS-AT SOAP headers in
requests to a CICS service provider application.

� In a Web module that implements a Web service, specify Execute using Web
Services Atomic Transaction on incoming requests to run under a
received client transaction context.

� In an EJB module that invokes a Web service, specify Use Web Services
Atomic Transaction to propagate the EJB transaction to the target Web
service.

� In an EJB module, bean methods must be specified with transaction type
Required, which is the default, to participate in a global atomic transaction.

 Chapter 12. Enabling atomic transactions 461

462 Implementing CICS Web Services

Chapter 13. Transaction scenarios

In this chapter we show different scenarios that demonstrate how you can
synchronize resource updates using the WS-Atomic Transaction support in CICS
and WebSphere Application Server.

We start with an explanation of the scenarios that we set out to test, and how we
prepared the system and the settings that we used for the configuration of our
system.

We then cover in detail the changes that we made to the CICS pipeline
configuration and WebSphere Application Server to enable Web services
transactional integration.

13

© Copyright IBM Corp. 2007. All rights reserved. 463

13.1 Introduction to our scenarios

Figure 13-1 shows three different atomic transaction scenarios that we
considered testing.

Figure 13-1 Three possible atomic transaction scenarios

The scenario at the top is the simple case where a coordinator controls a single
participant. Both parties may make recoverable updates. Another possibility is
that only the participant makes recoverable updates. A third possibility is that the
participant does nothing recoverable; in this case it will send a ReadOnly
notification when it is coordinated.

The second scenario is often referred to as a daisy chain. Here there is a primary
(or root) coordinator that invokes a Web service, and the invoked Web service
then invokes a second Web service. The entire atomic transaction is controlled
by the primary coordinator. The middle system takes on the role of a coordinator
and the role of a participant at different times in its life cycle. When the primary
coordinator instructs it during transaction termination, this system acts as a
participant. However, before it responds to the primary coordinator, it then takes
on the role of coordinator of its own participant.

The third scenario is a hub configuration. A single coordinator invokes one Web
service and then another. It then coordinates them together.

Participant

Coordinator

ParticipantCoordinator

Participant

Participant/
Coordinator

Coordinator Participant

Hub

Simple

Daisy
chain

464 Implementing CICS Web Services

You can probably think of many other scenarios. In this chapter we more closely
look at two of these scenarios:

� The simple scenario in which WebSphere Application Server V6.0 is the
coordinator and CICS TS V3.1 is the participant. See “The simple atomic
transaction scenario” on page 467.

� The daisy chain scenario in which CICS TS V3.1 is both a coordinator and a
participant. See 13.3, “The daisy chain atomic transaction scenario” on
page 510.

13.1.1 Software checklist

Table 13-1 shows the software we used in the scenarios described in this
chapter.

Table 13-1 Software used in the atomic transaction scenarios

13.1.2 Definition checklist

Table 13-2 shows the definitions we used in the scenarios described in this
chapter.

Windows z/OS

Windows 2000 SP4 z/OS V1.6

IBM WebSphere Application Server - ND
V6.0.0.2

CICS Transaction Server V3.1

Internet Explorer V6.0

DB2 V8.1.7.445

User-supplied programs:
� CatalogAtomic.ear

A modified service requester
application used for the WS-AT
scenarios

� DispatchAtomic.ear
A modified service provider application
used for the WS-AT scenarios

User-supplied programs:
� SNIFFER (message handler program

written in COBOL)
� WSATHND (header processing

program written in C)

Important: You should install the fix for APAR PK16509 if you are using a
later version of WebSphere than IBM WebSphere Application Server -
Network Deployment V6.0.0.2.

 Chapter 13. Transaction scenarios 465

Table 13-2 Definitions used in the atomic transaction scenarios

Value CICS TS WebSphere Application
Server

IP name mvsg3.mop.ibm.com cam21-pc11.mop.ibm.com

IP address 9.100.193.167 9.100.199.238

Job name CIWST3C1

APPLID A6POT3C1

SIT parameter SEC=NO
(see APAR PK10849)

TCPIPSERVICE definition T3C1

PORT attribute on T3C1
TCPIPSERVICE definition

15301

FILE definition for sample
catalog VSAM file

EXMPCAT

RECOVERY attribute on
EXMPCAT FILE definition

BACKOUTONLY

Web service provider
PIPELINE definition

PIPE1

CONFIGFILE attribute on
PIPE1 PIPELINE
definition

/CIWS/T3C1/config
/ITSO_7206_wsat_soap11
provider.xml

Web service requester
PIPELINE definition

PIPE2

CONFIGFILE attribute on
PIPE2 PIPELINE
definition

/CIWS/T3C1/config
/ITSO_7206_wsat_soap11
requester.xml

RDO group containing
copy of DFHWSAT group

CTS310C

Registration Service
provider PIPELINE

DFHWSATP

CONFIGFILE attribute on
DFHWSATP PIPELINE
definition

/CIWS/T3C1/config
/ITSO_7206_wsat_registr
ationservicePROV.xml

Registration Service
requester PIPELINE

DFHWSATR

466 Implementing CICS Web Services

13.2 The simple atomic transaction scenario

The sample Catalog application provided with CICS TS V3.1 provides three Web
services:

� inquireSingle

� inquireCatalog

� placeOrder

Only the placeOrder Web service updates the VSAM file that contains the
information about the company’s products. Therefore, we naturally decided that
the service requester running in WebSphere Application Server should invoke
the placeOrder Web service in our WS-AT scenario.

We modified the service requester application (see “Installing the service
requester” on page 87) to create a global transaction and to update a DB2 table.
We call the new service requester application AtomicClient.

To be more specific, we create the table ITSO.ORDER in DB2. Before calling the
placeOrder Web service, the AtomicClient inserts a row in this table so that we
have a log of all of the orders placed through our application. We can now have a
global transaction that updates two resources: a DB2 table in the Windows
environment and a VSAM file in the z/OS environment. Figure 13-2 shows the

CONFIGFILE attribute on
DFHWSATR PIPELINE
definition

/CIWS/T3C1/config
/ITSO_7206_wsat_registr
ationserviceREQ.xml

Important: As we write this book, APAR PK10849 is open. It reports that if
you attempt to use WS-AT in a CICS region that is running with the SIT
parameter SEC=YES, then during the RegisterResponse step of coordination
RACF will issue messages ICH408I and IRR012I and CICS will issue
message DFHPI0002. Therefore, we ran our region with SEC=NO.

Value CICS TS WebSphere Application
Server

Note: Rather than using JDBC™ to update a DB2 table, we could have
chosen to use another J2EE connector such as the JCA or JMS. Updates to
resources accessed by these connectors can be synchronized with Web
service requests in the same way.

 Chapter 13. Transaction scenarios 467

sequence of events in AtomicClient as it begins a global transaction, updates a
DB2 database, calls the placeOrder Web service, and then either commits or
rolls back the updates.

Figure 13-2 Simple atomic transaction sequence of events

Figure 13-3 shows a more global view of the sequence of events:

� The user uses his Web browser to invoke the AtomicClient that runs in
WebSphere Application Server.

� The AtomicClient updates the ITSO.ORDER table in DB2.

� WebSphere Application Server sends the insertOrder SOAP message
containing the order to CICS.

� CICS uses Web service provider PIPELINE definition PIPE1 to process the
SOAP message. PIPE1 contains our SNIFFER program and the
CICS-supplied SOAP 1.1 message handler DFHPISN1.

� DFHPISN1 links to the CICS-supplied header processing program
DFHWSATH.

� CICS converts the SOAP message to a COMMAREA for the sample catalog
manager program, DFH0XCMN.

� DFH0XCMN passes the data in the COMMAREA to the sample catalog
program DFH0XVDS, which updates the recoverable VSAM file.

CatalogController
Servlet

OrderDB
Java Bean

Place Order
CICS Web Service

handlePlaceOrder

insertOrder

placeOrder

DFH0XCMNOperation

beginTransaction

endTransaction
commit or rollback

send
response

Web
browser

Web
browser

AtomicClient

468 Implementing CICS Web Services

Figure 13-3 WebSphere as service requester and CICS as service provider

In the following sections we describe how we set up CICS for this scenario, how
we created the AtomicClient and the ITSO.ORDER table, and the results of
testing this scenario.

13.2.1 Setting up CICS for the simple scenario

To set up CICS for this scenario we performed the following steps:

� Set the value of the SEC system initialization table parameter to NO; see
13.1.2, “Definition checklist” on page 465.

� Changed the value of the RECOVERY attribute of the EXMPCAT FILE
definition to BACKOUTONLY so that the file is recoverable. (The EXMPCAT
FILE definition defines the VSAM file that contains the catalog data for the
sample application).

Servlet JSPs

CatalogAtomic.ear

CICS CIWST3C1

 SOAP
Request

PIPE1

DB2

Catalog data
(EXMPCAT)

Item #
Description
Dept, Cost
in stock
on order

 Catalog manager (DFH0XCMN)

01ORDR...

Workstation

Browser

WAS

 Dummy
 stock mgr
 (DFH0XSSM)

 VSAM
 data handler
(DFH0XVDS)

 Dummy
 dispatch mgr
 (DFH0XSOD)

01ORDR... 01DSPO.. 01STKO...

DFHWSATH

CPIH

DFHPISN1 SNIFFER

Commarea

ITSO.ORDER
 table

Order_tmstmp
Item_ref
Quantity
User_ID
Charge_dept

VSAM

 Chapter 13. Transaction scenarios 469

� Edited PIPE1’s configuration file

/CIWS/T3C1/config/ITSO_7206_wsat_soap11provider.xml

so that it contains the XML shown in Example 13-1. This XML contains:

– The same XML as shown in Example 12-4 on page 456, except that we
changed the address in the registration_service_endpoint element to
be specific to the CICS region CIWST3C1

– XML to add the SNIFFER message handler

Example 13-1 PIPE1: /CIWS/T3C1/config/ITSO_7206_wsat_soap11provider.xml

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

<service>
 <service_handler_list>
 <handler>
 <program>SNIFFER</program>
 <handler_parameter_list/>
 </handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>
 http://schemas.xmlsoap.org/ws/2004/10/wscoor
 </namespace>
 <localname>CoordinationContext</localname>
 <mandatory>false</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
 <service_parameter_list>
 <registration_service_endpoint>
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </registration_service_endpoint>
 </service_parameter_list>
</provider_pipeline>

470 Implementing CICS Web Services

� Copied the group DFHWSAT to the group CTS310C and added the group
CTS310C to our startup list:

CEDA COPY GROUP(DFHWSAT) TO(CTS310C)
CEDA ADD GROUP(CTS310C) LIST(LISTT3C1)

� Edited DFHWSATP’s configuration file

/CIWS/T3C1/config/ITSO_7206_wsat_registrationservicePROV.xml

so that it contained the XML shown in Example 13-2. This XML contains:

– The same XML as shown in Example 12-1 on page 452

– XML to add the WSATHND header processing program (see “How we
monitored the exchange of WS-AT messages” on page 472)

Example 13-2 DFHWSATP: /CIWS/.../ITSO_7206_wsat_registrationservicePROV.xml

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">

 <service>
<service_handler_list>

 <cics_soap_1.2_handler>
 <headerprogram>
 <program_name>WSATHND</program_name>
 <namespace>*</namespace>
 <localname>wsatHeader</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.2_handler>
 </service_handler_list>
 <terminal_handler>
 <handler>
 <program>DFHWSATX</program>
 <handler_parameter_list/>
 </handler>
 </terminal_handler>
 </service>
 <service_parameter_list/>
</provider_pipeline>

–

Tip: For readability Example 13-1 shows the registration_service_endpoint
element split across three lines. However, during our testing we found that we
had to place its start tag, contents, and end tag on the same line.

 Chapter 13. Transaction scenarios 471

� Edited DFHWSATR’s configuration file

/CIWS/T3C1/config/ITSO_7206_wsat_registrationserviceREQ.xml

so that it contained the XML shown in Example 13-3. This XML contains

– The same XML shown in Example 12-2 on page 453

– XML to add the WSATHND header processing program

Example 13-3 DFHWSATR: /CIWS/.../ITSO_7206_wsat_registrationserviceREQ.xml

<?xml version="1.0" encoding="UTF-8"?>
<requester_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
requester.xsd">

<service>
 <service_handler_list>
 <cics_soap_1.2_handler>
 <headerprogram>
 <program_name>WSATHND</program_name>
 <namespace>*</namespace>
 <localname>wsatHeader</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.2_handler>
 </service_handler_list>
 </service>
</requester_pipeline>

How we monitored the exchange of WS-AT messages
The user-written WSATHND header processing program writes messages to the
CESO transient data queue, which normally is an extrapartition queue with
DDname CEEOUT. We used WSATHND to monitor the exchange of registration
and protocol service messages between WebSphere Application Server and
CICS.

The message output of WSATHND depends on the values the programmer has
assigned to the two variables MESSAGES_ON and FULL_MESSAGES_ON:

1. If MESSAGES_ON is set to 1, the program writes the following message:

WSAT: REACHED HANDLER - function

where function is the contents of the DFHFUNCTION container
(RECEIVE-REQUEST, SEND-RESPONSE, SEND-REQUEST,
RECEIVE-RESPONSE, PROCESS-REQUEST, NO-RESPONSE, or
HANDLER-ERROR).

472 Implementing CICS Web Services

When the function is NO-RESPONSE, then the handler is being invoked after
processing a request, when there is no response to be processed.

2. If the function is not NO-RESPONSE, then:

– If FULL_MESSAGES_ON is set to 1, WSATHND writes the following
message:

WSAT: contents of the DFHREQUEST container

– If MESSAGES_ON is set to 1, it will write the following message:

WSAT: ACTION: action

where action has one of the following values: Register,
RegisterResponse, Prepare, Prepared, Commit, Committed, ReadOnly,
Abort, Aborted, Rollback.

Thus, WSATHND provides a way to see the registration and protocol service
messages that are being sent between the service requester and the service
provider as they happen. We found it easier to use this program than to take a
TCP/IP trace or to search for these messages in a CICS auxiliary trace. The full
WSATHND program is shown A.7, “Sample header processing program -
WSATHND” on page 567.

13.2.2 Creating the AtomicClient and ITSO.ORDER table

To create the AtomicClient and the ITSO.ORDER table, we did the following:

� Created the OrderBean JavaBean that represents the order.

� Created the OrderDB JavaBean that inserts the order into the DB2 database.

� Changed the handlePlaceOrder method of the CatalogController servlet so
that it creates an OrderBean and then calls OrderDB to insert it into the DB2
database as part of a global transaction.

� Changed the deployment descriptor of the Web module CatalogAtomicWeb.
This is the module that invokes the Web Service.

� Created the ITSO.ORDER table.

� Created a data source.

We explain each step in detail in the following sections.

Create the OrderBean JavaBean
The OrderBean JavaBean represents the order; it has all the fields from the
PlaceOrder JavaServer™ Page (JSP™) plus a timestamp that records the time
when the Web browser user placed the order. Example 13-4 shows the code for
the OrderBean JavaBean.

 Chapter 13. Transaction scenarios 473

Example 13-4 The OrderBean JavaBean

package itso.mop.objects;

import java.sql.Timestamp;

public class OrderBean {

private Timestamp orderTmstmp;
private short itemRef;
private short quantity;
private String userId;
private String chargeDept;

// getters and setters
...
}

Create the OrderDB JavaBean
Example 13-5 shows the code for the OrderDB JavaBean, which inserts the
order into the DB2 table.

Example 13-5 The OrderDB JavaBean

package itso.mop.db;

import itso.mop.objects.OrderBean;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.DataSource;

public class OrderDB {

private static final String _JNDI_NAME = "jdbc/ORDERDS";

public int insertOrder(OrderBean order){
Connection con = getConnection();
PreparedStatement pm = null;
int rs = 0;
try {

pm = con.prepareStatement("INSERT INTO ITSO.ORDER (ORDER_TMSTMP,
ITEM_REF, QUANTITY, USER_ID, CHARGE_DEPT) VALUES(?,?,?,?,?)");

pm.setTimestamp(1, order.getOrderTmstmp());
pm.setInt(2, order.getItemRef());
pm.setInt(3, order.getQuantity());

474 Implementing CICS Web Services

pm.setString(4, order.getUserId());
pm.setString(5, order.getChargeDept());

rs = pm.executeUpdate();

System.out.println("OrderDB.insertOrder() - inserted the order in the
database!!!!");

} catch (SQLException e) {
System.out.println("OrderDB.insertOrder() - Exception inserting the

order in the database!!");
e.printStackTrace(System.err);
rs = 0;

} finally {
try {

if (pm != null)
pm.close();

if (con != null)
con.close();

} catch (Exception e) {
e.printStackTrace(System.err);

}
}
return rs;

}

private Connection getConnection() {
Connection con = null;
try {

InitialContext ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup(_JNDI_NAME);
con = ds.getConnection();

} catch (NamingException e) {
e.printStackTrace(System.err);

} catch (SQLException e) {
e.printStackTrace(System.err);

}
return con;

}
}

Change the handlePlaceOrder method
In the Catalog application the CatalogController servlet handles all the requests
from the Web browser. In particular, the handlePlaceOrder method of this servlet
handles requests from the Web browser to place an order. We made the
following changes to this method:

1. Created the OrderBean and populated all of its fields

 Chapter 13. Transaction scenarios 475

2. Created the transaction (UserTransaction) and then began the transaction

3. Inserted the order into the DB2 database using the OrderDB JavaBean

4. Called the CICS Web service

5. Coded the method to throw a RemoteException when the “ROLLBACK” user
ID enters the order (for testing transaction rollback)

6. Committed the transaction

7. Rolled back the transaction in the case of an Exception

Example 13-6 shows the code for the handlePlaceOrder method.

Example 13-6 The handlePlaceOrder method of the CatalogController servlet

private void handlePlaceOrder(HttpServletRequest request, HttpServletResponse
response)
throws ServletException, IOException
{

OrderDetails orderDetails = new OrderDetails();
try
{

// Retrieve the data from the submitted form
orderDetails.setItemRefNumber(

short.parseShort(request.getParameter("itemRef")));
orderDetails.setQuantityRequired(Short.parseShort(

request.getParameter("quantity")));
orderDetails.setUserId(request.getParameter("userName"));
orderDetails.setChargeDepartment(request.getParameter("deptName"));

}
catch(Exception e)
{

handleError(request, response, "Input data format incorrect, please try
again");

return;
}

UserTransaction userTransaction = null;
try
{

//1. Create the order bean and populate all of its fields
System.out.println("CatalogController.handlePlaceOrder() - creating the

order");
OrderBean order = new OrderBean();
order.setOrderTmstmp(new Timestamp(Calendar.getInstance().

Note: The rollback logic was added to the application for testing purposes
only; normal applications would not be expected to behave in this way.

476 Implementing CICS Web Services

getTime().getTime()));
order.setItemRef(orderDetails.getItemRefNumber());
order.setQuantity(orderDetails.getQuantityRequired());
order.setUserId(orderDetails.getUserId());
order.setChargeDept(orderDetails.getChargeDepartment());

// 2. Create and begin the Transaction
InitialContext context = new InitialContext();
userTransaction = (UserTransaction)

context.lookup("java:comp/UserTransaction");
System.out.println("CatalogController.handlePlaceOrder() - beginning the

transaction");
userTransaction.begin();

// 3. Insert the order into the database
System.out.println("CatalogController.handlePlaceOrder() - inserting the

order in the database");
OrderDB orderDB = new OrderDB();
orderDB.insertOrder(order);

// 4. Make the Web service call to CICS
System.out.println("CatalogController.handlePlaceOrder() - calling the

CICS web service");
orderDetails.populateResponse(

getOrderProxy(request).DFH0XCMNOperation(orderDetails.getRequestProgramInterfac
e()));

System.out.println("CatalogController.handlePlaceOrder() - response back
from the CICS web service");

// 5. Throw exception if user ID ROLLBACK
if(order.getUserId().equalsIgnoreCase("ROLLBACK"))
{

System.out.println("CatalogController.handlePlaceOrder() - simulating
the RemoteException");

throw new RemoteException("Throwing the RemoteException");
}
// 6. Commit the transaction
System.out.println("CatalogController.handlePlaceOrder() - commit the

transaction");
userTransaction.commit();
System.out.println("CatalogController.handlePlaceOrder() - after

commit");
}

// 7. Rollback in case of exception
catch (Exception e)
{

try {
System.out.println("CatalogController.handlePlaceOrder() -

rollingback the transaction");
userTransaction.rollback();

 Chapter 13. Transaction scenarios 477

} catch (Exception e1) {
System.out.println("CatalogController.handlePlaceOrder() - Exception

when rollingback the transaction");
e1.printStackTrace();

}

if (e.getMessage().startsWith("java.net.ConnectException"))
{

String errorMessage = "Unable to connect to service endpoint: "+
 getOrderProxy(request).getEndpoint()+
 "
 Please ensure service is running.";

handleError(request, response, errorMessage);
return;

}
else
{

e.printStackTrace();
handleError(request, response, "An Error occured calling the service:

"+e.getMessage());
return;

}
}
// Call the response page setting the OrderDetails bean on the request
RequestDispatcher dispatcher =

request.getRequestDispatcher(orderResponsePage);
request.setAttribute("orderDetails",orderDetails);
dispatcher.forward(request,response);

}

Change the deployment descriptor
The deployment descriptor of a J2EE application is used to specify whether the
application component, if it makes any Web service requests, expects any
transaction context to be propagated with the Web service requests (in
accordance with the WebSphere WS-AT support).

To activate the WS-AT support:

� We imported the client application archive CatalogAtomic.ear into RAD. We
then expanded the Dynamic Web Project (CatalogAtomicWeb) in the Project
Explorer and opened (double-clicked) the Deployment Descriptor
(Figure 13-4).

Note: Since the service requester application is a Web application (as
opposed to an enterprise bean) we used a bean-managed transaction. For an
enterprise bean, it is generally recommended to use container-managed
transactions.

478 Implementing CICS Web Services

Figure 13-4 Project Explorer for CatalogAtomicWeb application

� In the Deployment Descriptor we clicked the Servlets tab and selected the
CatalogController servlet. Then we scrolled down to Global Transaction and
selected Send Web Services Atomic Transactions on requests
(Figure 13-5).

Figure 13-5 Activating atomic transaction in the web deployment descriptor

� We saved and closed the file.

Note: A similar deployment descriptor attribute Use Web Services Atomic
Transaction can be used for enterprise beans.

 Chapter 13. Transaction scenarios 479

Create the ITSO.ORDER table
We created the ITSO.ORDER table to record all the orders that the Web browser
user sends to the Catalog application. Example 13-7 shows the script we used to
create the database and the table.

Example 13-7 Creation of ITSOWS database and ITSO.ORDER table

-- IBM ITSO
CONNECT RESET;
-- Create database ITSOWS and schema ITSO
CREATE DATABASE ITSOWS;
CONNECT TO ITSOWS;
CREATE SCHEMA ITSO;

-- Table definitions for Order
CREATE TABLE ITSO.ORDER
 (ORDER_TMSTMP TIMESTAMP NOT NULL ,
 ITEM_REF INTEGER NOT NULL ,
 QUANTITY INTEGER NOT NULL ,
 USER_ID CHARACTER (20) NOT NULL ,
 CHARGE_DEPT CHARACTER (20) NOT NULL ,
 CONSTRAINT ORDERKEY PRIMARY KEY (ORDER_TMSTMP)) ;

The ITSO.ORDER table has a column for every field in the Catalog Place Order
JSP. Also, there is a TimeStamp column that is used as a unique key for the
table. Figure 13-6 shows the ITSOWS database in the Control Center.

480 Implementing CICS Web Services

Figure 13-6 The ITSOWS database in the Control Center

Create a WebSphere data source
Next we configured the data source in WebSphere through the Administrative
Console.

� We opened the Admin console by pointing a Web browser at:

http://cam21-pc11:9060/admin

� In the main window, we opened Resources and then clicked JDBC
Providers (Figure 13-7).

 Chapter 13. Transaction scenarios 481

Figure 13-7 Admin console - JDBC providers

� Because we are running a single server, we chose the Server scope.

� To create a new JDBC provider we clicked New.

482 Implementing CICS Web Services

Figure 13-8 Admin console - New JDBC provider

� In the new JDBC provider window (Figure 13-8), we selected:

– DB2 as database type

– DB2 Universal JDBC Driver Provider as provider type

– XA data source as the implementation type

We clicked Next, and we were then presented with the window shown in
Figure 13-9.

 Chapter 13. Transaction scenarios 483

Figure 13-9 Admin console - New JDBC provider 2

� We provided a name for the the JDBC provider, in this instance:

ITSO WebServices DB2 JDBC Driver Provider (XA)

� We noted that WebSphere offers the Implementation class name
COM.ibm.db2.jdbc.DB2XADataSource. This is the class of the DB2 driver
that has two-phase commit capability. Since this class is not in the default

484 Implementing CICS Web Services

class path provided by WebSphere, we added to the end of the class path the
following:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2java.zip

� We clicked OK and saved the configuration changes.

Now we have the new JDBC provider defined and we can see it in the list of
JDBC providers.

Define the DB2UNIVERSAL_JDBC_DRIVER_PATH variable
We defined the DB2UNIVERSAL_JDBC_DRIVER_PATH WebSphere variable
as follows:

� In the Admin console main window we clicked Environment and then clicked
WebSphere Variables as shown in Figure 13-10.

Figure 13-10 Admin console - WebSphere variables window

� We set the value of the DB2UNIVERSAL_JDBC_DRIVER_PATH variable to
the default JDBC driver location C:\Program Files\IBM\SQLLIB\java
(Figure 13-11).

 Chapter 13. Transaction scenarios 485

Figure 13-11 Admin console - Defining the DB2 driver path variable

Create the J2C Authentication data
Before creating the data source, we needed to create the J2EE Connector
Architecture (J2C) Authentication data in JAAS Configuration.

� In the Admin console main window we selected Security and then Global
Security.

� In the Global security page we clicked JAAS Configuration under
Authentication, and selected J2C Authentication data.

� In the J2EE Connector Architecture (J2C) authentication data entries
page we clicked New. The window shown in Figure 13-12 was displayed.

486 Implementing CICS Web Services

Figure 13-12 Admin console - Define J2C authentication alias

� In the General Properties we entered the following values:

– DB2user as Alias

– Administrator as User ID

– User password as Password

� We clicked OK and saved the configuration changes.

Configure the data source for the JDBC provider
Next we configured the data source for the JDBC provider.

� In the Admin console main window we selected Resources and then JDBC
Providers.

� In the JDBC providers window, we clicked the new provider that we defined in
“Create a WebSphere data source” on page 481:

ITSO WebServices DB2 JDBC Driver Provider (XA)

� In Additional Properties we clicked Data sources, then clicked New. We
were presented with the window shown in Figure 13-13.

 Chapter 13. Transaction scenarios 487

Figure 13-13 Admin console - New Data source (1 of 2)

� In the General Properties we entered the following values:

– ORDERDS as the Data source name.

488 Implementing CICS Web Services

– jdbc/ORDERDS as the JNDI name.

– DB2user as the Component-managed authentication alias.

� We then scrolled down to the bottom of the window and entered ITSOWS as
the Database name (Figure 13-14).

Figure 13-14 Admin console - New data source (2 of 2)

� We clicked OK and then saved the changes.

13.2.3 Testing the simple scenario

We performed two tests of the simple scenario:

� Normal transaction termination

� Abnormal transaction termination (see “Simple scenario: abnormal
transaction termination” on page 507)

Simple scenario: normal transaction termination
In this section, we explain how we ran the AtomicClient application and then
show the registration and protocol service messages that are exchanged
between WebSphere Application Server and CICS during the normal termination
of the atomic transaction.

To run the scenario we followed these steps:

� We opened the welcome window of the Catalog application using the URL:

http://cam21-pc11:9080/CatalogAtomicWeb/Welcome.jsp

We were presented with the window shown in Figure 13-15.

 Chapter 13. Transaction scenarios 489

Figure 13-15 Catalog Application - Welcome window

� We clicked INQUIRE.

� In the Inquire Single window we used the Item Reference Number default
value of 0010 and clicked SUBMIT. The Web service request was sent to
CICS and we were presented with the results of the inquiry as shown in
Figure 13-16.

Figure 13-16 Catalog Application - Inquire single

� We noted that the number of items in stock was 76. This value is taken from
the CICS VSAM file.

490 Implementing CICS Web Services

� We clicked SUBMIT to go to the Enter Order Details window shown in
Figure 13-17.

Figure 13-17 Catalog Application - Enter order details

� In the Enter Order Details window we provided a User Name and a
Department Name and clicked SUBMIT.

� After the CICS Web service processed the order, we got a response telling us
that the order was successfully placed (Figure 13-18).

Figure 13-18 Catalog Application - Order placed response

In the WebSphere server log we see trace entries, generated by the Catalog
Controller servlet, which show that the transaction was successfully
committed (Example 13-8).

 Chapter 13. Transaction scenarios 491

Example 13-8 WebSphere server log with successful Place Order

CatalogContoller:doPost() - Action = Place Order
CatalogController.handlePlaceOrder() - creating the order
CatalogController.handlePlaceOrder() - beginning the transaction
CatalogController.handlePlaceOrder() - inserting the order in the database
OrderDB.insertOrder() - inserted the order in the database!!!!
CatalogController.handlePlaceOrder() - calling the CICS web service
CatalogController.handlePlaceOrder() - response back from the CICS web service
CatalogController.handlePlaceOrder() - commit the transaction
CatalogController.handlePlaceOrder() - after commit

� Next we checked the same item number through the Inquire Single service
and verified that the stock level decreased by one item (Figure 13-19).

Figure 13-19 Catalog Application - Inquire single

� We opened a DB2 Control Center and issued the SQL command:

SELECT * FROM ITSO.ORDER

This lists all of the records in our ITSO.ORDER table. Figure 13-20 shows that
our new record is in the table.

492 Implementing CICS Web Services

Figure 13-20 The new record in the ITSO .ORDER table

Figure 13-21 shows the registration and protocol service messages that were
exchanged between CICS and WebSphere Application Server during our test.
Note that WebSphere Application Server uses separate endpoint addresses for
its Registration service, Protocol service, and fault messages.

 Chapter 13. Transaction scenarios 493

Figure 13-21 Messages exchanged during test of normal atomic transaction termination

We conclude our discussion of this test by showing the complete messages
summarized by Figure 13-21. To make each message easier to understand we:

� Format it

� Replace the URL in each xmlns attribute with "..." for each namespace in
Example 13-9. For instance, we replaced
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" with
xmlns:soap="..." .

Example 13-9 Namespaces used in messages between WebSphere and CICS

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor"
xmlns:wsat="http://schemas.xmlsoap.org/ws/2004/10/wsat"
xmlns:websphere-wsat="http://wstx.Transaction.ws.ibm.com/extension"
xmlns:cicswsat="http://www.ibm.com/xmlns/prod/CICS/pipeline"

cam21-pc11.mop.ibm.com

WebSphere CICS

Web service
provider app

WS Provider pipeline

DFHWSATH

RS Provider pipeline
 (DFHWSATP)

RS Requester pipeline
 (DFHWSATR)

DFHWSATX

1. Invoke WS with
CoordinationContext

4. WS response

2.Register

8.Committed
6.Prepared

7.Commit

3.RegisterResponse
5.Prepare

Registration
 and
 Protocol
 services
(DFHPIRS)

WSATFaultPort

RegistrationCoordinator
 Port

 mvsg3.mop.ibm.com

Coordinator

Servlet JSPs

CatalogAtomic.ear

494 Implementing CICS Web Services

Invoke Web service with coordination context (message 1)
Example 13-10 shows the SOAP 1.1 message that WebSphere sends to CICS to
invoke the placeOrder Web service. The message consists of a SOAP envelope
that contains a SOAP header and a SOAP body.

Example 13-10 WebSphere sends to CICS a Web service request with a CoordinationContext header

<soapenv:Envelope xmlns:soapenv="..." xmlns:soapenc="..." xmlns:xsd="..."
xmlns:xsi="..."
 xmlns:wscoor="..." xmlns:wsa="...">

<soapenv:Header>
<wscoor:CoordinationContext soapenv:mustUnderstand="1">

<wscoor:Expires>Never</wscoor:Expires>
<wscoor:Identifier>

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </wscoor:Identifier>

<wscoor:CoordinationType>
 http://schemas.xmlsoap.org/ws/2004/10/wsat
 </wscoor:CoordinationType>

<wscoor:RegistrationService xmlns:wscoor="...">
<wsa:Address xmlns:wsa="...">

http://9.100.199.238:9080/_IBMSYSAPP/wscoor/services/RegistrationCoordinatorPort
 </wsa:Address>

<wsa:ReferenceProperties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>

<websphere-wsat:instanceID xmlns:websphere-wsat="...">
 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wscoor:RegistrationService>

</wscoor:CoordinationContext>
</soapenv:Header>
<soapenv:Body>

<p635:DFH0XCMN xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">
 <p635:ca_request_id>01ORDR</p635:ca_request_id>
 <p635:ca_return_code>0</p635:ca_return_code>
 <p635:ca_response_message></p635:ca_response_message>
 <p635:ca_order_request>
 <p635:ca_userid>Luis</p635:ca_userid>

 Chapter 13. Transaction scenarios 495

 <p635:ca_charge_dept>D001</p635:ca_charge_dept>
 <p635:ca_item_ref_number>10</p635:ca_item_ref_number>
 <p635:ca_quantity_req>1</p635:ca_quantity_req>
 <p635:filler1 xsi:nil="true"/>
 </p635:ca_order_request>
 </p635:DFH0XCMN>

</soapenv:Body>
</soapenv:Envelope>

� SOAP header

The SOAP header contains only one header, a CoordinationContext header.
The CoordinationContext header has a mustUnderstand attribute whose
value is 1. This means that CICS must process the CoordinationContext
header. If CICS cannot process the CoordinationContext header (for
example, because the provider pipeline configuration file does not specify the
DFHWSATH message handler) then CICS must stop all further processing of
the message and generate a SOAP fault whose fault code is MustUnderstand.

The CoordinationContext element contains four elements:

– Expires

CICS treats the content of the Expires element as a character string and
determines whether the string represents a number.

• If it does, it is treated as a millisecond value, which is then converted to
an integer representing the number of seconds for which the Web
service transaction waits for a response to a Register request or for
the Coordinator to send various 2PC messages. If this integer is 0, or
greater than 4080, then CICS uses 4080 seconds (the maximum value
which CICS allows for the DTIMOUT attribute of the TRANSACTION
resource definition).

• If it does not, then CICS does not set a suspend time and the Web
service transaction waits forever.

– Identifier

WebSphere creates this identifier as a unique global identifier for each
WS-AT transaction as required by the WS-Coordination specification.

Note: We noted that the Expires element was not an unsigned integer
but the text Never. The default CICS behavior is not to terminate the
transaction but to wait indefinitely for WebSphere to commit or roll back
the atomic transaction.

496 Implementing CICS Web Services

– CoordinationType

The CoordinationType element specifies the WS-AtomicTransaction
coordination type.

– RegistrationService

The RegistrationService element contains an endpointReference for
WebSphere’s Registration service. The endpointReference has two
elements:

• Address

The Address element tells CICS where to send its Register request.
CICS copies the contents of the Address element to the To message
information header when it builds its Register request.

• ReferenceProperties

WebSphere provides two reference properties: txID and instanceID.
The content of the txID element is the same as the content of the
Identifier element. The content of the instanceID element is initially
the same as that of the txID element, but that will change later.

CICS adds these reference properties to the SOAP Header when it
builds its Register request. This will allow WebSphere to map the
Register request to this service request. The detail which WebSphere
puts into the txID and instanceID properties is implementation specific
and is only ever parsed and understood by WebSphere.

� SOAP body

The content of the <p635:ca_request_id> element tells CICS which Web
service to invoke; 01ORDR indicates the placeOrder Web service. The
contents of the <p635:ca_userid>, <p635:ca_charge_dept>,
<p635:ca_item_ref_number>, and <p635:ca_quantity_req> elements provide the
placeOrder Web service with the details of the order (see Figure 13-17 on
page 491).

Register (message 2)
Example 13-11 shows the SOAP message which contains the Register request
that CICS sends to WebSphere. The message consists of a SOAP envelope
which contains a SOAP header and a SOAP body.

Example 13-11 CICS sends a Register request to WebSphere

<soap:Envelope xmlns:wscoor="..." xmlns:wsa="..." xmlns:cicswsat="..."
xmlns:soap="...">

<soap:Header>
<wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register

 Chapter 13. Transaction scenarios 497

 </wsa:Action>
<wsa:MessageID>PIAT-MSG-A6POT3C1-003343146052627C</wsa:MessageID>
<wsa:ReplyTo>

 <wsa:Address>
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </wsa:Address>
 <wsa:ReferenceProperties>
 <cicswsat:UOWID>BE092025168B596B</cicswsat:UOWID>
 <cicswsat:PublicId>
 310FD7E2E2C3C7F34BC1F6D7D6E3F3C3F10FD7E2E2C3C7F34BC1F6D7D6E3F3C3
 F1C3C9E6E2F3C44040BE092025167B0000092025167B00004040404040404040
 </cicswsat:PublicId>
 </wsa:ReferenceProperties>
 </wsa:ReplyTo>

<wsa:To>

http://9.100.199.238:9080/_IBMSYSAPP/wscoor/services/RegistrationCoordinatorPort
 </wsa:To>

<websphere-wsat:txID xmlns:websphere-wsat="...">
 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>

<websphere-wsat:instanceID xmlns:websphere-wsat="...">
 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:instanceID>

</soap:Header>
<soap:Body>

<wscoor:Register>
<wscoor:ProtocolIdentifier>

 http://schemas.xmlsoap.org/ws/2004/10/wsat/Durable2PC
 </wscoor:ProtocolIdentifier>

<wscoor:ParticipantProtocolService>
<wsa:Address>

 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </wsa:Address>

<wsa:ReferenceProperties>
 <cicswsat:UOWID>BE092025168B596B</cicswsat:UOWID>
 <cicswsat:PublicId>
 310FD7E2E2C3C7F34BC1F6D7D6E3F3C3F10FD7E2E2C3C7F34BC1F6D7D6E3F3C3
 F1C3C9E6E2F3C44040BE092025167B0000092025167B00004040404040404040
 </cicswsat:PublicId>
 </wsa:ReferenceProperties>

</wscoor:ParticipantProtocolService>
</wscoor:Register>

498 Implementing CICS Web Services

</soap:Body>
</soap:Envelope>

� SOAP header

The SOAP Header contains several message information headers and the
two reference properties (txID and instanceID) which WebSphere sent in its
Web service request. These reference properties allow WebSphere to match
this Register request to its initial request for the placeOrder service. The
message information headers are as follows:

– To

The To header shows that the message is being sent to the Registration
Coordinator Port running in a WebSphere Application Server V6.0 region
which is monitoring port 9080 on a system whose IP address is
9.100.199.238. CICS copied this from the Address element of the
endpointReference for the RegistrationService in WebSphere’s service
request.

– Action

The Action header indicates that CICS wishes to register with the
Registration Coordinator Port.

– MessageID

The ID of the message uniquely identifies the message in space and time:

• PIAT is part of the name of module DFHPIAT; DFHPIAT generates
CoordinationContext elements for CICS and interprets
CoordinationContext elements received from other systems.

• A6POT3C1 is the VTAM APPLID of the CICS region which is sending
the message.

• 003343146052627C is the abstime value returned by an EXEC CICS
INQUIRE TIME issued in our CICS region.

– ReplyTo

The Address element of the ReplyTo header shows that the reply to this
message should be sent to the Registration service running in a CICS
region which is monitoring port 15301 on a z/OS system whose IP address
is MVSG3.mop.ibm.com. This Registration service has two reference
properties:

• UOWID

• PublicID

When WebSphere sends the RegisterResponse to CICS, it will add each
of these reference properties to the response as a SOAP header. CICS

 Chapter 13. Transaction scenarios 499

will use the PublicID to find the region and the UOW in that region where
the Web service provider is waiting for the response; then CICS will route
it there for processing. The detail which CICS puts into the UOWID and
PublicID properties is there for CICS to understand; other products do not
use it.

� SOAP body

The SOAP Body contains the Register request, which contains two elements:

– ProtocolIdentifier

CICS uses this element to register for the durable two-phase commit
protocol.

– ParticipantProtocolService

Note that the address of CICS’s Protocol service is the same as the
address of its Registration service.

RegisterResponse (message 3)
Example 13-12 shows the RegisterResponse that WebSphere sends to CICS.

Example 13-12 WebSphere sends a RegisterResponse to CICS

<soapenv:Envelope xmlns:soapenv="..." xmlns:soapenc="..." xmlns:xsd="..."
xmlns:xsi="..."
 xmlns:wsa="...">

<soapenv:Header>
<wsa:MessageID>uuid:10A19D35-0108-4000-E000-094409D4835B</wsa:MessageID>
<wsa:To>http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService</wsa:To>
<wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse
 </wsa:Action>

<wsa:FaultTo xmlns:wsa="...">
<wsa:Address>

 http://9.100.199.238:9080/_IBMSYSAPP/wsatfault/services/WSATFaultPort
 </wsa:Address>

<wsa:ReferenceProperties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>
 <websphere-wsat:instanceID xmlns:websphere-wsat="...">
 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wsa:FaultTo>

500 Implementing CICS Web Services

<wsa:From xmlns:wsa="...">
<wsa:Address>

http://9.100.199.238:9080/_IBMSYSAPP/wscoor/services/RegistrationCoordinatorPort
 </wsa:Address>

<wsa:ReferenceProperties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>
 <websphere-wsat:instanceID xmlns:websphere-wsat="...">
 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wsa:From>
<wsa:RelatesTo>PIAT-MSG-A6POT3C1-003343146052627C</wsa:RelatesTo>
<cicswsat:UOWID xmlns:cicswsat="...">BE092025168B596B</cicswsat:UOWID>
<cicswsat:PublicId xmlns:cicswsat="...">

 310FD7E2E2C3C7F34BC1F6D7D6E3F3C3F10FD7E2E2C3C7F34BC1F6D7D6E3F3C3
 F1C3C9E6E2F3C44040BE092025167B0000092025167B00004040404040404040
 </cicswsat:PublicId>

</soapenv:Header>
<soapenv:Body>

<RegisterResponse xmlns="http://schemas.xmlsoap.org/ws/2004/10/wscoor">
<wscoor:CoordinatorProtocolService xmlns:wscoor="...">

<wsa:Address xmlns:wsa="...">
 http://9.100.199.238:9080/_IBMSYSAPP/wsat/services/Coordinator
 </wsa:Address>

<wsa:Reference Properties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>

<websphere-wsat:instanceID xmlns:websphere-wsat="...">
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wscoor:CoordinatorProtocolService>

</RegisterResponse>
</soapenv:Body>

</soapenv:Envelope>

 Chapter 13. Transaction scenarios 501

� SOAP header

The SOAP Header contains several message information headers and the
two reference properties (UOWID and PublicID), which CICS sent in its
Register request. If we were running a CICSPlex, CICS would use these
reference properties to route the response to the region and the UOW in that
region where the Web service provider is waiting for it. The message
information headers are as follows:

– MessageID

– To

WebSphere is sending this message to CICS’s RegistrationService. It
obtained this address from the ReplyTo header in the Register request.

– Action

This message is a RegisterResponse.

– FaultTo

WebSphere wants CICS to send any SOAP faults that it has to generate
to WebSphere’s WSATFaultPort.

– From

This message is coming from WebSphere’s RegistrationCoordinatorPort.

– RelatesTo

This message relates to the Register request which CICS sent.

� SOAP body

The SOAP Body contains the RegisterResponse element, which in turn
contains only a CoordinatorProtocolService element. The address of
WebSphere’s Protocol Service is
http://9.100.199.238:9080/_IBMSYSAPP/wsat/services/Coordinator
Note that its two reference properties, txID and instanceID, no longer have
the same contents; instanceID now contains the address of CICS’s
Registration service.

Web service response (message 4)
Since CICS has registered its interest in the atomic transaction and WebSphere
has responded to that, CICS can now run the placeOrder service. When the
placeOrder service has completed its work, CICS sends a response to
WebSphere as shown in Example 13-13. The essence of the response is the
message ORDER SUCCESSFULLY PLACED.

Example 13-13 CICS sends the Web service response to WebSphere

<SOAP-ENV:Envelope xmlns:soapenv="..." xmlns:soapenc="..." xmlns:xsd="..."

502 Implementing CICS Web Services

 xmlns:xsi="..." xmlns:wscoor="..." xmlns:wsa="..."
xmlns:SOAP-ENV="...">

<SOAP-ENV:Body>
<DFH0XCMNResponse xmlns="http://www.DFH0XCMN.DFH0XCP5.Response.com">

 <ca_request_id>01ORDR</ca_request_id>
 <ca_return_code>0</ca_return_code>
 <ca_response_message>ORDER SUCESSFULLY PLACED</ca_response_message>
 <ca_order_request>
 <ca_userid>Luis </ca_userid>
 <ca_charge_dept>D001 </ca_charge_dept>
 <ca_item_ref_number>10</ca_item_ref_number>
 <ca_quantity_req>1</ca_quantity_req>
 <filler1>

...
 </filler1>
 </ca_order_request>
 </DFH0XCMNResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Prepare (message 5)
When the handlePlaceOrder method of the CatalogController servlet issues the
userTransaction.commit command, WebSphere sends a Prepare command to
CICS as shown in Example 13-14 in the Action message information header and
in the <p320:Prepare.../> element of the SOAP Body.

Example 13-14 WebSphere sends a Prepare notification to CICS

<soapenv:Envelope xmlns:soapenv="..." xmlns:soapenc="..." xmlns:xsd="..."
 xmlns:xsi="..." xmlns:wsa="...">

<soapenv:Header>
<wsa:MessageID>uuid:10A19F38-0108-4000-E000-094409D4835B</wsa:MessageID>
<wsa:To>http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService</wsa:To>
<wsa:Action>http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepare</wsa:Action>
<wsa:FaultTo xmlns:wsa="...">

<wsa:Address>
 http://9.100.199.238:9080/_IBMSYSAPP/wsatfault/services/WSATFaultPort
 </wsa:Address>

<wsa:ReferenceProperties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>

<websphere-wsat:instanceID xmlns:websphere-wsat="...">
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService

 Chapter 13. Transaction scenarios 503

 </websphere-wsat:instanceID>
</wsa:ReferenceProperties>

</wsa:FaultTo>
<wsa:ReplyTo xmlns:wsa="...">

<wsa:Address>
 http://9.100.199.238:9080/_IBMSYSAPP/wsat/services/Coordinator
 </wsa:Address>

<wsa:ReferenceProperties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>
 <websphere-wsat:instanceID xmlns:websphere-wsat="...">
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wsa:ReplyTo>
<cicswsat:UOWID xmlns:cicswsat="...">BE092025168B596B</cicswsat:UOWID>

 <cicswsat:PublicId xmlns:cicswsat="...">
 310FD7E2E2C3C7F34BC1F6D7D6E3F3C3F10FD7E2E2C3C7F34BC1F6D7D6E3F3C3
 F1C3C9E6E2F3C44040BE092025167B0000092025167B00004040404040404040
 </cicswsat:PublicId>

</soapenv:Header>
<soapenv:Body>

<p320:Prepare xsi:nil="true"
xmlns:p320="http://schemas.xmlsoap.org/ws/2004/10/wsat"/>

</soapenv:Body>
</soapenv:Envelope>

Prepared (message 6)
CICS responds with Prepared as shown in Example 13-15 in the Action
message information header and in the <wsat:Prepared.../> element of the
SOAP Body. Since Prepared is a terminating message, it does not contain a
ReplyTo message information header.

Example 13-15 CICS sends Prepared notification to WebSphere

<soap:Envelope xmlns:wscoor="..." xmlns:wsa="..." xmlns:cicswsat="..."
xmlns:soap="...">

<soap:Header>
<wsa:Action>http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepared</wsa:Action>
<wsa:MessageID>PIAT-MSG-A6POT3C1-003343146053278C</wsa:MessageID>
<wsa:To>http://9.100.199.238:9080/_IBMSYSAPP/wsat/services/Coordinator</wsa:To>
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0

504 Implementing CICS Web Services

 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>

<websphere-wsat:instanceID xmlns:websphere-wsat="...">
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </websphere-wsat:instanceID>

</soap:Header>
<soap:Body>

<wsat:Prepared xmlns:wsat="..."/>
</soap:Body>

</soap:Envelope>

Commit (message 7)
Since CICS has voted yes in response to the Prepare command, and since no
other system has registered an interest in this transaction, WebSphere sends a
Commit command to CICS. See the Action header and the <p320:Commit.../>
element of the SOAP Body in Example 13-16.

Example 13-16 WebSphere sends Commit notification to CICS

<soapenv:Envelope xmlns:soapenv="..." xmlns:soapenc="..." xmlns:xsd="..."
xmlns:xsi="..."
 xmlns:wsa="...">

<soapenv:Header>
<wsa:MessageID>uuid:10A19F67-0108-4000-E000-094409D4835B</wsa:MessageID>
<wsa:To>http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService</wsa:To>
<wsa:Action>http://schemas.xmlsoap.org/ws/2004/10/wsat/Commit</wsa:Action>

 <wsa:FaultTo xmlns:wsa="...">

<wsa:Address>
 http://9.100.199.238:9080/_IBMSYSAPP/wsatfault/services/WSATFaultPort
 </wsa:Address>

<wsa:ReferenceProperties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>

<websphere-wsat:instanceID xmlns:websphere-wsat="...">
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wsa:FaultTo>
<wsa:ReplyTo xmlns:wsa="...">

<wsa:Address>
 http://9.100.199.238:9080/_IBMSYSAPP/wsat/services/Coordinator
 </wsa:Address>

 Chapter 13. Transaction scenarios 505

<wsa:ReferenceProperties xmlns:wsa="...">
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>
 <websphere-wsat:instanceID xmlns:websphere-wsat="...">
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </websphere-wsat:instanceID>

</wsa:ReferenceProperties>
</wsa:ReplyTo>
<cicswsat:UOWID xmlns:cicswsat="...">BE092025168B596B</cicswsat:UOWID>
<cicswsat:PublicId xmlns:cicswsat="...">

 310FD7E2E2C3C7F34BC1F6D7D6E3F3C3F10FD7E2E2C3C7F34BC1F6D7D6E3F3C3
 F1C3C9E6E2F3C44040BE092025167B0000092025167B00004040404040404040
 </cicswsat:PublicId>

</soapenv:Header>
<soapenv:Body>

<p320:Commit xsi:nil="true"
xmlns:p320="http://schemas.xmlsoap.org/ws/2004/10/wsat"/>

</soapenv:Body>
</soapenv:Envelope>

Committed (message 8)
After committing the update to the EXMPCAT VSAM file, CICS sends a
Committed notification to WebSphere. See the Action message information
header and the <wsat:Committed.../> element of the SOAP Body in
Example 13-17. Since Committed is a terminating message, it does not contain a
ReplyTo message information header.

Example 13-17 CICS sends Committed notification to WebSphere

<soap:Envelope xmlns:wscoor="..." xmlns:wsa="..." xmlns:cicswsat="..."
 xmlns:soap="...">

<soap:Header>
<wsa:Action>http://schemas.xmlsoap.org/ws/2004/10/wsat/Committed</wsa:Action>
<wsa:MessageID>PIAT-MSG-A6POT3C1-003343146053324C</wsa:MessageID>
<wsa:To>http://9.100.199.238:9080/_IBMSYSAPP/wsat/services/Coordinator</wsa:To>
<websphere-wsat:txID xmlns:websphere-wsat="...">

 com.ibm.ws.wstx:0000010810a19b02000000010000000683e8b0
 ecc889b8eab92e29d91254fd4fb0ff47b9
 </websphere-wsat:txID>

<websphere-wsat:instanceID xmlns:websphere-wsat="...">
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </websphere-wsat:instanceID>

</soap:Header>

506 Implementing CICS Web Services

<soap:Body>
<wsat:Committed xmlns:wsat="..."/>

</soap:Body>
</soap:Envelope>

Let’s think back to Waldo and his money transfer transaction (see “Beginner’s
guide to atomic transactions” on page 410). What Waldo requires is that both
databases cooperate to ensure that they are always in a known and consistent
state.

The set of eight Web service, registration, and protocol service messages we
have described here are the flows that guarantee database consistency in our
scenario, a scenario in which the databases are accessed by middleware
(WebSphere Application Server on a Windows platform and CICS on z/OS); and
communication between the middleware products is based on open Web
services standards. The same basic flows could be used between any
middleware products which support the Web services, Web
Services-Coordination (WS-C) and Web Services-Atomic Transaction (WS-AT)
specifications.

Simple scenario: abnormal transaction termination
We return to the Place Order window to place a new order. This time we used
ROLLBACK as the User Name. This tells the servlet to throw an exception after
inserting the order in the DB2 table and placing the order with CICS.

Example 13-18 CatalogController servlet - Throwing the RemoteException

if(order.getUserId().equalsIgnoreCase("ROLLBACK"))
{

System.out.println("CatalogController.handlePlaceOrder() - simulating the
RemoteException");

throw new RemoteException("Throwing the RemoteException");
}

On the Order Entry page we entered the User Name ROLLBACK and clicked
SUBMIT to place a new order (Figure 13-22). Note that, at this time, we still had
75 items in stock (see Figure 13-19 on page 492).

 Chapter 13. Transaction scenarios 507

Figure 13-22 Catalog Application - Place order for ROLLBACK

Figure 13-23 shows the expected error response.

Figure 13-23 Catalog Application - Error window

When the Exception is thrown, the transaction is rolled back; the order is deleted
from the table and the CICS transaction is rolled back too.

We again check in the WebSphere server log to see what happened
(Example 13-19).

Example 13-19 WebSphere server log with ROLLBACK Place Order

CatalogContoller:doPost() - Action = Place Order
CatalogController.handlePlaceOrder() - creating the order
CatalogController.handlePlaceOrder() - beginning the transaction
CatalogController.handlePlaceOrder() - inserting the order in the database

508 Implementing CICS Web Services

OrderDB.insertOrder() - inserted the order in the database!!!!
CatalogController.handlePlaceOrder() - calling the CICS web service
CatalogController.handlePlaceOrder() - response back from the CICS web service
CatalogController.handlePlaceOrder() - simulating the RemoteException
CatalogController.handlePlaceOrder() - rollingback the transaction

We can see in the log that the order was inserted in the database and a good
response was returned from calling the CICS Web service. Then we simulated
the RemoteException and the rollback of the whole transaction took place.

When we inquired on the stock level, we noted that there were still 75 items in
stock.

Figure 13-24 shows the registration and protocol service messages that CICS
and WebSphere Application Server exchanged during our test.

Figure 13-24 Messages exchanged when both sides back out

cam21-pc11.mop.ibm.com

WebSphere

Web service
provider app

WS Provider pipeline

DFHWSATH

RS Provider pipeline
 (DFHWSATP)

RS Requester pipeline
 (DFHWSATR)

DFHWSATX

1. Invoke WS with
CoordinationContext

4. WS response

2.Register
6.Aborted

3.RegisterResponse
5.Rollback

Registration
 and
 Protocol
 services
(DFHPIRS)

WSATFaultPort

RegistrationCoordinator
 Port

 mvsg3.mop.ibm.com

Coordinator

Servlet JSPs

CatalogAtomic.ear

CICS

 Chapter 13. Transaction scenarios 509

13.3 The daisy chain atomic transaction scenario

We now extend the simple atomic transaction scenario to a daisy chain scenario
by making the following modifications:

� Changing the configuration of the CICS sample Catalog application such that
it makes an outbound Web service call

� Changing the ExampleAppDispatchOrder.ear file provided with CICS TS V3.1

ExampleAppDispatchOrder.ear is an enterprise archive provided with the
Catalog application that can be deployed in WebSphere Application Server
and used as an order dispatch endpoint. See “Catalog manager example
application” on page 67 for more information about the sample application.

We modified the ExampleAppDispatchOrder.ear file to insert records into a
DB2 table called ITSO.DISPATCH. The ITSO.DISPATCH table logs all of the
orders dispatched through the dispatchOrder Web service. We called the
modified program DispatchOrderAtomic.ear.

By making these changes, we have a global transaction that updates three
resources:

� A DB2 table in the Windows environment
� A VSAM file in the z/OS environment
� Another DB2 table in a Windows environment

We have a daisy chain from WebSphere to CICS to WebSphere. CICS acts as
both a coordinator and a participant. Figure 13-25 shows the sequence of events
for the whole transaction.

Figure 13-25 Daisy chain scenario sequence of events

CatalogController
Servlet

OrderDB
Java Bean

Place Order
CICS Web Service

handlePlaceOrder

insertOrder

dispatchOrder
DFH0XCMNOperation

beginTransaction

endTransaction
commit or rollback

send
response

DispatchOrder
WAS Web Service

DispatchDB
Java Bean

placeOrder

insertDispatch

510 Implementing CICS Web Services

Figure 13-26 shows a more global view of the sequence of events:

� The user uses his Web browser to invoke the AtomicClient CatalogController
servlet, which runs in WebSphere Application Server.

� The AtomicClient updates the ITSO.ORDER table in DB2.

� WebSphere Application Server sends the placeOrder SOAP message
containing the order to CICS.

� CICS uses the Web services provider PIPELINE definition PIPE1 to process
the SOAP message. PIPE1 contains our SNIFFER program and the
CICS-supplied SOAP 1.1 message handler DFHPISN1.

� DFHPISN1 links to the CICS-supplied header processing program
DFHWSATH.

� CICS converts the SOAP message to a COMMAREA for the sample catalog
manager program, DFH0XCMN.

� DFH0XCMN passes the data in the COMMAREA to the sample catalog
program DFH0XVDS, which updates the recoverable VSAM file.

� DFH0XCMN passes the data in the COMMAREA to DFH0XWOD.

� DFH0XWOD invokes the dispatchOrder Web service, which points to the
PIPELINE PIPE2.

� PIPE2 contains DFHPISN1, which:

– Converts the COMMAREA to a SOAP message body

– Calls DFHWSATH to create a CoordinationContext SOAP header

– Sends the dispatchOrder SOAP message to WebSphere

� DispatchOrderAtomic updates the ITSO.DISPATCH table in DB2.

 Chapter 13. Transaction scenarios 511

Figure 13-26 Daisy chain: CICS as a service provider and as a service requester

In the following sections we describe how we set up CICS for the daisy chain
scenario, and how we created the DispatchOrderAtomic application and the
ITSO.DISPATCH table. We then show the results of testing this scenario.

13.3.1 Setting up CICS for the daisy chain scenario

To set up CICS for this scenario we performed the following steps in addition to
those shown in 13.2.1, “Setting up CICS for the simple scenario” on page 469:

� We edited PIPE2’s configuration file
/CIWS/T3C1/config/ITSO_7206_wsat_soap11request.xml

It now contains the XML shown in Example 13-20.

Example 13-20 PIPE2:/CIWS/T3C1/config/ITSO_7206_wsat_soap11request.xml

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<requester_pipeline

xmlns="http://www.ibm.com/software/htp/cics/pipeline"

CICS CIWST3C1
DB2 ITSO.ORDER

 table

Order_tmstmp
Item_ref
Quantity
User_ID
Charge_dept

insertOrder
SOAP
request

Workstation

Browser

Servlet JSPs

CatalogAtomic.ear

WAS

 Catalog manager (DFH0XCMN)

 Dummy
 stock mgr
 (DFH0XSSM)

 VSAM
 data handler
(DFH0XVDS)

 Dispatch
 manager
(DFH0XWOD)

01ORDR... 01DSPO.. 01STKO...

DFHWSATH

CPIH

DFHPISN1 SNIFFER

PIPE1

01ORDR...Commarea

Catalog data
(EXMPCAT)

Item #
Description
Dept, Cost
in stock
on order

DispatchOrderAtomic.ear

WAS

DB2ITSO.DISPATCH
 table

Order_tmstmp
Item_ref
Quantity
User_ID
Charge_dept

VSAM

DFHWSATH

PIPE2
DFHPISN1

 dispatchOrder SOAP
 request

512 Implementing CICS Web Services

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
requester.xsd “>

 <service>
 <service_handler_list>
 <cics_soap_1.1_handler>
 <headerprogram>
 <program_name>DFHWSATH</program_name>
 <namespace>
 http://schemas.xmlsoap.org/ws/2004/10/wscoor
 </namespace>
 <localname>CoordinationContext</localname>
 <mandatory>true</mandatory>
 </headerprogram>
 </cics_soap_1.1_handler>
 </service_handler_list>
 </service>
 <default_transport_handler_list>
 <handler>
 <program>SNIFFER</program>

<handler_parameter_list/>
 </handler>
 </default_transport_handler_list>
 <service_parameter_list>
 <registration_service_endpoint>

http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
</registration_service_endpoint>

 </service_parameter_list>
</requester_pipeline>

� We modified the configuration file for the sample Catalog application using the
ECFG transaction at a 3270 terminal connected to our CICS region (see
Figure 3-17 on page 98). In the 3270 screen titled Configure CICS Example
Catalog Application:

– We set the value of the Outbound WebService? field on this screen to
Yes; this causes the Catalog Manager program (DFH0XCMN) to invoke
the Dispatch Manager program (DFH0XWOD) rather than the Dummy
Dispatch Manager program (DFH0XSOD) that we used in the simple
scenario. While DFH0XSOD simply sets the return code in the
COMMAREA to 0 and returns to its caller, DFH0XWOD issues an EXEC
CICS INVOKE WEBSERVICE('dispatchOrder')
URI(outboundWebServiceURI) command to make an outbound Web
service call to an order dispatcher.

– We set the value of the Outbound WebService URI field to the location of
the Web service that implements the order dispatcher function. We ran the
dispatchOrder service on WebSphere Application Server for Windows.

 Chapter 13. Transaction scenarios 513

13.3.2 Creating DispatchOrderAtomic and the ITSO.DISPATCH table

To create the DispatchOrderAtomic application and the ITSO.DISPATCH table,
we did the following:

� Created the DispatchDB JavaBean that inserts the dispatch order into the
DB2 table.

� Changed the dispatchOrder method in the DispatchOrderSoapBindingImpl
class in order to call the DispatchDB JavaBean.
DispatchOrderSoapBindingImpl is the bean that serves the Web service and
dispatchOrder is the method that is called when the Web service is
requested.

� Changed the deployment descriptor of the DispatchOrderAtomic application
so that it is executed as part of a Web Services Atomic Transaction.

� Created the ITSO.DISPATCH table.

We explain each step in detail in the following sections.

Create the DispatchDB JavaBean
In the same way that we previously created the OrderDB JavaBean, we created
the DispatchDB JavaBean. This bean has a method that inserts the dispatch
order into the ITSO.DISPATCH table. The input parameter is an OrderBean that
has all the data needed for the insert. We do not show the DispatchDB JavaBean
code here because it is very similar to the OrderDB code shown in Example 13-4
on page 474.

Change the dispatchOrder method
When the dispatchOrder Web service is called, the dispatchOrder method in the
DispatchOrderSoapBindingImpl Java class is called. It is responsible to perform
the service and send a response. We changed this method to create an
OrderBean and to perform the insert by calling the insertDispatch method in the
DispatchDB JavaBean.

The dispatchOrder method is shown in Example 13-21.

Example 13-21 The dispatchOrder method

public com.Response.dispatchOrder.exampleApp.www.DispatchOrderResponse
dispatchOrder(com.Request.dispatchOrder.exampleApp.www.DispatchOrderRequest

requestPart) throws java.rmi.RemoteException {
System.out.println("DispatchOrderSoapBindingImpl.dispatchOrder():"+

" ItemRef="+requestPart.getItemReferenceNumber()+
" Quantity="+requestPart.getQuantityRequired()+
" CustomerName="+requestPart.getCustomerId()+
" Dept="+requestPart.getChargeDepartment());

514 Implementing CICS Web Services

// Creating the order
System.out.println("DispatchOrderSoapBindingImpl.dispatchOrder() -

creating the order");
OrderBean order = new OrderBean();
order.setOrderTmstmp(new

Timestamp(Calendar.getInstance().getTime().getTime()));
order.setItemRef(requestPart.getItemReferenceNumber());
order.setQuantity(requestPart.getQuantityRequired());
order.setUserId(requestPart.getCustomerId());
order.setChargeDept(requestPart.getChargeDepartment());

// inserting the order in the database
System.out.println("DispatchOrderSoapBindingImpl.dispatchOrder() -

inserting the order in the database");
DispatchDB dispatchDB = new DispatchDB();
dispatchDB.insertDispatch(order);
System.out.println("DispatchOrderSoapBindingImpl.dispatchOrder() - after

the insert!!!");

com.Response.dispatchOrder.exampleApp.www.DispatchOrderResponse
response = new

com.Response.dispatchOrder.exampleApp.www.DispatchOrderResponse();
response.setConfirmation("Order in Dispatch");

 return response;
 }

Change the deployment descriptor
In order to specify that the dispatchOrder service should participate in the global
transaction, we needed to modify the Web Application deployment descriptor.

To activate WS-AT support:

� We imported the application archive DispatchOrderAtomic.ear into RAD. We
then expanded the Dynamic Web Project (DispatchOrderAtomicWeb) in the
Project Explorer and opened (double-clicked) the Deployment Descriptor
(Figure 13-27).

 Chapter 13. Transaction scenarios 515

Figure 13-27 Opening the DispatchOrderAtomicWeb Deployment Descriptor

� In the Deployment Descriptor we clicked the Servlets tab and then we
selected the
com_dispatchOrder_exampleApp_www_DispatchOrderSoapBindingImpl
servlet. Then we scrolled down to Global Transaction and selected Execute
using Web Services Atomic Transaction on incoming request
(Figure 13-28).

Figure 13-28 The DispatchOrderAtomicWeb Deployment Descriptor

� We saved and closed the file.

Now when an incoming request contains a coordination context, the
dispatchOrder Web service will join the global transaction.

516 Implementing CICS Web Services

Create the ITSO.DISPATCH table
We created the ITSO.DISPATCH table to record all the dispatch orders that
come to the dispatchOrder Web service. Example 13-22 shows the script we
used to create the table.

Example 13-22 Creation of ITSO.DISPATCH table

-- IBM ITSO

CONNECT RESET;

CONNECT TO ITSOWS;

-- Table definitions for Dispatch
CREATE TABLE ITSO.DISPATCH
 (DISPATCH_TMSTMP TIMESTAMP NOT NULL ,
 ITEM_REF INTEGER NOT NULL ,
 QUANTITY INTEGER NOT NULL ,
 USER_ID CHARACTER (20) NOT NULL ,
 CHARGE_DEPT CHARACTER (20) NOT NULL ,
 CONSTRAINT DISPATCHKEY PRIMARY KEY (DISPATCH_TMSTMP)) ;

The ITSO.DISPATCH table has a column for every field in the Catalog Place
Order JSP. Also, there is a TimeStamp column that is used as a unique key for
the table.

13.3.3 Testing the daisy chain scenario

We performed two tests of the daisy chain scenario:

� Normal transaction termination
� Abnormal transaction termination (see “Daisy chain scenario: abnormal

transaction termination” on page 523)

Daisy chain scenario: normal transaction termination
In this section, we explain how we ran the AtomicClient application and then
show the registration and protocol service messages that are exchanged
between WebSphere Application Server and CICS during the normal termination
of the atomic transaction.

To run the scenario we did the following:

� Opened the welcome page of the Catalog application.

http://cam21-pc11:9080/CatalogAtomicWeb/Welcome.jsp

� Clicked INQUIRE to perform an inquireSingle operation.

 Chapter 13. Transaction scenarios 517

� In the Inquire Single window we used the Item Reference Number default
value of 0010 and clicked SUBMIT. The Web service request was sent to
CICS and we were presented with the results of the inquiry as shown in
Figure 13-29.

Figure 13-29 Catalog Application - Inquire single before

� We noted that the number of items in stock was 31. This value is taken from
the CICS VSAM file.

� We clicked SUBMIT to go to the Enter Order Details window shown in
Figure 13-30.

Figure 13-30 Catalog Application - Enter order details

518 Implementing CICS Web Services

� In the Enter Order Details window we provided a User Name and a
Department Name and clicked SUBMIT.

� After the CICS Web service processed the order and called the
dispatchOrder WebSphere Web service, we got the response telling us that
the order was successfully placed (Figure 13-31).

Figure 13-31 Catalog Application - Order successfully placed

� In the WebSphere server log we see trace entries generated by the
CatalogController servlet, which show that the transaction was successfully
committed (Example 13-23).

Example 13-23 WebSphere server log with successful Place Order for CatalogController

CatalogContoller:doPost() - Action = Place Order
CatalogController.handlePlaceOrder() - creating the order
CatalogController.handlePlaceOrder() - beginning the transaction
CatalogController.handlePlaceOrder() - inserting the order in the database
OrderDB.insertOrder() - inserted the order in the database!!!!
CatalogController.handlePlaceOrder() - calling the CICS web service
CatalogController.handlePlaceOrder() - response back from the CICS web service
CatalogController.handlePlaceOrder() - commit the transaction
CatalogController.handlePlaceOrder() - after commit

� We also can see the log for the WebSphere Application Server on which the
DispatchOrderAtomic application is installed (Example 13-24).

Example 13-24 WebSphere server log with successful Place Order for DispatchOrder

DispatchOrderSoapBindingImpl.dispatchOrder(): ItemRef=10 Quantity=1
CustomerName=Luis Dept=Itso
DispatchOrderSoapBindingImpl.dispatchOrder() - creating the order
DispatchOrderSoapBindingImpl.dispatchOrder() - inserting the order in the
database

 Chapter 13. Transaction scenarios 519

DispatchDB.insertDispatch() - inserted the order in the database!!!!
DispatchOrderSoapBindingImpl.dispatchOrder() - after the insert!!!

� Next we checked the same item number through the inquireService service
and verified that the stock level decreased by one item (Figure 13-32).

Figure 13-32 Catalog Application - Inquire single after

� We opened the DB2 Control Center and used the following SQL command on
the Windows machine which hosted the ITSO.ORDER table:

SELECT * FROM ITSO.ORDER

Figure 13-33 shows the new record in the table.

Figure 13-33 The new record in the ITSO.ORDER table

520 Implementing CICS Web Services

� We also used the following SQL command on the Windows machine which
hosted the ITSO.DISPATCH table:

SELECT * FROM ITSO.DISPATCH

Figure 13-34 shows the new record in the table.

Figure 13-34 The new record in the ITSO.DISPATCH table

Figure 13-35 shows the registration and protocol service messages that are
exchanged between CICS and the two WebSphere Application Servers during
our test.

 Chapter 13. Transaction scenarios 521

Figure 13-35 Successful daisy chain - Message flow

Example 13-25 shows the dispatchOrder request that CICS sends to
WebSphere. Recall that when CICS is a participant in a WS-AT transaction, it
uses two reference properties: UOWID and PublicID. We see in Example 13-25
that when CICS is the coordinator, it uses three reference properties: UOWID,
Token, and Netname.

Example 13-25 CICS sends dispatchOrder request to WebSphere

<SOAP-ENV:Envelope xmlns:SOAP-ENV="..." xmlns:wscoor="..." xmlns:wsa="..."
xmlns:cicswsat="..." xmlns:soap="...">
 <SOAP-ENV:Header>
 <wscoor:CoordinationContext>
 <wscoor:Identifier>
 PIAT-CCON-A6POT3C1-003343578075119C
 </wscoor:Identifier>
 <wscoor:CoordinationType>
 http://schemas.xmlsoap.org/ws/2004/10/wsat
 </wscoor:CoordinationType>
 <wscoor:RegistrationService>

WebSphere CICSWebSphere

 Invoke dispatchOrder Web
service w/CoordinationContext

Register

RegisterResponse

 Invoke placeOrder Web
service w/CoordinationContext

Register

RegisterResponse

"Order in dispatch"

 Prepare

 Prepared

 Prepared

 Commit

 Commit

 Prepare

"Order successfully placed"

 Committed
 Committed

522 Implementing CICS Web Services

 <wsa:Address>
 http://MVSG3.mop.ibm.com:15301/cicswsat/RegistrationService
 </wsa:Address>
 <wsa:ReferenceProperties>
 <cicswsat:Netname>A6POT3C1</cicswsat:Netname>
 <cicswsat:Token>F0F0F0F0</cicswsat:Token>
 <cicswsat:UOWID>BE0F698D97751D67</cicswsat:UOWID>
 </wsa:ReferenceProperties>
 </wscoor:RegistrationService>
 </wscoor:CoordinationContext>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <dispatchOrderRequest xmlns="http://www.exampleApp.dispatchOrder.Request.com">
 <itemReferenceNumber>10</itemReferenceNumber>
 <quantityRequired>1</quantityRequired>
 <customerId>Luis </customerId>
 <chargeDepartment>Itso </chargeDepartment>
 </dispatchOrderRequest>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Daisy chain scenario: abnormal transaction termination
Finally, we tested the daisy chain scenario, but this time with a RemoteException
thrown at the end of the execution. We returned to the Place Order window to
place a new order. This time we used ROLLBACK as the User Name (see
Figure 13-22 on page 508). In the daisy chain scenario, this exception takes
place after the insertions in the two DB2 tables and the update of the CICS
VSAM file.

When the exception is thrown, the transaction is rolled back and the updates are
backed out from:

� The ITSO.ORDER table

� The CICS VSAM file

� The ITSO.DISPATCH table

We can see in the WebSphere logs that the AtomicClient application
successfully inserted the order record in the database prior to rolling back the
transaction (Example 13-26).

Example 13-26 Catalog Application log

CatalogContoller:doPost() - Action = Place Order
CatalogController.handlePlaceOrder() - creating the order
CatalogController.handlePlaceOrder() - beginning the transaction

 Chapter 13. Transaction scenarios 523

CatalogController.handlePlaceOrder() - inserting the order in the database
OrderDB.insertOrder() - inserted the order in the database!!!!
CatalogController.handlePlaceOrder() - calling the CICS web service
CatalogController.handlePlaceOrder() - response back from the CICS web service
CatalogController.handlePlaceOrder() - simulating the RemoteException
CatalogController.handlePlaceOrder() - rollingback the transaction

We also can see that the DispatchOrderAtomic application successfully inserted
the order record (Example 13-27).

Example 13-27 DispatchOrder Application log

DispatchOrderSoapBindingImpl.dispatchOrder(): ItemRef=10 Quantity=1
CustomerName=ROLLBACK Dept=Itso
DispatchOrderSoapBindingImpl.dispatchOrder() - creating the order
DispatchOrderSoapBindingImpl.dispatchOrder() - inserting the order in the
database
DispatchDB.insertDispatch() - inserted the order in the database!!!!
DispatchOrderSoapBindingImpl.dispatchOrder() - after the insert!!!

Following the RemoteException, the atomic transaction is rolled back. When we
inquired on the stock level, we noted that there were still 30 items in stock.

13.4 Transaction scenario summary

These test scenarios demonstrate how you can synchronize WebSphere and
CICS updates using WS-AT. They show how the classical 2PC distributed
transaction can be implemented using Web services, and that the distributed
global transaction can be committed or rolled back based on a set of Web
service flows that are managed entirely by the WebSphere and CICS
middleware.

Important: Before implementing a solution based on WS-AT, you should be
aware of the general issues that can arise from any implementation of a
distributed transaction (for example, locked records preventing access to
important data) and you should also compare the solution with alternatives
such as the J2EE Connector Architecture.

524 Implementing CICS Web Services

Part 5 Appendixes

Part 5

© Copyright IBM Corp. 2007. All rights reserved. 525

526 Implementing CICS Web Services

Appendix A. Sample handler programs

In this appendix we show the sample message handler and header processing
programs used in our test scenarios:

� Sample message handler program - CIWSMSGH

� Sample header processing program - CIWSSECH

� Sample handler program - SNIFFER

� Sample XML parser program - MYPARSER

� Sample header processing program - CIWSSECR

� Sample header processing program - CIWSSECS

� Sample header processing program - WSATHND

A

© Copyright IBM Corp. 2007. All rights reserved. 527

A.1 Sample message handler program - CIWSMSGH
The CIWSMSGH program in Example A-1 was used to change the transaction
ID for the Web service requests received in the pipeline.

The program obtains the value in the DFHFUNCTION container and if the
program was invoked for a RECEIVE-REQUEST function, then it continues
processing. It then obtains the data in the DFHWS-WEBSERVICE container and
makes a decision based on the contents of the requested Web service name as
to which transaction ID should be used. This new value for the transaction ID is
put into the DFHWS-TRANID container. The program puts the contents of the
DFHWS-TRANID and the DFHWS-WEBSERVICE containers to the CESE CICS
transient data queue.

Example: A-1 Sample message handler program - CIWSMSGH

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CIWSMSGH
000300***
000400* *
000500* This program:- *
000600* 1. CHANGES THE DEFAUL TRANID : CPIH/CPIL *
000700* BASED ON THE INCOMING SOAP REQUESTS *
000800***
000900
001000 AUTHOR. CHIEREGATTI.
001100 DATE-COMPILED.
001200 ENVIRONMENT DIVISION.
001300 CONFIGURATION SECTION.
001400 SPECIAL-NAMES.
001500 DATA DIVISION.
001600 WORKING-STORAGE SECTION.
001700 01 WS-START.
001800* Nesting offset for DISPLAYS
001900 03 NN PIC X(11) VALUE 'CIWSMSGH: '.
002000
002100 03 RESP PIC S9(8) COMP-5 SYNC.
002200 03 RESP2 PIC S9(8) COMP-5 SYNC.
002300 03 BOD-PTR USAGE IS POINTER.
002400 03 BOD-LEN PIC S9(8) COMP-4.
002500 03 CONTAINER-LEN PIC S9(8) BINARY.
002600 03 GETMAIN-PTR USAGE IS POINTER.
002700 03 GETMAIN-LEN PIC S9(8) COMP-4.
002800 03 WS-FAULT-STRING PIC X(21) value spaces.
002900 03 WS-DFHFUNCTION PIC X(16) value spaces.
003000 03 WS-WEBSERVICES PIC X(30) value spaces.
003100 03 WS-WEBSERVICES-LEN PIC S9(8) BINARY.
003200*

528 Implementing CICS Web Services

003300* Not Found SOAP Fault Detail section
003400*
003500 01 WS-Fault-NotFnd.
003600 03 WS-Fault-Namespace pic x(53).
003700 03 WS-Fault-RC-Lit pic X(17).
003800 03 WS-Fault-RC pic X(2).
003900 03 WS-Fault-RC-ELit pic X(18).
004000 03 WS-Fault-Item-Lit pic X(11).
004100 03 WS-Fault-Item pic X(4).
004200 03 WS-Fault-Item-ELit pic X(12).
004300 03 WS-Fault-ENamespace pic x(19).
004400
004500 01 EXPARSER-COMLEN PIC S9(4) COMP-4.
004600 01 CA-PARSER-RSP.
004700 03 CA-PARSER-REQUEST.
004800 05 FILLER PIC X(2).
004900 05 CA-TRANID PIC X(4).
005000 03 CA-PARSER-REF-REQ pic x(4).
005100 03 CA-PARSER-RET-CODE pic x(2).
005200 03 FILLER PIC X(200).
005300
005400**
005500* Externally referenced data areas
005600**
005700 LINKAGE SECTION.
005800 01 BOD-AREA.
005900 02 FILLER PIC X OCCURS 64000 DEPENDING ON BOD-LEN.
006000
006100 01 GETMAIN-AREA.
006200 02 FILLER PIC X OCCURS 64000 DEPENDING ON GETMAIN-LEN.
006300 01 CONTAINER-DATA.
006400 05 FILLER PIC X OCCURS 32768
006500 DEPENDING ON CONTAINER-LEN.
006600*---*
006700 EJECT
006800*---*
006900 PROCEDURE DIVISION.
007000*---*
007100 EXEC CICS GET CONTAINER('DFHFUNCTION')
007200 INTO(WS-DFHFUNCTION)
007300 FLENGTH(length of WS-DFHFUNCTION)
007400 NOHANDLE
007500 END-EXEC.
007600* If not RECEIVE-REQUEST then exit
007700 IF WS-DFHFUNCTION equal 'RECEIVE-REQUEST'
007800 PERFORM VALIDATE-REQUEST THRU END-VAL-REQUEST
007900 PERFORM CHANGE-TRANID THRU END-CHANGE-TRANID
008000 EXEC CICS
008100 DELETE CONTAINER('DFHRESPONSE')

 Appendix A. Sample handler programs 529

008200 END-EXEC
008300 END-IF
008400 EXEC CICS RETURN END-EXEC.
008500 GOBACK.
008600*--
008700 EJECT
008800*--
008900*------------- REQUEST VALIDATION -------------------------------
009000*--
009100 VALIDATE-REQUEST.
009200 PERFORM GET-SOAP-WEBSERVICE THRU END-GET-SOAP-WEBSERVICE.
009300 IF WS-WEBSERVICES = 'ERROR'
009400 PERFORM FAULT-INVREQ
009500 END-IF.
009600 END-VAL-REQUEST. EXIT.
009700*--
009800 EJECT
009900*--
010000* Retrieve the DFHWS-WEBSERVICE that contains type of requests
010100*--
010200 GET-SOAP-WEBSERVICE.
010300 EXEC CICS
010400 GET CONTAINER('DFHWS-WEBSERVICE')
010500 SET(ADDRESS OF CONTAINER-DATA)
010600 FLENGTH(CONTAINER-LEN)
010700 END-EXEC.
010800* Copy the input container to our storage
010900 MOVE CONTAINER-DATA(1:30) TO WS-WEBSERVICES.
011000 MOVE CONTAINER-LEN TO WS-WEBSERVICES-LEN.
011100 END-GET-SOAP-WEBSERVICE. EXIT.
011200*--
011300 EJECT
011400*---------------- CHANGE DEFAULT TRANID CPIH/CPIL ---------------
011500 CHANGE-TRANID.
011600 EXEC CICS GET CONTAINER('DFHWS-TRANID')
011700 SET(ADDRESS OF CONTAINER-DATA)
011800 FLENGTH(CONTAINER-LEN)
011900 END-EXEC.
012000 IF WS-WEBSERVICES = 'inquireSingle'
012100 MOVE 'INQS' TO CA-TRANID
012200 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
012300 END-IF
012400 IF WS-WEBSERVICES = 'inquireCatalog'
012500 MOVE 'INQC' TO CA-TRANID
012600 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
012700 END-IF
012800 IF WS-WEBSERVICES = 'placeOrder'
012900 MOVE 'ORDR' TO CA-TRANID
012901 END-IF.

530 Implementing CICS Web Services

012910 IF WS-WEBSERVICES = 'dispatchOrderEndpoint'
012920 MOVE 'DISP' TO CA-TRANID
013000 PERFORM CHANGE-CONTAINER THRU END-CHANGE-CONTAINER
013100 END-IF.
013200 END-CHANGE-TRANID. EXIT.
013300*---
013400 EJECT
013500*---
013600 CHANGE-CONTAINER.
013700 MOVE CA-TRANID TO CONTAINER-DATA(1:4)
013800 EXEC CICS PUT CONTAINER('DFHWS-TRANID')
013900 FROM(CONTAINER-DATA)
014000 FLENGTH(CONTAINER-LEN)
014100 END-EXEC.
014200 DISPLAY NN '>================================<'
014300 DISPLAY NN 'Container Name: : DFHWS-WEBSERVICE '.
014400* DISPLAY NN 'Content length: ' WS-WEBSERVICES-LEN.
014500 DISPLAY NN 'Container content: ' WS-WEBSERVICES.
014600 DISPLAY NN '----------------------------------'
014700 DISPLAY NN 'Container Name: : DFHWS-TRANID '.
014800* DISPLAY NN 'Content length: ' CONTAINER-LEN
014900 DISPLAY NN 'Container content: ' CONTAINER-DATA.
015000 END-CHANGE-CONTAINER. EXIT.
015100 EJECT
015200***
015300* We detected that the ca_request_id field specifies an invalid
015400* request. This is a CLIENT error.
015500***
015600 FAULT-INVREQ SECTION.
015700*---*
015800* Generate a SOAP Fault
015900*---*
016000 MOVE 'Request code invalid' to WS-FAULT-STRING
016100 EXEC CICS SOAPFAULT CREATE
016200 FAULTCODE(dfhvalue(CLIENT))
016300 FAULTSTRING(WS-FAULT-STRING)
016400 FAULTSTRLEN(length of WS-FAULT-STRING)
016500 END-EXEC.
016600 FAULT-INVREQ-END. EXIT.
016700***
016800* The supplied ca_item_req_ref reference is not in our database
016900* We decide to send a SOAP Fault.
017000* This is a SERVER error.
017100* We supply detailed information in the DETAIL Fault element
017200***
017300 FAULT-NOTFND SECTION.
017400*---*
017500* Build the Detail section.
017600* we do it this way for pedagogical reasons

 Appendix A. Sample handler programs 531

017700*---*
017800 MOVE ':o(NOT FOUND)o:' to WS-FAULT-STRING
017900 MOVE
018000 '<hdlh:FaultDetail xmlns:hdlh="http://HDRHDLRX.fault">'
018100 to WS-Fault-Namespace.
018200 MOVE '<hdlh:ReturnCode>' to WS-Fault-RC-Lit.
018300 MOVE CA-PARSER-RET-CODE to WS-Fault-RC.
018400 MOVE '</hdlh:ReturnCode>' to WS-Fault-RC-ELit.
018500 MOVE '<hdlh:Item>' to WS-Fault-Item-Lit.
018600 MOVE ca-PARSER-REF-REQ to WS-Fault-Item.
018700 MOVE '</hdlh:Item>' to WS-Fault-Item-ELit.
018800 MOVE '</hdlh:FaultDetail>'
018900 to WS-Fault-ENamespace.
019000 EXEC CICS SOAPFAULT CREATE
019100 DETAIL(WS-Fault-NotFnd)
019200 DETAILLENGTH(length of WS-Fault-NotFnd)
019300 FAULTCODE(dfhvalue(SERVER))
019400 FAULTSTRING(WS-FAULT-STRING)
019500 FAULTSTRLEN(length of WS-FAULT-STRING)
019600 END-EXEC.
019700 FAULT-INVREQ-END. EXIT.

Sample output from CIWSMSGH
Example A-2 shows the output sent to the CESE transient data queue by the
CIWSMSGH message handler program, whenever it changes the transaction ID
in the DFHWS-TRANID container.

Example: A-2 CIWSMSGH - sample output

CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireCatalog
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQC
CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireSingle
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQS
CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: placeOrder
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: ORDR

532 Implementing CICS Web Services

A.2 Sample header processing program - CIWSSECH
The CIWSSECH program (Example A-3) extracts security credentials from the
WS-Security header, validates them and changes the user ID under which the
business logic of the invoked Web service executes.

� It first determines that it is invoked during the RECEIVE-REQUEST phase of
processing.

� It then ensures that this is only executed for a “place an order” request by
examining the data in the DFHWS-URI container. In the event that this is not
the case, it returns control to the calling program.

� When it is processing an order request, the WS-Security header is obtained
from the DFHHEADER container.

� The header is then passed in a COMMAREA to a COBOL XML parsing
program that extracts the user ID and password from the XML.

� CIWSSECH then uses the EXEC CICS VERIFY PASSWORD command to
determine if the user ID and password are correct. If this is true, then the user
ID is written to the DFHWS-USERID container, which will cause a context
switch to occur when invoking the business logic. If the verification returns an
error, then a SOAP fault is created and returned to the requester.

Example: A-3 Sample header processing program - CIWSSECH

000100 PROCESS CICS
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. CIWSSECH
000400***
000500* *
000600* This program:- *
000700* 1. Checks for RECEIVE-REQUEST function, else returns *
000800* 2. Obtains data from DFHHEADER container *
000900* 2. Uses the MYPARSER program to extract the CA-USER-ID *
001000* and the CA-PASSWORD *
001100* fields from the XML message contained within the Body *
001200* 2. Verifies the user ID/password combination *
001300* If it is succesful, then it places the CA-USER-ID into *
001400* the DFHWS-USERID container. *
001500* If it fails, it returns a SOAP fault message in DFHRESPONSE*
001600***
001700
001800 AUTHOR. CI11M1.
001900 DATE-COMPILED.
002000 ENVIRONMENT DIVISION.
002100 CONFIGURATION SECTION.
002200 SPECIAL-NAMES.
002300 DATA DIVISION.
002400 WORKING-STORAGE SECTION.
002500 01 WS-START.

 Appendix A. Sample handler programs 533

002600 03 FILLER PIC X(44)
002700 VALUE '*** CIWSSECH WORKING STORAGE STARTS HERE ***'.
002800 03 WS-RESP PIC S9(8) COMP-5 SYNC.
002900 03 WS-RESP2 PIC S9(8) COMP-5 SYNC.
003000 03 WS-HEAD-PTR USAGE IS POINTER.
003100 03 WS-HEAD-LEN PIC S9(8) COMP-4.
003200 03 WS-URI-PTR USAGE IS POINTER.
003300 03 WS-URI-LEN PIC S9(8) COMP-4.
003400 03 WS-FUNC-LEN PIC S9(8) COMP-4 VALUE 16.
003500 03 WS-GETMAIN-PTR USAGE IS POINTER.
003600 03 WS-GETMAIN-LEN PIC S9(8) COMP-4.
003700 03 WS-FAULT-STRING PIC X(40) value spaces.
003800 03 WS-FAULT-CODE PIC S9(8) COMP-4.
003900 03 WS-SOAP-LEVEL PIC S9(8) COMP-4.
004000 88 WS-SOAP-11 VALUE 1.
004100 88 WS-SOAP-12 VALUE 2.
004200 88 WS-NOT-SOAP VALUE 10.
004300 03 WS-FUNC-AREA PIC X(16).
004400 03 WS-NOT-AUTH PIC X(40)
004500 VALUE 'Not authorized to place order.'.
004600 03 WS-AUTH-FAILED PIC X(40)
004700 VALUE 'Authorization failed for order request.'.
004800
004900 01 MYPARSER-COMLEN PIC S9(4) COMP-4.
005000 01 CA-PARSER-RSP.
005100 03 CA-USER-ID PIC X(8).
005200 03 CA-PASSWORD PIC X(8).
005300
005400 LINKAGE SECTION.
005500 01 WS-HEAD-AREA.
005600 02 FILLER PIC X OCCURS 1024 DEPENDING ON WS-HEAD-LEN.
005700
005800 01 WS-URI-AREA.
005900 02 FILLER PIC X OCCURS 256 DEPENDING ON WS-URI-LEN.
006000
006100 01 WS-GETMAIN-AREA.
006200 02 FILLER PIC X OCCURS 1024 DEPENDING ON WS-GETMAIN-LEN.
006300
006400**
006500* Main line code begins *
006600**
006700 PROCEDURE DIVISION.
006800 MAIN-PROCESSING SECTION.
006900
007000***********************************
007100* Receive the SOAP Body namespace
007200***********************************
007300 PERFORM GET-DFHFUNCTION.
007400

534 Implementing CICS Web Services

007500***********************************
007600* Receive the SOAP Body namespace
007700***********************************
007800 PERFORM GET-DFHWS-URI.
007900 IF WS-URI-AREA(1:WS-URI-LEN)
008000 NOT = '/exampleApp/placeOrder'
008100 EXEC CICS RETURN END-EXEC
008200 END-IF.
008300
008400***********************************
008500* Receive the SOAP Body namespace
008600***********************************
008700 PERFORM GET-SOAP-HEADER.
008800
008900**
009000* The SOAP body XML data can now be parsed by MYPARSER
009100* LINK to the XML parser, it will return the CA-USER-ID
009200* and CA-PASSWORD
009300* or 'EXCEPTION'
009400* or 'NOT FOUND'
009500* or 'BAD COMMA'
009600**
009700 EXEC CICS LINK PROGRAM('MYPARSER')
009800 COMMAREA(WS-HEAD-AREA)
009900 LENGTH(MYPARSER-COMLEN)
010000 END-EXEC.
010100 IF WS-HEAD-AREA(1:9) = 'EXCEPTION' or
010200 'NOT FOUND' or
010300 'BAD COMMA'
010400**
010500* Error found during the XML PARSE program execution
010600**
010700 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
010800 PERFORM FAULT-MESSAGE
010900 ELSE
011000 MOVE WS-HEAD-AREA to CA-PARSER-RSP
011100************************************
011200* OK, data found, so do the VERIFY
011300************************************
011400 EXEC CICS VERIFY
011500 PASSWORD(CA-PASSWORD)
011600 USERID(CA-USER-ID)
011700 RESP(WS-RESP)
011800 END-EXEC
011900***************
012000* Succesful ?
012100***************
012200 IF WS-RESP = DFHRESP(NORMAL)
012300 PERFORM SET-USER-ID

 Appendix A. Sample handler programs 535

012400 ELSE
012500 MOVE WS-NOT-AUTH TO WS-FAULT-STRING
012600 PERFORM FAULT-MESSAGE
012700 END-IF
012800 END-IF.
012900****************************
013000* and is the end, bye bye
013100****************************
013200 EXEC CICS RETURN END-EXEC.
013300
013400 MAIN-PROCESSING-END. EXIT.
013500
013600**
013700* ** *
013800* SUBROUTINES FOLLOW *
013900* ** *
014000**
014100
014200***
014300* Retrieve the function type ftom DFHFUNCTION container
014400***
014500 GET-DFHFUNCTION.
014600 EXEC CICS
014700 GET CONTAINER('DFHFUNCTION')
014800 INTO(WS-FUNC-AREA)
014900 FLENGTH(WS-FUNC-LEN)
015000 RESP(WS-RESP)
015100 END-EXEC.
015200
015300***
015400* Check for correct length. Create SOAP fault if
015500* not correct. If for incoming request then we
015600* do the work, else we exit immediately.
015700***
015800 IF WS-FUNC-LEN NOT = 16
015900 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
016000 PERFORM FAULT-MESSAGE
016100 ELSE
016200 IF WS-FUNC-AREA NOT = 'RECEIVE-REQUEST '
016300 EXEC CICS RETURN END-EXEC
016400 END-IF
016500 END-IF.
016600
016700***
016800* Retrieve the URI from the DFHWS-URI container
016900***
017000 GET-DFHWS-URI.
017100 EXEC CICS
017200 GET CONTAINER('DFHWS-URI')

536 Implementing CICS Web Services

017300 SET(WS-URI-PTR)
017400 FLENGTH(WS-URI-LEN)
017500 RESP(WS-RESP)
017600 END-EXEC.
017700
017800**
017900* Copy the input container to our storage
018000**
018100 IF WS-URI-LEN > 0
018200 SET ADDRESS OF WS-URI-AREA TO WS-URI-PTR
018300 MOVE WS-URI-LEN TO WS-GETMAIN-LEN
018400
018500 EXEC CICS GETMAIN
018600 SET(WS-GETMAIN-PTR)
018700 FLENGTH(WS-GETMAIN-LEN)
018800 END-EXEC
018900
019000 SET ADDRESS OF WS-GETMAIN-AREA TO WS-GETMAIN-PTR
019100 MOVE WS-URI-AREA TO WS-GETMAIN-AREA
019200 SET WS-URI-PTR TO WS-GETMAIN-PTR
019300 SET ADDRESS OF WS-URI-AREA TO WS-URI-PTR
019400 ELSE
019500 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
019600 PERFORM FAULT-MESSAGE
019700 EXEC CICS RETURN END-EXEC
019800 END-IF.
019900
020000**************************************
020100* Retrieve the <wsse:Security> header
020200**************************************
020300 GET-SOAP-HEADER.
020400 EXEC CICS
020500 GET CONTAINER('DFHHEADER')
020600 SET(WS-HEAD-PTR)
020700 FLENGTH(WS-HEAD-LEN)
020800 RESP(WS-RESP)
020900 END-EXEC.
021000
021100**
021200* Copy the input container to our storage
021300**
021400 IF WS-HEAD-LEN > 0
021500 SET ADDRESS OF WS-HEAD-AREA TO WS-HEAD-PTR
021600 MOVE WS-HEAD-LEN TO WS-GETMAIN-LEN MYPARSER-COMLEN
021700
021800 EXEC CICS GETMAIN
021900 SET(WS-GETMAIN-PTR)
022000 FLENGTH(WS-GETMAIN-LEN)
022100 END-EXEC

 Appendix A. Sample handler programs 537

022200
022300 SET ADDRESS OF WS-GETMAIN-AREA TO WS-GETMAIN-PTR
022400 MOVE WS-HEAD-AREA TO WS-GETMAIN-AREA
022500 SET WS-HEAD-PTR TO WS-GETMAIN-PTR
022600 SET ADDRESS OF WS-HEAD-AREA TO WS-HEAD-PTR
022700 ELSE
022800 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
022900 PERFORM FAULT-MESSAGE
023000 EXEC CICS RETURN END-EXEC
023100 END-IF.
023200
023300***
023400* The user ID has been verified. We will now set the contents of
023500* DFHWS-USERID container with this value.This will cause the
023600* business logic (back-end program/s) to be executed with this
023700* user ID, using it's access rights.
023800***
023900 SET-USER-ID.
024000 EXEC CICS
024100 PUT CONTAINER('DFHWS-USERID')
024200 FROM(CA-USER-ID)
024300 FLENGTH(length of CA-USER-ID)
024400 DATATYPE(DFHVALUE(CHAR))
024500 RESP(WS-RESP)
024600 END-EXEC.
024700
024800***
024900* We detected that the ca_request_id field specifies an invalid
025000* request. This is a CLIENT error.
025100***
025200 FAULT-MESSAGE SECTION.
025300************************
025400* Generate a SOAP Fault
025500************************
025600 EXEC CICS
025700 GET CONTAINER('DFHWS-SOAPLEVEL')
025800 INTO(WS-SOAP-LEVEL)
025900 FLENGTH(WS-HEAD-LEN)
026000 RESP(WS-RESP)
026100 END-EXEC.
026200
026300************************************
026400* MOVE CORRECT VERSION OF FAULTCODE
026500************************************
026600 IF WS-SOAP-11 MOVE DFHVALUE(CLIENT) TO WS-FAULT-CODE
026700 ELSE
026800 MOVE DFHVALUE(SENDER) TO WS-FAULT-CODE
026900 END-IF
027000

538 Implementing CICS Web Services

027100 EXEC CICS SOAPFAULT CREATE
027200 FAULTSTRING(WS-FAULT-STRING)
027300 FAULTSTRLEN(LENGTH OF WS-FAULT-STRING)
027400 FAULTCODE(WS-FAULT-CODE)
027500 END-EXEC.
027600 FAULT-MESSAGE-END. EXIT.

A.3 Sample handler program - SNIFFER
The SNIFFER handler program can be used as a message handler program or a
header processing program.

It is a very simple program that browses through the containers available in the
pipeline. It does this by issuing a STARTBROWSE CONTAINER command
followed by GETNEXT CONTAINER until all have been browsed, then it issues
an ENDBROWSE CONTAINER command. For each container that it issues a
GETNEXT CONTAINER for, it displays the name and contents to the CICS
transient data queue CESE.

Example: A-4 Sample handler program - SNIFFER

000100OST TRUNC(OPT)
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. SNIFFER.
000400***
000500* HEADER START *
000600* *
000700* *
000800* PROGRAM NAME: See above *
000900* *
001000* TITLE: Pipeline Channel container sniffer *
001100* *
001200* DATE: 03/06/05 *
001300* *
001400* AUTHOR: Ian Noble *
001500* *
001600* CHANGE HISTORY: *
001700* *
001800* DATE MODIFIED CHANGED BY REASON FOR CHANGE *
001900* *
002000* PROGRAM DESCRIPTION: *
002100* *
002200* This program writes a report to the CESE transient data *
002300* queue which is usually an extra-partition queue having a *
002400* DDname of CEEMSG. The report contains the name, length, and *
002500* contents of every container which is visible to user code *

 Appendix A. Sample handler programs 539

002600* within a pipeline as shown in the following example: *
002700* *
002800* SNIFFER : *** Start *** *
002900* SNIFFER : >================================< *
003000* SNIFFER : Container Name : DFHFUNCTION *
003100* SNIFFER : Content length : 00000016 *
003200* SNIFFER : Container content: *
003300* RECEIVE-REQUEST *
003400* SNIFFER : Containers on channel: List starts. *
003500* SNIFFER : >================================< *
003600* SNIFFER : Container Name : DFH-HANDLERPLIST *
003700* SNIFFER : Content length : 00000000 *
003800* SNIFFER : Container EMPTY *
003900* SNIFFER : >================================< *
004000* SNIFFER : Container Name : DFHRESPONSE *
004100* SNIFFER : Content length : 00000000 *
004200* SNIFFER : Container EMPTY *
004300* SNIFFER : >================================< *
004400* SNIFFER : Container Name : DFHFUNCTION *
004500* SNIFFER : Content length : 00000016 *
004600* SNIFFER : Container content: *
004700* RECEIVE-REQUEST *
004800* SNIFFER : >================================< *
004900* SNIFFER : Container Name : DFHWS-SOAPACTION *
005000* SNIFFER : Content length : 00000002 *
005100* SNIFFER : Container content: *
005200* "" *
005300* SNIFFER : >================================< *
005400* SNIFFER : Container Name : DFHWS-URI *
005500* SNIFFER : Content length : 00000022 *
005600* SNIFFER : Container content: *
005700* /exampleApp/placeOrder *
005800* SNIFFER : >================================< *
005900* SNIFFER : Container Name : DFHREQUEST *
006000* SNIFFER : Content length : 00002094 *
006100* SNIFFER : Container content: *
006200* <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoa... *
006300* " xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:x... *
006400* lsoap.org/ws/2004/10/wscoor" xmlns:wsa="http://schemas... *
006500* etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. etc. *
006600* SNIFFER : >================================< *
006700* SNIFFER : Container Name : DFH-SERVICEPLIST *
006800* SNIFFER : Content length : 00000134 *
006900* SNIFFER : Container content: *
007000* <registration_service_endpoint> http://MVSG3.mop etc. *
007100* SNIFFER : >================================< *
007200* SNIFFER : Container Name : DFHWS-PIPELINE *
007300* SNIFFER : Content length : 00000008 *
007400* SNIFFER : Container content: *

540 Implementing CICS Web Services

007500* PIPE1 *
007600* SNIFFER : >================================< *
007700* SNIFFER : Container Name : DFHWS-USERID *
007800* SNIFFER : Content length : 00000008 *
007900* SNIFFER : Container content: *
008000* CIWS3D *
008100* SNIFFER : >================================< *
008200* SNIFFER : Container Name : DFHWS-TRANID *
008300* SNIFFER : Content length : 00000004 *
008400* SNIFFER : Container content: *
008500* CPIH *
008600* SNIFFER : >================================< *
008700* SNIFFER : Container Name : DFHWS-WEBSERVICE *
008800* SNIFFER : Content length : 00000032 *
008900* SNIFFER : Container content: *
009000* placeOrder *
009100* SNIFFER : >================================< *
009200* SNIFFER : Container Name : DFHWS-APPHANDLER *
009300* SNIFFER : Content length : 00000008 *
009400* SNIFFER : Container content: *
009500* DFHPITP *
009600* SNIFFER : Containers on channel: List ends *
009700* SNIFFER : DFHRESPONSE container deleted *
009800* SNIFFER : **** End **** *
009900* *
010000***
010100
010200 ENVIRONMENT DIVISION.
010300 DATA DIVISION.
010400 WORKING-STORAGE SECTION.
010500
010600 77 WS-EYE-CATCHER PIC X(44) VALUE
010700 '*** SNIFFER WORKING STORAGE STARTS HERE ***'.
010800
010900* Nesting offset for DISPLAYS
011000 77 NN PIC X(11) VALUE 'SNIFFER : '.
011100
011200* Miscellaneous variables
011300
011400 77 CONTAINER-FOUND PIC X(01).
011500
011600 77 CHANNEL-NAME PIC X(16).
011700 77 CONTAINER-NAME PIC X(16).
011800 77 CONTAINER-LEN PIC S9(8) COMP-4 SYNCHRONIZED
011900 VALUE 0.
012000
012100 77 DFHFUNCTION-IN-PTR USAGE IS POINTER.
012200 77 DFHFUNCTION-IN-LEN PIC S9(8) COMP-4 SYNCHRONIZED
012300 VALUE 0.

 Appendix A. Sample handler programs 541

012400
012500 77 GETMAIN-PTR USAGE IS POINTER.
012600 77 GETMAIN-LEN PIC S9(8) COMP-4 SYNCHRONIZED
012700 VALUE 0.
012800
012900* CTS SIBUS declarations
013000 COPY DFHPIUCO.
013100
013200 77 FUNCTION-DRIVEN PIC X(16).
013300
013400 77 CALL-LABEL PIC X(08).
013500 77 CALL-DETAILS PIC X(80).
013600
013700 77 RESP PIC S9(8) COMP-5 SYNC.
013800 77 RESP2 PIC S9(8) COMP-5 SYNC.
013900
014000* Channel browse stuff
014100 01 CHANNEL-BROWSING.
014200 03 BROWSE-TOKEN PIC S9(8) COMP-4 SYNC.
014300 03 BROWSED-NAME PIC X(16).
014400
014500***
014600* Constants
014700***
014800
014900 77 UNEXPECTED-RESP-ABCODE PIC X(04) VALUE 'SNIF'.
015000
015100*--
015200 LINKAGE SECTION.
015300
015400 01 DFHFUNCTION-IN.
015500 03 FILLER PIC X OCCURS 1 TO 64
015600 DEPENDING ON DFHFUNCTION-IN-LEN.
015700
015800 01 GETMAIN-AREA.
015900 03 FILLER PIC X OCCURS 1 TO 65536
016000 DEPENDING ON GETMAIN-LEN.
016100
016200
016300*--
016400 PROCEDURE DIVISION.
016500 MAIN-PROG SECTION.
016600
016700 Display NN '*** Start ***'.
016800
016900 PERFORM GET-DFHFUNCTION-CONTAINER.
017000
017100 PERFORM BROWSE-ALL-CONTAINERS.
017200

542 Implementing CICS Web Services

017300 IF FUNCTION-DRIVEN = PI-SEND-REQUEST
017400 OR FUNCTION-DRIVEN = PI-RECEIVE-REQUEST
017500 OR FUNCTION-DRIVEN = PI-PROCESS-REQUEST
017600 THEN
017700 PERFORM DELETE-DFHRESPONSE
017800 END-IF.
017900
018000 Display NN '**** End ****'.
018100
018200 EXEC CICS RETURN
018300 END-EXEC.
018400
018500
018600***
018700*
018800* Retrieve the contents of the DFHFUNCTION container
018900*
019000***
019100 GET-DFHFUNCTION-CONTAINER.
019200
019300 MOVE PI-DFHFUNCTION TO CONTAINER-NAME.
019400 PERFORM GET-NAMED-CONTAINER.
019500
019600 IF CONTAINER-FOUND = 'Y'
019700 THEN
019800 MOVE CONTAINER-LEN TO DFHFUNCTION-IN-LEN
019900 SET DFHFUNCTION-IN-PTR TO GETMAIN-PTR
020000 SET ADDRESS OF DFHFUNCTION-IN TO DFHFUNCTION-IN-PTR
020100 MOVE DFHFUNCTION-IN TO FUNCTION-DRIVEN
020200 END-IF.
020300
02501900
020400
020500***
020600*
020700* Retrieve a named container
020800*
020900***
021000 GET-NAMED-CONTAINER.
021100
021200 MOVE 'N' TO CONTAINER-FOUND
021300* Get the length of the name container from the input pipe.
021400 MOVE 'SNIFF001' TO CALL-LABEL.
021500 EXEC CICS GET
021600 CONTAINER(CONTAINER-NAME)
021700 NODATA
021800 FLENGTH(CONTAINER-LEN)
021900 NOHANDLE
022000 RESP(RESP)

 Appendix A. Sample handler programs 543

022100 RESP2(RESP2)
022200 END-EXEC.
022300
022400* If the container wasn't found, do nothing. Else GETMAIN
022500* suitable storage and retrieve it for real.
022600 EVALUATE RESP
022700 WHEN DFHRESP(CONTAINERERR)
022800 DISPLAY NN 'Container NOT FOUND'
022900 WHEN DFHRESP(NORMAL)
023000 MOVE 'Y' TO CONTAINER-FOUND
023100
023200 DISPLAY NN '>================================<'
023300 DISPLAY NN 'Container Name : 'CONTAINER-NAME
023400 DISPLAY NN 'Content length : ' CONTAINER-LEN
023500
023600 IF CONTAINER-LEN > 0
023700 THEN
023800 MOVE 'SNIFF002' TO CALL-LABEL
023900 MOVE CONTAINER-LEN TO GETMAIN-LEN
024000 EXEC CICS GETMAIN SET(GETMAIN-PTR)
024100 FLENGTH(GETMAIN-LEN)
024200 END-EXEC
024300 SET ADDRESS OF GETMAIN-AREA TO GETMAIN-PTR
024400 EXEC CICS GET CONTAINER(CONTAINER-NAME)
024500 INTO(GETMAIN-AREA)
024600 FLENGTH(CONTAINER-LEN)
024700 END-EXEC
024800 DISPLAY NN 'Container content: '
024900 GETMAIN-AREA
025000
025100 ELSE
025200 DISPLAY NN 'Container EMPTY'
025300 END-IF
025400 WHEN OTHER
025500 DISPLAY NN 'Error on GET CONTAINER ' CONTAINER-NAME
025600 PERFORM GENERIC-ABEND
025700 END-EVALUATE.
025800
025900
026000***
026100*
026200* BROWSE all containers on the current Channel
026300*
026400***
026500 BROWSE-ALL-CONTAINERS.
026600
026700 DISPLAY NN 'Containers on channel: List starts.'
026800
026900* Start the Channel Browse

544 Implementing CICS Web Services

027000 MOVE 'SNIFF003' TO CALL-LABEL.
027100 EXEC CICS STARTBROWSE
027200 CONTAINER
027300 BROWSETOKEN(BROWSE-TOKEN)
027400 RESP(RESP)
027500 RESP2(RESP2)
027600 END-EXEC.
027700
027800* Browse the next container name
027900 PERFORM UNTIL RESP NOT = DFHRESP(NORMAL)
028000
028100 MOVE 'SNIFF004' TO CALL-LABEL
028200 EXEC CICS GETNEXT
028300 CONTAINER(BROWSED-NAME)
028400 BROWSETOKEN(BROWSE-TOKEN)
028500 RESP(RESP)
028600 RESP2(RESP2)
028700 END-EXEC
028800
028900 IF RESP = DFHRESP(NORMAL)
029000 THEN
029100 MOVE BROWSED-NAME TO CONTAINER-NAME
029200 PERFORM GET-NAMED-CONTAINER
029300 END-IF
029400
029500 END-PERFORM.
029600
029700 IF RESP NOT = DFHRESP(END)
029800 THEN
029900 PERFORM GENERIC-ABEND
030000 END-IF.
030100
030200 DISPLAY NN 'Containers on channel: List ends'.
030300
030400* End the Channel Browse
030500 MOVE 'SNIFF005' TO CALL-LABEL.
030600 EXEC CICS ENDBROWSE
030700 CONTAINER
030800 BROWSETOKEN(BROWSE-TOKEN)
030900 RESP(RESP)
031000 RESP2(RESP2)
031100 END-EXEC.
031200 IF RESP NOT = DFHRESP(NORMAL)
031300 THEN
031400 PERFORM GENERIC-ABEND
031500 END-IF.
031600
031700
031800***

 Appendix A. Sample handler programs 545

031900* *
032000* Delete the DFHRESPONSE container *
032100* *
032200***
032300 DELETE-DFHRESPONSE.
032400
032500 MOVE 'SNIFF006' TO CALL-LABEL.
032600 EXEC CICS ASSIGN
032700 CHANNEL(CHANNEL-NAME)
032800 RESP(RESP)
032900 RESP2(RESP2)
033000 END-EXEC.
033100
033200 IF CHANNEL-NAME = 'DFHHHC-V1' THEN
033300 DISPLAY NN ' in a SOAP header processing program.....'
033400 ELSE
033500 EXEC CICS DELETE
033600 CONTAINER(PI-DFHRESPONSE)
033700 RESP(RESP)
033800 RESP2(RESP2)
033900 END-EXEC
034000 EVALUATE RESP
034100 WHEN DFHRESP(NORMAL)
034200 DISPLAY NN PI-DFHRESPONSE ' container deleted'
034300 WHEN OTHER
034400 PERFORM GENERIC-ABEND
034500 END-EVALUATE
034600 END-IF.
034700
034800
034900***
035000*
035100* Generic abend
035200*
035300***
035400 GENERIC-ABEND.
035500
035600
035700 DISPLAY NN '***** Unable to continue *****'.
035800 DISPLAY NN 'Unexpected RESP code from EXEC CICS call'.
035900 DISPLAY NN 'Call label : ' CALL-LABEL.
036000 DISPLAY NN 'RESP : ' RESP.
036100 DISPLAY NN 'RESP2 : ' RESP2.
036200 IF CALL-DETAILS NOT = SPACES
036300 THEN
036400 DISPLAY NN 'Further details:'
036500 CALL-DETAILS
036600 END-IF.
036700

546 Implementing CICS Web Services

036800 EXEC CICS ABEND
036900 ABCODE(UNEXPECTED-RESP-ABCODE)
037000 END-EXEC.

Sample output from the SNIFFER program
Example A-5 shows sample output from the SNIFFER program. The output is
sent to CICS transient data queue CESE.

Example: A-5 SNIFFER program - sample output

SNIFFER : *** Start ***
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content length : 00000016
SNIFFER : Container content: RECEIVE-REQUEST
SNIFFER : Containers on channel: List starts.
SNIFFER : >================================<
SNIFFER : Container Name : DFH-HANDLERPLIST
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHRESPONSE
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content length : 00000016
SNIFFER : Container content: RECEIVE-REQUEST
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-SOAPACTION
SNIFFER : Content length : 00000002
SNIFFER : Container content: ""
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-URI
SNIFFER : Content length : 00000025
SNIFFER : Container content: /exampleApp/inquireSingle
SNIFFER : >================================<
SNIFFER : Container Name : DFHREQUEST
SNIFFER : Content length : 00001007
SNIFFER : Container content: <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"xmlns:soapenc="http://
schemas.xmlsoap.org/soap/encoding/"xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapenv:Header/><soapenv
:Body><p628:DFH0XCMNxmlns:p628="http://www.DFH0XCMN.DFH0XCP4.Request.com"><p628
:ca_request_id>01INQS</p628:ca_request_id><p628:ca_return_code>0</p628:ca_retur
n_code><p628:ca_response_message>
</p628:ca_response_message><p628:ca_inquire_single><p628:ca_item_ref_req>10</p6
28:ca_item_ref_req><p628:filler1> </p628:filler1><p628:filler2> </p628:filler2>

 Appendix A. Sample handler programs 547

<p628:ca_single_item><p628:ca_sngl_item_ref>0</p628:ca_sngl_item_ref><p628:ca_s
ngl_description>
</p628:ca_sngl_description><p628:ca_sngl_department>0</p628:ca_sngl_department>
<p628:ca_sngl_cost>0.0</p628:ca_sngl_cost><p628:in_sngl_stock>0</p628:in_sngl_s
tock><p628:on_sngl_order>0</p628:on_sngl_order></p628:ca_single_item></p628:ca_
inquire_single></p628:DFH0XCMN></soapenv:Body></soapenv:Envelope>
SNIFFER : >================================<
SNIFFER : Container Name : DFH-SERVICEPLIST
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-PIPELINE
SNIFFER : Content length : 00000008
SNIFFER : Container content: EXPIPE01
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-USERID
SNIFFER : Content length : 00000008
SNIFFER : Container content: CIWS3D
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-TRANID
SNIFFER : Content length : 00000004
SNIFFER : Container content: CPIH
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-WEBSERVICE
SNIFFER : Content length : 00000032
SNIFFER : Container content: inquireSingle
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-APPHANDLER
SNIFFER : Content length : 00000008
SNIFFER : Container content: DFHPITP
SNIFFER : Containers on channel: List ends
SNIFFER : DFHRESPONSE container deleted
SNIFFER : **** End ****
CIWSMSGH: >================================<
CIWSMSGH: Container Name: : DFHWS-WEBSERVICE
CIWSMSGH: Container content: inquireSingle
CIWSMSGH: ----------------------------------
CIWSMSGH: Container Name: : DFHWS-TRANID
CIWSMSGH: Container content: INQS
SNIFFER : *** Start ***
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content length : 00000016
SNIFFER : Container content: SEND-RESPONSE
SNIFFER : Containers on channel: List starts.
SNIFFER : >================================<
SNIFFER : Container Name : DFHRESPONSE
SNIFFER : Content length : 00001042

548 Implementing CICS Web Services

SNIFFER : Container content:
<SOAP-ENV:Envelopexmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"xmln
s:soapenc="http://schemas.xmlsoap.org/soap/encoding/"xmlns:xsd="http://www.w3.o
rg/2001/XMLSchema"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:SO
AP-ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-ENV:Body><DFH0XCMNResp
onsexmlns="http://www.DFH0XCMN.DFH0XCP4.Response.com"><ca_request_id>01INQS</ca
_request_id><ca_return_code>0</ca_return_code><ca_response_message>RETURNED
ITEM: REF =0010
</ca_response_message><ca_inquire_single><ca_item_ref_req>10</ca_item_ref_req><
filler1> </filler1><filler2>
</filler2><ca_single_item><ca_sngl_item_ref>10</ca_sngl_item_ref><ca_sngl_descr
iption>Ball Pens Black24pk
</ca_sngl_description><ca_sngl_department>10</ca_sngl_department><ca_sngl_cost>
002.90</ca_sngl_cost><in_sngl_stock>0</in_sngl_stock><on_sngl_order>0</on_sngl_
order></ca_single_item></ca_inquire_single></DFH0XCMNResponse></SOAP-ENV:Body><
/SOAP-ENV:Envelope>
SNIFFER : >================================<
SNIFFER : Container Name : DFH-HANDLERPLIST
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHFUNCTION
SNIFFER : Content length : 00000016
SNIFFER : Container content: SEND-RESPONSE
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-SOAPACTION
SNIFFER : Content length : 00000002
SNIFFER : Container content: ""
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-URI
SNIFFER : Content length : 00000025
SNIFFER : Container content: /exampleApp/inquireSingle
SNIFFER : >================================<
SNIFFER : Container Name : DFH-SERVICEPLIST
SNIFFER : Content length : 00000000
SNIFFER : Container EMPTY
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-PIPELINE
SNIFFER : Content length : 00000008
SNIFFER : Container content: EXPIPE01
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-USERID
SNIFFER : Content length : 00000008
SNIFFER : Container content: CIWS3D
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-TRANID
SNIFFER : Content length : 00000004
SNIFFER : Container content: INQS
SNIFFER : >================================<

 Appendix A. Sample handler programs 549

SNIFFER : Container Name : DFHWS-WEBSERVICE
SNIFFER : Content length : 00000032
SNIFFER : Container content: inquireSingle
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-APPHANDLER
SNIFFER : Content length : 00000008
SNIFFER : Container content: DFHPITP
SNIFFER : >================================<
SNIFFER : Container Name : DFHWS-OPERATION
SNIFFER : Content length : 00000008
SNIFFER : Container content: DFH0XCMN
SNIFFER : Containers on channel: List ends
SNIFFER : **** End ****

A.4 Sample XML parser program - MYPARSER
The MYPARSER program shown in Example A-6 is used by the CIWSSECH
header processing program to parse the SOAP header in the
DFHWS-DFHHEADER container. It uses the COBOL XML PARSE statement to
parse through the SOAP WS-Security header that was received in the
COMMAREA, extracting the user ID and password. This extracted data is then
returned in the COMMAREA for the calling program to use.

Refer to the following publications for more information about XML parsing within
COBOL programs:

� Enterprise COBOL for z/OS V3R3 Programming Guide, SC27-1412
� Enterprise COBOL for z/OS V3R3 Language Reference, SC27-1408

Example: A-6 Sample XML parser program - MYPARSER

000100 PROCESS CICS
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. MYPARSER
000400
000500 DATE-COMPILED.
000600 ENVIRONMENT DIVISION.
000700 CONFIGURATION SECTION.
000800 SPECIAL-NAMES.
000900 DATA DIVISION.
001000 WORKING-STORAGE SECTION.
001100 01 WS-START.
001200 03 FILLER PIC X(44)
001300 VALUE '*** MYPARSER WORKING STORAGE STARTS HERE ***'.
001400 03 RESP PIC S9(8) COMP-5 SYNC.
001500 03 RESP2 PIC S9(8) COMP-5 SYNC.
001600 03 I PIC S9(4) COMP-5 SYNC.

550 Implementing CICS Web Services

001700 03 J PIC S9(4) COMP-5 SYNC.
001800 03 K PIC S9(4) COMP-5 SYNC.
001900 03 L PIC S9(4) COMP-5 SYNC.
002000 03 WORKAREA PIC X(24).
002100***
002200* Data items for use by parser
002300***
002400 03 IN-ELEM PIC X(1) VALUE 'N'.
002500 03 IN-REF-REQ PIC X(1) VALUE 'N'.
002600 03 PARSE-ERROR PIC X(1) VALUE 'N'.
002700
002800* The XML document to parse
002900 01 XML-DOCUMENT PIC X(1024).
003000
003100 01 USERNAME-XMLTAG-FOUND PIC X VALUE 'N'.
003200
003300**
003400* Externally referenced data areas
003500**
003600 LINKAGE SECTION.
003700 01 DFHCOMMAREA.
003800 02 DFHCOMMAREA-IN PIC X(1024).
003900 02 CA-RSP REDEFINES DFHCOMMAREA-IN.
004000 05 CA-USER-ID PIC X(8).
004100 05 CA-PASSWORD PIC X(8).
004200 05 FILLER PIC X(1008).
004300
004400**
004500* Main line code begins *
004600**
004700 PROCEDURE DIVISION.
004800 MAIN-PROCESSING SECTION.
004900***************************
005000* Validate the commarea
005100***************************
005200 PERFORM INIT-AND-VALIDATE.
005300***
005400* Received a valid COMMAREA so invoke the XML parser
005500* invoke the XML parser passing it the XML message
005600* What is the COBOL command used to invoke the XML parser?
005700***
005800 XML PARSE XML-DOCUMENT
005900 PROCESSING PROCEDURE XML-HANDLER
006000 END-XML.
006100
006200 PERFORM RETURN-SOAP-LAB-RESPONSE.
006300
006400 EXEC CICS RETURN END-EXEC.
006500 MAIN-PROCESSING-END. EXIT.

 Appendix A. Sample handler programs 551

006600
006700***
006800* The following section is executed as a callback routine
006900* out of the XML PARSE statement above.
007000* What is the name of the register we need to check on the
007100* EVALUATE statement?
007200***
007300 XML-HANDLER SECTION.
007400 EVALUATE XML-EVENT
007500 WHEN 'START-OF-ELEMENT'
007600**
007700* check if we have an element of interest
007800* i.e. Username and Password
007900**
008000 IF XML-TEXT = 'wsse:Username'
008100 MOVE 'Y' TO IN-ELEM USERNAME-XMLTAG-FOUND
008200 ELSE
008300 if XML-TEXT = 'wsse:Password'
008400 MOVE 'Y' TO IN-REF-REQ
008500 END-IF
008600 END-IF
008700 WHEN 'CONTENT-CHARACTERS'
008800**
008900* If we are in an element we are interested in,
009000* then extract its value
009100**
009200 IF IN-ELEM = 'Y'
009300 PERFORM EXTRACT-USER-ID
009400 ELSE
009500 IF IN-REF-REQ = 'Y'
009600 PERFORM EXTRACT-PASSWORD
009700 END-IF
009800 END-IF
009900 WHEN 'END-OF-ELEMENT'
010000 CONTINUE
010100 WHEN 'START-OF-DOCUMENT'
010200 CONTINUE
010300 WHEN 'END-OF-DOCUMENT'
010400 CONTINUE
010500 WHEN 'VERSION-INFORMATION'
010600 CONTINUE
010700 WHEN 'ENCODING-DECLARATION'
010800 CONTINUE
010900 WHEN 'STANDALONE-DECLARATION'
011000 CONTINUE
011100 WHEN 'ATTRIBUTE-NAME'
011200 CONTINUE
011300 WHEN 'ATTRIBUTE-CHARACTERS'
011400 CONTINUE

552 Implementing CICS Web Services

011500 WHEN 'ATTRIBUTE-CHARACTER'
011600 CONTINUE
011700 WHEN 'START-OF-CDATA-SECTION'
011800 CONTINUE
011900 WHEN 'END-OF-CDATA-SECTION'
012000 CONTINUE
012100 WHEN 'CONTENT-CHARACTER'
012200 CONTINUE
012300 WHEN 'PROCESSING-INSTRUCTION-TARGET'
012400 CONTINUE
012500 WHEN 'PROCESSING-INSTRUCTION-DATA'
012600 CONTINUE
012700 WHEN 'COMMENT'
012800 CONTINUE
012900 WHEN 'EXCEPTION'
013000***
013100* Exception handling paragraph
013200* XML code 52 means that the code page being used does not match
013300* the one specified in the document. This is expected with non
013400* EBCDIC data, as it has been translated to EBCDIC since we
013500* received it.
013600***
013700 IF XML-CODE = 52 MOVE ZERO TO XML-CODE
013800 ELSE
013900***************************************
014000* An exception occurred during parsing
014100***************************************
014200 MOVE 'Y' TO PARSE-ERROR
014300 END-IF
014400 WHEN OTHER
014500 MOVE 'Y' TO PARSE-ERROR
014600 END-EVALUATE.
014700 XML-HANDLER-END. EXIT.
014800 XML01-SUBROUTINES SECTION.
014900**
015000* The parser returns everything between the <xmltag> and
015100* </xmltag> tags, including all whitespace (SP, CR, LF, NL, HT)
015200* These are removed before saving the xmltag content.
015300**
015400 EXTRACT-USER-ID.
015500 MOVE ZERO TO I J.
015600 MOVE LENGTH OF XML-TEXT TO L.
015700 IF L > LENGTH OF WORKAREA
015800 MOVE LENGTH OF WORKAREA TO L.
015900 MOVE XML-TEXT TO WORKAREA(1 : L).
016000 INSPECT WORKAREA(1 : L) CONVERTING X'0D251505' TO SPACES.
016100 INSPECT WORKAREA(1 : L) TALLYING I FOR LEADING SPACES.
016200 SUBTRACT I FROM L.
016300 INSPECT WORKAREA(I + 1 : L) TALLYING J FOR ALL SPACES.

 Appendix A. Sample handler programs 553

016400 SUBTRACT J FROM L.
016500 IF L > LENGTH OF CA-USER-ID
016600 MOVE LENGTH OF CA-USER-ID TO L.
016700 MOVE WORKAREA(I + 1 : L) TO CA-USER-ID(1 : L).
016800 MOVE 'N' to IN-ELEM.
016900
017000 EXTRACT-PASSWORD.
017100 MOVE ZERO TO I J.
017200 MOVE LENGTH OF XML-TEXT TO L.
017300 IF L > LENGTH OF WORKAREA
017400 MOVE LENGTH OF WORKAREA TO L.
017500 MOVE XML-TEXT TO WORKAREA(1 : L).
017600 INSPECT WORKAREA(1 : L) CONVERTING X'0D251505' TO SPACES.
017700 INSPECT WORKAREA(1 : L) TALLYING I FOR LEADING SPACES.
017800 SUBTRACT I FROM L.
017900 INSPECT WORKAREA(I + 1 : L) TALLYING J FOR ALL SPACES.
018000 SUBTRACT J FROM L.
018100 IF L > LENGTH OF CA-PASSWORD
018200 MOVE LENGTH OF CA-PASSWORD TO L.
018300 MOVE WORKAREA(I + 1 : L) TO CA-PASSWORD(1 : L).
018400 MOVE 'N' to IN-REF-REQ.
018500
018600*******************
018700* Return to caller
018800*******************
018900 RETURN-RESPONSE.
019000 IF PARSE-ERROR = 'Y'
019100**
019200* Bad news, got an XML parser Exception
019300**
019400 MOVE 'EXCEPTION' to CA-RSP
019500 ELSE
019600 IF USERNAME-XMLTAG-FOUND = 'N'
019700***
019800* Ignore, it was not for us...
019900* Bad news, did not find the expected XML TAG
020000***
020100 MOVE 'NOT FOUND' to CA-RSP
020200 END-IF
020300 END-IF.
020400
020500**
020600* Initialise and Validate the COMMAREA
020700**
020800 INIT-AND-VALIDATE.
020900***********************
021000* Acceptable size ?
021100***********************
021200 IF EIBCALEN > 150

554 Implementing CICS Web Services

021300 THEN
021400***********
021500* yes
021600***********
021700 MOVE DFHCOMMAREA-IN(1:EIBCALEN) to XML-DOCUMENT
021800 MOVE SPACES TO CA-USER-ID, CA-PASSWORD
021900 ELSE
022000**********
022100* no
022200**********
022300 INITIALIZE DFHCOMMAREA(1:EIBCALEN)
022400 MOVE 'BAD COMMAREA LENGTH !' to DFHCOMMAREA
022500 EXEC CICS RETURN END-EXEC
022600 END-IF.

A.5 Sample header processing program - CIWSSECR
The CIWSSECR program in Example A-7 is used to insert a <wsse:Security>
header into a SOAP message.

It determines, by obtaining the data from DFHFUNCTION, if is it has been
invoked in a SEND-REQUEST phase. It also determines if it has been invoked
for the correct destination, from the data in DFHWS-URI. It then obtains the user
ID that the transaction is currently executing under and inserts this into the
WS-Security header. This header is then written into the DFHHEADER container
and control is returned to the calling program.

Example: A-7 Sample header processing program - CIWSSECR

000100***
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. CIWSSECR
000400***
000500* *
000600* This program:- *
000700* 1. Checks for SEND-REQUEST function, else returns *
000800* 2. Checks for correct URI from DFHWS-URI *
000900* 3. Obtains user ID from DFHWS-USERID container *
001000* 4. Puts completed WS-Security header into the *
001100* DFHHEADER container *
001200***
001300
001400 AUTHOR. CHIEREGATTI.
001500 DATE-COMPILED.
001600 ENVIRONMENT DIVISION.
001700 CONFIGURATION SECTION.

 Appendix A. Sample handler programs 555

001800 SPECIAL-NAMES.
001900 DATA DIVISION.
002000 WORKING-STORAGE SECTION.
002100 01 WS-START.
002200 03 FILLER PIC X(44)
002300 VALUE '*** CIWSSECR WORKING STORAGE STARTS HERE ***'.
002400 03 NN PIC X(10) VALUE 'CIWSSECR '.
002500 03 WS-RESP PIC S9(8) COMP-5 SYNC.
002600 03 WS-RESP2 PIC S9(8) COMP-5 SYNC.
002700 03 WS-HEAD-PTR USAGE IS POINTER.
002800 03 WS-HEAD-LEN PIC S9(8) COMP-4.
002900 03 WS-URI-PTR USAGE IS POINTER.
003000 03 WS-URI-LEN PIC S9(8) COMP-4.
003100 03 WS-FUNC-LEN PIC S9(8) COMP-4 VALUE 16.
003200 03 WS-PIPE-LEN PIC S9(8) COMP-4 VALUE 8.
003300 03 WS-GETMAIN-PTR USAGE IS POINTER.
003400 03 WS-GETMAIN-LEN PIC S9(8) COMP-4.
003500 03 WS-FAULT-STRING PIC X(40) value spaces.
003600 03 WS-FAULT-CODE PIC S9(8) COMP-4.
003700 03 WS-SOAP-LEVEL PIC S9(8) COMP-4.
003800 88 WS-SOAP-11 VALUE 1.
003900 88 WS-SOAP-12 VALUE 2.
004000 88 WS-NOT-SOAP VALUE 10.
004100 03 WS-FUNC-AREA PIC X(16).
004200 03 WS-PIPE-AREA PIC X(8).
004300 03 WS-NOT-AUTH PIC X(40)
004400 VALUE 'Not authorized to place order.'.
004500 03 WS-AUTH-FAILED PIC X(40)
004600 VALUE 'Authorization failed for order request.'.
004700 03 WS-WSSE-HEADER.
004800 05 WS-WSSE-01 PIC X(15) VALUE '<wsse:Security '.
004900 05 WS-WSSE-02 PIC X(26) VALUE 'soapenv:mustUnderstand="1"'.
005000 05 WS-WSSE-03 PIC X(26) VALUE ' xmlns:wsse="http://docs.o'.
005100 05 WS-WSSE-04 PIC X(26) VALUE 'asis-open.org/wss/2004/01/'.
005200 05 WS-WSSE-05 PIC X(26) VALUE 'oasis-200401-wss-wssecurit'.
005300 05 WS-WSSE-06 PIC X(18) VALUE 'y-secext-1.0.xsd">'.
005400 05 WS-WSSE-07 PIC X(20) VALUE '<wsse:UsernameToken>'.
005500 05 WS-WSSE-08 PIC X(15) VALUE '<wsse:Username>'.
005600 05 WS-WSSE-09 PIC X(08) VALUE 'WEBASZ '.
005700 05 WS-WSSE-10 PIC X(16) VALUE '</wsse:Username>'.
005800 05 WS-WSSE-11 PIC X(21) VALUE '</wsse:UsernameToken>'.
005900 05 WS-WSSE-12 PIC X(16) VALUE '</wsse:Security>'.
006000
006100 01 MYPARSER-COMLEN PIC S9(4) COMP-4.
006200 01 WS-PSW.
006300 05 WS-WSSE-A PIC X(30)
006400 VALUE '<wsse:Password Type="http://do'.
006500 05 WS-WSSE-B PIC X(30)
006600 VALUE 'cs.oasis-open.org/wss/2004/01/'.

556 Implementing CICS Web Services

006700 05 WS-WSSE-C PIC X(30)
006800 VALUE 'oasis-200401-wss-username-toke'.
006900 05 WS-WSSE-D PIC X(30)
007000 VALUE 'n-profile-1.0#PasswordText">'.
007100 05 WS-WSSE-E PIC X(8) VALUE 'REDB00KS'.
007200 05 WS-WSSE-F PIC X(16) VALUE '</wsse:Password>'.
007300 01 CA-PARSER-RSP.
007400 03 CA-USER-ID PIC X(8).
007500 03 CA-PASSWORD PIC X(8).
007600
007700 LINKAGE SECTION.
007800 01 WS-HEAD-AREA.
007900 02 FILLER PIC X OCCURS 1024 DEPENDING ON WS-HEAD-LEN.
008000
008100 01 WS-URI-AREA.
008200 02 FILLER PIC X OCCURS 256 DEPENDING ON WS-URI-LEN.
008300
008400 01 WS-GETMAIN-AREA.
008500 02 FILLER PIC X OCCURS 1024 DEPENDING ON WS-GETMAIN-LEN.
008600
008700**
008800* Main line code begins *
008900**
009000 PROCEDURE DIVISION.
009100 MAIN-PROCESSING SECTION.
009200
009300 PERFORM GET-PIPELINE.
009400
009500 PERFORM GET-DFHFUNCTION.
009600
009700 PERFORM GET-DFHWS-URI.
009800
009900 EVALUATE WS-URI-AREA(1:22)
010000 WHEN 'jms:/queue?destination'
010100 IF WS-FUNC-AREA = 'SEND-REQUEST '
010200 PERFORM GET-USERID
010300 PERFORM GET-SOAP-HEADER
010400 PERFORM PUT-SOAP-HEADER
010500 END-IF
010600 WHEN OTHER
010700 CONTINUE
010800 END-EVALUATE.
010900
011000 EXEC CICS RETURN END-EXEC.
011100
011200 MAIN-PROCESSING-END. EXIT.
011300
011400**
011500* ** *

 Appendix A. Sample handler programs 557

011600* SUBROUTINES FOLLOW *
011700* ** *
011800**
011900
012000***
012100* Retrieve the PIPELINE name ftom DFHWS-PIPELINE container
012200***
012300 GET-PIPELINE.
012400 EXEC CICS
012500 GET CONTAINER('DFHWS-PIPELINE')
012600 INTO(WS-PIPE-AREA)
012700 FLENGTH(WS-PIPE-LEN)
012800 RESP(WS-RESP)
012900 END-EXEC.
013000
013100
013200***
013300* Retrieve the function type ftom DFHFUNCTION container
013400***
013500 GET-DFHFUNCTION.
013600 EXEC CICS
013700 GET CONTAINER('DFHFUNCTION')
013800 INTO(WS-FUNC-AREA)
013900 FLENGTH(WS-FUNC-LEN)
014000 RESP(WS-RESP)
014100 END-EXEC.
014200
014300***
014400* Check for correct length. Create SOAP fault if
014500* not correct. If for incoming request then we
014600* do the work, else we exit immediately.
014700***
014800 IF WS-FUNC-LEN NOT = 16
014900 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
015000 PERFORM FAULT-MESSAGE
015100 END-IF.
015200
015300***
015400* Retrieve the URI from the DFHWS-URI container
015500***
015600 GET-DFHWS-URI.
015700 EXEC CICS
015800 GET CONTAINER('DFHWS-URI')
015900 SET(WS-URI-PTR)
016000 FLENGTH(WS-URI-LEN)
016100 RESP(WS-RESP)
016200 END-EXEC.
016300
016400**

558 Implementing CICS Web Services

016500* Copy the input container to our storage
016600**
016700 IF WS-URI-LEN > 0
016800 SET ADDRESS OF WS-URI-AREA TO WS-URI-PTR
016900 MOVE WS-URI-LEN TO WS-GETMAIN-LEN
017000
017100 EXEC CICS GETMAIN
017200 SET(WS-GETMAIN-PTR)
017300 FLENGTH(WS-GETMAIN-LEN)
017400 END-EXEC
017500
017600 SET ADDRESS OF WS-GETMAIN-AREA TO WS-GETMAIN-PTR
017700 MOVE WS-URI-AREA TO WS-GETMAIN-AREA
017800 SET WS-URI-PTR TO WS-GETMAIN-PTR
017900 SET ADDRESS OF WS-URI-AREA TO WS-URI-PTR
018000 ELSE
018100 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
018200 PERFORM FAULT-MESSAGE
018300 END-IF.
018400
018500**************************************
018600* Retrieve the <wsse:Security> header
018700**************************************
018800 GET-SOAP-HEADER.
018900 EXEC CICS
019000 GET CONTAINER('DFHHEADER')
019100 SET(WS-HEAD-PTR)
019200 FLENGTH(WS-HEAD-LEN)
019300 RESP(WS-RESP)
019400 END-EXEC.
019500
019600***********************
019700* Retrieve the user ID
019800***********************
019900 GET-USERID.
020000 EXEC CICS
020100 GET CONTAINER('DFHWS-USERID')
020200 INTO(WS-WSSE-09)
020300 FLENGTH(LENGTH OF WS-WSSE-09)
020400 RESP(WS-RESP)
020500 END-EXEC.
020600
020700***********************************
020800* Write the <wsse:Security> header
020900***********************************
021000 PUT-SOAP-HEADER.
021100 EXEC CICS
021200 PUT CONTAINER('DFHHEADER')
021300 FROM(WS-WSSE-HEADER)

 Appendix A. Sample handler programs 559

021400 FLENGTH(LENGTH OF WS-WSSE-HEADER)
021500 RESP(WS-RESP)
021600 END-EXEC.
021700 DISPLAY NN '>================================<'
021800 DISPLAY NN 'Container Name: : DFHHEADER '.
021900 DISPLAY NN 'Content length: ' LENGTH OF WS-WSSE-HEADER.
022000 DISPLAY NN 'Container content: ' WS-WSSE-HEADER.
022100 DISPLAY NN '----------------------------------'.
022200**
022300
022400***
022500* The user ID has been verified. We will now set the contents of
022600* DFHWS-USERID container with this value.This will cause the
022700* business logic (back-end program/s) to be executed with this
022800* user ID, using it's access rights.
022900***
023000 SET-USER-ID.
023100 EXEC CICS
023200 PUT CONTAINER('DFHWS-USERID')
023300 FROM(CA-USER-ID)
023400 FLENGTH(length of CA-USER-ID)
023500 DATATYPE(DFHVALUE(CHAR))
023600 RESP(WS-RESP)
023700 END-EXEC.
023800
023900***
024000* We detected that the ca_request_id field specifies an invalid
024100* request. This is a CLIENT error.
024200***
024300 FAULT-MESSAGE SECTION.
024400************************
024500* Generate a SOAP Fault
024600************************
024700 EXEC CICS
024800 GET CONTAINER('DFHWS-SOAPLEVEL')
024900 INTO(WS-SOAP-LEVEL)
025000 FLENGTH(WS-HEAD-LEN)
025100 RESP(WS-RESP)
025200 END-EXEC.
025300
025400***
025500* Perform the XML PARSE and verify the user ID
025600***
025700
025800 PARSE-AND-VERIFY.
025900**
026000* The SOAP body XML data can now be parsed by MYPARSER
026100* LINK to the XML parser, it will return the CA-USER-ID
026200* and CA-PASSWORD

560 Implementing CICS Web Services

026300* or 'EXCEPTION'
026400* or 'NOT FOUND'
026500* or 'BAD COMMA'
026600**
026700 EXEC CICS LINK PROGRAM('MYPARSER')
026800 COMMAREA(WS-HEAD-AREA)
026900 LENGTH(MYPARSER-COMLEN)
027000 END-EXEC.
027100 IF WS-HEAD-AREA(1:9) = 'EXCEPTION' or
027200 'NOT FOUND' or
027300 'BAD COMMA'
027400**
027500* Error found during the XML PARSE program execution
027600**
027700 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
027800 PERFORM FAULT-MESSAGE
027900 ELSE
028000 MOVE WS-HEAD-AREA to CA-PARSER-RSP
028100************************************
028200* OK, data found, so do the VERIFY
028300************************************
028400 EXEC CICS VERIFY
028500 PASSWORD(CA-PASSWORD)
028600 USERID(CA-USER-ID)
028700 RESP(WS-RESP)
028800 END-EXEC
028900***************
029000* Succesful ?
029100***************
029200 IF WS-RESP = DFHRESP(NORMAL)
029300 PERFORM SET-USER-ID
029400 ELSE
029500 MOVE WS-NOT-AUTH TO WS-FAULT-STRING
029600 PERFORM FAULT-MESSAGE
029700 END-IF
029800 END-IF.
029900************************************
030000* MOVE CORRECT VERSION OF FAULTCODE
030100************************************
030200 IF WS-SOAP-11 MOVE DFHVALUE(CLIENT) TO WS-FAULT-CODE
030300 ELSE
030400 MOVE DFHVALUE(SENDER) TO WS-FAULT-CODE
030500 END-IF
030600
030700 EXEC CICS SOAPFAULT CREATE
030800 FAULTSTRING(WS-FAULT-STRING)
030900 FAULTSTRLEN(LENGTH OF WS-FAULT-STRING)
031000 FAULTCODE(WS-FAULT-CODE)
031100 END-EXEC.

 Appendix A. Sample handler programs 561

031200 FAULT-MESSAGE-END. EXIT.

A.6 Sample header processing program - CIWSSECS
Program CIWSSECS in Example A-8 is similar to CIWSSECH (see
Appendix A.2, “Sample header processing program - CIWSSECH” on page 533)
except that no password verification is done.

Example: A-8 Sample header processing program - CIWSSECS

000100 PROCESS CICS
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. CIWSSECS
000400***
000500* *
000600* This program:- *
000700* 1. Checks for RECEIVE-REQUEST function, else returns *
000800* 2. Obtains data from DFHHEADER container *
000900* 2. Uses the MYPARSER program to extract the CA-USER-ID *
001100* field from the XML message contained within DFHHEADER *
001200* 2. Puts CA-USER-ID into DFHWS-USERID container *
001600***
001700
001800 AUTHOR. Grant Ward Able.
001900 DATE-COMPILED.
002000 ENVIRONMENT DIVISION.
002100 CONFIGURATION SECTION.
002200 SPECIAL-NAMES.
002300 DATA DIVISION.
002400 WORKING-STORAGE SECTION.
002500 01 WS-START.
002600 03 FILLER PIC X(44)
002700 VALUE '*** CIWSSECS WORKING STORAGE STARTS HERE ***'.
002800 03 WS-RESP PIC S9(8) COMP-5 SYNC.
002900 03 WS-RESP2 PIC S9(8) COMP-5 SYNC.
003000 03 WS-HEAD-PTR USAGE IS POINTER.
003100 03 WS-HEAD-LEN PIC S9(8) COMP-4.
003200 03 WS-URI-PTR USAGE IS POINTER.
003300 03 WS-URI-LEN PIC S9(8) COMP-4.
003400 03 WS-FUNC-LEN PIC S9(8) COMP-4 VALUE 16.
003500 03 WS-GETMAIN-PTR USAGE IS POINTER.
003600 03 WS-GETMAIN-LEN PIC S9(8) COMP-4.
003700 03 WS-FAULT-STRING PIC X(40) value spaces.
003800 03 WS-FAULT-CODE PIC S9(8) COMP-4.
003900 03 WS-SOAP-LEVEL PIC S9(8) COMP-4.
004000 88 WS-SOAP-11 VALUE 1.
004100 88 WS-SOAP-12 VALUE 2.

562 Implementing CICS Web Services

004200 88 WS-NOT-SOAP VALUE 10.
004300 03 WS-FUNC-AREA PIC X(16).
004400 03 WS-NOT-AUTH PIC X(40)
004500 VALUE 'Not authorized to place order.'.
004600 03 WS-AUTH-FAILED PIC X(40)
004700 VALUE 'Authorization failed for order request.'.
004800
004900 01 MYPARSER-COMLEN PIC S9(4) COMP-4.
005000 01 CA-PARSER-RSP.
005100 03 CA-USER-ID PIC X(8).
005200 03 CA-PASSWORD PIC X(8).
005300
005400 LINKAGE SECTION.
005500 01 WS-HEAD-AREA.
005600 02 FILLER PIC X OCCURS 1024 DEPENDING ON WS-HEAD-LEN.
005700
005800 01 WS-URI-AREA.
005900 02 FILLER PIC X OCCURS 256 DEPENDING ON WS-URI-LEN.
006000
006100 01 WS-GETMAIN-AREA.
006200 02 FILLER PIC X OCCURS 1024 DEPENDING ON WS-GETMAIN-LEN.
006300
006400**
006500* Main line code begins *
006600**
006700 PROCEDURE DIVISION.
006800 MAIN-PROCESSING SECTION.
006900
007000***********************************
007100* Receive the SOAP Body namespace
007200***********************************
007300 PERFORM GET-DFHFUNCTION.
007400
007500***********************************
007600* Receive the SOAP Body namespace
007700***********************************
007800 PERFORM GET-DFHWS-URI.
007900 IF WS-URI-AREA(1:4) NOT = 'wmq:'
008100 EXEC CICS RETURN END-EXEC
008200 END-IF.
008300
008400***********************************
008500* Receive the SOAP Body namespace
008600***********************************
008700 PERFORM GET-SOAP-HEADER.
008800
008900**
009000* The SOAP body XML data can now be parsed by MYPARSER
009100* LINK to the XML parser, it will return the CA-USER-ID

 Appendix A. Sample handler programs 563

009300* or 'EXCEPTION'
009400* or 'NOT FOUND'
009500* or 'BAD COMMA'
009600**
009700 MOVE SPACES TO CA-PARSER-RSP
009700 EXEC CICS LINK PROGRAM('MYPARSER')
009800 COMMAREA(WS-HEAD-AREA)
009900 LENGTH(MYPARSER-COMLEN)
010000 END-EXEC.
010100 IF WS-HEAD-AREA(1:9) = 'EXCEPTION' or
010200 'NOT FOUND' or
010300 'BAD COMMA'
010400**
010500* Error found during the XML PARSE program execution
010600**
010700 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
010800 PERFORM FAULT-MESSAGE
010900 ELSE
011100**************************************
011200* OK, data found, so set the user ID
011300**************************************
011000 MOVE WS-HEAD-AREA to CA-PARSER-RSP
012300 PERFORM SET-USER-ID
012800 END-IF.
012900******************************
013000* and it is the end, bye bye
013100******************************
013200 EXEC CICS RETURN END-EXEC.
013300
013400 MAIN-PROCESSING-END. EXIT.
013500
013600**
013700* ** *
013800* SUBROUTINES FOLLOW *
013900* ** *
014000**
014100
014200***
014300* Retrieve the function type from DFHFUNCTION container
014400***
014500 GET-DFHFUNCTION.
014600 EXEC CICS
014700 GET CONTAINER('DFHFUNCTION')
014800 INTO(WS-FUNC-AREA)
014900 FLENGTH(WS-FUNC-LEN)
015000 RESP(WS-RESP)
015100 END-EXEC.
015200
015300***

564 Implementing CICS Web Services

015400* Check for correct length. Create SOAP fault if
015500* not correct. If for incoming request then we
015600* do the work, else we exit immediately.
015700***
015800 IF WS-FUNC-LEN NOT = 16
015900 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
016000 PERFORM FAULT-MESSAGE
016100 ELSE
016200 IF WS-FUNC-AREA NOT = 'RECEIVE-REQUEST '
016300 EXEC CICS RETURN END-EXEC
016400 END-IF
016500 END-IF.
016600
016700***
016800* Retrieve the URI from the DFHWS-URI container
016900***
017000 GET-DFHWS-URI.
017100 EXEC CICS
017200 GET CONTAINER('DFHWS-URI')
017300 SET(WS-URI-PTR)
017400 FLENGTH(WS-URI-LEN)
017500 RESP(WS-RESP)
017600 END-EXEC.
017700
017800**
017900* Copy the input container to our storage
018000**
018100 IF WS-URI-LEN > 0
018200 SET ADDRESS OF WS-URI-AREA TO WS-URI-PTR
018300 MOVE WS-URI-LEN TO WS-GETMAIN-LEN
018400
018500 EXEC CICS GETMAIN
018600 SET(WS-GETMAIN-PTR)
018700 FLENGTH(WS-GETMAIN-LEN)
018800 END-EXEC
018900
019000 SET ADDRESS OF WS-GETMAIN-AREA TO WS-GETMAIN-PTR
019100 MOVE WS-URI-AREA TO WS-GETMAIN-AREA
019200 SET WS-URI-PTR TO WS-GETMAIN-PTR
019300 SET ADDRESS OF WS-URI-AREA TO WS-URI-PTR
019400 ELSE
019500 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
019600 PERFORM FAULT-MESSAGE
019700 EXEC CICS RETURN END-EXEC
019800 END-IF.
019900
020000**************************************
020100* Retrieve the <wsse:Security> header
020200**************************************

 Appendix A. Sample handler programs 565

020300 GET-SOAP-HEADER.
020400 EXEC CICS
020500 GET CONTAINER('DFHHEADER')
020600 SET(WS-HEAD-PTR)
020700 FLENGTH(WS-HEAD-LEN)
020800 RESP(WS-RESP)
020900 END-EXEC.
021000
021100**
021200* Copy the input container to our storage
021300**
021400 IF WS-HEAD-LEN > 0
021500 SET ADDRESS OF WS-HEAD-AREA TO WS-HEAD-PTR
021600 MOVE WS-HEAD-LEN TO WS-GETMAIN-LEN MYPARSER-COMLEN
021700
021800 EXEC CICS GETMAIN
021900 SET(WS-GETMAIN-PTR)
022000 FLENGTH(WS-GETMAIN-LEN)
022100 END-EXEC
022200
022300 SET ADDRESS OF WS-GETMAIN-AREA TO WS-GETMAIN-PTR
022400 MOVE WS-HEAD-AREA TO WS-GETMAIN-AREA
022500 SET WS-HEAD-PTR TO WS-GETMAIN-PTR
022600 SET ADDRESS OF WS-HEAD-AREA TO WS-HEAD-PTR
022700 ELSE
022800 MOVE WS-AUTH-FAILED TO WS-FAULT-STRING
022900 PERFORM FAULT-MESSAGE
023000 EXEC CICS RETURN END-EXEC
023100 END-IF.
023200
023300***
023400* The user ID has been verified. We will now set the contents of
023500* DFHWS-USERID container with this value.This will cause the
023600* business logic (back-end program/s) to be executed with this
023700* user ID, using it's access rights.
023800***
023900 SET-USER-ID.
024000 EXEC CICS
024100 PUT CONTAINER('DFHWS-USERID')
024200 FROM(CA-USER-ID)
024300 FLENGTH(length of CA-USER-ID)
024400 DATATYPE(DFHVALUE(CHAR))
024500 RESP(WS-RESP)
024600 END-EXEC.
024700
024800***
024900* We detected that the ca_request_id field specifies an invalid
025000* request. This is a CLIENT error.
025100***

566 Implementing CICS Web Services

025200 FAULT-MESSAGE SECTION.
025300************************
025400* Generate a SOAP Fault
025500************************
025600 EXEC CICS
025700 GET CONTAINER('DFHWS-SOAPLEVEL')
025800 INTO(WS-SOAP-LEVEL)
025900 FLENGTH(WS-HEAD-LEN)
026000 RESP(WS-RESP)
026100 END-EXEC.
026200
026300************************************
026400* MOVE CORRECT VERSION OF FAULTCODE
026500************************************
026600 IF WS-SOAP-11 MOVE DFHVALUE(CLIENT) TO WS-FAULT-CODE
026700 ELSE
026800 MOVE DFHVALUE(SENDER) TO WS-FAULT-CODE
026900 END-IF
027000
027100 EXEC CICS SOAPFAULT CREATE
027200 FAULTSTRING(WS-FAULT-STRING)
027300 FAULTSTRLEN(LENGTH OF WS-FAULT-STRING)
027400 FAULTCODE(WS-FAULT-CODE)
027500 END-EXEC.
027600 FAULT-MESSAGE-END. EXIT.

A.7 Sample header processing program - WSATHND
The WSATHND C program shown in Example A-9 is used to monitor the
exchange of registration and protocol service messages between WebSphere
Application Server and CICS. It writes messages to the CESO transient data
queue.

Example: A-9 Sample header processing program - WSATHND

/**/
/* */
/* This program will perform the following functions when used as */
/* a message handler in either the DFHWSATP pipeline or the */
/* DFHWSATR pipeline: */
/* */
/* 1) If MESSAGES_ON is set to 1, it will write the following */
/* message: */
/* WSAT: REACHED HANDLER - function */
/* where function is the contents of the DFHFUNCTION container */
/* (RECEIVE-REQUEST,SEND-RESPONSE,SEND-REQUEST,RECEIVE-RESPONSE, */
/* PROCESS-REQUEST,NO-RESPONSE,or HANDLER-ERROR). Recall that */

 Appendix A. Sample handler programs 567

/* when the function is NO-RESPONSE, then the handler is being */
/* invoked after processing a request, when there is no response */
/* to be processed. */
/* */
/* 2) If the function is not NO-RESPONSE,then: */
/* a) if FULL_MESSAGES_ON is set to 1, it will write the */
/* following message: */
/* WSAT: contents of the DFHREQUEST container */
/* */
/* b) if MESSAGES_ON is set to 1, it will write the following */
/* message: */
/* WSAT: ACTION: action */
/* where action is the character string aaaaaa which comes */
/* at the end of the following character string found in the */
/* DFHREQUEST container: */
/* http://schemas.xmlsoap.org/ws/2004/10/wscoor/aaaaaa */
/* and has one of the following values: RegisterResponse, */
/* Prepared,Committed, Register, Prepare, Commit, ReadOnly, */
/* Aborted, Abort, Rollback */
/* */
/* The messages are written to the CESO transient data queue which */
/* is normally an extrapartition transient data queue with DDname */
/* CEEOUT. */
/* */
/**/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

/**/
/* The following flags can be set to either 0 or 1. */
/**/
#define MESSAGES_ON 1
#define FULL_MESSAGES_ON 1

void check_response(char* identifier);

int main(char* argv[])
{
 /*****************/
 /*** VARIABLES ***/
 /*****************/

 /* Pointer to COMMAREA */
 char* commptr;

 /* Container names */
 char* cont_function = "DFHFUNCTION \0";

568 Implementing CICS Web Services

 char* cont_request = "DFHREQUEST \0";

 /* Contents and length of DFHFUNCTION container */
 char* function;
 long int functionLen;

 /* Contents and length of DFHREQUEST container */
 char* message;
 long int messageLen;

 /* log message */
 char* entryLogMsg;

 char action[] = " \0";

 char* state1 =
 "http://schemas.xmlsoap.org/ws/2004/10/wscoor/RegisterResponse";
 char* state2 = "http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepared";
 char* state3 = "http://schemas.xmlsoap.org/ws/2004/10/wsat/Committed";
 char* state4 = "http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register";
 char* state5 = "http://schemas.xmlsoap.org/ws/2004/10/wsat/Prepare";
 char* state6 = "http://schemas.xmlsoap.org/ws/2004/10/wsat/Commit";
 char* state7 = "http://schemas.xmlsoap.org/ws/2004/10/wsat/ReadOnly";
 char* state8 = "http://schemas.xmlsoap.org/ws/2004/10/wsat/Aborted";
 char* state9 = "http://schemas.xmlsoap.org/ws/2004/10/wsat/Abort";
 char* state10= "http://schemas.xmlsoap.org/ws/2004/10/wsat/Rollback";

 /***************/
 /*** PROGRAM ***/
 /***************/

 EXEC CICS ADDRESS EIB(dfheiptr) COMMAREA(commptr);

 /**/
 /* Store contents of DFHFUNCTION container in function variable */
 /**/
 EXEC CICS GET CONTAINER(cont_function) NODATA
 FLENGTH(functionLen);
 check_response("WSATHND.getContainer.dfhfunctionLen");

 function = (char*) malloc(sizeof(char*) * (1 + functionLen));

 EXEC CICS GET CONTAINER(cont_function)
 INTO(function) FLENGTH(functionLen);
 check_response("WSATHND.getContainer.dfhfunction");

 *(function + functionLen) = '\0';

 /**/

 Appendix A. Sample handler programs 569

 /* Display message: WSAT: REACHED HANDLER - function */
 /**/

 entryLogMsg = (char*) malloc(sizeof(char*) *
 (strlen("WSAT: REACHED HANDLER - ") +
 strlen(function) + 1
)
);
 strcpy(entryLogMsg, "WSAT: REACHED HANDLER - ");
 strcat(entryLogMsg, function);
 if (MESSAGES_ON == 1)
 printf("%s\n", entryLogMsg);

 free(entryLogMsg);

 /**/
 /* Store contents of DFHREQUEST container in message variable */
 /**/

 if (!(strncmp(function, "NO-RESPONSE ", 16) == 0))
 {
 EXEC CICS GET CONTAINER(cont_request) NODATA
 FLENGTH(messageLen);
 check_response("WSATHND.get.requestLen");

 message = (char*) malloc(sizeof(char*) * (messageLen+1));

 EXEC CICS GET CONTAINER(cont_request)
 INTO(message) FLENGTH(messageLen);
 check_response("WSATHND.get.request");

 *(message+messageLen) = '\0';

 if (FULL_MESSAGES_ON == 1)
 {
 printf("WSAT:%s:\n", message);
 }

 /****************/
 /* ACTION STATE */
 /****************/

 if (strstr(message, state1) != NULL)
 strcpy(action, "RegisterResponse\0");
 else if (strstr(message, state2) != NULL)
 strcpy(action, "Prepared \0");
 else if (strstr(message, state3) != NULL)
 strcpy(action, "Committed \0");

570 Implementing CICS Web Services

 else if (strstr(message, state4) != NULL)
 strcpy(action, "Register \0");
 else if (strstr(message, state5) != NULL)
 strcpy(action, "Prepare \0");
 else if (strstr(message, state6) != NULL)
 strcpy(action, "Commit \0");
 else if (strstr(message, state7) != NULL)
 strcpy(action, "ReadOnly \0");
 else if (strstr(message, state8) != NULL)
 strcpy(action, "Aborted \0");
 else if (strstr(message, state9) != NULL)
 strcpy(action, "Abort \0");
 else if (strstr(message, state10) != NULL)
 strcpy(action, "Rollback \0");

 if (MESSAGES_ON == 1)
 printf("WSAT: ACTION:%s:\n", action);

 free(message);
 }

 EXEC CICS RETURN;
 check_response("WSATHND.return");

 return 0;
}

/* Check response of CICS commands - ensure no errors occur */
void check_response(char* identifier)
{
 if ((dfheiptr->eibresp + dfheiptr->eibresp2) != 0)
 {
 char* errStart = "ERROR: ";
 char* errEnd = ". See stdout for respcodes";
 char* fullMsg;

 if (dfheiptr->eibresp == DFHRESP(NORMAL))
 printf("NORMAL Response found");
 if (dfheiptr->eibresp == DFHRESP(CCSIDERR))
 printf("CCSIDERR Response found");
 if (dfheiptr->eibresp == DFHRESP(CHANNELERR))
 printf("CHANNELERR Response found");
 if (dfheiptr->eibresp == DFHRESP(CONTAINERERR))
 printf("CONTAINERERR Response found");
 if (dfheiptr->eibresp == DFHRESP(INVREQ))
 printf("INVREQ Response found");
 if (dfheiptr->eibresp == DFHRESP(LENGERR))
 printf("LENGERR Response found");

 Appendix A. Sample handler programs 571

 printf("Error: %s\n", identifier);
 printf("Error resp1: %d\n", dfheiptr->eibresp);
 printf("Error resp2: %d\n", dfheiptr->eibresp2);

 fullMsg = (char*) malloc((strlen(errStart) +
 strlen(identifier) +
 strlen(errEnd) + 1) *
 sizeof(char*));

 strcpy(fullMsg, errStart);
 strcat(fullMsg, identifier);
 strcat(fullMsg, errEnd);

 EXEC CICS SEND TEXT FROM(fullMsg)
 LENGTH(strlen(fullMsg));

 free(fullMsg);

 exit;
 }
}

572 Implementing CICS Web Services

Appendix B. How the DES, AES, SHA-1,
and HMAC algorithms work

Some readers may want or need a more detailed explanation of one or more of
the following:

� How the DES algorithm works

� How the AES algorithm works

� How the SHA-1 algorithm works

� How the HMAC algorithm of FIPS PUB 198 works

In this appendix we attempt to provide an overview of this information that does
not require an understanding of advanced mathematics.

B

© Copyright IBM Corp. 2007. All rights reserved. 573

B.1 How DES works
DES makes some use of permutations. A permutation of a set of elements is an
arrangement of the elements of the set in some order. For example, there are six
permutations of the set {1,2,3}: 123, 132, 213, 231, 312, and 321. The
permutation 123 and the permutation 132 are considered to be different
permutations because the order of the elements is different.

A sketch of the DES enciphering computation is given in Figure B-1. The 64 bits
of the input block to be enciphered are first subjected to a permutation. In DES
the permuted input has bit 58 of the input as its first bit, bit 50 of the input as its
second bit, and so on as specified in FIPS Pub 46-3 with bit 7 of the input as its
last bit. Figure B-1 shows the leftmost 32 bits of the permuted input as L0, and
the rightmost 32 bits of the permuted input as R0. The permuted input block is
then the input to a complex key-dependent computation described in “The cipher
function f” on page 575. The output of that computation, called the preoutput, is
then subjected to a permutation that is the inverse of the initial permutation.

Figure B-1 The DES algorithm

Permuted Input R0 (32 bits)

Initial Permutation

Input (64 bits)

L0 (32 bits)

f(R14, K15)R15=L14 L15 = R14

f
Kn

48 bits

f(R1, K2)R2=L1 L2 = R1

K2

f 48 bits

K1

f 48 bits

R1=L0 L1 = R0 f(R0, K1)

Inverse Initial Permutation

Output

Pre-output f(R15, K16)R16=L15 L16 = R15

K16

f 48 bits

574 Implementing CICS Web Services

The computation that uses the permuted input block as its input to produce the
preoutput block consists, but for a final interchange of blocks, of 16 iterations of
the calculation:

Rn-1 represents the rightmost 32 bits of the output from the previous iteration. Kn
represents a permuted selection of 48 bits chosen from the 64-bit key by the key
schedule algorithm described in “Key schedule algorithm” on page 576. Thus the
cipher function f operates on two blocks, one of 32 bits and one of 48 bits; it
produces a block of 32 bits, which is then XORed with Ln-1 to produce Rn.
(XOR is a bit-by-bit exclusive OR operation in which

. XOR is equivalent to a bit-by-bit addition
modulo 2.) The preoutput block is then R16L16.

The cipher function f
A sketch of the calculation of f(R,K) is given in Figure B-2.

Figure B-2 The cipher function f of the DES algorithm

E denotes a function that takes a block of 32 bits as input and produces a block
of 48 bits as output. The first three bits of E(R) are the bits in positions 32, 1, and
2 of R, the last 2 bits of E(R) are the bits in position 32 and 1 of R, and the
remaining bits of E(R) are chosen from the bits of R according to a table
specified in FIPS Pub 46-3.

Ln Rn 1–=

Rn Ln 1– f Rn 1– Kn,()⊕=

1 1⊕ 0 1 0⊕, 1 0 1⊕, 1 0 0⊕, 0= = = =

S 8S 1 S 2 S 3 S 4 S 5 S 6 S 7

K (48 bits)48 bits

R (32 bits)

E

P

32 bits

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 575

Each of the unique selection functions S1, S2,...,S8 takes a 6-bit block of input
and yields a 4-bit block as output as specified in FIPS Pub 46-3.

The 8 blocks of 4 bits each are consolidated into a single block of 32 bits, which
forms the input to the permutation function P. P yields a 32-bit output from a
32-bit input by permuting the bits of the input block, again as specified in FIPS
Pub 46-3. The output is then the output of the cipher function f for the inputs R
and K.

Key schedule algorithm
Figure B-3 shows a sketch of the key schedule calculation of the DES algorithm.
The bits of the key are numbered 1 through 64. The bits of C0 are respectively
bits 57,49, 41, 33, 25,..., 44, and 36 of the key. The bits of D0 are respectively
bits 63, 55, 47, 39, 31,..., 12, and 4 of the key. Permuted Choice 1 does not
select any of the eight parity bits of the key for either C0 or D0.

C1 and D1 are obtained from C0 and D0 respectively by one left shift. C2 and D2
are obtained from C1 and D1 respectively by one left shift. C9 and D9 are
obtained from C8 and D8 by one left shift, and C16 and D16 are obtained from
C15 and D15 by one left shift. In all other cases Cn and Dn are obtained from
Cn-1 and Dn-1 by two left shifts. In all cases, by one left shift is meant a rotation
of the bits one place to the left, so that after one left shift the bits in the 28
positions are the bits that were previously in positions 2, 3, ..., 28, 1.

Permuted Choice 2 selects the 48 bits of Kn from the 56 bits of CnDn as specified
by a table in FIPS Pub 46-3. The first bit of Kn is the 14th bit of CnDn, the second
bit is the 17th, and so on with the 47th bit of Kn being the 29th bit of CnDn, and
the 48th bit of Kn being the 32nd bit of CnDn.

576 Implementing CICS Web Services

Figure B-3 The key schedule calculation of the DES algorithm

Left shiftLeft shift

Left shiftsLeft shifts

C n (28 bits) D n (28 bits)

Key (64 bits)

Permuted Choice 1

C 0 (28 bits) D 0 (28 bits)

C 1 (28 bits) D 1 (28 bits)

C 16 (28 bits)

Left shiftsLeft shifts

D 16 (28 bits)
Permuted
Choice 2

K16 (48 bits)

Permuted
Choice 2

K1 (48 bits)

Permuted
Choice 2

Kn (48 bits)

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 577

B.2 How AES works
The AES algorithm requires an initial set of 4 words of key data, and each of the
Nr rounds requires 4 words of key data. Thus the algorithm requires 4 + 4*Nr =
4(Nr+1) words of key data. Consequently the algorithm specifies a Key
Expansion routine that accepts the cipher key as input and uses it to generate a
key schedule containing 4(Nr+1) words as output. The first Nk words of the key
schedule are the first Nk words of the cipher key. For example, if we specify the
following 128-bit cipher key:

2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

then the Key Expansion routine generates a key schedule containing 4(10 + 1) =
44 words, of which the first 4 words are as follows:

w0 = 2b7e1516 w1 = 28aed2a6 w2 = abf71588 w3 = 09cf4f3c

Example B-1 shows pseudo code that describes how AES encrypts data. The
pseudo code uses four variables:

� The variable in is an array of 16 bytes that contains the 128 bits to be
encrypted.

� The variable out is an array of 16 bytes that contains the data after it has been
encrypted.

� The variable w is an array of 4*(Nr + 1) words; it contains the key schedule
that the Key Expansion routine generated.

� The variable state is a rectangular array having 4 rows and 4 columns of
bytes that represent intermediate encryption results.

Example: B-1 Pseudo code for AES encryption

Cipher(byte in[16], byte out[16], word w[4*(Nr+1)])
begin

byte state[4,4]

state = in

AddRoundKey(state, w[0,3])

for round = 1 step 1 to Nr-1
SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[4*round, 4*round+3])

end for

578 Implementing CICS Web Services

SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[4*Nr, 4*Nr+3])

out = state
end

The input array, in, is copied into the state array according to the scheme shown
in Example B-2.

Example: B-2 state = in

s[0,0] = in[0] s[0,1] = in[4] s[0,2] = in[8] s[0,3] = in[12]
s[1,0] = in[1] s[1,1] = in[5] s[1,2] = in[9] s[1,3] = in[13]
s[2,0] = in[2] s[2,1] = in[6] s[2,2] = in[10] s[2,3] = in[14]
s[3,0] = in[3] s[3,1] = in[7] s[3,2] = in[11] s[3,3] = in[15]

For example, if the data to be encrypted is:

32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

then the initial value of the state array would be as shown in Table B-1.

Table B-1 state = in

Note that the first column of the state array contains the first 32-bit word of the
input, the second column of the state array contains the second word of the
input, and so forth. The state can hence be interpreted as a one-dimensional
array of 32-bit words (columns): w0, w1, w2, w3.

The encryption operations are then conducted on this state array. After an initial
Round Key addition, the state array is transformed by implementing a round
function 10, 12, or 14 times (depending on the key length), with the final round
differing slightly from the first Nr-1 rounds because it does not include the Mix
Columns() transformation. The final state is then copied to the output.

32 88 31 e0

43 5a 31 37

f6 30 98 07

a8 8d a2 34

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 579

The individual transformations - SubBytes(), ShiftRows(), MixColumns(), and
AddRoundKey() - which make up the round function that processes the state
array are described in the following sections.

SubBytes() transformation
The SubBytes() transformation is a substitution that operates independently on
each byte of the state array using the substitution table set forth in FIPS Pub 197.
The substitution table contains 16 rows and 16 columns. If, for example, the s1,1
element of the state array contained the byte 53, then the substitution value
would be found at the intersection of the row with index ‘5’ and the column with
index ‘3’ in the substitution table. This would result in 53 being replaced with ed.

The creators of AES used complex mathematics to create the substitution table
in such a way that it would have an inverse substitution that could be used in a
decryption operation.

ShiftRows() transformation
In the ShiftRows() transformation the bytes in the second row of the state array
are cyclically shifted left by one column. The bytes in the third row are cyclically
shifted left by two columns. The bytes in the last row are cyclically shifted left by
three columns. The first row is not shifted. See Figure B-4.

Figure B-4 ShiftRows() cyclically shifts the last three rows in the state array

MixColumns() transformation
The MixColumns() transformation, shown in Figure B-5, replaces the four bytes
in column c of the state array, namely {s0,c, s1,c, s2,c, s3,c}, with four new bytes
{s’0,c, s’1,c, s’2,c, s’3,c} whose values are computed according to the following
equations:

S0,3

S1,0

S0,2S0,0

S2,1

S1,3S1,1

S3,2S3,0

S0,1

S1,2

S2,3 S2,0S2,2

S3,3 S3,1

After ShiftRows

S0,3

S1,3

S0,1 S0,2S0,0

S2,3

S1,1 S1,2S1,0

S3,3

S2,1 S2,2S2,0

S3,1 S3,2S3,0

Before ShiftRows

580 Implementing CICS Web Services

In these equations represents the XOR operation, which is equivalent to
addition modulo 2, and represents the multiplication of two elements in the
finite field GF(28). It is beyond the scope of this book to explain the mathematics
of finite fields. However, we will note that the creators of AES chose the
coefficients in the preceding equations to have certain specific values in the finite
field GF(28) so that the MixColumns() transformation would have an inverse
transformation that could be used in a decryption operation.

Figure B-5 MixColumns() operates on the state array column-by-column

AddRoundKey() transformation
Figure B-6 shows that the AddRoundKey() transformation XORs each column of
the state array with a word from the key schedule. In Figure B-6 l is equal to four
times the number of the round. The AddRoundKey() transformation performs an
XOR operation between the first column of the state array and word wl from the
key schedule in order to create the first column of the new state array. Likewise,
it performs an XOR operation between the second column of the state array and
word wl+1 from the key schedule to create the second column of the new state
array. Likewise, column three is XORed with wl+2, and column four is XORed
with wl+3.

s0 c,
"" 02{ } s0 c,•() 03{ } s1 c,•() s2 c, s3 c,⊕ ⊕ ⊕=

s1 c,
"" s0 c, 02{ } s1 c,•() 03{ } s2 c,•() s3 c,⊕ ⊕ ⊕=

s2 c,
"" s0 c, s1 c, 02{ } s2 c,•() 03{ } s3 c,•()⊕ ⊕ ⊕=

s3 c,
"" 03{ } s0 c,•() s1 c, s2 c, 02{ } s3 c,•()⊕ ⊕ ⊕=

a b⊕
x y•

S0,3

S1,3

S0,1 S0,2S0,0

S2,3

S1,1 S1,2S1,0

S3,3

S2,1 S2,2S2,0

S3,1 S3,2S3,0

S'0,3

S'1,3

S'0,2

S'2,3

S'1,2S'1,0

S'3,3S'3,1

S'0,1

S'1,1

S'2,1 S'2,2S'2,0

S'3,0 S'3,2

S'0,0

S'3,c

S'0,c

S'1,c

S'2,c

S3,c

S0,c

S1,c

S2,c

MixColumns()

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 581

Figure B-6 AddRoundKey() XORs each column of the state with a word from the key schedule

S'0,3

S'1,3

S'0,2

S'2,3

S'1,2S'1,0

S'3,3S'3,1

S'0,1

S'1,1

S'2,1 S'2,2S'2,0

S'3,0 S'3,2

S'0,0S0,3

S1,3

S0,1 S0,2S0,0

S2,3

S1,1 S1,2S1,0

S3,3

S2,1 S2,2S2,0

S3,1 S3,2S3,0

wl+3wl wl+1 wl+2

4 words from Key Schedule
 (l = 4 x number of round)

Round Key

582 Implementing CICS Web Services

B.3 How SHA-1 works
SHA-1 can be used to hash a message, M, having a length of L bits, where L is
less than 264; it produces a 160-bit (20 byte) message digest. The message
must be preprocessed before the actual hash computation begins. Before we
can describe the preprocessing and the computation, we need to define an
operation, some functions, and some constants.

B.3.1 Definitions
The ROTLn(x) operation, where x is a 32-bit word and n is 0 or a positive integer
less than 32, is a circular shift (rotation) of x by n positions to the left.

SHA-1 uses a sequence of functions f0, f1,..., f79. Each function ft, where 0< t
<79, operates on three 32-bit words, x, y, and z, and produces a 32-bit word as
output. The function ft(x,y,z) is defined as follows:

� For 0 < t < 19:

� For 20 < t < 39:

� For 40< t < 59:

� For 60 < t < 79:

SHA-1 uses a sequence of eighty constant 32-bit words K0, K1,..., K79, which
are defined as follows:

� For 0 < t < 19: 5a827999

� For 20 < t < 39: 6ed9eba1

� For 40 < t < 59: 8f1bbcdc

� For 60 < t < 79: ca62c1d6

f
t

x y z, ,() x y∧() x¬() z∧()⊕=

f
t

x y z, ,() x y z⊕ ⊕=

f
t

x y z, ,() x y∧() x z∧() y z∧()⊕ ⊕=

f
t

x y z, ,() x y z⊕ ⊕=

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 583

B.3.2 SHA-1 preprocessing
Preprocessing consists of three steps:

1. Padding the message, M.

2. Parsing the padded message into message blocks.

3. Setting the initial hash value.

B.3.2.1 Padding the message
The purpose of padding the message is to ensure that the length of the padded
message is a multiple of 512 bits. Begin the padding by appending the bit “1” to
the end of the message, followed by k zero bits, where k is the smallest,
non-negative solution to the equation L + 1 + k = 448 mod 512. Then append the
64-bit block that is equal to the number L expressed using a binary
representation.

As an example, consider the (8-bit ASCII) message “abc.” Since this message
has length 8 x 3 = 24, the message is padded with a “1” bit, then 448 - (24 + 1) =
423 zero bits, and then the message length become the 512-bit padded
message shown in Figure 13-36.

Figure 13-36 Padding a message

As a second example, let the message, M, be the 448-bit (L = 448) ASCII string

abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq

The message is padded by appending a “1” bit, followed by 511 zero bits, and
ending with the hex value 00000000 000001C0 (the 64-bit representation of the
length, 448). Note that the final padded message consists of two blocks instead
of just one.

B.3.2.2 Parsing the padded message
After a message has been padded, it must be parsed into N 512-bit blocks, M(1),
M(2),...,M(N). Since the 512 bits of each of these blocks can be expressed as
sixteen 32-bit words, the first 32 bits of message block i are denoted M(i)

0, the
next 32 bits are M(i)

1, and so on up to M(i)
15. See Figure 13-37.

101100001 01100010

64 bits

a b
00...01100001100011 000...000

L=24

423 bits

c

584 Implementing CICS Web Services

Figure 13-37 Padded and parsed message

The 512-bit blocks are processed sequentially, taking as input the result of the
hash so far and the current message block, with the final output being the hash
value for the message. We need an initial hash value to start the process.

Figure 13-38 SHA-1 as an iterative hash function

B.3.2.3 Setting the initial hash value
For SHA-1 the initial hash value, H(0), consists of the following five 32-bit words:

H(0)
0 = 67452301

H(0)
1 = efcdab89

H(0)
2 = 98badcfe

H(0)
3 = 10325476

H(0)
4 = c3d2e1f0

32 bits
M(i)0

32 bits
M(i)1 M(i)15

32 bits

512 bits
M(N)

512 bits
M(1)

512 bits
M(2) M(i)

512 bits

512 bits
M(N)

512 bits
M(1)

512 bits
M(2) M(i)

512 bits

F HashF F
H(N)Initial hash

value H(0)

H(i)H(1) H(2) H(N-1)
F

H(i-1)

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 585

B.3.3 SHA-1 hash computation
After preprocessing is completed, each message block, M(1), M(2), ..., M(N) , is
processed in order. The following steps are performed for each block:

1. Prepare the message schedule {W0, W1, W2, ..., W79} of 32-bit words:

– For 0 < t < 15: Wt = M(i)
t

For example, W0 = M(i)
0, the first 32-bit word of the i th message block.

Likewise, W15 = M(i)
15, the last 32-bit word of the i th message block.

– For 16 < t < 79:

For example,

This is the same as

That is, W16 is prepared by performing an exclusive OR operation on the
first, third, ninth, and fourteenth words of the message block and then
performing a circular left shift by one bit position. The result is still a 32-bit
word.

2. Initialize the five working variables, a, b, c, d, and e, with the (i-1)st hash
value:

a = H(i-1)
0

b = H(i-1)
1

c = H(i-1)
2

d = H(i-1)
3

e = H(i-1)
4

3. For t = 0 to 79 perform the following:

T = ROTL5(a) + ft(b,c,d) + e + Kt + Wt

e = d

d = c

c = ROTL30(b)

b = a

a = T

Wt ROTL1 W t 3–() W t 8–() W t 14–() W t 16–()⊕ ⊕ ⊕()=

W16 ROTL1 W13 W8 W2 W0⊕ ⊕ ⊕()=

W16 ROTL1 Mi
13 Mi

8 Mi
2 Mi

0⊕ ⊕ ⊕()=

586 Implementing CICS Web Services

where T is a temporary 32-bit word and addition (+) is performed modulo 232.
Observe that T is computed by using the (i-1)st hash value (in the form of the
variables a, b, c, d, and e) and the ith message block (in the form of the words
Wt, which ultimately come from the ith message block) as shown in
Figure 13-38 on page 585.

4. Compute the ith intermediate hash value H(i):

H(i)
0 = a + H(i-1)

0

H(i)
1 = b + H(i-1)

1

H(i)
2 = c + H(i-1)

2

H(i)
3 = d + H(i-1)

3

H(i)
4 = e + H(i-1)

4

Again, addition is performed modulo 232.

After repeating steps one through four a total of N times (that is, after processing
the last 512-bit message block M(N)), the resulting 160-bit message digest of the
message, M, is

HN
0 HN

1 HN
2 HN

3 HN
4 HN

5|| || || || ||

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 587

B.4 How the HMAC algorithm of FIPS PUB 198 works
FIPS PUB 198 describes an HMAC using the parameters shown in Table B-2.

Table B-2 Parameters for the HMAC algorithm

A well-known practice with MACs is to truncate their output; that is, the length of
the MAC used is less than the length L of the output of the hash function. When a
truncated HMAC is used, the t leftmost bytes of the HMAC computation are used
as the MAC. The output length, t, should be no less than four bytes, so 4 < t < L.

To compute a MAC over the data ‘text’ using the HMAC function, FIPS PUB 198
specifies the performance of the following operation:

where indicates an Exclusive-OR operation and || indicates a
concatenation operation. Table B-3 describes the step-by-step process in the
HMAC algorithm.

Parameter Description

B Block size (in bytes) of the input to the hash function

H Hash function (such as SHA-1)

ipad Inner pad; the byte x’36’ repeated B times

K Secret key shared between the originator and the intended receiver(s)

K0 The key K after any necessary pre-processing to form a key of length B

L Block size (in bytes) of the output of the hash function

opad Outer pad; the byte x’5C’ repeated B times

t The number of bytes of MAC

text The data on which the HMAC is calculated; text does not include the
padded key. The length of text is n bits.

MAC text()t HMAC K text,()t H K0 opad⊕() H K0 ipad⊕() text||()||()t= =

a b⊕

588 Implementing CICS Web Services

Table B-3 The HMAC algorithm

The successful verification of a MAC does not completely guarantee that the
accompanying message is authentic; there is a chance that a source with no
knowledge of the key can present a purported MAC on the plaintext message
that will pass the verification procedure. For example, an arbitrary purported
MAC of t bits on an arbitrary plaintext message may be successfully verified with
an expected probability of (1/2)t. Therefore, in general, if the MAC is truncated,
then its length, t, should be chosen as large as is practical, with at least half as
many bits as the output block size, L.

Step Description of step

1 If the length of K = B: set K0 = K. Go to step 4.

2 If the length of K > B: hash K to obtain a string L bytes long, then append (B-L) zeros to create
string K0 which is B bytes long.
That is, K0 = H(K) || 00...00. Then go to step 4.

3 If the length of K < B: append zeros to the end of K to create a string K0 which is B bytes long.
(For example, if K is 20 bytes in length and B = 64, then K will be appended with 44 zero bytes
X’00’).

4 Exclusive-OR K0 with ipad to produce the string . This string has length B.

5 Append the stream of data ‘text’ to the string resulting from step 4:

6 Apply the hash function H to the stream generated in step 5: .

7 Exclusive-OR K0 with opad to produce the string . This string has length B.

8 Append the result from step 6 to step 7:

9 Apply the hash function H to the result from step 8:

10 Select the leftmost t bytes of the result of step 9 as the MAC.

K0 ipad⊕

K0 ipad⊕() text||

H K0 ipad⊕() text||()

K0 opad⊕

K0 opad⊕() H K0 ipad⊕() text||()||

H K0 opad⊕() H K0 ipad⊕() text||()||()

 Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work 589

590 Implementing CICS Web Services

acronyms

2PC Two-phase commit

AAT Application Assembly Tool

AOR Application-Owning Region

API Application Programming
Interface

APPC Advanced
Program-to-Program
Communications

ASCII American Standard Code for
Information Interchange

B2B Business-to-business

CCI Common Client Interface

CEX2 Crypto Express2

CICS Customer Information Control
System

CICS TG CICS Transaction Gateway

CORBA Common Object Request
Broker Architecture

CPACF CP Assist for Cryptographic
Functions

DPL Distributed Program Link

DSA Digital Signature Algorithm

EAR Enterprise Application Archive

EBCDIC Extended Binary Coded
Decimal Interchange Code

ECI External Call Interface

EIS Enterprise Information
Systems

EJB Enterprise JavaBeans™

EPI External Presentation
Interface

ESI External Security Interface

ESM External Security Manager

EXCI External CICS Interface

Abbreviations and

© Copyright IBM Corp. 2007. All rights reserved.
FTP File Transfer Protocol

GTF Generalized Trace Facility

GUI Graphical user interface

HFS Hierarchical File System

HTML Hypertext Transfer Protocol

HTTP Hypertext Markup Language

IBM International Business
Machines

ICSF Integrated Cryptographic
Service Facility

IDE Integrated development
environment

IRC inter-region communication

ISC Inter-System Communication

ITSO International Technical
Support Organization

J2C J2EE Connector Architecture
(also known as JCA)

J2EE Java 2 Enterprise Edition

JAAS Java Authentication and
Authorization Service

JAR Java Archive

JAX-RPC Java API for XML-based RPC

JCA J2EE Connector Architecture
(also known as J2C)

JDBC Java Database Connectivity

JDK™ Java Developer’s Kit

JKS Java Keystore

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface™

JNI™ Java Native Interface

JSP JavaServer Page

 591

JSSE Java Secure Sockets
Extension

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

LPAR Logical Partition

LTPA Lightweight Third-Party
Authentication

LUW Logical Unit of Work

MRO Multi Region Operation

PEM Password Expiration
Management

PKA Public Key Algorithm

PKDS Private Key Data Set

QoS Quality of service

RAD Rational Application
Developer

RAR Resource Adapter Archive

RPC Remote procedure call

RRMS Recoverable Resource
Management
Services

RRS Resource Recovery Services

RSA Rivest, Shamir, and Adelman
(encryption)

SAF System Authorization Facility

SAX Simple API for XML

SDK Software Development Kit

SNA Systems Network
Architecture

SOAP Simple Object Access
Protocol (also known as
Service-Oriented Architecture
Protocol)

SQL Structured query language

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol/Internet Protocol

TLS Transport Layer Security

TPV Tivoli® Performance Viewer

UDDI Universal Description,
Discovery, and Integration

UOW Unit of Work

URI Uniform resource identifier

URL Uniform resource locator

URN Uniform resource name

VSAM Virtual Storage Access
Method

WMQ WebSphere MQ

WS-A Web Services - Adressing

WS-AT Web Services - Atomic
Transaction

WS-BA Web Services - Business
Activity

WS-C Web Services - Coordination

WSDL Web Services Description
Language

WSGW Web Services Gateway

WS-I Web Services interoperability

WS-Security Web Services - Security

XMI XML metadata interchange

XML Extensible Markup Language

XSD XML Schema Definition

592 Implementing CICS Web Services

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 594. Note that some of the documents referenced here may
be available in softcopy only.

� Application Development for CICS Web Services, SG24-7126

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

� Web Services Handbook for WebSphere Application Server 6.1, SG247257

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864

� WebSphere MQ Security in an Enterprise Environment, SG24-6814

Other publications
These publications are also relevant as further information sources:

� Enterprise COBOL for z/OS V3R3 Programming Guide, SC27-1412

� Enterprise COBOL for z/OS V3R3 Language Reference, SC27-1408

� CICS Web Services Guide V3.1, SC34-6458

� CICS TS V3.1 RACF Security Guide, SC34-6249

� CICS TS V3.1 Application Programming Reference, SC34-6434

� ICSF Overview, SA22-7519

� RACF Command Reference, SA22-7687

� CICS Transaction Server for z/OS RACF Security Guide, SC34-6454

� Tour Web Services Atomic Transaction operations: Beginner’s guide to
classic transactions, data recovery, and mapping to WS-Atomic Transactions,
IBM developerWorks (September 2, 2004)

© Copyright IBM Corp. 2007. All rights reserved. 593

� WebSphere MQ for z/OS System Setup Guide V6.0, SC34-6583

� WebSphere MQ - Transport for SOAP, SC34-6651

� WebSphere MQ Security, SC34- 6588

Online resources
These Web sites and URLs are also relevant as further information sources:

� CICS library

http://www.ibm.com/software/htp/cics/library/

� WebSphere Application Server library

http://www.ibm.com/software/webservers/appserv/was/library/index.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

594 Implementing CICS Web Services

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

A
aborted 441
AddRoundKey 581
Advanced Encryption Standard (AES) 161
AES algorithm

how it works 573
alert protocol 206
APARs

PK10849 467
PK16509 465
PK20393 113

application sample 76
Application Server Toolkit V6.1 (AST) 333
asymmetric cryptography 162
ATM

application 413
atomic transaction 409
AtomicClient 467–468, 473, 489
auditing 153
authentication 152, 258

basic 330
authorizaiton 152
Automatic Teller Machine (ATM) 410
availability 126

configuring for 101

B
basic 239
basic authentication 239, 330

sample 290, 336
bean-managed transaction 478
block cipher 154
bus

see service integration bus

C
C language 34
C++ 34
catalog application 122, 467, 489
catalog manager 146
catalog manager application 67

configuration transaction, ECFG 97, 122, 513

© Copyright IBM Corp. 2007. All rights reserved.
testing 90, 100, 124, 145
Catalog.ear 87
CatalogAtomic.ear 478
CatalogSec.ear 288
CatalogSec_WS-Security.ear 293, 374, 398
CatalogSec_WS-Security_HTTPS.ear 309
CEDA 119, 471
CEMT 120
certificate 302, 347
certificate revocation 191
certification paths 189
channels 59
CICS 324

certificate 350
COBOL programs 66
configuring 339
Execution Diagnostic Facility (EDF) 125
security 220, 236
service provider 37

preparation 38
using HTTP 76–77
using WMQ 116

service requester 41
local optimization 45
preparation 42
timeout considerations 96
using HTTP 94–95
using WMQ 121

trace 105
Web services assistant 34, 62

DFHLS2WS 63
DFHWS2LS 64

Web services support 33
catalog manager application 67
development tools 61
high availability 101, 126
overview 34
problem determination 104
resources 47
resources checklist 55

WS-Security Component 256
CICS default user ID 237
CICS region user ID 237
CICSplex 102

 595

CICS-to-CICS 112
cipher 154

suite 202
Cipher Block Chaining (CBC) 155
CIWSMSGH 80, 93, 118, 528
CIWSSECH 293–296, 533
CIWSSECR 315, 555
CIWSSECS 317, 331, 562
COBOL 34
code page 74, 77
code page conversion 77
commit 411, 441
committed 441
Communications Manager 102
completion protocol 438
confidentiality 152
connection 79
connector 467
container-managed transaction 478
containers 59

context container 59
control container 59
header container 60
user container 60

CoordinationContext 428
elements 496

Address 497
CoordinationType 497
Expires 496
Identifier 496
ReferenceProperties 497
RegistrationService 497

example 495
sample created by CICS 430
sample created by WebSphere 431

coordinator 434, 464
CORBA 6
core standards 8
CP Assist for Cryptographic Functions (CPACF)
349
CPIH 41, 93
CPIL 116
credentials 339
Crypto Express2 (CEX2) feature 217, 349
cryptography 151, 153

hardware 349
public key 162
secret key 153
symmetric 154

cryptosystem 163

D
daisy chain 464
Data 155
Data Encryption Algorithm (DEA) 155
Data Encryption Standard (DES) 155
DB2 table 467
decrypting 153
default user ID, CICS 237
DES algorithm

how it works 573
development tools 61
DFH$RING 303, 327
DFHLS2WS 34, 63
DFHPIRS 457
DFHPISN1, message handler module 448, 468
DFHRESPONSE container 82
DFHRSURI, URIMAP resource 454
DFHWS2LS 34, 64
DFHWSATH, header processing program 448,
455–457, 468
DFHWSATP, provider pipeline 449–450
DFHWSATR, requester pipeline 449

PIPELINE definition 452
DFHWSATX, message handler 449, 452
Diffie-Hellman 196
digital signature 153, 176, 358
Digital Signature Algorithm (DSA) 174
dispatchOrder.ear 99
DispatchOrderAtomic.ear 510
distributed routing 102–103
DPL subset 81
dynamic program routing 102, 104
dynamic response 47
dynamic routing 104

E
EAR file 99
eavesdropping 238
ECFG 97, 122, 513
Electronic Codebook (ECB) 155
electronic data interchange (EDI) 4
Elliptic Curve Digital Signature Algorithm (ECDSA)
176
encrypting 153
encryption algorithm 202
endpoint

596 Implementing CICS Web Services

listener 131
reference 419

enterprise bean 478
error 328

handling 16
error handling 206
ExampleAppClient.ear 87
ExampleAppDispatchOrder 98
ExampleAppDispatchOrder.ear 99, 510
Execution Diagnostic Facility (EDF) 125
Extensible Markup Language

see XML

F
FTP 9, 304

G
gateway

instance 131
configuring 140

service 131, 135
configuring 139, 141
invoking 147
publishing 145
testing 145

H
handler program 527
handshake protocol 202, 207
hardware

cryptography 349
hash algorithm 202
hashing 153, 167
heuristic decision 444
HFS file system 74
high availability 101, 126

with HTTP 101
with WMQ 126

HMAC algorithm
how it works 573

HTTP 7, 36, 73, 237
hub configuration 464

I
IBM Java SDK 305
ibm-webservices-bnd.xmi 287, 332
ibm-webservicesclient-bnd.xmi 287, 332

ibm-webservicesclient-ext.xmi 287, 332
ibm-webservices-ext.xmi 287, 332
identification 152
identity assertion 273
iKeyMan 305
IMS 66
inbound service 131
in-doubt window 443
integrity 152
intermediary 270
intermediate gateway

identity assertion 273
Internet 3
iterated block cipher 154

J
J2EE

application 146
connector 467

J2EE Connector Architecture (JCA) 524
Java SDK 305
Java Transaction API (JTA) 460
JAX-RPC

handler 130–131
JCA 467
JDBC 467
JDBC provider 487
JMS 9, 467
JVM 89

K
key agreement protocol 196
key exchange algorithm 202
key exchange protocol 196
key pair

generation 347
key ring 302

creating 302
key schedule algorithm 576
keystore 305

L
local optimization 45

M
master secret 210
mediation 130–131

 Index 597

message authentication codes (MAC 171
message handler 35, 80, 118, 324

introduction 57
SOAP 57
writing 80

message handler program 331
message information headers 422
mixcolumns 580
mustUnderstand 14, 293, 339, 344, 379, 401
MVS 102
MYPARSER 296, 550

N
namespace 12
Namespaces 12
National Institute of Standards and Technology
(NIST) 155
non-repudiation 153
non-terminal message 443
notification message 442

O
one-way message 442
outbound service 131

P
Parallel Sysplex 102
participant 445, 464
performance 332
PIPELINE 49

attributes
CONFIGFILE 50
SHELF 50
WSDIR 49

defining 83, 95, 119
pipeline 35, 49, 80, 118, 293, 329

configuration file 51
customizing 80

pipeline alias transaction 48, 57, 93
PL/I 34
Port definition 29
prepared 441
presumed abort 411
presumed trust 274
problem 344

determination 104
protocol transformation 132

public key cryptography 162
cryptography

public key 151

R
RACF 348

key ring 327
Rational Application Developer 293, 308
readonly 441
recoverable 411
Redbooks Web site 594

Contact us xvii
reference

parameter 421
property 421

Register
request 432
response 434

remote procedure call (RPC) 17
replay 441
request consumer 268
request generator 268, 387
RequestStream 459
response consumer 268, 367
response generator 268
rollback 411, 441
RPC 17

style 30
RSA algorithm 163

S
sample application 76, 315, 467
scalability 101
secret 153
secret key cryptography 153

cryptography
secret key 151

Secure Sockets Layer (SSL) 237
security

auditing 153
authentication 152
authorization 152
confidentiality 152
exposures 237
HTTP 239
identification 152
integrity 152
non-repudiation 153

598 Implementing CICS Web Services

prefixing 328
setup 327
SIT parameters 328
SOAP message 239, 285

see WS-Security
token 330
transport-level 239

comparison with SOAP message security
269

WMQ 251, 318
testing 319

self-signed 347
service

broker 5
gateway 135

see gateway service
inbound 131
mediation 130
outbound 131
provider 5
requestor 5

service integration bus 129–130, 139
configuration 132
securing CICS Web services 270

service provider 76
service provider mode 331
service requester

installing 87
timeout considerations 124

service requester setup 332
service-oriented approach 4
service-oriented architecture 3–4

characteristics 5
shiftrows 580
signature

processing 375
SIT parameters 78, 328

DFLTUSER 237
ENCRYPTION 241
KEYRING 242, 309, 328
MAXSSLTCBS 242
SEC 279, 328
SECPRFX 279, 328
SSLCACHE 243
SSLDELAY 242
TCPIP 78
XTRAN 279, 328
XUSER 279, 328

SMTP 9

SNIFFER 106, 468, 539
sample output 547

SOA
see service-oriented architecture

SOAP 8–9
1.1 specification 9
1.2 specification 10
binding 30
body 15, 497

outbound data conversion 41
communication styles 17

document 17
RPC 17

encodings 17
literal 17
SOAP encoding 17

envelope 12–13
fault 16
fault messages 299, 342, 382
headers 14, 496
intermediary 14
introduction 12
message 324, 358
message encryption 385
message handler 35, 57
message security 239, 253, 269
messaging mode 17
MustUnderstand 15
namespaces 12
security headers 312
server 7
Simple Object Access Protocol 9
validation in CICS 53

SOAPFAULT
commands

ADD 58
CREATE 58

generating a SOAP fault in CICS 299
SOCKETCLOSE 79
spoofing 238
SSL/TLS 301

CICS support for 240
creating a key ring 302
enabling CICS support 241, 309
enabling WebSphere support 304
testing 310
with WMQ 253

standards
JAX-RPC 130

 Index 599

JCA 524
JTA 460
SOAP 9
UDDI 10
WS-Addressing 409
WS-Atomic Transaction 409
WS-Coordination 409
WSDL 10
WS-Security 11
WS-Transactions 11
XML 9

static response 47
Station-to-Station (STS) protocol 198
subbytes 580
subkey 154
surrogate 236
surrogate access 341
switch profiles 251
symmetric cryptography 154
Sysplex Distributor 102, 128

T
tampering 238
tbsCertificate 182
TCP/IP 445

load balancing 102
TCPIP, SIT parameter 78
TCPIPSERVICE 55, 78, 309

attributes
AUTHENTICATE 240
PORTNUMBER 79
PROTOCOL 79

terminal message 443
testing 90, 100, 124, 298, 310, 328, 489, 517
throughput 332
token 330
tracing

CICS 105
transactional scope 413
transactions

atomic 417, 429
enabling CICS support 447

business activity 429
classic 410–411
two phase commit 411

transport 111, 269
security 239

Transport Layer Security (TLS) 199

trust token 274
trusted 162
two phase commit (2PC) 411

presumed abort 412
walkthrough 413
with WS-AT 440

U
UDDI 8
Unicode 77
Universal Description, Discovery, and Integration
(UDDI) 10
URI 123
URIMAP 47, 120, 135, 280, 330

attributes
USERID 250

defining 86, 135, 281
for serving HFS file 135
setting the user ID 280

UsernameToken 331
UsernameTokenGenerator 291, 337

V
verification 175

W
Waldo 410
Web 325
Web service 53
Web Service Description Language (WSDL) 8
Web services 3, 325

assistant 62
binding file 55
definition 7
introduction 6
properties 7

Web Services Description Language
see WSDL

Web Services Gateway 130
Web Services Interoperability Organization

see WS-I
Web services versus service-oriented architectures
6
Web technologies 3
WEBSERVICE 53

attributes
VALIDATION 53

600 Implementing CICS Web Services

WSBIND 53
WSDLFILE 53

dynamically installing 85
WebSphere 266

certificate 352
key store 354
MQ 111
service requester

deploying 88, 98–99
using HTTP 87, 98

WebSphere Application Server 324
administrative console 88
connection pooling 89

WebSphere Developer for zSeries 65
WebSphere MQ

see WMQ
WMQ 112

configuration 114
defining queues 115
trigger process 116

shared queues 127–128
WS Binding 308
WS Binding page 291, 337
WS Extension page 289, 335
WS-Addressing 409, 418

CICS Registration Service endpoint 424
endpoint reference 419
specification 418

WSATHND 472, 567
WS-Atomic Transaction (WS-AT) 36, 409, 415, 436

Completion protocol 438
daisy chain test scenario 510

testing 517
enabling CICS support 448–449
enabling WebSphere support 460, 478
resynchronization processing 443
simple test scenario 469

testing 489
specification 428
Two-Phase Commit protocol 439

Durable 2PC 439
Volatile 2PC 439

typical scenario 467
walkthrough 415, 442

WS-Business Activity specification 428
unsupported by CICS 429

WS-Coordination 409
Activation service 426
Coordination service 426

Protocol services 426
Registration service 426
specification 425
walkthrough 434

WSDL 10, 18
binding 19, 27
bindings 30
definition 24
document 19

anatomy 19
message 19, 25
namespaces 23
operation 19, 26
port 19, 29
port type 19, 26
service 19
service definition 29
SOAP binding 30
type 19
types 24
Web Services Description Language 10

WSGW 130
WS-I

basic profile 10
introduction 6

WS-Security 253, 285
CICS support 256
configuration

files 293, 339–341, 378, 400
configuring CICS 293
example 258, 293, 339, 400
message authentication 258
specifications 255
test scenario 298, 341, 378, 400
typical scenario 255
WebSphere client configuration 288, 334
WebSphere configuration files 286, 332
with WMQ 312

WS-Security Component 256

X
X.509 257, 324
XML 7, 9
XML encryption 385
XML Services for the Enterprise (XSE) 65

Z
z/OS 102

 Index 601

Communications Manager 102
Parallel Sysplex 102

602 Implementing CICS Web Services

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Im
plem

enting CICS W
eb Services

®

SG24-7206-02 ISBN 0738489042

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Implementing CICS
Web Services

Configuring and
securing Web
services in CICS
Transaction Server

Connecting CICS to a
service integration
bus

Enabling atomic Web
services

The Web services support in CICS Transaction Server Version 3.1
enables your CICS programs to be Web service providers or
requesters. CICS supports a number of specifications including
SOAP Version 1.1 and Version 1.2, and Web services distributed
transactions (WS-Atomic Transaction).

This IBM Redbooks publication will help you configure the CICS Web
services support for both HTTP and WebSphere MQ based solutions.
We show how Web services can be used to integrate J2EE
applications running in WebSphere Application Server with COBOL
programs running in CICS.

It begins with an overview of Web services standards and the Web
services support provided by CICS TS V3.1. Complete details for
configuring CICS Web services using both HTTP and WebSphere MQ
are provided next, along with the steps for using Web services to
connect to CICS from a service integration bus. The book then shows
how CICS Web services can be secured using a combination of Web
Services Security (WS-Security) and transport-level security
mechanisms such as SSL/TLS. Finally, it demonstrates how atomic
Web services transactions can be configured to allow WebSphere
and CICS resource updates to be synchronized.

This book concentrates on implementation specifics such as
security, transactions, and availability. The companion redbook
Developing CICS Web Services (SG24-7126) presents detailed
information about developing CICS Web services.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Summary of changes
	December 2006, Second Edition
	October 2007, Third Edition

	Part 1 Introduction
	Chapter 1. Overview of Web services
	1.1 Introduction
	1.2 Service-oriented architecture
	1.2.1 Characteristics
	1.2.2 Web services versus service-oriented architectures

	1.3 Web services
	1.3.1 Properties of a Web service
	1.3.2 Core standards
	1.3.3 Web Service Interoperability Basic Profile 1.0
	1.3.4 Additional standards

	1.4 SOAP
	1.4.1 The envelope
	1.4.2 Communication styles
	1.4.3 Encodings
	1.4.4 Messaging modes

	1.5 WSDL
	1.5.1 WSDL Document
	1.5.2 WSDL document anatomy
	1.5.3 WSDL definition
	1.5.4 WSDL bindings

	1.6 Summary

	Chapter 2. CICS support for Web services
	2.1 Overview
	2.2 CICS as a service provider
	2.2.1 Preparing to run a CICS application as a service provider
	2.2.2 Processing the inbound service request

	2.3 CICS as a service requester
	2.3.1 Preparing to run a CICS application as a service requester
	2.3.2 Processing the outbound service request
	2.3.3 Local optimization

	2.4 CICS resources for Web services
	2.4.1 URIMAP
	2.4.2 PIPELINE
	2.4.3 WEBSERVICE
	2.4.4 TCPIPSERVICE
	2.4.5 Resources checklist

	2.5 Message handlers
	2.5.1 SOAP message handlers
	2.5.2 Channels and containers

	2.6 Tools for developing CICS Web services
	2.6.1 CICS Web services assistant
	2.6.2 Web services assistant utility programs
	2.6.3 WebSphere Developer for zSeries

	2.7 Catalog manager example application
	2.7.1 The base application
	2.7.2 Web services support for the catalog example application

	Part 2 Web service configuration
	Chapter 3. Web services using HTTP
	3.1 Preparation
	3.1.1 Software checklist
	3.1.2 Definition checklist
	3.1.3 The sample application

	3.2 Configuring CICS as a service provider
	3.2.1 Configuring code page support
	3.2.2 Configuring CICS
	3.2.3 Configuring WebSphere Application Server on Windows
	3.2.4 Testing the configuration

	3.3 Configuring CICS as a service requester
	3.3.1 Configuring CICS
	3.3.2 Configuring WebSphere Application Server for z/OS
	3.3.3 Testing the configuration

	3.4 Configuring for high availability
	3.4.1 TCP/IP load balancing
	3.4.2 High availability configuration
	3.4.3 Routing inbound Web service requests

	3.5 Problem determination
	3.5.1 Error calling dispatch service - INVREQ

	Chapter 4. Web services using WebSphere MQ
	4.1 Preparation
	4.1.1 Software checklist
	4.1.2 Definition checklist

	4.2 WebSphere MQ configuration
	4.2.1 Adding WebSphere MQ support to CICS
	4.2.2 Defining the queues
	4.2.3 Defining the trigger process

	4.3 Configuring CICS as a service provider using WMQ
	4.3.1 Configuring the service provider pipeline

	4.4 Configuring CICS as service requester using WMQ
	4.4.1 Configuring the Catalog application
	4.4.2 Configuring WebSphere Application Server on Windows

	4.5 Testing the WMQ configuration
	4.6 High availability with WMQ

	Chapter 5. Connecting CICS to the service integration bus
	5.1 Overview of the service integration bus
	5.1.1 Why you would connect CICS to a bus

	5.2 Preparation
	5.2.1 Software checklist
	5.2.2 Definition checklist

	5.3 Configuring CICS for a gateway service
	5.3.1 Updating the CICS-supplied sample WSDL file
	5.3.2 Creating a URIMAP for the WSDL file
	5.3.3 Testing the retrieval of the WSDL file from a Web browser

	5.4 Creating a gateway service on the bus
	5.4.1 Identifying the bus to be used
	5.4.2 Creating a Web services gateway instance
	5.4.3 Creating a gateway service

	5.5 Testing the CICS gateway service
	5.5.1 Publish the bus-generated WSDL
	5.5.2 Configuring the catalog manager J2EE application
	5.5.3 Invoking the gateway service

	Part 3 Security management
	Chapter 6. Elements of cryptography
	6.1 The role of cryptography
	6.2 Secret key (or symmetric) cryptography
	6.2.1 DES
	6.2.2 Triple DES (TDEA)
	6.2.3 AES

	6.3 Public key (or asymmetric) cryptography
	6.3.1 RSA

	6.4 Hash functions
	6.5 Message authentication codes
	6.5.1 Block cipher-based MACs
	6.5.2 Hash function-based MACs

	6.6 Digital signatures
	6.6.1 Using DSA for digital signatures
	6.6.2 Using RSA for digital signatures
	6.6.3 Comparing RSA with DSA for digital signatures

	6.7 Public key digital certificates
	6.7.1 tbsCertificate
	6.7.2 Standard extensions for X.509 V3 digital certificates
	6.7.3 Certification paths

	6.8 Certificate revocation lists
	6.8.1 Extensions for entries in a CRL
	6.8.2 Extensions for a CRL
	6.8.3 Security considerations when using digital certificates

	6.9 Key agreement protocols
	6.9.1 The RSA key agreement protocol
	6.9.2 The Diffie-Hellman key agreement protocol

	6.10 Transport Layer Security (TLS) 1.0 protocol
	6.10.1 TLS overview
	6.10.2 Cipher suites
	6.10.3 Alert protocol
	6.10.4 Handshake protocol

	Chapter 7. Crypto hardware and ICSF
	7.1 Cryptographic hardware
	7.1.1 CP Assist for Cryptographic Functions (CPACF)
	7.1.2 Crypto Express 2 feature
	7.1.3 Comparison of CPACF, CEX2C, and CEX2A
	7.1.4 Other cryptographic hardware

	7.2 ICSF
	7.2.1 ICSF callable services
	7.2.2 ICSF administration

	7.3 How CICS uses ICSF
	7.4 ICSF services used by CICS WS-Security support

	Chapter 8. Securing Web services
	8.1 Traditional CICS security
	8.1.1 CICS user IDs

	8.2 Security exposures
	8.3 Transport security
	8.3.1 HTTP transport
	8.3.2 WebSphere MQ transport

	8.4 SOAP message security
	8.4.1 CICS and SOAP message security
	8.4.2 WebSphere and SOAP message security

	8.5 Comparison of transport level and SOAP message security
	8.6 Securing CICS Web services using the service integration bus
	8.7 WebSphere Datapower SOA appliances
	8.8 Identity assertion
	8.8.1 Trust token model
	8.8.2 Presumed trust model

	Chapter 9. Security scenarios
	9.1 Preparation
	9.1.1 Software checklist
	9.1.2 Definition checklist

	9.2 Basic security configuration
	9.2.1 Setting up basic security configuration
	9.2.2 Testing the basic security configuration

	9.3 Setting the user ID on a URIMAP definition
	9.3.1 Defining the URIMAP
	9.3.2 Permitting access to user ID CICSNW
	9.3.3 Testing user ID on URIMAP resource definition

	9.4 Enabling SOAP message security with HTTP
	9.4.1 Configuring the service requester
	9.4.2 Configuring CICS
	9.4.3 Testing SOAP message security
	9.4.4 SOAP fault messages

	9.5 Enabling SSL/TLS
	9.5.1 Creating a key ring and certificates on z/OS for CICS
	9.5.2 Enabling an SSL/TLS connection from WebSphere
	9.5.3 Configuring CICS support for SSL/TLS
	9.5.4 Testing SSL/TLS

	9.6 Enabling SOAP message security with WMQ
	9.6.1 Configuring CICS to use WMQ
	9.6.2 Configuring the service requester
	9.6.3 Header processing program
	9.6.4 Configuring the service provider
	9.6.5 Configuring WebSphere MQ for security
	9.6.6 Testing security with WMQ

	Chapter 10. Security scenarios using CICS WS-Security support
	10.1 Preparation
	10.1.1 Software checklist
	10.1.2 Definition checklist

	10.2 Basic security configuration
	10.2.1 Creating a RACF key ring
	10.2.2 Specifying the security SIT parameters
	10.2.3 Testing the basic security configuration
	10.2.4 Configuring the pipeline
	10.2.5 Setting a user ID on a URIMAP definition

	10.3 Basic authentication
	10.3.1 Configuring the service requester for basic authentication
	10.3.2 Configuring CICS
	10.3.3 Testing basic authentication

	10.4 Certificate and key pair generation
	10.5 Signing a SOAP message
	10.5.1 Configuring the service requester for signature processing
	10.5.2 Configuring CICS for signature processing
	10.5.3 Testing the signature scenario

	10.6 Encrypting a SOAP message
	10.6.1 Configuring the service requester for encryption
	10.6.2 Configuring CICS for encryption
	10.6.3 Testing the encryption scenario

	Part 4 Transaction management
	Chapter 11. Introduction to Web services: Atomic transactions
	11.1 Beginner’s guide to atomic transactions
	11.1.1 What is a classic transaction
	11.1.2 Mapping from classic transactions to WS-Atomic Transaction

	11.2 WS-Addressing
	11.2.1 Endpoint references
	11.2.2 Message information headers
	11.2.3 SOAP binding for endpoint references

	11.3 WS-Coordination
	11.3.1 Coordination service
	11.3.2 CreateCoordinationContext
	11.3.3 CreateCoordinationContextResponse
	11.3.4 Register
	11.3.5 Register response
	11.3.6 Two applications with their own coordinators
	11.3.7 Addressing requirements for WS-Coordination message types

	11.4 WS-Atomic Transaction
	11.4.1 Completion protocol
	11.4.2 Two-Phase Commit protocol
	11.4.3 Two applications with their own coordinators (continued)
	11.4.4 Addressing requirements for WS-AT message types
	11.4.5 CICS TS V3.1 and resynchronization processing

	Chapter 12. Enabling atomic transactions
	12.1 Enabling atomic transactions in CICS
	12.1.1 CICS to CICS configuration
	12.1.2 More elaborate CICS to CICS configuration

	12.2 Enabling atomic transactions in WebSphere

	Chapter 13. Transaction scenarios
	13.1 Introduction to our scenarios
	13.1.1 Software checklist
	13.1.2 Definition checklist

	13.2 The simple atomic transaction scenario
	13.2.1 Setting up CICS for the simple scenario
	13.2.2 Creating the AtomicClient and ITSO.ORDER table
	13.2.3 Testing the simple scenario

	13.3 The daisy chain atomic transaction scenario
	13.3.1 Setting up CICS for the daisy chain scenario
	13.3.2 Creating DispatchOrderAtomic and the ITSO.DISPATCH table
	13.3.3 Testing the daisy chain scenario

	13.4 Transaction scenario summary

	Part 5 Appendixes
	Appendix A. Sample handler programs
	A.1 Sample message handler program - CIWSMSGH
	A.2 Sample header processing program - CIWSSECH
	A.3 Sample handler program - SNIFFER
	A.4 Sample XML parser program - MYPARSER
	A.5 Sample header processing program - CIWSSECR
	A.6 Sample header processing program - CIWSSECS
	A.7 Sample header processing program - WSATHND

	Appendix B. How the DES, AES, SHA-1, and HMAC algorithms work
	B.1 How DES works
	B.2 How AES works
	B.3 How SHA-1 works
	B.3.1 Definitions
	B.3.2 SHA-1 preprocessing
	B.3.3 SHA-1 hash computation

	B.4 How the HMAC algorithm of FIPS PUB 198 works

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

