
ibm.com/redbooks

WebSphere Message
Broker Basics

Saida Davies
Laura Cowen

Cerys Giddings
Hannah Parker

Introduces WebSphere Message Broker V6

Describes basic installation,
configuration, and development tasks

Explores the Message
Brokers Toolkit

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Message Broker Basics

December 2005

International Technical Support Organization

SG24-7137-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2005)

This edition applies to:

Note: Before using this information and the product it supports, read the information in
“Notices” on page xv.

Version Release Modification Product name Product
Number

Platform

6 0 0 WebSphere Message Broker Windows 5724-J05

6 0 0 WebSphere MQ Windows 5724-H72

8 2 0 DB2 UDB Enterprise Server Edition Windows 5765-F41

6 0 1 IBM Rational Agent Controller Windows N/A

Contents

Figures . ix

Notices . xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xvii
Become a published author . xx
Comments welcome. xx

Chapter 1. Introduction . 1
1.1 The scope of this book . 2

1.1.1 Intended audience. 3
1.1.2 Overview of the topics covered . 3
1.1.3 What is not covered . 4
1.1.4 Assumptions . 5

Chapter 2. Product overview . 7
2.1 Application integration . 8

2.1.1 Application integration and WebSphere Message Broker. 8
2.2 WebSphere Message Broker . 9

2.2.1 Editions of WebSphere Message Broker . 9
2.2.2 Capabilities of WebSphere Message Broker 10
2.2.3 Components of WebSphere Message Broker. 12

Chapter 3. Installation . 17
3.1 Planning for installation . 18

3.1.1 Required software . 18
3.1.2 Optional software . 20
3.1.3 Software requirements . 21

3.2 Security issues . 24
3.2.1 User ID . 24
3.2.2 Other security issues. 25

3.3 Installing the required software . 26
3.3.1 The Launchpad . 26
3.3.2 Installing with the Express Installation . 28
3.3.3 Installing with the Advanced Installation . 30

3.4 Post installation tasks . 33
3.4.1 WebSphere MQ service . 34

© Copyright IBM Corp. 2005. All rights reserved. iii

3.4.2 DB2 Universal Database. 34
3.4.3 Rational Agent Controller . 35

3.5 Verifying the installation . 35
3.5.1 Creating the default configuration . 35
3.5.2 Running the Getting Started samples . 38

3.6 Next steps . 39
3.6.1 Navigating the Message Brokers Toolkit. 40

3.7 Installing product fix packs . 43
3.7.1 Before you install a fix pack . 43
3.7.2 Installing a fix pack . 43

3.8 Updates to the Message Brokers Toolkit . 44

Chapter 4. Developing applications with ESQL . 47
4.1 Developing message flow applications with ESQL 48

4.1.1 Messages in WebSphere Message Broker . 48
4.1.2 The Message Flow editor . 48
4.1.3 ESQL and the ESQL editor . 50
4.1.4 Scenarios demonstrated in this chapter . 51
4.1.5 Before you start . 52

4.2 Developing the Simple message flow application 52
4.2.1 Creating the ESQL_Simple message flow . 53
4.2.2 Configuring the ESQL_Simple message flow 58
4.2.3 Writing ESQL for the Compute node. 65
4.2.4 Deploying and testing the ESQL_Simple message flow 67
4.2.5 Diagnosing problems with the ESQL_Simple message flow 78

4.3 Developing the Bookstore scenario using ESQL 79
4.3.1 Creating the Bookstore scenario database . 80
4.3.2 Creating the ESQL_Create_Customer_Account message flow 80
4.3.3 Creating the ESQL_Book_Order message flow 85
4.3.4 Deploying and testing the ESQL Bookstore message flows 93

4.4 Summary . 95

Chapter 5. Developing applications with Java . 97
5.1 Developing message flow applications with Java 98

5.1.1 Java and the Java editor . 98
5.1.2 Scenarios described in this chapter . 99
5.1.3 Before you start . 100

5.2 Developing the Simple message flow application 101
5.2.1 Creating the Java_Simple message flow . 101
5.2.2 Configuring the Java_Simple message flow 103
5.2.3 Writing Java for the Java_Simple message flow. 103
5.2.4 Deploying and testing the Java_Simple message flow 108

5.3 Developing the Bookstore scenario using Java 110

iv WebSphere Message Broker Basics

5.3.1 Creating the Java_Create_Customer_Account message flow 110
5.3.2 Creating the Java_Book_Order message flow 118
5.3.3 Deploying and testing the Java Bookstore message flows 132

5.4 Summary . 133

Chapter 6. Developing applications with mappings 135
6.1 Developing message flow applications with mappings 136

6.1.1 Message sets and message definitions . 136
6.1.2 Mapping and the Message Mapping editor 138
6.1.3 Scenarios described in this chapter . 139
6.1.4 Before you start . 140

6.2 Developing the Simple message flow application 141
6.2.1 Defining the message model. 141
6.2.2 Creating the Mapping_Simple message flow 149
6.2.3 Configuring the Mapping_Simple message flow 151
6.2.4 Creating the mappings for the Mapping_Simple message flow . . . 153
6.2.5 Deploying and testing the Mapping_Simple message flow. 158

6.3 Developing the Bookstore scenario with mappings. 160
6.3.1 Defining the message model. 161
6.3.2 Creating the Create_Customer_Account message flow 181
6.3.3 Creating the Mapping_Book_Order message flow 189
6.3.4 Deploying and testing the Mapping Bookstore message flows. . . . 202

6.4 Summary . 203

Chapter 7. Administration . 205
7.1 WebSphere Message Broker administration. 206
7.2 Creating a broker domain . 206

7.2.1 Resources required for a simple broker domain 207
7.3 Steps for manually creating a simple broker domain 207

7.3.1 WebSphere MQ resources . 207
7.4 Extending a broker domain . 222

7.4.1 Adding a remote broker to the domain . 222
7.4.2 Deploying resources to a remote broker . 226
7.4.3 Creating a User Name Server . 226

7.5 Deploying message flow applications . 226
7.5.1 Creating a message broker archive . 227
7.5.2 Message flow application resource versioning 232

7.6 Publish/subscribe . 235
7.6.1 Publish/subscribe basic concepts . 236
7.6.2 Broker topology . 236
7.6.3 Topics . 238
7.6.4 Subscriptions. 239

Chapter 8. Troubleshooting and problem determination. 241

 Contents v

8.1 Locating error information . 242
8.1.1 Event messages . 242
8.1.2 Messages within the Message Brokers Toolkit 244
8.1.3 Message Brokers Toolkit Event Log . 250
8.1.4 Messages on the command line . 252
8.1.5 Windows Event Viewer . 253
8.1.6 Locating more information about event messages 260
8.1.7 Other useful logs . 262

8.2 Using the message Flow Debugger . 264
8.2.1 Adding breakpoints to a message flow . 265
8.2.2 Attaching the Flow Debugger . 266
8.2.3 Tracking a message through a flow . 268
8.2.4 Stepping through ESQL . 270
8.2.5 Stepping through mappings . 271
8.2.6 Debugging Java code . 273
8.2.7 Flow of errors in a message flow . 276
8.2.8 Disconnecting the debugger . 277

8.3 Using trace . 278
8.3.1 Tracing execution groups . 278
8.3.2 Tracing components . 285
8.3.3 Tracing commands . 286
8.3.4 Tracing the Message Brokers Toolkit . 287
8.3.5 WebSphere MQ trace . 288
8.3.6 ODBC trace. 289

8.4 Troubleshooting common problems . 291
8.4.1 Default Configuration wizard problems . 291
8.4.2 Errors with the Message Brokers Toolkit . 293
8.4.3 Problems connecting to the Configuration Manager 296
8.4.4 Problems with deployment . 299
8.4.5 Messages stuck on the input queue . 302
8.4.6 Common DB2 Universal Database Errors 302
8.4.7 Further information for troubleshooting . 304

Appendix A. Getting help . 307
Message Brokers Toolkit help . 308

Getting context-sensitive help . 308
Using the product documentation. 308

Viewing the product documentation . 309
Structure and content of the product documentation 309

Finding information in the product documentation . 310
Searching for information . 311
Diagnostic messages . 313
Using the Index . 313

vi WebSphere Message Broker Basics

Orienting yourself in the help system . 314
Updating the product documentation . 315

Receiving automatic updates . 315
Receiving manual updates . 315
Updating the documentation in information centers 316

Getting help from other sources . 316
Serving an information center from a single location 316
Useful links . 317

Appendix B. Code . 319
Locating the Web material . 320
Using the Web material . 320

How to use the Web material . 321

Glossary . 323

Abbreviations and acronyms . 327

Related publications . 329
IBM Redbooks . 329
Online resources . 329
How to get IBM Redbooks . 330
Help from IBM . 330

Index . 331

 Contents vii

viii WebSphere Message Broker Basics

Figures

3-1 File download warning dialog. 29
3-2 The Launchpad during an Express Installation 30
3-3 Location of the Message Brokers Toolkit java.exe file 32
3-4 System tray icons shows started and stopped state of WebSphere MQ 34
3-5 System tray icons showing the started and stopped states of DB2 35
3-6 Part of Services window. 35
3-7 Getting Started icon on Message Brokers Toolkit Welcome page. 36
3-8 The Default Configuration wizard icon in the Message Brokers Toolkit. 37
3-9 Sample icon from the Getting Started page. 39
3-10 Broker Application Development perspective . 41
3-11 The perspectives buttons in the Message Brokers Toolkit 42
3-12 Installing Message Brokers Toolkit updates . 45
3-13 Find and Install. 46
4-1 The Message Flow editor. 49
4-2 Opening the node palette. 49
4-3 The ESQL editor with code assist . 50
4-4 Creating the ESQL_Simple message flow. 54
4-5 The ESQL_Simple message flow . 55
4-6 Renaming the MQInput node in the ESQL_Simple message flow 56
4-7 Selecting the Out terminal of the ESQL_SIMPLE_IN node 57
4-8 Validating the ESQL_Simple message flow. 58
4-9 Creating a new WebSphere MQ queue . 60
4-10 Specifying the backout requeue queue . 61
4-11 Displaying the queues in the WebSphere MQ Explorer Content view. . 62
4-12 Setting the name of the input queue . 63
4-13 Specifying which parser to use to interpret input messages 64
4-14 The Compute node properties . 65
4-15 Creating a new message broker archive (bar) file 69
4-16 The Add and Remove buttons in the Broker Archive editor 69
4-17 Adding the ESQL_Simple message flow to the ESQL_Simple.bar file . 70
4-18 The compiled message flow in the bar file . 71
4-19 Creating a new execution group . 72
4-20 The ESQL_Simple execution group in the Domains view 72
4-21 Deploying ESQL_Simple bar file to ESQL_Simple execution group . . . 73
4-22 The ESQL_Simple message flow deployed. 74
4-23 Creating a new enqueue message file. 75
4-24 The ESQL_Simple.enqueue file. 76
4-25 The icon on the Dequeue button on the toolbar. 77

© Copyright IBM Corp. 2005. All rights reserved. ix

4-26 Getting the output message from ESQL_SIMPLE_OUT 77
4-27 Checking the queues for messages. 78
4-28 The ESQL_Create_Customer_Account message flow 81
4-29 The ESQL_Book_Order message flow . 86
5-1 The Java editor . 99
5-2 The Java_Simple message flow . 102
5-3 Accepting the name of the new Java project . 104
5-4 Accepting default values for the Java build settings 105
5-5 Accepting default values for the package name 106
5-6 Selecting the class template to use . 107
5-7 The Package Explorer view in the Java perspective 108
5-8 The Java_Create_Customer_Account message flow 112
5-9 Entering package name in New Java Compute Node Class wizard . . 114
5-10 The Java_Book_Order message flow . 119
6-1 The Message Set editor . 137
6-2 The Message Definition editor . 138
6-3 The Message Mapping editor . 139
6-4 Logical structure of message for Mapping_Simple message flow 143
6-5 The Mapping_Simple message set resources. 144
6-6 Adding message element to Mapping_Simple message definition . . . 145
6-7 Renaming the message element . 146
6-8 Renaming complexType1 to MessageType. 146
6-9 Adding a new element to the Mapping_Simple message definition. . . 147
6-10 Renaming globalElement1 to Body . 147
6-11 Adding a reference from the Message element to the Body element . 148
6-12 The complete Mapping_Simple message definition 149
6-13 The Mapping_Simple message flow . 150
6-14 Configuring MQInput node with information about message set 152
6-15 Naming the new message map for the Mapping_Simple message flow153
6-16 Selecting how the message map will be used 154
6-17 Select message flow to create output message from input message . 155
6-18 Select source and target message definitions 156
6-19 The Message Mapping editor . 157
6-20 Mapping input message properties to output message properties . . . 157
6-21 Mapping the input message body to the output message body. 158
6-22 Adding the Mapping_Simple message flow resources to the bar file . 159
6-23 The logical structure of the Create_Customer_Account message. . . . 164
6-24 Creating a new complex type for the Personal_Details element 166
6-25 Naming new global complex type for Personal_Details element 166
6-26 Adding an element reference to the Personal_Details complex type . 168
6-27 The element references added to the complex types 169
6-28 The Create_Customer_Account_MSG message structure 170
6-29 Adding a message from the Create_Customer_Account element 171

x WebSphere Message Broker Basics

6-30 The complete Create_Customer_Account_MSG message structure . 172
6-31 The logical structure of the Create_Book_Order message 173
6-32 The logical structure of the Book_Order_Response message 174
6-33 Elements and group in the Create_Book_Order message definition. . 176
6-34 Setting the Delivery_Method group’s properties 177
6-35 Adding the Books complex type and element references 177
6-36 Assigning type Books to the Book_Details element. 178
6-37 Selecting the Books complex type . 178
6-38 Setting the properties of the Books complex type 179
6-39 The Create_Book_Order_MSG message structure. 180
6-40 Element and group references in Book_Order_Response message. . 181
6-41 Creating database connection files from Message Brokers Toolkit . . . 182
6-42 Testing the connection to the BSTOREDB database 183
6-43 Specifying where to store the database connection files 184
6-44 The database connection files in the Message Flow project 184
6-45 The Mapping_Create_Customer_Account message flow 185
6-46 Mapping the input message elements to the database table fields . . . 189
6-47 The Mapping_Book_Order message flow . 190
6-48 Selecting the source and target messages . 192
6-49 Mapping properties from input message to output message 193
6-50 Edit the value of the MessageType property in the output message . . 194
6-51 Mapping the delivery methods . 195
6-52 Editing the condition expression for the First_Class element 195
6-53 The complete delivery method mappings in the spreadsheet 196
6-54 Creating a for statement for the Book_Details element 196
6-55 Writing expression to create unique order number in output message 197
6-56 Entering the statements for determining delivery price 198
6-57 Completing the delivery price expressions . 198
6-58 Selecting the fn:sum function from Content Assist 199
6-59 Creating the function to calculate the total price of the books ordered 200
6-60 The finished mapping file for the Mapping_Book_Order message flow201
7-1 Create Queue Manager Wizard (Step 1) . 209
7-2 Create Queue Manager Wizard (Step 4) . 210
7-3 List of components from mqsilist . 214
7-4 Windows Event Viewer . 214
7-5 Configuration Manager available for use event message 215
7-6 Creating a domain connection . 217
7-7 New domain connection displayed in Domains view 218
7-8 Topology Configuration Deploy message . 218
7-9 Deployment operation initiated message. 219
7-10 Event Log in the Message Brokers Toolkit . 220
7-11 Execution Group is not running alert . 220
7-12 Creating a sender channel in WebSphere MQ Explorer 224

 Figures xi

7-13 Add to Broker Archive dialog . 228
7-14 Error adding files to broker archive . 229
7-15 Success response from the Configuration Manager 230
7-16 Deploy File . 231
7-17 Context menu for an execution group . 232
7-18 Adding a version number for a message flow 233
7-19 Adding a version number to a message set. 234
7-20 Deployment information, version, and keyword for a message set . . . 235
7-21 Subscription Query editor . 239
8-1 Pop-up message from the Message Brokers Toolkit 243
8-2 Progress message connecting to a Configuration Manager 245
8-3 Warning adding resources to the broker archive file 246
8-4 Errors and warnings in the Problems view. 247
8-5 Filter for the Problems view . 248
8-6 Messages in the Alerts view . 249
8-7 Hidings alerts from a broker domain . 250
8-8 Successful deploy message . 251
8-9 A BIP message displayed on the command line 252
8-10 Syntax help for the mqsistop command. 253
8-11 Computer Management: Application log . 254
8-12 Example Application log message properties 255
8-13 Example of an error of the input node . 256
8-14 Parsing error message from the Application log 257
8-15 Example error message when message format is unexpected 258
8-16 System Log message response to mqsistart broker command 259
8-17 Application log properties. 260
8-18 Searching for diagnostic messages in the Information Center 261
8-19 Message flow showing breakpoints on the connections 266
8-20 Selecting a debug configuration type. 267
8-21 Available execution groups in the Flow Engine List 267
8-22 Execution groups connected to the Flow Debugger 268
8-23 Input message in the Variables view . 269
8-24 Debug toolbar . 269
8-25 Step into Source indicator . 270
8-26 Example Variables view for ESQL . 271
8-27 Mapping editor with breakpoints set . 272
8-28 Example Variables view for a mapping . 273
8-29 Setting the Java port . 275
8-30 Example Variables view when debugging Java code 276
8-31 Errors in the ExceptionList . 277
8-32 Preferences in the Message Brokers Toolkit . 288
8-33 Starting trace on WebSphere MQ . 289
8-34 Starting ODBC trace . 290

xii WebSphere Message Broker Basics

8-35 Example contents of an ODBC trace log . 291
8-36 Error produced on Default Configuration wizard failure 292
8-37 Adding the Eclipse Developer capability . 294
8-38 Selecting the PDE Runtime Error Log . 295
8-39 Clean projects . 296
8-40 Disconnected broker domain . 297
8-41 Error message: Communication problem with Configuration Manager 297
8-42 Preferences for communication with the Configuration Manager 299
8-43 Database connection error message . 303
8-44 DBM configuration . 304
A-1 Infopop for MQOutput node in the Node Palette 308
A-2 Contents pane . 310
A-3 The Select Search Scope dialog . 311
A-4 The New Search List dialog . 312
A-5 The Search field, with the search scope set to Migration information . 312
A-6 The Diagnostic messages search utility. 313
A-7 The Index for WebSphere Message Broker product documentation . . 314
A-8 Help system navigation buttons . 314

 Figures xiii

xiv WebSphere Message Broker Basics

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. xv

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
developerWorks®
z/OS®
Cloudscape™

DB2 Universal Database™
DB2®
IBM®
MQSeries®

Parallel Sysplex®
Rational®
Redbooks™
WebSphere®

The following terms are trademarks of other companies:

Java, Sun, Sun Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xvi WebSphere Message Broker Basics

Preface

This IBM® Redbook is a guide to using WebSphere® Message Broker V6.0.

This book updates the popular redbook SG24-7090, which contained basic
material for WebSphere Business Integration Message Broker V5.0. This book
covers many of the significant updates and new features that have been
introduced in WebSphere Message Broker V6.0.

This book starts with instructions for installation, basic configuration, and
checking that the product is configured correctly.

Guidance is provided for developing basic message flows and message sets.
Message transformation is demonstrated using the main range of techniques
available in the Message Brokers Toolkit: ESQL, Java™, and mapping.

Common administration tasks are also described for WebSphere Message
Broker, including how to configure broker domains and how to deploy message
flow applications to the broker.

The sample message flows and message sets that are demonstrated in this book
are available for download from the Web.

This book includes details about where to look for diagnostic information in the
product and help with solving problems. This includes how to use the Flow
Debugger.

Assistance is provided on where to find more information about the product,
including product documentation updates and sample applications.

In addition, the application development chapter from the WebSphere Business
Integration Message Broker Basics book has been extended to three chapters to
include more details about how to perform message application development
using ESQL, Java, and mappings.

The team that wrote this redbook
This book was produced by a team of specialists from the home of Business
Integration and Messaging Middleware product development, IBM Hursley.

© Copyright IBM Corp. 2005. All rights reserved. xvii

From left, back row: Saida, Cerys
Front row: Hannah, Laura

Photograph by: James P Hodgson
WebSphere MQ & ESB Delivery - Test
IBM Hursley

Saida Davies is a Project Leader for the International Technical Support
Organization (ITSO) and has seventeen years of experience in IT. She has
published several IBM Redbooks™ on various business integration scenarios.
Saida has experience in the architecture and design of WebSphere MQ
solutions, extensive knowledge of IBM’s z/OS® operating system, and a detailed
working knowledge of both IBM and Independent Software Vendors’ operating
system software. In a customer-facing role as a Senior IT Specialist with IBM
Global Services, her role included the development of services for z/OS and

xviii WebSphere Message Broker Basics

WebSphere MQ within the z/OS and Windows® platform. This covered the
architecture, scope, design, project management, and implementation of the
software on stand-alone systems or on systems in a Parallel Sysplex®
environment. She has received Bravo Awards for her project contribution. She
has a degree in Computer Studies and her background includes z/OS systems
programming. Saida supports Women in Technology activities, and contributes
and participates in the their meetings.

Laura Cowen is a Technical Writer who has worked on the WebSphere MQ
family of products since joining the IBM Hursley Software Labs in 2002. Her
fields of expertise are usability, documentation, and Eclipse help systems. She
was involved in the development of the out-of-box experience of WebSphere
Message Broker and the Eclipse-based WebSphere MQ Explorer. She is
co-author of the redbook WebSphere Business Integration Message Broker
Basics.
Laura actively participates in the British and international human-computer
interaction (HCI) community and has several publications in the field, including a
conference paper about usability evaluation methodologies. For three years, she
has been Editor of Interfaces, the quarterly magazine of the HCI specialist group
in the British Computer Society. She is also involved in promoting the use of
Open Source Software and Linux® in desktop computing, and encouraging
teenage girls to consider careers in IT.
Prior to joining IBM, Laura was Lead Usability Researcher for an information
design consultancy. She holds a first class honours degree in Psychology and a
Masters in human-computer interaction from Lancaster University, UK.

Cerys Giddings is a Usability Practitioner for WebSphere Message Broker,
working on many of the usability enhancements for the product over the last two
versions. She has worked on the WebSphere MQ family of products since joining
IBM Hursley in 2000. A former Team Leader from the WebSphere MQ Test
organization, she has participated in producing the IBM Certified System
Administrator - WebSphere Business Integration Message Broker V5 certification
tests. Cerys is co-author of the WebSphere Business Integration Message
Broker Basics, WebSphere InterChange Server Migration Scenarios, and
WebSphere Message Broker V6 Migration redbooks. She has over 10 years of
experience in providing IT education and support, and holds a Masters from the
University of Wales, as well as the BCS Professional Examinations at Certificate
and Diploma levels.

Hannah Parker is a Software Engineer and has worked in IBM for three years
since graduating from the University of Exeter with a Bachelors of Science
degree in Cognitive Science. She joined the Hursley Development Laboratory
and has worked both as a technical information developer and a software tester
for many of the IBM products including WebSphere Application Server,
WebSphere Platform Messaging, WebSphere Message Brokers, WebSphere

 Preface xix

Voice Response, and WebSphere Voice Application Access. While working in a
technical environment, she has focused her interests on the end-user experience
and product consumability. As such, she has developed her expertise to be able
to explain complicated concepts in simple and comprehensible ways. Hannah
has co-authored a developerWorks® tutorial for the CCXML language.
In addition to her daily job responsibilities, Hannah is an active member of the
IBM Hursley community. In 2004 she co-led the Graduate Induction team,
running a week-long event to introduce and integrate new graduates to IBM
Hursley. Her enthusiasm for science, engineering, and IT enables her to actively
mentor girls in local schools through mentorplace scheme, and also be part of
the organizing team for the week-long Blue Fusion, Hursley’s contribution to
National Science Week.

The team would like to thank the following people for their support and
contributions to this project:

Darren Stuart, Application developer/consultant
IBM Global Services, IBM Business Consulting Services
IBM Australia

Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

xx WebSphere Message Broker Basics

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. 8IB IBM United Kingdom Ltd
12195
Research Triangle Park, Dept. HZ8 Building 662, NC

 Preface xxi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xxii WebSphere Message Broker Basics

Chapter 1. Introduction

This chapter provides an overview of the scope of this book and includes a brief
introduction to the contents of the book.

The following topics are discussed:

� The scope of the redbook
� Intended audience
� Overview of chapters
� What is not covered in this book
� Assumptions

1

© Copyright IBM Corp. 2005. All rights reserved. 1

1.1 The scope of this book
The aim of this book is to introduce new users to the concepts and basic
functionality of WebSphere Message Broker V6.0.

The following products are discussed:

� WebSphere Message Broker V6.0
� WebSphere Event Broker V6.0

WebSphere Event Broker contains a subset of the features that are available in
WebSphere Message Broker. Discussion in this redbook focusses on the
features that are available in WebSphere Message Broker and highlights only
when a feature is not available in WebSphere Event Broker (for example,
message sets).

This book provides basic information that is designed to enable users to be able
to install and configure the product, to develop and deploy simple applications,
and to complete common administration tasks, including how to configure
message broker domains.

This book provides step-by-step instructions on creating WebSphere Message
Broker components and developing a set of simple message flows and message
sets to demonstrate how to use the key capabilities in the product.

In addition to information about the basic functionality of WebSphere Message
Broker, this book gives details of where to look for diagnostic information in the
product and offers troubleshooting and problem determination advice.
Assistance is also provided on where to get help with solving problems, and
where to find more information about the product, including product
documentation updates and sample applications.

The sample message flows and message sets used for demonstration purposes
in this book can be downloaded from the Web. See Appendix B, “Code” on
page 319, for instructions on how to download these samples.

The Message Brokers Toolkit is available on Windows and Linux (x86 platform),
but this book focuses on Windows for simplicity. The instructions provided for
development of resources, administration, and problem determination for the
Message Brokers Toolkit also apply to Linux. The majority of the concepts and
other steps introduced in the book are also valid for other platforms, although
operating system differences apply to some areas, such as accessing the
system log and the locations of files.

2 WebSphere Message Broker Basics

1.1.1 Intended audience
This book is targeted at new users, providing information to enable users to start
using WebSphere Message Broker V6.0 as quickly as possible. It describes the
most direct way to install the product, provides information for developing
applications, and offers basic information for administering and problem solving.

Although this book is aimed at new users, it is also helpful for users of any
previous versions of WebSphere Message Broker who are not familiar with the
Message Brokers Toolkit.

Instructions are provided in this book for some features that are new to this
version of the product, such as message mapping, runtime versionning, and the
JavaCompute node. These will provide a useful introduction to these new
features for experienced users. For descriptions of the all the major new features
for WebSphere Message Broker V6.0 refer to Migrating to WebSphere Message
Broker V6.0, SG247198.

1.1.2 Overview of the topics covered
This section gives a short overview of the topics that are covered in each of the
chapters in this book.

� Chapter 2, “Product overview” on page 7

This chapter gives a high-level introduction to WebSphere Message Broker. It
describes the basic components of the product, and discusses some of the
product’s capabilities. This chapter also provides an overview of application
integration, including the role of WebSphere Message Broker in application
integration.

� Chapter 3, “Installation” on page 17

This chapter describes the software that is required to install both the Express
Installation and Advanced Installation of WebSphere Message Broker V6.0,
including the optional software. The function and relevance of the software is
explained. Instructions for installing WebSphere Message Broker,and
configuring and verifying the installation are provided, along with a discussion
of relevant security considerations and system requirement information.

� Chapter 4, “Developing applications with ESQL” on page 47

This chapter describes how to create message flow applications in which the
logic of the message flows is defined by using ESQL. The chapter provides
step-by-step instructions on how to create and deploy two message flow
applications: A simple message flow and a more complex message flow
application. The complex message flow application contains two message
flows that access and update a DB2® database table and create new
messages. All the resources and ESQL code that you need to create the

 Chapter 1. Introduction 3

http://www.redbooks.ibm.com/abstracts/sg247198.html
http://www.redbooks.ibm.com/abstracts/sg247198.html

message flow applications in this chapter are available to download from the
Internet.

� Chapter 5, “Developing applications with Java” on page 97

This chapter describes how to create message flow applications in which the
logic of the message flows is defined using Java. The chapter provides
step-by-step instructions to create and deploy two message flow applications:
A simple message flow and a more complex message flow application. The
complex message flow application contains two message flows that access
and update a DB2 database table and create new messages. All the
resources and Java code that you need to create the message flow
applications in this chapter are available for download from the Internet.

� Chapter 6, “Developing applications with mappings” on page 135

This chapter describes how to create message flow applications in which the
logic of the message flows is defined using the graphical mapping tools in the
Message Brokers Toolkit. The chapter provides step-by-step instructions to
create and deploy two message flow applications: A simple message flow
and a more complex message flow application. The complex message flow
application contains two message flows that access and update a DB2
database table, use an external message set and message mappings to
create a new message. All the resources that you need to create the
message flow applications in this chapter are available to download from the
Internet.

� Chapter 7, “Administration” on page 205

This chapter provides an overview of the administration of the runtime
environment for WebSphere Message Broker. Instructions are provided for
manually creating a simple broker domain and adding remote brokers.
Information is also provided on deploying message flow applications to the
broker and adding versioning information to the resources. The chapter also
introduces the concepts and use of publish/subscribe.

� Chapter 8, “Troubleshooting and problem determination” on page 241

This chapter provides assistance with determining the cause and resolution of
problems when using WebSphere Message Broker. These include locating
error information, using trace, and troubleshooting common problems.
Instructions are also provided for using the Flow Debugger to debug message
flows including debugging ESQL, Java, and mappings.

1.1.3 What is not covered
Information about migrating from previous versions of WebSphere Message
Broker is not discussed in this book. For detailed information about product
migration (including migrating from V2.1, V5.0, and V5.1) and information about

4 WebSphere Message Broker Basics

http://www.redbooks.ibm.com/abstracts/sg247198.html
http://www.redbooks.ibm.com/abstracts/sg247198.html

the new features in WebSphere Message Broker V6.0, refer to Migrating to
WebSphere Message Broker V6.0, SG247198.

As a basic introduction to WebSphere Message Broker, this book does not
contain advanced information about messaging architectures or about the
development and maintenance of production systems.

The code examples contained in this book are not designed to be high
performance code and, therefore, should be used in test and evaluation
environments only. The code examples used are to demonstrate the capability of
the product and how to perform basic tasks. They do not demonstrate best
practices with the product for production environments. When designing
message flow applications it is important to refer to the product documentation
for advice on selecting the most appropriate nodes for the task, and for advice on
coding for best practices, standards, and for best performance.

Platform-specific information is restricted to Windows, although much of the
information can be applied to other platforms.

1.1.4 Assumptions
This book makes a number of assumptions in order to simplify the information
here and make it useful to as many customers as possible.

The following assumptions are made:

� Customers have administrator privileges for the system on which WebSphere
Message Broker is installed.

� Customers are familiar with the Microsoft® Windows operating system.

� Customers have access to the Internet.

This book assumes that the user is working with WebSphere Message Broker
V6.0. It is recommended that, when made available, users apply the latest fix
packs. For information on the latest available fix pack and instructions on how to
install fix packs, refer to “Installing product fix packs” on page 43.

 Chapter 1. Introduction 5

http://www.redbooks.ibm.com/abstracts/sg247198.html

6 WebSphere Message Broker Basics

Chapter 2. Product overview

This chapter provides a high-level introduction to WebSphere Message Broker
describing its role in application integration. The main capabilities and
components of the product are described.

This chapter discusses the following topics:

� WebSphere Message Broker in application integration
� Versions of WebSphere Message Broker
� WebSphere Message Broker capabilities and components

2

© Copyright IBM Corp. 2005. All rights reserved. 7

2.1 Application integration
Application integration is a big challenge for enterprises, and IBM provides a
number of software solutions and offerings to assist companies with integrating
their applications. WebSphere Message Broker is an important part of the IBM
offerings, and the way in which WebSphere Message Broker benefits application
integration is described in the following sections.

2.1.1 Application integration and WebSphere Message Broker
Application integration, at a high level, refers to solutions that are implemented to
integrate software applications within and between organizations. Historically,
application integration has been concerned with the integration of legacy
software applications, such as between different departments and divisions
within companies, or new acquisitions. Within an organization, these applications
often vary considerably across departments, exist on different platforms, are
written in different programming languages, and use different data formats.
Integrating the applications is a more practical and cost effective solution than
the alternative of re-writing the existing applications.

WebSphere Message Broker is used in the implementation of an application
integration architecture because it provides a mechanism for connecting, routing,
and transforming business data from a variety of transports without any need to
change the underlying applications generating the data.

WebSphere Message Broker enhances the flow and distribution of information
by enabling the transformation and intelligent routing of messages without the
need to change either the applications that are generating the messages or the
applications that are consuming them. In WebSphere Message Broker,
connectivity is provided by applications that communicate by sending and
receiving messages.

WebSphere Message Broker also has the following key capabilities that make it
a valuable solution for business integration:

� Distributes any type of information across and between multiple diverse
systems and applications, providing delivery of the correct information in the
correct format and at the correct time

� Reduces the number of point-to-point interconnections and simplifies
application programming by removing integration logic from the applications

� Routes information in real time based on topic and content to any endpoint
using a powerful publish/subscribe messaging engine

8 WebSphere Message Broker Basics

� Validates and transforms messages in-flight between any combination of
different message formats, including Web Services, and other XML and
non-XML formats

� Routes messages based on (evaluated) business rules to match information
content and business processes

� Improves business agility by dynamically reconfiguring information
distribution patterns without reprogramming end-point applications

� Access control to securely deliver personalized information to the right place
at the right time

2.2 WebSphere Message Broker
WebSphere Message Broker is a powerful information broker that allows both
business data and information, in the form of messages, to flow between
disparate applications and across multiple hardware and software platforms.
Business rules can be applied to the data that is flowing through the message
broker in order to route, store, retrieve, and transform the information.

2.2.1 Editions of WebSphere Message Broker
There are three editions of the WebSphere Message Broker product as
described in the sections below.

WebSphere Event Broker
WebSphere Event Broker is used for the distribution and routing of messages
from disparate applications. It can distribute information and data, which is
generated by business events in real time, to people, applications, and devices
throughout an enterprise. WebSphere Event Broker has support for multiple
transport protocols and extends the flow of information in an organization beyond
point to point, utilizing flexible distribution mechanisms such as publish/subscribe
and multicast.

WebSphere Message Broker
WebSphere Message Broker contains all the functionality of WebSphere Event
Broker and extends it to include additional capabilities to enable storage,
transformation, and enrichment of data flowing through the broker. Detailed
capabilities of the product are described in the following sections and are based
upon the functional capabilities of the WebSphere Message Broker specifically.

 Chapter 2. Product overview 9

Rules and Formatter Extension
WebSphere Message Broker with Rules and Formatter Extension includes the
Rules and Formatter Extension from New Era Of Networks which provides Rules
and Formatter nodes and associated runtime elements. These support the
functionality supplied with earlier releases of WebSphere MQ Integrator. The
functionality provided by the Rules and Formatter Extension is not discussed any
further in this book.

2.2.2 Capabilities of WebSphere Message Broker
The primary capabilities of WebSphere Message Broker are message routing,
message transformation, message enrichment, and publish/subscribe. Together
these capabilities make WebSphere Message Broker a powerful tool for
business integration.

Message routing
WebSphere Message Broker provides connectivity for both standards based and
non-standards based applications and services. The routing can be simple
point-to-point routing or it can be based on matching the content of the message
to business rules defined to the broker.

WebSphere Message Broker contains a choice of transports that enable secure
business to be conducted at any time and any place, providing powerful
integration using mobile, telemetry, and Internet technologies. WebSphere
Message Broker is built upon WebSphere MQ and therefore supports the same
transports. However, it also extends the capabilities of WebSphere MQ by
adding support for other protocols, including real-time Internet, intranet, and
multicast endpoints.

WebSphere Message Broker supports the following transports:

� WebSphere MQ Enterprise Transport
� WebSphere MQ Web Services Transport
� WebSphere MQ Real-time Transport
� WebSphere MQ Multicast Transport
� WebSphere MQ Mobile Transport
� WebSphere MQ Telemetry Transport
� WebSphere Broker JMS Transport

In addition to the supplied transports, the facility exists for users to write their own
input nodes to accept messages from other transports and formats as defined by
the user.

10 WebSphere Message Broker Basics

Message transformation and enrichment
Transformation and enrichment of in-flight messages is an important capability of
WebSphere Message Broker, and allows for business integration without the
need for any additional logic in the applications themselves.

Messages can be transformed between applications to use different formats, for
example, transforming from a custom format in a legacy system to XML
messages that can be used with a Web service. This provides a powerful
mechanism to unify organizations because business information can now be
distributed to applications that handle completely different message formats
without a need to reprogram or add to the applications themselves.

Messages can also be transformed and enriched by integration with multiple
sources of data such as databases, applications, and files. This allows for any
type of data manipulation including logging, updating, and merging. For the
messages that flow through the broker, business information can be stored in
databases or can be extracted from databases and files and added to the
message for processing in the target applications.

Complex manipulation of message data can be performed using the facilities
provided in the Message Brokers Toolkit, such as ESQL and Java.

In WebSphere Message Broker, message transformation and enrichment is
dependant upon a broker understanding the structure and content of the
incoming message. Self-defining messages, such as XML messages, contain
information about their own structure and format. However, before other
messages, such as custom format messages, can be transformed or enhanced,
a message definition of their structure must exist. The Message Brokers Toolkit
contains facilities for defining messages to the message broker. These facilities
are discussed in more detail below.

Publish/subscribe
The simplest way of routing messages is to use point-to-point messaging to send
messages directly from one application to another. Publish/subscribe provides
an alternative style of messaging in which messages are sent to all applications
that have subscribed to a particular topic.

The broker handles the distribution of messages between publishing applications
and subscribing applications. As well as applications publishing on or subscribing
to many topics, more sophisticated filtering mechanisms can be applied.

An improved flow of information around the business is achieved through the use
of publish/subscribe and the related technology of multicast. These flexible
distribution mechanisms move away from hard-coded point-to-point links.

 Chapter 2. Product overview 11

2.2.3 Components of WebSphere Message Broker
WebSphere Message Broker is comprised of two principle parts, a development
environment for the creation of message flows, message sets, and other
message flow application resources; and a runtime environment, which contains
the components for running those message flow applications that are created in
the development environment.

Development environment
The development environment is where the message flow applications that
provide the logic to the broker are developed. The broker uses the logic in the
message flow applications to process messages from business applications at
run time. In the Message Brokers Toolkit, you can develop both message flows
and message sets for message flow applications.

Message flows
Message flows are programs that provide the logic that the broker uses to
process messages from business applications. Message flows are created by
connecting nodes together, with each node providing some basic logic. A
selection of built-in nodes is provided with WebSphere Message Broker for
performing particular tasks. These tasks can be combined to perform complex
manipulations and transformations of messages.

A choice of methods is available for defining the logic in the message flows to
transform data. Depending on the different types of data or the skills of the
message flow application developer, the following options are available:

� Extended Structured Query Language (ESQL)
� Java
� eXtensible Style sheet Language for Transformations (XSLT)
� Drag-and-drop mappings

The nodes in the message flows define the source and the target transports of
the message, any transformations and manipulations based on the business
data, and any interactions with other systems such as databases and files.

For an example message flow, see the simple ESQL message flow shown in
Figure 4-5 on page 55.

Message sets
A message set is a definition of the structure of the messages that are processed
by the message flows in the broker. As mentioned previously, in order for a
message flow to be able to manipulate or transform a message, the broker must
know the structure of the message. The definition of a message can be used to

12 WebSphere Message Broker Basics

verify message structure, and to assist with the construction of message flows
and mappings in the Message Brokers Toolkit.

Message sets are compiled for deployment to a broker as a message dictionary,
which provides a reference for the message flows to verify the structure of
messages as they flow through the broker.

Broker Application Development perspective
The Broker Application Development perspective is the part of the Message
Brokers Toolkit that is used to design and develop message flows and message
sets. It contains editors that create message flows, create transformation code
such as ESQL, and define messages.

Runtime environment
The runtime environment is the set of components that are required to deploy
and run message flow applications in the broker.

Broker
The broker is a set of application processes that host and run message flows.
When a message arrives at the broker from a business application, the broker
processes the message before passing it on to one or more other business
applications. The broker routes, transforms, and manipulates messages
according to the logic that is defined in their message flow applications.

A broker uses WebSphere MQ as the transport mechanism both to communicate
with the Configuration Manager, from which it receives configuration information,
and to communicate with any other brokers to which it is associated.

Each broker has a database in which it stores the information that it needs to
process messages at run time.

Execution groups
Execution groups enable message flows within the broker to be grouped
together. Each broker contains a default execution group. Additional execution
groups can be created as long as they are given unique names within the broker.

Each execution group is a separate operating system process and, therefore, the
contents of an execution group remain separate from the contents of other
execution groups within the same broker. This can be useful for isolating pieces
of information for security because the message flows execute in separate
address spaces or as unique processes.

Message flow applications are deployed to a specific execution group. To
enhance performance, the same message flows and message sets can be
running in different execution groups.

 Chapter 2. Product overview 13

Configuration Manager
The Configuration Manager is the interface between the Message Brokers
Toolkit and the brokers in the broker domain. The Configuration Manager stores
configuration details for the broker domain in an internal repository, providing a
central store for resources in the broker domain.

The Configuration Manager is responsible for deploying message flow
applications to the brokers. The Configuration Manager also reports back on the
progress of the deployment and on the status of the broker. When the Message
Brokers Toolkit connects to the Configuration Manager, the status of the brokers
in the domain is derived from the configuration information stored in the
Configuration Manager’s internal repository.

Broker domain
Brokers are grouped together in broker domains. The brokers in a single broker
domain share a common configuration that is defined in the Configuration
Manager. A broker domain contains one or more brokers and a single
Configuration Manager. It can also contain a User Name Server. The
components in a broker domain can exist on multiple machines and operating
systems, and are connected together with WebSphere MQ channels.

A broker belongs to only one broker domain.

For information about creating a broker domain, and administration tasks that
can be performed over the domain, see Chapter 7, “Administration” on page 205.

User Name Server
A User Name Server is an optional component that is required only when
publish/subscribe message flow applications are running, and where extra
security is required for applications to be able to publish or subscribe to topics.
The User Name Server provides authentication for topic-level security for users
and groups that are performing publish/subscribe operations.

Broker Administration perspective
The Broker Administration perspective is the part of the Message Brokers Toolkit
that is used for the administration of any broker domains that are defined to the
Message Brokers Toolkit. This perspective is also used for the deployment of
message flows and message sets to brokers in the defined broker domains.

The Broker Administration perspective also contains tools for creating message
broker archive (bar) files. Bar files are used to deploy message flow application
resources such as message flows and message sets.

14 WebSphere Message Broker Basics

The Broker Administration perspective also contains tools to help test message
flows. These tools include Enqueue and Dequeue for putting and getting
messages from WebSphere MQ queues.

 Chapter 2. Product overview 15

16 WebSphere Message Broker Basics

Chapter 3. Installation

This chapter details the software and system considerations for installing
WebSphere Message Broker. Instructions for performing an Express Installation
of the product and verifying the installation are provided.

The following tasks are discussed:

� Planning for installation
� Security issues
� Installing the required software
� Post installation tasks
� Verifying installation
� Installing product fix packs

3

© Copyright IBM Corp. 2005. All rights reserved. 17

3.1 Planning for installation
This section provides information about the required and optional software for
installing WebSphere Message Broker V6.0 on Windows. The system
requirements for these products, such as disk space and system memory, are
also discussed.

For information about installing on other operating systems, operating system
patches, and Java runtime environments, refer to the installation guide supplied
in the product package or in the WebSphere Message Broker V6.0 product
documentation: Installing → Installation Guide. See “Useful links” on page 317
for a link to the product documentation online.

3.1.1 Required software
The information provided in this section assumes that you want to perform a full
WebSphere Message Broker installation on a Windows computer, including all
the runtime components and the Message Brokers Toolkit. In order to perform a
full installation of WebSphere Message Broker you must install all the required
software, as listed in this section. All the required software listed in this section is
automatically installed as a part of the Express Installation (see “Express
Installation” on page 26 for more information).

It is possible to install only parts of WebSphere Message Broker on a machine,
for example, installing just the broker component for the run time, in which case
not all of the software mentioned in this section is needed.

For the latest information about supported versions of the required software,
refer to the latest WebSphere Message Broker V6.0 readme file (see “Useful
links” on page 317).

WebSphere MQ
WebSphere MQ provides the mechanism of communication between the
Configuration Manager, the brokers, and the business applications, and must be
installed on a machine on which any of the WebSphere Message Broker runtime
components is installed. A separate WebSphere MQ queue manager is required
for each broker that is created on a system. The Configuration Manager and
User Name Server also require queue managers.

The Message Brokers Toolkit can communicate with the Configuration Manager
without WebSphere MQ being installed, but you cannot create a broker domain
or the Default Configuration on a machine without WebSphere MQ.

18 WebSphere Message Broker Basics

WebSphere MQ V6.0 is supplied in the WebSphere Message Broker V6.0
package but WebSphere MQ Version 5.3 Fix Pack 1 and later is also supported.

WebSphere MQ Explorer
WebSphere MQ Explorer it is a graphical administration tool for creating,
modifying, and deleting WebSphere MQ resources and for monitoring the
WebSphere MQ network. WebSphere MQ Explorer is an optional component of
WebSphere MQ, although it is installed by default when you run the Typical
installation of WebSphere MQ.

WebSphere MQ Explorer is available on Windows and Linux (x86 platform) only,
which are the same operating systems on which the Message Brokers Toolkit is
available.

WebSphere Eclipse Platform
The WebSphere Eclipse Platform V3.0.1 is a prerequisite software product for
WebSphere MQ Explorer. If you are installing WebSphere MQ manually, install
WebSphere Eclipse Platform before installing WebSphere MQ.

ODBC Drivers for Cloudscape
The Configuration Manager uses an embedded Derby database for its internal
configuration repository. On Windows the Open Database Connectivity (ODBC)
Drivers for Cloudscape™ enable this embedded Derby database to be used as a
broker database.

This configuration is supported for test and evaluation purposes only. Only the
embedded Derby database associated with the Configuration Manager can be
used with WebSphere Message Broker. For production environments, an
alternative supported broker database must be used.

WebSphere Message Broker run time
The WebSphere Message Broker run time is the product code that enables the
creation of resources that exist at run time, including the Configuration Manager,
brokers, and User Name Server. It also includes the message transformation
services for WebSphere Message Broker, which are not available in the
WebSphere Event Broker run time.

Message Brokers Toolkit
The Message Brokers Toolkit is a graphical user interface built on the Rational®
Application Developer platform. The Message Brokers Toolkit is used for
development and administrative purposes.

 Chapter 3. Installation 19

WebSphere Message Broker developers use the Message Brokers Toolkit to
create message flow applications to process business logic. These development
resources are then deployed to the runtime components in the broker domain
using the Message Brokers Toolkit. The Message Brokers Toolkit is also used to
administer the runtime components and manage the configuration of broker
domains.

The Message Brokers Toolkit can be installed without the runtime component,
for development of message flow applications and the administration of remote
broker domains.

The Message Brokers Toolkit is available on Windows and Linux (x86 platform).
No prerequisite products are required for the Message Brokers Toolkit. If other
products that use the Rational Application Developer platform are installed on a
machine, the Message Brokers Toolkit uses the same installation of Rational
Application Developer, as long as it is a compatible version. Refer to the
production documentation and latest readme for information about the Rational
Application Developer level and updates.

3.1.2 Optional software
In addition to the required software, several optional products can be installed.
These products are described in this section.

Rational Agent Controller
Rational Agent Controller (RAC) Version 6.0.0.1 is used by the Message Brokers
Toolkit during message flow debugging. If you want to use the Flow Debugger,
you must install Rational Agent Controller on every machine on which a broker is
running and where debugging might be required.

When you install Rational Agent Controller on the machine on which a broker is
installed, you are installing a server that communicates with the Rational Agent
Controller client that is embedded in the Message Brokers Toolkit.

Because the base level of Rational Application Developer changes over the life
cycle of the product, the level of Rational Agent Controller required to work with
WebSphere Message Broker is likely to change. Refer to the production
documentation and the latest readme for information about the Rational Agent
Controller level and updates.

DB2 Universal Database Enterprise Server
DB2 Universal Database is supported as a repository for broker configuration
data. DB2 Universal Database Enterprise Server Version 8.2 is supplied in the

20 WebSphere Message Broker Basics

WebSphere Message Broker V6.0 package. Other DB2 Universal Database
V8.2 editions are also supported in production environments.

On Windows, it is not necessary to install DB2 Universal Database in a
WebSphere Message Broker test or evaluation environment because the
embedded Derby database used by the Configuration Manager can be used
instead. However, DB2 Universal Database or another supported database must
be used for a production environment.

When installing DB2 Universal Database Enterprise Server, three options are
available: Compact installation, Typical installation, and Custom installation. The
Compact installation is adequate for all the functionality that is required by
WebSphere Message Broker V6.0. However, the installation instructions in this
chapter describe the Typical installation because the Typical installation includes
the graphical administration tools, such as the Control Center, which is used in
Chapters 4–6.

Other supported databases
Oracle, Sybase Adaptive Server Enterprise (ASE), and Microsoft SQL Server are
all supported as broker databases in a production environment for WebSphere
Message Broker V6.0. These products are not supplied with WebSphere
Message Broker, so you must obtain your own copy if you want to use any of
these for the broker database.

Any of these supported databases can also be used to contain user data that can
be accessed at run time by message flows.

For information on supported levels of these databases, refer to the WebSphere
Message Broker Installation Guide and system requirements documentation.

3.1.3 Software requirements
This section contains information on the software requirements for WebSphere
Message Broker V6.0.

Disk space
Before installing WebSphere Message Broker, consider the amount of disk
space that is required. This includes not only the amount of disk space that
WebSphere Message Broker takes up after installation, but also space for

Important: To work with the exercises contained in Chapter 4, “Developing
applications with ESQL” on page 47; Chapter 5, “Developing applications with
Java” on page 97; and Chapter 6, “Developing applications with mappings” on
page 135, you must have DB2 Universal Database installed on your system.

 Chapter 3. Installation 21

http://www-306.ibm.com/software/integration/wbimessagebroker/requirements/

temporary files during the installation, space for the installation of required
software, and space for post-installation configuration and development.

Disk space for WebSphere Message Broker
The amount of disk space that is required depends on the components that are
to be installed and the working space that is required by those components.

The total space required for the installed product is likely to increase by the order
of tens to hundreds of megabytes as resources are developed, logs are
generated, and fix packs are applied. This increase in space requirement over
time should be considered, but there are mechanisms to control the space
requirements, such as cleaning up logs and archiving resources. When planning
an installation of WebSphere Message Broker, ensure that you take these disk
space requirements into account.

One of the main sources of additional space usage is the application of fix packs
when the Message Brokers Toolkit is installed. The reason for this is that new
levels of plug-ins for the Message Brokers Toolkit might be installed with a fix
pack so several levels of the same plug-in might be present on a machine to
enable compatibility with other products and updates in the Rational Application
Developer environment.

Some additional space might be required for temporary files during the
installation. Any temporary files are deleted when the installation is complete.

During installation, the wizard displays the actual requirements for the
components that are being installed. Table 3-1 shows typical figures for
components that are installed on Windows and Linux.

Table 3-1 Disk space that is required for components installed on Windows and Linux

Important: If disk space runs low during the Message Brokers Toolkit
installation, problems can sometimes occur. The symptom of this with
WebSphere Message Broker is missing parts of the Message Brokers Toolkit
that are specific to WebSphere Message Broker, such as message sets and
transformation nodes. If this symptom occurs, uninstall the Message Brokers
Toolkit and clear extra space on the hard drive before reinstalling.

Component Space required on
Windows

Space required on Linux

Broker, Configuration
Manager, and User Name
Server

315 MB plus 300 MB
temporary space

280 MB plus 300 MB
temporary space

22 WebSphere Message Broker Basics

Installing only one or two of the runtime components does not significantly
reduce the storage requirements over installing the entire WebSphere Message
Broker run time.

Disk space for WebSphere MQ
An installation of WebSphere MQ, excluding WebSphere MQ Explorer, can take
up to 25.2 MB of disk space. This figure can increase depending on the
WebSphere MQ components that are created.

WebSphere MQ Explorer can require up to 40.5 MB of disk space.

Disk space for WebSphere Eclipse Platform
An installation of WebSphere Eclipse Platform requires approximately 1.5 GB for
code and data.

Database disk space
The database products that are supplied with WebSphere Message Broker V6.0
require the following additional disk space:

� DB2 Universal Database Enterprise Server requires approximately 300 MB of
disk space for a compact installation. A typical installation requires
approximately 350-560 MB of disk space, and a custom installation requires
approximately 260-600 MB of disk space.

� ODBC drivers for Cloudscape require approximately 105 MB of disk space on
Windows.

If an additional database is installed on the system (for example, one of the other
supported databases), significantly more disk space is required.

In addition to the installation disk space for databases, extra disk storage is
needed for the configuration and running of databases for the broker repository
and user databases. For the broker, the minimum disk space that is required for
each database is 10 MB.

Transformation Services
(optional broker extension)

25 MB 20 MB

WebSphere Message
Broker Toolkit

4.2 GB plus 1.5 GB
temporary space

4.2 GB plus 1.5 GB
temporary space

Component Space required on
Windows

Space required on Linux

 Chapter 3. Installation 23

System memory
The minimum amount of system memory that is required for the WebSphere
Message Broker V6.0 run time is 512 MB of RAM.

For running the Message Brokers Toolkit, a minimum of 512 MB of RAM is
required on both Windows and Linux (x86 platform). For improved performance
of the Message Brokers Toolkit, provide a minimum of 1 GB of RAM.

The system memory for the prerequisite software must also be considered. For
production environments in particular, the provision of extra memory will help to
improve performance of the WebSphere Message Broker components and the
Message Brokers Toolkit.

3.2 Security issues
Security requirements must be considered before installing WebSphere
Message Broker. Different forms of security control are available to cover
different aspects of the product use. This section briefly discusses some of these
aspects for Windows. For more detailed information, and information for other
platforms, refer to the security information in the product documentation:
Security → Planning for security.

3.2.1 User ID
There are a number of aspects to consider when deciding on a suitable user ID
under which WebSphere Message Broker V6.0 is to be installed:

1. The permitted number of characters for the user ID varies according to
operating system:

– On Windows, the maximum password length is 12 characters.
– On Linux and UNIX®, the maximum password length is 8 characters.

Databases in the WebSphere Message Broker configuration might also
contain additional restrictions, for example, DB2 Universal Database.

2. The case of the user ID should be consistent; use all lowercase or all
uppercase letters.

3. On Windows, the Administrator user ID must not be used. Any attempt to use
the Administrator user ID with the WebSphere Message Broker run time
produces authorization errors.

4. On Windows, the user ID must be a member of the Administrators security
group.

24 WebSphere Message Broker Basics

It is recommended that user ID and password combinations are valid on all of the
operating systems that are involved in your WebSphere Message Broker
configuration.

3.2.2 Other security issues
Security must be considered for the machines on which WebSphere Message
Broker is installed and used. This section briefly discusses some of the other
security issues for WebSphere Message Broker. For further information about
users and privileges, refer to the WebSphere Message Broker documentation on
security.

Database security
In a test environment, the same user ID and password combination can be used
to access the database and to create WebSphere Message Broker components.
This leads to simplicity in a test environment and in situations where a single
user may be administering the database as well as the WebSphere Message
Broker environment. As an example, the Default Configuration wizard, which
sets up a basic broker domain environment for test and evaluation purposes,
uses the user ID and password of the current user to create components and
access the database for the broker.

In a more complex environment or a production environment, the security access
for a database is important, particularly for access to databases storing business
data. In these environments it is typical for a database administrator to determine
permissions for the database. Often different user IDs are used for different tasks
and have associated levels of access. Sufficient access is required to create and
alter database entries for the broker database, and to perform operations in a
user database if the message flow applications are required to do this.

For improved database security, ensure that any passwords are changed if the
default user ID for the database product is used. For example, when using DB2,
leaving the db2admin password as db2admin presents a potential security risk.

WebSphere MQ security
WebSphere Message Broker users must be members of the mqm WebSphere
MQ security group. This security group enables the user to create WebSphere
MQ components and to access queues and other WebSphere MQ resources
needed to enable communication of the WebSphere Message Broker
components.

SSL can be used to secure the connection between the Message Brokers Toolkit
and Configuration Manager, as well as the channels connecting remote brokers.

 Chapter 3. Installation 25

3.3 Installing the required software
The information that is contained in this section assumes that the Launchpad on
Windows is being used to install the required software. For instructions on the
alternative methods of installing WebSphere Message Broker V6.0, refer to the
Installation Guide.

3.3.1 The Launchpad
When you insert the product media (DVD or CD), the Launchpad starts
automatically if autorun is enabled. If the Launchpad does not start automatically,
or if you are using a downloaded copy of the product, double-click the
mqsilaunchpad.exe file. This file is usually located in the root directory.

The Launchpad contains links to the following information:

� The Installation Guide, which contains a link to the most recent version of the
Installation Guide that is available on the Internet

� The product readme file, which contains last minute, undocumented changes
to the product, and a link to the most recent version of the readme file
available on the Internet

� The Quick Tour, which is a graphical overview of the product

The Launchpad offers two types of installation:

� Express Installation
� Advanced Installation

Express Installation
Use the Express Installation if you want a full installation of WebSphere Message
Broker V6.0 including all required prerequisite software. The Express Installation
requires minimal input. During installation, default values are used for the
prerequisite software to make the installation as simple and as fast as possible.
Refer to “Installing with the Express Installation” on page 28 for instructions on
how to complete an Express Installation.

The Express Installation installs all of the software that is required for a minimum
installation of WebSphere Message Broker:

� WebSphere Eclipse Platform V3.0.1
� WebSphere MQ V6.0
� ODBC Drivers for Cloudscape
� WebSphere Message Broker V6.0
� WebSphere Message Brokers Toolkit V6.0

26 WebSphere Message Broker Basics

The Launchpad detects whether any of the required software has already been
installed on your system. If none of the required software exists on your system,
the state for each product is shown as Pending and all check boxes are selected.
If you clear any of the check boxes, the state of the corresponding software
changes to Required.

If any of the products that have the state Required are not installed, you cannot
complete the default configuration that is described later in this chapter.

It is possible that some of the software already exists on your system, but that
the state of the software is shown as Incorrect level. In this situation, refer to
the product documentation of the software for information about how to obtain
the correct level. In this situation, you can use the Express Installation to install
all of other required products, and then, if necessary, use the Advanced
Installation to install the software that is at the wrong level.

To see more information about each of the required products, click the icon next
to the product name. This expands the details about the selected product.

Advanced Installation
The Advanced Installation section of the Launchpad enables each required and
optional software product to be installed manually. This is useful if you want to
select the install location or install specific components for any of the products. It
is also useful for resolving difficulties if required software installed on a system is
at an unsupported level.

Advanced Installation allows you to install the software that is required for a
minimum installation of WebSphere Message Broker V6.0, and also some
optional products. The following products can be installed with the Advanced
Installation:

Required products:

� WebSphere Eclipse Platform V3.0.1
� WebSphere MQ V6.0
� ODBC Drivers for Cloudscape
� WebSphere Message Broker V6.0
� WebSphere Message Brokers Toolkit V6.0

Optional products:

� Rational Agent Controller
� DB2 Universal Database Enterprise Server Edition V8.2
� Oracle
� Sybase
� Microsoft SQL Server 2000

 Chapter 3. Installation 27

The Launchpad detects whether any of the required software already exists on
your system. If none of the required software has been installed on your system,
the state for each product is shown as Required.

The Launchpad also displays the state of the optional products, initially shown as
Not Installed. To install one of the optional products, click the associated plus
icon. This brings up details about the product and, for Rational Agent Controller
and DB2 Universal Database, provides the option to start installing the product.

Although the Advanced Installation displays Oracle, Sybase, and Microsoft SQL
Server, these three products cannot be installed through the Launchpad. They
are not included with the WebSphere Message Broker V6.0 package, and need
to be installed manually if they have been purchased separately.

The Advanced Installation is useful if you want to install only one of the required
components. For example, if you have a machine on which you want to create a
remote broker, you will need only the WebSphere Message Broker runtime
components, and not the Message Brokers Toolkit.

3.3.2 Installing with the Express Installation
This section provides step-by-step instructions for installing WebSphere
Message Broker and the related required software using the Express Installation.
These instructions are basic because the Express Installation is designed to be
simple to use with minimal intervention.

Before you start, ensure that you have read the software requirements and
security issues that are discussed in this chapter.

To start the Express Installation:

1. In the Launchpad, navigate to the Express Installation page. Open the
Express Installation page by clicking the button in the top left corner.

2. Ensure that all check boxes are selected. If none of the software exists on
your system, the state for each product is pending.

3. Click Launch Express Installation for WebSphere Message Broker. This
starts the installation of the required software.

While the required software is being installed, a few panels are displayed to
prompt for some user input. Accept all the default values and click Next where
appropriate. Selecting the default values is the simplest option, but you can
choose custom values if, for example, you want to change the installation
location of the Message Brokers Toolkit to a different drive instead of the default
C drive.

28 WebSphere Message Broker Basics

Additional information
Here we provide some additional information:

1. When installing WebSphere Message Broker on some Windows machines,
the dialog shown in Figure 3-1 might be displayed. Click Open to start the
installer. This dialog might be displayed several times during the installation.

Figure 3-1 File download warning dialog

2. The progress of the installation can be tracked by referring to the product
states on the Express Installation page of the Launchpad. See Figure 3-2 on
page 30.

Tip: The Launchpad can change the state of a product from Pending to
Installed before the installer for that product has completely finished. Wait
for each installer to finish before attempting to use either the Launchpad or
the newly installed product.

 Chapter 3. Installation 29

Figure 3-2 The Launchpad during an Express Installation

If errors occur during installation, see “Locating error information” on page 242
for help information.

3.3.3 Installing with the Advanced Installation
This section provides brief step-by-step instructions for installing WebSphere
Message Broker and the related software using the Advanced Installation. With
the Advanced Installation the product installations are manual and require
intervention. Options need to be selected based upon your own configuration
requirements. If you prefer to have a simple configuration with minimal
intervention refer to the previous section for the Express installation.

Tip: There is a known problem with the Message Brokers Toolkit installation
where the Launchpad reverts to saying Pending part way through the
installation. The Launchpad must be reopened to check that the Message
Brokers Toolkit has been installed.

Do not click the Launchpad while an installation is taking place.

30 WebSphere Message Broker Basics

To install DB2 Universal Database for use with the examples provided in this
book, you will need to install DB2 Universal Database manually.

Before you start, ensure that you have read the software requirements and
security issues that are discussed earlier in this chapter.

To install the products using the Advanced Installation:

1. In the Launchpad, open the Advanced Installation page by clicking the button
in the top left corner.

2. Expand the product that you want to install. This brings up details about the
product and, for RAC and DB2, provides the option to start installing the
product.

3. Click the button to install the product.

Oracle, Sybase, and Microsoft SQL Server are not included with the WebSphere
Message Broker package; you must obtain your own copy before you can install
any of these products. Although there is an option to install these products
through the Launchpad, even if you have your own copy of these products, you
cannot use the Launchpad to install them.

Installing WebSphere Eclipse Platform
WebSphere Eclipse Platform is required to run WebSphere MQ Explorer, the
graphical administration tool for WebSphere MQ. If you want to use WebSphere
MQ Explorer, you must install WebSphere Eclipse Platform before you install
WebSphere MQ.

To install the WebSphere Eclipse Platform, follow the instructions for installing
with the Advanced Installation and accept the default options (the only required
user input is to specify a location for the installation).

Installing WebSphere MQ
WebSphere MQ V6.0 facilitates messaging between the Configuration Manager,
the brokers, and business applications.

Before you start, if you want to use WebSphere MQ Explorer, ensure that
WebSphere Eclipse Platform V3.0.1 is installed.

To install WebSphere MQ, follow the instructions for installing with the Advanced
Installation and, when prompted, enter your responses. By using this Advanced
Installation, you are able to complete an installation of WebSphere MQ that is
tailored to match your requirements.

If you manually install WebSphere MQ using the Advanced Installation you can
create the Default Configuration for WebSphere MQ. The WebSphere MQ

 Chapter 3. Installation 31

Default Configuration can be used to learn about WebSphere MQ and to verify
the WebSphere MQ installation. When the first part of the installation is
complete, the installer launches a new wizard to create the WebSphere MQ
Default Configuration. Follow the instructions in the wizard and select the
appropriate options for your network configuration.

For more information about WebSphere MQ, refer to the WebSphere MQ Quick
Beginnings book for Windows. Also see “Useful links” on page 317 for a link to
the WebSphere MQ documentation, including the Quick Beginnings books for all
platforms.

Installing Rational Agent Controller
Rational Agent Controller (RAC) is required for message flow debugging in the
Message Brokers Toolkit.

Before you start:

1. Ensure that any Eclipse-based products and tools on the machine are closed.

2. Ensure that you have installed all of the required software (see “Required
software” on page 18).

3. Ensure that an existing JRE is available on the system on which you are
installing Rational Agent Controller.

On Windows, the following JREs are supported:

– IA32 J2RE 1.4.1 IBM Windows 32 (build cn1411_20040301a)
– J2RE 1.4.2 IBM Windows 32
– Sun™ Java™ 2 Standard Edition (build 1.4.2_04b05)

You can use the JRE from either the Message Brokers Toolkit or WebSphere
MQ installations. The default location of the Message Brokers Toolkit JRE is
C:\Program Files\IBM\MessageBrokersToolkit\6.0\eclipse\jre\bin\java.exe, as
shown in Figure .

Figure 3-3 Location of the Message Brokers Toolkit java.exe file

32 WebSphere Message Broker Basics

To install Rational Agent Controller, follow the instructions for installing with the
Advanced Installation and, when prompted, select the following options:

� When specifying the location of the Java runtime file, browse to a directory
that contains the java.exe file. Ensure that you include the file name in the
location (see Figure on page 32).

� Select to Disable security if appropriate. This is suggested for test and
evaluation systems.

Installing DB2 Enterprise Server V8.2
DB2 Universal Database is a supported relational database manager for use with
the broker component of WebSphere Message Broker V6.0.

Before you start, ensure that you have stopped all WebSphere Message Broker
V6.0 components, such as brokers, the Configuration Manager, and the User
Name Server.

To install DB2 Universal Database, follow the instructions for Installing with the
Advanced Installation and, when prompted, select the following options:

� Typical installation is recommended to provide an installation that is suitable
for use with WebSphere Message Broker V6.0.

� Provide a user ID and password. This can be the same user account as the
user account under which WebSphere Message Broker V6.0 was installed. It
is recommended that the user ID is no more than 8 characters to prevent any
later problems relating to restrictions.

� On the “Specify a contact for health monitor notification” page, select Defer
the task until after installation is complete.

3.4 Post installation tasks
After a full installation of WebSphere Message Broker V6.0, ensure that the
following products are running using the instructions in this section:

� WebSphere MQ
� DB2 Universal Database

If Rational Agent Controller is installed, this must also be running in order to use
the message flow debugger.

Important: To complete the exercises in Chapters 4, 5, and 6 you must install
DB2 Universal Database.

 Chapter 3. Installation 33

3.4.1 WebSphere MQ service
To verify that the WebSphere MQ service is running, perform any of the following
tasks:

� Check the system tray icon to see whether WebSphere MQ is running.
Figure 3-4 shows the system tray icon for WebSphere MQ in the started state
(left icon) and the stopped state (right icon).

If WebSphere MQ is not running, right-click the system tray icon, then click
Start WebSphere MQ.

� Check the Services list for the IBM MQSeries® status. The status should be
Started. To open Services, click Start → Control Panel → Administrative
Tools → Services.

If WebSphere MQ is not running (no status is displayed, as shown in
Figure 3-6 on page 35) in the Services window, right-click IBM MQSeries
then click Start.

Figure 3-4 System tray icons shows started and stopped state of WebSphere MQ

3.4.2 DB2 Universal Database
To verify that DB2 Universal Database is running, perform any of the following
tasks:

� Check the system tray icon to see whether DB2 Universal Database is
running. Figure 3-5 on page 35 shows the system tray icon for DB2 Universal
Database in both the started state (left icon) and the stopped state (right
icon).

If DB2 Universal Database is not running, right-click the system tray icon,
then click Start (DB2).

� At a command prompt type db2start. If DB2 Universal Database is running,
the message The database manager is already active is displayed.

If DB2 Universal Database is not running, issuing the db2start command
starts DB2 Universal Database. Note that if the user ID and password that
you are logged on with does not have the appropriate authorities, the
message The DB2 service failed to log on is displayed.

� Check Services for the status of the DB2 - DB2-0 service, which should be
Started. To open Services, click Start → Control Panel → Administrative
Tools → Services.

34 WebSphere Message Broker Basics

If DB2 is not running (no status is displayed), in the Services window,
right-click DB2 - DB2-0 then click Start.

Figure 3-5 System tray icons showing the started and stopped states of DB2

3.4.3 Rational Agent Controller
To verify that Rational Agent Controller (RAC) is running, check the Services list
for the IBM Rational Agent Controller status, which should be Started. To open
Services, click Start → Control Panel → Administrative Tools → Services.

If RAC is not running (no status is displayed, as shown in Figure 3-6), in the
Services window, right-click IBM Rational Agent Controller, then click Start.

Figure 3-6 Part of Services window

3.5 Verifying the installation
This section describes how to verify that your installation of WebSphere
Message Broker V6.0 was successful. To assist in rapidly verifying the
installation two wizards are provided:

� Default Configuration wizard, for creating a simple broker domain.
� Prepare the Samples wizard, for setting up and deploying samples.

Use the instructions in the following sections to verify your WebSphere Message
Broker installation.

3.5.1 Creating the default configuration
In the Message Brokers Toolkit, message sets and message flows can be
developed without first creating any runtime components. However, you cannot
test or run these applications, or run any of the provided samples, until you have
configured the runtime components and created a broker domain.

 Chapter 3. Installation 35

The Default Configuration wizard creates the following components and
resources on the system to provide a simple broker domain that can be used for
test purposes:

� A Configuration Manager called
WBRK6_DEFAULT_CONFIGURATION_MANAGER

� A broker called WBRK6_DEFAULT_BROKER

� A queue manager called WBRK6_DEFAULT_QUEUE_MANAGER, shared
by the Configuration Manager and the broker

� A listener on the queue manager on port 2414

� A broker database called DEFBKDB6

Use the instructions in the following section to create a default configuration
using the Default Configuration wizard. For instructions on how to manually
create a simple broker domain see “Creating a broker domain” on page 206.

Running the Default Configuration wizard
Use the following instructions to create a default configuration:

1. Open the Message Brokers Toolkit. If the WebSphere Message Broker
Welcome screen is not displayed, click Help → Welcome.

2. Click the Getting Started icon shown in Figure 3-7. The Getting Started page
of the Welcome screen opens.

Figure 3-7 Getting Started icon on Message Brokers Toolkit Welcome page

Important: If you plan to complete the exercises in Chapter 4, “Developing
applications with ESQL” on page 47; Chapter 5, “Developing applications with
Java” on page 97; and Chapter 6, “Developing applications with mappings” on
page 135, ensure that you have installed DB2 Universal Database prior to
running the Default Configuration wizard. The Default Configuration wizard
uses a DB2 Universal Database for the broker database if it is available, or the
embedded Derby database if it is not. You might see problems if you use the
Default Configuration created with Derby and then install DB2 Universal
Database.

36 WebSphere Message Broker Basics

3. Click the Create the Default Configuration icon (Figure 3-8). The Create the
Default Configuration topic in the product documentation opens in the
Message Brokers Toolkit help system.

4. Click the Start the Default Configuration wizard link to start the wizard.

Figure 3-8 The Default Configuration wizard icon in the Message Brokers Toolkit

When the Default Configuration wizard has completed successfully, a simple
broker domain is configured on the system. The connection to the broker domain
is displayed in the Broker Administration perspective. This configuration can be
used for running samples supplied with WebSphere Message Broker and for
completing the examples provided in this book in Chapters 4, 5, and 6.

If any problems occur when running the Default Configuration wizard, refer to the
Problem Determination section, 8.4.1, “Default Configuration wizard problems”
on page 291.

Important: In the Default Configuration wizard, you are asked to enter your
password. Ensure that you enter the password carefully because the wizard
does not verify the password. Any mistakes made when entering the password
can lead to problems when creating the configuration, such as the broker
failing to be created or started.

 Chapter 3. Installation 37

3.5.2 Running the Getting Started samples
In the Message Brokers Toolkit a selection of samples is provided to
demonstrate different areas of functionality of the product and how to use them.
Included in the samples are the Getting Started samples, which are very basic
samples designed to verify that an installation of the product was successful. In
WebSphere Message Broker the Getting Started Samples are:

� Pager samples
� Scribble sample
� Soccer sample

The Pager samples are provided for you to use to verify your installation on
WebSphere Message Broker. The Soccer sample is the only sample supplied for

Tip: The Default Configuration wizard sets the broker and Configuration
Manager Windows services to automatic. This means that when the system
with the Default Configuration on it is restarted, the broker and Configuration
Manager are started automatically. Problems can occur, however, if the
components and software that they depend on are not started automatically,
and errors such as the broker not being able to connect to its database or
queue manager may be displayed in the Application log (see “Windows
Application log” on page 253).

To overcome this problem set the WebSphere MQ and DB2 Universal
Database (if applicable) services to automatic start using Services:

Start → Control Panel → Administrative Tools → Services → IBM MQ
Series → Properties

Start → Control Panel → Administrative Tools → Services → DB2 -
DB2-0 → Properties

Change the startup type to automatic.

Ensure that the WBRK6_DEFAULT_QUEUE_MANAGER is set to automatic:

1. Start → Programs → IBM WebSphere MQ → WebSphere MQ Explorer

2. Select WBRK6_DEFAULT_QUEUE_MANAGER, then right-click and
select Properties.

3. Ensure Startup on the General tab is Automatic.

Alternatively, set the Default broker and Configuration Manager to manual in
the Services dialog.

38 WebSphere Message Broker Basics

the WebSphere Event Broker and can be used to verify the WebSphere Event
Broker installation.

To access the Getting Started samples, on the Getting Started page of the
Welcome screen click the sample icon (Figure 3-9) to open the Message Brokers
Toolkit Samples Gallery.

Figure 3-9 Sample icon from the Getting Started page

Follow the instructions in the Samples Gallery to set up and run the sample. The
link provided to set up the sample launches the Prepare the Samples wizard.
The Prepare the Samples wizard creates the required resources for the sample,
such as WebSphere MQ queues, and deploys the sample to a specific execution
group on the broker in the Default Configuration.

The Samples Gallery displays the selection of others samples available for
WebSphere Message Broker and information about what they demonstrate and
how to use them.

3.6 Next steps
After WebSphere Message Broker has been successfully installed and
configured, you can begin to develop message flow applications and administer
the system. Chapters 4, 5, and 6 provide instructions for developing and testing
simple message flow applications:

� Chapter 4, “Developing applications with ESQL” on page 47
� Chapter 5, “Developing applications with Java” on page 97
� Chapter 6, “Developing applications with mappings” on page 135

Chapter 7, “Administration” on page 205, provides information about
administering and extending a broker domain.

Important: The samples can be imported and deployed using the Prepare the
Samples wizard only if the Default Configuration has been created. The
Default Configuration must have been created using the Default Configuration
wizard. You cannot deploy the samples using the Prepare the Samples wizard
if you have created the domain manually, even if you have used the same
component names.

 Chapter 3. Installation 39

3.6.1 Navigating the Message Brokers Toolkit
The Message Brokers Toolkit is the graphical user interface for the WebSphere
Message Broker V6.0 products that runs on Windows and Linux.

The Message Brokers Toolkit is the development environment for message flow
applications and associated resources such as ESQL, Java, mappings, and
message definitions. These message flow applications are deployed to the
runtime components using the Message Brokers Toolkit.

The Message Brokers Toolkit is also used for administrative tasks such as
configuring the properties and components in the broker domain, and
publish/subscribe. Some administrative tasks such as creating a broker or
stopping a Configuration Manager cannot be performed in the Message Brokers
Toolkit and must be performed using the Command Console.

Perspectives
The Message Brokers Toolkit comprises a collection of perspectives. A
perspective (the full workbench window) is a collection of views that can be
moved and re-sized. Figure 3-10 on page 41 shows the Broker Application
Development perspective of the Message Brokers Toolkit, which includes the
Resource Navigator view (upper left), the Outline view (lower left), the Editor
View (upper right, currently contains ESQL_Simple.msgflow), and the Problems
view (lower right).

40 WebSphere Message Broker Basics

Figure 3-10 Broker Application Development perspective

Changing perspectives
The first time that the Message Brokers Toolkit is opened, the Broker Application
Development perspective is displayed. To open a new perspective:

1. Click Window → Open Perspective → Other....

2. From the list, click the name of the perspective that is to be used, then click
OK.

When a new perspective opens, a button for the perspective is added to the
toolbar on the top right of the Message Brokers Toolkit window. Figure 3-11 on
page 42 shows the buttons for the Broker Application Development perspective
and the Broker Administration perspective. In the figure, the Broker Application
Development perspective is currently in use.

To change perspectives using the buttons:

� If you have previously opened the perspective, click the perspective button
associated with that perspective, for example, Broker Administration
perspective.

 Chapter 3. Installation 41

� If you have not previously opened the perspective, click the Open a
perspective icon (with a cross in the top right corner). Then click Other... to
bring up a list of available perspectives.

Figure 3-11 The perspectives buttons in the Message Brokers Toolkit

Table 3-2 shows which perspective is needed for each of the most common tasks
that are performed in the Message Brokers Toolkit.

Table 3-2 Perspectives to use for common tasks

Tip: To make the perspectives buttons smaller and easier to view:

1. Right-click the toolbar near the perspectives button.
2. Click Show Text.

This hides the text associated with the buttons, allowing more perspective
buttons to be displayed. The perspective buttons available depend upon the
perspectives you have recently opened.

Task Perspective

Developing message flows Broker Application Development
perspective

Developing message sets Broker Application Development
perspective

Deploying and testing message flow
applications

Broker Administration perspective

Debugging message flow applications Debug perspective

Managing broker domains Broker Administration perspective

Configuring publish/subscribe
applications

Broker Administration perspective

Connecting the Message Brokers Toolkit
to a database

Data perspective

42 WebSphere Message Broker Basics

Perspectives have a default layout that displays those tools most useful for the
tasks that are regularly performed in that perspective. Perspectives can be
customized to enable changes to the layout and content of each perspective.
You can also reset a perspective to its default layout at any time. For further
information on customizing the perspectives, see the WebSphere Message
Broker product documentation: Reference → Workbench → Perspectives.

3.7 Installing product fix packs
The instructions in this section describe how to install a fix pack on top of an
installed version of WebSphere Message Broker V6.0. When available, fix packs
can be downloaded from the Web and include additional function and fixes to
problems. These usually contain updates to both the WebSphere Message
Broker run time and the Message Brokers Toolkit. See the Useful links section in
Appendix A, “Getting help” on page 307.

3.7.1 Before you install a fix pack
Before installing a fix pack:

� Ensure that you are logged on with the same user ID that was used to install
WebSphere Message Broker V6.0.

� Ensure that all WebSphere Message Broker components are stopped,
including the Configuration Manager, the User Name Server (if applicable),
and all brokers on the system.

� Ensure that all WebSphere Message Broker files, such as the product
readme file, are closed.

� Close the Message Brokers Toolkit.

3.7.2 Installing a fix pack
To install a fix pack, follow the instructions that are provided with the fix pack,
and read the contents of the memo.ptf file and any readme files.

Developing a Java class for a
JavaCompute node or user-defined node

Java perspective

Task Perspective

 Chapter 3. Installation 43

3.8 Updates to the Message Brokers Toolkit
Many of the updates required to add new function or fix problems in the Message
Brokers Toolkit can be accessed in the same way as performing a documentation
update. Additionally, fix packs may be used as a method to update the toolkit.

Updates are available using these options in Software Updates on the Help
menu in the Message Brokers Toolkit:

� IBM Rational Product Updater
� Find and Install

To use the IBM Rational Product Updater use the instructions below:

1. On the Installed Products tab, select WebSphere Message Brokers Toolkit.

2. Select Find Updates. The IBM Rational Product Updater will search for
WebSphere Message Broker updates.

3. If you are prompted, you must upgrade to the latest level of the IBM Rational
Product Updater. Follow the on screen instructions to do this.

4. If fixes or updates are available (as shown in Figure 3-12 on page 45), then
close the Message Brokers Toolkit.

5. Click the Install Updates button in the IBM Rational Product Updater.

6. Select I agree to the terms in the license agreement and then click OK.
The selected features are then installed.

7. Restart the Message Brokers Toolkit.

Important: A connection to the Internet is required to install updates to the
Message Brokers Toolkit using the methods described in this section.

44 WebSphere Message Broker Basics

Figure 3-12 Installing Message Brokers Toolkit updates

To use the Find Updates method use the following instructions:

1. In the Message Brokers Toolkit, click Help → Software Updates → Find
and Install. The Install/Update wizard opens.

2. In the Install/Update wizard (shown in Figure Ê on page 44), select Search
for updates of the currently installed features, then click Next.

The wizard searches for update information from the configured update sites,
including the Message Brokers Toolkit Update Site.

3. Select available updates from those displayed in the wizard, then click Next.

4. Select I agree to the terms in the license agreement and then click Next.

5. Click Finish.

6. A warning message may be displayed; click Install to continue with the install
of the updates.

7. Restart the Message Brokers Toolkit.

 Chapter 3. Installation 45

Figure 3-13 Find and Install

Further information about performing Message Brokers Toolkit and
documentation updates can be found in “Receiving automatic updates” on
page 315 and “Receiving manual updates” on page 315.

Tip: Different updates may be seen between the IBM Rational Product
Updater and the Find and Install wizard. This can be caused by problems with
the Message Brokers Toolkit configuration. The Find and Install wizard
provides an Error Details button for viewing errors that have been found and
the IBM Rational Product Updater displays errors if they occur.

46 WebSphere Message Broker Basics

Chapter 4. Developing applications
with ESQL

This chapter describes how to develop message flow applications in the
Message Brokers Toolkit using ESQL to define the logic of the message flows.

The following topics are discussed:

� Defining the logic of a message flow using ESQL
� ESQL and the ESQL editor in the Message Brokers Toolkit
� Inserting data into a database using a message flow
� Transforming a message from one XML structure to another

4

© Copyright IBM Corp. 2005. All rights reserved. 47

4.1 Developing message flow applications with ESQL
A message flow application is a program that processes messages in the broker.
Message flow applications can transform messages between different formats,
generate new messages based on other messages, and route messages
according to the message’s content or according to how the message flow is
configured.

4.1.1 Messages in WebSphere Message Broker
When a message flow gets a message, the input node (for example, an MQInput
node) parses the message into the message’s logical tree structure. Part of this
tree structure is the message tree, which contains the message properties, the
message headers, and the message body.

The body of the message is a hierarchical tree of elements, or message fields.
The message flow can interpret the hierarchy of elements in the message body
only if the input node has been configured to use the correct parser. The
messages in this book are all in XML format, so the input node must be
configured to use the XML parser to interpret input messages. If the input node is
not correctly configured, the message body is treated as a binary large object
(BLOB). A BLOB is a single entity that cannot be navigated using Extended
Structured Query Language (ESQL) that has been written to process XML
messages.

For more information about the message tree and how it is populated by a
message flow, see the product documentation: Developing applications →
Developing message flow applications → The message tree.

4.1.2 The Message Flow editor
The graphical Message Flow editor in the Message Brokers Toolkit (Figure 4-1
on page 49) enables you to build message flows by clicking one of the supplied
message flow nodes on the node palette (on the left of the Message Flow editor)
and placing it on the canvas (the empty white area to the right of the node
palette). By combining different nodes, connecting them together, and
configuring their properties, you can quickly create a small program—a message
flow.

48 WebSphere Message Broker Basics

Figure 4-1 The Message Flow editor

Figure 4-2 Opening the node palette

The built-in nodes that are supplied with WebSphere Message Broker can
perform a certain amount of processing and logic by themselves; with the
graphical Message Flow editor, you can use them to create complete message
flows that perform limited processing of messages.

Tip: The first time that you open the Message Flow editor, the node palette is
hidden. To show the node palette permanently, while the palette is hidden,
click the small arrow at the top of the palette (Figure 4-2).

 Chapter 4. Developing applications with ESQL 49

However, to build useful message flows that suit the requirements of your
business, you need to customize the message flows using ESQL, Java, or the
graphical mapping tools in the Message Brokers Toolkit. The method you use
depends the requirements of the message flow (for example, a Mapping node
requires an external message definition, while ESQL is good for interacting with
databases), and on your skills and programming experience. This chapter
describes how to develop message flow applications in the Message Brokers
Toolkit using ESQL to define the logic of the message flows.

4.1.3 ESQL and the ESQL editor
ESQL is based on Structured Query Language (SQL), which is commonly used
to query relational databases like DB2 Universal Database. You can define the
logic of message flows using ESQL by inserting ESQL code into built-in nodes
that are supplied with WebSphere Message Broker, such as the Compute node,
Database node, and Filter node. The ESQL is stored in a separate file, which you
edit in the ESQL editor. The ESQL editor validates your ESQL and, while you are
editing, you can get assistance by pressing Ctrl+Spacebar (or selecting Content
Assist from the Edit menu) to open the code assist window, as shown in
Figure 4-3.

Figure 4-3 The ESQL editor with code assist

50 WebSphere Message Broker Basics

The message flow applications described in this chapter use ESQL in Compute
nodes and Database nodes. The processing done by these nodes can be
defined using ESQL to perform a range of tasks, including manipulating
messages, accessing and updating database tables, and creating new
messages. It is possible to reduce the amount and complexity of ESQL that you
code by adding other nodes from the node palette that specialize in performing
some tasks; for example, a Filter node specializes in routing messages
according to their content, a DataInsert node specializes in inserting data into
rows in database tables, and the RouteToLabel and Label nodes specialize in
dynamically routing messages based on their content.

The message flows in this chapter demonstrate how to use ESQL so only the
Compute and Database nodes are used.

4.1.4 Scenarios demonstrated in this chapter
This chapter focuses on how to define the logic of message flows with ESQL. We
provide step-by-step instructions to create, deploy, and test two message flow
applications:

� Simple message flow application

The Simple message flow application demonstrates how to build a very basic
message flow. The ESQL_Simple message flow takes an XML input
message from a WebSphere MQ queue, uses ESQL in a Compute node to
build an XML output message that has the same contents as the input
message, then puts the output message on another WebSphere MQ queue.

� Bookstore message flow application

The Bookstore message flow application is based around the scenario of an
online bookstore. The first message flow, ESQL_Create_Customer_Account,
uses ESQL in a Database node to create accounts in a DB2 database table
for new customers who have registered their details with the bookstore, for
example, their contact details and delivery address. The second message
flow, ESQL_Book_Order, uses ESQL in a Compute node to process an order
that has been submitted by an online customer and create a response
message to confirm the order with a unique order number.

You do not need skills or experience in coding ESQL to be able to create the
message flow applications in this chapter because all the code is available to
download from the Internet. For more information see Appendix B, “Code” on
page 319.

 Chapter 4. Developing applications with ESQL 51

4.1.5 Before you start
The instructions in this chapter assume that you have run the Default
Configuration wizard to create the default configuration. However, you can create
your own broker domain and substitute the component names when following the
instructions.

For more information about the Default Configuration wizard see 3.5, “Verifying
the installation” on page 35. For more information about administering
components see “Starting the components” on page 213.

Ensure that the broker and the Configuration Manager are running.

Starting the broker and the Configuration Manager
You cannot start components from the Message Brokers Toolkit; you must start
them from the command line. Enter all commands in a WebSphere Message
Broker Command Console, which is a command window with additional
WebSphere Message Broker Environment settings.

To start the Command Console click Start → Programs → IBM WebSphere
Message Brokers 6.0 → Command Console.

To start the broker, enter the following command in the Command Console,
where WBRK6_DEFAULT_BROKER is the name of the broker in the default
configuration:

mqsistart WBRK6_DEFAULT_BROKER

To start the Configuration Manager, enter the following command in the
Command Console, where WBRK6_DEFAULT_CONFIGURATION_MANAGER
is the name of the Configuration Manager in the default configuration:

mqsistart WBRK6_DEFAULT_CONFIGURATION_MANAGER

Open the Windows Event Viewer to check that the components have started
without any problems. See 8.1.5, “Windows Event Viewer” on page 253, for
information about how to access and view entries in the Windows Event Viewer.

4.2 Developing the Simple message flow application
Each message flow is stored in a message flow file with the extension .msgflow.
The message flow file is, in turn, stored in a Message Flow project, along with

52 WebSphere Message Broker Basics

any associated ESQL files (.esql). Projects are containers that store files while
you are working on them in the Message Brokers Toolkit.

When you have created the files that contain the message flow, add, connect,
and configure the message flow nodes in the Message Flow editor. Deploy the
message flow to the broker so that you can test it.

4.2.1 Creating the ESQL_Simple message flow
To create the files in which the message flow is stored:

1. Ensure that you are working in the Broker Application Development
perspective. If not, switch to the Broker Application Development perspective:
Click Window → Open Perspective... → Broker Application Development
perspective.

2. In the Broker Application Development perspective, create a Message Flow
project called ESQL_Simple Message Flow Project:

a. Click File → New → Message Flow Project.

b. In the Project Name field, type ESQL_Simple Message Flow Project, then
click Finish.

A new project called ESQL_Simple Message Flow Project is displayed in
the Resource Navigator view at the top-left of the Message Brokers Toolkit
window.

3. Create the ESQL_Simple message flow in the ESQL_Simple Message Flow
Project:

a. In the Resource Navigator view, click the ESQL_Simple Message Flow
Project to highlight it.

b. Click File → New → Message Flow. The New Message Flow wizard
opens.

c. Ensure that the value in the Project field is ESQL_Simple Message Flow
Project (Figure 4-4 on page 54).

 Chapter 4. Developing applications with ESQL 53

Figure 4-4 Creating the ESQL_Simple message flow

d. Leave the Schema field empty so that the message flow is created in the
default schema.

e. In the Name field, type ESQL_Simple, then click Finish.

In the Resource Navigator view, a file called ESQL_Simple.msgflow is now
displayed in the default schema of ESQL_Simple Message Flow Project. The
ESQL_Simple.msgflow file opens automatically in the Message Flow editor.

For more information about schemas, see the product documentation:
Developing applications → Developing message flow application →
Message flows overview → Broker schemas.

Adding and connecting the ESQL_Simple nodes
Figure 4-5 on page 55 shows how the ESQL_Simple message flow looks in the
Message Flow editor when you have added and renamed the nodes, and
connected them together.

54 WebSphere Message Broker Basics

Figure 4-5 The ESQL_Simple message flow

To build the ESQL_Simple message flow:

1. Make sure that the Selection button (at the top of the node palette) is
highlighted so that you can select nodes from the node palette.

2. Click the MQInput node to select it from the node palette, then click
somewhere on the canvas (the white area to the right of the node palette) to
start creating the message flow. The MQInput node is added to the canvas.

3. Add a Compute node and an MQOutput node to the message flow.

4. Rename each node as shown in Table 4-1 on page 56:

a. Right-click the MQInput node, then click Rename.... The Rename Node
dialog opens.

b. Type ESQL_SIMPLE_IN then click OK (Figure 4-6 on page 56). The node on
the canvas is renamed to ESQL_SIMPLE_IN.

ESQL_SIMPLE_IN is also the name of the queue from which the MQInput
node will get messages. Using the same name for both the queue and the
node makes it easier for you to keep track of what queue to put the input
message on when you are testing the message flow.

c. Rename the Compute node and the MQOutput node.

 Chapter 4. Developing applications with ESQL 55

Figure 4-6 Renaming the MQInput node in the ESQL_Simple message flow

Table 4-1 The ESQL_Simple message flow nodes

5. Define the order in which the nodes process an input message by connecting
them together as shown in Table 4-2 on page 57:

a. Right-click the ESQL_SIMPLE_IN node, then click Create Connection.
The Select Terminal dialog opens.

b. In the Select Terminal dialog, click Out, then click OK. An arrow from the
ESQL_SIMPLE_IN node follows the mouse pointer when you move the
mouse because you have not specified which node to connect to.

Node type Node name

MQInput ESQL_SIMPLE_IN

Compute Compute

MQOutput ESQL_SIMPLE_OUT

56 WebSphere Message Broker Basics

Figure 4-7 Selecting the Out terminal of the ESQL_SIMPLE_IN node

c. Click the Compute node. The arrow connects the ESQL_SIMPLE_IN node
to the Compute node.

d. Connect the Out terminal of the Compute node to the
ESQL_SIMPLE_OUT node. Ensure that you select the Out terminal on the
Compute node and not, for example, Out1 or Out2.

Table 4-2 Node connections in the ESQL_Simple message flow

Tip: Instead of using the Terminal Selection dialog, you can click the
Connection button at the top of the palette to change to Connection mode. You
can then directly click node terminals to create connections.

You must still use the Terminal Selection dialog to select the Out terminal of
the Compute node because of the large number of output terminals available.

Remember to switch back to the Selection mode when you have finished
making connections.

Node name Terminal Connect to this node

ESQL_SIMPLE_IN Out Compute

 Chapter 4. Developing applications with ESQL 57

Saving and validating the ESQL_Simple message flow
To save the ESQL_Simple message flow, click File → Save or press Ctrl+S.

When you save a message flow file, the Message Flow editor validates the
message flow. The ESQL_Simple message flow has two errors, as shown in
Figure 4-8, which are indicated by a small white cross on a red background on
the MQInput and Compute nodes. The ESQL_Simple message flow files and
folders in the Resource Navigator view are also highlighted with crosses to show
that the files contain errors.

Figure 4-8 Validating the ESQL_Simple message flow

A brief description of each error is given in the Problems view below the
Message Flow editor:

� The error in the MQInput node is because you have not entered the name of
the WebSphere MQ input queue from which the MQInput node takes input
messages.

� The error in the Compute node is because you have not created the ESQL
module that defines how the Compute node should process input messages.

The following sections describe how to fix the errors by configuring the nodes.

4.2.2 Configuring the ESQL_Simple message flow
In the ESQL_Simple message flow, the MQInput node takes an input message
from a WebSphere MQ local queue called ESQL_SIMPLE_IN. After the
Compute node has processed the message, the MQOutput node puts the output
message on a WebSphere MQ local queue called ESQL_SIMPLE_OUT.

Compute Out ESQL_SIMPLE_OUT

Node name Terminal Connect to this node

58 WebSphere Message Broker Basics

To configure the message flow, create the two WebSphere MQ local queues,
ESQl_SIMPLE_IN and ESQL_SIMPLE_OUT; set the properties on the message
flow nodes; and create the ESQL module that processes the message in the
Compute node.

Creating the WebSphere MQ local queues
WebSphere MQ objects are not administered from within the Message Brokers
Toolkit, so use WebSphere MQ Explorer to create the WebSphere MQ local
queues.

To create the ESQL_SIMPLE_IN and ESQL_SIMPLE_OUT queues:

1. Open WebSphere MQ Explorer: Click Start → Programs → IBM
WebSphere MQ → WebSphere MQ Explorer.

2. In WebSphere MQ Explorer, in the Navigator view, expand
WBRK6_DEFAULT_QUEUE_MANAGER, which is the name of the queue
manager that hosts the broker.

3. Right-click the Queues folder under the
WBRK6_DEFAULT_QUEUE_MANAGER queue manager, then click New →
Local Queue... to open the New Local Queue wizard.

4. In the Name field of the wizard, type ESQL_SIMPLE_IN, then click Next
(Figure 4-9 on page 60).

 Chapter 4. Developing applications with ESQL 59

Figure 4-9 Creating a new WebSphere MQ queue

5. On the Storage page of the wizard, in the Backout requeue queue field, type
DLQ (Figure 4-10 on page 61). The DLQ queue will be the backout requeue
queue, or Dead-letter queue.

60 WebSphere Message Broker Basics

Figure 4-10 Specifying the backout requeue queue

6. Click Finish.

Tip: The backout requeue queue, or Dead-letter queue, is where a
message goes if the message flow cannot process it and rolls it back to the
input queue. If you do not specify a backout requeue queue and there is a
processing problem, the message is rolled back through the message flow
and put back on the input queue, where it stays.

The message flow gets messages from the input queue in the order in
which the messages were put on the queue, so if the message is left on the
input queue, it blocks any other input messages that you subsequently put
on the queue.

Another advantage to specifying a backout requeue queue is that any
errors in the message processing are written to the Windows Event
Viewer.

 Chapter 4. Developing applications with ESQL 61

Click the Queues folder to display the queue, ESQL_SIMPLE_IN, in the
Content view.

7. Create another local queue called ESQL_SIMPLE_OUT but do not specify a
backout requeue queue. Only the input queue, ESQL_SIMPLE_IN, uses a
backout requeue queue.

8. Create a third local queue called DLQ. This is the backout requeue queue, or
Dead-letter queue.

All three queues are displayed in the Content view (Figure 4-11).

You can use the DLQ queue as the backout requeue queue for any message
flows that you create; you do not need to create a backout requeue queue for
each message flow.

Figure 4-11 Displaying the queues in the WebSphere MQ Explorer Content view

The next section describes how to configure the nodes to connect to the correct
queues.

Setting the properties of the nodes
The following instructions describe how to set the properties of the nodes in the
ESQL_Simple message flow. When you have set the properties on the
ESQL_SIMPLE_IN node and saved the message flow, the error label on the
ESQL_SIMPLE_IN node disappears.

62 WebSphere Message Broker Basics

To set the properties of the nodes in the ESQL_Simple message flow:

1. Make sure that the Selection button at the top of the node palette is
highlighted so that you can select nodes on the canvas.

2. Right-click the ESQL_SIMPLE_IN node, then click Properties. The node’s
Properties dialog opens.

3. On the Basic page of the Properties dialog, in the Queue Name field, type the
name of the message flow’s input queue: ESQL_SIMPLE_IN (Figure 4-12).

Figure 4-12 Setting the name of the input queue

4. On the Default page of the Properties dialog, in the Message Domain field,
select XML from the list (Figure 4-13 on page 64).

This tells the message flow to parse input messages as XML. If you do not set
this property, the message flow cannot parse the input messages (see 4.1.1,
“Messages in WebSphere Message Broker” on page 48).

 Chapter 4. Developing applications with ESQL 63

Figure 4-13 Specifying which parser to use to interpret input messages

Table 4-3 lists the properties to set for each of the nodes in the ESQL_Simple
message flow.

5. Set the properties for the MQOutput node, ESQL_SIMPLE_OUT, as listed in
Table 4-3.

Do not enter a value in the Queue Manager Name field; if the field is empty,
the message flow looks for the output queue on the same queue manager as
the input queue.

Table 4-3 Node properties for the ESQL_Simple message flow

6. Save ESQL_Simple.msgflow.

In the Message Flow editor, the error indicator on the MQInput node is no longer
displayed.

Node name Page Property Value

ESQL_SIMPLE_IN Basic Queue name ESQL_SIMPLE_IN

Default Message domain XML

ESQL_SIMPLE_O
UT

Basic Queue name ESQL_SIMPLE_O
UT

64 WebSphere Message Broker Basics

Do not edit any of the properties in the Compute node, but look in the Properties
dialog to see what has caused the error that is still displayed in the Message
Flow:

1. Open the Properties dialog for the Compute node.

2. On the Basic page of the Properties dialog, notice that the ESQL Module field
contains ESQL_Simple_Compute (Figure 4-14). This value is entered
automatically when the node is created because the Compute node must
contain some ESQL. ESQL is held in a separate file called, in this case,
ESQL_Simple.esql. However, an error is displayed in the Problems view
because the module and the file ESQL_Simple.esql do not yet exist.

Figure 4-14 The Compute node properties

3. Click Cancel to close the Properties dialog box without saving any changes.

The next section describes how to create ESQL_Simple.esql and how to create
some simple ESQL for the Compute node.

4.2.3 Writing ESQL for the Compute node
All of the ESQL that belongs to a message flow is stored, by default, in a single
file. In this case, all of the ESQL for the ESQL_Simple message flow is stored in
a file called ESQL_Simple.esql.

Tip: Double-click a node to open its Properties dialog quickly.

 Chapter 4. Developing applications with ESQL 65

Creating the ESQL file
To create ESQL_Simple.esql:

1. In the Message Flow editor, right-click the Compute node, then click Open
ESQL.

ESQL_Simple.esql does not already exist, so the Message Brokers Toolkit
creates the file in the ESQL_Simple Message Flow project. When the
ESQL_Simple.esql file is created, it automatically opens in the ESQL editor
and already contains the minimum ESQL that is needed for the Compute
node to successfully validate.

2. Save ESQL_Simple.esql, then click the ESQL_Simple.msgflow tab to return
to the Message Flow editor. The error on the Compute node is no longer
displayed and no items relating to this task appear in the Problems view.

3. Click the ESQL_Simple.esql tab to display ESQL_Simple.esql in the ESQL
editor again.

Writing the ESQL_Simple_Compute ESQL module
In the ESQL_Simple.esql file, there is a single module of ESQL called
ESQL_Simple_Compute. This is the ESQL module that is referenced from the
Compute node Properties dialog.

The ESQL that is generated automatically does not produce any output so you
must edit the ESQL in ESQL_Simple.esql file:

1. Uncomment the fifth line (--CALL CopyEntireMessage();) of the
ESQL_Simple_Compute module so that the Compute module can parse it. To
uncomment the line, delete -- from the start of the line, as shown in
Example 4-1.

Example 4-1 ESQL for the ESQL_Simple_Compute ESQL module

CREATE COMPUTE MODULE ESQL_Simple_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

-- CALL CopyMessageHeaders();
 CALL CopyEntireMessage();
RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER;
DECLARE J INTEGER;
SET I = 1;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];

66 WebSphere Message Broker Basics

SET I = I + 1;
END WHILE;

END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

The Compute node can now parse the line that instructs the Compute node to
copy the header and content of the input message (InputRoot) to the output
message (OutputRoot). The message that the MQOutput node,
ESQL_SIMPLE_OUT, puts on the ESQL_SIMPLE_OUT queue has the same
content as the message that the MQInput node, ESQL_SIMPLE_IN, got from
the ESQL_SIMPLE_IN queue.

2. Save ESQL_Simple.esql and ESQL_Simple.msgflow.

The next section describes how to deploy the ESQL_Simple message flow so
that you can test it.

4.2.4 Deploying and testing the ESQL_Simple message flow
Before you can test the ESQL_Simple message flow, you must deploy it to the
broker. Then, when you put the test input message on the ESQL_SIMPLE_IN
queue, the broker processes the message using the deployed message flow.

Deploying the ESQL_Simple message flow
To deploy a message flow to the broker, package it in a message broker archive
(bar) file. 7.4.2, “Deploying resources to a remote broker” on page 226 provides
more information about deployment. This chapter just explains what you need to
do to deploy the message flow applications that you create so that you can test
them.

Attention: Ignore any warning messages about unresolvable database table
references that are also displayed in the Problems view when you save the
message flow. These messages are displayed because the Message Brokers
Toolkit does not have access to the database fields that the ESQL in the
message flow refers to. It is possible to connect to the database from the
Message Brokers Toolkit, but it is unnecessary for the exercises in this
chapter (“Creating the Create_Customer_Account message flow” on
page 181 describes how to connect to a database from the Message Brokers
Toolkit).

 Chapter 4. Developing applications with ESQL 67

The following instructions about how to deploy the ESQL_Simple message flow
assume that you have run the Default Configuration wizard so that the Default
Configuration is available on the same computer as the Message Brokers
Toolkit.

To deploy the ESQL_Simple message flow to the broker:

1. Switch to the Broker Administration perspective: From the Broker Application
Development perspective, click Window → Open Perspective → Broker
Administration.

2. Create a new bar file: Click File → New → Message Broker Archive. The
New Message Broker Archive wizard opens.

3. In the wizard, click the LocalProject server project.

This is the server project that was created by the Default Configuration wizard
to contain the details of the connection between the Message Brokers Toolkit
and the Configuration Manager. The instructions in this chapter assume that
you are using the LocalProject server project (Figure 4-15 on page 69). If you
have created your own domain, substitute the name of your server project in
place of LocalProject.

4. In the File Name field, type the name of the bar file: ESQL_Simple (Figure 4-15
on page 69).

5. Click Finish.

The ESQL_Simple.bar file is displayed in the Broker Administration Navigator
view under Broker Archives → LocalProject. The ESQL_Simple.bar file is
automatically opened in the Broker Archive editor.

68 WebSphere Message Broker Basics

Figure 4-15 Creating a new message broker archive (bar) file

In the Broker Archive editor, there are two buttons. The first button adds files
to the archive and the second button, with the red cross, deletes files from the
archive (Figure 4-16).

Figure 4-16 The Add and Remove buttons in the Broker Archive editor

6. Click the Add button. The Add to Broker Archive dialog opens.

7. In the dialog, click ESQL_Simple Message Flow Project to highlight it, then
select the ESQL_Simple.msgflow check box (Figure 4-17 on page 70).

8. Click OK to add the selected file to the bar file.

 Chapter 4. Developing applications with ESQL 69

Figure 4-17 Adding the ESQL_Simple message flow to the ESQL_Simple.bar file

The compiled message flow, ESQL_Simple.cmf, is displayed in the
ESQL_Simple.bar file in the Broker Archive editor (Figure 4-18 on page 71).

70 WebSphere Message Broker Basics

Figure 4-18 The compiled message flow in the bar file

9. Save the bar file: Click File → Save or press Ctrl+S.

10.Ensure that the Message Brokers Toolkit is connected to the Configuration
Manager. If it is not connected, in the Domains view, right-click the
connection, then click Connect. Wait while the connection is made. If you
have problems connecting, see 8.4.3, “Problems connecting to the
Configuration Manager” on page 296, for more information.

11.Create a new execution group on the WBRK6_DEFAULT_BROKER broker:
Click File → New → Execution Group. The New Execution Group dialog
opens.

12.In the dialog, expand the connection name, expand Broker Topology, then
click WBRK6_DEFAULT_BROKER to highlight it.

13.In the Execution Group Name field, type ESQL_Simple (Figure 4-19 on
page 72), then click Finish.

 Chapter 4. Developing applications with ESQL 71

Figure 4-19 Creating a new execution group

The ESQL_Simple execution group is displayed in the Domains view under
the WBRK6_DEFAULT_BROKER broker (Figure 4-20).

Figure 4-20 The ESQL_Simple execution group in the Domains view

14.In the Broker Administration Navigator view, right-click ESQL_Simple.bar,
then click Deploy File.... The Deploy a BAR File dialog opens.

72 WebSphere Message Broker Basics

15.Click the name of the broker, WBRK6_DEFAULT_BROKER, to which you
want to deploy the bar file, then click OK (Figure 4-21).

Figure 4-21 Deploying ESQL_Simple bar file to ESQL_Simple execution group

Wait until a message is displayed saying that the bar file was successfully
deployed to the broker. This message does not mean that the deployment
was completed successfully. When the bar file has been successfully
deployed, the ESQL_Simple message flow is displayed in the Domains view
under the ESQL_Simple execution group (Figure 4-22 on page 74).

If the bar file does not appear to be deployed successfully, look in the
Windows Event Log for possible errors and see 8.4.4, “Problems with
deployment” on page 299, for more information about problem determination.

 Chapter 4. Developing applications with ESQL 73

Figure 4-22 The ESQL_Simple message flow deployed

Testing the ESQL_Simple message flow
To test the ESQL_Simple message flow, use the Enqueue editor in the Message
Brokers Toolkit to put an XML input message on the ESQL_SIMPLE_IN queue.
The ESQL_Simple message flow gets the input message from the
ESQL_SIMPLE_IN queue, processes the message, and then puts an output
message on the ESQL_SIMPLE_OUT queue.

The Enqueue editor enables you to easily create a message without having to
understand how to create message headers; the Enqueue editor automatically
adds an MQMD header to the message. An MQMD header is required for
messages used with WebSphere Message Broker. All you need to enter in the
Enqueue editor is the details of the queue and queue manager on which to put
the message, and the message data itself.

To create an enqueue file for the message content:

1. Click File → New → Enqueue Message File. The New Enqueue Message
File wizard opens.

2. In the wizard, click ESQL_Simple Message Flow Project to highlight it, then
in the File name field, type ESQL_Simple (Figure 4-23 on page 75). Click
Finish.

The new enqueue file, ESQL_Simple.enqueue, is added to ESQL_Simple
Message Flow Project. Switch to the Broker Application Development
perspective to see this; enqueue files are not displayed in the Broker
Application Development perspective.

The ESQL_Simple.enqueue file is automatically opened in the Enqueue
editor.

74 WebSphere Message Broker Basics

Figure 4-23 Creating a new enqueue message file

3. In the Queue manager name field, type the name of the queue manager, for
example, WBRK6_DEFAULT_QUEUE_MANAGER. The Enqueue utility is
case-sensitive.

4. In the Port field, type the port number that the queue manager listens on, for
example, 2414.

5. In the Queue name field, type ESQL_SIMPLE_IN.

6. In the Message data field, type the XML message content shown in
Example 4-2. You can also copy the message content from the Web material
available to download (see Appendix B, “Code” on page 319).

Example 4-2 Input message content to test the ESQL_Simple message flow

<Message>
 <Body>
 Hello, world!
 </Body>
</Message>

Figure 4-24 on page 76 shows the completed ESQL_Simple.enqueue file.

 Chapter 4. Developing applications with ESQL 75

7. Click the General tab to return to the main page.

8. Save the ESQL_Simple.enqueue file.

9. Click the Write To queue button to put the XML input message on the
ESQL_SIMPLE_IN queue. A message is displayed to confirm that the
message was successfully put to the queue.

Figure 4-24 The ESQL_Simple.enqueue file

The ESQL_Simple message flow gets the message from the queue,
processes the message, then puts the message on the ESQL_SIMPLE_OUT
queue.

To get the output message from the ESQL_SIMPLE_OUT queue:

1. Click the Dequeue button on the Message Brokers Toolkit toolbar (see
Figure 4-25 on page 77) to open the Dequeue Message wizard.

76 WebSphere Message Broker Basics

Figure 4-25 The icon on the Dequeue button on the toolbar

2. In the Queue Manager Name field, type WBRK6_DEFAULT_QUEUE_MANAGER, and
in the Queue Name field type ESQL_SIMPLE_OUT (Figure 4-26). The Dequeue
Message wizard is case-sensitive.

3. Click Read From Queue.

If the message was processed correctly, the content of the output message is
displayed in the wizard, as shown in Figure 4-26.

Figure 4-26 Getting the output message from ESQL_SIMPLE_OUT

If you receive the following Dequeue error message, the ESQL_Simple message
flow has not put an output message on to the ESQL_SIMPLE_OUT queue:

BIP0917E No messages found to dequeue

 Chapter 4. Developing applications with ESQL 77

4.2.5 Diagnosing problems with the ESQL_Simple message flow
If the Dequeue wizard cannot get a message from the ESQL_SIMPLE_OUT
queue, check first that you have entered the correct details in the enqueue file
and in the Dequeue wizard. If all the details are correct, perform the following
checks to diagnose the problem:

1. Open WebSphere MQ Explorer and check the Current queue depth column
for the ESQL_SIMPLE_IN, ESQL_SIMPLE_OUT, and DLQ queues. The
Current queue depth column displays the number of messages currently on
each queue (Figure 4-27).

Figure 4-27 Checking the queues for messages

2. If the message is still on the ESQL_SIMPLE_IN queue, the message flow
failed to get the message from the queue. Reasons for this might be:

– The wrong queue name is specified in the MQInput node properties. If so,
fix the problem, add the message flow to the bar file again (the bar file
does not dynamically update itself), then re-deploy the bar file to the
broker.

– The message flow is not running. If so, in the Domains view of the Broker
Administration perspective, right-click the message flow then click Start.

– The name of the backout requeue queue, DLQ, was incorrectly entered in
the properties of the ESQL_SIMPLE_IN queue and a previous input
message was rolled back by the message flow to the ESQL_SIMPLE_IN
queue. Because the message flow cannot process the previous message,
it is now blocking subsequent input messages from being processed by
the message flow. If so, edit the queue’s properties so that the Backout
requeue queue is DLQ, as described earlier in this chapter.

Use the Dequeue Message wizard to get the message from the
ESQL_SIMPLE_IN queue so that the there are no messages on the
ESQL_SIMPLE_IN queue, otherwise subsequent input messages will be
blocked by the existing messages on the queue.

78 WebSphere Message Broker Basics

3. If the message is on the DLQ queue, the message flow was not able to
process the message and so rolled the message back through the message
flow to the ESQL_SIMPLE_IN queue. The message was then moved to the
DLQ queue. Reasons for this happening might be:

– The XML in the input message is badly formed; for example, one of the
tags is missing or is misspelled.

– There is a problem with the ESQL in the Compute node so it cannot
process the message.

4. In WebSphere MQ Explorer, verify that the following objects are running:

– WBRK6_DEFAULT_QUEUE_MANAGER queue manager. To start the
queue manager, right-click the queue manager, then click Start.

– WBRK6_DEFAULT_QUEUE_MANAGER listener. To start the listener,
right-click the listener, then click Start.

– The WBRK6_DEFAULT_QUEUE_MANAGER queue manager’s
command server. To start the command server, right-click the queue
manager, then click Start Command Server.

5. In the ESQL_Simple message flow, make sure that the queue names in the
MQInput and MQOutput nodes are spelled correctly and are in the correct
case.

If none of these suggestions solve the problem, see Chapter 8,
“Troubleshooting and problem determination” on page 241, for more
information about things to check.

4.3 Developing the Bookstore scenario using ESQL
In 4.2, “Developing the Simple message flow application” on page 52, you
created the Simple scenario message flow application using ESQL to define the
logic of the message flow.

In this section, we create a more complex message flow application that is based
around the scenario of an online bookstore. The Bookstore scenario message
flows process messages with different structures, and interact with databases to
update database tables.

The Bookstore scenario includes two message flows:

� The ESQL_Create_Customer_Account message flow

This message flow uses ESQL in a Database node to create accounts in a
DB2 database table for new customers who have registered their details with
the bookstore, for example, their contact details and delivery address.

 Chapter 4. Developing applications with ESQL 79

� The ESQL_Book_Order message flow

This message flow uses ESQL in a Compute node to process an order that
has been submitted by an online customer and create a response message to
confirm the order with a unique order number.

4.3.1 Creating the Bookstore scenario database
The Bookstore scenario database, BSTOREDB, is a DB2 database that contains
some tables of sample data. The ESQL_Create_Customer_Account message
flow inserts data (a customer’s registration details) into a table in the BSTOREDB
database.

In the Web material described in Appendix B, “Code” on page 319, there is an
SQL script, BookStoreDB.sql, that you can run to create the BSTOREDB
database.

To create the BSTOREDB database, tables, and sample data:

1. Start a DB2 Command Window: Start → Programs → IBM DB2 →
Command Line Tools → Command Window.

2. In the Command Window, make sure that DB2 is running by entering the
following command:

db2start

3. Change to the directory that contains the BookStoreDB.sql script, for
example, if the BookStoreDB.sql file is in C:\Temp:

cd C:\Temp

4. Run the script:

db2 -vf BookStoreDB.sql

The script drops any tables that already exist of the same name, then creates
and populates new ones.

4.3.2 Creating the ESQL_Create_Customer_Account message flow
The input message to the ESQL_Create_Customer_Account message flow
contains the details of a customer who has registered with the online bookstore
Web site. The customer has provided information such as their name, contact
details, a delivery address, and payment details. Example 4-3 shows the input
message for the ESQL_Create_Customer_Account message flow.

Example 4-3 The message for the ESQL_Create_Customer_Account message flow

<Create_Customer_Account_MSG>
 <Personal_Details>

80 WebSphere Message Broker Basics

 <First_Name>Peter</First_Name>
 <Last_Name>Smith</Last_Name>
 <User_ID>PSmith</User_ID>
 <Password>p45sw0rd</Password>
 </Personal_Details>
 <Email_Address>Peter.Smith@nowhere.com</Email_Address>
 <Daytime_Telephone>1234567890</Daytime_Telephone>
 <Evening_Telephone>1234567890</Evening_Telephone>
 <Shipping_Address>
 <Address_1>19 Green Street</Address_1>
 <Address_2>Littleton</Address_2>
 <Town>Southington</Town>
 <Postcode>SU29 8YT</Postcode>
 </Shipping_Address>
 <Billing_Address>
 <Address_1>19 Green Street</Address_1>
 <Address_2>Littleton</Address_2>
 <Town>Southington</Town>
 <Postcode>SU29 8YT</Postcode>
 </Billing_Address>
 <Payment_Details>
 <Card>VISA</Card>
 <Card_Number>1234567890</Card_Number>
 <Expiry_Date>31.12.2009</Expiry_Date>
 <Issue_Date>31.12.2004</Issue_Date>
 <Issue_Number>02</Issue_Number>
 <Security_Code>333</Security_Code>
 </Payment_Details>
</Create_Customer_Account_MSG>

All of the ESQL that you need for this message flow is available in the Web
material described in Appendix B, “Code” on page 319.

Figure 4-28 shows the finished ESQL_Create_Customer_Account message
flow.

Figure 4-28 The ESQL_Create_Customer_Account message flow

 Chapter 4. Developing applications with ESQL 81

To create the ESQL_Create_Customer_Account message flow:

1. In the Broker Application Development perspective, create a Message Flow
project called ESQL_Bookstore Message Flow Project.

2. Create a message flow called ESQL_Create_Customer_Account in the
ESQL_Bookstore Message Flow Project. The
ESQL_Create_Customer_Account.msgflow file opens in the Message Flow
editor.

3. In the Message Flow editor, add the nodes listed in Table 4-4 to the canvas,
then connect the nodes together, as shown in Table 4-5, to build the
ESQL_Create_Customer_Account message flow (Figure 4-28 on page 81).

Table 4-4 The ESQL_Create_Customer_Account message flow nodes

Table 4-5 Node connections in the ESQL_Create_Customer_Account message flow

4. Set the properties of the nodes, as shown in Table 4-6.

Table 4-6 Node properties for the ESQL_Create_Customer_Account message flow

Node type Node name

MQInput ESQL_BOOKSTORE_CCA_IN

Database Database

MQOutput ESQL_BOOKSTORE_CCA_OUT

Node name Terminal Connect to this node

ESQL_BOOKSTORE_CC
A_IN

Out Database

Database Out ESQL_BOOKSTORE_CC
A_OUT

Node name Page Property Value

ESQL_BOOKSTO
RE_CCA_IN

Basic Queue Name ESQL_BOOKSTO
RE_CCA_IN

Default Message Domain XML

Database Basic Data Source BSTOREDB

ESQL_BOOKSTO
RE_CCA_OUT

Basic Queue Name ESQL_BOOKSTO
RE_CCA_OUT

82 WebSphere Message Broker Basics

5. In the Message Flow editor, right-click the Database node, then click Open
ESQL to create the ESQL module that is referenced in the Database node
Properties dialog. The ESQL_Create_Customer_Account.esql file opens in
the ESQL editor.

6. In the ESQL editor, edit the ESQL_Create_Customer_Account.esql file. The
ESQL selects content from the input message and inserts it into the
CUSTACCTB table in the BSTOREDB database:

a. Use SQL (INSERT INTO Database) to update the database table
CUSTACCTB with information from the message. Each field in the
database table (for example, LAST_NAME, FIRST_NAME, USERID) is
listed in the order in which it occurs in the database.

Example 4-4 Using SQL to update the CUSTACCTB database table

INSERT INTO Database.CUSTACCTB(LAST_NAME, FIRST_NAME, USERID, PASSWORD,
EMAIL, DAY_PHONE, EVE_PHONE, SHIP_ADDRESS1, SHIP_ADDRESS2, SHIP_TOWN,
SHIP_POSTCODE, BILL_ADDRESS1, BILL_ADDRESS2, BILL_TOWN, BILL_POSTCODE,
CARDTYPE, CARDNUM, EXP_DATE, ISS_DATE, ISS_NUM, SECCODE)

b. Specify each value from the message that is to be added to the
CUSTACCTB table. One value is inserted into each field of the database
table. ESQL specifies fields by navigating through the hierarchical
structure of the message from the root of the message body, which is
known as Body. Compare the values in the ESQL in Example 4-5 with the
XML fields in Example 4-3 on page 80 to see how the ESQL navigates the
message fields.

The order in which the values are listed in the ESQL determines the field
into which each value is inserted. So the
Body.Create_Customer_Account_MSG.Personal_Details.Last_Name
value is inserted into the LAST_NAME field of the CUSTACCTB table and
the
Body.Create_Customer_Account_MSG.Payment_Details.Security_Code
value is inserted into the SECCODE field of the CUSTACCTB table.

Example 4-5 Specifying the values to insert into the CUSTACCTB table

VALUES(Body.Create_Customer_Account_MSG.Personal_Details.Last_Name,
Body.Create_Customer_Account_MSG.Personal_Details.First_Name,
Body.Create_Customer_Account_MSG.Personal_Details.User_ID,
Body.Create_Customer_Account_MSG.Personal_Details.Password,
Body.Create_Customer_Account_MSG.Email_Address,
Body.Create_Customer_Account_MSG.Daytime_Telephone,
Body.Create_Customer_Account_MSG.Evening_Telephone,
Body.Create_Customer_Account_MSG.Shipping_Address.Address_1,
Body.Create_Customer_Account_MSG.Shipping_Address.Address_2,
Body.Create_Customer_Account_MSG.Shipping_Address.Town,

 Chapter 4. Developing applications with ESQL 83

Body.Create_Customer_Account_MSG.Shipping_Address.Postcode,
Body.Create_Customer_Account_MSG.Billing_Address.Address_1,
Body.Create_Customer_Account_MSG.Billing_Address.Address_2,
Body.Create_Customer_Account_MSG.Billing_Address.Town,
Body.Create_Customer_Account_MSG.Billing_Address.Postcode,
Body.Create_Customer_Account_MSG.Payment_Details.Card,
Body.Create_Customer_Account_MSG.Payment_Details.Card_Number,
Body.Create_Customer_Account_MSG.Payment_Details.Expiry_Date,
Body.Create_Customer_Account_MSG.Payment_Details.Issue_Date,
Body.Create_Customer_Account_MSG.Payment_Details.Issue_Number,
Body.Create_Customer_Account_MSG.Payment_Details.Security_Code);

Example 4-6 shows the final ESQL code to use in the
ESQL_Create_Customer_Account_Database module.

Example 4-6 ESQL for the ESQL_Create_Customer_Account_Database module

CREATE DATABASE MODULE ESQL_Create_Customer_Account_Database
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

INSERT INTO Database.CUSTACCTB(LAST_NAME, FIRST_NAME, USERID, PASSWORD,
EMAIL, DAY_PHONE, EVE_PHONE, SHIP_ADDRESS1, SHIP_ADDRESS2, SHIP_TOWN,
SHIP_POSTCODE, BILL_ADDRESS1, BILL_ADDRESS2, BILL_TOWN, BILL_POSTCODE,
CARDTYPE, CARDNUM, EXP_DATE, ISS_DATE, ISS_NUM, SECCODE)

VALUES(Body.Create_Customer_Account_MSG.Personal_Details.Last_Name,
Body.Create_Customer_Account_MSG.Personal_Details.First_Name,
Body.Create_Customer_Account_MSG.Personal_Details.User_ID,
Body.Create_Customer_Account_MSG.Personal_Details.Password,
Body.Create_Customer_Account_MSG.Email_Address,
Body.Create_Customer_Account_MSG.Daytime_Telephone,
Body.Create_Customer_Account_MSG.Evening_Telephone,
Body.Create_Customer_Account_MSG.Shipping_Address.Address_1,
Body.Create_Customer_Account_MSG.Shipping_Address.Address_2,
Body.Create_Customer_Account_MSG.Shipping_Address.Town,
Body.Create_Customer_Account_MSG.Shipping_Address.Postcode,
Body.Create_Customer_Account_MSG.Billing_Address.Address_1,
Body.Create_Customer_Account_MSG.Billing_Address.Address_2,
Body.Create_Customer_Account_MSG.Billing_Address.Town,
Body.Create_Customer_Account_MSG.Billing_Address.Postcode,
Body.Create_Customer_Account_MSG.Payment_Details.Card,
Body.Create_Customer_Account_MSG.Payment_Details.Card_Number,
Body.Create_Customer_Account_MSG.Payment_Details.Expiry_Date,
Body.Create_Customer_Account_MSG.Payment_Details.Issue_Date,
Body.Create_Customer_Account_MSG.Payment_Details.Issue_Number,
Body.Create_Customer_Account_MSG.Payment_Details.Security_Code);

RETURN TRUE;
END;

84 WebSphere Message Broker Basics

END MODULE;

7. Save the ESQL_Create_Customer_Account.esql and
ESQL_Create_Customer_Account.msgflow files.

8. Create the following WebSphere MQ queues in WebSphere MQ Explorer on
the WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– ESQL_BOOKSTORE_CCA_IN
– ESQL_BOOKSTORE_CCA_OUT

Remember to enter the value of the Backout requeue queue property on the
ESQL_BOOKSTORE_CCA_IN queue as DLQ.

You have created the ESQL_Create_Customer_Account message flow, which is
one of the Bookstore scenario message flows. When you have created the other
message flow, ESQL_Book_Order, deploy and test them together.

4.3.3 Creating the ESQL_Book_Order message flow
The input message to the ESQL_Book_Order message flow contains an order
from a customer on the online bookstore Web site. The order contains the
customers’ identification and details of the books that they have ordered. When
the message flow processes the message, it creates a confirmation message
that contains details of the order, including a unique order number and the total
price of all the books in the order. Example 4-7 shows the input message for the
ESQL_Book_Order message flow.

Example 4-7 The input message for the ESQL_Book_Order message flow

<Create_Book_Order_MSG>
 <Customer_ID>0123456789</Customer_ID>
 <Order_Date>2005-09-27 12:55:12</Order_Date>
 <First_Class>Yes</First_Class>
 <Book_Details>
 <ISBN>0123456789</ISBN>
 <Book_Price>15.99</Book_Price>
 <ISBN>1425112342</ISBN>
 <Book_Price>7.99</Book_Price>
 <ISBN>9736316345</ISBN>
 <Book_Price>25.99</Book_Price>
 </Book_Details>
</Create_Book_Order_MSG>

Example 4-8 on page 86 shows the output message that the message flow
generates based on the input message shown in Example 4-7.

 Chapter 4. Developing applications with ESQL 85

Example 4-8 The Book_Order_Response_MSG message for the ESQL_Book_Order
message flow

<Book_Order_Response_MSG>
 <Customer_ID>0123456789</Customer_ID>
 <Order_Number>012345678920050927125512</Order_Number>
 <Order_Date>2005-09-27 12:55:12</Order_Date>
 <First_Class>Yes</First_Class>
 <Book_Details>
 <ISBN>0123456789</ISBN>
 <Book_Price>15.99</Book_Price>
 </Book_Details>
 <Book_Details>
 <ISBN>1425112342</ISBN>
 <Book_Price>7.99</Book_Price>
 </Book_Details>
 <Book_Details>
 <ISBN>9736316345</ISBN>
 <Book_Price>25.99</Book_Price>
 </Book_Details>
 <Delivery_Price>18.00</Delivery_Price>
 <Total_Price>49.97</Total_Price>
 <Order_Status>Order Received</Order_Status>
</Book_Order_Response_MSG>

All of the ESQL that you need for this message flow is available in the Web
material described in Appendix B, “Code” on page 319.

Figure 4-29 shows the finished ESQL_Book_Order message flow.

Figure 4-29 The ESQL_Book_Order message flow

To create the ESQL_Book_Order message flow:

1. In the Broker Application Development perspective, create a message flow
called ESQL_Book_Order in the ESQL_Bookstore Message Flow Project.
The ESQL_Book_Order.msgflow file opens in the Message Flow editor.

86 WebSphere Message Broker Basics

2. In the Message Flow editor, add the nodes listed in Table 4-7 to the canvas,
then connect the nodes together, as shown in Table 4-8, to build the
ESQL_Book_Order message flow (Figure 4-29 on page 86).

Table 4-7 The ESQL_Book_Order message flow nodes

Table 4-8 Node connections in the ESQL_Book_Order message flow

3. Set the properties of the nodes, as shown in Table 4-9.

Table 4-9 Node properties for the ESQL_Book_Order message flow

4. In the Message Flow editor, right-click the Compute node, then click Open
ESQL to create the ESQL module that is referenced in the Compute node
Properties dialog. The ESQL_Book_Order.esql file opens in the ESQL editor.

5. In the ESQL editor, edit the ESQL_Book_Order.esql file. The ESQL takes
information from the input message, including the customer’s selected
delivery method. From this information, the message flow determines the
delivery price and the total price of the order, then sends out a response
message that contains this price information:

a. Uncomment the fourth line in the ESQL_Book_Order.esql file (--CALL
CopyMessageHeaders();) of the ESQL_Book_Order_Compute module so

Node type Node name

MQInput ESQL_BOOKSTORE_BO_IN

Compute Compute

MQOutput ESQL_BOOKSTORE_BO_OUT

Node name Terminal Connect to this node

ESQL_BOOKSTORE_BO
_IN

Out Compute

Compute Out ESQL_BOOKSTORE_BO
_OUT

Node name Page Property Value

ESQL_BOOKSTO
RE_BO_IN

Basic Queue Name ESQL_BOOKSTO
RE_BO_IN

Default Message Domain XML

ESQL_BOOKSTO
RE_BO_OUT

Basic Queue Name ESQL_BOOKSTO
RE_BO_OUT

 Chapter 4. Developing applications with ESQL 87

that the Compute node can parse it. To uncomment the line, delete --
from the start of the line, as shown in Example 4-9. Leave the fifth line
commented out so that the whole of the input message is not copied to the
output message.

Example 4-9 Copying the message headers to the output message

CREATE COMPUTE MODULE ESQL_Book_Order_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyMessageHeaders();
-- SET OutputRoot.XML.Book_Order_Response_MSG =

InputRoot.XML.Create_Book_Order_MSG;

b. Copy the Customer_ID field to the output message, as shown in
Example 4-10.

Example 4-10 Copying the Customer_ID field to the output message

SET OutputRoot.XML.Book_Order_Response_MSG.Customer_ID =
InputRoot.XML.Create_Book_Order_MSG.Customer_ID;

c. Generate a unique order number for the customer’s order. The value of
the Order_Number element is a concatenation of the Customer_ID value
and the Order_Date value. You can achieve this with the ESQL in
Example 4-11, where || is the ESQL operator for concatenate.

Example 4-11 Generating a unique order number

SET OutputRoot.XML.Book_Order_Response_MSG.Order_Number =
InputRoot.XML.Create_Book_Order_MSG.Customer_ID || orderDate;

However, the ESQL in Example 4-11 produces an order number that looks
like this:

01234567892002-10-20 12:00:00

To generate a better order number, cast the timestamp field (Order_Date)
from a Date type to a String type. To do this, use the ESQL in
Example 4-12, which produces an order number like this:

012345678920050927125512

Example 4-12 Generating a more useful unique order number

DECLARE input TIMESTAMP InputRoot.XML.Create_Book_Order_MSG.Order_Date;
DECLARE pattern CHARACTER ‘yyyyMMddHHmmss’;
DECLARE orderDate CHARACTER CAST(input AS CHARACTER FORMAT pattern);
SET OutputRoot.XML.Book_Order_Response_MSG.Order_Number =
InputRoot.XML.Create_Book_Order_MSG.Customer_ID || orderDate;

88 WebSphere Message Broker Basics

d. Copy the Order_Date field to the output message, as shown in
Example 4-13.

Example 4-13 Copying the Order_Date field to the output message

SET OutputRoot.XML.Book_Order_Response_MSG.Order_Date =
InputRoot.XML.Create_Book_Order_MSG.Order_Date;

e. Determine which delivery method has been selected by the customer. Do
this by checking whether the message contains a particular field
(First_Class, Second_Class, or Airmail). The ESQL in Example 4-14
checks to see if the First_Class field exists and contains the value Yes; if
so, the ESQL copies the First_Class field to the output message. If the
Second_Class field does not exist in the input message, the ESQL checks
to see if the Second_Class field exists, and so on.

Example 4-14 Checking which delivery method the customer has selected

DECLARE deliveryPrice DECIMAL;
IF InputRoot.XML.Create_Book_Order_MSG.First_Class = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.First_Class =

InputRoot.XML.Create_Book_Order_MSG.First_Class;
END IF;

IF InputRoot.XML.Create_Book_Order_MSG.Second_Class = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.Second_Class =

InputRoot.XML.Create_Book_Order_MSG.Second_Class;
END IF;

IF InputRoot.XML.Create_Book_Order_MSG.Airmail = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.Airmail =

InputRoot.XML.Create_Book_Order_MSG.Airmail;
END IF;

f. While checking the delivery method, the message flow determines the
delivery price based on the delivery method that was selected by the
customer (Example 4-15).

Example 4-15 Determining the price of delivery based on which method was selected

DECLARE deliveryPrice DECIMAL;
IF InputRoot.XML.Create_Book_Order_MSG.First_Class = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.First_Class =

InputRoot.XML.Create_Book_Order_MSG.First_Class;
SET deliveryPrice = 18.00;
END IF;

IF InputRoot.XML.Create_Book_Order_MSG.Second_Class = ‘Yes’ THEN

 Chapter 4. Developing applications with ESQL 89

SET OutputRoot.XML.Book_Order_Response_MSG.Second_Class =
InputRoot.XML.Create_Book_Order_MSG.Second_Class;

SET deliveryPrice = 12.00;
END IF;

IF InputRoot.XML.Create_Book_Order_MSG.Airmail = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.Airmail =

InputRoot.XML.Create_Book_Order_MSG.Airmail;
SET deliveryPrice = 8.00;
END IF;

g. Count the number of ISBN fields in the message to count how many books
are listed in the order using the CARDINALITY statement. Then, for each
instance of the Book_Details element in the message, copy the ISBN and
Book_Price fields to the output message (Example 4-16). The output
message then contains the XML for the Book_Details field.

Example 4-16 Counting the books in the order and copying their details to the output
message

DECLARE bookCount INTEGER;
DECLARE numBooks INTEGER;
SET bookCount = 1;
SET numBooks =

CARDINALITY(InputRoot.XML.Create_Book_Order_MSG.Book_Details.ISBN[]);
WHILE bookCount<= numBooks DO

SET
OutputRoot.XML.Book_Order_Response_MSG.Book_Details[bookCount].ISBN =
InputRoot.XML.Create_Book_Order_MSG.Book_Details.ISBN[bookCount];

SET
OutputRoot.XML.Book_Order_Response_MSG.Book_Details[bookCount].Book_Price =
InputRoot.XML.Create_Book_Order_MSG.Book_Details.Book_Price[bookCount];

SET bookCount=bookCount+1;
END WHILE;

h. Calculate the total price of the books using the variable sumBookPrice.
Declare the sumBookPrice variable before the WHILE statement. At the
beginning of the WHILE statement, set the value of sumBookPrice to be
itself plus the price of the current book. The price of the current book is
cast to Decimal type so that it can be added to the decimal sumBookPrice.

Example 4-17 Calculating the total price of the books in the order

DECLARE bookCount INTEGER;
DECLARE numBooks INTEGER;
DECLARE sumBookPrice DECIMAL 0;
SET bookCount = 1;
SET numBooks =

CARDINALITY(InputRoot.XML.Create_Book_Order_MSG.Book_Details.ISBN[]);

90 WebSphere Message Broker Basics

WHILE bookCount<= numBooks DO
SET sumBookPrice = sumBookPrice +

CAST(InputRoot.XML.Create_Book_Order_MSG.Book_Details.Book_Price[bookCount] AS
DECIMAL);

SET
OutputRoot.XML.Book_Order_Response_MSG.Book_Details[bookCount].ISBN =
InputRoot.XML.Create_Book_Order_MSG.Book_Details.ISBN[bookCount];

SET
OutputRoot.XML.Book_Order_Response_MSG.Book_Details[bookCount].Book_Price =
InputRoot.XML.Create_Book_Order_MSG.Book_Details.Book_Price[bookCount];

SET bookCount = bookCount + 1;
END WHILE;

i. Finally, add three fields to the output message: The Delivery_Price, which
was calculated in Example 4-15 on page 89; the Total_Price for the order,
which was calculated in Example 4-16 on page 90; and the Order_Status,
which is assigned the value of Order Received (Example 4-18).

Example 4-18 Adding delivery price, total price, and order status to output message

SET OutputRoot.XML.Book_Order_Response_MSG.Delivery_Price = deliveryPrice;
SET OutputRoot.XML.Book_Order_Response_MSG.Total_Price = sumBookPrice;
SET OutputRoot.XML.Book_Order_Response_MSG.Order_Status = ‘Order Received’;

The complete ESQL module is shown in Example 4-19.

Example 4-19 The complete ESQL_Book_Order_Compute module

CREATE COMPUTE MODULE ESQL_Book_Order_Compute
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

CALL CopyMessageHeaders();
-- SET OutputRoot.XML.Book_Order_Response_MSG =

InputRoot.XML.Create_Book_Order_MSG;
SET OutputRoot.XML.Book_Order_Response_MSG.Customer_ID =

InputRoot.XML.Create_Book_Order_MSG.Customer_ID;
DECLARE input TIMESTAMP InputRoot.XML.Create_Book_Order_MSG.Order_Date;
DECLARE pattern CHARACTER ‘yyyyMMddHHmmss’;
DECLARE orderDate CHARACTER CAST(input AS CHARACTER FORMAT pattern);
SET OutputRoot.XML.Book_Order_Response_MSG.Order_Number =

InputRoot.XML.Create_Book_Order_MSG.Customer_ID || orderDate;
SET OutputRoot.XML.Book_Order_Response_MSG.Order_Date =

InputRoot.XML.Create_Book_Order_MSG.Order_Date;

DECLARE deliveryPrice DECIMAL;
IF InputRoot.XML.Create_Book_Order_MSG.First_Class = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.First_Class =

InputRoot.XML.Create_Book_Order_MSG.First_Class;
SET deliveryPrice = 18.00;

 Chapter 4. Developing applications with ESQL 91

END IF;

IF InputRoot.XML.Create_Book_Order_MSG.Second_Class = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.Second_Class =

InputRoot.XML.Create_Book_Order_MSG.Second_Class;
SET deliveryPrice = 12.00;
END IF;

IF InputRoot.XML.Create_Book_Order_MSG.Airmail = ‘Yes’ THEN
SET OutputRoot.XML.Book_Order_Response_MSG.Airmail =

InputRoot.XML.Create_Book_Order_MSG.Airmail;
SET deliveryPrice = 8.00;
END IF;

DECLARE bookCount INTEGER;
DECLARE numBooks INTEGER;
DECLARE sumBookPrice DECIMAL 0;
SET bookCount = 1;
SET numBooks =

CARDINALITY(InputRoot.XML.Create_Book_Order_MSG.Book_Details.ISBN[]);
WHILE bookCount<= numBooks DO

SET sumBookPrice = sumBookPrice +
CAST(InputRoot.XML.Create_Book_Order_MSG.Book_Details.Book_Price[bookCount] AS
DECIMAL);

SET
OutputRoot.XML.Book_Order_Response_MSG.Book_Details[bookCount].ISBN =
InputRoot.XML.Create_Book_Order_MSG.Book_Details.ISBN[bookCount];

SET
OutputRoot.XML.Book_Order_Response_MSG.Book_Details[bookCount].Book_Price =
InputRoot.XML.Create_Book_Order_MSG.Book_Details.Book_Price[bookCount];

SET bookCount = bookCount + 1;
END WHILE;

SET OutputRoot.XML.Book_Order_Response_MSG.Delivery_Price = deliveryPrice;
SET OutputRoot.XML.Book_Order_Response_MSG.Total_Price = sumBookPrice;
SET OutputRoot.XML.Book_Order_Response_MSG.Order_Status = ‘Order Received’;

-- CALL CopyEntireMessage();
RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN
DECLARE I INTEGER;
DECLARE J INTEGER;
SET I = 1;
SET J = CARDINALITY(InputRoot.*[]);
WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I = I + 1;

END WHILE;

92 WebSphere Message Broker Basics

END;

CREATE PROCEDURE CopyEntireMessage() BEGIN
SET OutputRoot = InputRoot;

END;
END MODULE;

6. Save the ESQL_Book_Order.esql and ESQL_Book_Order.msgflow files.

7. Create the following WebSphere MQ queues in WebSphere MQ Explorer on
the WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– ESQL_BOOKSTORE_BO_IN
– ESQL_BOOKSTORE_BO_OUT

Remember to enter the value of the Backout requeue queue property on the
ESQL_BOOKSTORE_BO_IN queue as DLQ.

You have created the ESQL_Book_Order message flow. Next, deploy and test
both the ESQL_Create_Customer_Account message flow and the
ESQL_Book_Order message flow.

4.3.4 Deploying and testing the ESQL Bookstore message flows
To test the ESQL Bookstore message flows, ESQL_Create_Customer_Account
and ESQL_Book_Order, you must deploy them to the broker.

To deploy the ESQL Bookstore message flows to the broker:

1. Switch to the Broker Administration perspective.

2. Create a bar file called ESQL_Bookstore.bar.

3. Add to the bar file the ESQL_Create_Customer_Account.msgflow file and the
ESQL_Book_Order.msgflow file, then save the bar file.

4. Create a new execution group on the WBRK6_DEFAULT_BROKER broker
called ESQL_Bookstore.

5. Ensure that the WBRK6_DEFAULT_BROKER broker and the
WBRK6_DEFAULT_CONFIGURATION_MANAGER Configuration Manager
are running, then deploy the ESQL_Bookstore.bar file to the
ESQL_Bookstore execution group.

In the Domains view, the two message flows are displayed under the
ESQL_Bookstore execution group.

6. Create a new enqueue file called ESQL_Create_Customer_Account.enqueue
and use it to put the message in Example 4-3 on page 80 on the
ESQL_BOOKSTORE_CCA_IN queue on the
WBRK6_DEFAULT_QUEUE_MANAGER queue manager. You can copy the

 Chapter 4. Developing applications with ESQL 93

message content from the Web material available to download (see
Appendix B, “Code” on page 319).

7. Use the Dequeue wizard to get the output message, which should contain the
same message data as the input message, from the
ESQL_BOOKSTORE_CCA_OUT queue on the same queue manager.

8. Check that the CUSTACCTB table in the BSTOREDB database has been
updated with the information from the input message:

a. Open the DB2 Control Center: Click Start → Programs → IBM DB2 →
General Administration Tools → Control Center.

b. In the left pane of the Control Center window, expand All Databases →
BSTOREDB, then click the Tables folder. All the tables in the
BSTOREDB database are listed in the top-right pane.

c. Double-click the CUSTACCTB table. The Open Table dialog opens,
displaying the data in the table.

The CUSTACCTB table should contain a row of data for each time you put
a message through the ESQL_Create_Customer_Account message flow.

d. Try changing some of the field values in the input message in the
ESQL_Create_Customer_Account.enqueue file (for example, change the
name of the customer and the customer’s password), then put the
message through the message flow. Another row is added to the
CUSTACCTB table with the values that you entered in the input message.

9. Create a new enqueue file called ESQL_Book_Order.enqueue in which to put
the message in Example 4-7 on page 85. You can copy the message content
from the Web material available to download (see Appendix B, “Code” on
page 319).

10.Use the Dequeue wizard to get the output message, which should contain the
message in Example 4-8 on page 86, from the
ESQL_BOOKSTORE_BO_OUT queue on the same queue manager.

11.Try changing the details in the input message in
ESQL_Book_Order.enqueue; for example, add another book to the order or
change the price of one of the books. Put the message through the message
flow and check the output message to see how your changes affected the
output message.

If the message does not output the correct message, or if the message flow
cannot process the message, see Chapter 8, “Troubleshooting and problem
determination” on page 241, for information about problem determination.

94 WebSphere Message Broker Basics

4.4 Summary
You have now created, deployed, and tested two message flow applications in
which you defined the logic of the message flows using ESQL.

In the next chapter we create the same message flow applications using Java in
a JavaCompute node instead of ESQL in Compute and Database nodes.

For more information about the built-in nodes that are available in WebSphere
Message Broker, see the product documentation: Developing applications →
Developing message flow applications → Designing a message flow →
Deciding which nodes to use.

 Chapter 4. Developing applications with ESQL 95

96 WebSphere Message Broker Basics

Chapter 5. Developing applications
with Java

This chapter describes how to develop message flow applications in the
Message Brokers Toolkit using Java to define the logic of the message flows.

The following topics are discussed:

� Defining the logic of a message flow using Java
� Java and the Java editor in the Message Brokers Toolkit
� Inserting data into a database using a message flow
� Transforming a message from one XML structure to another

5

© Copyright IBM Corp. 2005. All rights reserved. 97

5.1 Developing message flow applications with Java
A message flow application is a program that processes messages in the broker.
Message flow applications can transform messages between different formats,
generate new messages based on other messages, and route messages
according to the message’s content or according to how the message flow is
configured.

See 4.1.1, “Messages in WebSphere Message Broker” on page 48, for more
information about messages.

In Chapter 4, “Developing applications with ESQL” on page 47, you created two
message flow applications in which the logic of the message flows was defined
using ESQL. This chapter describes how to develop and define the logic of the
same message flow applications using Java.

5.1.1 Java and the Java editor
Java is an object-oriented language that you can use to define the logic of
message flows instead of ESQL. WebSphere Message Broker provides a library
of functions that make it easy to reference elements in messages and to
manipulate messages from a JavaCompute node. Each JavaCompute node
references a Java class that is stored in a special Java project, separate from the
Message Flow project that references it. Use the Java editor, in the Java
perspective of the Message Brokers Toolkit, to edit the Java class. The Java
editor validates your Java class and, while you are editing, you can get
assistance by pressing Ctrl+Spacebar (or by selecting Content Assist from the
Edit menu) to open the code assist window, as shown in Figure 5-1 on page 99.

Tip: To show line numbers in the Java editor, click Window → Preferences.
On the Java Æ Editor page of the Preferences dialog, select Show line
numbers.

98 WebSphere Message Broker Basics

Figure 5-1 The Java editor

The message flow applications described in this chapter perform the same tasks
as the message flow applications described in Chapter 4, “Developing
applications with ESQL” on page 47, but they use Java in JavaCompute nodes
instead of ESQL in Compute and Database nodes. The JavaCompute node can
be configured to perform the same range of tasks as the ESQL nodes (Compute,
Database, and Filter), including manipulating messages, accessing and updating
database tables, creating new messages, and filtering message content.

5.1.2 Scenarios described in this chapter
This chapter focuses on how to define the logic of message flows with Java. We
provide step-by-step instructions to create, deploy, and test two message flow
applications:

� Simple message flow application

The Simple message flow application demonstrates how to build a very basic
message flow from three nodes. The Java_Simple message flow takes an
XML input message from a WebSphere MQ queue, uses Java in a
JavaCompute node to build an XML output message that has the same
contents as the input message, then puts the output message on another
WebSphere MQ queue.

� Bookstore message flow application

 Chapter 5. Developing applications with Java 99

The Bookstore message flow application is based around the scenario of an
online bookstore. The first message flow, Java_Create_Customer_Account,
uses Java in a JavaCompute node to create accounts in a DB2 database
table for new customers who have registered their details with the bookstore,
for example, their contact details and delivery address. The second message
flow, Java_Book_Order, uses Java in a JavaCompute node to process an
order that has been submitted by an online customer and create a response
message to confirm the order with a unique order number.

You do not need skills or experience in coding Java to be able to create the
message flow applications in this chapter because all the code is provided in the
Web material described in Appendix B, “Code” on page 319.

5.1.3 Before you start
The instructions in this chapter assume that you have run the Default
Configuration wizard to create the default configuration. However, you can create
your own broker domain and substitute the component names when following
the instructions.

For more information about the Default Configuration wizard, see 3.5, “Verifying
the installation” on page 35. For more information about administering
components, see “Starting the components” on page 213.

Ensure that the broker and the Configuration Manager are running.

Starting the broker and the Configuration Manager
You cannot start components from the Message Brokers Toolkit; you must start
them from the command line. Enter all commands in a WebSphere Message
Broker Command Console, which is a command window with additional
WebSphere Message Broker Environment settings.

To start the Command Console, click Start → Programs → IBM WebSphere
Message Brokers 6.0 → Command Console.

To start the broker, enter the following command in the Command Console,
where WBRK6_DEFAULT_BROKER is the name of the broker in the Default
Configuration:

mqsistart WBRK6_DEFAULT_BROKER

To start the Configuration Manager, enter the following command in the
Command Console, where WBRK6_DEFAULT_CONFIGURATION_MANAGER
is the name of the Configuration Manager in the Default Configuration:

mqsistart WBRK6_DEFAULT_CONFIGURATION_MANAGER

100 WebSphere Message Broker Basics

Open the Windows Event Viewer to check that the components have started
without any problems. See 8.1.5, “Windows Event Viewer” on page 253, for
information about how to access and view entries in the Windows Event Viewer.

This chapter also assumes that you have already completed the exercises in
Chapter 4, “Developing applications with ESQL” on page 47. The exercises in
this chapter do not depend on those in Chapter 4, but less detail is given in the
instructions in this chapter. Refer to the step-by-step instructions in Chapter 4 if
you need more details when creating, deploying, and testing the Java versions of
the message flow applications.

5.2 Developing the Simple message flow application
Each message flow is stored in a message flow file with the extension .msgflow.
The message flow file is, in turn, stored in a Message Flow project. Any Java
classes (.java and, when compiled, .class) referenced from this project are
stored in a separate Java project.

When you have created the files that contain the message flow, add, connect,
and configure the message flow nodes in the Message Flow editor. Deploy the
message flow to the broker so that you can test it.

5.2.1 Creating the Java_Simple message flow
To create the files in which the Java_Simple message flow is stored:

1. In the Broker Application Development perspective, create a Message Flow
project called Java_Simple Message Flow Project.

2. Create a message flow called Java_Simple in the Java_Simple Message
Flow Project.

The Java_Simple.msgflow file is displayed in the Java_Simple Message Flow
Project in the Resource Navigator view. The Java_Simple.msgflow file opens
automatically in the Message Flow editor.

For detailed instructions on creating a message flow, see 4.2.1, “Creating the
ESQL_Simple message flow” on page 53.

Adding and connecting the Java_Simple nodes
Figure 5-2 on page 102 shows the finished Java_Simple message flow.

 Chapter 5. Developing applications with Java 101

Figure 5-2 The Java_Simple message flow

To create the Java_Simple message flow:

1. In the Message Flow editor, add the nodes listed in Table 5-1 to the canvas,.

2. Connect the nodes together, as shown in Table 5-2.

Table 5-1 The Java_Simple message flow nodes

Table 5-2 Node connections in the Java_Simple message flow

3. Save the Java_Simple.msgflow file.

Figure 5-2 shows how the Java_Simple message flow looks when all the nodes
are connected together, saved, and validated.

For detailed instructions on adding and connecting nodes, see 4.2.1, “Creating
the ESQL_Simple message flow” on page 53.

Node type Node name

MQInput JAVA_SIMPLE_IN

JavaCompute JavaCompute

MQOutput JAVA_SIMPLE_OUT

Node name Terminal Connect to this node

JAVA_SIMPLE_IN Out JavaCompute

JavaCompute Out JAVA_SIMPLE_OUT

102 WebSphere Message Broker Basics

5.2.2 Configuring the Java_Simple message flow
To configure the Java_Simple message flow:

1. In WebSphere MQ Explorer, create the following queues on the
WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– JAVA_SIMPLE_IN
– JAVA_SIMPLE_OUT

2. Set the Backout requeue queue of the JAVA_SIMPLE_IN queue to DLQ so
that if the message flow fails to process the message and rolls it back to the
JAVA_SIMPLE_IN queue, the message is put on the DLQ queue and does
not block the processing of subsequent messages. You do not need to create
another DLQ queue; the Java_Simple message flow can use the DLQ queue
that you created for the ESQL_Simple message flow.

3. Set the properties of the Java_Simple message flow nodes as shown in
Table 5-3.

Table 5-3 Node properties for the Java_Simple message flow

For detailed instructions on configuring a message flow, see 4.2.2, “Configuring
the ESQL_Simple message flow” on page 58.

5.2.3 Writing Java for the Java_Simple message flow
All of the Java that belongs to the message flow is stored in a Java project. In this
case, all of the Java for the Java_Simple message flow is stored in a Java project
called Java_SimpleJava.

Creating the Java project
To create the Java project for the Java_Simple message flow:

1. In the Message Flow editor, right-click the JavaCompute node, then click
Open Java. The New Java Compute Node Class wizard opens.

2. In the wizard, the project name is entered automatically: Java_Simple
Message Flow ProjectJava. Accept this name by clicking Next (Figure 5-3 on
page 104).

Node name Page Property Value

JAVA_SIMPLE_IN Basic Queue Name JAVA_SIMPLE_IN

Default Message Domain XML

JAVA_SIMPLE_O
UT

Basic Queue Name JAVA_SIMPLE_O
UT

 Chapter 5. Developing applications with Java 103

Figure 5-3 Accepting the name of the new Java project

3. Click Next twice to accept the default values (Figure 5-4 on page 105 and
Figure 5-5 on page 106). While developing this simple scenario, ignore
warnings in the wizard banner about not accepting the default package name.

104 WebSphere Message Broker Basics

Figure 5-4 Accepting default values for the Java build settings

 Chapter 5. Developing applications with Java 105

Figure 5-5 Accepting default values for the package name

4. On the Java Compute Node Class Template page of the wizard, click
Filtering message class, then click Finish (Figure 5-6 on page 107).

106 WebSphere Message Broker Basics

Figure 5-6 Selecting the class template to use

5. If you have not used the Java perspective previously, a message is displayed
to ask whether to switch to the Java perspective now. Click Yes. The
Message Brokers Toolkit switches to the Java perspective.

A new Java project, Java_Simple Message Flow ProjectJava, is displayed in
the Package Explorer view, which is where all the projects are displayed in
the Java perspective. If you switch back to the Broker Application
Development perspective, the new project is also displayed in the Resource
Navigator view.

6. Save the Java_Simple.msgflow file so that the file is validated. Now that the
Java_Simple_JavaCompute.java file has been created, all the errors in the
Java_Simple Message Flow Project should be resolved (Figure 5-7 on
page 108).

 Chapter 5. Developing applications with Java 107

Figure 5-7 The Package Explorer view in the Java perspective

The Java_Simple_JavaCompute class
The Java_Simple_JavaCompute.java file contains the Java class that is
referenced from the JavaCompute node Properties dialog. For each
JavaCompute node that you add to a message flow, create another Java class.

The Java class that is generated automatically in the
Java_Simple_JavaCompute.java file copies the content of the input message to
a new output message like the ESQL does in the ESQL_Simple message flow.

The Java_Simple_JavaCompute class configures the Java_Simple message
flow to perform the same message manipulations as the
ESQL_Simple_Compute module in the ESQL_Simple message flow (see
“Writing the ESQL_Simple_Compute ESQL module” on page 66). For example,
the line MbMessage message = assembly.getMessage(); in the
Java_Simple_JavaCompute Java class produces the same output as SET
OutputRoot = InputRoot in the ESQL_Simple_Compute ESQL module.

Do not edit the code in the Java_Simple_JavaCompute.java file; just save the
file.

5.2.4 Deploying and testing the Java_Simple message flow
To test the Java_Simple message flow, you must deploy it to the broker.

108 WebSphere Message Broker Basics

To deploy the Java_Simple message flow to the broker:

1. Switch to the Broker Administration perspective.

2. Create a bar file called Java_Simple.bar.

3. Add to the bar file the Java_Simple.msgflow file from Java_Simple Message
Flow Project, then save the bar file. The Java class is automatically pulled
into the bar file with the message flow file and compiled.

4. Create a new execution group on the WBRK6_DEFAULT_BROKER broker
called Java_Simple.

5. Ensure that the WBRK6_DEFAULT_BROKER and the
WBRK6_DEFAULT_CONFIGURATION_MANAGER Configuration Manager
are running, then deploy the Java_Simple.bar file to the Java_Simple
execution group.

In the Domains view, the Java_Simple message flow and the Java_Simple
Message Flow ProjectJava jar file are displayed under the Java_Simple
execution group.

6. Create a new message enqueue file called Java_Simple.enqueue in
Java_Simple Message Flows Project.

7. Edit the Java_Simple.enqueue file so that it connects to the
WBRK6_DEFAULT_QUEUE_MANAGER and puts the message on the
JAVA_SIMPLE_IN queue.

8. In the Message data field, enter the XML message content shown in
Example 5-1. The input message for the Java_Simple message flow is the
same as for the ESQL_Simple message flow. You can copy the message
content from the Web material available to download (see Appendix B, “Code”
on page 319).

Example 5-1 Input message content to test the Java_Simple message flow

Message>
<Body>

Hello, world!
</Body>

</Message>

9. Save the Java_Simple.enqueue file, then in the Enqueue editor, click Write
To queue. The message is put on the JAVA_SIMPLE_IN queue.

10.Use the Dequeue wizard to get the output message, which should contain the
same message data as the input message, from the JAVA_SIMPLE_OUT
queue on the same queue manager.

For detailed instructions, see 4.2.4, “Deploying and testing the ESQL_Simple
message flow” on page 67.

 Chapter 5. Developing applications with Java 109

If the Java_Simple message flow fails to process the message, see 4.2.5,
“Diagnosing problems with the ESQL_Simple message flow” on page 78, for how
to diagnose problems. Also see Chapter 8, “Troubleshooting and problem
determination” on page 241, for more information about problem
determination.

5.3 Developing the Bookstore scenario using Java
In 5.2, “Developing the Simple message flow application” on page 101, you
created the Simple scenario message flow application using Java to define the
logic of the message flow.

In this section we create a more complex message flow application that is based
around the scenario of an online bookstore. The Bookstore scenario message
flows process messages with different structures, and interact with databases to
update database tables.

The Bookstore scenario includes two message flows:

� The Java_Create_Customer_Account message flow

This message flow uses Java in a JavaCompute node to create accounts in a
DB2 database table for new customers who have registered their details with
the bookstore, for example, their contact details and delivery address.

� The Java_Book_Order message flow

This message flow uses Java in a JavaCompute node to process an order
that has been submitted by an online customer and create a response
message to confirm the order with a unique order number.

The message flow applications in this chapter use the same DB2 database that
you created for the ESQL Bookstore message flow applications. You do not need
to re-create the database for this chapter. For more information about the
database, see 4.3.1, “Creating the Bookstore scenario database” on page 80.

5.3.1 Creating the Java_Create_Customer_Account message flow
The input message to the Java_Create_Customer_Account message flow
contains the details of a customer who has registered with the online bookstore
Web site. The customer has provided information such as their name, contact

Restriction: If you find a problem in the Java class after you have deployed it,
you must delete all the contents of the bar file and save the bar file. Then add
the message flow files to the bar file again. This ensures that the bar file is
correctly updated with your changes to the Java class.

110 WebSphere Message Broker Basics

details, a delivery address, and payment details. Example 5-2 on page 111
shows the input message for the Java_Create_Customer_Account message
flow.

Example 5-2 The message for the Java_Create_Customer_Account message flow

<Create_Customer_Account_MSG>
 <Personal_Details>
 <First_Name>Peter</First_Name>
 <Last_Name>Smith</Last_Name>
 <User_ID>PSmith</User_ID>
 <Password>p45sw0rd</Password>
 </Personal_Details>
 <Email_Address>Peter.Smith@nowhere.com</Email_Address>
 <Daytime_Telephone>1234567890</Daytime_Telephone>
 <Evening_Telephone>1234567890</Evening_Telephone>
 <Shipping_Address>
 <Address_1>19 Green Street</Address_1>
 <Address_2>Littleton</Address_2>
 <Town>Southington</Town>
 <Postcode>SU29 8YT</Postcode>
 </Shipping_Address>
 <Billing_Address>
 <Address_1>19 Green Street</Address_1>
 <Address_2>Littleton</Address_2>
 <Town>Southington</Town>
 <Postcode>SU29 8YT</Postcode>
 </Billing_Address>
 <Payment_Details>
 <Card>VISA</Card>
 <Card_Number>1234567890</Card_Number>
 <Expiry_Date>12.09.2009</Expiry_Date>
 <Issue_Date>12.09.2004</Issue_Date>
 <Issue_Number>02</Issue_Number>
 <Security_Code>333</Security_Code>
 </Payment_Details>
</Create_Customer_Account_MSG>

All of the Java that you need for this message flow is available in the Web
material described in Appendix B, “Code” on page 319.

Figure 5-8 on page 112 shows the finished Java_Create_Customer_Account
message flow.

 Chapter 5. Developing applications with Java 111

Figure 5-8 The Java_Create_Customer_Account message flow

To create the Java_Create_Customer_Account message flow:

1. In the Broker Application Development perspective, create a Message Flow
project called Java_Bookstore Message Flow Project.

2. Create a message flow called Java_Create_Customer_Account in the
Java_Bookstore Message Flow Project. The
Java_Create_Customer_Account.msgflow file opens in the Message Flow
editor.

3. In the Message Flow editor, add the nodes listed in Table 5-4 to the canvas,
then connect the nodes together, as shown in Table 5-4, to build the
Java_Create_Customer_Account message flow (Table 5-5).

Table 5-4 The Java_Create_Customer_Account message flow nodes

Table 5-5 Node connections in the Java_Create_Customer_Account message flow

4. Set the properties of the nodes, as shown in Table 5-6 on page 113.

Node type Node name

MQInput JAVA_BOOKSTORE_CCA_IN

JavaCompute JavaCompute

MQOutput JAVA_BOOKSTORE_CCA_OUT

Node name Terminal Connect to this node

JAVA_BOOKSTORE_CCA
_IN

Out JavaCompute

JavaCompute Out JAVA_BOOKSTORE_CCA
_IN

112 WebSphere Message Broker Basics

Table 5-6 Node properties for the Java_Create_Customer_Account message flow

5. In the Message Flow editor, right-click the JavaCompute node, then click
Open Java to create the Java class that is referenced in the JavaCompute
node Properties dialog. The New Java Compute Node Class wizard opens.

6. In the wizard, accept the Project name by clicking Next.

7. On the Java Settings page of the wizard, click Next.

8. In the Package field, type com.ibm.itso.wmb6.basics.bookstore (Figure 5-9
on page 114), then click Next.

Node name Page Property Value

JAVA_BOOKSTOR
E_CCA_IN

Basic Queue Name JAVA_BOOKSTOR
E_CCA_IN

Default Message Domain XML

JAVA_BOOKSTOR
E_CCA_OUT

Basic Queue Name JAVA_BOOKSTOR
E_CCA_OUT

 Chapter 5. Developing applications with Java 113

Figure 5-9 Entering package name in New Java Compute Node Class wizard

9. On the Java Compute Node Class Template page of the wizard, click
Filtering message class, then click Finish. The Message Brokers Toolkit
switches to the Java perspective, the new Java_Bookstore Message Flow
ProjectJava project is displayed in the Package Explorer view, and the
Java_Create_Customer_Account_JavaCompute.java file opens in the Java
editor.

10.In the Java editor, edit the
Java_Create_Customer_Account_JavaCompute.java file by inserting Java
code between the \\Add user code below and \\End of user code
comments. The Java selects content from the input message and inserts it
into the CUSTACCTB table in the BSTOREDB database:

a. Use SQL to update the database table CUSTACCTB with information from
the message. Because you are writing in Java, you must create the SQL
statement, as shown in Example 5-3 on page 115. Each field in the

114 WebSphere Message Broker Basics

database table (for example, LAST_NAME, FIRST_NAME, USERID) is
listed in the order in which it occurs in the database.

Example 5-3 Using SQL to update the CUSTACCTB database table

MbSQLStatement state = createSQLStatement(“BSTOREDB”,
“INSERT INTO Database.CUSTACCTB(LAST_NAME, FIRST_NAME, USERID, PASSWORD,

EMAIL, DAY_PHONE, EVE_PHONE, SHIP_ADDRESS1, SHIP_ADDRESS2, SHIP_TOWN,
SHIP_POSTCODE, BILL_ADDRESS1, BILL_ADDRESS2, BILL_TOWN, BILL_POSTCODE,
CARDTYPE, CARDNUM, EXP_DATE, ISS_DATE, ISS_NUM, SECCODE) “ +

b. Specify each value from the message that is to be added to the
CUSTACCTB table. One value is inserted into each field of the database
table. Java specifies fields by navigating through the hierarchical structure
of the message from the root of the message body, which is known as
Body. Compare the values in the Java in Example 5-4 with the XML fields
in Example 5-2 on page 111 to see how the Java navigates the message
fields.

The order that the values are listed in the Java determines the field into
which each value is inserted. So the
InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.Last_
Name value is inserted into the LAST_NAME field of the CUSTACCTB
table and the
InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Secur
ity_Code value is inserted into the SECCODE field of the CUSTACCTB
table.

Example 5-4 Specifying the values to insert into the CUSTACCTB table

“VALUES(InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.Last_Name, “
+

“InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.First_Name, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.User_ID, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.Password, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Email_Address, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Daytime_Telephone, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Evening_Telephone, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Address_1, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Address_2, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Town, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Postcode, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Address_1, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Address_2, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Town, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Postcode, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Card, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Card_Number, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Expiry_Date, “ +

 Chapter 5. Developing applications with Java 115

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Issue_Date, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Issue_Number, “

+

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Security_Code);”);

Example 5-5 shows the final Java code to use in the
Java_Create_Customer_Account_JavaCompute class.

Example 5-5 Java for the Java_Create_Customer_Account_JavaCompute class

/*
 * Created on 24-Oct-2005
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package com.ibm.itso.wmb6.basics.bookstore;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.*;

/**
 * @author wmbuser
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class Java_Create_Customer_Account_JavaCompute extends MbJavaComputeNode
{

public void evaluate(MbMessageAssembly assembly) throws MbException {
MbOutputTerminal out = getOutputTerminal(“out”);
MbOutputTerminal alt = getOutputTerminal(“alternate”);

MbMessage message = assembly.getMessage();

// --
// Add user code below
MbMessage newMsg = new MbMessage(assembly.getMessage());
MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

String table = “dbTable”;

MbSQLStatement state = createSQLStatement(“BSTOREDB”,
“INSERT INTO Database.CUSTACCTB(LAST_NAME, FIRST_NAME, USERID, PASSWORD,

EMAIL, DAY_PHONE, EVE_PHONE, SHIP_ADDRESS1, SHIP_ADDRESS2, SHIP_TOWN,
SHIP_POSTCODE, BILL_ADDRESS1, BILL_ADDRESS2, BILL_TOWN, BILL_POSTCODE,
CARDTYPE, CARDNUM, EXP_DATE, ISS_DATE, ISS_NUM, SECCODE) “ +

116 WebSphere Message Broker Basics

“VALUES(InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.Last_Name, “
+

“InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.First_Name, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.User_ID, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Personal_Details.Password, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Email_Address, “ +
“InputRoot.XML.Create_Customer_Account_MSG.Daytime_Telephone, “

+
“InputRoot.XML.Create_Customer_Account_MSG.Evening_Telephone, “

+

“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Address_1, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Address_2, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Town, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Shipping_Address.Postcode, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Address_1, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Address_2, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Town, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Billing_Address.Postcode, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Card, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Card_Number, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Expiry_Date, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Issue_Date, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Issue_Number, “ +

“InputRoot.XML.Create_Customer_Account_MSG.Payment_Details.Security_Code);”);

state.setThrowExceptionOnDatabaseError(true);
state.setTreatWarningsAsErrors(true);
state.select(assembly, newAssembly);

int sqlCode = state.getSQLCode();
if (sqlCode != 0) {

 Chapter 5. Developing applications with Java 117

// Do error handling here
}

// End of user code
// --

// The following should only be changed
// if not propagating message to the ‘out’ terminal

out.propagate(assembly);
}

}

11.Save the Java_Create_Customer_Account_JavaCompute.java and
Java_Create_Customer_Account.msgflow files.

12.Create the following WebSphere MQ queues in WebSphere MQ Explorer on
the WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– JAVA_BOOKSTORE_CCA_IN
– JAVA_BOOKSTORE_CCA_OUT

Remember to enter the value of the Backout requeue queue property on the
JAVA_BOOKSTORE_CCA_IN queue as DLQ.

You have created the Java_Create_Customer_Account message flow, which is
one of the Bookstore scenario message flows. When you have created the other
message flow, Java_Book_Order, deploy and test them together.

5.3.2 Creating the Java_Book_Order message flow
The input message to the Java_Book_Order message flow contains an order
from a customer on the online bookstore Web site. The order contains the
customers’ identification and details of the books that they have ordered. When
the message flow processes the message, it creates a confirmation message
that contains details of the order, including a unique order number. Example 5-6
shows the input message for the Java_Book_Order message flow.

Example 5-6 The input message for the Java_Book_Order message flow

<Create_Book_Order_MSG>
 <Customer_ID>0123456789</Customer_ID>
 <Order_Date>2002-10-20 12:00:00</Order_Date>
 <Airmail>Yes</Airmail>
 <Book_Details>
 <ISBN>0123456789</ISBN>
 <Book_Price>15.99</Book_Price>
 <ISBN>1425112342</ISBN>
 <Book_Price>7.99</Book_Price>
 <ISBN>9736316345</ISBN>

118 WebSphere Message Broker Basics

 <Book_Price>25.99</Book_Price>
 </Book_Details>
</Create_Book_Order_MSG>

Example 5-7 shows the output message that the message flow generates based
on the input message shown in Example 5-6 on page 118.

Example 5-7 Book_Order_Response_MSG message for Java_Book_Order message
flow

<Book_Order_Response_MSG>
 <Customer_ID>0123456789</Customer_ID>
 <OrderNumber>012345678920011030220012</OrderNumber>
 <Order_Date>2002-10-20 12:00:00</Order_Date>
 <Book_Details>
 <ISBN>0123456789</ISBN>
 <Book_Price>15.99</Book_Price>
 <ISBN>1425112342</ISBN>
 <Book_Price>7.99</Book_Price>
 <ISBN>9736316345</ISBN>
 <Book_Price>25.99</Book_Price>
 </Book_Details>
 <Total_Price>49.97</Total_Price>
 <Order_Status>Order Received</Order_Status>
</Book_Order_Response_MSG>

All of the Java that you need for this message flow is available in the Web
material described in Appendix B, “Code” on page 319.

Figure 5-10 shows the finished Java_Book_Order message flow.

Figure 5-10 The Java_Book_Order message flow

To create the Java_Book_Order message flow:

1. Switch back to the Broker Application Development perspective.

 Chapter 5. Developing applications with Java 119

2. Create a message flow called Java_Book_Order in the Java_Bookstore
Message Flow Project. The Java_Book_Order.msgflow file opens in the
Message Flow editor.

3. In the Message Flow editor, add the nodes listed in Table 5-7 to the canvas,
then connect the nodes together, as shown in Table 5-8, to build the
Java_Book_Order message flow (Figure 5-10 on page 119).

Table 5-7 The Java_Book_Order message flow nodes

Table 5-8 Node connections in the Java_Book_Order message flow

4. Set the properties of the nodes, as shown in Table 5-9.

Table 5-9 Node properties for the Java_Book_Order message flow

5. Create the Java class that is referenced in the JavaCompute node:

a. In the Message Flow editor, open the Properties dialog for the
JavaCompute node. Notice that the Java class that is referenced by the

Node type Node name

MQInput JAVA_BOOKSTORE_BO_IN

JavaCompute JavaCompute

MQOutput JAVA_BOOKSTORE_BO_OUT

Node name Terminal Connect to this node

JAVA_BOOKSTORE_BO_
IN

Out JavaCompute

JavaCompute Out JAVA_BOOKSTORE_BO_
OUT

Node name Page Property Value

JAVA_BOOKSTOR
E_BO_IN

Basic Queue Name JAVA_BOOKSTOR
E_BO_IN

Default Message Domain XML

JavaCompute Basic Java Class com.ibm.itso.wmb6
.basics.bookstore.J
ava_Book_Order_
JavaCompute

JAVA_BOOKSTOR
E_BO_OUT

Basic Queue Name JAVA_BOOKSTOR
E_BO_OUT

120 WebSphere Message Broker Basics

node is called Java_Book_Order_JavaCompute. To create this Java class
in the same Java project as the Java class for the
Java_Create_Customer_Account message flow, you must create the Java
class manually.

b. Switch to the Java perspective.

c. In the Package Explorer view, right-click Java_Bookstore Message Flow
Project, then click New → Class. The New Java Class wizard opens.

d. Make sure that the value in the Source Folder field is Java_Bookstore
Message Flow Project.

e. In the Package field, browse for or type
com.ibm.itso.wmb6.basics.bookstore.

f. In the Name field, type Java_Book_Order_JavaCompute.

g. Click Finish. The new Java_Book_Order.java file opens in the Java editor
and is added to the package in the Java_Bookstore Message Flow
ProjectJava project.

The Java that is generated automatically in the Java_Book_Order.java file
gets the input message, creates a new message based on the input
message, and outputs the new message.

6. Edit the Java_Book_Order.java file to add the new fields for the output
message, and to make sure that the message flow can build the output
message from the decision and repeating elements.

a. Add import statements for the Java utilities that the message flow needs
(Example 5-8).

Example 5-8 Adding import statements for the Java utilities

import java.math.BigDecimal;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.MbElement;
import com.ibm.broker.plugin.MbException;
import com.ibm.broker.plugin.MbMessage;
import com.ibm.broker.plugin.MbMessageAssembly;
import com.ibm.broker.plugin.MbRecoverableException;
import com.ibm.broker.plugin.MbXML;

b. Copy the message headers, as shown in Example 5-9 on page 122,
where inMessage is the input message and outMessage is the output
message.

 Chapter 5. Developing applications with Java 121

Example 5-9 Copying the message headers from input message to output message

private void copyMessageHeaders(MbMessage inMessage, MbMessage outMessage)
throws MbException {

//
// Retrieve required elements
//
MbElement inputHeaderElement =

inMessage.getRootElement().getFirstChild();
MbElement outputRootElement = outMessage.getRootElement();

//
// Copy input message header information to output message root element,

if present
//
while((inputHeaderElement != null) &&

(inputHeaderElement.getNextSibling() != null)) {
outputRootElement.addAsLastChild(inputHeaderElement.copy());

 inputHeaderElement = inputHeaderElement.getNextSibling();
}

}

c. Calculate the Order_Number value, which is a concatenation of the
Customer_ID value and the Order_Date value (Example 5-10). In the
code, pCustomerID is the customer identifier and pOrderDate is the order
date.

Example 5-10 Calculating the value of Order_Number

private static final String ORDER_DATE_FORMAT = “yyyyMMddHHmmss”;

private String constructOrderNumber(MbElement pCustomerID, MbElement
pOrderDate) throws MbException {

 String orderNumber = null;

 //
 // Extract values
 //
 String customerIdValue = (String) pCustomerID.getValue();

 //
 // Format Date
 //
 SimpleDateFormat dateFormatter = new

SimpleDateFormat(ORDER_DATE_FORMAT);
 Date date = null;

 try {
 date = dateFormatter.parse((String)pOrderDate.getValue());

122 WebSphere Message Broker Basics

 } catch(ParseException pEx) {
 throw new MbRecoverableException(
 Java_Book_Order_JavaCompute.class.getName(),
 “constructOrderNumber()”,
 null,
 null,
 “Failed to parse Order_Date to Date object”,
 null);
 }

 String OrderDateString = dateFormatter.format(date);

 //
 // Construct order number
 //
 orderNumber = customerIdValue + OrderDateString;

 return orderNumber;
}

d. Calculate the delivery method (Delivery_Method) and delivery price
(Price) (Example 5-11). First class delivery is 18.00, second class delivery
is 12.00, and airmail is 08.00. In the code, pDeliveryMethod is the selected
delivery method. This uses IF statements to decide which Delivery Method
is used based on the content of the message.

Example 5-11 Calculating the delivery method and delivery price

/** Delivery Indicator - Yes - Constant */
private static final String DI_YES = “Yes”;

/** Delivery Method - First Class - Constant */
private static final String DM_1ST_CLASS = “First_Class”;

/** Delivery Method - First Class - Price Constant */
private static final BigDecimal DM_1ST_CLASS_PRICE = new BigDecimal(“18.00”);

/** Delivery Method - Second Class - Constant */
private static final String DM_2ND_CLASS = “Second_Class”;

/** Delivery Method - Second Class - Price Constant */
private static final BigDecimal DM_2ND_CLASS_PRICE = new BigDecimal(“12.00”);

/** Delivery Method - Airmail - Constant */
private static final String DM_AIRMAIL = “Airmail”;

/** Delivery Method - Airmail - Price Constant */
private static final BigDecimal DM_AIRMAIL_PRICE = new BigDecimal(“8.00”);

 Chapter 5. Developing applications with Java 123

private BigDecimal determineDeliveryPrice(MbElement pDeliveryMethod) throws
MbException {

 BigDecimal deliveryPrice = null;
 String deliveryMethod = (String) pDeliveryMethod.getName();
 String deliveryIndicator = (String) pDeliveryMethod.getValue();

 //
 // Calculate delivery cost only if indicator is Yes
 //
 if (deliveryIndicator.equals(DI_YES)) {

 if (deliveryMethod.equals(DM_1ST_CLASS)) {
 //
 // Delivery is First_Class (18.00)
 //
 deliveryPrice = DM_1ST_CLASS_PRICE;

 } else if (deliveryMethod.equals(DM_2ND_CLASS)) {
 //
 // Delivery is Second_Class (12.00)
 //
 deliveryPrice = DM_2ND_CLASS_PRICE;

 } else if (deliveryMethod.equals(DM_AIRMAIL)) {
 //
 // Delivery is Airmail (8.00)
 //
 deliveryPrice = DM_AIRMAIL_PRICE;
 }

 }

 return deliveryPrice;
}

e. Calculate the total price of the books (Example 5-12).

Example 5-12 Calculating the total price of the books in the order

/**
 * Calculates Book Total Price
 *
 * @param pBookPriceList the list of book prices to be totalled
 * @return the book total price
 * @throws MbException
 */
private BigDecimal calculateBookTotalPrice(List pBookPriceTotal) throws

MbException {
 MbElement priceElement = null;
 BigDecimal bookPrice = null;

124 WebSphere Message Broker Basics

 BigDecimal totalPrice = new BigDecimal(“0.00”);

 //
 // Iterate over all prices and calculate total
 //
 for (int i=0, imax=pBookPriceTotal.size(); i < imax; i++) {
 priceElement = (MbElement) pBookPriceTotal.get(i);
 bookPrice = new BigDecimal((String)priceElement.getValue());
 totalPrice = totalPrice.add(bookPrice);
 }

 return totalPrice;
}

The complete Java class is shown in Example 5-13.

Example 5-13 The complete Java_Book_Order_JavaCompute class

/*
 * Created on 8/10/2005
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package com.ibm.itso.wmb6.basics.bookstore;

import java.math.BigDecimal;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.List;

import com.ibm.broker.javacompute.MbJavaComputeNode;
import com.ibm.broker.plugin.MbElement;
import com.ibm.broker.plugin.MbException;
import com.ibm.broker.plugin.MbMessage;
import com.ibm.broker.plugin.MbMessageAssembly;
import com.ibm.broker.plugin.MbRecoverableException;
import com.ibm.broker.plugin.MbXML;

/**
 * WebSphere Message Broker Basics Redbook
 *
 * Application Development Chapter, Create Book Order Java Compute Node Example
 *
 * @see com.ibm.broker.javacompute.MbJavaComputeNode
 */
public class Java_Book_Order_JavaCompute extends MbJavaComputeNode {
 /** Delivery Indicator - Yes - Constant */

 Chapter 5. Developing applications with Java 125

 private static final String DI_YES = “Yes”;

 /** Delivery Method - First Class - Constant */
 private static final String DM_1ST_CLASS = “First_Class”;

 /** Delivery Method - First Class - Price Constant */
 private static final BigDecimal DM_1ST_CLASS_PRICE = new
BigDecimal(“18.00”);

 /** Delivery Method - Second Class - Constant */
 private static final String DM_2ND_CLASS = “Second_Class”;

 /** Delivery Method - Second Class - Price Constant */
 private static final BigDecimal DM_2ND_CLASS_PRICE = new
BigDecimal(“12.00”);

 /** Delivery Method - Airmail - Constant */
 private static final String DM_AIRMAIL = “Airmail”;

 /** Delivery Method - Airmail - Price Constant */
 private static final BigDecimal DM_AIRMAIL_PRICE = new BigDecimal(“8.00”);

 /** Order Date Format Constant */
 private static final String ORDER_DATE_FORMAT = “yyyyMMddHHmmss”;

 /** Order Status Message Constant */
 private static final String ORDER_STATUS_MSG = “Order Received”;

/**
 * Copies Message Headers from Input Message to Output Message
 *
 * @param inMessage the input message
 * @param outMessage the output message
 * @throws MbException
 */
private void copyMessageHeaders(MbMessage inMessage, MbMessage outMessage)

throws MbException {
//
// Retrieve required elements
//

 MbElement inputHeaderElement =
inMessage.getRootElement().getFirstChild();

MbElement outputRootElement = outMessage.getRootElement();

//
// Copy input message header information to output message root element,

if present
//

126 WebSphere Message Broker Basics

while((inputHeaderElement != null) &&
(inputHeaderElement.getNextSibling() != null)) {

outputRootElement.addAsLastChild(inputHeaderElement.copy());
 inputHeaderElement = inputHeaderElement.getNextSibling();

}
}

/**
 * Constructs the Order Number
 *
 * This is a combination of the Customer_ID and Order_Date
 *
 * @param pCustomerID the customer identifier
 * @param pOrderDate the order date
 * @return the order number
 * @throws MbException
 */
private String constructOrderNumber(MbElement pCustomerID, MbElement

pOrderDate) throws MbException {
 String orderNumber = null;

 //
 // Extract values
 //
 String customerIdValue = (String) pCustomerID.getValue();

 //
 // Format Date
 //
 SimpleDateFormat dateFormatter = new

SimpleDateFormat(ORDER_DATE_FORMAT);
 Date date = null;

 try {
 date = dateFormatter.parse((String)pOrderDate.getValue());

 } catch(ParseException pEx) {
 throw new MbRecoverableException(
 Java_Book_Order_JavaCompute.class.getName(),
 “constructOrderNumber()”,
 null,
 null,
 “Failed to parse Order_Date to Date object”,
 null);
 }

 String OrderDateString = dateFormatter.format(date);

 //

 Chapter 5. Developing applications with Java 127

 // Construct order number
 //
 orderNumber = customerIdValue + OrderDateString;

 return orderNumber;
}

/**
 * Determines the Delivery Price based on the Delivery Method specified:
 *
 * METHOD PRICE
 * ------------- -------
 * First_Class$18.00
 * Second_Class$12.00
 * Airmail$08.00
 *
 * If NULL is returned, this means an unknown delivery method was specified
 *
 * @param pDeliveryMethod the delivery method selected
 * @return the delivery price
 * @throws MbException
 */
private BigDecimal determineDeliveryPrice(MbElement pDeliveryMethod) throws

MbException {
 BigDecimal deliveryPrice = null;
 String deliveryMethod = (String) pDeliveryMethod.getName();
 String deliveryIndicator = (String) pDeliveryMethod.getValue();

 //
 // Calculate delivery cost only if indicator is Yes
 //
 if (deliveryIndicator.equals(DI_YES)) {

 if (deliveryMethod.equals(DM_1ST_CLASS)) {
 //
 // Delivery is First_Class (18.00)
 //
 deliveryPrice = DM_1ST_CLASS_PRICE;

 } else if (deliveryMethod.equals(DM_2ND_CLASS)) {
 //
 // Delivery is Second_Class (12.00)
 //
 deliveryPrice = DM_2ND_CLASS_PRICE;

 } else if (deliveryMethod.equals(DM_AIRMAIL)) {
 //
 // Delivery is Airmail (8.00)
 //
 deliveryPrice = DM_AIRMAIL_PRICE;

128 WebSphere Message Broker Basics

 }
 }

 return deliveryPrice;
}

/**
 * Calculates Book Total Price
 *
 * @param pBookPriceList the list of book prices to be totalled
 * @return the book total price
 * @throws MbException
 */
private BigDecimal calculateBookTotalPrice(List pBookPriceTotal) throws

MbException {
 MbElement priceElement = null;
 BigDecimal bookPrice = null;
 BigDecimal totalPrice = new BigDecimal(“0.00”);

 //
 // Iterate over all prices and calculate total
 //
 for (int i=0, imax=pBookPriceTotal.size(); i < imax; i++) {
 priceElement = (MbElement) pBookPriceTotal.get(i);
 bookPrice = new BigDecimal((String)priceElement.getValue());
 totalPrice = totalPrice.add(bookPrice);
 }

 return totalPrice;
}

/*
 * @see

com.ibm.broker.javacompute.MbJavaComputeNode#evaluate(com.ibm.broker.plugin.MbM
essageAssembly)

 */
public void evaluate(MbMessageAssembly inAssembly) throws MbException {

//
// Retrieve input message
//
MbMessage inMessage = inAssembly.getMessage();

//
// Construct empty output message
//
MbMessage outMessage = new MbMessage();

 MbMessageAssembly outAssembly = new MbMessageAssembly(inAssembly,
outMessage);

 Chapter 5. Developing applications with Java 129

 //
 // Build output message
 //
 copyMessageHeaders(inMessage, outMessage);

 MbElement inputRoot = inMessage.getRootElement();
 MbElement inputBody = inputRoot.getLastChild();
 MbElement outputRoot = outMessage.getRootElement();
 MbElement outputBody =

outputRoot.createElementAsLastChild(MbXML.PARSER_NAME);

 // Root element
 MbElement bookOrderResponseMsg =

outputBody.createElementAsLastChild(MbXML.ELEMENT, “Book_Order_Response_MSG”,
null);

 // Customer ID
 MbElement inputCustomerIdElement =

inputBody.getFirstElementByPath(“./Create_Book_Order_MSG/Customer_ID”);
 bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,

inputCustomerIdElement.getName(), inputCustomerIdElement.getValue());

 // Order Number
 MbElement inputOrderDateElement =

inputBody.getFirstElementByPath(“./Create_Book_Order_MSG/Order_Date”);
 String orderNumber = constructOrderNumber(inputCustomerIdElement,

inputOrderDateElement);
 bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,

“OrderNumber”, orderNumber);

 // Order Date
 bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,

inputOrderDateElement.getName(), inputOrderDateElement.getValue());

 // Delivery Method (First_Class/Second_Class/Airmail)
 MbElement inputDeliveryMethodElement =

inputOrderDateElement.getNextSibling();

 if (inputDeliveryMethodElement.getValue().equals(DI_YES)) {
 bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,

inputDeliveryMethodElement.getName(), inputDeliveryMethodElement.getValue());
 }

 // Book Details
 MbElement inputBookDetails =

inputBody.getFirstElementByPath(“./Create_Book_Order_MSG/Book_Details”);
 MbElement outputBookDetails =

bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,
inputBookDetails.getName(), null);

130 WebSphere Message Broker Basics

 outputBookDetails.copyElementTree(inputBookDetails);

 // Delivery Price
 BigDecimal deliveryPrice =

determineDeliveryPrice(inputDeliveryMethodElement);

 if (deliveryPrice != null) {

 bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,
“Delivery_Price”, deliveryPrice);

 }

 // Total Price
 List bookPricesList = (List)

inputBody.evaluateXPath(“./Create_Book_Order_MSG/Book_Details/Book_Price”);
 bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,

“Total_Price”, calculateBookTotalPrice(bookPricesList));

 // Order Status
 bookOrderResponseMsg.createElementAsLastChild(MbXML.ELEMENT,

“Order_Status”, ORDER_STATUS_MSG);

 //
 // Propagate message
 //
 getOutputTerminal(“out”).propagate(outAssembly);

 //
 // Clear out message
 //

outMessage.clearMessage();
}

}

7. Save the Java_Book_Order_JavaCompute.java and
Java_Book_Order.msgflow files.

8. Create the following WebSphere MQ queues in WebSphere MQ Explorer on
the WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– JAVA_BOOKSTORE_BO_IN
– JAVA_BOOKSTORE_BO_OUT

Remember to enter the value of the Backout requeue queue property on the
JAVA_BOOKSTORE_BO_IN queue as DLQ.

You have created the Java_Book_Order message flow. Next, deploy and test
both the Java_Create_Customer_Account message flow and the
Java_Book_Order message flow.

 Chapter 5. Developing applications with Java 131

5.3.3 Deploying and testing the Java Bookstore message flows
To test the Java Bookstore message flows, Java_Create_Customer_Account
and Java_Book_Order, you must deploy them to the broker.

To deploy the Java Bookstore message flows to the broker:

1. Switch to the Broker Administration perspective.

2. Create a bar file called Java_Bookstore.bar.

3. Add to the bar file the Java_Create_Customer_Account.msgflow file and the
Java_Book_Order.msgflow file, then save the bar file. The Java classes are
automatically compiled into a single jar file.

4. Create a new execution group on the WBRK6_DEFAULT_BROKER broker
called Java_Bookstore.

5. Ensure that the WBRK6_DEFAULT_BROKER broker and the
WBRK6_DEFAULT_CONFIGURATION_MANAGER Configuration Manager
are running, then deploy the Java_Bookstore.bar file to the Java_Bookstore
execution group.

In the Domains view, the two message flows and the two jar files (compiled
Java classes) are displayed under the Java_Bookstore execution group.

6. Create a new enqueue file called Java_Create_Customer_Account.enqueue
and use it to put the message in Example 5-2 on page 111 on the
JAVA_BOOKSTORE_CCA_IN queue on the
WBRK6_DEFAULT_QUEUE_MANAGER queue manager. You can copy the
message content from the Web material available to download (see
Appendix B, “Code” on page 319).

7. Use the Dequeue wizard to get the output message, which should contain the
same message data as the input message, from the
JAVA_BOOKSTORE_CCA_OUT queue on the same queue manager.

8. Use the DB2 Control Center to check that the CUSTACCTB table in the
BSTOREDB database has been updated with the information from the input
message. For instructions about using the DB2 Control Center see 4.3.4,
“Deploying and testing the ESQL Bookstore message flows” on page 93.

9. Try changing some of the field values in the input message in the
Java_Create_Customer_Account.enqueue file, then put the message through
the message flow. Another row is added to the CUSTACCTB table with the
values that you entered in the input message.

10.Create a new enqueue file called ESQL_Book_Order.enqueue to put the
message in Example 5-6 on page 118. You can copy the message content
from the Web material available to download (see Appendix B, “Code” on
page 319).

132 WebSphere Message Broker Basics

11.Use the Dequeue wizard to get the output message, which should contain the
message in Example 5-7 on page 119, from the
JAVA_BOOKSTORE_BO_OUT queue on the same queue manager.

12.Try changing the details in the input message in Java_Book_Order.enqueue;
for example, add another book to the order or change the price of one of the
books. Put the message through the message flow and check the output
message to see how your changes affected the output message.

If the message does not output the correct message, or if the message flow
cannot process the message, see Chapter 8, “Troubleshooting and problem
determination” on page 241, for information about problem determination.

5.4 Summary
You have now created, deployed, and tested two message flow applications in
which you defined the logic of the message flows using Java.

In the next chapter we create the same message flow applications using a
Mapping node instead of a JavaCompute node. We will configure the mapping
node using the graphical mapping tools in the Message Brokers Toolkit.

For more information about the built-in nodes that are available in WebSphere
Message Broker, see the product documentation: Developing applications →
Developing message flow applications → Designing a message flow →
Deciding which nodes to use.

 Chapter 5. Developing applications with Java 133

134 WebSphere Message Broker Basics

Chapter 6. Developing applications
with mappings

This chapter describes how to develop message flow applications in the
Message Brokers Toolkit using the graphical mapping tools to define the logic of
the message flows.

The following topics are discussed:

� Defining the logic of a message flow using mappings
� Message Mapping editor in the Message Brokers Toolkit
� Inserting data into a database using a message flow
� Transforming a message from one XML structure to another

6

© Copyright IBM Corp. 2005. All rights reserved. 135

6.1 Developing message flow applications with
mappings

A message flow application is a program that processes messages in the broker.
Message flow applications can transform messages between different formats,
generate new messages based on other messages, and route messages
according to the message’s content or according to how the message flow is
configured.

See 4.1.1, “Messages in WebSphere Message Broker” on page 48, for more
information about messages.

In Chapter 4, “Developing applications with ESQL” on page 47, you created two
message flow applications in which logic of the message flows was defined using
ESQL. In Chapter 5, “Developing applications with Java” on page 97, you
created the same message flow applications using Java. This chapter describes
how to develop and define the logic of the same message flow applications using
the graphical mapping tools in the Message Brokers Toolkit to create mappings.

In the ESQL and Java versions of the Simple and Bookstore message flow
applications, the XML messages that are used to test the message flows are
self-defining; that is, all the information about the structure of a message is held
within the message itself—in this case, in the form of XML tags. The Compute,
Database, and JavaCompute nodes process the XML input message by parsing
the XML structure of the message. However, it is possible to define the
message’s structure externally in a message set so that the message flow can
refer to this external definition while processing the message.

6.1.1 Message sets and message definitions
A message set is a template that defines the structure of the messages that are
processed by a message flow. A message definition is held externally to the
message in the message set, and, when the message set is deployed, the
definition is compiled into a dictionary. When the message flow is processing a
message, the message flow can refer to this dictionary, which is held in the
broker.

If the messages do not conform to the structure defined in the message set, the
message flow cannot process them. Having an external definition of the
message’s structure is essential if you want the message flow to validate the
message’s structure. There are several built-in nodes that can define some of the
logic for you if you do predefine messages in a message set. The Mapping node
is one of these and enables you to map fields from one message to another
without having to write the complex ESQL or Java that you would have to write
for a Compute node or JavaCompute node to perform the equivalent function.

136 WebSphere Message Broker Basics

Messages have both physical and logical formats. The physical format defines
the format or formats that the message flow can process, for example, XML or
Tagged Delimited Strings (TDS). You can edit the physical format of messages
in the Message Brokers Toolkit using the graphical Message Set editor, which is
shown in Figure 6-1.

Figure 6-1 The Message Set editor

The logical format defines the organization of the content in the message
body—the message structure. You can edit the logical format of messages in the
Message Brokers Toolkit using the graphical Message Definition editor, which is
shown in Figure 6-2 on page 138.

 Chapter 6. Developing applications with mappings 137

Figure 6-2 The Message Definition editor

The graphical mapping tools in the Message Brokers Toolkit require you to
create external definitions of the message structures so that you can easily drag
and drop fields between input and output messages and database table fields.

6.1.2 Mapping and the Message Mapping editor
Mappings are a way of manipulating messages and updating databases using
external message definitions and the graphical mapping tools in the Message
Brokers Toolkit.

Nodes like the Mapping node or DataInsert node in a message flow enable you
to load into the Message Mapping editor (Figure 6-3 on page 139) message
structures from the message set, or tables from a database. You can then simply
drag and drop elements from one message to another message or database
table instead of having to navigate the message structure using ESQL or Java.
You can create more complex mappings by editing the mappings using XPath.

138 WebSphere Message Broker Basics

Figure 6-3 The Message Mapping editor

6.1.3 Scenarios described in this chapter
This chapter focuses on how to define the logic of message flows with mappings.
We provide step-by-step instructions to create, deploy, and test two message
flow applications:

� Simple message flow application

The Simple message flow application demonstrates how to build a very basic
message flow from three nodes. The Mapping_Simple message flow takes an
XML input message from a WebSphere MQ queue, uses mappings in a
Mapping node to build an XML output message that has the same contents
as the input message, then puts the output message on another WebSphere
MQ queue.

� Bookstore message flow application

The Bookstore message flow application is based around the scenario of an
online bookstore. The first message flow,
Mapping_Create_Customer_Account, uses mappings in a DataInsert node to
create accounts in a DB2 database table for new customers who have

 Chapter 6. Developing applications with mappings 139

registered their details with the bookstore, for example, their contact details
and delivery address. The second message flow, Mapping_Book_Order,
uses mappings in a Mapping node to process an order that has been
submitted by an online customer and create a response message to confirm
the order with a unique order number.

You do not need skills or experience in creating mappings or in coding XPath to
be able to create the message flow applications in this chapter because all the
code is provided in the Web material described in Appendix B, “Code” on
page 319.

6.1.4 Before you start
The instructions in this chapter assume that you have run the Default
Configuration wizard to create the default configuration. However, you can create
your own broker domain and substitute the component names when following
the instructions.

For more information about the Default Configuration wizard see 3.5, “Verifying
the installation” on page 35. For more information about administering
components see “Starting the components” on page 213.

Ensure that the broker and the Configuration Manager are running.

Starting the broker and the Configuration Manager
You cannot start components from the Message Brokers Toolkit; you must start
them from the command line. Enter all commands in a WebSphere Message
Broker Command Console, which is a command window with additional
WebSphere Message Broker Environment settings.

To start the Command Console, click Start → Programs → IBM WebSphere
Message Brokers 6.0 → Command Console.

To start the broker, enter the following command in the Command Console,
where WBRK6_DEFAULT_BROKER is the name of the broker in the default
configuration:

mqsistart WBRK6_DEFAULT_BROKER

To start the Configuration Manager, enter the following command in the
Command Console, where WBRK6_DEFAULT_CONFIGURATION_MANAGER
is the name of the Configuration Manager in the default configuration:

mqsistart WBRK6_DEFAULT_CONFIGURATION_MANAGER

140 WebSphere Message Broker Basics

Open the Windows Event Viewer to check that the components have started
without any problems. See 8.1.5, “Windows Event Viewer” on page 253, for
information about how to access and view entries in the Windows Event Viewer.

This chapter also assumes that you have already completed the exercises in
Chapter 4, “Developing applications with ESQL” on page 47, and Chapter 5,
“Developing applications with Java” on page 97. The exercises in this chapter do
not depend on those in Chapter 4 and Chapter 5, but less detail is given in the
instructions in this chapter. Refer to the step-by-step instructions in Chapter 4 if
you need more details when creating, deploying, and testing the Java versions of
the message flow applications.

6.2 Developing the Simple message flow application
The Simple message flow application includes a message set with one message
definition and a message flow.

Each message definition file has the extension .mxsd. You can define more than
one message in the same message definition file, though you should do this only
if the messages are related, for example, if they share the same elements like
the input and output messages for the Mapping_Book_Order message flow. All
the message definition files are stored in a message set project, which also
contains a properties file for the message set (.msgset) that contains the
message definitions.

Each message flow is stored in a message flow file with the extension .msgflow.
The message flow file is, in turn, stored in a Message Flow project, along with
any associated message map files (.msgmap).

When you have created the message set and message flow, deploy the
message flow and message set to the broker so that you can test the application.

6.2.1 Defining the message model
The message model is the structure of the message that is defined in the
message definition file. You can create one or more message definition files to
represent different formats of the message model, such as XML, Tagged
Delimited String (TDS), or Custom Wire Format (CWF). For more information
about the different message formats that are supported in WebSphere Message
Broker, see the product documentation: Developing applications →
Developing message models → Message modelling overview → Physical
formats in the MRM domain.

 Chapter 6. Developing applications with mappings 141

Like the ESQL_Simple message flow and the Java_Simple message flow, the
content of the output message from the Mapping_Simple message flow is copied
from the input message. The Mapping_Simple message set contains one
message definition for XML messages because both the input message and the
output message for the Mapping_Simple message flow are in XML format.

Creating the message set
Before you can start modeling the message structure, create the message set
that holds the message definition:

1. In the Broker Application Development perspective, click File → New →
Message Set Project. The New Message Set Project wizard opens.

2. In the Project name field, type Mapping_Simple Message Set Project, then
click Next.

3. In the Message Set Name field, type Mapping_Simple_Message_Set, then click
Next.

4. Select the XML Wire Format Name check box, then type XML1 as the name
of the XML wire format.

5. Click Finish.

A new project called Mapping_Simple Message Set Project is displayed in the
Resource Navigator view. A message set called Mapping_Simple message set is
displayed in Mapping_Simple Message Set Project. The messageSet.msgset
file, in which you configure the message set, opens automatically in the Message
Set editor.

Configuring the message set
In case the Mapping_Simple message flow cannot deduce the format of the
message (in this case, XML) from the message header, the message flow uses
the default setting that is defined in the message set. This default format is set in
the message set properties file, messageSet.msgset.

To configure the default format of the message set:

1. Open messageSet.msgset in the Message Set editor.

2. In the Properties Hierarchy, click Message Set.

3. From the Default Wire Format menu, click XML1, then save the file.

Note: If, when you create a new message set project, two folders are created
in the message set project to represent the message set, click and reopen the
project so that the second folder disappears.

142 WebSphere Message Broker Basics

For more information about physical message formats, see the product
documentation at Developing applications → Developing message
models → Message modelling overview → Physical formats in the MRM
domain. For more information about the logical message model, see
Developing applications → Developing message models → Message
modelling overview → The message model.

For a useful example of how to model the same message in different physical
formats and transform the message from one physical format to another, explore
the Video Rental sample in the Message Brokers Toolkit Samples Gallery.

Defining the logical structure of the message
When you created the Mapping_Simple message set, you defined the physical
format of the message as XML. Now define the logical structure of the content
within the message.

The message for the Mapping_Simple message flow (see Example 6-1) is
constructed from just two elements, as shown in Figure 6-4.

Example 6-1 The message for the Mapping_Simple message flow

<Message>
 <Body>
 Hello, World!
 </Body>
</Message>

Figure 6-4 Logical structure of message for Mapping_Simple message flow

In Figure 6-4, the Body element represents the Body field in the message in
Example 6-1. In the message, the Body field contains the string Hello, World!.
Each element in a message is based on a data type, and elements such as the
Body element are based on simple types, such as string, integer, and so on. The
data in the Body field in the message has the string data type. In diagrams in this

Note: The term wire format is synonymous with the term physical format.

Message

Body

 Chapter 6. Developing applications with mappings 143

book, elements that are based on simple data types are shown in solid blocks of
color, like the Body element in Figure 6-4 on page 143.

Elements that contain other elements, such as the Message element, are not
based on simple types. Instead, they are based on complex types. Complex
types define the structure of a message and the relationship between the
elements and other parts of the message. In diagrams in this book, elements that
are based on complex types are shown as shaded rectangles, like the Message
element in Figure 6-4 on page 143. The Message element is based on the
MessageType complex type.

To define the logical structure of the message for the Mapping_Simple message
flow:

1. Create the Mapping_Simple message definition file in Mapping_Simple
Message Set Project:

a. In the Resource Navigator view, click Mapping_Simple Message Set
Project to highlight it.

b. Click File → New → Message Definition File. The New Message
Definition File wizard opens.

c. Click Create a new message definition file, then click Next.

d. Click Mapping_Simple Message Set to highlight it, then in the File Name
field, type Mapping_Simple.

e. Click Finish.

A new message definition file called Mapping_Simple.mxsd is displayed in
Mapping_Simple message set in the Resource Navigator view. The
Mapping_Simple.mxsd file opens automatically in the Message Definition
editor. The Resource Navigator view should look similar to Figure 6-5.

Figure 6-5 The Mapping_Simple message set resources

144 WebSphere Message Broker Basics

Mapping_Simple.mxsd is displayed in the default namespace of the
Mapping_Simple Message Set Project. For more information about
namespaces, see the product documentation: Developing applications →
Message modelling overview → The message model → Namespaces.

2. Add the main message element, which contains the rest of the message:

a. In Mapping_Simple.mxsd, right-click Messages, then click Add Message
(Figure 6-6). A message element, Message1, is added. Ensure that the
cursor is in the Message1 cell and rename Message1 to Message, as
shown in Figure 6-7 on page 146; then press Enter.

Figure 6-6 Adding message element to Mapping_Simple message definition

 Chapter 6. Developing applications with mappings 145

Figure 6-7 Renaming the message element

b. Expand Types to display the complex type, complexType1, which was
created automatically for the Message element.

c. Click complexType1 to highlight it, then click it again to place the cursor
in the cell.

d. Rename complexType1 to MessageType then press Enter (Figure 6-8).

Figure 6-8 Renaming complexType1 to MessageType

3. Add the Body element:

a. Right-click Elements and Attributes, then click Add Global Element
(Figure 6-9 on page 147).

Elements and Attributes expands to display the Message element and a
new element called globalElement1.

146 WebSphere Message Broker Basics

Figure 6-9 Adding a new element to the Mapping_Simple message definition

b. Rename globalElement1 to Body (Figure 6-10).

Figure 6-10 Renaming globalElement1 to Body

4. Add a reference from the Message element to the Body element to define the
order of the elements in the message:

a. In the Messages section, right-click Message, then click Add Element
Reference (Figure 6-11 on page 148).

 Chapter 6. Developing applications with mappings 147

Figure 6-11 Adding a reference from the Message element to the Body element

b. Click an empty cell to accept the first option, Body, in the list (Figure 6-12
on page 149).

The Body element is displayed under the Message element to show the
hierarchical arrangement of the elements in the message. In this case,
there are only two elements so the hierarchy is very simple.

148 WebSphere Message Broker Basics

Figure 6-12 The complete Mapping_Simple message definition

The value 1 in each of the Min Occurs and Max Occurs columns shows that
the Body element, or field, must be present in the message once. That is, you
cannot have multiple instances of the Body field in the message but you
cannot have zero instances of the Body field either.

5. Save the Mapping_Simple.mxsd file.

You have now created the message set for the Mapping_Simple message flow
application.

The next section describes how to create the Mapping_Simple message flow to
process messages that are structured as defined in the Mapping_Simple
message definition.

6.2.2 Creating the Mapping_Simple message flow
In the ESQL_Simple and Java_Simple message flows, the Compute and
JavaCompute nodes are capable of modifying the message and generating a
new message. However, all information about the message structure is held in
the message itself (the XML message is self-defining), so the logic in the node
must be defined, using ESQL or Java, to perform the processing on the
message. The more complex the processing, the more complex the ESQL or
Java must be, which makes the message flow more complex to maintain and
debug.

If the logical structure of the XML message is externally defined in a message
set, you do not have to write such complex ESQL or Java to manipulate the
message. The message flow refers, instead, to the external message set for
information about each message that it processes. If you create a message set,
you can use a Mapping node instead of the Compute or JavaCompute node.

 Chapter 6. Developing applications with mappings 149

The Mapping node enables you to load into the Message Mapping editor the
input message and output message structures, which in this case are the same,
from the message set. You can then simply drag and drop elements from the
input message onto elements in the output message to show which data should
be used from the input message to create the output message.

Mapping fields from one message to another is useful if, for example, the
business application that sends the message to the broker structures the data in
the message differently from the business application that will receive the
message. If the first business application positions the customer’s first name
before their last name but the second business application expects the
customer’s last name to precede their first name in the message, the Mapping
node can map the fields so that each business application can understand the
message.

To create the Mapping_Simple message flow, first create the files in which the
message flow is stored (see 4.2.1, “Creating the ESQL_Simple message flow” on
page 53):

1. In the Broker Application Development perspective, create a Message Flow
project called Mapping_Simple Message Flow Project.

2. Create a message flow called Mapping_Simple in Mapping_Simple Message
Flow Project.

The Mapping_Simple.msgflow file is displayed in Mapping_Simple Message
Flow Project in the Resource Navigator view. The Mapping_Simple.msgflow file
opens automatically in the Message Flow editor.

Adding and connecting the Mapping_Simple nodes
Figure 6-13 shows the finished Mapping_Simple message flow.

Figure 6-13 The Mapping_Simple message flow

To create the Mapping_Simple message flow:

1. In the Message Flow editor, add the nodes listed in Table 6-1 on page 151 to
the canvas.

150 WebSphere Message Broker Basics

2. Connect the nodes together, as shown in Table 6-2.

Table 6-1 The Mapping_Simple message flow nodes

Table 6-2 Node connections in the Mapping_Simple message flow

3. Save the Mapping_Simple.msgflow file.

For detailed instructions on creating a message flow, see 4.2.1, “Creating the
ESQL_Simple message flow” on page 53.

6.2.3 Configuring the Mapping_Simple message flow
To configure the Mapping_Simple message flow:

1. In WebSphere MQ Explorer, create the following queues on the
WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– MAPPING_SIMPLE_IN
– MAPPING_SIMPLE_OUT

2. Set the Backout requeue queue of the MAPPING_SIMPLE_IN queue to DLQ.

3. Set the properties of the Mapping_Simple message flow nodes as shown in
Table 6-3 on page 152.

Notice that because the message flow is using a message set, you must
configure the MQInput node, MAPPING_SIMPLE_IN, with information about
the message set and how to parse the messages (Figure 6-14 on page 152).
Select the details from the drop-down lists in the Properties dialog; the unique
message set identifier that is shown in the Message Set field is different from
the identifier shown in Figure 6-14 on page 152.

Node type Node name

MQInput MAPPING_SIMPLE_IN

Mapping Mapping

MQOutput MAPPING_SIMPLE_OUT

Node name Terminal Connect to this node

MAPPING_SIMPLE_IN Out Mapping

Mapping Out MAPPING_SIMPLE_OUT

 Chapter 6. Developing applications with mappings 151

Table 6-3 Node properties for the Mapping_Simple message flow

Figure 6-14 Configuring MQInput node with information about message set

For detailed instructions on configuring a message flow, see 4.2.2, “Configuring
the ESQL_Simple message flow” on page 58.

Node name Page Property Value

MAPPING_SIMPL
E_IN

Basic Queue Name MAPPING_SIMPL
E_IN

Default Message Domain MRM

Message Set Mapping_Simple
Message Set

Message Type Message

Message Format XML1

MAPPING_SIMPL
E_OUT

Basic Queue Name MAPPING_SIMPL
E_OUT

152 WebSphere Message Broker Basics

6.2.4 Creating the mappings for the Mapping_Simple message flow
The Mapping node enables you to drag and drop fields from the input message
to fields of the output message, to map the content of the input message to the
output message.

To create the message map file:

1. In Mapping_Simple.msgflow, right-click the Mapping node, then click Open
Map. The New Message Map wizard opens.

2. Accept the values on the first page of the wizard, then click Next
(Figure 6-15).

Figure 6-15 Naming the new message map for the Mapping_Simple message flow

3. Make sure that This map is called from the message flow and maps
properties and message body is selected, then click Next (Figure 6-16).

 Chapter 6. Developing applications with mappings 153

Figure 6-16 Selecting how the message map will be used

4. Clear the database records check box so that only the input message check
box is selected, then click Next (Figure 6-17 on page 155).

154 WebSphere Message Broker Basics

Figure 6-17 Select message flow to create output message from input message

5. On the Source and Target Mappables page, in both the Source and Target
panes, expand the Mapping_Simple Message Set then click Message to
highlight it (Figure 6-18 on page 156).

 Chapter 6. Developing applications with mappings 155

Figure 6-18 Select source and target message definitions

6. Click Finish.

The Mapping_Simple_Mapping.msgmap file is displayed in the
Mapping_Simple Message Flow Project in the Resource Navigator view, and
is automatically opened in the Message Mapping editor.

Now that you have created the message map file, create the mappings.

7. In the Message Mapping editor, expand $source - Properties and Message
and the $target - Properties and Message, as shown in Figure 6-19 on
page 157.

156 WebSphere Message Broker Basics

Figure 6-19 The Message Mapping editor

8. In the Source pane (see Figure 6-19 for the parts of the Message Mapping
editor), drag and drop Properties on to Properties in the Target pane
(Figure 6-20).

The properties of the message include the information that is held in the
message’s header. The Mapping_Simple message flow will create an output
message with the same header information as the input message.

Figure 6-20 Mapping input message properties to output message properties

9. In both the Source and the Target panes, expand Message (MessageType)
to display the message’s structure.

10.Drag and drop Message in the Source pane to Message in the Target pane
(Figure 6-21 on page 158).

 Chapter 6. Developing applications with mappings 157

Figure 6-21 Mapping the input message body to the output message body

11.Save the Mapping_Simple_Mapping.msgmap file.

You have completed the mappings for the Mapping_Simple message flow.

6.2.5 Deploying and testing the Mapping_Simple message flow
To test the Mapping_Simple message flow, you must deploy both the
Mapping_Simple message flow and the Mapping Simple message set to the
broker.

To deploy the Mapping_Simple message flow resources to the broker:

1. Switch to the Broker Administration perspective.

2. Create a bar file called Mapping_Simple.bar.

3. Add to the bar file the following resources (as shown in Figure 6-22 on
page 159):

– Mapping_Simple.msgflow file from Mapping_Simple Message Flow
Project

– Mapping_Simple message set

When the files have been added, the Mapping_Simple.bar file contains two
files:

– Mapping_Simple.cmf (the compiled message flow)

– Mapping_Simple Message Set.dictionary (the Dictionary file, which is
created from the message set)

4. Save the Mapping_Simple.bar file.

158 WebSphere Message Broker Basics

Figure 6-22 Adding the Mapping_Simple message flow resources to the bar file

5. Create a new execution group on the WBRK6_DEFAULT_BROKER broker
called Mapping_Simple.

6. Ensure that the WBRK6_DEFAULT_BROKER broker and the
WBRK6_DEFAULT_CONFIGURATION_MANAGER Configuration Manager
are running, then deploy the Mapping_Simple.bar file to the Mapping_Simple
execution group.

When the files have deployed to the broker, the Mapping_Simple message
flow and the Mapping_Simple message set are displayed in the Domains
view.

7. Create a new enqueue file called Mapping_Simple.enqueue in
Mapping_Simple Message Flows Project.

 Chapter 6. Developing applications with mappings 159

8. Edit the Mapping_Simple.enqueue file so that it connects to the
WBRK6_DEFAULT_QUEUE_MANAGER and puts the message in
Example 6-1 on page 143 on the MAPPING_SIMPLE_IN queue. You can
copy the message content from the Web material available to download (see
Appendix B, “Code” on page 319).

9. In the Message data field, type the XML message content shown in
Example 6-1 on page 143. The input message for the Mapping_Simple
message flow is the same as for the Java_Simple and ESQL_Simple
message flows.

10.Save the Mapping_Simple.enqueue file; then in the Enqueue editor, click
Write To queue. The message is put on the MAPPING_SIMPLE_IN queue.

11.Use the Dequeue wizard to get the output message, which should contain the
same message data as the input message, from the
MAPPING_SIMPLE_OUT queue on the same queue manager. Notice that
the message flow has inserted an XML declaration statement at the
beginning of the output message so that the XML in the message is well
formed (Example 6-2).

Example 6-2 The output message from the Mapping_Simple message flow

<?xml version=”1.0”?>
<Message>
 <Body>
 Hello, World!
 </Body>
</Message>

For detailed instructions on deploying and testing a message flow, see 4.2.4,
“Deploying and testing the ESQL_Simple message flow” on page 67, and 4.2.5,
“Diagnosing problems with the ESQL_Simple message flow” on page 78.

6.3 Developing the Bookstore scenario with mappings
In 6.2, “Developing the Simple message flow application” on page 141, you
created the Simple scenario message flow application using mappings to define
the logic of the message flow.

In this section we create a more complex message flow application that is based
around the scenario of an online bookstore. The Bookstore scenario message
flows process messages with different structures, and interact with databases to
update database tables.

160 WebSphere Message Broker Basics

The Bookstore scenario includes two message flows:

� The Mapping_Create_Customer_Account message flow

This message flow uses mappings in a DataInsert node to create accounts in
a DB2 database table for new customers who have registered their details
with the bookstore, for example, their contact details and delivery address.

� The Mapping_Book_Order message flow

This message flow uses mappings in a Mapping node to process an order
that has been submitted by an online customer and create a response
message to confirm the order with a unique order number.

The message flow applications in this chapter use the same DB2 database that
you created for the ESQL and Java Bookstore message flow applications. You
do not need to re-create the database for this chapter. For more information
about the database, see 4.3.1, “Creating the Bookstore scenario database” on
page 80.

6.3.1 Defining the message model
The message model is the structure of the message that is defined in the
message definition file. You can create one or more message definition files to
represent different formats of the message model, such as XML, Tagged
Delimited String (TDS), or Custom Wire Format (CWF). For more information
about the different message formats that are supported in WebSphere Business
Integration Message Broker, see the product documentation: Developing
applications → Developing message models → Message modelling
overview → Physical formats in the MRM domain.

The Bookstore message flow application includes three message definitions:

� The Create_Customer_Account_MSG message structure is for the input
message for the Mapping_Create_Customer_Account message flow.

� The Create_Book_Order_MSG message structure is for the input message
for the Mapping_Book_Order message flow.

� The Book_Order_Response_MSG message structure is for the output
message from the Mapping_Book_Order message flow.

The definition of the Create_Customer_Account_MSG message structure is
stored in the one message definition file (Create_Customer_Account.mxsd),
while the definitions of the Create_Book_Order_MSG and
Book_Order_Response_MSG message structures are stored together in another
message definition file (Book_Order.mxsd) because they share several
elements.

 Chapter 6. Developing applications with mappings 161

Creating and configuring the message set
To define the Mapping Bookstore messages, first create the message set project
files:

1. Create a message set project:

a. Click File → New → Message Set Project. The New Message Set
Project wizard opens.

b. In the Project name field, type Mapping_Bookstore Message Set Project,
then click Next.

c. In the Message Set Name field, type Bookstore Message Set, then click
Next.

d. Select the XML Wire Format Name check box, then type
XML_WIRE_FORMAT as the name of the XML wire format.

e. Click Finish.

A new project called Mapping_Bookstore Message Set Project is displayed in
the Resource Navigator view. A message set called Mapping_Bookstore
Message Set is displayed in Mapping_Bookstore Message Set Project. The
messageSet.msgset file (in which you configure the message set) opens
automatically in the Message Set editor.

2. Configure Mapping_Bookstore message set:

a. In the Message Set editor, in the Properties Hierarchy, click Message Set.

b. From the Default Wire Format list, select XML_WIRE_FORMAT, which is
the wire format that you created when you created the message set.

c. Save the messageSet.msgset file, then close it.

The Mapping_Bookstore message set is now configured to use the
XML_WIRE_FORMAT format by default.

If you need more detailed instructions when creating the message set and
message definitions, see 6.2.1, “Defining the message model” on page 141.

Defining the Create_Customer_Account message
An example message for the Mapping_Bookstore message flow is shown in
Example 6-3. Figure 6-23 on page 164 shows how the logical structure of the
message is constructed from a number of elements arranged hierarchically.

Example 6-3 The message for the Mapping_Create_Customer_Account message flow

<Create_Customer_Account_MSG>
 <Personal_Details>
 <First_Name>Peter</First_Name>
 <Last_Name>Smith</Last_Name>

162 WebSphere Message Broker Basics

 <User_ID>PSmith</User_ID>
 <Password>p45sw0rd</Password>
 </Personal_Details>
 <Email_Address>Peter.Smith@nowhere.com</Email_Address>
 <Daytime_Telephone>1234567890</Daytime_Telephone>
 <Evening_Telephone>1234567890</Evening_Telephone>
 <Shipping_Address>
 <Address_1>19 Green Street</Address_1>
 <Address_2>Littleton></Address_2>
 <Town>Southington</Town>
 <Postcode>SU29 8YT</Postcode>
 </Shipping_Address>
 <Billing_Address>
 <Address_1>19 Green Street</Address_1>
 <Address_2>Littleton></Address_2>
 <Town>Southington</Town>
 <Postcode>SU29 8YT</Postcode>
 </Billing_Address>
 <Payment_Details>
 <Card>VISA</Card>
 <Card_Number>1234567890</Card_Number>
 <Expiry_Date>2009-09-12</Expiry_Date>
 <Issue_Date>2009-09-12</Issue_Date>
 <Issue_Number>02</Issue_Number>
 <Security_Code>333</Security_Code>
 </Payment_Details>
</Create_Customer_Account_MSG>

 Chapter 6. Developing applications with mappings 163

Figure 6-23 The logical structure of the Create_Customer_Account message

In Figure 6-23, the element called Create_Customer_Account_MSG represents
the root of the message body, while all the other elements represent fields within
the message body. The shaded elements, which are based on complex types, do
not directly contain data in the message; all the unshaded elements are based
on simple data types, such as string or integer, and do not directly contain data in
the message.

To define the logical structure of the message for the
Mapping_Create_Customer_Account message flow:

1. Create a new message definition file called Create_Customer_Account in the
Mapping_Bookstore Message Set Project. The new message definition is
displayed in the project and opens automatically in the Message Definition
editor.

2. In the Message Definition editor, add the global elements listed in the Global
element name column of Table 6-4 on page 165.

Security_Code

Card

Address_1

First_Name

Password

Address_2 Postcode

Town

User_ID

Last_Name

Card_Number Issue_Date

Issue_NumberExpiry_Date

Payment_Details

Address_1

Address_2 Postcode

Town

Personal_Details

Create_Customer_Account_MSG

Email_Address Daytime_Telephone Evening_Telephone

Billing_AddressShipping_Address

164 WebSphere Message Broker Basics

Table 6-4 The global elements and types in the logical structure of Mapping_Create_Cu

3. Create the complex types for the elements shown shaded in Figure 6-23 on
page 164. See Table 6-4 for the names of the complex types.

a. In the Type column of the Message Definition editor, click the cell that
contains the type for the Personal_Details element to highlight it; the value
in the cell is, by default, xsd:string.

Global element name Type

First_Name xsd:string

Last_Name xsd:string

User_ID xsd:string

Password xsd:string

Email_Address xsd:string

Daytime_Telephone xsd:string

Evening_Telephone xsd:string

Address_1 xsd:string

Address_2 xsd:string

Town xsd:string

Postcode xsd:string

Card xsd:string

Card_Number xsd:string

Expiry_Date xsd:date

Issue_Date xsd:date

Issue_Number xsd:int

Security_Code xsd:int

Personal_Details Personal_Details

Shipping_Address Shipping_Address

Billing_Address Billing_Address

Payment_Details Payment_Details

Create_Customer_Account_MSG Create_Customer_Account_MSG

 Chapter 6. Developing applications with mappings 165

b. Click the cell again to display the drop-down list of available types.

c. Scroll to the end of the list, then click New Complex Type (Figure 6-24).
The New Complex Type dialog opens.

Figure 6-24 Creating a new complex type for the Personal_Details element

d. In the dialog, select the Create as Global Complex Type check box; in
the Name field, type the name of the complex type, Personal_Details,
then click OK (Figure 6-25).

Figure 6-25 Naming new global complex type for Personal_Details element

e. Repeat the steps to create new complex types for the Shipping_Address,
Billing_Address, Payment_Details, and Create_Customer_Account_MSG
elements, as shown in Table 6-4 on page 165.

166 WebSphere Message Broker Basics

4. Define the Issue_Number and Security_Code elements as being of type
integer:

a. In the Type column of the Message Definition editor, click the cell that
contains the type of the Issue_Number element to highlight the row, then
click the cell again to display the drop-down list of available types.

b. From the list, select xsd:int.

c. Repeat these steps to select the type of the Security_Code element.

5. Define the Expiry_Date and Issue_Date elements as being of type date:

a. In the Type column of the Message Definition editor, click the cell that
contains the type of the Expiry_Date element to highlight the row, then
click the cell again to display the drop-down list of available types.

b. From the list, select xsd:date.

c. Ensure that the Expiry_Date row is still highlighted, then click the
Properties tab at the bottom of the Message Definition editor.

d. On the Properties page, in the Properties Hierarchy, click Physical
Properties → XML_WIRE_FORMAT → Global Element.

e. In the DataTimeFormat field, type MM-yyyy to define the format of the date
in the Expiry_Date field of the message. Click the Overview tab to return
to the main page of the Message Definition editor.

f. Repeat these steps to select the type of the Issue_Date element; define
the format of the date to be the same as the date in the Expiry_Date field.

6. Organize the types to build the logical message structure:

a. Expand Types to display the complex types that you created.

b. Under the Types heading, right-click the Personal_Details complex type,
then click Add Element Reference (Figure 6-26 on page 168).

 Chapter 6. Developing applications with mappings 167

Figure 6-26 Adding an element reference to the Personal_Details complex type

c. A list of available element references is added below the Personal_Details
complex type.

d. From the list of element references, select First_Name.

e. Add the following element references to the Personal_Details complex
type, as shown in Figure 6-27 on page 169:

• Last_Name
• User_ID
• Password

f. Add the following element references to both the Shipping_Address and
Billing_Addess complex types, as shown in Figure 6-27 on page 169:

• Address_1
• Address_2
• Town
• Postcode

168 WebSphere Message Broker Basics

g. Add the following element references to the Payment_Details complex
type, as shown in Figure 6-27:

• Card
• Card_Number
• Expiry_Date
• Issue_Date
• Issue_Number
• Security_Code

h. Add the following element references to the
Create_Customer_Account_MSG complex type, as shown in Figure 6-27:

• Personal_Details
• Email_Address
• Daytime_Telephone
• Evening_Telephone
• Shipping_Address
• Billing_Address
• Payment_Details

Figure 6-27 The element references added to the complex types

 Chapter 6. Developing applications with mappings 169

Notice in the Min Occurs and Max Occurs columns that each row has a 1 in it.
These values constrain the number of times that the element, or field, can
exist in the message. Positive integers (for example, 1, 2, 3) indicate the
minimum and maximum number of times that the field can appear in the
message, while a 0 (zero) value in the Min Occurs cell indicates that the field
does not have to appear in the message.

7. In the Issue_Date row, click the Min Occurs cell and replace the 1 with a 0
(zero). Do the same for the Issue_Number element (Figure 6-28).

The Issue_Date and Issue_Number fields apply only to certain types of
payment cards and are not applicable to credit cards. Setting the Min Occurs
value to 0 means that these two fields do not have to exist in the message
unless the order contains the details of a payment card to which the fields
apply.

Figure 6-28 The Create_Customer_Account_MSG message structure

170 WebSphere Message Broker Basics

8. Create the root of the message body from the
Create_Customer_Account_MSG element:

a. Right-click Messages, then click Add Message From Global Element
(Figure 6-29). The Add Message From Global Element dialog opens.

Figure 6-29 Adding a message from the Create_Customer_Account element

b. In the dialog, select Create_Customer_Account_MSG from the list, then
click OK. The Create_Customer_Account_MSG element is added to the
Messages section of the Message Definition editor with its full hierarchy of
elements below it (Figure 6-30 on page 172).

 Chapter 6. Developing applications with mappings 171

Figure 6-30 The complete Create_Customer_Account_MSG message structure

9. Save the Create_Customer_Account.mxsd file.

You have now completed the definition of the Create_Customer_Account_MSG
message. Next, define the Create_Book_Order_MSG.

Defining the Create_Book_Order message
The Create_Book_Order message definition defines the structure of the input
message for the Mapping_Create_Book_Order message flow. The
Mapping_Create_Book_Order message flow transforms the input message to an
output message that has a different structure. After you have defined the
Create_Book_Order message, you will define the output message,
Book_Order_Response, in the same message definition file.

An example input message for the Mapping_Bookstore message flow is shown
in Example 6-4. Figure 6-31 on page 173 shows how the logical structure of the
Create_Book_Order message is constructed.

Example 6-4 The input message for the Mapping_Create_Book_Order message flow

<Create_Book_Order_MSG>

172 WebSphere Message Broker Basics

 <Customer_ID>0123456789</Customer_ID>
 <Order_Date>2002-10-20 12:00:00</Order_Date>
 <Airmail>Yes</Airmail>
 <Book_Details>
 <ISBN>0123456789</ISBN>
 <Book_Price>15.99</Book_Price>
 <ISBN>1425112342</ISBN>
 <Book_Price>7.99</Book_Price>
 <ISBN>9736316345</ISBN>
 <Book_Price>25.99</Book_Price>
 </Book_Details>
</Create_Book_Order_MSG>

Figure 6-31 The logical structure of the Create_Book_Order message

Example 6-5 shows the output message that the message flow generates based
on the input message shown in Example 6-4 on page 172. Figure 6-32 on
page 174 shows the logical structure of the Book_Order_Response message.
The message flow has added the XML declaration to the beginning of the
message.

Example 6-5 The Book_Order_Response_MSG message for the Mapping_Book_Order
message flow

<?xml version=”1.0”?>
<Book_Order_Response_MSG>
 <Customer_ID>0123456789</Customer_ID>
 <Order_Number>0123456789TIMESTAMP '2002-10-20
12:00:00'</Order_Number>
 <Order_Date>2002-10-20T12:00:00-08:00</Order_Date>
 <Airmail>Yes</Airmail>
 <Delivery_Price>8</Delivery_Price>
 <Book_Details>
 <ISBN>0123456789</ISBN>
 <Book_Price>15.99</Book_Price>
 <ISBN>1425112342</ISBN>
 <Book_Price>7.99</Book_Price>
 <ISBN>9736316345</ISBN>
 <Book_Price>25.99</Book_Price>
 </Book_Details>

Customer_ID

First_Class ISBN

Order_Date

Create_Book_Order_MSG

Book_Details

Second_Class

Delivery_Method

Airmail Book_Price

 Chapter 6. Developing applications with mappings 173

 <Total_Price>49.97</Total_Price>
 <Order_Status>Order Received</Order_Status>
</Book_Order_Response_MSG>

Figure 6-32 The logical structure of the Book_Order_Response message

In Figure 6-31 on page 173, the element called Delivery_Method is a group,
rather than an element; it represents a grouping of elements: First_Class,
Second_Class and Airmail. In a message that has the Create_Book_Order
structure, only one of these three elements can be present.

To define the logical structure of the input message for the Mapping_Book_Order
message flow:

1. Create a new message definition file called Book_Order in the
Mapping_Bookstore Message Set Project. The new message definition
opens in the Message Definition editor.

2. In the Message Definition editor, add the global elements and set their types
as listed in Table 6-5.

Table 6-5 The global elements and types in the Create_Book_Order message

Global element name Type

Customer_ID xsd:string

Order_Number xsd:string

Order_Date xsd:dateTime

ISBN xsd:string

Customer_ID

First_Class Airmail Book_Price

Order_Date

Book_Order_Response_MSG

Second_Class

Order_Number Delivery_Method

Order_Status

ISBN

Book_Details

Delivery_Price

Total_Price

174 WebSphere Message Broker Basics

3. Set the DateTime format of the value in the Order_Date field of the message:

a. Click the Order_Date element to highlight it, then click the Properties tab
at the bottom of the Message Mapping editor.

b. On the Properties page, in the Properties Hierarchy, click Physical
properties → XML_WIRE_FORMAT → Element Reference.

c. In the DateTime Format field, type:

yyyy-MM-dd HH-mm-ss

d. Click the Overview tab to return to the main page.

4. Create the Delivery_Method group:

a. In the Message Definition editor, right-click Groups, then click Add
Group. A new group, globalGroup1, is added.

b. Rename the group to Delivery_Method.

c. Add the following element references to the Delivery_Method group:

• First_Class
• Second_Class
• Airmail

d. For each of the element references, change the value in the Min Occurs
column to 0 (zero), as shown in Figure 6-33 on page 176. This means that
each of the delivery methods can be present in the message once, or not
at all.

Order_Status xsd:string

Book_Price xsd:decimal

Delivery_Price xsd:decimal

Total_Price xsd:decimal

First_Class xsd:string

Second_Class xsd:string

Airmail xsd:string

Global element name Type

 Chapter 6. Developing applications with mappings 175

Figure 6-33 Elements and group in the Create_Book_Order message definition

5. Change the properties of the Delivery_Method group so that only one of the
three delivery methods can be present in a message, that is, a bookstore
customer can select only one delivery method. To change the properties:

a. Click Delivery_Method to highlight it.

b. Click the Properties tab at the bottom of the Message Definition editor to
view the Properties page for the Delivery_Method group.

c. On the Properties page, ensure that Logical properties → Global Group
is selected in the Properties Hierarchy.

d. In the Composition field, select choice (Figure 6-34 on page 177).

e. Click the Overview tab to return to the main page.

176 WebSphere Message Broker Basics

Figure 6-34 Setting the Delivery_Method group’s properties

6. Define the structure for the list of books that the customer has ordered from
the bookstore:

a. Right-click Types, then click Add Complex Type. A new complex type,
complexType1, is added.

b. Rename complexType1 to Books.

c. Add the following element references to the Books complex type
(Figure 6-35):

• ISBN
• Book_Price

Figure 6-35 Adding the Books complex type and element references

d. Create a new global element called Book_Details and assign it type
Books:

i. Right-click Elements and Attributes, then click Add Global Element.

ii. Rename the element to Book_Details.

iii. On the Book_Details row, click the cell in the Type column, then from
the list click (More...) (Figure 6-36 on page 178). The Type Selection
dialog opens.

 Chapter 6. Developing applications with mappings 177

Figure 6-36 Assigning type Books to the Book_Details element

iv. In the dialog, click Books, then click OK (Figure 6-37).

Figure 6-37 Selecting the Books complex type

e. Set the properties of the Books complex type:

i. Under Types, click Books to highlight it.

178 WebSphere Message Broker Basics

ii. Click the Properties tab to view the properties of the Books complex
type.

iii. Ensure that Logical properties → Complex Type is selected in the
Properties Hierarchy.

iv. In the Content validation field, select Open Defined (Figure 6-38).

Figure 6-38 Setting the properties of the Books complex type

v. Click the Overview tab to return to the main page.

Now that the Book_Details element is associated with the Books complex
type, the elements that were referenced by the Books complex type are now
also referenced by the Book_Details element.

7. Create a message called Create_Book_Order_MSG and rename the
complex type that is automatically created to Create_Book_Order.

8. Add the following element and group references to
Create_Book_Order_MSG, as shown in Figure 6-39 on page 180:

– Customer_ID (element reference)
– Order_Date (element reference)
– Delivery_Method (group reference)
– Book_Details (element reference)

 Chapter 6. Developing applications with mappings 179

9. Edit the Book_Details element reference so that the Book_Details field can be
repeated an unlimited number of times in a single message:

a. On the Book_Details element reference row, click the cell in the Max
Occurs column.

b. Replace the 1 with -1. This means that the Book_Details field must appear
at least once in a message (this is defined by the 1 in the Min Occurs cell)
and can be repeated an infinite number of times in the same message.

Figure 6-39 The Create_Book_Order_MSG message structure

You have now defined the structure of the Create_Book_Order message, the
input message for the Mapping_Create_Book_Order message flow. Now define
the Book_Order_Response message, the output message from the
Mapping_Create_Book_Order message flow. Define the output message in the
same message definition file as the input message so that you can reuse some
of the same elements and the Delivery_Method group.

To define the Book_Order_Response message:

1. In the Book_Order.mxsd file in the Message Definition editor, add a new
message called Book_Order_Response_MSG, and rename its complex type
to Book_Order_Response.

2. Add the following element and group references to
Book_Order_Response_MSG:

– Customer_ID (element reference)
– Order_Number (element reference)
– Order_Date (element reference)
– Delivery_Method (group reference)
– Book_Details (element reference)
– Delivery_Price (element reference)
– Total_Price (element reference)
– Order_Status (element reference)

180 WebSphere Message Broker Basics

3. Edit the Book_Details element reference so that the Book_Details field can be
repeated an unlimited number of times in a single message:

a. On the Book_Details element reference row, click the cell in the Max
Occurs column.

b. Replace the 1 with -1. This means that the Book_Details field must appear
at least once in a message (this is defined by the 1 in the Min Occurs cell)
and can be repeated an infinite number of times in the same message.

Figure 6-40 Element and group references in Book_Order_Response message

You have now defined the Book_Order_Response message. Next, create the
Mapping_Create_Customer_Account and Mapping_Book_Order message flows
so that you can test the message definitions.

6.3.2 Creating the Create_Customer_Account message flow
The Mapping_Create_Customer_Account message flow uses mappings in a
DataInsert node to create accounts in a DB2 database table for new customers
who have registered their details with the bookstore, for example, their contact
details and delivery address.

Because you are mapping message elements to fields in a database table, the
following instructions include how to create a connection to the database from
the Message Brokers Toolkit. The files for the database connection are stored in
the Message Flow project.

 Chapter 6. Developing applications with mappings 181

To create the Mapping_Create_Customer_Account message flow, first create
the files in which the message flow is stored:

1. In the Broker Application Development perspective, create a Message Flow
project called Mapping_Bookstore Message Flow Project. When you have
entered the name for the project, click Next.

2. Select the Mapping_Bookstore Message Set Project check box. This
means that the message flows in this project can find the message set that
contains the message definitions.

3. Create a new relational database (RDB) connection file so that you can
access the Bookstore scenario database, BSTOREDB, from the Message
Brokers Toolkit:

a. Click File → New → RDB Definitions Files. The New Database
Connection wizard opens (Figure 6-41).

b. In the wizard, click Next.

Figure 6-41 Creating database connection files from Message Brokers Toolkit

182 WebSphere Message Broker Basics

c. Click Test Connection to ensure that the Message Brokers Toolkit can
connect to the BSTOREDB database (Figure 6-42). When the message is
displayed saying that the connection is successful, click OK.

Figure 6-42 Testing the connection to the BSTOREDB database

d. Click Finish. The Import RDB Definition wizard opens.

e. In the Project field, browse for or type: Mapping_Bookstore Message Flow
Project (Figure 6-43 on page 184). This is where the database
connection files are stored so that your Mapping_Bookstore message
flows can access them.

f. Click Finish.

 Chapter 6. Developing applications with mappings 183

Figure 6-43 Specifying where to store the database connection files

The database connection files are displayed in the Resource Navigator view
in Mapping_Bookstore Message Flow Project (Figure 6-44).

Figure 6-44 The database connection files in the Message Flow project

184 WebSphere Message Broker Basics

Adding, connecting, and configuring the nodes
Figure 6-45 shows the finished Mapping_Create_Customer_Account message
flow.

Figure 6-45 The Mapping_Create_Customer_Account message flow

To create the Mapping_Create_Customer_Account message flow:

1. Create a message flow called Mapping_Create_Customer_Account in the
Mapping_Bookstore Message Flow Project. The
Mapping_Create_Customer_Account.msgflow file opens in the Message
Flow editor.

2. In the Message Flow editor, add the nodes listed in Table 6-6 on page 186 to
the canvas.

3. Connect the nodes together, as shown in Table 6-7 on page 186.

Tip: If the database changes after you have created the connection to the
Message Brokers Toolkit:

1. Switch to the Data perspective.

2. In the Database Explorer view, ensure that the database is connected. If
not, right-click the connection, then click Reconnect.

3. In the Data Definition view, delete from the Message Flow project the
tables that have changed.

4. In the Database Explorer view, right-click the connection, then click
Refresh.

5. Right-click the table that has changed, then click Copy to Project.... The
Copy to Project wizard opens.

6. In the wizard, select the Message Flow project folder, then click Finish.

The table is added into the Data Definition view.

 Chapter 6. Developing applications with mappings 185

Table 6-6 The Mapping_Create_Customer_Account message flow nodes

Table 6-7 Node connections in the Mapping_Create_Customer_Account message flow

4. Set the properties of the nodes, as shown in Table 6-8.

Table 6-8 Node properties for the Mapping_Create_Customer_Account message flow

Creating the mappings for the message flow
The DataInsert node is similar to the Mapping node in that you can use the
graphical Message Mapping editor to create the mappings, but the DataInsert
node is specialized for inserting data into a database table.

Node type Node name

MQInput MAPPING_BOOKSTORE_CCA_IN

DataInsert DataInsert

MQOutput MAPPING_BOOKSTORE_CCA_OUT

Node name Terminal Connect to this node

MAPPING_BOOKSTORE
_CCA_IN

Out DataInsert

DataInsert Out MAPPING_BOOKSTORE
_CCA_OUT

Node name Page Property Value

MQInput Basic Queue Name MAPPING_BOOK
STORE_CCA_IN

Default Message Domain MRM

Message Set Mapping_Bookstor
e Message Set

Message Type Create_Customer_
Account_MSG

Message Format XML_WIRE_FOR
MAT

DataInsert Basic Data Source BSTOREDB

MQOutput Basic Queue Name MAPPING_BOOK
STORE_CCA_OU
T

186 WebSphere Message Broker Basics

To create the message map file:

1. In Mapping_Create_Customer_Account.msgflow, right-click the DataInsert
node, then click Open Map. The New Message Map wizard opens.

2. Accept the values on the first page of the wizard and click Next.

3. Ensure that This map is called from a message flow and maps properties
and message body is selected, then click Next.

4. Ensure that insert into a database table is selected, then click Next.

5. On the Source and Target Mappables page, in the Source pane, expand
Mapping_Bookstore Message Set, then select
Create_Customer_Account_MSG.

6. In the Target pane, expand BSTOREDB, expand the database schema
(probably your Windows user name), then click the CUSTACCTB table. This
is the table into which the Mapping_Create_Customer_Account message flow
inserts data from the input message.

7. Click Finish.

The new message map file, Mapping_Create_Customer_Account.msgmap,
opens in the Message Mapping editor. In the Message Mapping editor, map the
fields in the message (the source) to their equivalent fields in the CUSTACCTB
database table (the target).

To map the input message fields to the database table:

1. In the Source pane, expand the whole of the Create_Customer_Accout_MSG
message structure; in the Target pane, expand the database table.

2. Drag and drop the fields from the message in the Source pane to their
equivalent fields in the database table in the Target pane, as listed in Table
6-9, “Mapping the input message elements to the database table fields” on
page 187. Figure 6-46 on page 189 shows the completed mappings. Notice
that only the elements based on simple types (that is, the fields that directly
contain data) are mapped.

Table 6-9 Mapping the input message elements to the database table fields

Source element Target field

First_Name FIRST_NAME

Last_Name LAST_NAME

User_ID USERID

Password PASSWORD

Email_Address EMAIL

 Chapter 6. Developing applications with mappings 187

Daytime_Telephone DAY_PHONE

Evening_Telephone EVE_PHONE

Address_1 (under Shipping_Address) SHIP_ADDRESS1

Address_2 (under Shipping_Address) SHIP_ADDRESS2

Town (under Shipping_Address) SHIP_TOWN

Postcode (under Shipping_Address) SHIP_POSTCODE

Address_1 (under Billing_Address) BILL_ADDRESS1

Address_2 (under Billing_Address) BILL_ADDRESS2

Town (under Billing_Address) BILL_TOWN

Postcode (under Billing_Address) BILL_POSTCODE

Card CARDTYPE

Card_Number CARDNUM

Expiry_Date EXP_DATE

Issue_Date ISS_DATE

Issue_Number ISS_NUM

Security_Code SECCODE

Source element Target field

188 WebSphere Message Broker Basics

Figure 6-46 Mapping the input message elements to the database table fields

3. Save the Mapping_Create_Customer_Account.msgmap and
Mapping_Create_Customer_Account.msgflow files.

4. Create the following WebSphere MQ queues in WebSphere MQ Explorer on
the WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– MAPPING_BOOKSTORE_CCA_IN
– MAPPING_BOOKSTORE_CCA_OUT

Remember to enter the value of the Backout dequeue queue property on the
MAPPING_BOOKSTORE_CCA_IN queue as DLQ.

You have created the Mapping_Create_Customer_Account message flow. Next,
create the Mapping_Book_Order message flow.

6.3.3 Creating the Mapping_Book_Order message flow
The Mapping_Book_Order message flow uses mappings in a Mapping node to
process an order that has been submitted by an online customer. The order
contains the customer’s identification and details of the books that they have
ordered. When the message flow processes the message, it creates a

Tip: If you change a message definition after using it in a message map, the
message map is automatically updated with the changes.

 Chapter 6. Developing applications with mappings 189

confirmation message that contains details of the order, including a unique order
number.

To create the Mapping_Book_Order message flow, first create the file in which
the message flow is stored. In the Broker Application Development perspective,
create a message flow called Mapping_Book_Order in the Mapping_Bookstore
Message Flow Project.

Adding, connecting, and configuring nodes
Figure 6-47 shows the finished Mapping_Book_Order message flow.

Figure 6-47 The Mapping_Book_Order message flow

1. In the Message Flow editor, add the nodes listed in Table 6-10 to the canvas.

2. Connect the nodes together, as shown in Table 6-11.

Table 6-10 The Mapping_Book_Order message flow nodes

Table 6-11 Node connections in the Mapping_Book_Order message flow

3. Set the properties of the node as shown in Table 6-12 on page 191.

Node type Node name

MQInput MAPPING_BOOKSTORE_BO_IN

Mapping Mapping

MQOutput MAPPING_BOOKSTORE_BO_OUT

Node name Terminal Connect to this node

MAPPING_BOOKSTORE
_BO_IN

Out Mapping

Mapping Out MAPPING_BOOKSTORE
_BO_OUT

190 WebSphere Message Broker Basics

Table 6-12 Node properties for the Mapping_Book_Order message flow

Creating the mappings for the message flow
To create the message map file:

1. In Mapping_Book_Order.msgflow, right-click the Mapping node, then click
Open Map. The New Map wizard opens.

2. Accept the values on the first page of the wizard and click Next.

3. Ensure that This map is called from a message flow and maps properties
and message body is selected, then click Next.

4. Select the input message as the message source; clear the database records
check box, then click Next.

5. In the Source pane, expand Mapping_Bookstore Message Set, then select
Create_Book_Order_MSG. This is the input message to the message flow.

6. In the Target pane, expand Mapping_Bookstore Message Set, then select
Book_Order_Response_MSG. This is the output message from the
message flow.

7. Click Finish.

The new message map file, Mapping_Book_Order.msgmap, opens in the
Message Mapping editor. In the Message Mapping editor, map the fields in the
input message (the source) to fields in the output message (the target).

To map the input message fields to the output message fields:

1. In the Source pane, expand the whole of the Create_Book_Order_MSG
message structure, and in the Target pane, expand the whole of the
Book_Order_Response_MSG message structure (Figure 6-48 on page 192).

Node name Page Property Value

MQInput Basic Queue Name MAPPING_BOOK
STORE_BO_IN

Default Message Domain MRM

Message Set Mapping_Bookstor
e Message Set

Message Type Create_Book_Ord
er_MSG

Message Format XML

MQOutput Basic Queue Name MAPPING_BOOK
STORE_BO_OUT

 Chapter 6. Developing applications with mappings 191

2. In the Source pane, click Create_Book_Order_MSG.

3. In the Target pane, click Book_Order_Response_MSG.

4. Click Finish. The source and target structures are added to the Source and
Target panes, respectively, in the Message Mapping editor.

Figure 6-48 Selecting the source and target messages

5. In the Message Mapping editor copy message properties that are associated
with the message set from the input message to the output message:

a. Expand Properties in both the Source and Target panes.

b. Drag and drop the following properties from the Source pane to the Target
pane (Figure 6-49 on page 193):

• Map MessageSet to MessageSet
• Map MessageType to MessageType

Tip: When you are creating mappings, try to map the fields in the order in
which they occur in the message definition. You can go back and edit
earlier mappings, but the automatic generation of statements can change
later mappings. If this happens, make sure that you remove any
automatically generated statements that you do not need.

192 WebSphere Message Broker Basics

• Map MessageFormat to MessageFormat

Figure 6-49 Mapping properties from input message to output message

c. Edit the MessageType property so that the message type in the output
message is the Book_Order_Response_MSG message:

i. In the spreadsheet at the bottom of the Message Mapping editor, click
the cell in the Value column for the MessageType property.

ii. In the cell, type ‘Book_Order_Response_MSG’ (including the single
quotation marks). You can either type directly into the spreadsheet cell,
or you can highlight the cell and then type in the Expression editor
above the spreadsheet (Figure 6-50 on page 194).

Notice, in the top part of the Message Mapping editor, that the line
between the MessageType property in the source and target has
disappeared now, although small colored arrows are still displayed to
show that there is an association despite not being a direct mapping.

 Chapter 6. Developing applications with mappings 193

Figure 6-50 Edit the value of the MessageType property in the output message

6. Map each delivery method so that whatever the delivery method, the correct
choice goes to the output message. Do this using if and condition statements
in the spreadsheet:

a. Expand the Create_Book_Order_MSG message in the Source pane, and
the Book_Order_Response_MSG in the Target pane.

b. Drag and drop each of the delivery methods from the source to the target
so that First_Class maps to First_Class, Second_Class maps to
Second_Class, and Airmail maps to Airmail (Figure 6-51 on page 195).

The three delivery method elements are displayed in the spreadsheet with
if and condition statements. By default, the condition is fn:false() so you
need change it so that the expression is to check if the message is true.
That is, if the message contains the First_Class field, the message flow
can determine that the customer selected the first class delivery method; if
the First_Class field is not present, the message flow checks for whether
the Second_Class field is present, and so on.

c. In the spreadsheet, click the Value cell on the condition row for First_Class
(the cell currently contains the value fn:false()).

194 WebSphere Message Broker Basics

d. Delete the existing value so that the cell is empty.

Figure 6-51 Mapping the delivery methods

e. Drag and drop the First_Class element from the Source pane to the
Expression editor, then edit the expression by adding =’Yes’ to the end of
it, and press Enter to create the following expression (as shown in
Figure 6-52):

$source/Create_Book_Order_MSG/First_Class='Yes'

Figure 6-52 Editing the condition expression for the First_Class element

f. Edit the condition expressions in the same way for the Second_Class and
Airmail elements so that the spreadsheet matches the one shown in
Figure 6-53 on page 196.

 Chapter 6. Developing applications with mappings 195

Figure 6-53 The complete delivery method mappings in the spreadsheet

7. Drag and drop the Book_Details element from the Source pane to the Target
pane to create a for statement. This means that for each Book_Details
element that is present in the input message, the ISBN and Book_Price
elements are copied to the output message.

Ensure that the Book_Details, ISBN, and Book_Price elements are arranged
as shown in Figure 6-54.

Figure 6-54 Creating a for statement for the Book_Details element

8. Map the Order_ID and Order_Date elements in the input message to their
equivalent elements in the output message, as shown in Figure 6-55 on
page 197:

a. Drag and drop the Order_ID element from the Source pane to the
Order_ID element in the Target pane.

b. Drag and drop the Order_Date element from the Source pane to the
Order_Date element in the Target pane.

9. Map the Order_ID and Order_Date elements in the input message to the
Order_Number element in the output message. The values in the Order_ID
and Order_Date fields of the input message are concatenated to make a
unique order number, which is put in the Order_Number field.

a. In the Target pane, right-click the Order_Number element, then click
Enter Expression.

b. In the Expression editor, press Ctrl+Spacebar to display the code assist
list.

c. From the list, click fn:concat. The expression fn:concat() is added to the
the Expression editor.

196 WebSphere Message Broker Basics

d. Drag and drop Customer_ID from the Source pane to between the
parentheses:

fn:concat($source/Create_Book_Order_MSG/Customer_ID)

e. Add a comma (,) between the $source statement and the closing
parenthesis:

fn:concat($source/Create_Book_Order_MSG/Customer_ID,)

f. Drag and drop Order_Date from the source pane to between the comma
and the closing parenthesis (Figure 6-55.):

fn:concat($source/Create_Book_Order_MSG/Customer_ID,$source/Create_Book_
Order_MSG/Order_Date)

Figure 6-55 Writing expression to create unique order number in output message

10.Change the cost of the delivery depending on the delivery type:

a. In the Target pane, right-click Delivery_Price, then click Enter
Expression.

b. In the spreadsheet, right-click Delivery_Price, then click If. An if and
condition statement is added to the spreadsheet to contain the
Delivery_Price element.

c. In the spreadsheet, right-click condition (in the row above
Delivery_Price), then click Else. An else statement and another
Delivery_Price entry are added to the spreadsheet.

d. Right-click the second Delivery_Price entry, then click If. An if and
condition statement is added within the else statement to contain the
second Delivery_Price entry.

e. Right-click condition (above the second Delivery_Price entry), then click
Else. An else statement and a third Delivery_Price entry are added to the
spreadsheet.

f. Right-click the third Delivery_Price entry, then click If. An if and condition
statement are added within the else statement to contain the third
Delivery_Price entry.

 Chapter 6. Developing applications with mappings 197

Figure 6-56 shows how the Delivery_Price entries in the spreadsheet
should now look.

Figure 6-56 Entering the statements for determining delivery price

g. In the first cell (as shown in Figure 6-56) that contains fn:true(), delete
the contents of the cell, then drag and drop First_Class from the source
pane to the Expression editor.

h. In the Expression editor, add =’Yes’ to the end of the expression, then
press Enter:

$source/Create_Book_Order_MSG/First_Class='Yes'

i. Replace the other two fn:true() expressions in the same way for the
Second_Class and Airmail elements.

j. Click the Value cell for the first Delivery_Price entry and type 18.00.

k. Click the Value cell for the second Delivery_Price entry and type 12.00.

l. Click the Value cell for the third Delivery_Price entry and type 8.00.

Figure 6-57 shows the completed expressions in the spreadsheet.

Figure 6-57 Completing the delivery price expressions

Figure 6-60 on page 201 shows the spreadsheet in the finished mapping file.

198 WebSphere Message Broker Basics

11.Calculate the total price (Total_Price) of the book order:

a. In the Target pane, right-click the Total_Price element, then click Enter
Expression.

b. In the Expression editor, press Ctrl+Spacebar to open the Content Assist
menu, then from the menu click fn:sum, as shown in Figure 6-58.

c. Drag and drop the Book_Price element from the Source pane to between
the parentheses in the Expression editor:

fn:sum($source/Create_Book_Order_MSG/Book_Details/Book_Price)

Figure 6-58 Selecting the fn:sum function from Content Assist

d. Press Enter to update the spreadsheet, as shown in Figure 6-59 on
page 200.

 Chapter 6. Developing applications with mappings 199

Figure 6-59 Creating the function to calculate the total price of the books ordered

12.Insert the value of the Order_Status element in the output message:

a. In the Target pane, right-click the Order_Status element, then click Enter
Expression.

b. In the Expression editor, type ‘Order received’ (including the single
quotation marks), then press Enter to update the spreadsheet, as shown
in Figure 6-60 on page 201.

200 WebSphere Message Broker Basics

Figure 6-60 The finished mapping file for the Mapping_Book_Order message flow

13.Save the Mapping_Book_Order.msgmap file.

14.Create the following WebSphere MQ queues in WebSphere MQ Explorer on
the WBRK6_DEFAULT_QUEUE_MANAGER queue manager:

– MAPPING_BOOKSTORE_BO_IN
– MAPPING_BOOKSTORE_BO_OUT

15.Remember to enter the value of the Backout dequeue queue property on the
MAPPING_BOOKSTORE_BO_IN queue as DLQ.

Next, deploy and test the Mapping_Create_Customer_Account and
Mapping_Book_Order message flows.

 Chapter 6. Developing applications with mappings 201

6.3.4 Deploying and testing the Mapping Bookstore message flows
To test the Mapping Bookstore message flows,
Mapping_Create_Customer_Account and Mapping_Book_Order, you must
deploy them to the broker.

To deploy the Mapping Bookstore message flows to the broker:

1. Switch to the Broker Administration perspective.

2. Create a bar file called Mapping_Bookstore.bar.

3. Add to the bar file the Mapping_Create_Customer_Account.msgflow file the
Mapping_Book_Order.msgflow file, and the Mapping_Bookstore Message
Set Project, then save the bar file.

4. Create a new execution group on the WBRK6_DEFAULT_BROKER broker
called Mapping_Bookstore.

5. Ensure that the WBRK6_DEFAULT_BROKER broker and the
WBRK6_DEFAULT_CONFIGURATION_MANAGER Configuration Manager
are running, then deploy the Mapping_Bookstore.bar file to the
Mapping_Bookstore execution group.

In the Domains view, the two message flows and the message set are
displayed under the Mapping_Bookstore execution group.

6. Create a new enqueue file called
Mapping_Create_Customer_Account.enqueue and use it to put the message
in Example 6-3 on page 162 on the MAPPING_BOOKSTORE_CCA_IN
queue on the WBRK6_DEFAULT_QUEUE_MANAGER queue manager. You
can copy the message content from the Web material available to download
(see Appendix B, “Code” on page 319).

7. Use the Dequeue wizard to get the output message, which should contain the
same message data as the input message, from the
MAPPING_BOOKSTORE_CCA_OUT queue on the same queue manager.

8. Use the DB2 Control Center to check that the CUSTACCTB table in the
BSTOREDB database has been updated with the information from the input
message. For instructions about using the DB2 Control Center, see 4.3.4,
“Deploying and testing the ESQL Bookstore message flows” on page 93.

9. Try changing some of the field values in the input message in the
Mapping_Create_Customer_Account.enqueue file, then put the message
through the message flow. Another row is added to the CUSTACCTB table
with the values that you entered in the input message.

10.Create a new enqueue file called Mapping_Book_Order.enqueue to put the
message in Example 6-4 on page 172 on the
MAPPING_BOOKSTORE_BO_IN queue on the
WBRK6_DEFAULT_QUEUE_MANAGER queue manager.

202 WebSphere Message Broker Basics

11.Use the Dequeue wizard to get the output message, which should contain the
message in example, from the MAPPING_BOOKSTORE_BO_OUT queue on
the same queue manager.

12.Try changing the details in the input message in Java_Book_Order.enqueue;
for example, add another book to the order or change the price of one of the
books. Put the message through the message flow and check the output
message to see how your changes affected the output message.

If the message does not output the correct message, or if the message flow
cannot process the message, see Chapter 8, “Troubleshooting and problem
determination” on page 241, for information about problem determination.

6.4 Summary
You have now created, deployed, and tested two message flow applications in
which you defined the logic of the message flows using mappings.

For more information about the built-in nodes available in WebSphere Message
Broker, see the product documentation: Developing applications →
Developing message flow applications → Designing a message flow →
Deciding which nodes to use.

 Chapter 6. Developing applications with mappings 203

204 WebSphere Message Broker Basics

Chapter 7. Administration

This chapter provides an overview of the administration of the runtime
environment for WebSphere Message Broker using the Message Brokers Toolkit
and the command-line interface. The following topics are discussed in this
chapter:

� Creating a broker domain
� Adding a remote broker to a domain
� Deploying message flow applications
� Adding version information to resources
� Publish\subscribe

7

© Copyright IBM Corp. 2005. All rights reserved. 205

7.1 WebSphere Message Broker administration
WebSphere Message Broker is comprised of two principle parts, a development
time for the creation of message flows, message sets, and other message flow
application resources; and a runtime, which contains the components for running
those message flow applications created in the Message Brokers Toolkit.
Administration in WebSphere Message Broker is concerned with the creation,
control, maintenance, and deletion of objects in the runtime, including deployed
message flow applications.

Although a great deal of the administration of WebSphere Message Broker can
be performed in the Message Brokers Toolkit, some administration can only be
performed on the command line. Information is given in this chapter about
performing administration using both of these methods where appropriate as well
as some brief discussion of the third alternative, the Configuration Manager
Proxy API.

This chapter provides a background to the administration of WebSphere
Message Broker and related concepts such as message flow application
deployment, adding version information to message flow application resources,
and the basics of publish/subscribe.

7.2 Creating a broker domain
A broker domain is one or more brokers that share a common configuration,
together with a single Configuration Manager that controls them. A broker
domain is used to test and run message flow applications such as message
flows and message sets. The broker domain is often described as the
WebSphere Message Broker’s runtime environment. In addition to the
Configuration Manager and brokers, the broker domain may also contain a User
Name Server if authentication is required for publish\subscribe applications.

Information about the resources and components in the broker domain are
stored in the Configuration Manager in an internal repository. The broker domain
can be administered in one of three ways, of which only two are covered in this
chapter. The ways of administering the broker domain are as follows:

� Using the Broker Administration perspective
� Using the Command Console
� Using the Configuration Manager Proxy API

The first stage of creating a broker domain is to create the required components.
The most basic configuration uses a broker and a Configuration Manager that
share the same queue manager. This chapter details the step-by-step

206 WebSphere Message Broker Basics

instructions that are required to create a simple broker domain manually. This
requires the manual creation of a number of prerequisite resources such as
databases and WebSphere MQ resources.

Alternatively, it is possible to create a simple broker domain using the Default
Configuration wizard, as discussed in “Creating the default configuration” on
page 35. This wizard automatically creates all of the components and
prerequisite resources, and is designed to enable users to use WebSphere
Message Broker quickly, for example, to verify that installation was successful or
to run the WebSphere Message Broker samples.

It is recommended that a manual broker domain configuration is created for
purposes other than install verification or running the WebSphere Message
Broker samples.

7.2.1 Resources required for a simple broker domain
For the most basic broker domain the following resources are required

� WebSphere MQ queue manager
� A TCP/IP listener created on the queue manager
� A database for the broker using one of the following supported databases:

– Derby (Windows only)
– DB2 Universal Database
– Oracle
– Sybase
– SQL Server (Windows only)

� An Open Database Connectivity (ODBC) connection for the broker database
� A broker
� A Configuration Manager
� A domain connection

7.3 Steps for manually creating a simple broker domain
This section gives instructions for creating the resources and components
required for a simple broker domain. This configuration is enhanced in the
following sections to provide a more complex broker domain with multiple
brokers.

7.3.1 WebSphere MQ resources
In the most basic broker domain configuration, the broker and the Configuration
Manager share the same queue manager. This makes setting up WebSphere
MQ simpler, as there is no requirement to create channels to handle

 Chapter 7. Administration 207

communication between multiple queue managers. However, in a production
environment it is recommended that each component has its own queue
manager defined for performance reasons.

There are a number of ways to create WebSphere MQ components, either on
the command line using programs and utilities such as runmqsc, or using the
WebSphere MQ Explorer graphical interface. For this simple broker domain
configuration, the WebSphere MQ Explorer is used to demonstrate how to create
the required WebSphere MQ resources. The WebSphere MQ Explorer must be
installed in order to use the instructions provided in this chapter. Refer to
“Installing WebSphere MQ” on page 31 for instructions for installing the
WebSphere MQ Explorer as part of an Express install or install the WebSphere
MQ Explorer and IBM WebSphere Eclipse Platform v3.0 from the Advanced
Panel on the LaunchPad.

Note that the commands that are used to create a broker and Configuration
Manager create a queue manager if it does not already exist, but they do not
create a listener on the queue manager. A listener is required on the
Configuration Manager’s queue manager to create a broker domain. Also, these
commands do not set up channels that are required for broker domains with
multiple brokers, or where the components in the domain do not share the same
queue manager.

A listener is required on the queue manager to monitor incoming network
connections and enable communication between the Message Brokers Toolkit
and the Configuration Manager. A unique port number, not in use by any other
application, needs to be specified for the listener. The default port number for a
queue manager in WebSphere MQ is 1414, and this port is in use if a default
queue manager has been created on the machine, for example, if WebSphere
MQ has been configured with the FirstSteps tool. The WebSphere Message
Broker Default Configuration uses port 2414 for the listener on the default queue
manager.

The exact range of port numbers that is available to the user is dependent upon
the hardware and software environment of the system, and different port
numbers may be in use. There are a variety of applications that can be used to
view the port usage on the machine, such as the netstat command. Use the
following command to display a list of active TCP connections and ports on a
Windows machine:

netstat -a

The ports in use are displayed as numbers after the machine name and a colon
under the Local Address column. When choosing a port for the queue manager,
select a port that is not already in use.

208 WebSphere Message Broker Basics

An option is provided to create a listener at the same time as a queue manager
using the Create Queue Manager wizard in the WebSphere MQ Explorer.

Creating a queue manager
A queue manager is required as the mechanism for transport between the
broker, Configuration Manager, User Name Server, and the Message Brokers
Toolkit. Use the following instructions to create a new queue manager using the
WebSphere MQ Explorer.

1. Select Start → Programs → IBM WebSphere MQ → WebSphere MQ
Explorer to open the WebSphere MQ Explorer.

2. In the WebSphere MQ Explorer - Navigator view, right-click Queue
Managers.

3. Select New → Queue Manager.... Figure 7-1 shows step 1 of the Create
Queue Manager wizard.

Figure 7-1 Create Queue Manager Wizard (Step 1)

 Chapter 7. Administration 209

4. Enter a name for the queue manager in the Queue manager name field, for
example, BROKER1_QUEUE_MANAGER. Note that the name of the queue
manager is case sensitive.

5. Add a name for a dead letter queue for the queue manager in the Dead letter
queue field, for example, DEAD_LETTER_QUEUE.

6. Click Next, accepting the defaults until step 4, “Enter listener options,” in the
wizard.

Step 4 of the Create Queue Manager wizard enables the creation of the
listener.

7. At step 4 ensure that Create listener configured for TCP/IP is checked

8. Enter a value for the Listen on port number section. This needs to be a port
that is not currently in use by another application. An example port number is
4444. This panel can be seen in Figure 7-2.

Figure 7-2 Create Queue Manager Wizard (Step 4)

9. Click Finish.

210 WebSphere Message Broker Basics

The new queue manager is displayed in the WebSphere MQ Explorer -
Navigator view. The listener can be viewed by expanding the folders beneath the
queue manager and selecting the listeners folder.

Creating a Configuration Manager
A queue manager has been created before the Configuration Manager in order
to define a listener at the same time. Alternatively, the Configuration Manager
could be created first and the listener added to the queue manager later.

All WebSphere Message Broker commands that have the ‘mqsi’ prefix need to
be run in the WebSphere Message Broker Command Console on Windows. This
is a command prompt that has been configured with the required environment for
WebSphere Message Broker.

The Command Console can be accessed from the Start menu by selecting
Start → Programs → IBM WebSphere Message Brokers 6.0 → Command
Console.

Multiple Configuration Managers can be created on a machine, but only one
Configuration Manager exists in a broker domain. Follow the instructions below
to create a Configuration Manager called CONFIG_MANAGER.

1. Enter the following command syntax in the Command Console to create the
Configuration Manager:

mqsicreateconfigmgr CONFIG_MANAGER -i userid -a password -q queuename

The parameters required for the mqsicreateconfigmgr command are:

– -i is a user ID (which must have Administrator authority and be a member
of the mqbrkrs security group).

– -a is the matching password.

Note: Names of WebSphere Message Broker components used in
WebSphere Message Broker commands on Windows are not case sensitive.
However, the flags used in the commands are case sensitive. For example, -n
is not the same as -N. BIP8001 errors are generated if the wrong flags are
specified on the command.

The names of WebSphere MQ components are case sensitive. For example,
the following commands create two different queue managers; even though
they have the same name, they are a different case:

mqsicreatebroker BROKER1 -i userid -a password -q QM1 -n BRKDB1
mqsicreatebroker BROKER2 -i userid -a password -q qm1 -n BRKDB1

 Chapter 7. Administration 211

– -q is the name of the queue manager, for example,
BROKER1_QUEUE_MANAGER.

If the queue manager specified with the -q parameter does not already exist, it is
created by the mqsicreateconfigmgr command. When the command has
completed successfully a BIP8071 message is displayed in the Command
Console.

If any errors occur during the creation of the Configuration Manager refer to
Chapter 8, “Troubleshooting and problem determination” on page 241, for
assistance with resolving the problem.

Creating a broker database
The next step in creating the broker domain is to create a database for the
broker. This database is used to store configuration data for the broker. The
broker database can be created in any of the supported broker database
types—DB2 Universal Database,Oracle, Sybase, and SQL Server.

In addition, on Windows it is possible to use an embedded database known as
Derby. This database is provided for verification, evaluation, and test purposes,
and is not supported for use on production systems.

For Windows systems with DB2 Universal Database or Derby, two commands
are provided to create and delete the databases for the broker.

For the other supported database types or other platforms, the databases must
be created manually.

Use the instructions below to create a broker database on DB2 Universal
Database or Derby.

1. Open the Command Console by selecting Start → Programs → IBM
WebSphere Message Brokers 6.0 → Command Console.

2. At the command prompt type the following command to create a database for
the broker called BRKDB1:

mqsicreatedb BRKDB1 -i userid -a password -e dbtype

The parameters required for this command are as follows:

– -i is a user ID (which must have Administrator authority).

– -a is the matching password.

– -e is the database type. This parameter is optional and defaults to Derby if
it is not specified. The options for the database type are ‘DB2’ or ‘Derby’.

This initiates the creation of a new database called BRKDB1, which may take
some time. After creating the database an Open Database Connectivity (ODBC)

212 WebSphere Message Broker Basics

connection is created for the database. The ODBC connection enables the
broker to communicate with the database. Messages are displayed on the
command prompt to show the status of the command.

Creating a broker
When the broker database has been created, the mqsicreatebroker command
can be run in the Command Console to create a new broker. The
mqsicreatebroker command has similar syntax to the mqsicreateconfigmgr
command. Use the instructions below to create a broker called BROKER1. In the
Command Console type the following command:

mqsicreatebroker BROKER1 -i userid -a password -q queuemanager -n dbname

The parameters required for this command are as follows:

� -i is a user ID (which must have Administrator authority).

� -a is the matching password.

� -q is the name of the queue manager, for example,
BROKER1_QUEUE_MANAGER.

� -n is the name of the broker database, for example, BRKDB1.

For a simple configuration keep the queue manager used for the broker and
Configuration Manager the same. When the same queue manager is used for
both components no extra communications need to be set up.

When the command has completed a BIP8071 message is displayed in the
Command Console if the creation of the new broker was successful.

If any errors occur during the creation of the broker refer to Chapter 8,
“Troubleshooting and problem determination” on page 241, for assistance
with resolving the problem.

Starting the components
When the broker and Configuration Manager have been successfully created
they can be started. To check that the components were created successfully,
type mqsilist in the Command Console. This displays a list of the components
that have been created and the names of queue managers where appropriate.
An example of the output from mqsilist is shown in Figure 7-3 on page 214.

 Chapter 7. Administration 213

Figure 7-3 List of components from mqsilist

Components are started using the mqsistart command in the Command
Console. Use the following instructions to start the Configuration Manager and
the broker.

1. Start the Configuration Manager by typing the mqsistart command in the
Command Console followed by the Configuration Manager name, for
example:

mqsistart CONFIG_MANAGER

A BIP8096 success message should be displayed after the command has
been run.

Verify that the Configuration Manager has started successfully and is
available for use by checking the WebSphere Broker messages in the
Windows Event Viewer generated by the WebSphere Message Broker
runtime. The instructions for starting the Windows Event Viewer (Figure 7-4)
vary between different versions of Windows, but typically it can be launched
from the Administrative Tools section of the Control Panel, or in the Computer
Management tool found in the Control Panel.

Figure 7-4 Windows Event Viewer

The contents of each of the messages in the Windows Event Viewer can be
viewed by double-clicking the message. A message with an Event ID of 1003
indicates that the Configuration Manager started correctly and is now
available for use. An example of this message is shown in Figure 7-5 on
page 215.

214 WebSphere Message Broker Basics

Figure 7-5 Configuration Manager available for use event message

If the message with an Event ID of 1003 is not present, the Configuration
Manager is not available for use even if it may have started correctly. The
Windows Event Viewer may display error messages that give diagnostic
information to help to track down the cause of the problem. For more
information about WebSphere Message Broker messages in the Event
Viewer and diagnosing problems see “Windows Event Viewer” on page 253.

2. Start the broker by typing the mqsistart command into the Command
Console followed by the broker name, for example:

mqsistart BROKER1

A BIP8096 success message is displayed after the command has been run.

3. Check the Windows Event Viewer for a WebSphere Broker error message
with an Event ID of 2001 to confirm that the broker started correctly.

The broker and Configuration Manager must be started in order to create a
broker domain. If for any reason the Configuration Manager or the broker failed
to be created or to start, refer to Chapter 8, “Troubleshooting and problem
determination” on page 241, for information about how to perform problem
determination.

 Chapter 7. Administration 215

Creating a domain connection
This section assumes that the basic components of a broker domain, a
Configuration Manager, and a broker have been created and are started on the
system.

The domain connection is the reference to a broker domain in the Message
Brokers Toolkit. Multiple broker domains can be defined in the Message Brokers
Toolkit with connections to both local and remote Configuration Managers.

The following instructions demonstrate how to create a domain connection for a
local Configuration Manager, but the same method can be used to create a
domain connection for a remote Configuration Manager.

Use the instructions below to create a domain connection:

1. Launch the Message Brokers Toolkit.

2. Change to the Broker Administration perspective by clicking Window →
Open Perspective → Broker Administration perspective.

3. From the File menu, select New → Domain. This opens the Create a Domain
Connection dialog.

4. Enter the name of the Configuration Manager’s queue manager, for example,
BROKER1_QUEUE_MANAGER, in the Queue Manager Name field.

5. Change the port number to reflect the port that the queue manager’s listener
is configured on, for example, 4444.

6. Click Next.

At this point the Message Brokers Toolkit attempts to establish communication to
the Configuration Manager. A status bar is displayed at the bottom of the wizard
to show the progress, as shown in Figure 7-6 on page 217.

216 WebSphere Message Broker Basics

Figure 7-6 Creating a domain connection

7. Once a connection to the Configuration Manager is established enter a name
for the Server Project, for example, LocalServerProject.

8. Enter a Connection name, for example, Connection1.

9. Click Finish to complete the domain connection.

The connection to the domain is displayed in the Domains view of the Broker
Administration perspective, as shown in Figure 7-7 on page 218. In the Broker
Administration Navigator view the Server project is displayed. This contains a
configuration file that holds the domain connection information that has been
specified in the Create a Domain Connection dialog.

 Chapter 7. Administration 217

Figure 7-7 New domain connection displayed in Domains view

Adding a broker to the domain
The next step in creating a simple broker domain is to add the broker to the
domain. Follow the instructions below to add a broker to a domain:

1. Select New → Broker from the File menu.

2. Select the domain to add the broker to if more than one exist.

3. Enter the broker name, for example, BROKER1.

4. Enter the queue manager name, for example,
BROKER1_QUEUE_MANAGER.

5. Click Finish.

A Topology Configuration Deploy message is displayed. This provides a
choice of deployment operations to be performed. Figure 7-8 shows the three
options to select from: Delta, Complete, or None.

Figure 7-8 Topology Configuration Deploy message

A deploy is a configuration message sent to the components in the domain.
This can be related to changes in the domain topology, such as adding or
deleting brokers; or they can be changes to the configuration of message flow
applications and resources.

– Delta deploys only those parts of the configuration that have changed.

– Complete deploys the entire configuration.

– None results in no deploy being made at that time. The changes are not
made in the broker domain, but are stored in the Message Brokers Toolkit.

218 WebSphere Message Broker Basics

With None, the next time a deploy is made from the Message Brokers
Toolkit, these stored changes are deployed.

6. Click Delta in the Topology Configuration Deploy dialog box.

After initiating the deployment of a change in the topology to add a broker, a
success message is displayed when the deployment is received by the
Configuration Manager. The content of the success message can be read by
clicking the Details button, as shown in Figure 7-9.

Figure 7-9 Deployment operation initiated message

The Event Log in the Message Brokers Toolkit can be used to check that the
broker has been successfully added to the domain. This is different from the
Windows Event Log with which it is sometimes confused, as the Event Log only
shows messages from the Configuration Manager. The messages in the Event
Log are used to determine whether the outcome of deployment operations, either
for domain components or the deploy of bar files, is successful.

Open the Event Log by double-clicking the Event Log icon in the Domains view
of the Broker Administration perspective, as shown in Figure 7-10 on page 220.

 Chapter 7. Administration 219

Figure 7-10 Event Log in the Message Brokers Toolkit

Messages indicating that the deployment to add the broker to the domain was
successful are BIP4045 and BIP2056. The broker is also visible in the Domains
view beneath Broker Topology.

When a broker is first added to the domain, a warning is displayed in the Alerts
view indicating that the Execution Group is not running, as shown in Figure 7-11.
It is normal to see this message before any message flows or message sets have
been deployed to an execution group. The execution group is not started until
resources are deployed to it.

Figure 7-11 Execution Group is not running alert

The simple broker domain is now complete and the broker is ready for message
flow applications and resources to be deployed to it. The following sections
provide instructions on deploying message flow applications, publish/subscribe,
and extending the broker domain by adding multiple brokers.

Administering components in a broker domain
This section provides a short introduction to administering the components in the
broker domain. Adding additional components to the simple broker domain is
discussed in “Extending a broker domain” on page 222.

220 WebSphere Message Broker Basics

Some administration beyond the deployment of message flow application
resources can be carried out in the Message Brokers Toolkit. The Broker
Topology can be administered from the Message Brokers Toolkit in particular for
setup and configuration relating to publish/subscribe, which is discussed later in
this chapter. Connections between brokers and some broker properties such as
security and settings for multicast can be administered from the Message
Brokers Toolkit. These are advanced topics and are beyond the scope of this
book.

Administration on the components in a domain is mostly carried out using the
WebSphere Message Broker command-line utilities, but the Configuration
Manager Proxy API can also be used to automate administration tasks.

The main groups of commands that are used for administering components in
the broker domain is listed below:

� Starting and stopping components
� Changing components
� Creating and deleting components
� Setting and retrieving trace on components
� Setting security
� Backing up

One of the most useful commands that is available is to view what components
are created on a system. This command is mqsilist, and when used on its own
displays all the components on the system (for a particular install if multiple
versions of the product are installed). This command can also be used with
broker names to view the running execution groups and deployed resources.

More information about the commands used to administer WebSphere Message
Broker components can be found in Reference → Operations →
Commands → Runtime commands in the WebSphere Message Broker
product documentation.

Connecting the Message Brokers Toolkit to the domain
A final note in this section is how to reconnect to the domain after the Message
Brokers Toolkit has been closed. When the Message Brokers Toolkit is closed,
any domains that are disconnected are shown as grayed out in the Domains
view of the Broker Administration perspective. To reconnect to the domain and
view the status of brokers, execution groups, and message flows, right-click the
domain connection in the Domains view of the Broker Administration perspective
and click Connect in the context menu that is displayed.

 Chapter 7. Administration 221

7.4 Extending a broker domain
A simple broker domain configuration as created in the previous section of this
chapter, or by the Default Configuration wizard, is only really useful for the
development and testing of message flow applications. For any more advanced
activity and in a production system the domain is more complex, for performance
and high availability.

This section provides instructions on how to configure a broker domain with
multiple brokers including components on a remote computer. This chapter also
provides instructions to create a User Name Server, which is used for
authentication with publish/subscribe applications.

7.4.1 Adding a remote broker to the domain
This section contains instructions on how to add remote brokers to an existing
domain and then deploy a message flow to any broker within that domain. A
broker can belong to only one domain, so you must create a new remote broker.

In these instructions, it is assumed that you have an existing broker domain with
a single broker, a Configuration Manager, and a queue manager with a listener.
The following new components are created:

� A broker, a queue manager, and a listener. These components are created
manually on a different computer to the broker domain.

� Sender and receiver channels between the new and existing queue
managers.

� Transmission queues for the new and existing queue managers.

Creating the required resources on the remote machine
The following instructions detail how to create the required resources for the
broker on the remote machine:

1. Create a new queue manager as follows:

a. Open the WebSphere MQ Explorer.

b. Right-click Queue Managers, then click New → Queue Manager.

c. Enter a queue manager name.

d. Accept all of the default values until you reach step 4 of the wizard.

e. In step 4, select Create listener configured for TCP/IP.

f. Enter a port number for the listener. This must be a a port number that is
not being used by anything else.

2. On the new queue manager, create a transmission queue.

222 WebSphere Message Broker Basics

a. Open WebSphere MQ Explorer.

b. For the queue manager that you have just created, right-click Queues,
then click New → Local Queue.

c. Enter a queue name. Use the name of the queue manager in the existing
broker domain.

d. In the General properties page, select Transmission from the Usage
drop-down menu.

e. Click Finish.

3. On the new queue manager, create a sender channel to communicate with
the queue manager that exists in the broker domain:

a. Open the WebSphere MQ Explorer.

b. For the new queue manager, expand the contents under Advanced.

c. Right-click Channels then click New → Sender Channel.

d. Enter a name for the sender channel. A suitable name should describe the
relationship between the two queue managers, for example,
QM2_to_QM1.

e. Click Next. This opens the New Sender Channel window (Figure 7-12 on
page 224).

f. Enter a connection name. A connection name comprises the IP address or
name of the machine on which the Configuration Manager exists, followed
by the port number, in brackets, of the listener for the queue manager for
the Configuration Manager, for example, wmbsystem(1414), or
9.1.12.123(1234), where wmbsystem is the name of the machine on which
the broker domain exists.

g. Enter a transmission queue name. This should be the name of a
transmission queue that is to be defined on the broker queue manager.
This transmission queue is created in “Preparing the required resources in
the broker domain” on page 224.

h. Click Finish.

 Chapter 7. Administration 223

Figure 7-12 Creating a sender channel in WebSphere MQ Explorer

4. On the new queue manager, create a receiver channel to communicate with
the queue manager, QM1:

a. Open the WebSphere MQ Explorer.

b. For the new queue manager, expand the Advanced folder.

c. Right-click Channels, then click New → Receiver Channel.

d. Enter a name for the receiver channel. A suitable name should describe
the relationship between the two queue managers, for example,
QM1_to_QM2.

e. Click Finish.

5. Create the remote broker by using the mqsicreate command, and supply the
name of the queue manager that was created in step 1.

Preparing the required resources in the broker domain
Before adding a new remote broker to the existing broker domain, follow the
steps below on the same computer as the Configuration Manager:

1. Create a new transmission queue on the queue manager in the broker
domain.

Follow the instructions given in step 2 of the previous section, “Creating the
required resources on the remote machine” on page 222. When asked to
supply a queue name, provide the name of the transmission queue that was
specified for the sender channel for the remote broker’s queue manager.

2. Create a new sender channel for the queue manager in the broker domain.

Follow the instructions given in step 3 of the previous section, “Creating the
required resources on the remote machine” on page 222. When asked to

224 WebSphere Message Broker Basics

supply a transmission queue name, ensure that you specify the name of the
transmission queue that was created on the remote machine.

3. Create a new receiver channel for the queue manager in the broker domain.
Follow the instructions given in step 4 of the previous section, “Creating the
required resources on the remote machine” on page 222.

Adding a remote broker to an existing broker domain
Follow the steps below to add the remote broker to the existing broker domain:

1. Start each of the sender channels that you created in the previous sections,
one on the queue manager in the existing broker domain, and one on the
queue manager on the remote machine. After a sender channel has started
successfully, the receiver channels start automatically.

To start a sender channel:

a. Open the WebSphere MQ Explorer.

b. Navigate to the sender channel on the appropriate queue manager.

c. In the Content view, right-click the sender channel and click Start.

2. In the Message Brokers Toolkit, navigate to the Broker Administration
perspective.

3. In the Domains view, right-click Broker Topology, then click New → Broker.

4. Enter the name of the remote broker.

5. Enter the queue manager that is associated with the remote broker.

A deploy message is sent to the remote broker to assign it to the domain. Check
the Event Log in the Message Brokers Toolkit for success messages from the
deployment.

The Broker Administration perspective might show the broker as stopped and the
execution group not running until a message flow or message set is deployed to
the default execution group on the broker. If the Event Log contains messages to
indicate the broker was successfully added to the domain then the
communication between the Configuration Manager and remote broker is
running successfully.

Refer to “Remote broker not responding” on page 301 for help with
troubleshooting the problem if success messages are not displayed in the Event
Log.

 Chapter 7. Administration 225

7.4.2 Deploying resources to a remote broker
Deploying resources to a remote broker is exactly the same as for a local broker:
Drag and drop a broker archive file onto an execution group, or select Deploy
File.

Deploy-related event messages in the Event Log in the Message Brokers Toolkit
shows the name of the broker that they apply to. To confirm that the resources
within the bar file have been successfully deployed to a remote broker, in the
Command Console or command line on the remote broker machine and type:

mqsilist brokerName -e executionGroupName

Using the mqsilist command with the name of the broker and the execution
group that you have deployed to shows any message flows that are running in
that execution group. Message flows are only displayed by mqsilist when they
are deployed and running.

7.4.3 Creating a User Name Server
A User Name Server is used for authenticating users and groups for permissions
in publishing and subscribing to applications through the broker. The User Name
Server can be created on the command line using the following command, which
is very similar to the syntax of the command to create a Configuration Manager:

mqsicreateusernameserver -i userid -a password -q queue_manager

If the User Name Server is created on the same machine as the Configuration
Manager they can share the same queue manager for simplicity. If they are on
different machines, or use different queue managers for performance reasons,
channel connections are needed between the User Name Server and the
Configuration Manager.

7.5 Deploying message flow applications
Message flow applications such as message flows and message sets are
deployed to execution groups within brokers. These message flows and
message sets cannot be directly deployed to the broker; they must first be
compiled in a message broker archive file. The message broker archive file is
then deployed to a specific execution group.

A message broker archive file is a compressed file that contains any number of
compiled message flows and message sets, including compiled ESQL,
mappings, Java, and other resources as required for the applications. A

226 WebSphere Message Broker Basics

message broker archive can also contain source files, enabling it to be used for
back-up purposes.

The message broker archive files can be used as a mechanism for moving
deployable artefacts from one machine to another. A message broker archive
can also be used to configure alternative properties for message flows, so that
the same flows can be deployed to different brokers or execution groups with
different properties, for example, changing the data source from a test database
to a production database, without altering the original flow.

For test and development purposes the main way of deploying the message
broker archive to the broker is through the Message Brokers Toolkit. There are
two additional methods for deploying a broker archive file to the broker that can
be used to automate deploy operations:

� mqsideploy command-line utility
� Configuration Manager Proxy API

These two alternative methods are not described in any further detail here, as
they are beyond the scope of this book. Further information about both of these
tools can be found in the product documentation.

In order to deploy message flow applications successfully, both the Configuration
Manager and the broker to which the resources need to be deployed must be
running and part of the same domain. If they are using separate queue
managers then any channels required for communication between the queue
managers must be running.

7.5.1 Creating a message broker archive
A message broker archive is created in the Broker Administration perspective of
the Message Brokers Toolkit. To create a new message broker archive:

1. Click New → Message Broker Archive from the File menu.

2. Select a server project from this list, for example, LocalServerProject.

3. Enter a name for the broker archive file in the File name field, for example,
BrokerArchive1.

4. In the Broker Archive editor click the Add () button near the top of the
editor.

5. In the Add to the Broker Archive dialog select the resources that you want to
deploy. An example is shown in Figure 7-13 on page 228.

 Chapter 7. Administration 227

Figure 7-13 Add to Broker Archive dialog

6. Click OK to add the selected resources to the message broker archive file.
This compiles the resources.

7. A status dialog is displayed to indicate the outcome of adding the resources
to the broker archive.

8. Click Details to check that the resources were added successfully.

9. Click OK.

If message flows or message sets contain errors, or errors exist in the
associated projects, adding the files to the broker archive fails. Figure 7-14 on
page 229 shows an example of the message that is displayed in the Details
view.

228 WebSphere Message Broker Basics

Figure 7-14 Error adding files to broker archive

10.Save the message broker archive file.

Deploying a message broker archive file
There are two ways to deploy a message broker archive file within the Message
Brokers Toolkit:

� Drag and drop
� Deploy File

Both require an established connection to the Configuration Manager.

Deploying a message broker archive using drag and drop
This is the simplest method of deploying a message broker archive, but care
must be taken to avoid inadvertently dropping the message broker archive into
the wrong execution group. (This can be corrected in the Domains view by
right-clicking the deployed resource and clicking Delete from the context menu.)

 Chapter 7. Administration 229

To perform a drag-and-drop deploy:

1. In the Broker Administration perspective, expand the Broker Topology in the
Domains view to see the available brokers and execution groups.

2. In the Broker Administration Navigator view, click the message broker archive
(.bar) file to deploy from the server project.

3. Hold the mouse button down over the message broker archive file and drag
the file over the execution group where you wish it to be deployed.

4. Let the mouse button go over the execution group.

When the file is over an execution group the mouse pointer changes shape to a
square. If the mouse pointer is shaped like a circle with a diagonal line through it,
then the mouse is not positioned in the correct place for the deploy.

When the message broker archive file is dropped onto the execution group, the
deploy is initiated and a configuration message is sent to the Configuration
Manager. If the configuration message is received and processed successfully
by the Configuration Manager a confirmation message is displayed in the
Message Brokers Toolkit, as shown in Figure Figure 7-15.

Figure 7-15 Success response from the Configuration Manager

The Configuration Manager passes the configuration message to the appropriate
broker, which then responds after it has processed the configuration message
and started the new or changed message flow application resources. The broker
returns a success message or error message to the Configuration Manager,
which is displayed in the Event Log in the Message Brokers Toolkit.

Check the Event Log in the Message Brokers Toolkit for the BIP2056 and
BIP4040 success message to verify that the deployment operation was
successful. If the deployment was unsuccessful the Event Log may contain error
messages to indicate the cause of the failure.

230 WebSphere Message Broker Basics

Deploying a message broker archive using Deploy File
This method is slightly more complex than the drag-and-drop method, as it
involves initiating the deploy using a menu and a dialog, but it is less prone to
accidental deployment to the wrong execution group than the drag-and-drop
method.

To deploy a message broker archive using Deploy File:

1. Click the message broker archive (.bar) file to deploy in the Broker
Administration Navigator view.

2. Right-click the message broker archive file, then click Deploy File.

3. This opens the Deploy a BAR File dialog, which shows the available brokers
and their execution groups in the broker domain, as shown in Figure 7-16.

Figure 7-16 Deploy File

4. Select a target execution group and click OK to deploy the broker archive.

A confirmation message is received from the Configuration Manager if the
deployment is successful. Check the Event Log in the Message Brokers Toolkit
for the BIP2056 and BIP4040 success messages to verify that the deploy
operation was successful.

Administering deployed resources
Using either the Message Brokers Toolkit or the WebSphere Message Broker
command-line utilities, it is possible to administer deployed resources and the
execution groups they are deployed to. The types of operation that can be
performed on deployed resources and execution groups include stopping,
starting, deleting, and removing.

 Chapter 7. Administration 231

In the Message Brokers Toolkit, right-click an execution group or deployed
resource, such as message flows and message sets, in the Domains view. This
displays a context menu with the application options. An example of this for an
execution group is shown in Figure 7-17.

Figure 7-17 Context menu for an execution group

Information about the commands used to administer WebSphere Message
Broker execution groups and deployed resources can be found in Reference →
Operations → Commands → Runtime commands in the WebSphere Message
Broker product documentation.

7.5.2 Message flow application resource versioning
When a message set or message flow is deployed to an execution group, the
name of the message set or message flow is displayed either in the Message
Brokers Toolkit or on the command line if mqsilist is used. If there is an update
to the message set or message flow and it is redeployed it may not be obvious
whether the update has been made by using the resource names alone.

When developing resources and running a production environment it is a good
idea to have different broker archive files containing different versions of
message flow application resources. This allows you to return to a working
version of a message set or message flow if the latest version is discovered to
have a problem or defect. It is useful within broker archive files to know which
version of a message set or message flow was used to create the broker archive
file.

There are a number of ways that the version of a message set and message flow
can be determined in a broker archive file and when it is deployed to an

232 WebSphere Message Broker Basics

execution group. The versioning information that is gathered at deployment time
is as follows:

� Date and time that the resource was deployed
� Date and time that the resource was compiled in the broker archive file
� Name of the broker archive file from which the resource was deployed
� The contents of a user-defined Version number
� Any other user defined keywords

The different methods for adding and viewing information about deployed
message flow application resources are covered in the following sections.

Adding a version number to a message flow
To add a version number to a message flow:

1. Open a message flow in the message flow editor.

2. Right-click a blank area of the message flow canvas, then click Properties.

3. Enter a version number for the message flow next to Version in the Default
Values for Message Flow Properties dialog, as shown in Figure 7-18.

4. Click OK.

5. Save the message flow.

Figure 7-18 Adding a version number for a message flow

The version number must be manually updated when changes have been made
to the message flow.

 Chapter 7. Administration 233

Adding a version number to a message set
A version number can also be added to a message set using the following
instructions:

1. Open a message set by double-clicking the .messageSet file in the Resource
Navigator view.

2. In the Message Set editor click Documentation.

3. Enter a version number in the Version field, as shown in Figure 7-19.

4. Save the message set.

Figure 7-19 Adding a version number to a message set

The version number must be manually changed if updates are made to the
message set.

Adding extra version information
It is also possible to add extra version information into message flows by adding
keywords to resource files such as ESQL and Java. Keywords can also be
added into message sets using the Documentation section of the message set’s
Properties dialog.

The way to do this is to add a string to these files with the format:

$MQSI keyword = value MQSI$

These keywords can be used to identify the author of the resource, tested by,
machine name, or any other information that may be useful. The WebSphere
Message Broker product documentation provides more information about how to
set these keywords within the message flow application source files.

234 WebSphere Message Broker Basics

Viewing deployment and version information
The version information can be viewed for each compiled file in the broker
archive file. Add message flow application resources with Version information
contained in them to a message broker archive file.

To view version and keyword information for deployed resources, first deploy any
message sets or message flows that contain version information. In the Broker
Administration perspective, select one of these message sets or message flows
from the Domains view. In the Properties view the deployment and version
information are visible. This is useful to check the version number and also the
time that the message sets or message flows were deployed. An example for a
message set can be seen in Figure 7-20.

Figure 7-20 Deployment information, version, and keyword for a message set

7.6 Publish/subscribe
Publish/subscribe is a style of messaging in which messages that are produced
by a single application can be received and utilized by many other applications.
Publish/subscribe is a broad subject, and an in-depth discussion of its uses and
configuration is beyond the scope of this book. The Broker Administration
perspective in the Message Brokers Toolkit includes a number of tools to assist
in the configuration and administration of a publish/subscribe broker network, so
a brief description of the function of each tool is given here with a short overview
of publish/subscribe concepts.

As an additional source of information, and to try out some examples of
publish/subscribe using the Message Brokers Toolkit, try the Soccer and
Scribble samples that are provided in the Samples Gallery in the help system, as
well as the Pager samples. Note that the Pager samples and Scribble sample

 Chapter 7. Administration 235

are not supplied with WebSphere Event Broker, as they contain nodes that are
not available, plus the Pager sample uses a message set.

7.6.1 Publish/subscribe basic concepts
An application known as a publisher generates a message that can be used by
other receiving applications known as subscribers. The published message
contains publish/subscribe commands and information in the message header. A
published message is called a publication. There are two basic types of
publish/subscribe commands contained in the header: One to register a
subscription and the other to publish a message. Both messages show a
message topic. A subscriber subscribes to messages of a particular topic using a
subscription message, and a publisher publishes a message about a given topic.

This is an example from the SurfWatch sample of a message for registering a
subscription:

<psc><Command>RegSub</Command><Topic>SouthShore</Topic><Topic>SunsetBeach</Topi
c><Topic>Rockpile</Topic><Topic>Kahaluu</Topic><RegOpt>PersAsPub</RegOpt><QName
>PAGER</QName></psc>

This is an example from the SurfWatch sample of a publication:

<psc><Command>Publish</Command><Topic>Laniakea</Topic></psc><mcd><Msd>mrm</Msd>
<Set>GettingStartedMessageSets</Set><Type>Pager</Type><Fmt>XML</Fmt></mcd><Page
r><Text>SurfWatch12.02.0420:57:18Laniakea: Onshore, waves 0m.</Text></Pager>

The various tools in the Broker Administration perspective can be used to set up
collections of brokers for use in publish/subscribe networks and to manage
topics and subscriptions as described in the following sections.

7.6.2 Broker topology
Many brokers can be added to a broker domain and can be configured for
publish/subscribe through the Broker Topology editor in the Message Brokers
Toolkit. Brokers that are added to the broker domain are visible in the Broker
Topology editor. Properties for individual brokers can be edited here; these are
advanced properties relating to publish/subscribe security, multicast, and so on.

Also in the Broker Topology editor, brokers can be connected in a collective, in
which brokers are connected to enable publish/subscribe messages to flow
between them. In order to combine two brokers into a collective, the queue
managers must be connected for communication using channel sender and
receiver pairs. This is in addition to any channels that connect the queue
managers for the brokers to the Configuration Manager queue manager.

236 WebSphere Message Broker Basics

Setting up communication for multiple brokers is explained in “Adding a remote
broker to the domain” on page 222, but remember the following rules:

� Create a sender channel on each queue manager with the same name as the
receiver channel on the other queue manager.

� In the sender channel properties, make the Connection name the same as
the machine to connect to. Name the listener on the queue manager in this
format: MachineName(listener port), for example, BRK001(1728).

� Create a transmission queue with the same name as the queue manager to
be connected, and set this as the Transmission queue value in the sender
channel.

� Confirm that the channel communication starts successfully.

Brokers can be added to the broker domain through the Broker Administration
perspective using the Domains view or the Broker Topology editor. Instructions
are given below for adding a broker through the Broker Topology editor:

To add a broker to the Broker Topology:

1. Double-click Broker Topology in the Domains view to open the Broker
Topology editor.

2. In the Broker Topology editor under Entity, click Broker.

3. Click the canvas of the Broker Topology editor to add a broker to the Broker
Topology.

4. Right-click the new broker and click Properties to set the broker name and
the Queue Manager name. Other properties for publish/subscribe and
multicast can be set up here if required.

To connect two brokers in a collective:

1. In the palette of the Broker Topology editor, under Entity, click Collective.

2. Click the canvas of the Broker Topology editor to add a collective to the
Broker Topology.

3. Click the Connection tool in the palette part of the Broker Topology editor.
Use the Connection tool to connect two brokers to the collective by creating
two connections in the same way that connections between message flow
nodes are made in the Message Flow editor.

4. Save the editor contents (File → Save).

5. Select either Delta or Complete to deploy the configuration changes that
have been made to the brokers when the Topology Configuration Deploy
message is displayed.

 Chapter 7. Administration 237

Using a collective enables publish/subscribe messages to be communicated
across brokers.

7.6.3 Topics
Topics that are defined in publication messages and in subscription messages
control the routing of publish/subscribe messages. When a publication is created
by an application, a message that passes through a publish/subscribe message
flow is routed to applications that have subscribed to receive messages on that
topic. You can set up definitions of topics and subtopics within the Message
Brokers Toolkit, and these can be used to configure topic-based security to limit
which applications can access which messages passing through the system.

In order to view users and groups for setting security on topics, the following
tasks must have been performed:

� A User Name Server must be been set up (for simplicity using the same
queue manager as the Configuration Manager in the broker domain).

� Channels between the User Name Server queue manager and any broker
queue managers must be set up.

� Use the mqsichangebroker command to set the -j parameter. This indicates
that publish/subscribe access control is to be used for the broker, and to set
the queue manager for the User Name Server onto any brokers in the
domain:

mqsichangebroker BROKER1 -j -s BROKER1_QUEUE_MANAGER

� Use the mqsichangeconfigmgr command to set the User Name Server queue
manager on the Configuration Manager using the following format:

mqsichangeconfigmgr -s BROKER1_QUEUE_MANAGER

Create topics and assign permissions for the publishers and subscribers on
those topics using the following instructions:

1. In the Broker Administration perspective, double-click Topics in the Domains
view.

2. In the Topics Hierarchy editor that is displayed, right-click in the Topics
section and select Create Topic from the context menu.

3. This opens the Topic wizard. Enter a name for the topic.

4. Click Next.

5. On the Principal Definition page define the security settings for users and
groups using the options to Deny or Allow subscription or publication on this
new topic. These can be added to and edited later.

6. Click Finish to complete the task.

238 WebSphere Message Broker Basics

Other topics and subtopics can be created in the same way. To create a
subtopic, select the named topic rather than the Topic root on the first page of
the Topic wizard.

7.6.4 Subscriptions
When a subscriber application sends a subscription request to a broker on a
particular topic, the broker stores the subscription data in a subscription table.
The data in this subscription table can be accessed and searched using the
Message Brokers Toolkit in the Subscriptions Query editor.

To show all subscriptions that are registered in the subscription table:

1. In the Broker Administration perspective, double-click Subscriptions in the
Domains view.

2. In the Subscriptions Query editor, click the Query button ().

This displays all of the subscriptions that are registered with all of the brokers
that are set up for publish/subscribe, as shown in Figure 7-21.

Figure 7-21 Subscription Query editor

These registered subscriptions can be queried on broker, topic, users, dates,
and subscription points. Subscriptions do not remain in the subscription table
indefinitely, because they can be de-registered by the subscriber, expired, or

 Chapter 7. Administration 239

deleted. They are also removed from the table when a subscriber application
stops.

The Subscription Query editor can be used to delete subscriptions from brokers:

1. Right-click the subscription that you want to delete and click Delete.
2. Click OK in the confirmation dialog.

A configuration change is sent to the broker via the Configuration Manager to
remove the subscription from the subscription table. Check the Event Log in the
Broker Administration perspective for success or failure messages.

Those subscriptions with a topic name prefixed with a dollar symbol are internal
subscriptions created and used by brokers. The Message Brokers Toolkit allows
you to delete these subscriptions as with any user-created subscription.
However, it is not advisable to delete these subscriptions because unpredictable
results can occur.

Refer to the WebSphere Message Broker documentation in the product
documentation for more information about publish/subscribe topics and
subscriptions.

240 WebSphere Message Broker Basics

Chapter 8. Troubleshooting and
problem determination

This chapter provides assistance with determining the cause and resolution of
problems when using WebSphere Message Brokers. The following topics are
discussed in this chapter:

� Locating error information
� Using the Flow Debugger
� Using trace
� Troubleshooting common problems

8

© Copyright IBM Corp. 2005. All rights reserved. 241

8.1 Locating error information
This section details the location where errors generated by WebSphere Message
Broker may be found. There are many places that useful information can be
found to help with problem determination; some information can be found within
the Message Brokers Toolkit, but other information can be found using operating
system tools and within the directory structure of the system that is running the
product.

8.1.1 Event messages
Event messages showing errors are usually the first indication that a problem
may exist and must be resolved in some part of the WebSphere Message
Broker’s configuration or deployed applications. These messages are displayed
in the Message Brokers Toolkit, in the operating system logs, or on the command
line in response to a command or a command-line utility. Information about the
different types of event messages that may be seen in the Message Brokers
Toolkit, in the local system logs, and on the command line are detailed here with
guidance for interpreting them.

Event Message structure
Event messages generated by the WebSphere Message Broker have the
following structure:

BIP8081E

� BIP is the three-character product family identity, the same as in previous
versions of the product.

� The four-character number following BIP is the unique identifier of the
message. This indicates the condition that generated the message in the
product and can be looked up in the product help or message catalog for
further information. (Details of how to find more information about messages
is given later in this section.)

� The final character indicates the event message type: I for an Information
message, W for a Warning message, or E for an Error message.

An event message produced by WebSphere Message Broker having this
structure is known as a BIP message. The BIP message code is usually
accompanied by a description of the condition that generated the message, and
sometimes a reason for the condition or a suggestion on how to fix it.

242 WebSphere Message Broker Basics

Event message types
Event messages generated by WebSphere Message Broker may be classified
as one of three types:

� Information
� Warning
� Error

Information messages
Information messages simply provide information to the user and do not
represent any problem of concern. Success conditions are classed as
information messages; for example, BIP8096I is a message indicating
successful command initiation for a mqsistart on the command line, and
BIP0892I is the message for a successful response being received from the
Configuration Manager in the Message Brokers Toolkit, as in Figure 8-1.

Figure 8-1 Pop-up message from the Message Brokers Toolkit

Warning messages
Warning messages are less severe than error messages and do not represent
an immediate problem, but they indicate situations that may need investigation.
These messages are less likely to be seen on the command line or as pop-ups in
the Message Brokers Toolkit, and are more likely seen in the system log of the
machine where the warning occurred.

 Chapter 8. Troubleshooting and problem determination 243

Warning messages without a BIP code are generated by the Message Brokers
Toolkit and can be seen in the Problems view and in the Alerts view in the Broker
Administration perspective of the Message Brokers Toolkit. These views are
described later in this chapter.

Error messages
The most severe and important messages are the error messages that are
generated by WebSphere Message Broker. These can be seen on the command
line, in the Message Brokers Toolkit, and in the system log of the machine where
the product is running. These messages are either generated immediately in
response to a failed action, such as trying to start a broker that does not exist, or
as a response to a failure during the running of the product. Messages seen on
the command line or as pop-ups in the Message Brokers Toolkit are failure
responses to an action from the user.

Messages that are found in the system log or in the Message Brokers Toolkit
Event Log usually occur report events that occur in running components in the
WebSphere Message Broker runtime. An example would be an error message
produced when a message flow attempts to access a WebSphere MQ queue
that does not exist. These errors do not occur as a result of a user action.

8.1.2 Messages within the Message Brokers Toolkit
Messages displayed within the Message Brokers Toolkit are of two basic types:
Pop-up messages that are generated as instant feedback to an action; and
messages that result from the running of the product and are displayed in a log
or a view, such as the results of a deploy operation in the Event Log or an error
produced when a message flow containing an error is saved.

The following locations where messages are displayed in the Message Brokers
Toolkit are discussed in this section:

� Pop-up messages
� Problems view
� Alerts view
� Message Brokers Toolkit Event Log

The most important of these is the Message Brokers Toolkit Event Log, as this is
where the results of administration operations on the broker domain are
displayed.

Pop-up messages
An example of a pop-up message is shown in Figure 8-1 on page 243, which
shows a success message that was received from the Configuration Manager
after a deploy action. This figure also shows the typical structure of a BIP

244 WebSphere Message Broker Basics

message with the BIP code followed by a description and then a Reason section
that details why the message is being displayed. There is also a Details section
that can be made visible or hidden by clicking the Details button. This gives
more detailed information about the message, and in an error message this
contains suggestions about how to correct the problem.

Pop-up messages are also displayed in the Message Brokers Toolkit that are not
BIP messages, and frequently are some kind of progress or status indicator,
such as when messages have been added to a broker archive file. Figure 8-2
shows a progress message that is displayed when the Message Brokers Toolkit
connects to the Configuration Manager.

Figure 8-2 Progress message connecting to a Configuration Manager

Figure 8-3 on page 246 shows an example of a status message displayed after
adding files to a broker archive file. The Details section shows the status after the
addition of some message flows and message sets to a broker archive file. If any
problems occurred while adding the resources, those errors or warnings are
displayed here.

 Chapter 8. Troubleshooting and problem determination 245

Figure 8-3 Warning adding resources to the broker archive file

In Figure 8-3, two messages are displayed that indicate potential problems with
the files chosen to add to the broker archive file. One of the message flows that
has been chosen to be added to the broker archive file is in a project that
contains errors. The message indicates that the message flow was not added to
the broker archive file, and advises the user to correct the errors in the project
before trying again.

The other problem displayed in this status message is with a message set that
was added to the broker archive file containing namespaces. In this situation the
warning message BIP0177W is displayed to indicate that the message set is
incompatible with brokers that are running on previous versions of the product.
This is a good example of the difference between errors and warnings. In this
case the message set is valid so there is no error, but if the message set is
deployed to a WebSphere MQ Integrator V2.1 broker, then errors occur.

246 WebSphere Message Broker Basics

Problems view
The Problems view in the Broker Application Development perspective shows
information, warning, and error messages relating to the message flow
application development resources such as message definition files, ESQL files,
mapping files, Java, and message flows. Whenever one of these resources is
saved, the resource is compiled and the contents are checked for errors. Any
errors or warnings that are found are displayed in the Problems view.

The information that is associated with these problems is displayed with an icon
indicating the severity level: Information, Warning, and Error. There are also
priority icons so that the most significant errors can be highlighted. Figure 8-4
shows an example of messages displayed in the Problems view.

Figure 8-4 Errors and warnings in the Problems view

The top three messages that are displayed in Figure 8-4 are error messages.
One of the message flows in the workspace is missing a queue name on the
MQInput node; the other two relate to Java in a message flow. The rest of the
visible messages are warning messages that relate to unresolvable message
references. These do not cause any problems with deploying the message flows
they belong to, as the message used for the message flow is self-defining. If a
message is put to the message flow that does not match the structure expected
by the ESQL then errors are generated later by the runtime.

The messages in the Problems view can be sorted by clicking the column
headings. For example, to sort these messages by severity, click the column
heading where the severity icons are displayed (left-most column). To sort by file
name, click the column heading labeled Resource.

The messages can be filtered using the Filters dialog, which is launched by
clicking the Filters button in the top right of the Problems view (the button with
three arrows, shown in Figure 8-4) to launch this dialog. The example in
Figure 8-5 on page 248 shows how to hide all messages containing the word
unresolvable to get rid of the problem seen in Figure 8-4. This shows how the
Filters dialog can be especially useful when a lot of similar messages are
displayed in the Problems view.

 Chapter 8. Troubleshooting and problem determination 247

Figure 8-5 Filter for the Problems view

Alerts view
The Alerts view in the Broker Administration perspective looks similar to the
Problems view in the way that it displays messages. However, the messages
that it displays are the statuses of runtime components within a broker domain.
This information is refreshed regularly so that if connections to the brokers in the
domain are running correctly, then any changes to the brokers or execution
group states are displayed. Figure 8-6 on page 249 shows an example of the
messages that are displayed in the Alerts view.

248 WebSphere Message Broker Basics

Figure 8-6 Messages in the Alerts view

The Alerts view shows that a deploy operation is in progress (waiting for an
answer from Configuration Manager), BROKER1 is not running, and neither are
the two execution groups and four message flows that are deployed to it. These
messages are displayed because the broker is stopped. If a component is
stopped unexpectedly then this can alert you to a problem.

Running components are not displayed here, as they are displayed in the
Domains view. Messages in the Alerts view cannot be sorted in the same way as
the messages in the Problem view, but they can be filtered. The Alerts Filter
dialog enables the Alert sources to be selected. The Alerts Filter dialog can be
displayed by clicking the Filter button, which is the button with the three arrows
that can be seen in Figure 8-6.

Alert sources such as individual brokers and execution groups can be deselected
so that no alerts relating to these are displayed in the Alerts view. This is useful if
the Message Brokers Toolkit is connected to more than one broker domain, the
Filter Alerts can be used to view alerts from just one domain at a time, as shown
in Figure 8-7 on page 250.

 Chapter 8. Troubleshooting and problem determination 249

Figure 8-7 Hidings alerts from a broker domain

8.1.3 Message Brokers Toolkit Event Log
The Event Log editor in the Message Brokers Toolkit is the primary source of
messages relating to deployment actions from the Message Brokers Toolkit to
the Configuration Manager and the Broker Topology. The messages that are
displayed in the Event Log are not recorded in the Windows Event Viewer, and
the two logs must not be confused.

Whenever a deployment action is initiated through the Message Brokers Toolkit,
the responses that are received are stored in the Configuration Manager’s
internal repository. These messages are then displayed in the Event Log editor in
the Message Brokers Toolkit.

To access the Event Log, double-click Event Log (marked with a flag icon) in the
Domains view of the Broker Administration perspective in the Message Brokers
Toolkit.

When a message displayed in the event log is selected, its contents are
displayed in the Details section beneath. These are BIP messages with the same

250 WebSphere Message Broker Basics

structure as those seen in the Windows Application log and on the command
line.

A deploy response message is seen for each broker that is involved in a deploy
action in the Event Log, and the name of the broker is seen in the Source section
under Logs. Figure 8-8 shows successful deploy messages for the broker
BROKER1.

Figure 8-8 Successful deploy message

When an error message is displayed in the Message Brokers Toolkit Event Log,
it may be necessary to look for other, related error messages in the Windows
Event Viewer or a remote systems local log to determine the cause of the failure.

The Event Log updates itself automatically as messages, but right-clicking in the
Event Log and selecting Revert refreshes the information in the log. Using this
context menu, you also can filter and clear the log. Using Clear removes the
messages from the Configuration Manager’s repository, so this must be used
only if the messages do not have to be kept. When messages are present in the
log, then the log can also be saved from the context menu as text files.

 Chapter 8. Troubleshooting and problem determination 251

8.1.4 Messages on the command line
Messages are displayed on the command line in the same format as the BIP
messages are displayed in the Message Broker Toolkit when commands have
been run. Figure 8-9 shows an example of a typical command line message. This
is a BIP8018 generated by attempting to start a broker that is already started.
The BIP code is displayed, followed by the description in the first sentence. The
rest of the message gives the reason and a suggestion for solving the problem.

Figure 8-9 A BIP message displayed on the command line

For many of the WebSphere Message Broker commands, syntax assistance is
displayed in addition to the message if the parameters that are used in the
command are incorrect. This is a useful way to determine the syntax that must be
used with these commands. For example, typing mqsistop on a command line
results in the response seen in Figure 8-10 on page 253. This shows the syntax
of the command and specific details as to the meanings or requirements of the
parameters, and these are followed by the BIP8007E error message to indicate
that a mandatory argument is missing.

252 WebSphere Message Broker Basics

Figure 8-10 Syntax help for the mqsistop command

8.1.5 Windows Event Viewer
Messages that are generated by the WebSphere Message Brokers runtime are
recorded in the local error log. On Windows this is the displayed in the Windows
Event Viewer, on Unix it is the syslog, and on z/OS it is the operators console.
These messages are all BIP messages that include information and warning
messages as well as error messages. Where an error condition has occurred
there may be multiple messages to describe the problem, generated by different
components or parts of the runtime. In this section, information is provided on
locating and viewing messages using the Windows Event Log.

The exact location of the Windows Event Log may depend on the version of
Windows that is installed, but typically it is found under Administrative Tools in
the Windows Control Panel. It can also be accessed through the Computer
Management option (right-click My Computer → Manage → System Tools →
Event Viewer).

Windows Application log
In the Windows Event Viewer, the BIP runtime messages from WebSphere
Message Broker are recorded in the Application log. Figure 8-11 on page 254
shows the Application log through the Computer Management Tool in Windows.
Messages that are produced by the runtime have a source of WebSphere Broker
v6000, but messages generated by other programs such as WebSphere MQ and
DB2 Universal Database can also be found in the Application log.

 Chapter 8. Troubleshooting and problem determination 253

When the version of WebSphere Message Broker is updated, a corresponding
change is seen in the source name to indicate which version the message came
from. This is because multiple versions can be installed on the same machine,
and therefore both versions may generate messages in the Application log.

Figure 8-11 Computer Management: Application log

The BIP code is shown in the Event column of the Application log (for example,
the BIP2648E message, which is an error type).

To view more details about any message in the Windows Event Viewer,
double-click the message to open it in a window called Event Properties, where
message details can be seen. An example of the properties of a message from
the Application log is shown in Figure 8-12 on page 255. This message shows
that Configuration Manager has become available for use after starting.

254 WebSphere Message Broker Basics

Figure 8-12 Example Application log message properties

When the WebSphere Message Broker runtime sends error messages to the
Application log, there is usually a set of messages to indicate what problems
have occurred for the messages to be thrown. Figure 8-11 on page 254 shows a
set of error messages generated when a problem has occurred with the format of
a message passed through a message flow.

There is often a sequence of messages that can be followed to determine the
cause of the error. The first error generated is often a BIP2628 message
indicating that an exception has been generated on an input node; an example of
this type of message is shown in Figure 8-13 on page 256.

The reason why the first message is often an exception condition on the input
node is that if an error occurs in a message flow, the input message is passed
back up the flow, node by node, until it comes across a node with either a Failure
or a Catch terminal connected. If a Failure or a Catch terminal is connected then
the flow itself handles the error, and the same level of error message is not seen
in the Application log or system log.

 Chapter 8. Troubleshooting and problem determination 255

Figure 8-13 Example of an error of the input node

When the message in the message flow gets passed back to the input node,
there is nowhere left for the message to go so it is passed back to the input
source such as a message queue. Messages passed back to the input source
are known as backed out messages.

Tip: When developing message flows, disconnect nodes connected to Failure
and Catch terminals. When an error occurs the message flows back up the
message flow, and errors are output in the Application log. If the Failure and
Catch terminals are connected, then the flow handles the errors, and therefore
does not output error messages to the Application log.

Important: If the message source is a WebSphere MQ queue it is blocked if
no backout requeue queue is defined. “Configuring the ESQL_Simple
message flow” on page 58 contains instructions for assigning a backout
queue.

256 WebSphere Message Broker Basics

Further messages in the sequence give information about the node that the
exception occurred in, and what the cause of the error may be. If, for example, a
message has been received in a node that fails to match the format expected by
the node, then the error shown in Figure 8-14 might be generated.

Figure 8-14 Parsing error message from the Application log

The errors that follow in the Application log give specific details as to which fields
in the message did not match the expected format. Often the most useful
message to indicate a problem is the second-to-last error message generated in
a sequence of errors. Figure 8-15 on page 258 provides an example of this. The
error here shows that the date and time in the input message do not match the
expected format for the field. The expected format is yyyy-MM-dd HH:mm:ss,
while the input message contains data for this field as 12:55:12 2005-09-27,
which does not match this format. The action to resolve this problem is to alter
the input message to supply the date and time in the expected format, or to alter
the message set to match the format of the input message.

 Chapter 8. Troubleshooting and problem determination 257

Figure 8-15 Example error message when message format is unexpected

Windows System Log
Information about the starting, running, and stopping of WebSphere Message
Broker components is displayed in the System Log in the Windows Event
Viewer. This is because the components such as brokers, the Configuration
Manager, and User Name Server are created as Windows Services. When
commands are sent to these components to start or stop them, then messages
are written to the System Log to indicate the status of the command. Figure 8-16
on page 259 shows an example of a message from the System Log that
indicates that a start message has been sent to a broker called BROKER1.

258 WebSphere Message Broker Basics

Figure 8-16 System Log message response to mqsistart broker command

Windows Event Viewer Log Properties
It is important to ensure that the properties for the Application log and System log
have been set up correctly in the Windows Event Viewer; otherwise, messages
could fail to be recorded, which may lead to difficulties in troubleshooting
problems in the runtime. The Application log in particular can fill up very quickly if
there are problems in the system, and either become full (in which case no new
messages are written) or begin overwriting earlier messages. Either way, the
original causes of a problem can be difficult to determine.

Use the instructions below to check the properties of the Application log:

1. In the Windows Event Viewer, right-click the Application log in the left-side
pane and select Properties from the context menu.

2. Increase the Maximum log size. This determines the number of messages
that can be retained by the log. The size of log that is required depends on the
amount of activity that is likely to be recorded over time. In this example
(Figure 8-17 on page 260) the log size is 960 KB.

 Chapter 8. Troubleshooting and problem determination 259

Figure 8-17 Application log properties

3. Select an action under “When maximum log sized is reached.” Selecting the
first option, Overwrite events as needed, is recommended, as this prevents
the log from becoming full and the loss of recent messages. However, the
option that is selected must take into account local working practices and how
long event messages may have be retained. Clearing the log manually
means that no old messages are lost, but it does run the risk of the log
becoming full and new messages not being recorded.

The log can be manually cleared at any time by clicking the Clear Log button.
The Application log can also be saved by right-clicking the Application log and
selecting Save log file as from the context menu.

8.1.6 Locating more information about event messages
In addition to the information that accompanies event messages, there are two
other locations that can be used to look up more information:

� Information Center
� Messages.html

260 WebSphere Message Broker Basics

Finding diagnostic messages in the Information Center
The first of these is in the Information Center in the Message Brokers Toolkit (or
other source of product help). Use the following instructions to locate information
about a BIP message:

1. Open the Message Brokers Toolkit Help by selecting Help → Help Contents.

2. Click WebSphere Message Broker V6.0 in the list of contents.

3. Select Diagnostic messages from the bottom of the WebSphere Message
Broker V6.0 list of contents.

4. In the Diagnostic messages page on the right side, enter a four-character
number in the box labelled Enter message number and click the Search
button to locate the BIP message description with that number. An example
for BIP5285 is shown in Figure 8-18.

Figure 8-18 Searching for diagnostic messages in the Information Center

5. For each message, the following information is returned:

– The BIP code

 Chapter 8. Troubleshooting and problem determination 261

– Severity
– Message
– Explanation
– Response

Finding diagnostic messages in the messages.html file
The second place to find more information about BIP messages is in an HTML
file called messages.html. This file is found in the messages directory in the
install path. In a typical Windows install this can be found in C:\Program
Files\mqsi\6.0\messages. Several directories exist here for translated messages,
and in each is a messages.html file.

The messages.html file contains a list of BIP messages in order, in a table, with
links to further information at the top of the file. Locate the required BIP message
and click the link to view the information about it. This information is the same as
the Help system except for the addition of an Inserts table for each message,
which details the variable information for that message. For example, Table 8-1
shows the Inserts information for message BIP2623. The message displayed
with a BIP2623 is as follows:

Unable to open queue '&2' on WebSphere MQ queue manager '&1': completion code
&3; reason code &4.

Using the table provided in the messages.html file enables the source of variable
information in the error message to be determined. Replace the ampersand (&)
variables with the descriptions from the table to understand the message. If the
error message in this example was received, then the next logical step is to look
up the WebSphere MQ reason code to help determine the cause of the error.

Table 8-1 Example inserts for a BIP message

8.1.7 Other useful logs
A variety of other logs that record information are created when using
WebSphere Message Broker. This section gives a brief description of some of
the other logs that are generated.

Insert number Description Datatype

&1 MQ queue manager name CHARACTER

&2 MQ queue name CHARACTER

&3 MQ return code CHRACTER

&4 MQ reason code CHARACTER

262 WebSphere Message Broker Basics

Install logs
Each product produces a log during installation. If any errors occur during
installation, the details are recorded in the installation logs.

WebSphere Message Broker runtime
Installation of WebSphere Message Broker on Windows creates these logs in the
home directory:

� mqsi6_install.log
� mqsi6_envvar.log

In Windows the home directory is usually C:\Documents and Settings\UserID,
where UserID is the login ID of the user that installed the product. The main log
for the runtime installation is the mqsi6_install.log.

Message Brokers Toolkit
The Message Brokers Toolkit install log can be found in the installation directory
of the Message Brokers Toolkit, for example:

C:\MessageBrokers\logs\wmbt_install.log

The log for the uninstall of the Message Brokers Toolkit can be found in the
home directory, for example:

C:\Documents and Settings\UserID\wmbt_uninstall.txt

WebSphere MQ
The installation log for WebSphere MQ is created in the Temp directory. This
varies from machine to machine. To find the location of Temp type the following
on a command line:

set temp

This displays the location of the temp directory. The WebSphere MQ install log
file also includes a time and date stamp in the name. An example WebSphere
MQ install log location and name are shown below for WebSphere MQ V6.0:

C:\Documents and Settings\wmbuser\Local
Settings\Temp\MQv6_Install_2005-10-06T12-48-54.log

ODBC Drivers for Cloudscape or DB2 Universal Database
The installation log for any DB2 Universal Database component including the
ODBC Drivers for Cloudscape can also be found in the home directory. The
following examples show the name and an example location for the two logs that
are produced by these DB2 products:

� C:\Documents and Settings\UserID\My Documents\DB2LOG\db2.log
� C:\Documents and Settings\UserID\My Documents\DB2LOG\db2wi.log

 Chapter 8. Troubleshooting and problem determination 263

The db2.log contains all of the install log information for every DB2 Universal
Database component installed, while the db2wi.log contains information for just
the last DB2 Universal Database component installed on the machine.

MRM logs
A number of logs are generated in Message Set Projects during the import or
export of message definitions such as XML schema. A log is also created by the
runtime if deployment of a message set with a TDS layer fails. This type of error
is indicated by a BIP1836 message in the Message Brokers Toolkit Event Log.

8.2 Using the message Flow Debugger
In order to use the message Flow Debugger, the Rational Agent Controller must
be installed and running on the system where the flow is deployed. Instructions
for installing the Rational Agent Controller can be found in “Rational Agent
Controller” on page 20.

Breakpoints must be added to message flows in order to track the progress and
status of any messages passing through the flow.

The message Flow Debugger is useful for determining what actually happens in
a flow, and for tracking down problems or unexpected behavior. It is especially
useful in complex flows, where the route of messages can be tracked, and input
and output messages can be verified through the flows.

Using the Flow Debugger ESQL code, Java code and mappings can be stepped
into, so that the effect of each line of code on the message in the message flow
can be seen. In this section, a number of examples are used to demonstrate
some of the capabilities of the message Flow Debugger.

The message Flow Debugger has its own perspective in the Message Brokers
Toolkit, which can be accessed by choosing Debug from the Open Perspective
command on the Window menu.

Some of the values in messages or variables created by code in the node can be
interactively altered while a message is passing through a message flow. This is
useful for testing or debugging how a message flow handles expected and
unexpected values for fields in a message.

Important: There are some known problems with the message Flow
Debugger at release of WebSphere Message Broker V6.0. Contact your IBM
Support Center if difficulties occur when invoking the Flow Debugger for
information about available fixes.

264 WebSphere Message Broker Basics

8.2.1 Adding breakpoints to a message flow
A breakpoint is a point defined between nodes in a message flow at which point
progress of a message is stopped by the message Flow Debugger so that the
message can be examined and altered. If no breakpoints are created in a flow,
then a message passes through the flow without being stopped, so it cannot be
examined.

There are several ways to add breakpoints to connections between nodes:

1. Right-click a connection between two nodes and select Add Breakpoint from
the context menu.

2. Right-click a node and select Add Breakpoints Before Node from the
context menu to add a breakpoint on all connections that enter the node.

3. Right-click a node and select Add Breakpoints After Node to add a
breakpoint on all connections that leave the node.

If it is known that the problem that is under investigation occurs between a
particular set of nodes, then breakpoints can be added only in those locations.
For tracking the entire progress of a test message, all of the connections must be
given breakpoints. A subflow can also be given breakpoints, but If no breakpoints
are created in a subflow, then the message Flow Debugger does not stop
progress at a subflow, and the message is only tracked going into and out of the
subflow, but not through it.

Figure 8-19 on page 266 shows a message flow containing breakpoints between
the nodes. This figure also shows a message stopped at a breakpoint, when the
debugger is attached to the execution group. In the figure the breakpoints are
displayed as circles on the connections between the nodes. The message is
stopped between the XML_CANCELRESERVATION_IN node and the
DeleteReservation node, and is represented by a highlight around a breakpoint.

Attaching the debugger is discussed in more detail in the next section.

 Chapter 8. Troubleshooting and problem determination 265

Figure 8-19 Message flow showing breakpoints on the connections

A deployed message flow can have breakpoints added and removed from it
without the need to redeploy.

8.2.2 Attaching the Flow Debugger
The message Flow Debugger must be attached to a specific execution group in
order to start debugging message flows. This means that any flows that are
running in that execution group, including subflows, can be debugged at the
same time. To attach the message Flow Debugger a debug configuration must
be created. Use the following instructions to create a debug configuration:

1. Change to the Debug perspective by selecting Open Perspective → Debug
from the Window menu.

2. In the Debug perspective, click the Debug button () on the toolbar.

3. On the Debug dialog click Message Broker Debug, as shown in Figure 8-20
on page 267.

4. Click New.

5. Enter a name for the flow debug configuration.

6. Select the Flow Project that contains the flows that need to be debugged by
clicking Browse next to Flow Project.

7. Click Browse to select a Flow Engine (execution group). This displays a list
of the running execution groups, as shown in Figure 8-21 on page 267.

266 WebSphere Message Broker Basics

Figure 8-20 Selecting a debug configuration type

8. Select the execution group to debug from the Flow Engine List and click OK.

9. If the execution group contains message flows with Java code to debug,
further setup is required; see “Debugging Java code” on page 273.

10.Click the Debug button to connect the Flow Debugger.

Figure 8-21 Available execution groups in the Flow Engine List

 Chapter 8. Troubleshooting and problem determination 267

The execution groups connected to the debugger are displayed in the top left of
the Debug perspective. Figure 8-22 shows two debug configurations each
connected to an execution group.

Figure 8-22 Execution groups connected to the Flow Debugger

Once the Flow Debugger is connected to an execution group, any of the flows in
the execution group can be debugged.

8.2.3 Tracking a message through a flow
The next stage in using the Flow Debugger is to put a test message through a
message flow. This task can be performed by using any tool that can put a
message to an input node, for example, using an enqueue file. Breakpoints must
have been added to the message flows that the messages are put to, so that the
message stops at those points in the flow. If you want to try this out, use the
WebSphere Message Broker samples deployed to the default configuration, or
use the message flows and message sets created in Chapter 4, “Developing
applications with ESQL” on page 47.

The following instructions can be used to track a test message through a
message flow.

1. Add breakpoints to the message flow.

2. Attach the Flow Debugger to the execution group to which the message flow
is deployed.

3. Use an existing message enqueue file, or create a new file to put a message
to the message flow.

Note: To debug more than one execution group at a time a separate debug
configuration must be created for each one. As a warning debug is processor
intensive, so debugging multiple execution groups at the same time can use
large amounts of virtual memory.

268 WebSphere Message Broker Basics

The Flow Debugger opens the message flow to which the message has been put
and highlights the first connection with a breakpoint to indicate the progress of
the message. Figure 8-19 on page 266 shows this for the Cancel Reservation
message flow from the airline sample.

The content of the message at this point can also be viewed by expanding the
message in the Variables view on the right side of the Debug perspective, as
shown in Figure 8-23.

Figure 8-23 Input message in the Variables view

In order to control the movement of a message through a message flow using the
Flow Debugger, there are a number of buttons on the toolbar. These buttons are
shown in Figure 8-24.

Figure 8-24 Debug toolbar

The first button the debug toolbar is the Resume button. This allows the
message to progress through the flow. It allows the message to move to the next
breakpoint. The message is processed by any nodes that are present between
this breakpoint and the next one.

The Step Over button (fourth from right) performs a similar action to resume,
except that the node between this breakpoint and the next does not process the
message in the message flow.

 Chapter 8. Troubleshooting and problem determination 269

The Run to Completion button, the final button on the far right, passes the
message through the flow without stopping at any breakpoints. The message
continues normal processing until it is passed out of the flow.

In order to debug ESQL code, Java code, or mappings in a message flow, the
Step into Source Code button must be clicked to step into the code. This button
(second from right) is only highlighted when the message is stopped at a
breakpoint before a node for which the source can be debugged, such as a Filter
node, JavaCompute node, or a DataInsert node.

When a message is stopped at a breakpoint on a connection before a node
containing code or a mapping that can be debugged, an arrow with a square
appears over the top of the node. This arrow icon matches the icon used for the
Step Into Source Code button. This can be seen in Figure 8-25, which shows a
breakpoint before a Mapping node. The presence of this arrow means that the
Step into Source button can be pressed to step into the code or mapping at this
point.

Figure 8-25 Step into Source indicator

8.2.4 Stepping through ESQL
To debug ESQL code in a node, click the Step Into Source Code button on the
toolbar when a message travelling through a flow is stopped at a breakpoint
before the node containing ESQL. This opens the ESQL for the node in the
bottom half of the Debug perspective. The arrows on the toolbar of the debug
view can be used to step line-by-line through the ESQL.

The Variables view displays a number of items when used with ESQL. The
DebugMessage is a copy of the message received by the node, plus information
that may have been generated by other nodes in the flow, such as exception and
environment information.

270 WebSphere Message Broker Basics

The OutputRoot is the output message that the ESQL is creating to pass to the
next node in the flow. This is where the ESQL is constructing an output message
from information in an input message, a database, or other logic in the ESQL
itself. Stepping through the ESQL demonstrates how the output message is built
up line by line.

Temporary variables that are created by the ESQL are also displayed in the
Variables view. Figure 8-26 shows an example of the contents of the Variables
view, using the cancel reservation message flow from the Airline sample. This
shows the output message being built, plus the variables I and J, which are used
in the ESQL functions for the node.

Figure 8-26 Example Variables view for ESQL

The buttons on the debug toolbar are used to either step line by line through the
code, or to skip to the end onto the next node. After the ESQL code is completed,
the ESQL code closes and the message flow is displayed with the message
stopped at the next breakpoint after the node with ESQL. The message can then
be passed through the message flow or the next node stepped into.

8.2.5 Stepping through mappings
To debug a node with mappings, click the Step Into Source Code button on the
toolbar when a message travelling through a flow is stopped at a breakpoint
before the node with mappings. This opens the message map for the node in the

 Chapter 8. Troubleshooting and problem determination 271

bottom half of the Debug perspective. The arrows on the toolbar of the debug
view can be used to step line by line through the mapping.

Message maps can have breakpoints added directly to rows in the spreadsheet
view in order to debug specific parts of a map. Right-click the grey bar on the left
of the spreadsheet view and select Add Breakpoint. This makes a breakpoint
appear next to the current position in the map in the Message Mapping editor.
Three breakpoints can be seen in Figure 8-27.

Figure 8-27 Mapping editor with breakpoints set

The Variables view for mappings is more complex than it is with ESQL. The
same types of information are displayed, but various extra objects are also
present that relate to how the mappings are internally constructed in the
message flow. Figure 8-28 on page 273 shows an example Variables view for a
message map.

272 WebSphere Message Broker Basics

Figure 8-28 Example Variables view for a mapping

After the message map code is completed, the message map closes and the
message flow is displayed with the message stopped at the next breakpoint after
the node with mapping. The message can then be passed through the message
flow or the next node stepped into.

8.2.6 Debugging Java code
In order to debug Java code, in a JavaCompute node, or a user-defined node, a
change must be made to the broker to provide a debug Java port number for the
broker JVM. This change must be made before a debug configuration can be
created for a project containing Java to be debugged.

Specifying a Java port
The following command must be entered on the Command Console to specify
the Java port:

mqsichangeproperties BROKER1 -e javaComputeEG -o ComIbmJVMManager -n
jvmDebugPort -v 4455

In this example, BROKER1 is the name of the broker, javaComputeEG is the
execution group name, and 4455 is a port number. Check that the port you
specify is free before running this command. See “WebSphere MQ resources” on
page 207 for instructions on how to choose a free port.

 Chapter 8. Troubleshooting and problem determination 273

Once the mqsichangeproperties command has been run, the broker must be
restarted for the changes to take affect. Use an mqsistop and mqsistart with the
broker name to stop and restart the broker.

Creating a debug configuration for Java
A new debug configuration must be created that contains the debug Java port for
the execution group. Use the following instructions to set up a debug
configuration:

1. Create a new debug configuration using the instructions above.

2. Click Java debug setting to set the Java port.

3. Check the Debug Java Source Code box.

4. Enter the port assigned to the execution group using the
mqsichangeproperties command run previously. (Figure 8-29 on page 275
shows an example where the Java port is 4455.)

5. Click Debug to connect the debugger to the execution group containing the
Java code to be debugged.

6. Click the Step Into Source Code button on the toolbar when a message
travelling through a flow is stopped at a breakpoint before the node containing
Java code.

This opens the Java for the node in the bottom half of the Debug perspective.
The arrows on the toolbar of the debug view can be used to step line by line
through the Java code.

274 WebSphere Message Broker Basics

Figure 8-29 Setting the Java port

The Variables view displays items that are different from those seen in mappings
or ESQL and instead represent the objects seen in the Java code. If you are
familiar with the Rational Application Development platform, the Flow Debugger
when used with the JavaCompute node or user-defined nodes is the same as the
normal Java debugger. An example of the Variables view when a JavaCompute
node is being debugged is shown in Figure 8-30 on page 276.

After the Java code is completed, the Java code closes and the message flow is
displayed with the message stopped at the next breakpoint after the
JavaCompute node. The message can then be passed through the message
flow or the next node stepped into.

 Chapter 8. Troubleshooting and problem determination 275

Figure 8-30 Example Variables view when debugging Java code

8.2.7 Flow of errors in a message flow
In an ordinary message flow, the progress of the message is from the Input node
through the message flow in a downstream direction. However, when an error
occurs, the flow changes and messages start to move upstream as they begin to
roll back. If error handling capabilities are not added to a message flow, then
when errors occur the message rolls back until it reaches the input node and is
backed out onto the input queue.

It is helpful to look at message flows by using the debugger, as this shows how
messages are handled and rolled back when an error occurs. To demonstrate
this, put an invalid message to the a message flow. A number of the samples
intentionally supply messages with errors to demonstrate the effects of putting an
invalid message through a message flow. These can be used to demonstrate the
flow of an error. As an alternative, the examples created in Chapter 4,
“Developing applications with ESQL” on page 47, can be used by altering the
structure or data in the input messages to make them invalid.

If an error occurs in the message flow while the debugger is attached, the
following happens:

� An entry is created in the ExceptionList for the error that occurred.
� The message begins to flow back up the message flow.

276 WebSphere Message Broker Basics

As the message begins to flow back up the message flow towards the input
node, exceptions are added to the ExceptionList. The message continues to flow
up the message flow until the message reaches a node with either the Failure
terminal or the Catch terminal connected. If these are connected then the
message begins to flow down that part of the message flow unless another error
occurs. Figure 8-31 shows an example of errors in the ExceptionList, after a
database action has failed.

Figure 8-31 Errors in the ExceptionList

The Error Handler sample demonstrates how different error handling techniques
affect an invalid message in the flow, and is an excellent flow to observe under
the debugger in order to understand the flow of errors in message flows, and how
to implement error handling techniques for your own flows.

8.2.8 Disconnecting the debugger
It is recommended when using the message Flow Debugger that all messages
should be passed out of the flow before disconnecting the Flow Debugger. It is
also not possible to deploy to an execution group when the debugger is
connected to it.

In the Debug perspective, right-click the execution group connection in the top
left of the perspective and select Disconnect from the context menu.

 Chapter 8. Troubleshooting and problem determination 277

8.3 Using trace
This section gives an overview of using trace with WebSphere Message Broker.
Trace is used when a problem occurs that cannot be solved using any of the
methods that have been described so far in this chapter. Trace is used most
often on execution groups, where it can be used to work out exactly what is
happening when a message passes through a message flow. Message flows
can even be designed to output user-specified trace, such as the content of the
message tree using a Trace node.

Trace can also be used for helping to debug problems with WebSphere Message
Broker commands or components, although this is usually only used for the
purpose of collecting trace for service if a potential product defect is occurring. In
addition, you also can start and collect trace from components of the Message
Brokers Toolkit.

The types of trace that are described here are set up and collected only when
necessary, as tracing results in a decrease in performance due to the extra
processing that is required in a system.

For tracing on execution groups, components, and commands, there are
different types and levels of trace and amounts of detail: User trace, service
trace, and normal and debug levels of trace. Of these combinations, user trace at
normal level has the least information, and service trace at debug level has the
greatest amount of information. However, most of the information that is
contained in the service trace is not of value to most users.

8.3.1 Tracing execution groups
Tracing of execution groups to obtain detailed information about what happens to
messages that pass through a flow is straightforward and very useful. The Error
Handler sample has been used here to demonstrate how to perform trace on an
execution group, and to show how to read the output from a trace file. These
same instructions can be used for any deployed message flows.

User trace level normal
This section traces messages through the Error Handler message flow using
user trace at normal level. This example uses these parameters BROKER1 for
the broker and ErrorHandler for the execution group with the Error Handler
sample deployed to it.

278 WebSphere Message Broker Basics

To set user level trace for an execution group enter the following command in the
Command Console, substituting the broker name and execution group with the
appropriate names:

mqsichangetrace BROKER1 -u -e ErrorHandler -l normal -r

mqsichangetrace is the command that changes the trace settings on the broker
name that follows it (in this case BROKER1). The parameter -u indicates that the
type of trace required is user trace; -e and the name following it are for the
execution group to trace (in this case the execution group is called ErrorHandler);
-l is the level of the trace, in this case normal; and -r is to reset the trace log. The
-r parameter is optional, but it is useful to reset the log (empty it); otherwise, the
trace file can become very large and difficult to read.

The result of the command that has been run is to change the trace on the broker
and execution group to which the Error Handler sample is deployed to user trace
at normal level. This means that trace is now collected for certain actions that
occur within this execution group, for example, messages moving within a
message flow. The next step is to put a message through the message flow to
generate some of these actions that are recorded in the trace.

Type the following command into the Command Console to read the contents of
the trace log into an XML file, substituting the names of the broker and execution
group:

mqsireadlog BROKER1 -u -e ErrorHandler -o Trace1.xml

The mqsireadlog command reads the contents of the trace log into an XML file.
The other parameters that are given with the command determine which trace
log the information is being read from, as many components, each with its own
trace log, may be being traced. In this example, the name that follows the
mqsireadlog command is the broker name, the -u takes the user trace
information from the trace log, -e and the name following it are the execution
group being traced, and the -o parameter is the name of the output file to put the
trace information to. This does not require a file extension, but it is useful to give
it an xml file extension so that it is recognizable as an XML file rather than a fully
formatted trace file.

At this stage it is possible to locate and view the trace file, but it is in XML format
and is difficult to read. Therefore, a further step must be carried out to get the file
into a formatted state for interpretation. This can be performed using the
mqsiformatlog command.

Type the following command onto the Command Console:

mqsiformatlog -i Trace1.xml -o Trace1.txt

 Chapter 8. Troubleshooting and problem determination 279

The mqsiformatlog command converts an XML file that was generated by the
mqsireadlog command into a formatted file that can be read by a text editor. It
has two parameters: -i is the name of the XML input file, and -o is the name to
give to the output file.

On Windows, it is useful to give the file a txt file extension so that the file can be
opened from the command line into the Notepad program simply by typing the
name of the file on the command line. If Notepad is used as the text editor,
ensure that Word Wrap is not on, as this makes reading the trace easier.

The output in the trace file consists of several lines of user trace, each with a
timestamp at the beginning, followed by a four-character code, the type of trace
(in this example all messages are UserTrace), a BIP code, and a description of
the event with details such as node names, queue names, and parser types. This
gives details of all events that occur as the message passes through the
message flow.

Example 8-1 shows an example of the content of a user trace file. The
timestamps and source information have been removed.

Example 8-1 Excerpt from a usertrace file

BIP2632I: Message received and propagated to 'out' terminal of MQ input node
'Main_Flow.STAFF_IN'.
BIP6060I: Parser type 'Properties' created on behalf of node
'Main_Flow.STAFF_IN' to handle portion of incoming message of length 0 bytes
beginning at offset '0'.
BIP6061I: Parser type 'MQMD' created on behalf of node 'Main_Flow.STAFF_IN' to
handle portion of incoming message of length '364' bytes beginning at offset
'0'. Parser type selected based on value 'MQHMD' from previous parser.
BIP6061I: Parser type 'XML' created on behalf of node 'Main_Flow.STAFF_IN' to
handle portion of incoming message of length '133' bytes beginning at offset
'364'. Parser type selected based on value 'XML' from previous parser.
BIP4004I: Message propagated to 'true' terminal of filter node 'Main_Flow.Check
Backout Count'.
BIP4080I: Message propagated to try terminal from try-catch node
'Main_Flow.Error_Handler.TryCatch'. The try-catch node
'Main_Flow.Error_Handler.TryCatch' has received a message and is propagating it
to any nodes connected to its try terminal. No user action required.
BIP4004I: Message propagated to 'true' terminal of filter node 'Main_Flow.Check
Valid Staff Number'.
BIP4184I: Message propagated to 'out' terminal of database node
'Main_Flow.Update Staff Database'.
BIP2638I: The MQ output node 'Main_Flow.STAFF_OUT' attempted to write a message
to queue 'STAFF_OUT' connected to queue manager ''. The MQCC was '0' and the
MQRC was '0'.

280 WebSphere Message Broker Basics

BIP2622I: Message successfully output by output node 'Main_Flow.STAFF_OUT' to
queue 'STAFF_OUT' on queue manager ''.

Example 8-1 on page 280 does not show any errors in the usertrace; the BIP
messages all end in I, indicating that they are for information only. If an error
occurs while trace is switched on, error messages are recorded in the trace,
together with information that can help indicate the cause of the problem.

Example 8-2 shows an example of user trace generated when an error has
occurred in a message flow. In this case an invalid message has been put to the
message flow. A different chain of events is shown here than the previous trace
file. Instead of UserTrace, the word Error appears in front of the BIP2232 error
message. This message is in fact displayed in the Application log in the Windows
Event Viewer, and it is the only BIP message recorded in either of these trace
files that is displayed in the Event Viewer. The exceptions produced by the
invalid message are clearly seen.

There is also an example of a UserException shown by the BIP3002 message
where a user exception has been generated as part of the error handling in the
flow itself.

Example 8-2 Excerpt of user trace showing error conditions

BIP4005I: Message propagated to 'false' terminal of filter node
'Main_Flow.Check Valid Staff Number'.
BIP4101I: Exception thrown by throw node 'Main_Flow.Throw'. The throw node
'Main_Flow.Throw' has received a message and will throw an exception as this is
its normal behavior. No user action required.
BIP4081I: Message propagated to catch terminal from try-catch node
'Main_Flow.Error_Handler.TryCatch'. The try-catch node
'Main_Flow.Error_Handler.TryCatch' has caught an exception which occurred in a
node connected to its try terminal. The message has been augmented with an
exception list and is propagating it to any nodes connected to its catch
terminal for further processing. See the following messages for details of the
exception list. No user action required.
BIP3001I: Exception thrown by throw node 'Main_Flow.Throw'; text is 'Invalid
staff number'. The throw node 'Main_Flow.Throw' has received a message and thus
has thrown an exception as this is its normal behavior. The message text
associated with this exception is 'Invalid staff number'. Since this is
application generated (by message flow behavior), the user action is determined
by the message flow and the type of exception generated.
BIP4184I: Message propagated to 'out' terminal of database node
'Main_Flow.Update Error Database'.
BIP4101I: Exception thrown by throw node 'Main_Flow.Error_Handler.Throw To
Complete Rollback'. The throw node 'Main_Flow.Error_Handler.Throw To Complete
Rollback' has received a message and will throw an exception as this is its
normal behavior. No user action required.

 Chapter 8. Troubleshooting and problem determination 281

BIP2232E: Error detected whilst handling a previous error in node
'Main_Flow.Error_Handler.Throw To Complete Rollback'. The message broker has
detected an error in node 'Main_Flow.Error_Handler.Throw To Complete Rollback'
whilst handling a previous error. See the following messages for details of the
exception list associated with the original error. Thereafter messages will be
associated with the new error.
BIP3001I: Exception thrown by throw node 'Main_Flow.Throw'; text is 'Invalid
staff number'. The throw node 'Main_Flow.Throw' has received a message and thus
has thrown an exception as this is its normal behavior. The message text
associated with this exception is 'Invalid staff number'. Since this is
application generated (by message flow behavior), the user action is determined
by the message flow and the type of exception generated.
BIP2231E: Error detected whilst processing a message 'Main_Flow.STAFF_IN'. The
message broker detected an error whilst processing a message in node
'Main_Flow.STAFF_IN'. The message has been augmented with an exception list and
has been propagated to the node's failure terminal for further processing. See
the following messages for details of the error.
BIP3002I: Exception thrown by throw node 'Main_Flow.Error_Handler.Throw To
Complete Rollback'; text is 'From Error_Handler message flow. See ERRORDB for
details.'. The throw node 'Main_Flow.Error_Handler.Throw To Complete Rollback'
has received a message and thus has thrown an exception as this is its normal
behavior. The message text associated with this exception is 'From
Error_Handler message flow. See ERRORDB for details.'. Since this is
application generated (by message flow behavior), the user action is determined
by the message flow and the type of exception generated.
BIP2638I: The MQ output node 'Main_Flow.STAFF_FAIL' attempted to write a
message to queue 'STAFF_FAIL' connected to queue manager ''. The MQCC was '0'
and the MQRC was '0'.
BIP2622I: Message successfully output by output node 'Main_Flow.STAFF_FAIL' to
queue 'STAFF_FAIL' on queue manager ''.

This level of trace is sufficient for the majority of purposes, but in order to get
even more information, for example, down to the level of actions performed on a
message by ESQL, then a higher level of trace is required.

User trace level debug
To demonstrate a user trace at debug level, the same message flow and invalid
message is used as in the section above.

To set a user trace level of debug, the following command must be entered in the
Command Console, substituting the broker and execution group name:

mqsichangetrace BROKER1 -u -e ErrorHandler -l debug -r

In this example, BROKER1 is the name of the broker and ErrorHandler is the
name of the execution group. The following command can be used to read the
trace log when a message has been put to the message flow.

282 WebSphere Message Broker Basics

mqsireadlog BROKER1 -u -e ErrorHandler -o Trace2.xml

This command on the Command Console converts the XML file from Trace2.xml
to a text file called Trace2.txt:

mqsiformatlog -i Trace2.xml -o Trace2.txt

In comparison to a trace file at normal level, it is obvious that a lot more
information is recorded in the debug trace file, making it harder to read but much
clearer to work out exactly what is happening to a message in a message flow. A
line is included for the evaluation of each line of ESQL that is run in the message
flow. Example 8-3 shows an example of a debug level user trace. This example
demonstrates how errors that occur in a message flow can be seen in the trace
file.

The BIP2539 message indicates that the result of an ESQL evaluation was false.
This passes the message to the False terminal of the Filter node, which the
message is being evaluated by. A Throw node is connected to the Filter node in
this message flow, causing an exception to be thrown, as seen in the following
BIP messages.

Example 8-3 Excerpt of user trace at debug level

BIP2537I: Node 'Main_Flow.Check Valid Staff Number': Executing statement 'IF
Body.Staff.StaffNumber <= '10' THEN... ELSE... END IF;' at
(.Main_Flow_Filter.Main, 3.2).
BIP2538I: Node 'Main_Flow.Check Valid Staff Number': Evaluating expression
'Body.Staff.StaffNumber <= '10'' at (.Main_Flow_Filter.Main, 3.27).
BIP2538I: Node 'Main_Flow.Check Valid Staff Number': Evaluating expression
'Body.Staff.StaffNumber' at (.Main_Flow_Filter.Main, 3.5).
BIP2539I: Node 'Main_Flow.Check Valid Staff Number': Finished evaluating
expression 'Body.Staff.StaffNumber <= '10'' at (.Main_Flow_Filter.Main, 3.27).
This resolved to ''99' <= '10''. The result was 'FALSE'.
BIP2537I: Node 'Main_Flow.Check Valid Staff Number': Executing statement
'RETURN FALSE;' at (.Main_Flow_Filter.Main, 6.3).
BIP4005I: Message propagated to 'false' terminal of filter node
'Main_Flow.Check Valid Staff Number'.
BIP4101I: Exception thrown by throw node 'Main_Flow.Throw'. The throw node
'Main_Flow.Throw' has received a message and will throw an exception as this is
its normal behavior. No user action required.
BIP4081I: Message propagated to catch terminal from try-catch node
'Main_Flow.Error_Handler.TryCatch'. The try-catch node
'Main_Flow.Error_Handler.TryCatch' has caught an exception which occurred in a
node connected to its try terminal. The message has been augmented with an
exception list and is propagating it to any nodes connected to its catch
terminal for further processing. See the following messages for details of the
exception list. No user action required.
BIP3001I: Exception thrown by throw node 'Main_Flow.Throw'; text is 'Invalid
staff number'. The throw node 'Main_Flow.Throw' has received a message and thus

 Chapter 8. Troubleshooting and problem determination 283

has thrown an exception as this is its normal behavior. The message text
associated with this exception is 'Invalid staff number'. Since this is
application generated (by message flow behavior), the user action is determined
by the message flow and the type of exception generated.

Debug level user trace is very useful for tracking exactly what happens to a
message in a message flow and why. It can be used as an alternative to the Flow
Debugger for debugging problems, and shows greater detail on the events in a
message flow. Unlike the Flow Debugger, the values of items in a message or
variables can not be altered. It is less easy to follow than the visual
representation of the message travelling through the message flow.

Service trace
Service trace activates more comprehensive tracing than the user trace, and can
additionally be used to trace the Message Brokers Toolkit, Configuration
Manager, User Name Server, and any of the WebSphere Message Broker
commands. Service trace is usually only activated when an error message or an
IBM Support Center requests that you collect this level of trace. Instructions for
using service trace for components and commands are given in the following
sections.

Service trace for message flows can be collected using the same commands as
user trace. The only difference is that the -u parameter in the mqsichangetrace
and mqsireadlog commands is replaced by a -t parameter. An example is:

mqsichangetrace BROKER1 -t -e ErrorHandler -l debug -r

In this example BROKER1 is the name of the broker and ErrorHandler is the
name of the execution group.

Display trace settings
The trace settings on an execution group or other WebSphere Message Broker
components can be displayed using the mqsireporttrace command.

To display the service trace settings for an execution group, enter the following
on the Command Console, substituting the broker name and execution group
name as necessary:

mqsireporttrace BROKER1 -t -e ErrorHandler

To display the user trace settings for an execution group that was used in the
previous examples, enter the following on the Command Console, substituting
the broker name and execution group name as necessary:

mqsireporttrace BROKER1 -u -e ErrorHandler

284 WebSphere Message Broker Basics

Reset trace settings
When trace is set on an execution group, additional processing is generated in
order to record each activity in the message flows. There is an impact on
performance, and therefore tracing should be limited to only those execution
groups where tracing is required, and tracing should only be performed for a
limited amount of time.

After trace has been collected, reset the trace settings to none to stop trace from
being written. For example, enter the following command in the Command
Console:

mqsichangetrace BROKER1 -t -e ErrorHandler -l none

This command resets the service trace to none for the execution group
ErrorHandler on BROKER1. To reset the user trace on an execution group, enter
a command in the Command Console using the following syntax:

mqsichangetrace BROKER1 -u -e ErrorHandler -l none.

8.3.2 Tracing components
On occasion it may be necessary to collect trace for WebSphere Message
Broker components, such as the Configuration Manager, the User Name Server,
or brokers. These use the mqsichangetrace and mqsireadlog commands, similar
to trace on an execution group. Only service trace can be used for commands,
so the -t parameter must be used with the commands, not the -u parameter.

To collect trace for a Configuration Manager use the instructions below,
substituting configmgr for the name of your Configuration Manager:

1. Enter this command in the Command Console:

mqsichangetrace configmgr -t -b -l normal

2. When trace is ready to be read, enter this command in the Command
Console:

mqsireadlog configmgr -t -b agent -f -o ConfigmgrTrace.xml

3. To format the log, enter the mqsiformatlog command as before, for example:

mqsiformatlog -i ConfigmgrTrace.xml -o ConfigmgrTrace.txt

4. View the trace file that is generated.

The other runtime components of WebSphere Message Broker can be traced in
the same way. This tracing is generally used for collecting information for
service.

 Chapter 8. Troubleshooting and problem determination 285

8.3.3 Tracing commands
Only service trace can be used to trace WebSphere Message Broker
commands. Trace for commands does not use the mqsichangetrace command;
instead, only the mqsireadlog and mqsiformatlog commands are used, as with
the trace on components. However, an extra step must be performed to start
trace for the commands by setting the MQSI_UTILITY_TRACE environment
variable. The following instructions give an example of collecting trace for two
commands, mqsilist and the mqsistop command on a broker.

To perform debug level service trace on the mqsilist command:

1. Open the Command Console and enter:

set MQSI_UTILITY_TRACE=DEBUG

2. Enter the following and press Enter:

mqsilist

3. Enter the following and press Enter:

mqsireadlog utility -t -b mqsilist -f -o mqsilistTrace.xml

4. Enter a mqsiformatlog command to format the trace for output to a text file;
for example:

mqsiformatlog -i mqsilistTrace.xml -o mqsilistTrace.txt

5. View the trace file.

To perform normal level service trace on the mqsistop command for the broker
WBRK_BROKER:

1. Open the Command Console and enter:

set MQSI_UTILITY_TRACE=DEBUG

2. Enter:

mqsistop WBRK_BROKER

3. Enter:

mqsireadlog WBRK_BROKER -t -b mqsistop -f -o mqsistopTrace.xml

4. Enter a mqsiformatlog command to format the trace for output to a text file;
for example:

mqsiformatlog -i mqsistopTrace.xml -o mqsistopTrace.txt

5. View the trace file.

The advantage of setting the MQSI_UTILITY_TRACE environment variable on
the Command Console rather than in the system is that as soon as the

286 WebSphere Message Broker Basics

Command Console window is closed, the tracing is stopped. To manually stop
the tracing of commands, type this in the Command Console:

set MQSI_UTILITY_TRACE=none

It is important to reset these variables like this when the command that you are
tracing has completed. If MQSI_UTILITY_TRACE is left as it is, all subsequent
commands are also traced. This leads to a degradation in performance of these
commands.

8.3.4 Tracing the Message Brokers Toolkit
Various components of the Message Brokers Toolkit for WebSphere Message
Broker can have trace activated on them. This is not described in detail here, as
trace on these components is only likely to be required if the IBM Service Center
requests it. However, trace in the Message Brokers Toolkit and other advanced
settings can be accessed through the Preferences window (in the Message
Brokers Toolkit, select Windows → Preferences).

There are a variety of options for recording trace for Broker Administration in
Preferences. Figure 8-32 on page 288 shows the Preferences window with some
of the settings that can be altered for tracing connections for broker
administration.

 Chapter 8. Troubleshooting and problem determination 287

Figure 8-32 Preferences in the Message Brokers Toolkit

8.3.5 WebSphere MQ trace
Trace can be switched on within WebSphere MQ; however, this must be used
with caution because it records trace for every executable running in WebSphere
MQ and can lead to the production of very large log files and affect performance.
Error logs are produced for WebSphere MQ without trace being set; check these
first if problems are occurring in WebSphere MQ before switching on trace.
These error logs can be located in the trace directory under the install path for
WebSphere MQ (for example, C:\Program Files\IBM\WebSphere MQ\trace).

To switch on trace for WebSphere MQ:

1. Start the WebSphere MQ Explorer program.

2. Right-click IBM WebSphere MQ and select Trace from the context menu.

3. Click Start in the Trace window (Figure 8-33 on page 289), and click OK.

288 WebSphere Message Broker Basics

Figure 8-33 Starting trace on WebSphere MQ

To view the trace files that have been created, open the TRC files that are
located in the trace directory under the install path for WebSphere MQ (for
example, C:\Program Files\IBM\WebSphere MQ\trace).

Select Stop in the Trace dialog to stop trace from being recorded on WebSphere
MQ components and programs after the required trace has been generated.

8.3.6 ODBC trace
ODBC trace can be useful if problems related to database connections occur
when using message flows that access databases to query information, or
update, delete, or insert data from tables. To start ODBC tracing on Windows:

1. Open the ODBC Data Source Administrator program from the Windows
Control Panel. (It is usually located under Administrative Tools, but the
location depends on the version of Windows that is installed on the system.)

2. Select the Tracing tab in the ODBC Data Source Administrator (Figure 8-34
on page 290).

3. Check the Log file Path. This can be changed to a different name and
directory, if necessary.

4. Click Start Tracing Now to start tracing ODBC connections on the system.

 Chapter 8. Troubleshooting and problem determination 289

Figure 8-34 Starting ODBC trace

Click Stop Tracing Now in the ODBC Data Source Administrator to stop
collecting ODBC trace.

Figure 8-35 on page 291 shows an example of the output that is produced in the
ODBC trace file. The success of an ODBC/SQL action is indicated by the return
code, where 0 (zero) is successful and the value -1 is an error condition.

290 WebSphere Message Broker Basics

Figure 8-35 Example contents of an ODBC trace log

8.4 Troubleshooting common problems
This section describes some basic, common problems that may be experienced
with WebSphere Message Broker, and suggestions for overcoming these issues.

8.4.1 Default Configuration wizard problems
The Default Configuration wizard may fail for a variety of reasons, but typically
because of an underlying problem with the WebSphere Message Broker
configuration that prevents the creation or starting of one of the components that
the Default Configuration wizard creates.

 Chapter 8. Troubleshooting and problem determination 291

If the Default Configuration wizard fails, the message shown in Figure 8-36 is
displayed. This message indicates which task the Default Configuration wizard
was attempting when it failed. The Default Configuration wizard provides a Yes
and a No button. Clicking the Yes button attempts to complete the task that failed
again. Clicking No roll backs all of the tasks that the Default Configuration wizard
has completed up to that point.

Figure 8-36 Error produced on Default Configuration wizard failure

The only way of finding out why the particular task has failed at this point is to
consult the log that the Default Configuration wizard creates. This log can be
found in the .metadata directory in the Message Brokers Toolkit workspace. The
workspace directory is located by default here in Windows:

C:\Documents and Settings\wmbuser\IBM\wmbt6.0\workspace

Where wmbuser is the user ID for the user logged on to the machine. The log
created by the Default Configuration wizard is called:

DefaultConfigurationWizard.log

This log can be consulted for errors generated while the wizard was run. An
example of an error that may occur and its format in the
DefaultConfigurationWizard.log is provided in Example 8-4. This shows that the
cause of the error is that user name and password that the Default Configuration
wizard is trying to use to create the broker is wrong.

Example 8-4 Excerpt of DefaultConfigurationWizard.log

D:\MessageBrokers>mqsicreatebroker WBRK6_DEFAULT_BROKER -i wmbuser -a
********** -q WBRK6_DEFAULT_QUEUE_MANAGER -n DEFBKDB6
BIP2321E: Database error: ODBC return code '-1'.
The message broker encountered an error whilst executing a database operation.
The ODBC return code was '-1'. See the following messages for information
obtained from the database pertaining to this error.
Use the following messages to determine the cause of the error. This is likely
to be such things as incorrect datasource or table names. Then correct either
the database or message broker configuration.

292 WebSphere Message Broker Basics

BIP2322E: Database error: SQL State ''08001''; Native Error Code '-30082';
Error Text ''[IBM][CLI Driver] SQL30082N Attempt to establish connection
failed with security reason "24" ("USERNAME AND/OR PASSWORD INVALID").
SQLSTATE=08001 ''.
The error has the following diagnostic information: SQL State
''08001'' SQL Native Error Code '-30082' SQL Error Text
''[IBM][CLI Driver] SQL30082N Attempt to establish connection failed with
security reason "24" ("USERNAME AND/OR PASSWORD INVALID"). SQLSTATE=08001 ''
This message may be accompanied by other messages describing the effect on the
message broker itself. Use the reason identified in this message with the
accompanying messages to determine the cause of the error.

BIP8040E: Unable to connect to the database.
The database cannot be accessed with the userid and password that were
specified when the broker was created.
Check that the database is running, that an ODBC connection has been created
and that the userid and password pair specified for ODBC connect on the
mqsicreate command are capable of being used to connect to the database using
an ODBC connection. Also ensure that the database has a adequate number of
database connections available for use.

The conclusion from the errors shown in Example 8-4 on page 292 is that the
password supplied to the Default Configuration wizard has been entered
incorrectly.

Sometimes an error may be displayed in the DefaultConfigurationWizard.log that
can be fixed by the user; for example, if an error was displayed indicating that no
start database command was received, this would mean that the DB2 Universal
Database service was stopped. This could be started and the Default
Configuration wizard could continue from where it left of. In such a circumstance
where you can fix the problem, click Yes after the problem is resolved to try
re-running the failed task.

If a problem occurs that cannot be fixed by the user, then the No button must be
clicked to roll back the tasks that the wizard has performed to continue. In the
problem shown above, where the password has been entered incorrectly, we
must click No to roll back all the tasks, so that the Default Configuration wizard
can be restarted and the password re-entered.

8.4.2 Errors with the Message Brokers Toolkit
A variety of errors can occur in the Message Brokers Toolkit. Some problems
caused by an internal problem with the underlying code can cause a message to
be displayed on the screen, indicating that more information can be found in the
Error Log. Typically these are Java or NullPointer errors and can occur in the

 Chapter 8. Troubleshooting and problem determination 293

PDE Runtime Error Log. This can be accessed by using the following
instructions:

1. In the Message Brokers Toolkit, select Preferences from the Window menu.

2. Check the Eclipse Developer box in the Capabilities section, as shown in
Figure 8-37.

3. Click OK.

Figure 8-37 Adding the Eclipse Developer capability

4. Select Show View → Other from the Window menu.

5. Select Error Log from PDE Runtime in the choice of views, as shown in
Figure 8-38 on page 295.

Information in this log may be useful to service to help track down the cause of a
problem, or where more than one product is using the Rational Application
Development platform, which product may be producing errors.

294 WebSphere Message Broker Basics

Figure 8-38 Selecting the PDE Runtime Error Log

Other problems seem to cause strange behavior in the Message Brokers Toolkit,
such as an editor no longer opening correctly. Other problems that may occur
are that the perspectives and user settings in the Message Brokers Toolkit
cannot be saved on shutdown or be restored during startup of the Eclipse
workbench. Errors may also occur if the Eclipse Workbench is terminated
unexpectedly. For any such errors that are not resolved through normal use of
the Message Brokers Toolkit, the following method is useful to try to resolve the
problem.

1. Close the Message Brokers Toolkit.

2. Open a command window.

3. Navigate to the install directory of the Message Brokers Toolkit, for example,
C:\MessageBrokers.

4. Type the following onto the command line:

wmbt.exe -clean

The Message Brokers Toolkit restarts, and often this solves the problem. If this
does not resolve the problem then check for errors in the PDE Runtime Error
Log.

 Chapter 8. Troubleshooting and problem determination 295

Unexplained errors in message flows and message sets
Some unexplained errors can occur where a message flow or message set that
was working correctly suddenly shows unexplained errors. This may be due to a
change in a referenced project or for no clear reason. An example error message
is Unable to find element reference. A potential way to solve this problem is to
clean the projects in the Message Brokers Toolkit’s workspace. Use the
instructions below to clean the projects in the Message Brokers Toolkit’s
workspace.

1. Select Clean from the Project menu.

2. Select to either clean all projects, or select the project to clean by clicking
Browse (an example is shown in Figure 8-39).

3. Click OK.

Figure 8-39 Clean projects

This rebuilds the projects, often removes unexplained error messages, and
rebuilds the links with referenced projects. Cleaning all projects is useful where
there are only small numbers, but the clean takes some time with many projects.
If individual projects are selected then any projects referenced to the project
showing the problems should also be cleaned.

If these steps do not solve a particular problem that is occurring in the Message
Brokers Toolkit, you should seek further assistance.

8.4.3 Problems connecting to the Configuration Manager
The Message Brokers Toolkit must communicate with the Configuration
Manager in order to perform any types of deploy task. The properties for the
connection to the Configuration Manager are set up in the Domain Connection
wizard. The properties are stored in a file with a .configmgr extension and, if the
properties change, they can be edited by double-clicking the Domain Connection
file.

296 WebSphere Message Broker Basics

Figure 8-40 shows the domain connection when the connection between the
Message Brokers Toolkit and the Configuration Manager has not been
established. The domain connection and the editor options beneath it are grayed
out.

Figure 8-40 Disconnected broker domain

To establish the connection, right-click the domain connection and select
Connect from the context menu. This makes the Message Brokers Toolkit
attempt to connect to the Configuration Manager, and a progress bar is
displayed. If the progress bar seems to stop or take a long time, there is likely to
be a problem with the connection to the Configuration Manager.

If a failure occurs during connection to the Configuration Manager, then a BIP
error message is displayed with the cause or possible causes of the problem, as
seen in Figure 8-41.

Figure 8-41 Error message: Communication problem with Configuration Manager

 Chapter 8. Troubleshooting and problem determination 297

Use the error information in the Details section of the BIP error message to help
track down the cause of the problem. Some common solutions to problems with
the Message Brokers Toolkit’s connection to the Configuration Manager are:

� Confirm that the Configuration Manager is created.

� Confirm that the Configuration Manager is started successfully, as indicated
by a BIP1003 message in the Application log in the Windows Event Viewer.

� Confirm that the WebSphere MQ queue manager is available.

� Confirm that the WebSphere MQ queue manager that is specified in the
Domain Connection configuration is correct.

� Confirm that the WebSphere MQ Listener is running.

� Confirm that nothing else is running on the same port as the WebSphere MQ
Listener.

� Confirm that the WebSphere MQ Listener port that is specified in the Domain
Connection configuration is correct.

� Ensure that the user that is running the Message Brokers Toolkit has the
appropriate security authorities to access and run the Configuration Manager.

� If the Configuration Manager is on a remote machine there may be a time
delay for the communication between the Configuration Manager and the
Message Brokers Toolkit. Use the instructions in Figure 8-41 on page 297 to
increase the number of retry attempts and increase the time between
attempts. The preferences options are shown in Figure 8-42 on page 299.

� If the Configuration Manager is on a remote machine check the Application
log or syslog for error messages.

298 WebSphere Message Broker Basics

Figure 8-42 Preferences for communication with the Configuration Manager

8.4.4 Problems with deployment
A variety of problems can occur with deployment actions, and this section details
a few of the common problems and solutions.

Deleted brokers
If a broker is deleted on a system and then re-created with the same name, the
broker is not recognized by the Configuration Manager on the next deploy
operation to it. This is because each broker and execution group on its first
deploy is allocated a unique ID. This ID is referred to in subsequent deploys, and
if the broker is re-created, the ID is no longer present.

If the broker is deleted and re-created without being deleted from the
Configuration Manager, then BIP2062 and BIP2087 error messages are seen in
the Message Brokers Toolkit Event Log in the next deploy operation.

 Chapter 8. Troubleshooting and problem determination 299

To remedy this situation:

1. In the Broker Administration perspective in the Message Brokers Toolkit,
right-click the re-created broker and select Remove Deployed Children from
the context menu.

2. This displays successful configuration change messages in the Event Log (for
example, BIP2056 and BIP4045). An error message from the Configuration
Manager may also be present (BIP1536).

3. Deploy to the default execution group on the broker.

The execution group and broker are then assigned an ID and can be deployed to
as normal.

If the Configuration Manager and its database have been re-created, then you
must re-create any brokers in order to be able to deploy to them.

Using the Configuration Manager Proxy API Exerciser
If difficulties still occur with a deleted broker, such as the Configuration Manager
continuing to attempt to deploy resources to the broker, the Configuration
Manager Proxy API Exerciser sample can be used to help. This sample allows
you to view and manage a broker domain by using the Configuration Manager
Proxy API.

To start the Configuration Manager Proxy API Exerciser sample:

1. Click Start → IBM WebSphere Message Broker V6.0 → Java
Programming APIs → Configuration Manager Proxy API Exerciser.

2. Connect to a running Configuration Manager by clicking File → Connect to
Configuration Manager.

3. Enter the connection parameters to the Configuration Manager.

4. Click Submit.

Information about the broker domain is retrieved and displayed in the
Configuration Manager Proxy API Exerciser window.

To execute a Configuration Manager Proxy API method against a broker object,
right-click a broker in the navigation tree view. A list of the available methods is
displayed. Selecting one of these methods executes the method.

300 WebSphere Message Broker Basics

For the problem in this example useful methods are Cancel all outstanding
deploys to this broker, Delete broker, and Delete broker configuration.

Remote broker not responding
If a deploy to a remote broker fails or no response is received, these actions may
help to solve or determine the cause of the problem.

� Confirm that the sender and receiver channels on the remote broker’s queue
manager are running.

� Confirm that the sender and receiver channels on the Configuration
Manager’s queue manager are running.

� Check the Event Log in the Message Brokers Toolkit for messages from the
Configuration Manager or the broker.

� Check the Windows Event Viewer for error messages from the Configuration
Manager or from WebSphere MQ.

� Check the local log on the broker system for error messages from the broker
or from WebSphere MQ.

Outstanding deploys
On occasion, an unprocessed deploy message can block other deploys from the
Configuration Manager to a broker. This situation is resolved easily:

1. In the Broker Administration perspective in the Message Brokers Toolkit,
right-click the Domain Connection.

2. Select Cancel Deployment from the context menu.

This clears any deployment messages from the Configuration Manager on the
broker queues. WebSphere MQ channels must be running on any broker queue
managers for any broker not on the same queue manager as the Configuration
Manager.

The Configuration Manager API Exerciser can be used to cancel all outstanding
deploys, or the outstanding deploys for a single broker.

Attention: The Configuration Manager Proxy API is very powerful. As well as
performing useful administration tasks, there are options to alter areas of the
broker domain configuration that are not usually available. These should not
be used in an environment except for a test environment before an
understanding of the methods and the effect that has on the broker domain
has been developed by using the WebSphere Message Broker
documentation. Inappropriate use of the methods can lead to components that
can no longer be administered, requiring deletion and recreation.

 Chapter 8. Troubleshooting and problem determination 301

8.4.5 Messages stuck on the input queue
Messages may remain on the input queue of a message flow, usually for any of
these reasons:

� Message flow is not running, perhaps because the message flow or broker is
stopped or the deploy of the message flow failed. In this case, check the
status of the message flow in the Message Brokers Toolkit, and the results of
any deploys in the Event Log.

� There could also be issues such as a spelling mistake in the input node of the
message flow, so the message flow is attempting to pick the messages up
from a different queue. Any error or warning messages in the Application log
help to determine this kind of error.

� An error has occurred in the message flow and a message has been rolled
back onto the input node. This message blocks any other messages that are
put to the queue. See “Configuring the ESQL_Simple message flow” on
page 58 for how to resolve this problem by defining a backout queue.

8.4.6 Common DB2 Universal Database Errors
In depth discussion of database problems is beyond the scope of this book, but a
couple of the more basic problems and their solutions are provided here to assist
new users.

Database not available
A broker may fail to become available after being started if a problem exists with
the database. A sequence of error messages is generated in the Application log
indicating the cause of the problem. This sequence of messages is repeated
every thirty seconds or so while the broker repeatedly continues to connect to the
database. There are two common causes of this problem, either that the
database is not started or that the user ID and password are no longer valid for
the database.

Figure 8-43 on page 303 shows an example of a BIP2322 message indicating
that no start database manager command was issued. This means that the
database is not running. To solve this problem enter db2start on a command
line to check that the database started correctly. If any errors are displayed, then
seek assistance from a database administrator or the database documentation.

302 WebSphere Message Broker Basics

Figure 8-43 Database connection error message

Monitor heap size
Problems may be seen with message flows or WebSphere Message Broker
brokers when they attempt to connect to a database. This can be in a message
flow that is performing a database action, or in a broker at start up or deploy.
With DB2 Universal Database for the broker database, these problems are often
associated with the monitor heap size. Errors indicate that the memory for the
Monitor heap is running low or has run out.

The amount of memory allocated for the monitor heap can be altered, and if this
becomes a recurring problem then the memory allocation should be increased
for the monitor heap. To do this use the instructions below:

1. Select Start → Programs → IBM DB2 → Set-up Tools → Configuration
Assistant.

2. Select DBM Configuration from the Configure menu.

3. Locate the Performance section and select the MON_HEAP_SZ parameter.

4. Select the Value column for the MON_HEAP_SZ and click the ‘...’ button.

 Chapter 8. Troubleshooting and problem determination 303

5. Enter a new value for the amount of memory to allocate for database system
monitor data, for example, 6000.

6. Click OK.

7. Click OK to accept the change.

Figure 8-44 shows the DBM Configuration with a pending change to the
MON_HEAP_SZ parameter. The change to the configuration does not occur until
the database is rebooted. Use the db2stop and db2start commands on the
command line to restart DB2 Universal Database.

Figure 8-44 DBM configuration

8.4.7 Further information for troubleshooting
The WebSphere Message Broker provides a number of sections in the
WebSphere Message Broker Information Center that are devoted to
troubleshooting and support topics. Check here for further common problems
and solutions and how to recover from failure, and contact service.

304 WebSphere Message Broker Basics

The general troubleshooting and support section of the WebSphere Message
Broker Information Center can be found here:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ib
m.etools.mft.doc/au03830_.htm

Information about contacting the IBM Support Center and the information to have
ready can be found here:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ib
m.etools.mft.doc/an01330_.htm

Searching for information about WebSphere Message Broker and common
problems using the WebSphere Message Broker Information Centre can be
found here:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ib
m.support.wsbi.doc/html/search.html

Reference material for troubleshooting from the WebSphere Message Broker
Information Center can be found here:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ib
m.etools.mft.doc/au09090_.htm

 Chapter 8. Troubleshooting and problem determination 305

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.etools.mft.doc/au03830_.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.etools.mft.doc/an01330_.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.support.wsbi.doc/html/search.html
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.etools.mft.doc/au09090_.htm

306 WebSphere Message Broker Basics

Appendix A. Getting help

This appendix describes:

� Getting context-sensitive help
� Using the product documentation
� Finding information in the product documentation
� Updating the information center
� Getting information from other sources
� Serving the help system from a central location
� Useful links

A

© Copyright IBM Corp. 2005. All rights reserved. 307

Message Brokers Toolkit help
In addition to the product documentation that is discussed in the next section,
there is built-in help in the user interface in the form of context-sensitive help.

Getting context-sensitive help
To get context-sensitive help from within the Message Brokers Toolkit:

1. Bring focus to any part of the user interface. For example, to view
context-sensitive help in the Message Brokers Toolkit, open the Message
Flow editor, then click the MQOutput node in the node palette.

2. Press F1. A yellow box, an infopop, is displayed. Each infopop gives some
high-level help, followed by a short list of links.

Figure A-1 Infopop for MQOutput node in the Node Palette

3. If you need more information, you can click one of the links that are displayed
below the context-sensitive help details. Clicking one of these links opens the
Message Brokers Toolkit help system at the relevant topic.

Using the product documentation
The product documentation exists within the Message Brokers Toolkit help
system. This section describes the ways in which you can obtain and view the
product documentation and how the documentation is structured.

308 WebSphere Message Broker Basics

Viewing the product documentation
All of the product documentation for WebSphere Message Broker V6.0 is in the
Message Brokers Toolkit help system. To open the help system from within the
Message Brokers Toolkit you can do either of the following:

� Click a topic link in an infopop. This opens the help system at that particular
topic.

� Click Help → Help Contents.

In addition to launching the product documentation through the Message Brokers
Toolkit, you can use the resources provided on the documentation CD (included
with the product package). This CD contains a standalone information center.

To open the standalone information center, follow the instructions that are in the
installing_and_managing.html file, which is located in the root directory of the
documentation CD.

Structure and content of the product documentation
When you open the help system, the available documentation is displayed in the
Contents pane on the left. The Contents pane lists all of the documentation that
is included with WebSphere Message Broker V6.0 (Figure A-2 on page 310).

The WebSphere Message Broker documentation is organized by the high-level
tasks that you are likely to want to perform, such as installing, configuring, and
administering a broker domain, or developing applications. There are ten main
sections, where each section corresponds to one of these high-level tasks.

In the ten main sections, product information is organized according to
information type; there are concept topics, which provide an overview of the
subject area, and task topics, which offer specific guidance on how to complete
various tasks. In each main section and subsequent subsection, concept topics
are listed before the task topics. If you are new to one of the sections, you will
find it useful to read the concept topics first.

In addition to the ten main sections, the following sections also exist: Product
overview, Samples, Reference, Glossary, Feedback, Index, and Diagnostic
messages.

 Appendix A. Getting help 309

Figure A-2 Contents pane

If you are new to WebSphere Message Broker, start by reading the Product
overview and the Samples sections. This will give you a good introduction to the
product, and introduce you to some of the product’s capabilities.

You might also find it useful to read the information about Navigating and
customizing the workbench, which describes how to work with the basic
framework in which the Message Brokers Toolkit is built; for example, you can
rearrange the views within perspectives.

Finding information in the product documentation
There are several different ways to find information within the product
documentation; for example, you can navigate through the documentation from
the Contents pane and follow related links from individual topics. You can also
use the Search functionality, use the diagnostic messages search tool, and use
the Index.

310 WebSphere Message Broker Basics

Searching for information
An alternative to navigating the help system in the Contents pane or by following
related links is to use the Search facility. The Search field is located near the top
left of the help system window.

Two different levels of search are available:

� Search all the contents. This searches the contents of all the documentation
that is installed with the Message Brokers Toolkit, not just the WebSphere
Message Broker product documentation.

� Specify a search scope. This narrows the scope of the search to specific sets
of documentation.

Using the search scope
The search scope allows you to narrow your search field to specific sets of
documentation or individual sections within the documentation. Initially, the
search scope is set to All topics. However, you can create and save new
search scopes.

To create a new search scope:

1. Click Search scope. The Select Search Scope dialog opens (Figure A-3).

Figure A-3 The Select Search Scope dialog

2. Click New to create a new search scope. The New Search List dialog opens.

 Appendix A. Getting help 311

3. In the New Search List dialog, select the check boxes that correspond to
information that you want to include in the search. Expand a section if you
want to select specific subsections (Figure A-4).

Figure A-4 The New Search List dialog

4. In the List name field, type a name for the search scope and click OK. The
new search scope is now displayed as an option in the Select Search Scope
dialog.

5. Select the search scope that you require, and click OK. The name of the
search scope that you have selected is displayed after the Search field
(Figure A-5).

Figure A-5 The Search field, with the search scope set to Migration information

312 WebSphere Message Broker Basics

You can create multiple search scopes but you can only search under one
search scope at a time.

Searching on more than one word
If more than one word is typed into the Search field, the Results pane lists topics
that contain all of the words. For example, if you enter the words configure and
broker, the search results list only those topics that contain both configure and
broker in their content. The Boolean AND operator between the words is implied
unless you use another operator, such as OR.

More information about searching is available in the section labelled
“WebSphere Message Broker information center home.”

Diagnostic messages
The Diagnostic messages tool allows you to search for information about specific
BIP messages. Enter the BIP message number in the search field (see
Figure A-6) and press Enter. Information about the BIP message is displayed
below the diagnostic messages search field.

Figure A-6 The Diagnostic messages search utility

Using the Index
The Index contains a set of alphabetically organized links, where each link takes
you directly to a topic in the product documentation. This index is designed to be
used in a manner similar to the index of a book.

Entries in the Index that are underlined are links to specific topics. Entries that
are not underlined do not link to individual topics but are included to provide a
reference point for sub-entries. For example, in Figure A-7 on page 314,
administration is not a link, but is included to group together links that relate to
administration.

 Appendix A. Getting help 313

Figure A-7 The Index for WebSphere Message Broker product documentation

Orienting yourself in the help system
If you arrive at a topic by following a link, such as clicking one of the links that is
displayed in the infopops, the Contents pane does not automatically display the
topic location.

To view the location of a topic in the Contents pane, click the Show in Table of
Contents button at the top-right of the help system window (the fourth item from
the right in Figure A-8). This figure also shows these Help system navigation
buttons: Go Back, Go Forward, Show in Table of Contents, Bookmark Document,
Print Page, and Maximize.

Figure A-8 Help system navigation buttons

314 WebSphere Message Broker Basics

Updating the product documentation
You can configure the Message Brokers Toolkit to automatically check for
updates to WebSphere Message Broker, including the product documentation.
Alternatively, you can manually check for updates from the Message Brokers
Toolkit.

Receiving automatic updates
To receive automatic updates to the product documentation through the
Message Brokers Toolkit:

1. In the Message Brokers Toolkit, click Window → Preferences. The
Preferences dialog opens.

2. In the Preferences dialog, expand Install/Update, then click Automatic
Updates.

3. On the Automatic Updates page, select the Automatically find me new
updates and notify me check box, then select the frequency with which you
want the Message Brokers Toolkit to check for new updates.

4. Click OK.

The Message Brokers Toolkit will automatically check for updates to the
Message Brokers Toolkit and to the WebSphere Message Broker product
documentation.

Receiving manual updates
To manually check for updates to the Message Brokers Toolkit and product
documentation:

1. In the Message Brokers Toolkit, click Help → Software Updates → Find
and Install. The Install/Update wizard opens.

2. In the Install/Update wizard, ensure that Search for updates of the
currently installed features is selected, then click Next.

3. The wizard contacts its configured update sites, including the Message
Brokers Toolkit Update Site. If there are any updates available, they are
displayed in the wizard.

4. When documentation updates are available, select the updates and follow the
instructions in the wizard to install them and restart the Message Brokers
Toolkit.

The new documentation updates are installed in the Message Brokers Toolkit
help system. Next time you perform a search in the help system, the

 Appendix A. Getting help 315

documentation is re-indexed so that the updated documentation is included in
the search.

Updating the documentation in information centers
When the product documentation is available in either a standalone information
center (such as the one on the Documentation CD) or centrally served
information center (such as the one available online; see the links at the end of
this appendix), you must manually download the updates as documentation
plug-ins or as the updated information center, depending on the updates.

See the links at the end of this appendix.

Getting help from other sources
The Troubleshooting and support section within the WebSphere Message Broker
documentation, contains an overview of the resources that are available to help
solve problems that you might have when using WebSphere Message Broker. It
also suggests the type of information that you should collect to help IBM Service
to diagnose and fix problems.

In addition to the troubleshooting information, there are links to newsgroups,
Web sites, and a search interface to help you find information in the WebSphere
Message Broker support documents on the Web.

Serving an information center from a single location
You might want to consider serving the WebSphere Message Broker V6.0 help
system from a central location within your organization if, for example:

� A large number of people within the organization need regular access to the
product documentation and to updates for the documentation.

� Many of the people within the organization who regularly use the product
documentation do not have Internet access and so cannot easily obtain and
install updates.

By installing the WebSphere Message Broker information center on a central
server, anyone with access to that server can view the information by using an
ordinary Web browser. The main benefit is that updates to the product
documentation can be applied to a single instance of the information center so
that everyone in the organization is viewing up-to-date information.

316 WebSphere Message Broker Basics

Be aware that if users are accessing the documentation from a central sever,
links in the documentation that launch graphical interface actions (such as
starting a wizard) no longer work.

For instructions on installing and configuring the help system as a centralized
information center, in the Message Brokers Toolkit, open the Help, then click
Navigating and customizing the workbench → Extending the workbench →
Reference → Other reference information → Installing the help system as
an infocenter.

Useful links
When available, you can download fix packs from the WebSphere Message
Broker support pages. For previous versions of WebSphere Message Broker
these are located at:

http://www-306.ibm.com/software/integration/mqfamily/support/summary/wbib.html

View the latest readme file for WebSphere Message Broker V6.0:

http://www.ibm.com/software/integration/mqfamily/support/readme/

View the latest product documentation for WebSphere Message Broker V6.0,
including the Installation Guide:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

View the latest list of required software for WebSphere Message Broker:

http://www.ibm.com/software/integration/wbimessagebroker/requirements/

View the latest list of required software for WebSphere Event Broker:

http://www.ibm.com/software/integration/wbieventbroker/requirements/

Download fix packs for WebSphere MQ Family products:

http://www.ibm.com/software/integration/mqfamily/support/summary/wnt.html

Download Service Packs for Microsoft Windows:

http://www.windowsupdate.com

You can obtain DB2 fix packs on CDROM or by downloading from the Web.

http://www.ibm.com/software/data/db2/udb/support.html

Note, however, that fix packs might be large. To avoid lengthy downloads,
request CD-ROM versions. If you have a current support contract, you can order

 Appendix A. Getting help 317

http://www.windowsupdate.com
http://www-306.ibm.com/software/integration/mqfamily/support/summary/wbib.html
http://www.ibm.com/software/integration/mqfamily/support/readme/
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://www.ibm.com/software/integration/wbimessagebroker/requirements/
http://www.ibm.com/software/integration/wbieventbroker/requirements/
http://www.ibm.com/software/integration/mqfamily/support/summary/wnt.html

DB2 fix packs on CD-ROM by calling DB2 support. Contact details are provided
at:

� Download a standalone version of the help system.

– For Linux:

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs/V6.0/wmb
_help_lin.zip

– For Windows:

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs/V6.0/wmb
_help_win.zip

� Download the WebSphere MQ Family manuals in PDF format:

http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manua
ls/crosslatest.html

� Download platform-specific WebSphere MQ Quick Beginnings guides:

http://www-306.ibm.com/software/integration/wmq/library/

318 WebSphere Message Broker Basics

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs/V6.0/wmb_help_win.zip
http://www-306.ibm.com/software/integration/wmq/library/
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html

Appendix B. Code

This redbook refers to additional material that can be downloaded from the
Internet as described below.

B

© Copyright IBM Corp. 2005. All rights reserved. 319

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247137

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247137.

Using the Web material
The additional Web material that accompanies this book includes the files listed
in Table B-1.

Table B-1 The Web material for Chapter 4, Chapter 5, and Chapter 6

File name Description

SG247137 all.zip Contains the pre-built message flow
applications, as well as all the code and
messages for developing the applications
from scratch

SG247137 projects.zip Contains the pre-built message flow
applications

SG247137 resources.zip Contains the code and messages for
developing the message flow applications
in Chapters 4–6

SG247137 ch4 ESQL Bookstore
Message Flow Project.zip

Contains the pre-built ESQL_Bookstore
Message Flow project for Chapter 4

SG247137 ch4 ESQL Simple Message
Flow Project.zip

Contains the pre-built ESQL_Simple
Message Flow project for Chapter 4

SG247137 ch5 Java Bookstore Message
Flow Project.zip

Contains the pre-built Java_Bookstore
Message Flow project for Chapter 5

SG247137 ch5 Java Bookstore Message
Flow ProjectJava.zip

Contains the pre-built Java_Bookstore
Message Flow project for Chapter 5

SG247137 ch5 Java Simple Message
Flow Project.zip

Contains the pre-built Java_Simple
Message Flow project for Chapter 5

320 WebSphere Message Broker Basics

ftp://www.redbooks.ibm.com/redbooks/SG247137
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
SG247137 all.zip file into this folder. The folder now contains two zip files:
SG247137 projects.zip and SG247137 resources.zip.

Developing the applications in Chapters 4–6
The SG247137 resources.zip file contains the following resources:

� The ESQL and Java code that you need to develop the applications in
Chapters 4 and 5

� The BookStoreDB.sql file that you need to create and populate the DB2
database and tables for developing the Bookstore scenarios in Chapters 4–6

� The input messages that you need to test the message flow applications that
you develop in Chapters 4–6.

Unzip the SG247137 resources.zip file to a directory on your workstation so that
you can use the files when prompted in Chapters 4–6.

Exploring the pre-built message flow applications
The SG247137 projects.zip file contains the complete projects for the message
flow applications that are referenced in Chapters 4–6.

To import and deploy the supplied projects in the Message Brokers Toolkit:

1. Unzip the SG247137 projects.zip file to a folder on your workstation. The
folder now contains the 10 message flow application projects to import into
your workspace.

SG247137 ch5 Java Simple Message
Flow ProjectJava.zip

Contains the pre-built Java_Simple
Message Flow projectJava for Chapter 5

SG247137 ch6 Mapping Bookstore
Message Flow Project.zip

Contains the pre-built
Mapping_Bookstore Message Flow
project for Chapter 6

SG247137 ch6 Mapping Bookstore
Message Set Project.zip

Contains the pre-built
Mapping_Bookstore Message Set Project
for Chapter 6

SG247137 ch6 Mapping Simple Message
Flow Project.zip

Contains the pre-built Mapping_Simple
Message Flow project for Chapter 6

SG247137 ch6 Mapping Simple Message
Set Project.zip

Contains the pre-built Mapping_Simple
Message Set Project for Chapter 6

File name Description

 Appendix B. Code 321

2. Unzip each project.

3. Import each project into the Message Brokers Toolkit. For each project:

a. In the Message Brokers Toolkit, click File → Import.

b. Select Existing Project into Workspace, then click Next.

c. Browse to the workspace directory and select one of the project folders to
import, then click Finish.

The project is imported into the Message Brokers Toolkit and displayed in the
Resource Navigator view.

If you want to deploy and run the message flow applications, follow the
instructions in the relevant chapter of this book to create the WebSphere MQ
local queues and deploy the message flow application.

322 WebSphere Message Broker Basics

Glossary

Application log. A log viewable in the Windows
Event Viewer that displays event messages from
software on a machine.

Bar file. Abbreviation for message broker archive
file, used to store compiled message flows,
message sets and other code to be deployed to an
execution group.

BIP message. An event message produced by
WebSphere Message Broker, identifiable by its BIP
number, for example BIP1003.

Breakpoint. Used as a point to stop the flow of a
message in a message flow when the Flow
Debugger is attached.

Broker. A broker is a set of execution processes
that host and run message flows.

Broker Administration perspective. This is the
perspective in the Message Brokers Toolkit, which is
used for administering and monitoring objects in the
broker domain. This perspective is also used for
changing the configuration and message flow deploy
operations.

Broker Application Development
perspective. This is the perspective in the
Message Brokers Toolkit in which message flows
and message sets can be developed.

Broker database. A database that stores
configuration for a broker. Multiple brokers can share
the same database.

Broker domain. A group of brokers that share a
common configuration and managed by a single
Configuration Manager.

Broker Topology editor. .An editor in the
Message Brokers Toolkit for configuring the
properties of brokers in the domain.

© Copyright IBM Corp. 2005. All rights reserved.
Command console. This is a command-line
interface, that sets up a suitable environment for
running WebSphere Message Broker commands.

Compute node. A node in a message flow for
processing messages using ESQL. Usually used for
message transformation.

Configuration Manager. The Configuration
Manager stores the configuration data for the broker
domain that it manages, and performs the
deployment operations between the Message
Broker Toolkit and the brokers in the domain.

Configuration Manager Proxy API. TA
programming interface for performing administration
operations on WebSphere Message Broker
components.

Database node. A node in a message flow for
performing database operations using ESQL.

DataDelete node. A node in a message flow that
uses message mappings to delete data in a
database based on the contents of an input
message.

DataInsert node. A node in a message flow that
uses message mappings to insert data in a
database from the contents of an input message.

DataUpdate node. A node in a message flow that
uses message mappings to update data in a
database from the contents of an input message.

DB2 Enterprise Server. A database which is
supported for use as a broker database and is
supplied with WebSphere Message Broker.

Dead letter queue. A WebSphere MQ queue that
holds messages that were put back onto an input
queue by a message flow.

 323

Debug perspective. This is the perspective in the
Message Brokers Toolkit used for debugging
message flows and the Java, ESQL or mapping
code associated with them.

Default Configuration Wizard. A wizard which
creates a simple broker domain for verifying a
WebSphere Message Broker installation. This
configuration can be used for test purposes and
using the samples.

Domain connection. A reference to a broker
domain in the Message Brokers Toolkit.

Enqueue file. A file in the Message Brokers Toolkit
used to put simple messages on to a WebSphere
MQ queues.

ESQL. ESQL is Extended Structured Query
Language and is used in the transformation of
messages in message flows. It is also used to
perform database operations such as querying or
updating a database.

ESQL editor. An editor within the Message
Brokers Toolkit for creating and editing ESQL.

Event Log. An editor in the Message Brokers
Toolkit showing event messages generated as a
result of deployment operations and changes to the
broker domain configuration.

Event messages. Messages produced by
software on a machine indicating a specific event or
error.

Execution groups. An execution group represents
a collection of message flows within a broker.

Input node. A node that takes a message from a
source and inputs it to the message flow for
processing.

Java. An object-oriented programming language
used for programming the JavaCompute node or
user defined nodes in the Message Brokers Toolkit.

Java editor. An editor in the Message Brokers
Toolkit for developing Java code. Used in association
with a JavaCompute node.

JavaCompute node. A node in a message flow for
transforming and routing messages using Java. It is
also used for performing database operations using
Java.

Mapping. A method of message transformation
using drag and drop from references to message
definitions and database definitions.

Mapping node. A node in a message flow that
uses message mappings to construct an output
message using other messages or information from
database tables.

Message Brokers Toolkit. A graphical user
interface for performing the development and
debugging of message flow applications. It is also
used for administering WebSphere Message Broker
components and deploying message flow
applications.

Message Definition editor. An editor in the
Message Brokers Toolkit for defining the logical and
physical structure of messages.

Message Domain. The Message Domain is a
property that can be set on an input node to indicate
the type of message that the flow expects to
process, and selects the appropriate parser for the
flow to use. Examples are XML and MRM.

Message Flow Debugger. A tool for tracing the
path of messages through a message flow and
viewing the changing content of the message as it is
processed by the flow.

Message Flow editor. An editor within the
Message Brokers Toolkit for creating message flows
by adding and connecting nodes on a canvas.

Message flows. Message flows provide the logic
used by the broker to process messages. Message
flows are built from nodes programmed with basic
logic.

324 WebSphere Message Broker Basics

Message mapping editor. An editor in the
Message Brokers Toolkit for defining mapping
relationships between a source and target message
or database.

Message Set editor. An editor in the Message
Brokers Toolkit for setting the logical and physical
properties of a message set.

Message sets. Message sets contain definitions of
messages to be processed by the broker. These
message definitions contain information about the
logical and physical structure of the messages.

MQInput node. A node in the message flow for
taking a message off a WebSphere MQ queue for
processing.

MQOutput node. A node in the message flow for
putting a message on an WebSphere MQ queue
after processing.

mqsideploy. A command run in the command
console for deploying message broker archive files.

mqsilist. A command run in the command console
to list all the WebSphere Message Broker
components on the machine.

mqsistart. A command run in the command
console to start a component such as a broker or
configuration manager.

mqsistop. A command run in the command
console to stop a component such as a broker or
configuration manager.

ODBC drivers for Cloudscape. Open Database
Connectivity drivers for the embedded Derby
database used by the Configuration Manager.
These are used when the Derby database is used as
a broker database.

Output node.A node that takes a message from a
message flow and puts it to an application after
processing.

Publish/subscribe. An alternative style of
messaging using topics. Messages published on a
topic are sent to all applications which subscribe to
that topic.

Queue manager. A queue manager is a system
program that provides queuing services to
applications. It is used to enable communication
between the WebSphere Message Broker
components, each component requires access to a
Queue Manager.

Rational Agent Controller. The Rational Agent
Controller is used for message flow debugging in the
Message Brokers Toolkit. It must be installed on the
same machine as the broker being debugged.

Rules and Formatter Extension. An extension
from New Era of Networks providing Rules and
Formatter nodes and the associated runtime
elements to maintain functionality supplied by earlier
releases.

Runtime version information. Information added
to message flows and message sets to provide
information about the version. This information is
visible in deployed resources through the Message
Brokers Toolkit.

Sample Deploy Wizard. A wizard for use with the
WebSphere Message Broker samples, which can
import the sample files, create WebSphere MQ and
database resources and deploy the sample to a
default configuration.

Subscriptions. A subscription is a registration of
an applications interest in a particular topic in
publish/subscribe.

System Log. A log viewable in the Windows Event
Viewer that displays information about software
running as Windows services including WebSphere
Message Broker components.

Terminal. Each node in a message flow has a
number of terminals. Messages are output to
different terminals on a node depending upon the
results of processing in the node.

 Glossary 325

Topic. Used in publications and subscriptions to
control the routing of publish/subscribe messages. A
publication is about a particular topic.

User Name Server. Used to provide authentication
and security for publish/subscribe in a broker
domain.

WebSphere Event Broker. Used for the
distribution and routing of messages from disparate
applications. Is often used for publish/subscribe
messaging.

WebSphere Message Broker. Provides storage,
transformation and enrichment of data in addition to
the functionality provided by WebSphere Event
Broker.

WebSphere MQ. A messaging application which
enables the Message Brokers Toolkit, Configuration
Manager, and brokers to communicate. WebSphere
MQ provides many of the available transport
protocols between business applications and
message flows.

WebSphere MQ Explorer. A graphical user
interface for WebSphere MQ for administering
WebSphere MQ components such as queue
managers and channels.

Windows Event Viewer. A Windows tool for
viewing the contents of the Application and System
logs.

326 WebSphere Message Broker Basics

acronyms
ASE Adaptive Server Enterprise

bar broker archive

BLOB binary large object

CWF Custom Wire Format

ESQL Extended Structured Query
Language

HCI human-computer interaction

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

ODBC Open Database Connectivity

RAC Rational Agent Controller

RDB relational database

SQL Structured Query Language

TDS Tagged Delimited String

Abbreviations and

© Copyright IBM Corp. 2005. All rights reserved.

 327

328 WebSphere Message Broker Basics

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 330. Note that some of the documents referenced here may be available
in softcopy only.

� WebSphere Business Integration Message Broker Basics, SG24-7090-00

� Migrating to WebSphere Message Broker V6, SG24-7198

Online resources
These Web sites and URLs are also relevant as further information sources:

� Product documentation in the information center:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp

� This is the online version of the WebSphere Message Broker V6.0:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/co
m.ibm.etools.mft.doc/ah24100_.htm

� High availability document for message broker:

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0403_h
umphreys/0403_humphreys.html

� Message broker requirements:

http://www-306.ibm.com/software/integration/wbimessagebroker/requirements/

� WebSphere MQ documentation library:

http://www-306.ibm.com/software/integration/wmq/library/

� DB2 information center:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� Information about rational application developer:

http://www-306.ibm.com/software/awdtools/developer/application/

© Copyright IBM Corp. 2005. All rights reserved. 329

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=/com.ibm.etools.mft.doc/ah24100_.htm
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0403_humphreys/0403_humphreys.html
http://www-306.ibm.com/software/integration/wbimessagebroker/requirements/
http://www-306.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://www-306.ibm.com/software/awdtools/developer/application/

� WebSphere Message Broker roadmap:

http://www-128.ibm.com/developerworks/websphere/zones/businessintegration/r
oadmaps/wsmb/

� WebSphere Message Broker support downloads:

http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006367

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

330 WebSphere Message Broker Basics

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-128.ibm.com/developerworks/websphere/zones/businessintegration/roadmaps/wsmb/
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006367

Index

A
accessing databases 51
Add Breakpoint. 272
Add Complex Type 177
Add Element Reference 147, 167
Add Global Element 146, 177
Add Group 175
Add Message From Global Element 171
Adding a remote broker 205
administration of the runtime 205
administration tasks 301
Administration using the Message Brokers Toolkit
205
Administrator 24
Administrator privileges 5
Advanced Installation 27–28, 30–31
Alert sources 249
Alerts Filter dialog 249
Alerts View 244, 248
Alerts view 249
alternative to flow debugger 284
Application integration 8
application integration 7
application integration architecture 8
Application Log 281
application log 298
application of fix packs 22
archiving resources 22
Assumptions 1
attach debugger 274
automatic generation of mappings 192

B
backed out 276
Backout dequeue queue 201
Backout requeue queue 60, 103, 131, 151
backout requeue queue 62
basic install 28
Basic page 63
binary large object (BLOB) 48
BIP code 252, 280
BIP message 242, 281
BIP messages 252, 283

© Copyright IBM Corp. 2005. All rights reserved.
BIP number 242
BIP0177W 246
BIP0892I 243
BIP1003 298
BIP1536 300
BIP2056 300
BIP2062 299
BIP2087 299
BIP2231E 282
BIP2232 281
BIP2232E 282
BIP2322 302
BIP2537I 283
BIP2538I 283
BIP2539 283
BIP2539I 283
BIP2622I 282
BIP2638I 282
BIP3001I 281–283
BIP3002 281
BIP3002I 282
BIP4005I 281, 283
BIP4045 300
BIP4081I 281, 283
BIP4101I 281, 283
BIP4184I 281
BIP8007E 252
BIP8018 252
BIP8096I 243
Book_Order_Response message 173–174, 180
Book_Order_Response_MSG 192
Bookstore message flow application 51, 100
Bookstore scenario using Java 110
breakpoint 270, 273, 275
breakpoints in maps 272
Broker 13
broker 285
Broker Administration perspective 14, 68, 244, 248
Broker Administration trace 287
Broker Application Development perspective 13,
53, 247
broker archive (bar) files 14
broker archive file Java 110
broker archive file problems 246

 331

Broker Archives 68
broker database 13
broker database connection 302
Broker domain 14
broker domain 14, 18, 207
broker domain connection 249
broker JVM 273
broker not recognized 299
BSTOREDB 182–183, 187
BSTOREDB database 114
built-in nodes 49
business integration 11

C
calculate sum 199
Calculate total for repeating elements Java 124
Calculating in Java 123
CALL CopyEntireMessage() 66
Cancel all outstanding deploys 301
Cancel Deployment 301
Capabilities of WebSphere Message Broker 10
Catch terminal 277
channel security 25
Chapter overview 1
choice 176
choosing from a group in mapping 194
Clean all projects 296
Clean projects 296
Clear 251
code examples 5
collecting trace for service 278
Command Console 52, 140, 273, 279, 282,
284–286
command line 244
common problems 291, 304–305
comparing values in mapping 195
compiling resources 247
Complex Type 179
complex types 144, 165, 168, 177
complexTypes 146
Composition 176
Compute node 50–51, 55, 57–58, 66
concatenate in Java 122
concatenation in mapping 196
condition 197
condition row 194
condition statements in mapping 194
configuration details 14

Configuration Manager 13–14, 285, 298, 301
Configuration Manager API Exerciser 301
Configuration Manager communication problem
297
Configuration Manager messages 250
Configuration Manager problems 296
Configuration Manager Proxy API 206, 301
Configuration Manager Proxy API Exerciser 300
connect to Configuration Manager 297
Connecting nodes 54
connecting to Configuration Manager 296
Connection button 57
connections to the brokers 248
Content Assist 50, 199
Content validation 179
Contents pane 309–310, 314
context-sensitive help 307–308
Control Center 21
create a unique number 197
Create as Global Complex Type 166
Create_Book_Order message 172–173, 180
Create_Book_Order_MSG 192
Create_Customer_Account 181
Create_Customer_Account message 162, 164
Creating a broker domain 205
Creating a debug configuration for Java 274
creating a Java class manually 121
Creating an output message in Java 121
Creating ESQL 66
Creating mappings 153
creating mappings 156
creating message maps 191
Creating output message with mappings 191
Creating WebSphere MQ local queues 59
creation of message flows 12
creation of message sets 12
CUSTACCTB table 114–115, 187, 202
custom format 11
custom format messages 11
Custom Wire Format (CWF) 141, 161
customize message flows 50

D
Data Definition view 185
data manipulation 11
Data perspective 185
data sources 11
data type 143

332 WebSphere Message Broker Basics

database administrator 25
database changes 185
database connection files 184
Database disk space 23
Database Explorer view 185
database failure 277
Database node 50–51
Database nodes 51
Database not available 302
database not started 302
database records 154
Database security 24–25
databases 11, 50, 181, 185, 300
DataInsert node 51, 138–139, 161, 187
DateTime format 175
DB2 Control Center 202
DB2 Universal Database 21, 304
DB2 Universal Database Enterprise Server 20, 23
DB2 Universal Database Enterprise Server Edition
27
DB2 Universal Database Errors 302
DB2 Universal Database install 31
DB2 Universal Database installation options 21
db2start 302, 304
db2stop 304
DBM Configuration 303–304
Dead letter queue 103
Dead Letter Queue (DLQ) 60
Debug 274
debug configuration 273–274
debug ESQL 270
debug Java 273
debug Java Port 274
debug Java port 273
Debug Java Source Code 274
debug level service trace 286
debug mappings 271
Debug perspective 277
debug perspective 270, 272, 274
debug toolbar 271
debug trace file 283
Debugging Java code 273
debugging Java code 276
DebugMessage 270
Default Configuration 18, 27, 52
Default Configuration wizard 25, 52, 292–293
Default Configuration wizard problems 291
default format of message set 142
default namespace 145

Default page 63
Default Wire Format 162
DefaultConfigurationWizard.log 292
Delete broker 301
Delete broker configuration 301
Deleted brokers 299
deploy and debug 277
deploy error message 251
deploy mappings 158
deploy of message flow applications 14
deploy response message 251
Deploying a message flow 67
Deploying Java 108, 110
Deploying message flow applications 205
Deploying message sets 158
deployment action 250
deployment messages 301
deployment problems 299
Dequeue 15
Derby database 19, 21
description of new features 3
Details button 245
developing with ESQL 47
development 206
development environment 12
Diagnostic messages 313
diagnostic messages search tool 310
dictionary 136
direct mapping 193
Disconnect 277
Disconnecting the debugger 277
Disk Space 21
Disk space 22
disk space for components 22
Display trace settings 284
documentation 307–309, 313
documentation navigating 310
documentation topics 313
Domain Connection 297
Domain Connection configuration 298
Domain Connection file 296
Domain Connection wizard 296
Domains view 250
downstream flow of messages 276
Drag and drop 194, 196
drag and drop 138, 150, 153
dynamic routing 51
dynamic updates for message map 189

 Index 333

E
Element Reference 175
element reference 179
element references 168, 175
elements 143
Elements and Attributes 146, 177
else statement in mapping 197
Enqueue 15
Enqueue editor 109
enrichment of data 9
Enter Expression 196–197, 200
environment information 270
Error event messages 243
Error Handler sample 277–278
error handling 281
error logs 288
Error messages 244
error-handling 276
errors in development resources 247
ESQL 50–51, 149, 270–271, 283
ESQL editor 50
ESQL module 58, 66
ESQL_Book_Order 51
ESQL_Create_Customer_Account 51
ESQL_Simple message flow 51, 58, 63, 65
ESQL_Simple.msgflow 54
Event Log 244, 250, 301
Event Log Details 250
Event Log editor 250
event message

types 243
event message type 242
event messages

Message Brokers Toolkit 244
other 244
structure 242

events in running components 244
exception 283
exception information 270
ExceptionList 276–277
execution group state 248
Execution groups 13
execution groups 249
Express Installation 17–18, 26–27
Express Installation page 28–29
Expression editor 193, 195, 198, 200
Extended Structured Query Language (ESQL) 12,
48
eXtensible Style sheet Language for Transforma-

tions (XSLT) 12

F
failed action 244
failure during normal running 244
Failure terminal 277
False terminal 283
Filter Alerts 249
Filter button 249
Filter node 50–51, 283
Filtering message class 114
Filters button 247
Filters dialog 247
Finding information 307, 310
fix packs 5, 17, 22
Flow Debugger 20
flow debugger 275, 277
Flow of errors in a message flow 276
fn

concat() 196
false() 194
sum() 199
true() 198

for statement in mapping 196
formatted trace file 279

G
Global Element 167
Global element name 164
Global Group 176
graphical mapping tools 135
group references 179
Groups 175

H
Help Contents 309
help system 314

I
IBM Support Center 284, 305
If statement in mapping 197
IF statement Java 123
IF statements in mapping 198
if statements in mapping 194
Import RDB Definition wizard 183
Index 310, 313
Infinite Max Occurs 180

334 WebSphere Message Broker Basics

infinite Max Occurs 181
infopop 308–309
information

other sources 307
Information Center 304
Information event messages 243
input message 67, 121, 150, 153
input queue 61, 276
InputRoot 67
insert into a database table 187
instalIing WebSphere Message Broker 17
Install advanced 30
installation 18
Installation Guide 26
Installing product fix packs 17
installing software 26
Installing WebSphere Eclipse Platform 31
intelligent routing of messages 8
Intended audience 1
introduction to WebSphere Message Broker 7

J
Java 12
Java class 108, 120, 125
Java code 116, 274–275
Java Compute Node Class Template 106
Java debug setting 274
Java debugger 275
Java editor 114
Java errors 293
Java import statements 121
Java Package 113
Java perspective 107, 121
Java Port 274–275
Java port 273
Java port number 273
Java project 103
Java_Book_Order 100, 110, 118–119, 131
Java_Create_Customer_Account 100, 110
Java_Simple message flow 99, 101, 103
JavaCompute node 99–100, 103, 110, 113, 120,
273, 275

L
Label node 51
Launch Express Installation 28
Launchpad 26–31
legacy applications 8, 11

local log 251, 301
Log file Path 289
log files 288
logical format 137
Logical properties 176, 179
logical structure 144
logical tree structure 48
logs 22

M
manage a broker domain 300
mandatory argument missing 252
manual install 27
mapping association 193
mapping databases 181
Mapping node 136, 138–139, 149–150, 153, 161
mapping order 192
mapping spreadsheet 193
mapping tools 138
Mapping_Book_Order 140, 161, 190, 201
Mapping_Create_Customer_Account 139,
161–162
Mapping_Simple message flow 139, 142–143, 149
Mappings 138, 150
mappings 135–136, 139, 160–161, 187
Max Occurs 149, 170, 180–181
Message (MessageType) 157
message body 48
Message Broker Archive 68
message broker archive

deploying using deploy file 231
deploying using drag-and-drop 229

Message Broker Toolkit
messages in 244

Message Brokers Toolkit 19–20, 26–27, 250
tracing 287

Message Brokers Toolkit errors 293, 295
Message Brokers Toolkit Event Log 244
Message Brokers Toolkit facilities 11
Message Brokers Toolkit help system 309
Message Brokers Toolkit install 22
Message Brokers Toolkit only install 20
Message Brokers Toolkit tracing 287
Message Brokers Toolkit workspace 292
message catalog 242
Message data 109
message definition 11–12, 141–142, 145, 164
Message Definition editor 137, 171, 174, 180

 Index 335

message definition file 141, 161, 172, 180
message definitions 136
message dictionary 13
Message Domain 152
Message Domain field 63
message enrichment 10–11
message enrichment in mappings 197
message flow 52
message flow application deployment 206
message flow application developer 12
message flow applications 20
message flow debugger 277

tracking message through flow 268
Message Flow editor 48, 53, 58, 190
message flow editor canvas 48
message flow errors 58
Message flow is not running 302
message flow nodes 53
message flow performance 13
Message Flow Project 53
Message flows 12
message flows 48, 296
Message Format 152
message header 121, 157
message headers 48
message map 273
Message mapping 138
message mapping 12
Message Mapping editor 135, 138–139, 150, 187,
192–193, 272
Message maps 272
message model 141, 161
message properties 48, 157
message roll back 276
message roll back onto input node 302
Message routing 10
message routing 9–10, 48, 51
Message Set 152, 162
message set 136, 142, 149
Message Set editor 137
message sets 296
message structure 11–12, 136, 247
Message transformation 11
message transformation 9–10, 12, 48, 51, 135,
138, 172
message transformation with mappings 161
Message tree 48
message tree 278
Message Type 152

MessageFormat 193
Messages 48, 171
messages

on the command line 250
Messages on the command line 252
Messages stuck on the input queue 302
MessageSet 192
MessageType 192
Microsoft SQL Server 21, 28, 31
Microsoft Windows 5
migrating from V2.1, V5.0 and V5.1 4
Min Occurs 149, 170, 180
minimum disk space 23
minimum installation 26
missing nodes 22
MON_HEAP_SZ 303–304
Monitor Heap Size 303
MQInput node 55, 58, 151
mqm 25
MQOutput node 55
MQSI_UTILITY_TRACE 286
mqsichangeproperties 273–274
mqsichangetrace 279, 282, 284–286
mqsiformatlog 279, 283, 285–286
mqsilaunchpad.exe 26
mqsilist 286
mqsireadlog 279, 283–286
mqsireadlog utility 286
mqsireporttrace 284
mqsistart 243, 274
mqsistop 252–253, 274, 286
MRM 151–152
MRM log 264
multicast 9, 11
multiple broker domain connections 249

N
namespaces 145, 246
navigating documentation 310
New Complex Type 166
New Database Connection wizard 182
New Era Of Networks 10
New Java Compute Node Class wizard 113
New Message Broker Archive wizard 68
new message definition file 144
New Message Map wizard 153, 187
New Message Set Project wizard 142
new relational database 182

336 WebSphere Message Broker Basics

New Search List dialog 311
node names 55
node palette 48, 51
node palette, viewing 49
node properties 62
normal level service trace 286
NullPointer errors 293

O
ODBC (Open Database Connectivity) 19
ODBC Data Source Administrator 289–290
ODBC Drivers for Cloudscape 19, 26–27
ODBC drivers for Cloudscape 23
ODBC trace 289–290
omplex types 169
onfiguration Assistant 303
Open Defined 179
Open Map 153
Optional software 20
Oracle 21, 28, 31
output message 67, 121, 150, 153, 271
OutputRoot 67, 271
outstanding deploys 301

P
Package 121
Package Explorer view 114, 121
parsing 136
parsing defined messages 151
password length 24
PDE Runtime Error Log 294
performance 24, 278, 285, 287–288
physical format 137, 143
physical formats 141
Planning for installation 17–18
Platform-specific information 5
point-to-point 8
point-to-point messaging 11
point-to-point routing 10
Pop-up messages 244
pop-up messages 244
pop-ups 244
Preferences 287, 294
prerequisite software 19, 24
previous versions of WebSphere Message Broker
4
Problems View 244, 247
Problems view 58, 67, 247

problems with deployment 299
product documentation 307
product migration 4
project with errors 246
Properties dialog 65
Publish/subscribe 11
publish/subscribe 9, 14, 206
publish/subscribe messaging 8
Publishsubscribe 205
putting and getting messages 15

Q
Queue Name field 63
queue name missing 247
Quick Tour 26

R
Rational Agent Controller 27
Rational Agent Controller (RAC) 20
Rational Agent Controller client 20
Rational Application Developer 22
Rational Application Developer platform 20
Rational Application Development platform 275,
294
Rational® Application Developer platform 19
RDB Definitions Files 182
Readme 26
Reason section 245
Reconnect database 185
Redbooks Web site 330

Contact us xxi
referenced project 296
relational database (RDB) 182
relational databases 50
Remote broker not responding 301
Remove Deployed Children 300
repeating elements 180–181
required software 17–18
Reset trace settings 285
reset trace settings 285
Resource 247
Resource Navigator view 54, 142, 144, 184
results of administration operations 244
retry attempts 298
return code 290
Revert 251
roll back in message flows 61
RouteToLabel node 51

 Index 337

Rules and Formatter Extension 10
runtime 206
Runtime environment 13
runtime environment 12
runtime versionning 205

S
Saving a message flow 58
schemas 54
scope of the redbook 1
Search all the contents 311
Search documentation 310
Search scope 311
search scope 312
Searching for information 311
Searching on more than one word 313
security 298
security group 25
security in message flows 13
Security issues 17, 24
security issues 25
Select Search Scope dialog 311
Select Terminal dialog 56
Selection mode 57
Self-defining messages 11
self-defining messages 136, 247
sender and receiver channels 301
server project 68
service 285
Service trace 284
service trace 278, 284–286
service trace settings 284
Serving the help system 307
severity level of problems 247
Show in Table of Contents button 314
Simple message flow 52
Simple message flow application 51
simple types 143
software considerations 17
Software requirements 21
sorting the Problems view 247
Source 155
Source Folder 121
Source pane 157, 187
space requirements 22
Specify a search scope 311
Specifying a Java port 273
spreadsheet 195, 197, 200, 272

SQL 114
SQL statement in Java 114
SSL 25
start components 100
Start trace 288
Start Tracing Now 289
starting components 52
status of runtime components 248
Step Into Source Code button 270–271, 274
Stepping through ESQL 270
Stepping through mappings 271
Stop trace 289
Stop Tracing Now 290
stopped broker 249
Storage 60
structure of a BIP message 244
Structured Query Language (SQL) 50
Success message 243
supported broker database 19–20
supported broker databases 21, 23
Sybase 28, 31
Sybase Adaptive Server Enterprise (ASE) 21
syntax assistance 252
syslog 298
system considerations 17
system log 244
System memory 24

T
Tagged Delimited String (TDS) 141, 161
Tagged Delimited Strings (TDS) 137
Target 155
Target pane 187
temporary files 22
Temporary variables 271
Terminal Selection dialog 57
Test Connection 183
topic 11
topic-level security 14
Trace 288
trace 279, 282, 284–285

ODBC 289
service trace 284
tracing Message Brokers Toolkit 287
user trace 278–284
within WebSphere MQ 288

trace commands 284
trace file 285–286

338 WebSphere Message Broker Basics

trace for a Configuration Manager 285
trace for WebSphere MQ 288
trace log 279, 282
Trace node 278
Tracing 289
Tracing commands 286
Tracing components 285
Tracing execution groups 278
Tracing Message Brokers Toolkit 287
transport protocols 10
transports 10
TRC files 289
troubleshooting information 304
troubleshooting reference 305
Type 167, 177
Types 146

U
Unable to find element reference 296
Unexplained errors 296
unresolvable database table references 67
unresolvable message references 247
update databases 160–161
updating databases 51, 114, 138
Updating the information center 307
Useful links 307
user defined input nodes 10
user defined node 273, 275
user exception 281
User ID 24
User Name Server 14, 285
user trace 278, 280–284
user trace at normal level 279
User trace level debug 282
User trace level normal 278
user trace settings 284
Username or password invalid 292
user-specified trace 278
Using Express Installation 28
Using the documentation 308
Using the Index 313
Using trace 278

V
valid user ID and password 302
validating messages 136
Value cell 194
variables 284

Variables view 270–272, 275
Verifying installation 17
version information 205–206
Viewing product documentation 309

W
Warning event messages 243
Warning messages 243
WBRK6_DEFAULT_BROKER 52
WBRK6_DEFAULT_CONFIGURATION_MANAGE
R 52
WebSphere Broker JMS Transport 10
WebSphere Eclipe Platform 23
WebSphere Eclipse Platform 19, 26–27
WebSphere Eclipse Platform install 31
WebSphere Event Broker 9, 19
WebSphere Message Broker 9
WebSphere Message Broker Information Center
304
WebSphere Message Broker install 18
WebSphere Message Broker run time 19
WebSphere Message Broker V6.0 26–27
WebSphere MQ 18, 301

trace 288
WebSphere MQ channels 14, 301
WebSphere MQ disk space 23
WebSphere MQ Enterprise Transport 10
WebSphere MQ Explorer 19, 23, 31, 288
WebSphere MQ Integrator 10
WebSphere MQ Listener 298
WebSphere MQ local queue 58
WebSphere MQ Mobile Transport 10
WebSphere MQ Multicast Transport 10
WebSphere MQ queue manager 298
WebSphere MQ Real-time Transport 10
WebSphere MQ resources 207
WebSphere MQ security 25
WebSphere MQ Telemetry Transport 10
WebSphere MQ trace 288
WebSphere MQ transport 13
WebSphere MQ V6.0 26–27
WebSphere MQ Web Services Transport 10
Windows Application log 251
Windows Event Viewer 52, 61, 101, 250–251, 281,
301
wire format 143
wmbt.exe -clean 295

 Index 339

X
XML 11
XML declaration statement 160
XML format 48
XML Parser 63
XML parser 48
XML Wire Format 142, 162
XPath 138, 140

Z
zero Min Occurs 170, 175

340 WebSphere Message Broker Basics

W
ebSphere M

essage Broker Basics

W
ebSphere M

essage Broker
Basics

W
ebSphere M

essage Broker
Basics

W
ebSphere M

essage Broker Basics

W
ebSphere M

essage
Broker Basics

W
ebSphere M

essage
Broker Basics

®

SG24-7137-00 ISBN 0738494372

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Message
Broker Basics

Introduces
WebSphere Message
Broker V6

Describes basic
installation,
configuration, and
development tasks

Explores the
Message Brokers
Toolkit

This IBM Redbook provides an overview of the latest release
of WebSphere Message Broker and the Message Brokers
Toolkit. It covers the following topics:

� Installation, plus creating and verifying a default
configuration

� Developing simple message flows using ESQL, Java, and
Message Maps

� Developing simple message sets

� Broker administration tasks and deploying message flow
applications

� Diagnosing and fixing problems

� Using the message Flow Debugger

This book also describes where to find more information,
including product documentation and sample applications.

This book updates the popular redbook SG24-7090 from
WebSphere Business Integration Message Broker v5.0 to
WebSphere Message Broker v6.0.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 The scope of this book
	1.1.1 Intended audience
	1.1.2 Overview of the topics covered
	1.1.3 What is not covered
	1.1.4 Assumptions

	Chapter 2. Product overview
	2.1 Application integration
	2.1.1 Application integration and WebSphere Message Broker

	2.2 WebSphere Message Broker
	2.2.1 Editions of WebSphere Message Broker
	2.2.2 Capabilities of WebSphere Message Broker
	2.2.3 Components of WebSphere Message Broker

	Chapter 3. Installation
	3.1 Planning for installation
	3.1.1 Required software
	3.1.2 Optional software
	3.1.3 Software requirements

	3.2 Security issues
	3.2.1 User ID
	3.2.2 Other security issues

	3.3 Installing the required software
	3.3.1 The Launchpad
	3.3.2 Installing with the Express Installation
	3.3.3 Installing with the Advanced Installation

	3.4 Post installation tasks
	3.4.1 WebSphere MQ service
	3.4.2 DB2 Universal Database
	3.4.3 Rational Agent Controller

	3.5 Verifying the installation
	3.5.1 Creating the default configuration
	3.5.2 Running the Getting Started samples

	3.6 Next steps
	3.6.1 Navigating the Message Brokers Toolkit

	3.7 Installing product fix packs
	3.7.1 Before you install a fix pack
	3.7.2 Installing a fix pack

	3.8 Updates to the Message Brokers Toolkit

	Chapter 4. Developing applications with ESQL
	4.1 Developing message flow applications with ESQL
	4.1.1 Messages in WebSphere Message Broker
	4.1.2 The Message Flow editor
	4.1.3 ESQL and the ESQL editor
	4.1.4 Scenarios demonstrated in this chapter
	4.1.5 Before you start

	4.2 Developing the Simple message flow application
	4.2.1 Creating the ESQL_Simple message flow
	4.2.2 Configuring the ESQL_Simple message flow
	4.2.3 Writing ESQL for the Compute node
	4.2.4 Deploying and testing the ESQL_Simple message flow
	4.2.5 Diagnosing problems with the ESQL_Simple message flow

	4.3 Developing the Bookstore scenario using ESQL
	4.3.1 Creating the Bookstore scenario database
	4.3.2 Creating the ESQL_Create_Customer_Account message flow
	4.3.3 Creating the ESQL_Book_Order message flow
	4.3.4 Deploying and testing the ESQL Bookstore message flows

	4.4 Summary

	Chapter 5. Developing applications with Java
	5.1 Developing message flow applications with Java
	5.1.1 Java and the Java editor
	5.1.2 Scenarios described in this chapter
	5.1.3 Before you start

	5.2 Developing the Simple message flow application
	5.2.1 Creating the Java_Simple message flow
	5.2.2 Configuring the Java_Simple message flow
	5.2.3 Writing Java for the Java_Simple message flow
	5.2.4 Deploying and testing the Java_Simple message flow

	5.3 Developing the Bookstore scenario using Java
	5.3.1 Creating the Java_Create_Customer_Account message flow
	5.3.2 Creating the Java_Book_Order message flow
	5.3.3 Deploying and testing the Java Bookstore message flows

	5.4 Summary

	Chapter 6. Developing applications with mappings
	6.1 Developing message flow applications with mappings
	6.1.1 Message sets and message definitions
	6.1.2 Mapping and the Message Mapping editor
	6.1.3 Scenarios described in this chapter
	6.1.4 Before you start

	6.2 Developing the Simple message flow application
	6.2.1 Defining the message model
	6.2.2 Creating the Mapping_Simple message flow
	6.2.3 Configuring the Mapping_Simple message flow
	6.2.4 Creating the mappings for the Mapping_Simple message flow
	6.2.5 Deploying and testing the Mapping_Simple message flow

	6.3 Developing the Bookstore scenario with mappings
	6.3.1 Defining the message model
	6.3.2 Creating the Create_Customer_Account message flow
	6.3.3 Creating the Mapping_Book_Order message flow
	6.3.4 Deploying and testing the Mapping Bookstore message flows

	6.4 Summary

	Chapter 7. Administration
	7.1 WebSphere Message Broker administration
	7.2 Creating a broker domain
	7.2.1 Resources required for a simple broker domain

	7.3 Steps for manually creating a simple broker domain
	7.3.1 WebSphere MQ resources

	7.4 Extending a broker domain
	7.4.1 Adding a remote broker to the domain
	7.4.2 Deploying resources to a remote broker
	7.4.3 Creating a User Name Server

	7.5 Deploying message flow applications
	7.5.1 Creating a message broker archive
	7.5.2 Message flow application resource versioning

	7.6 Publish/subscribe
	7.6.1 Publish/subscribe basic concepts
	7.6.2 Broker topology
	7.6.3 Topics
	7.6.4 Subscriptions

	Chapter 8. Troubleshooting and problem determination
	8.1 Locating error information
	8.1.1 Event messages
	8.1.2 Messages within the Message Brokers Toolkit
	8.1.3 Message Brokers Toolkit Event Log
	8.1.4 Messages on the command line
	8.1.5 Windows Event Viewer
	8.1.6 Locating more information about event messages
	8.1.7 Other useful logs

	8.2 Using the message Flow Debugger
	8.2.1 Adding breakpoints to a message flow
	8.2.2 Attaching the Flow Debugger
	8.2.3 Tracking a message through a flow
	8.2.4 Stepping through ESQL
	8.2.5 Stepping through mappings
	8.2.6 Debugging Java code
	8.2.7 Flow of errors in a message flow
	8.2.8 Disconnecting the debugger

	8.3 Using trace
	8.3.1 Tracing execution groups
	8.3.2 Tracing components
	8.3.3 Tracing commands
	8.3.4 Tracing the Message Brokers Toolkit
	8.3.5 WebSphere MQ trace
	8.3.6 ODBC trace

	8.4 Troubleshooting common problems
	8.4.1 Default Configuration wizard problems
	8.4.2 Errors with the Message Brokers Toolkit
	8.4.3 Problems connecting to the Configuration Manager
	8.4.4 Problems with deployment
	8.4.5 Messages stuck on the input queue
	8.4.6 Common DB2 Universal Database Errors
	8.4.7 Further information for troubleshooting

	Appendix A. Getting help
	Message Brokers Toolkit help
	Getting context-sensitive help

	Using the product documentation
	Viewing the product documentation
	Structure and content of the product documentation

	Finding information in the product documentation
	Searching for information
	Diagnostic messages
	Using the Index
	Orienting yourself in the help system

	Updating the product documentation
	Receiving automatic updates
	Receiving manual updates
	Updating the documentation in information centers

	Getting help from other sources
	Serving an information center from a single location
	Useful links

	Appendix B. Code
	Locating the Web material
	Using the Web material
	How to use the Web material

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

