

ibm.com/redbooks

WebSphere MQ V6
Fundamentals

Saida Davies
Peter Broadhurst

Overview of message queuing and
WebSphere MQ V6.0

Broad technical introduction to
the Websphere MQ product

Hands-on guide to the first
steps of building a WebSphere
MQ infrastructure

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere MQ V6 Fundamentals

November 2005

International Technical Support Organization

SG24-7128-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2005)
This IBM Redbook edition is an update to the Redpaper MQSeries Primer, REDP-0021.
This edition applies to Version 6, Release 0, Modification 0, of IBM WebSphere MQ (product
number 5724-H72).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xv.

Contents

Notices . xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xvii
Become a published author . xix
Comments welcome. xx

Summary of changes . xxi
November 2005 . xxi

Chapter 1. Overview . 1

Chapter 2. Concepts of message queuing . 5
2.1 Core concepts . 6

2.1.1 Middleware . 6
2.1.2 Messages . 7
2.1.3 Queues . 7
2.1.4 Point-to-point messaging . 9
2.1.5 Publish/subscribe messaging . 10

2.2 Simplification . 12
2.2.1 Development focuses on business logic . 12
2.2.2 Application maintenance and portability . 13

2.3 Scalability and performance . 14
2.4 Reliability and data integrity . 16

2.4.1 Exactly once delivery . 16
2.4.2 Units of work . 17
2.4.3 Failure handling. 17
2.4.4 Quality assurance (QA) environments . 18

2.5 Security . 19
2.5.1 Security of access . 19
2.5.2 Security of communications . 20

2.6 High availability . 20
2.6.1 Service availability. 21
2.6.2 Message availability . 21
2.6.3 Disaster recovery . 22

2.7 Monitoring and accounting . 22
2.7.1 Performance monitoring . 22
2.7.2 Accounting . 23

© Copyright IBM Corp. 2005. All rights reserved. iii

Chapter 3. Facilities for message queuing provided by WebSphere MQ. 25
3.1 Core concepts . 26

3.1.1 WebSphere MQ message queuing infrastructure 26
3.1.2 Facilities for building a WebSphere MQ infrastructure 26
3.1.3 SupportPacs . 27

3.2 Simplification . 28
3.2.1 Applications accessing a WebSphere MQ infrastructure 28
3.2.2 Asynchronous intercommunication using WebSphere MQ. 29
3.2.3 Generalizing destinations using WebSphere MQ 29
3.2.4 Specific destinations using WebSphere MQ 30
3.2.5 Providing services within a WebSphere MQ infrastructure 30
3.2.6 WebSphere MQ queues as an interface for accessing services. . . . 30
3.2.7 Standardized application programming interfaces (APIs) 31
3.2.8 WebSphere MQ and WebSphere Application Server 32
3.2.9 Web services as an interface for accessing services 33
3.2.10 Simplification of failure handling with WebSphere MQ 34

3.3 Scalability and performance . 35
3.3.1 Scalability features of WebSphere MQ queue managers 35
3.3.2 An architecture based on a single queue manager. 36
3.3.3 Hub and spoke WebSphere MQ architectures 37
3.3.4 Flexibly scaling capacity using queue manager clusters 39

3.4 Reliability and data integrity . 40
3.4.1 Persistent and nonpersistent messages . 41
3.4.2 Units of work . 42

3.5 Security . 43
3.5.1 The Object Authority Manager (OAM). 43
3.5.2 Secure Sockets Layer (SSL) and Transport Layer Security (TLS) . . 43
3.5.3 Securing communication using SSL or TLS 44

3.6 High availability . 44
3.6.1 The role of queue manager clusters in high-service availability 45
3.6.2 Queue sharing groups on WebSphere MQ for z/OS. 45
3.6.3 High availability clusters . 46
3.6.4 Disaster recovery . 47

3.7 Monitoring and accounting . 48
3.7.1 Performance monitoring . 48
3.7.2 Accounting . 48
3.7.3 Trace-route messaging . 48

Chapter 4. Designing applications that access a WebSphere MQ
infrastructure. 49

4.1 Cross-platform support . 50
4.2 Application programming interfaces (APIs) . 50

4.2.1 The message queue interface (MQI) . 50

iv WebSphere MQ V6 Fundamentals

4.2.2 APIs based on the WebSphere MQ object model. 51
4.2.3 Standardized APIs available for WebSphere MQ 52
4.2.4 Custom adapters. 55

4.3 WebSphere MQ messages . 55
4.3.1 The message descriptor . 55
4.3.2 Data conversion . 56
4.3.3 Message formats. 57
4.3.4 Chaining portions of a message together . 57

4.4 Interacting with a WebSphere MQ infrastructure 58
4.4.1 WebSphere MQ client products . 59
4.4.2 Core facilities provided to a WebSphere MQ application 59

4.5 Units of work and transactions . 61
4.5.1 Local units of work . 61
4.5.2 Syncpoint . 62
4.5.3 Commit and back out . 62
4.5.4 Uncommitted messages . 62
4.5.5 Global units of work. 63
4.5.6 Coordination of global units of work . 64
4.5.7 Two-phase commit . 64
4.5.8 The XA specification . 65
4.5.9 The extended transactional client . 65
4.5.10 Failure handling and tolerance . 66

4.6 Point-to-point messaging with WebSphere MQ . 67
4.6.1 Retrieving messages from queues . 67
4.6.2 Hosting services on queues . 68
4.6.3 Backout queues and backout counts . 69
4.6.4 Event-driven services . 69
4.6.5 Send and forget messaging . 70
4.6.6 Distribution lists . 71
4.6.7 Segmentation of messages. 71
4.6.8 Logical grouping of messages . 72
4.6.9 Reports . 72
4.6.10 Confirmation of arrival and confirmation of delivery reports 73
4.6.11 Synchronous request/reply messaging . 73
4.6.12 Partially synchronous request/reply messaging 73
4.6.13 Message expiry . 74
4.6.14 Reply-to queue considerations . 75
4.6.15 Processing of messages by a service. 77

4.7 Publish/subscribe messaging . 78
4.7.1 WebSphere MQ publish/subscribe broker . 78
4.7.2 Interacting with the WebSphere MQ publish/subscribe broker 79
4.7.3 Streams. 80
4.7.4 Registration . 80

 Contents v

4.7.5 Topics . 80
4.7.6 Publications. 81
4.7.7 Extending the WebSphere MQ publish/subscribe capabilities 81

Chapter 5. Understanding and configuring queue managers 83
5.1 Installation information . 84

5.1.1 Review available WebSphere MQ maintenance. 84
5.1.2 Statement of environment . 84

5.2 WebSphere MQ administration interfaces. 85
5.2.1 WebSphere MQ Explorer . 85
5.2.2 WebSphere MQ Explorer Healthcheck plug-in 92
5.2.3 WebSphere MQ control commands . 93
5.2.4 WebSphere MQ for iSeries control language commands 93
5.2.5 WebSphere MQ for z/OS commands . 93
5.2.6 WebSphere MQ Script (MQSC) commands 93
5.2.7 Programmable command formats (PCFs) . 97

5.3 The queue manager . 98
5.3.1 Queue manager naming . 99
5.3.2 WebSphere MQ objects . 99
5.3.3 Queue sharing groups on WebSphere MQ for z/OS. 100
5.3.4 Queue manager structure and creation . 102
5.3.5 The default queue manager . 108
5.3.6 The queue manager object . 109
5.3.7 Starting and ending a queue manager . 109
5.3.8 Providing network access to a queue manager 112
5.3.9 WebSphere MQ listener . 113
5.3.10 WebSphere MQ for z/OS channel initiator 115
5.3.11 The dead letter queue . 115
5.3.12 The command server . 116
5.3.13 Logging . 116
5.3.14 Media recovery . 117
5.3.15 Error logs. 119
5.3.16 64-bit hardware . 121

Chapter 6. Technical introduction to message queuing 123
6.1 Message queue interface . 124

6.1.1 WebSphere MQ message descriptor (MQMD) 124
6.1.2 Completion codes and reason codes . 127
6.1.3 MQCONN and MQCONNX . 127
6.1.4 MQOPEN and MQCLOSE . 128
6.1.5 MQPUT . 129
6.1.6 MQPUT1 . 130
6.1.7 MQGET . 130

vi WebSphere MQ V6 Fundamentals

6.1.8 MQBEGIN . 132
6.1.9 MQCMIT and MQBACK . 132
6.1.10 MQINQ and MQSET . 132
6.1.11 MQDISC . 133

6.2 Queues . 133
6.2.1 Queue name resolution. 134
6.2.2 Local queue objects and transmission queues 136
6.2.3 Alias queue objects . 140
6.2.4 Model queue objects and dynamic creation of local queues. 141
6.2.5 Remote queue objects . 143
6.2.6 Default attributes and authority checks . 147
6.2.7 Queue status and online monitoring for queues 149

6.3 Triggering . 150
6.3.1 Generation of trigger events . 151
6.3.2 Initiation queues and trigger messages . 152
6.3.3 Trigger monitors . 152

Chapter 7. Queue manager intercommunication and client connections in
WebSphere MQ . 155

7.1 Channels . 156
7.1.1 Introduction to client channels. 157
7.1.2 Message channel agents (MCAs) . 157

7.2 Starting and stopping channels . 159
7.2.1 Understanding channel status. 160
7.2.2 Channel names . 161

7.3 Client channels . 161
7.3.1 Operation of client channels . 162
7.3.2 Server connection channel objects . 162
7.3.3 Security considerations . 163
7.3.4 Configuring a client MCA to connect to a queue manager 164
7.3.5 Client connection channel objects. 164
7.3.6 Client channel definition table (CCDT) . 166

7.4 Distributed message channels . 167
7.4.1 Message transmission . 167
7.4.2 Batches . 170
7.4.3 Indoubt channels and sequence numbers 170
7.4.4 Disconnection intervals . 171
7.4.5 Connection names . 171
7.4.6 Receiver channel objects . 172
7.4.7 Requester channel objects . 172
7.4.8 Sender channel objects. 173
7.4.9 Server channel objects . 173
7.4.10 Valid distributed message channel object pairs 174

 Contents vii

7.4.11 Message delivery failures . 175
7.4.12 Dead letter queue handling . 176
7.4.13 Channel initiation. 178

7.5 Channel auto-definition . 179
7.5.1 Channel auto-definition for client channels 179
7.5.2 Channel auto-definition for distributed message channels 179

Chapter 8. Queue manager clusters . 181
8.1 Overview of clustering concepts . 182

8.1.1 Full and partial repository queue managers 183
8.1.2 Cluster names . 183
8.1.3 Configuring a queue manager as a full repository 184
8.1.4 Cluster message channels . 184
8.1.5 Cluster receiver channels . 185
8.1.6 Cluster sender channels . 187
8.1.7 Sharing queue objects within clusters. 189
8.1.8 Queue manager identifier (QMID). 192
8.1.9 Cluster subscriptions and publications . 192

8.2 Viewing cluster repository information. 194
8.2.1 Viewing repository information in MQSC . 195
8.2.2 Viewing repository information in WebSphere MQ Explorer 196

8.3 Actions on queue managers in a cluster . 202
8.3.1 Suspending and resuming a queue manager within a cluster 202
8.3.2 Resetting a queue manager’s cluster membership. 203
8.3.3 Steps to join a queue manager to a cluster. 203
8.3.4 Steps for a queue manager to leave a cluster 206

8.4 Workload balancing. 209
8.4.1 Bind on open and bind not fixed . 210
8.4.2 The workload balancing algorithm . 211
8.4.3 Destination sequence numbers. 211
8.4.4 Put disabling queues. 212
8.4.5 Workload balancing and locally hosted queues 213
8.4.6 Ranking queue managers and queues . 213
8.4.7 Suspending queue managers in the cluster 213
8.4.8 Channel status . 214
8.4.9 Prioritizing queue managers and queues . 214
8.4.10 Limiting cluster connections from a queue manager. 215
8.4.11 Weighting queue managers . 215

Chapter 9. Hands-on introduction to messaging with WebSphere MQ . 217
9.1 Overview of the hands-on chapters of this book 218

9.1.1 Administration of queue managers . 218
9.1.2 WebSphere MQ sample programs . 218

viii WebSphere MQ V6 Fundamentals

9.2 Environment setup . 219
9.2.1 WebSphere MQ V6.0 installation . 219
9.2.2 WebSphere MQ administrator privileges . 220
9.2.3 Accessing the WebSphere MQ samples. 220
9.2.4 Java considerations . 220

9.3 Messaging with a local queue manager . 221
9.3.1 Create a default queue manager on the machine. 221
9.3.2 Start the default queue manager on the machine 223
9.3.3 Define a new locally hosted queue . 225
9.3.4 Display the attributes of the newly created queue 227
9.3.5 Alter the attributes of a queue object . 229
9.3.6 Put test messages onto this queue . 230
9.3.7 Browse messages put to the queue . 232
9.3.8 Defining and putting to an alias of a locally hosted queue 234
9.3.9 End and restart the queue manager . 236
9.3.10 Get messages from a queue. 238
9.3.11 Delete a queue object . 239
9.3.12 Define a queue manager alias using a remote queue object 239
9.3.13 Specify a queue manager name when opening a queue 240
9.3.14 Delete the queue manager . 241

9.4 Host a request/reply service on a queue. 243
9.4.1 Create and start a queue manager to host the service 243
9.4.2 Create a queue to host the service . 244
9.4.3 Manually define a reply-to queue . 244
9.4.4 Put an example request message and inspect it 245
9.4.5 Clear the requests from the queue hosting the service. 246
9.4.6 Create a process definition for the service 247
9.4.7 Create a queue to use as an initiation queue 248
9.4.8 Enable triggering on the queue hosting the service 249
9.4.9 Start the WebSphere MQ trigger monitor . 250
9.4.10 Issue a request against the service. 250
9.4.11 Define a model queue object for a dynamic reply-to queue 252
9.4.12 Issue requests using a temporary dynamic reply-to queue. 253

9.5 WebSphere MQ publish/subscribe with JMS . 255
9.5.1 Configure the JMS environment . 255
9.5.2 Create and start a queue manager . 257
9.5.3 Start the broker on the queue manager . 258
9.5.4 Configure the queue manager for JMS publish/subscribe 259
9.5.5 Set up a simple JMS provider . 259
9.5.6 Use WebSphere MQ JMS Administration tool to configure JMS . . 260
9.5.7 Make a copy of the WebSphere MQ sample JMS application 261
9.5.8 Modify the WebSphere MQ sample JMS application 262
9.5.9 Compile the sample application . 262

 Contents ix

9.5.10 Start the sample as a subscriber. 263
9.5.11 Start the sample as a publisher. 263

Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 265
10.1 Environment setup . 266
10.2 Connect as a client to a queue manager. 266

10.2.1 Create and start a listener. 267
10.2.2 Create a server-connection channel object. 269
10.2.3 Connect using the MQSERVER environment variable 270
10.2.4 Connect using a client-connection channel object 271
10.2.5 Perform remote administration of a queue manager. 274
10.2.6 JMS publish/subscribe sample using a client connection 278

10.3 Build a hub and spoke infrastructure. 279
10.3.1 Create a dead letter queue on the hub queue manager 279
10.3.2 Create a receiver channel object on the hub queue manager . . . 280
10.3.3 Create and start a spoke queue manager with a listener 281
10.3.4 Create a transmission queue on the spoke queue manager 281
10.3.5 Create a sender channel object on the spoke queue manager . . 282
10.3.6 Test the channel using a WebSphere MQ ping 283
10.3.7 Configure the channel to the hub to be initiated 284
10.3.8 Put a test message through the channel to the hub 285
10.3.9 Create a receiver channel object on the spoke queue manager. . 286
10.3.10 Create a transmission queue on the hub queue manager 287
10.3.11 Create a sender channel object on the hub queue manager . . . 288
10.3.12 Create a local definition of a remote queue 288
10.3.13 Define a reply-to queue on the spoke queue manager 289
10.3.14 Request the echo service using a spoke queue manager 290

10.4 Create a queue manager cluster. 291
10.4.1 Create queue managers . 291
10.4.2 Assign queue managers as full repositories 292
10.4.3 Create cluster receiver channel objects . 293
10.4.4 Create cluster sender channel objects . 294
10.4.5 View information about the cluster . 295
10.4.6 Share queues in the cluster . 296
10.4.7 Enable workload balancing with a local instance of a queue 297
10.4.8 Workload balance messages across available queue instances . 297
10.4.9 Share the echo service in the cluster . 298
10.4.10 Share the queue providing the echo service in the cluster 299

Chapter 11. Securing a WebSphere MQ infrastructure 301
11.1 Administering a WebSphere MQ installation. 302
11.2 Granting access to queue manager resources 303

11.2.1 The Object Authority Manager (OAM). 303

x WebSphere MQ V6 Fundamentals

11.2.2 Object authority in WebSphere MQ for z/OS 307
11.3 Establishing identity context for client applications 308

11.3.1 WebSphere MQ default behavior for establishing identity 308
11.3.2 MCA user identifier . 309

11.4 Secure Sockets Layer (SSL) . 310
11.4.1 Support for SSL in WebSphere MQ . 310
11.4.2 CipherSpecs . 310
11.4.3 Transport Layer Security (TLS). 311
11.4.4 Required or optional SSL client authentication 311
11.4.5 Queue manager certificate repositories . 312
11.4.6 Administering certificate repositories for WebSphere MQ 312
11.4.7 WebSphere MQ client applications . 313
11.4.8 Java applications accessing WebSphere MQ as clients 313
11.4.9 SSL considerations for the WebSphere MQ Explorer. 315
11.4.10 Certificate revocation lists . 317
11.4.11 Choosing a certificate authority. 317
11.4.12 Validation of distinguished name using SSL Peer 318
11.4.13 Federal Information Processing Standard (FIPS) compliance . . 319

11.5 WebSphere MQ internet pass-thru (IPT). 319

Chapter 12. Troubleshooting . 321
12.1 Primary information provided by WebSphere MQ. 322

12.1.1 AMQXXXX messages . 322
12.1.2 Reason codes . 323
12.1.3 Queue manager error logs . 324
12.1.4 WebSphere MQ system error logs . 324
12.1.5 Error log locations . 324
12.1.6 First-failure support technology (FFST) . 325
12.1.7 WebSphere MQ documentation . 326

12.2 Solving known problems . 326
12.2.1 The WebSphere MQ support Web site . 326
12.2.2 Applying maintenance. 327
12.2.3 Flashes . 327
12.2.4 Searching APARs and Technotes. 328
12.2.5 Further sources of information . 328
12.2.6 WebSphere MQ Explorer Healthcheck plug-in 328

12.3 Common problems building an infrastructure . 328
12.3.1 Troubleshooting distributed message channels 329
12.3.2 Troubleshooting message channel initiation 330
12.3.3 Troubleshooting cluster message channels 331

12.4 Common problems accessing an infrastructure 333
12.4.1 Troubleshooting connection failures to a queue manager 333
12.4.2 Troubleshooting failures sending messages. 334

 Contents xi

12.4.3 Troubleshooting failures getting messages. 335
12.4.4 Troubleshooting common triggering problems 337
12.4.5 Finding a message put into the infrastructure 337

12.5 Gathering documentation for service . 338
12.5.1 Providing a description of the observed issue. 339
12.5.2 Environment details. 339
12.5.3 Describing the use of WebSphere MQ . 340
12.5.4 Collecting failure documentation to send to IBM Service 340
12.5.5 Re-creating the issue . 340
12.5.6 WebSphere MQ trace . 341

Appendix A. Functionality new to WebSphere MQ V6.0 345
The WebSphere MQ Explorer . 346
PCF commands on WebSphere MQ for z/OS V6.0 . 346
64-bit queue managers . 346
Internet Protocol Version 6 (IPv6) . 347
Changes to SSL on Windows. 347
SSL and TLS improvements and FIPS certification . 348
Built-in publish/subscribe broker . 348
WebSphere MQ as a transport for Web services. 349
Queue sharing group enhancements on z/OS . 349
Queue manager cluster workload balancing . 350
Administering connections to a queue manager . 350
Consistent method for starting and stopping listeners 350
Custom services started and stopped with a queue manager 351
Filtering of information about a queue manager. 352
Improved real-time monitoring information. 352
Accounting information. 353
Statistics information . 353
Trace-route for WebSphere MQ infrastructures . 354
Logging enhancements on distributed platforms . 354
Dynamic configuration of queue managers on z/OS 355
Log shunt on WebSphere MQ for z/OS . 356

Appendix B. Quick reference . 357
WebSphere MQ control commands . 358
WebSphere MQ for iSeries CL commands . 359
WebSphere MQ message descriptor (MQMD) fields 359
Message queue interface (MQI) verbs . 360
The WebSphere MQ Script (MQSC) command interface 361
The queue manager object . 363

MQSC command for the queue manager object. 363
Queue manager object attributes . 363

xii WebSphere MQ V6 Fundamentals

Listener objects . 364
MQSC commands for listener objects. 364
Attributes for listener objects. 365

Service objects . 365
MQSC commands for service objects. 365
Attributes for service objects . 366

Namelist objects . 366
MQSC commands for namelist objects . 366
Attribute for namelist objects. 367

Queue objects . 367
Types of queue objects . 367
MQSC commands for queue objects . 368
Attributes for all queue objects . 369
Queue attributes for workload balancing within clusters 369
Attributes for local queues, including dynamic queues 370
Attribute for alias queue objects . 371
Attributes for local definitions of remote queues . 371
Attributes for queue manager aliases . 371
Attributes for reply-to queue aliases . 372

Cluster queue records . 372
MQSC command for cluster queue records . 372
Attributes of cluster queue records . 372

Cluster queue manager records. 373
MQSC command for cluster queue records . 373
Attributes of cluster queue manager records . 373

Channels and channel objects . 374
Types of channel objects . 374
MQSC commands for channel objects . 375
Attributes of channel objects . 376
MQSC commands for controlling channels . 377

Channel status records . 378
MQSC command for channel status records . 378
Attributes of channel status records . 378

Glossary . 379

Abbreviations and acronyms . 385

Related publications . 387
IBM Redbooks . 387
Other publications . 387
Online resources . 388
How to get IBM Redbooks . 390
Help from IBM . 390

 Contents xiii

Index . 391

xiv WebSphere MQ V6 Fundamentals

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. xv

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
CICS®
DB2®
developerWorks®
Eserver®
HACMP™

IBM®
iSeries™
MQSeries®
OS/400®
Parallel Sysplex®
RACF®
Redbooks (logo) ™

Redbooks™
SupportPac™
TXSeries®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Java, Java Naming and Directory Interface, JDK, JVM, J2EE, Solaris, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

ActiveX, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xvi WebSphere MQ V6 Fundamentals

Preface

This IBM® Redbook aspires to improve the breadth of understanding customers
have of the IBM WebSphere® MQ product and increase the time value for
customers investing in WebSphere MQ. A rounded understanding of the
WebSphere MQ product can assist customers build reliable and scalable
solutions on the exactly once delivery assurance provided by WebSphere MQ.

We describe the fundamental concepts and benefits of message queuing
technology. This book is an update of a very popular Redpaper (REDP-0021)
based on IBM WebSphere MQ Versions 5.0 to 5.2.

This publication provides a design-level overview and technical introduction for
the established and reliable WebSphere MQ product.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Saida Davies is a Project Leader for the International Technical Support
Organization (ITSO) and has 15 years of experience in IT. She has published
several IBM Redbooks™ about various business integration scenarios on
distributed platforms and the IBM z/OS® platform. Saida has experience in the
architecture and design of WebSphere MQ solutions, extensive knowledge of the
z/OS operating system, and a detailed working knowledge of both IBM and
independent software vendor operating system software. In a customer-facing

© Copyright IBM Corp. 2005. All rights reserved. xvii

role as a senior IT specialist with IBM Global Services, her role included the
development of services for z/OS and WebSphere MQ within the z/OS and
Microsoft® Windows® platform. This covered the architecture, scope, design,
project management, and implementation of the software on stand-alone
systems and on systems in a Parallel Sysplex® environment. Saida has received
Bravo Awards for her project contributions. She has a degree in Computer
Studies and her background includes z/OS systems programming.

Peter Broadhurst is a Software Engineer with IBM Hursley in the United
Kingdom. His current job role is as a Service Engineer, within the Level 3 service
team for the WebSphere MQ product. In this role, Peter has gained a sound
understanding of WebSphere MQ and the functionality it provides, as well as key
insights into the solutions developed by customers using technology. Through
resolving customer situations, he has developed an empathy for the areas of
challenge faced by customers in understanding and building on the concepts of
the WebSphere MQ product and the business requirement it fulfils. His career
experience also includes working within the test organization for the WebSphere
MQ version 6.0 product, where he has gained a key understanding of the new
functionality provided by this new version of WebSphere MQ. Peter joined IBM
after obtaining a Bachelor of Engineering degree in Computer Engineering from
the University of Southampton.

The redbook team would like to thank the following people for their assistance
during the initial planning of the redbook:

Craig Both, WebSphere MQ FV Test Team Lead
Software Engineer, IBM Software Group
Application and Integration Middleware Software, IBM Hursley, U.K.

Gary O’Connor, IT Specialist, Application Development
IBM Global Services, Application Management Services, IBM U.K.

xviii WebSphere MQ V6 Fundamentals

Sushil Sharma, WebSphere MQ Distributed L3 Service
IBM Software Group, Application and Integration Middleware Software
IBM Hursley, U.K.

Paul Slater, WebSphere MQ Scenarios Testing, Software Engineer
IBM Software Group, Application and Integration Middleware Software
IBM Hursley, U.K.

Ope Soyannwo, Software Engineer and .NET Consultant
iMeta Technologies, U.K.

Jerry L Stevens, WebSphere MQ technical strategy and planning
IBM Software Group, Application and Integration Middleware Software
IBM Hursley, U.K.

The redbook team would like to thank the following people for reviewing this
redbook:

Simon Bluck, WebSphere MQ Level 3 Service
IBM Software Group, Application and Integration Middleware Software
IBM Hursley, U.K.

Andy Emmett, WebSphere MQ Level 3 Service
IBM Software Group, Application and Integration Middleware Software
IBM Hursley, U.K.

Emir Garza
Consulting IT Specialist
IBM Software Group, Application and Integration Middleware Software
IBM Hursley, U.K.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

 Preface xix

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. 8IB Building 80-E2
650 Harry Road
San Jose, California 95120-6099

xx WebSphere MQ V6 Fundamentals

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Summary of changes

This section describes the technical changes made in this book. This edition
might also include minor corrections and editorial changes that are not identified.

Summary of Changes
for SG24-7128-00
for WebSphere MQ V6 Fundamentals
as created or updated on December 15, 2005.

November 2005
This revision reflects the addition, deletion, or modification of the following new
information described.

New information
This IBM Redbook, WebSphere MQ Fundamentals, SG24-7128, adds the
following information to the Redpaper MQSeries Primer, REDP-0021:

� WebSphere MQ Version 6 changes

� WebSphere MQ Version 6 enhancements

� WebSphere MQ Version 6 basics

© Copyright IBM Corp. 2005. All rights reserved. xxi

xxii WebSphere MQ V6 Fundamentals

Chapter 1. Overview

This book provides the level of technical detail about the IBM WebSphere MQ
product required for individuals to make informed application and infrastructure
design decisions prior to implementing a WebSphere MQ infrastructure or
beginning development of a WebSphere MQ application.

This publication is intended to be of use to a wide-range audience.

Chapters 1 to 4 provide an introduction to the concepts of the WebSphere MQ
product and the challenges for which it provides solutions.

Chapters 5 to 8 provide a broad summary of the technical concepts and
implementation details of building and accessing WebSphere MQ infrastructures.

Chapters 9 and 10 provide a hands-on introduction to the concepts described in
Chapters 1 to 8.

Chapters 11 and 12 provide further technical information to help secure a
WebSphere MQ infrastructure and troubleshoot any problems encountered.

The level of technical detail provided increases progressively through this book.
We cover a broad range of topics from across the WebSphere MQ product and
documentation.

1

© Copyright IBM Corp. 2005. All rights reserved. 1

Throughout this publication, we introduce details of new areas of function for
WebSphere MQ Version 6.0, such as the WebSphere MQ Explorer, 64-bit queue
managers on UNIX®, and changes to the cluster workload balancing algorithm.

The hands-on sections of this book are located after the technical overview
chapters. Depending on your preferences, you can work through the hands-on
sections in combination with reading the technical sections. This can provide a
working environment in which to gain an understanding of the concepts.

WebSphere MQ enables new applications to communicate with existing
applications. In addition, a WebSphere MQ infrastructure abstracts this
communication above individual communication protocols or the identities of
individual machines within a network.

Applications that access a WebSphere MQ infrastructure can be developed
using a wide range of programming paradigms and languages. These
applications can execute within a wide range of software and hardware
environments. You can use WebSphere MQ to integrate and extend the
capabilities of existing and varied infrastructures in the information technology
(IT) system of a business.

This publication does not focus on interacting with WebSphere MQ using a
particular programming language. Instead, it covers the core WebSphere MQ
concepts that should be understood when developing any application that
accesses a WebSphere MQ infrastructure.

The power of the WebSphere MQ product is its flexibility, combined with
reliability, scalability, and security. This flexibility provides a large number of
design and implementation choices. Making an informed decision from this range
can simplify the development of applications and the administration of a
WebSphere MQ infrastructure.

Therefore, this book does not distinguish between WebSphere MQ
administrators and WebSphere MQ application programmers. A broader
understanding is key to making informed design and implementation choices for
both the infrastructure and the applications that access that infrastructure.

In Chapter 2, “Concepts of message queuing” on page 5, we introduce the
fundamental concepts of message queuing.

Next, in Chapter 3, “Facilities for message queuing provided by WebSphere MQ”
on page 25, we provide an overview of the facilities provided by WebSphere MQ
within each of the areas introduced in Chapter 2.

2 WebSphere MQ V6 Fundamentals

Chapter 4, “Designing applications that access a WebSphere MQ infrastructure”
on page 49 describes how applications can build on the facilities provided by
WebSphere MQ to provide an access to the services of a system.

Chapter 5, “Understanding and configuring queue managers” on page 83
provides fundamental details of the queue managers which form a WebSphere
MQ infrastructure.

In Chapter 6, “Technical introduction to message queuing” on page 123, we
describe the specific actions performed against a queue manager by an
application and how a queue manager is configured to provide facilities to the
applications which access it.

Chapter 7, “Queue manager intercommunication and client connections in
WebSphere MQ” on page 155 describes how a WebSphere MQ infrastructure is
extended beyond a single machine over a network.

Then in Chapter 8, “Queue manager clusters” on page 181, we describe how
simplification of administration and flexibility in scaling capacity can be provided
by joining queue managers together in queue manager clusters.

In Chapter 9, “Hands-on introduction to messaging with WebSphere MQ” on
page 217, we provide a hands-on introduction to performing point-to-point and
publish/subscribe messaging using JMS with WebSphere MQ.

Chapter 10, “Hands-on guide to building WebSphere MQ infrastructure” on
page 265 provides a hands-on introduction to building WebSphere MQ
infrastructures using hub and spoke architectures or flexible queue manager
clusters.

Chapter 11, “Securing a WebSphere MQ infrastructure” on page 301 provides
and introduction to the security model of WebSphere MQ and how it can be used
to secure a WebSphere MQ infrastructure.

In the final chapter, Chapter 12, “Troubleshooting” on page 321, we provide
important information for all users of WebSphere MQ for understanding the
information provided by WebSphere MQ and how to resolve issues you might
experience.

 Chapter 1. Overview 3

4 WebSphere MQ V6 Fundamentals

Chapter 2. Concepts of message
queuing

In this chapter, we describe areas where a business can face challenges when
developing information technology (IT) solutions. We introduce message queuing
technology and outline the role it can play in overcoming these challenges.

We cover the following topics:

� Core concepts

� Simplification

� Scalability and performance

� Reliability and data integrity

� Security

� High availability

� Monitoring and accounting

2

© Copyright IBM Corp. 2005. All rights reserved. 5

2.1 Core concepts
A large number of different technologies can exist within the information
technology infrastructure of a business. Often these include different hardware
platforms, programming languages, operating systems, and communication
links.

Services are built on this infrastructure, where each service provides a facility to
perform an action or gain information. These services can be provided for use
internally by the business or for use by suppliers and customers.

As a whole, these services and the infrastructure of the business that supports
them, form a system. The general term node is used in this book to represent any
point within such a system that can host a service, request a service, or connect
other nodes together. These nodes can be individual hardware servers, or
multiple nodes can exist within the software components of a single server.

New services can introduce new technologies into a system. However, these
services often need to interact with existing services, using existing technologies.

A business might also want to interface their system with the technologies used
in the systems of other businesses, or provide external interfaces into their
system for existing and potential customers or business partners.

2.1.1 Middleware
Software applications developed by a business to provide and request services
need to communicate with the existing services provided by the system. These
services reside on the nodes within the system, where different nodes might be
built on different infrastructure components and technologies.

Middleware technologies provide a layer of abstraction between the
infrastructure components and the applications that access those components in
order to provide services. This middleware layer then becomes a part of the
infrastructure of the system: a common layer bridging the nodes of the system.

This middleware layer can simplify the development and maintenance of
applications hosting or requesting services, enabling development to focus on
the business logic required by a service, rather than the complexities of
accessing existing services provided by the system.

Message queuing is a middleware technology that greatly simplifies
communication between the nodes of a system and between the nodes that
connect systems together. It allows services to communicate in a flexible way
that does not require detailed knowledge of a target service or the current

6 WebSphere MQ V6 Fundamentals

availability of that service. Reliable communication can be achieved regardless of
the complexity of the infrastructure connecting the nodes in the system.

This technology builds on two basic concepts: messages and queues.

2.1.2 Messages
A node in a system often needs to communicate information to, or request a
service from, another node in that system or an interconnected system. This
piece of information or request can be considered a message.

The message can contain simple character data, numeric data, complex binary
data, a request for information, a command, or a mixture of all of these. It is
important that any target nodes that receive a message understand the format of
that message. However, the messaging infrastructure that connects those nodes
does not require this same understanding. The infrastructure must only ensure
that the integrity of the information contained in a message is maintained and
that the message is correctly delivered to its destination.

The messaging infrastructure understands differences between the underlying
hardware and software on which individual nodes are running. Some conversion
of character and numeric data might be required in order for the data to be
readable on these different hardware and software platforms. The messaging
infrastructure can be configured to perform this conversion transparently so that
each message remains valid when it reaches each destination.

In order to transport the message to its destination, extra information might be
added to this message while it travels through the messaging infrastructure.
However, this information is separate from the information the message contains,
in the same way that an envelope is separate from the letter that it contains.

2.1.3 Queues
A queue is a container of messages. New messages are placed at the end of the
queue, and messages are usually retrieved from the front of the queue.
Figure 2-1 on page 8 illustrates messages passing through a queue.

 Chapter 2. Concepts of message queuing 7

Figure 2-1 Messages passing through a queue

It is also possible for messages to be retrieved using identifiers associated with
those messages. Messages can be given priorities so that high priority
messages are always retrieved before lower priority messages, or be logically
grouped so that one message is dependent on another message.

However, queues are not designed to replace databases of information. They are
optimized to contain small numbers of messages that flow through the queue
before reaching their destination.

This simple and powerful concept provides the basis of a scalable and reliable
messaging infrastructure—a message queuing infrastructure. Ways the queue
concept is used within a message queuing infrastructure include:

� Providing a buffer between the producer and consumer:
A service that receives, consumes, and processes messages might not be
able to process each message as it arrives, because it might be busy
performing processing on another message or it might be unavailable for any
other reason. Messages might not arrive at a constant rate and during busy
periods; demand for the service might temporarily exceed its ability to supply.
By placing a queue between the producer of a message and the consumer,
the producer can send a message without knowing whether the consumer of
that message is currently available.

This is called asynchronous communication, because the producer can
continue processing as soon as the message is placed in the queue. Contrast
this with synchronous communication, where the producer must wait for the
consumer to become available and complete processing on the message
before being able to continue.

8 WebSphere MQ V6 Fundamentals

� Batch processing:
A service might not want to process and consume each message as it arrives.
Instead, it might want to wait until a certain threshold of messages has arrived
on a particular queue and process them in one batch, or perform processing
of all messages that have arrived during a given time interval. This allows the
service to exploit efficiencies of scale in processing the data and optionally to
perform processing at times when other related systems and services are
quiet.

� Providing buffers between intermediate nodes in a system:
In order for messages to flow from producers to a consumers, they might
need to flow through intermediate nodes in the system. The number of nodes
a message travels through, as well as the location of the final destination for
that message, might not be known by the producer of a message and might
be subject to change. The network links between those intermediate nodes,
or the intermediate nodes themselves, might not always be available. By
placing a queue as a buffer between each node in the system, messages can
wait at any point in the system until a node or network link becomes available
and then automatically flow through to the next node.

2.1.4 Point-to-point messaging
Many messages are intended to be consumed exactly once. The point within the
system that consumes the message might or might not be known to the producer
of the message. However, the producer provides enough information for the
messaging infrastructure to deliver the message to a single consumer.

In point-to-point messaging a message arrives once, and once only, at a single
and correct destination.

Point-to-point messaging can be split into the following two general categories:

� Send and forget messaging:
A message is sent to a service that performs an action based on that
message. In processing this message, the service might perform further
messaging, but the originator of the request does not have direct knowledge
of any further messaging that occurs.
For example, the message might contain information to update a database.
Or, the message might contain details of an event that has occurred and
requires action, such as sending messages to system administrators.

 Chapter 2. Concepts of message queuing 9

� Request/reply messaging:
A message is sent to a service that performs an action based on that
message and then returns a reply to the originator of the message.
For example, the request message might contain a query for information in a
database that is sent back in the reply. Or, the request message might contain
details of an action to perform that can have multiple outcomes, the result of
which is sent back in the reply.

2.1.5 Publish/subscribe messaging
When using point-to-point messaging, each node that requires information must
have knowledge of the individual services that can provide that information.
Equally, services that provide information must have knowledge of the individual
nodes to send information to and know when to send information to those nodes.

The send and forget, and request/reply, facilities provided by a message queuing
infrastructure within the point-to-point messaging model provide solutions in
many circumstances. However, for the following forms of information, the
point-to-point model of messaging has limitations:

� State information:

Some information can change over time, and a node within the system
accessing that information might need to track changes to that information.
These nodes need to gain the information initially when they begin processing
and then be informed of any changes that occur to that information.

This form of information is called state information. An example is the current
share price of a company; this has a value at any point in time, but this value
can also change at any point, and a node might need to track a stock price
over time.

To be kept informed of changes to information using request/reply messaging,
a node must send regular requests to a service for the current state of that
information. To do this, the node must have knowledge of nodes that host the
services to provide this information. This is called polling.

Polling services is not an efficient way to become notified of changes to state
information. A large number of the requests might return the same
information, and the requesting node is not notified of changes until the next
request is issued. Shorter polling intervals can increase the accuracy of the
information known to a node, but also increase resource requirements on the
services and infrastructure of the system.

� Event information:

Some actions need to be performed by a service whenever a particular event
occurs.

10 WebSphere MQ V6 Fundamentals

Information that describes an event that has occurred is called event
information. An example is each time an item held in stock is sold; a stock
control service might need to update stock information when this event
occurs, or reorder that item from a supplier.

Point-to-point messaging facilities allow individual event messages to be sent
to services as they occur. However, each node that detects or produces
events must have knowledge of all nodes hosting services that require those
events and send a message to each service in turn.

The publish/subscribe messaging model addresses these limitations.

In publish/subscribe messaging, any number of consumers of information can
receive messages that are provided by one or more producers of that
information. In this case, a producer of information is called a publisher and a
consumer of that information is called a subscriber.

Publish/subscribe messaging provides the concept of a topic on which any
number of interested consumers of information can subscribe in order to register
their interest. This is similar to the way that a person might subscribe only to
magazines about topics in which they are interested. Each topic provides
particular event or state information.

A publisher can send messages containing information about a particular topic to
all subscribers to that topic, without any knowledge of how many subscribers
there are, or the details of the nodes that host those subscribers. Because of this,
publish/subscribe messaging completely decouples the provider of the
information from the consumer of that information.

For state information, a subscriber can request the current state of the
information when it first begins processing, and by subscribing to the topic for
that state information, it is automatically informed of changes.

For event information, a subscriber is automatically informed of events by
subscribing to the topic for those events.

In order to facilitate this publish/subscribe capability, a broker is required to hold
information about which subscribers have subscribed to which topics and how to
deliver messages to them. A publisher can then publish messages using the
broker to all subscribers on that topic without knowing the details of those
subscribers.

There can be multiple publishers for a particular topic, and a subscriber to
information about one topic can also be a publisher of information about other
topics.

 Chapter 2. Concepts of message queuing 11

The publish/subscribe messaging model is a powerful concept that allows
information updates to logically flow from the producers of information to all
consumers of that information. It provides the flexibility, because the number of
subscribers can grow or shrink dynamically without the knowledge of the
publishers.

2.2 Simplification
The process of transporting a message from its source to its destination can be
complex and involve transport through multiple intermediate nodes over
communications links of varied types, speeds, and quality. Sometimes,
communications links are down, and a message is not able to reach its final
destination until that link is restored. In addition, the node to which the message
is being sent, or an intermediate node, might be unavailable or busy at the time a
message is generated.

One important feature of a message queuing infrastructure is that the application
development resources required to deal with these considerations, and others
discussed later in this book, are significantly reduced.

Using a message queuing infrastructure, the following steps summarize the
steps required to reliably send a message to a destination:

1. Supply enough information to the message queuing infrastructure to identify a
valid destination, or destinations, for the message.

2. Put the message into the message queuing infrastructure.

3. From the success of step 2, the application can determine that the message
reaches its destination successfully.

2.2.1 Development focuses on business logic
Developing business applications to provide and access services can be a costly
process requiring significant resources. A message queuing infrastructure
provides application programmers more time to concentrate on the business
logic involved in providing a service, rather than communications logic and
complicated failure processing.

Note: In 2.4, “Reliability and data integrity” on page 16, we discuss
assurances of delivery provided by a message queuing infrastructure.

12 WebSphere MQ V6 Fundamentals

Without a secure, flexible, and reliable message queuing infrastructure, the
application programmer might need to apply significant extra development to the
following issues:

� A remote service might be temporarily unavailable at the time the local
application needs to connect.

� A communications link between the local application and a remote service
might be unavailable or might fail part way through transmission.

� A remote service might be running on a different hardware platform to that of
the local application, with fundamental differences in character and numeric
data formats.

� The route to a remote service might have changed since the application was
first written.

� There might be multiple instances of a service in the network, and the
application might need to choose to which instance of this service to connect.

� The action performed by a particular service might be sensitive, and as such,
the service must only be invoked by authorized applications.

� The data being sent over a communications link to a remote service might be
sensitive and require protection. The application might need to perform
encryption of this data.

� A failure in communication with a particular service might affect the validity of
other actions that have already been performed by the application.

� Current capacity requirements might change over time, typically increasing.

2.2.2 Application maintenance and portability
Another important consideration is how easy it is to maintain and interface with
applications after they are originally developed. The individual developer, or team
of developers, that implemented an application might not be available when
changes need to be made to an application. The requirements placed on an
application might be extended over time, or other nodes within or outside the
system might need to access existing services. These new nodes might contain
different hardware and software components, or be connected by different
communication links.

By simplifying the considerations that need to be made during application
development, and focusing development efforts on business logic, the structure
of the code can be made more easily maintainable by future developers who
need to make changes.

Software that resides between applications and the components of the
underlying infrastructure with which they interact is called middleware.

 Chapter 2. Concepts of message queuing 13

Middleware can provide functionality that is not specific to an individual
programming language, hardware platform, or operating system. Message
queuing technology is a form of middleware, providing asynchronous
communication between applications.

By using a middleware layer, application code can be moved or extended onto
nodes with different underlying infrastructure components, with greatly reduced
development efforts.

The process of changing an application to execute on a node with different
underlying infrastructure components is called porting, and how easy it is to port
an application to different infrastructure components is called the application’s
portability.

Access to existing services that do not use a middleware layer can often be
extended in a flexible way by developing a proxy. A proxy provides an interface
between the middleware layer and the existing service. New applications can
then access the existing service through the middleware layer, using the proxy,
rather than accessing the existing service directly.

2.3 Scalability and performance
When planning, designing, developing, and provisioning a service within the IT
system of a business, it is important to consider whether a service can meet the
requirements placed on it and can grow to meet requirements in the future.

The following list provides general descriptions of how some terms used in this
book apply to a service within the IT system of a business:

� Performance: The time taken between submitting a request for a service and
completion of that service. How the start and end points of a service are
determined are specific to the function being performed by the service.

� Load: The number of attempts being made to request a service within a given
time interval.

� Capacity: The number of requests for the service that can be processed by
the system as a whole within a given time interval.

� Scalability: How easily the capacity of the system can be increased to cope
with increased load and how this affects performance.

It is important to consider all of the above factors, rather than any one in isolation:

� A service that provides high performance for each successful request, but
only allows small numbers of requests to be processed concurrently, might
not be able to cope with loads placed on it.

14 WebSphere MQ V6 Fundamentals

� A service that provides high capacity through the operation of many instances
of the service concurrently, but provides low performance for each individual
instance, might be unacceptably slow.

Initial provisioning of resources for a service must ensure that the performance
and capacity of the service are acceptable under anticipated loads. Consider
reliability and security in these initial requirements, because technologies that
increase reliability and provide security can affect performance.

It is important to consider the scalability of the service at the same time as
considering the initial performance and capacity. A service that scales well allows
additional resources to be added to the system to quickly increase capacity and
cope with increased load, while not adversely affecting performance. If scalability
is not initially considered, increasing the capacity of a service might require a
significant amount of redevelopment or adversely affect performance.

Another important consideration is how the system as a whole copes during
periods where the load exceeds capacity for a particular service. This can often
be a temporary condition that occurs during peak time periods. It can also occur
gradually or suddenly over time as demand for services increases, signifying that
capacity needs to be increased. If this is not considered, negative outcomes can
include a combination of the following possible results:

� The system is unable to process the additional requests for that service.

� The performance of each request for the service degrades to an
unacceptable level.

� The performance of other services provided by the system are degraded.

� A fundamental failure occurs, such as reaching a hardware resource
limitation. This results in some services being unavailable for a period of time.
This is often called an outage.

The scalability and performance features provided by a message queuing
infrastructure, combined with careful design and planning, can provide a system
that scales efficiently. Resources can be allocated and deallocated when
required to meet the capacity and performance requirements of the system
under the changing loads experienced within a business environment.

 Chapter 2. Concepts of message queuing 15

2.4 Reliability and data integrity
Data that passes through a message queuing infrastructure can be broadly
separated into two categories:

� Query data: This is transient data being sent through a system, derived from
data that is stored safely within the system. If the query is lost, it might be
inconvenient to the requester of that information, but the original data remains
in the system and can be requested again.
An example is querying the current status of an order; if the request for this
information is lost, or the response is lost, it does not affect the actual status
of the order and the request can be submitted again.

� Business-critical data: This is data that is not stored elsewhere in the system.
If this data is lost, important information, or a change in state within the
system, is lost.
An example is a message confirming a payment for an order; if the message
confirming the payment is lost, the status of that order can become
inconsistent. The customer might have paid money, or been provided a
receipt, but the state of the order in the system does not correctly reflect that.

A large proportion of the messages that flow through a message queuing
infrastructure contain business-critical data. Therefore, it is important that a
message queuing infrastructure provides assurances that these messages are
not lost.

There are some performance implications in providing this assurance, so
messages containing query data can be marked as such to increase the
performance of passing that message through the infrastructure.

2.4.1 Exactly once delivery
In addition to ensuring that messages containing business-critical data are not
lost as they pass through a message queuing infrastructure, it is important that
messages reach their intended destination, that they reach it once, and that they
reach it once only.

If a message has been sent to a valid destination within the system, the message
queuing infrastructure must assure that the message is delivered to that
destination. However, the target destination, or intermediate nodes, might be
unavailable for periods of time. In this case, messages wait within the system
until they are able to continue to their destination.

Requirements can be different for query data, because the requester of
information might not want to wait indefinitely for a response. Therefore,

16 WebSphere MQ V6 Fundamentals

messages passing through the infrastructure can be set to expire if they remain
at any node within the system for longer than a specified period of time.

If a message reaches its destination twice, the results might be unpredictable.
For example, if a message confirming payment is received twice, this might
cause it to appear that the customer has overpaid and for their account to be in
credit incorrectly. A message queuing infrastructure must provide assurances
that a single message cannot arrive at its intended destination twice or at multiple
destinations unexpectedly.

If a message cannot be delivered to its target location, the behavior must be
well-defined so that message can be found and manually routed to the correct
destination. This can occur due to a change in the infrastructure that has
removed a destination, or due to incorrect specification of a destination by the
producer of a message. A message must not be discarded after it has entered
the message queuing infrastructure, unless it has been specifically marked to
expire or as containing query data only.

The concept of exactly once delivery encompasses all of these considerations.
WebSphere MQ assures exactly once delivery.

2.4.2 Units of work
Actions performed by an application cannot always be considered in isolation.
For example, a service might read a message, update some customer
information, and then send a reply. These are three separate actions, but if any
one of these fails to complete, none of them should complete.

These actions are said to be within a unit of work. Units of work include sending
messages, receiving messages, and updating databases of information. The
message queuing infrastructure must allow units of work to complete or fail as a
unit so that no individual action within that unit can complete without all actions
completing. It must also be possible for the application to explicitly fail this unit of
work at any point.

2.4.3 Failure handling
Failures within a business IT system can occur without warning and must be
coped with in a way that does not leave the system in an inconsistent state.
Examples of such failures include:

� Intermittent communication failures
� Planned and unplanned outages of other services within the system
� Failures due to resource limitations and hardware errors
� Failures due to software errors

 Chapter 2. Concepts of message queuing 17

� Failures due to configuration and infrastructure changes

A business IT system needs to be designed to consider these failures and
provide consistent and tolerant handling for them. Facilities within the message
queuing infrastructure simplify this process by providing a fault tolerant
infrastructure for services to reside within and by significantly reducing the
amount of application logic required to detect and process these failures.

These features can also help eliminate single points of failure within the system,
thus enabling services to remain available when failures occur.

2.4.4 Quality assurance (QA) environments
A particularly important part of development and deployment of a new service
into a business IT system is testing. Early detection of problems can significantly
reduce the impact of encountering that problem and reduce the resources
required to fix that problem.

A recommended technique for application development, testing, and deployment
is to have two separate environments:

� Production environment: This is the environment on which the actual system
runs and provides real services that are used and made available within the
business, outside of the business, or both.

� Quality assurance (QA) environment: This is the environment on which
development and testing is performed. This environment must match the
production environment as closely as possible, including hardware, operating
systems, infrastructure software, configuration, and all services. Any changes
that are planned for the production environment need to be developed and
tested in the QA environment before applying them in the production
environment. Loads on this environment need to be simulated.

For a simple system, these environments can share infrastructure hardware and
software. However, full separation of these environments can provide extra
benefits and reduce the possibility of changes in the QA environment affecting
the availability of services in the production environment.

The patterns and levels of usage of services simulated in the QA environment
need to match the usage that is experienced in the production environment as
closely as possible. The more closely these match, the more likely it is that
potential problems are recognized in the QA environment before being
encountered in the production environment.

Note: We discuss fault tolerance and single points of failure in more detail in
2.6, “High availability” on page 20.

18 WebSphere MQ V6 Fundamentals

If a problem is observed and can be re-created in the QA environment, the
solution can also be developed and tested in the QA environment. Developing
this solution can be an invasive process and require steps that are not be
advisable in the production environment without prior testing. In the QA
environment, these changes can be made, logged, and tested without affecting
the production environment.

We recommend regular application of maintenance to all software within a
system. By applying this maintenance to the QA environment prior to the
production environment, the possibility of an unexpected consequence of
applying maintenance affecting service availability is greatly reduced.

2.5 Security
It is important that security is considered carefully within a business IT system.
Access to services and information provided within that system must be
controlled, and the integrity of sensitive information transferred across public
networks needs to be considered.

2.5.1 Security of access
It is often important to ensure that services within a business IT system are only
available to authorized users or applications.

Malicious or unauthorized use of a service might cause corruption of the
information contained in a system, or expose sensitive information to a wider
audience than has been granted access to that information.

Generally, securing access to services involves the following two problems:

� Identifying the entity attempting to access services

� Preventing an identified or unidentified entity from accessing services to
which it should not have access

A message queuing infrastructure must provide facilities to reliably identify an
entity that is attempting to access a particular service, as well as methods for
deciding whether that entity is authorized to access that service.

This can be especially important when services are provided to entities external
to the company, such as suppliers or customers. A message queuing
infrastructure must provide a solid and secure framework to allow these external
entities to access services.

 Chapter 2. Concepts of message queuing 19

2.5.2 Security of communications
Nodes within a system might be connected by varied public or exposed
communication links. Protection of those communications links might be required
in order to prevent external intervention of data.

Technologies to protect communication links provide security against a third
party reading or modifying sensitive data. They also protect against attempts to
impersonate an entity that is authorized to access services within the system.

External intervention in a system through exposed communication links can
cause a failure in data integrity or cause services to become unavailable.

2.6 High availability
Services that are provided by a business IT system might be relied on for the
day-to-day operations of that business. Outages, where a particular service or
group of services are unavailable, can affect the operation of the business and
costs can be incurred as a result.

These outages broadly split into two categories:

� Planned outages: Periods when a service or services are unavailable in order
to perform planned work on those services. These include:

– Applying maintenance to software
– Changing the configuration of the infrastructure
– Backing up or reorganizing data

� Unplanned outages: Periods when a service or services become unavailable
unexpectedly. These can be caused by:

– Hardware or software failures
– Resource shortages
– Failures in data integrity

The objective of providing high availability of services is to minimize planned and
unplanned outages. There are a number of ways in which this can be performed,
including:

� Increase the reliability of the system:
This is dependent on the reliability of all components within that system,
including the hardware and software infrastructure, communication links, and
the custom applications that perform services. Using a stable and reliable
message queuing infrastructure, which provides simple interfaces to minimize
the complexity of services, can contribute significantly to the reliability of the
system as a whole.

20 WebSphere MQ V6 Fundamentals

� Reduce outages caused by updates to components:
If component updates and maintenance can be applied without making
services unavailable, planned outages can be reduced. Applying updates first
in a QA environment can reduce the chance of changes in behavior causing
an unplanned outage.

� Ensure that the system recovers efficiently following a failure:
If a system is able to recover efficiently, or automatically, after a failure has
occurred, without a loss in the integrity of the information within that system,
the impact and length of any unplanned outage is reduced.

� Minimize the impact on services from an individual failure:
If a failure does occur within a component of the system, it is likely to have
some effect on the system and the services it provides. Within the context of
message queuing, these effects can be split into the following categories:

– Service availability
– Message availability

2.6.1 Service availability
If a failure occurs within a component of the system, it affects all other
components that depend on it. These components, in turn, can affect other
components, and eventually one of more services within the system can be
affected.

If there is only one instance of a service within the system, or if all instances of a
particular service share a dependency on a particular component, this
represents a single point of failure within the system.

By providing multiple instances of a service within the system, which are able to
operate independently, a service can remain available for new requests after
some instances of that service have failed.

Within the context of message queuing, this requires that new messages that
would have reached, or passed through, queues hosted on nodes that have
failed should be routed to other nodes in the system.

2.6.2 Message availability
Messages might pass through multiple nodes within the system before eventually
reaching their destination, or might remain at a destination for a period of time
before they are processed by a service. The service itself might take some time
between consuming a message and successfully completing all actions on that
message.

 Chapter 2. Concepts of message queuing 21

If a component within the system fails, nodes that host queues and provide
services might fail as a result. This failure can be immediate and provide no time
for the infrastructure or applications to react, such as in the case of a hardware
failure. While a node is unavailable, all messages that reside on queues hosted
by that node are also unavailable. These are called stranded messages.

If stranded messages contain business-critical data, reliable recovery of those
messages is important. These messages must be recovered while retaining the
integrity of data that they contain.

Units of work that were in progress at the time of a failure must also be resolved
correctly. A service might have been in the middle of performing message
processing and might not have completed this processing.

Recovery of messages containing business-critical data can also be time critical.
If a fundamental failure occurs, it can take time and manual intervention to
recover the affected resources. Therefore, manual or automated actions might be
required to make those messages available using resources that have not been
affected.

2.6.3 Disaster recovery
Some disastrous failures can affect all resources for a particular node, or even
multiple interconnected nodes hosted at the same physical location. Making
services available again after these disasters occur, or recovering data that was
hosted on affected nodes, require careful planning and forethought.

A business can plan for these circumstances by performing regular backups of
data hosted at nodes within their system that host business-critical data. Using a
backup strategy, the data that can be recovered from a failed node, or nodes,
might not be fully up to date. However, backup strategies can significantly reduce
the quantity of data that is lost following a disastrous outage.

2.7 Monitoring and accounting
Information about the operation and usage of a system has a number of
important uses: It can provide indications about the health of the system,
indications of the performance and available capacity of the system under
different loads, and can allow tracking of usage for individual entities.

2.7.1 Performance monitoring
Performance monitoring, in the context of a message queuing infrastructure,
involves measuring the number and duration of actions that occur when services

22 WebSphere MQ V6 Fundamentals

access queues or when messages pass through queues on intermediate nodes.
You can use this information to infer performance and capacity information about
those services and the infrastructure that supports them.

This can be helpful when provisioning resources for a service, or when deciding
whether additional resources are needed to scale the capabilities of a service.
Monitoring performance can also be useful to identify any sudden or gradual
changes in usage patterns to anticipate problems before they occur.

2.7.2 Accounting
Accounting, in the context of message queuing, involves gathering information
about the usage of particular queues by particular entities. These entities can be
an application providing a service from that queue, an internal user, or an
external user.

These accounting statistics allow patterns of usage to be identified and analyzed.
One application is to ensure that a promised quality of service is being provided
to a particular entity. Another application is to provide facilities for charging based
on the usage of a particular service by a particular entity.

 Chapter 2. Concepts of message queuing 23

24 WebSphere MQ V6 Fundamentals

Chapter 3. Facilities for message
queuing provided by
WebSphere MQ

This chapter introduces the specific features of the message queuing product
IBM WebSphere MQ. For each area of challenge introduced in Chapter 2,
“Concepts of message queuing” on page 5, we provide an overview of the
related features provided by WebSphere MQ.

We discuss the following topics in this chapter:

� Core concepts

� Simplification

� Scalability and performance

� Reliability and data integrity

� Security

� High availability

� Monitoring and accounting

3

© Copyright IBM Corp. 2005. All rights reserved. 25

3.1 Core concepts
IBM WebSphere MQ is an established and reliable message queuing middleware
platform. During more than 10 years of development, WebSphere MQ has grown
to provide flexible and reliable solutions that address the breadth of
considerations introduced in the previous chapter.

A message queuing infrastructure built on WebSphere MQ technology helps
provide an available, reliable, scalable, secure, and maintainable transport for
messages—with exactly once delivery assurance.

3.1.1 WebSphere MQ message queuing infrastructure
The nodes within a WebSphere MQ message queuing infrastructure are called
queue managers. Multiple queue managers can run on a single physical server,
and queue managers can run on a large variety of different hardware and
operating system combinations.

Each queue manager provides facilities for reliable message queuing. Queue
managers on all platforms provide facilities for message queuing using a
point-to-point model, including request/reply and send and forget messaging, as
described in the previous chapter.

WebSphere MQ Version 6.0 queue managers, with the exception of WebSphere
MQ for z/OS, also provide a publish/subscribe broker for message queuing using
a publish/subscribe model.

The queue managers maintain the queues of the message queuing infrastructure
and all of the messages that reside on those queues waiting to be processed or
routed. Queue managers are tolerant to failures, maintaining the integrity of the
business-critical data flowing through the message queuing infrastructure.

The queue managers within the infrastructure are connected with channels.
Messages automatically flow across these channels, from the initial producer of a
message to the eventual consumer of that message, based on the configuration
of the queue managers in the infrastructure.

Many changes can be made to this configuration transparently to the
applications, which provide and access the services in the system.

3.1.2 Facilities for building a WebSphere MQ infrastructure
WebSphere MQ V6.0 provides the WebSphere MQ Explorer, which is a graphical
user interface (GUI) used to configure and monitor the queue managers within a

26 WebSphere MQ V6 Fundamentals

WebSphere MQ infrastructure from a desktop workstation. This includes the
administration of queue managers hosted on the z/OS platform.

WebSphere MQ provides a scripting interface called MQSC to perform
administration on all platforms. Panel driven administration interfaces are also
provided on iSeries™ and z/OS.

WebSphere MQ objects are defined on each queue manager. These configure
the queues hosted on that queue manager and the interaction between that
queue manager, applications, and other queue managers within the WebSphere
MQ infrastructure.

These objects can be used to configure specific routes between the individual
queue managers within the infrastructure. They can also be used to join a queue
manager to a queue manager cluster, in which the channels between queue
managers are automatically created when required.

Queue manager clusters reduce the amount of administration required when
building or modifying a WebSphere MQ infrastructure. Queue managers can join
and leave a queue manager cluster without additional configuration of the
existing queue managers within the infrastructure.

Queue manager clusters also provide significant extra functionality over manually
defined intercommunication between queue managers. This functionality can be
used to increase the scalability and availability of the services provided by a
system.

3.1.3 SupportPacs
Some additional functionality and documentation, which is not supplied in the
base WebSphere MQ product, is provided within a WebSphere MQ
SupportPac™.

The areas of functionality provided by SupportPacs are varied and include the
following features:

� Reports about the performance of WebSphere MQ

� Documentation and guides regarding particular areas of function

� Sample applications that interact with WebSphere MQ

� Scripts that simplify the administration of WebSphere MQ

� Interfaces into WebSphere MQ from additional programming languages

Each SupportPac has a unique reference and an associated category. The
category specifies the origin of that SupportPac and the level of support that is
provided by IBM for that SupportPac.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 27

For a list of all available SupportPacs and for more details about the SupportPac
system and the categories of SupportPacs, see the following Web page:

http://www.ibm.com/software/integration/support/supportpacs

3.2 Simplification
WebSphere MQ provides simplified communication between applications
running on different hardware platforms and operating systems, implemented
using different programming languages, or running within different hardware and
software environments.

This enables a business to choose the most appropriate infrastructure
components for implementing or accessing services within their system.

New applications can interact with existing services, without the knowledge of the
existing infrastructure components that implement those services. Existing
services that do not provide an interface through the message queuing
infrastructure can be adapted by developing proxies to adapt the existing
interfaces to ones accessed through the WebSphere MQ message queuing
infrastructure.

WebSphere MQ provides a range of application programming interfaces (APIs)
to interact with the message queuing infrastructure. An API can be chosen from
this range in line with the design methodologies of the programming language
and environment on which an application is developed.

The asynchronous nature of messaging in WebSphere MQ can simplify
application logic and promote structured handling of failures if they occur.

3.2.1 Applications accessing a WebSphere MQ infrastructure
By connecting to a single queue manager within a WebSphere MQ infrastructure,
an application is able to communicate with applications that connect to other
queue managers within that infrastructure. The queue manager to which each
application connects can be hosted on a separate machine from the application.

This can occur regardless of the hardware and operating system combinations of
the machines hosting the applications and the queue managers to which the
individual applications connect.

28 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/support/supportpacs

3.2.2 Asynchronous intercommunication using WebSphere MQ
Two applications that need to intercommunicate, whether hosted on the same
machine or separate machines, might be originally designed to do so directly and
synchronously.

In this case, the two applications exchange information by waiting for the partner
application to become available and then sending information. If the partner
application is unavailable for any reason, including if it is busy performing
communication with other applications, the information cannot be sent.

All intercommunication failures that can occur between the applications, on the
same machine or different machines connected by a network, must be
considered individually by the applications. This requires a protocol for sending
the information, confirming the receipt of the information, and sending any
subsequent reply.

Placing a WebSphere MQ queue between the two applications enables this
intercommunication to become asynchronous. One application places
information for the partner on a queue within a WebSphere MQ message, and
the partner application processes this information when it is available to do so. It
can then send a reply to that message back to the originator if required.

If the two applications are on different machines, the exactly once delivery
assurance provided by WebSphere MQ ensures that each message arrives, and
that it arrives once only. This often removes the requirement for a reply to be sent
back from the service. If a failure occurs in processing the message, the service
can perform a consistent action, which might involve replying to the originator of
the message, or informing an administrator, or other application, by sending a
report.

Applications that perform processing on messages are considered as providing a
service. That service can be any form of processing, such as updating
information in a database or sending an e-mail to an administrator.

3.2.3 Generalizing destinations using WebSphere MQ
Destinations within the infrastructure are identified by the names of queues from
which applications process messages. These names are unique within each
queue manager, but queues of an identical name can exist on other queue
managers within the infrastructure.

This name is used to identify a particular service, or a generalized definition,
provided by the infrastructure.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 29

3.2.4 Specific destinations using WebSphere MQ
An individual application can optionally have its own unique destination within the
infrastructure, consisting of the name of a queue allocated to that application and
the name of the queue manager to which the application connects.

This destination can be permanent, thus allowing messages to be sent to the
application even while it is inactive. It can also be temporary, lasting only for the
life of the application.

These destinations can be dynamically created, allowing an unspecified number
of applications connected to the same queue manager to have their own unique
destinations within the infrastructure.

These unique destinations allow replies to be routed to the producer of a request
in a point-to-point model and for publications to be routed to subscribing
applications in a publish/subscribe model.

3.2.5 Providing services within a WebSphere MQ infrastructure
An application providing a service simply waits for messages to arrive on a
queue, which is identified within the infrastructure by its name.

The application then processes each message that arrives based on the
message contents and the custom business logic required for the service. This
might include updating or requesting information to or from a database, making
decisions about the required next manual or automated actions, and performing
those actions, including sending messages to other services hosted within the
system.

Multiple applications providing a service can process messages that arrive on
the same queue, or a running application can request exclusive access to all
messages on a particular queue.

3.2.6 WebSphere MQ queues as an interface for accessing services
An application requires the following information to access a service, provided
through a WebSphere MQ message queuing infrastructure:

� Addressing information for the service: In WebSphere MQ, this is the name of
a queue in a point-to-point model or the name of a topic in a publish/subscribe
model.

30 WebSphere MQ V6 Fundamentals

� How to connect to the infrastructure: In WebSphere MQ, this is the name and
connection details for one queue manager within the infrastructure. This
queue manager can be hosted on the same machine as the application or on
a remote machine connected by a network.

� Details of the interface into the service: This includes whether the interface is
send and forget, request/reply, or publish/subscribe. It also includes the
structure of the data contained in any messages that flow between the
applications accessing and providing the service.

� A mechanism to send and receive messages: This is an application
programming interface (API) that provides facilities compatible with the
infrastructure being used. WebSphere MQ provides a number of different
APIs that can be used from different programming languages and platforms.

Other considerations, such as how to route messages to their destination, are
dealt with by the WebSphere MQ infrastructure, transparent to the operation of
the application.

This includes dealing with intercommunication failures at any intermediate nodes
on route to the destination. It can also include routing around failed nodes in the
network and workload balancing requests to the available resources.

Accessing services in this way is flexible and maintainable. Separate
departments within a business, or businesses themselves, can maintain their
own infrastructure and services, as well as providing external access into these
services.

To do this, they provide the previously mentioned information to other
departments within the business or to other businesses such as business
partners, customers, and suppliers. Alternatively, they can develop custom
applications to access the service, through the message queuing infrastructure,
and make the interface to these applications available externally, for example, by
providing an external interface into a service through a Web browser.

Changes can be made to the infrastructure, such as moving applications
between machines, increasing capacity, performing maintenance, and
restructuring or combining infrastructures, without affecting the operation or
availability of the services provided through the interface.

3.2.7 Standardized application programming interfaces (APIs)
Using a standardized API can add additional flexibility when accessing services
through a message queuing infrastructure. This book uses the term standardized
API to represent APIs that are not proprietary to an individual product, such as
WebSphere MQ.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 31

Examples of standardized APIs, which can be used to access services provided
through a WebSphere MQ infrastructure, include:

� The Java™ Message Service (JMS)
� The IBM Message Service Client (XMS)

We discuss these in more detail in 4.2.3, “Standardized APIs available for
WebSphere MQ” on page 52.

Using these standardized APIs to access services allows the logic within the
application to be independent of the technology providing message queuing. This
enables the technologies used within the infrastructure to change.

For example, the broker providing publish/subscribe capabilities to a WebSphere
MQ infrastructure can be upgraded from the WebSphere MQ publish/subscribe
broker to WebSphere Business Integration Message Broker or WebSphere
Business Integration Event Broker.

The WebSphere Business Integration Message Broker and WebSphere
Business Integration Event Broker are separate broker products that build on the
core messaging capabilities of WebSphere MQ to provide additional functionality,
exploiting the full potential of the publish/subscribe messaging model.

Wide adoption of these APIs can occur across multiple products. For example,
the JMS API is an industry standard API for messaging within the Java 2
Platform, Enterprise Edition (J2EE™) specification.

The customization of a standardized API to a specific message queuing
implementation is not usually performed by the application itself. Instead, this
information is usually held in a directory of information, accessed locally or over
a network. An application gains the information required to perform message
queuing from this directory.

For WebSphere MQ, the information in this directory includes the connection
details for a queue manager and the names of queues.

The information in this directory can change to reflect changes to the interface
into a service, such connecting to a different queue manager. The application
does not need to be altered after these infrastructure change are made.

3.2.8 WebSphere MQ and WebSphere Application Server
J2EE-compliant application servers, such as IBM WebSphere Application
Server, provide a framework within which applications can be developed and
hosted.

32 WebSphere MQ V6 Fundamentals

An application hosted within a J2EE application server can access a range of
functionality through the APIs defined within the J2EE specification.

JMS is just one of the standardized APIs within the J2EE specification, defining
an API for performing point-to-point and publish/subscribe messaging.

Other APIs are defined for a broad spectrum of functionality that applications
might need to access. For example, an application might be accessed through
interfaces available over the Internet through a Web browser or an application
might query and update information in a database.

The technologies that provide J2EE functionality can be embedded within the
J2EE application server product, or can be separate products that are configured
within the J2EE application server as a provider of that functionality.

WebSphere Application Server Version 5 is supplied with an embedded provider
of JMS functionality based on the WebSphere MQ product.

WebSphere Application Server Version 6 is supplied with an embedded provider
for JMS functionality called WebSphere Platform Messaging. WebSphere
Platform Messaging is a separate technology to WebSphere MQ and provides
point-to-point and publish/subscribe message queuing functionality.

WebSphere MQ can be configured as a JMS provider for WebSphere Application
Server V6.0. WebSphere Platform Messaging infrastructures can also be
interconnected with WebSphere MQ infrastructures.

3.2.9 Web services as an interface for accessing services
Standardized APIs in themselves do not solve the problem of defining the
interface into a service. The application must still know the format of the
message to send to a service and the information to provide to the service in
order for it to perform its function.

Web services can provide a solution to this. The principles of Web services define
common standards used to describe and exchange information between
applications requesting services and the services themselves.

Web services are described using a common language, called the Web Services
Description Language (WSDL). The WSDL for each Web service can describe
how it is accessed, the information it requires, and what information it returns and
can provide general information about the service, such as a description of the
action it performs.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 33

The WSDL describing a Web service can be generated from the code
implementing the business logic of the service it provides. This is called a
bottom-up approach.

Alternatively, previously defined WSDL can be used as the basis for writing the
code implementing the service. This is called a top-down approach.

In either case, the WSDL can be shared between the application implementing
the Web service and all the applications accessing the Web service. This
provides a common specification for interactions between these applications.

The WSDL describing each Web service provided by a system can be held in a
common registry. This enables applications, or developers, to query this registry
for the WSDL describing the service they want to access, including how to
interact with it.

These interactions are performed through a layer of functionality called Simple
Object Access Protocol (SOAP).This defines the format in which data is shared
between the Web service and the application accessing it. The data can be
validated against the WSDL description to ensure that only correctly specified
information is exchanged.

SOAP defines how the data exchanged is specified by applications. However, it
does not, in itself, provide a mechanism for communication between the
applications over a network. For this, a transport layer is required to provide the
communication between applications.

Using a WebSphere MQ message queuing infrastructure to provide this transport
can combine the benefits of Web services for defining interactions, with the
asynchronous nature, reliability, and exactly once delivery assurance of
messaging with WebSphere MQ.

For more information about Web services, including a guide to using WebSphere
MQ as a transport for Web services, see the following publications:

� WebSphere MQ Solutions in a Microsoft .NET Environment, SG24-7012

� WebSphere MQ Transport for SOAP, SC34-6651

3.2.10 Simplification of failure handling with WebSphere MQ
When using any of the interfaces provided into WebSphere MQ, an application
can benefit from simplified failure handling in comparison to synchronous
interaction with a service over a communications link.

34 WebSphere MQ V6 Fundamentals

After a message has been placed within the WebSphere MQ infrastructure,
WebSphere MQ assures delivery of that message to the destination occurs, that
it occurs once, and that it occurs once only.

The exactly once delivery assurance provided by WebSphere MQ removes the
responsibility for handling failures in communications links from an application.

Regardless of the final destination for a message, an application first places the
message in a queue hosted by the queue manager to which it is connected. This
can be the final destination of the message, or an intermediate queue for transfer
to another queue manager within the infrastructure.

The application itself only needs to know the name of a queue. The configuration
of the WebSphere MQ infrastructure determines how the message reaches its
destination and that any subsequent replies can be returned to the queue
manager to which the application is connected.

Queue manager clusters can simplify this configuration by providing queue
managers with automatically maintained knowledge of the other queue
managers within the system and their availability. Using queue manager clusters,
there can be multiple possible destinations for one message, representing
multiple resources in the system that can process the message. This, too, is
transparent to the application, which only needs to know the name of a queue.

3.3 Scalability and performance
WebSphere MQ provides an efficient and scalable message queuing
implementation, building on the facilities provided by each operating system to
scale performance with the power provided by modern, multiple processor,
server hardware.

3.3.1 Scalability features of WebSphere MQ queue managers
Each queue manager performs a large number of tasks simultaneously to benefit
from the multiple physical or virtual processing units provided by the hardware on
which it is running. WebSphere MQ coordinates these multiple tasks to assure
that data integrity is not compromised.

A large number, many thousands in some cases, of connections to a queue
manager can be active at any one time. Multiple connections can process
messages from the same queues hosted by that queue manager concurrently.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 35

WebSphere MQ allows flexibility in the design of the applications that access a
queue manager to allow the performance and capacity of the applications
themselves to scale.

Applications that access a WebSphere MQ infrastructure can be developed and
deployed within WebSphere Application Server application servers to benefit
from the scalability features of the WebSphere Application Server product.

Applications can be designed to build directly on the threading and multitasking
features provided by operating systems, performing multiple tasks
simultaneously within separate threads of a single application instance, or
running many instances of the same application connected to a single queue
manager.

3.3.2 An architecture based on a single queue manager
The asynchronous nature of messaging with WebSphere MQ helps enable
applications to flexibly scale capacity, even when only a single machine is
involved in providing that service.

Because queues provide a buffer between the application requesting a service
and the application providing that service, the service can cope with varying
loads in a flexible manner.

The application requesting the service can be hosted on the same machine as
the application providing the service. A queue manager hosted on that same
machine provides queues to allow efficient asynchronous intercommunication
between those applications. This is shown in the left half of Figure 3-1 on
page 37.

WebSphere MQ allows the applications connecting to a queue manager to be on
remote machines, connecting as clients to that queue manager. Therefore,
access to a service can be provided to multiple machines through a single queue
manager. The number of clients is not limited by WebSphere MQ. However, this
number is eventually limited by the capacity of that single machine.

This represents the simplest form of WebSphere MQ infrastructure: a single
queue manager hosting a service required by the applications connecting to that
queue manager. This is shown in the right half of Figure 3-1 on page 37.

36 WebSphere MQ V6 Fundamentals

Figure 3-1 Examples of architecture using a single WebSphere MQ queue manager

3.3.3 Hub and spoke WebSphere MQ architectures
Connecting to a WebSphere MQ queue manager as a client has limitations. A
network connection is placed between the application and the queue manager,
which has performance implications, especially over longer distances. This also
requires that a network connection is available in order for the application to
operate. The interaction between the application and the queue manager over
that network connection is synchronous, although WebSphere MQ manages that
connection for the application.

This single queue manager approach can be scaled, without alteration to the
application, to include multiple queue managers.

Applications accessing a service can have a queue manager hosted on the same
machine, providing a fast connection to the infrastructure, and gain
asynchronous communication with the service hosted on another queue
manager.

Alternatively applications accessing a service can connect as clients over a fast
network to a queue manager, for example, all applications accessing a service in

...

Applications
accessing the

service as clients
to a single queue

manager

Client
connections

Applications
providing

the service
Single queue

manager

The applications accessing the service are running on different
machines to the applications providing that service.
A queue manager provides asynchronous intercommunication
between the applications.
The applications are connected as clients to a single queue manager.

Applications
providing

the service
Single queue

manager

Applications
accessing
the service

The applications accessing the service are running
on the same machine as the applications providing
that service.
A queue manager provides asynchronous
intercommunication between the applications.

Single queue manager
with local applications
accessing the service

Single queue manager
with remote applications

accessing the service as clients

...

Applications
accessing the

service as clients
to a single queue

manager

Client
connections

Applications
providing

the service
Single queue

manager

The applications accessing the service are running on different
machines to the applications providing that service.
A queue manager provides asynchronous intercommunication
between the applications.
The applications are connected as clients to a single queue manager.

Applications
providing

the service
Single queue

manager

Applications
accessing
the service

The applications accessing the service are running
on the same machine as the applications providing
that service.
A queue manager provides asynchronous
intercommunication between the applications.

Single queue manager
with local applications
accessing the service

Single queue manager
with remote applications

accessing the service as clients

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 37

a branch office. Asynchronous communication occurs through this queue
manager to the services hosted on another hub queue manager.

These applications themselves can be implemented to provide an external
interface into the service, for example, by providing an interface over the Internet
through a Web browser.

The queue managers through which the services provided by the hub are
accessed are called the spokes of a hub and spoke WebSphere MQ architecture.

A machine, such as a mainframe or server hardware, can host the applications
providing the service. This machine hosts a hub queue manager, holding the
queue from which these applications process messages. This same machine
can host other resources required by those applications, such as a database.
Many instances of the applications providing the service can process requests
from the same queue, depending on the implementation of the applications
providing the service.

This type of architecture is developed by manually defining the routes from the
spoke queue managers to the hub queue managers hosting individual services.
Multiple services provided by the infrastructure can be hosted on different hub
queue managers, or through multiple queues on the same hub queue manager.

Figure 3-2 on page 39 shows an example hub and spoke architecture.

38 WebSphere MQ V6 Fundamentals

Figure 3-2 Example WebSphere MQ hub and spoke architecture

3.3.4 Flexibly scaling capacity using queue manager clusters
A more flexible approach is to join queue managers together in a queue manager
cluster. Queue manager clusters allow multiple instances of the same service to
be hosted through multiple queue managers.

Applications requesting a particular service can connect to any queue manager
within the queue manager cluster. When applications make requests for the
service, the queue manager to which they are connected automatically workload
balances these requests across all available queue managers that host an
instance of that service.

This allows a pool of machines to exist within the queue manager cluster, each
hosting a queue manager and the applications required to provide the service.
This is especially useful in a distributed environment, where capacity is scaled to
accommodate the current load through multiple servers, rather than one
mainframe or high-capacity server.

Queue managers can dynamically join or leave the queue manager cluster to
cope with varying loads placed on a particular service provided by a system. The

Applications
providing the

service
Hub queue
manager

Spoke queue
manager

channel channel

...

Applications
accessing the

service as clients
to a spoke queue

manager

Client
connections

channel

Applications within
a WebSphere

Application Server
Spoke queue

manager

The Internet

Access to the service
via Web interfaces

Hub
Spoke

Spoke

Spoke

Applications providing the service all connect to the hub queue manager.
Channels from each spoke are manually created to the hub.
Applications connect to spoke queue managers to access the service.
There can be as many spokes as required.

Applications
accessing
the service

Spoke queue
manager

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 39

configuration only needs to be performed on the queue manager joining or
leaving the cluster, not the queue managers already within the cluster.

The queue managers to which applications connect when requesting services
can also dynamically join and leave the cluster. For example, these might be
gateways into the infrastructure from a Web-based interface that also has to
cope with varying loads. Or, a queue manager might be hosted by each remote
branch office of a business to access common services provided across the
whole business.

Figure 3-3 shows an example of WebSphere MQ architecture base on a queue
manager cluster.

Figure 3-3 Example WebSphere MQ architecture based on a queue manager cluster

3.4 Reliability and data integrity
WebSphere MQ queue managers, which together form a WebSphere MQ
infrastructure, have built an excellent reputation for reliability through more than
10 years of development. Queue managers can remain running for long periods

. . .

.

...

Applications
accessing the

service as clients
to queue managers

in the queue
manager cluster

Client
connections

The Internet

Access to the service
via Web interfaces

Queue manager cluster
Queue

managers

Applications
accessing
the service

Queue
managers

Applications within
WebSphere

Application Servers
Queue

managers

Applications
providing the

service
Queue

managers

Pool of servers
hosting the service

Any queue manager can join and leave the cluster dynamically.
Applications hosting the service connect to a pool of one or more
queue managers.
Applications can access the service by connecting to any queue
manager in the cluster.

. . .

.

.

...

Applications
accessing the

service as clients
to queue managers

in the queue
manager cluster

Client
connections

The Internet

Access to the service
via Web interfaces

Queue manager cluster
Queue

managers

Applications
accessing
the service

Queue
managers

Applications within
WebSphere

Application Servers
Queue

managers

Applications
providing the

service
Queue

managers

Pool of servers
hosting the service

Any queue manager can join and leave the cluster dynamically.
Applications hosting the service connect to a pool of one or more
queue managers.
Applications can access the service by connecting to any queue
manager in the cluster.

. . .

40 WebSphere MQ V6 Fundamentals

of time, and applications can remain connected to a queue manager for long
periods of time.

The intercommunication performed between queue managers across channels
is tolerant to network communication failures, and WebSphere MQ assures
exactly once delivery of messages.

3.4.1 Persistent and nonpersistent messages
Some interactions between applications in a system relate only to query data,
where the loss of the data might be inconvenient but does not affect the integrity
of the information held within the system. In these cases, performance can be
considered more important than data integrity.

For example, an application requesting the status of an order through a graphical
interface can be accessed from many locations or across the Internet. The user
accessing this information is only likely to wait for a finite period of time for this
information to be available. If the information is not available, the request
message or reply message for this information might no longer be required. The
loss of a message in this circumstance is less significant than an inability to
process that message efficiently.

However, messages containing business-critical data, such as receipt of
payment for an order, need to be reliably maintained within that system. If a
failure occurs on a machine within the infrastructure, or planned maintenance of
some machines within the infrastructure makes the destination unavailable,
messages must wait within the infrastructure until they can be delivered.

Messages that flow through a WebSphere MQ infrastructure are marked as one
of the following messages to reflect the data contained:

� Nonpersistent messages:
WebSphere MQ optimizes the actions performed on nonpersistent messages
for performance. Nonpersistent messages can be lost if network
communication between queue managers fails, a queue manager is restarted
to perform maintenance, or an abrupt failure occurs that ends a queue
manager uncleanly.

Because the loss of some query data can be inconvenient, because it might
need to be requested again, a queue manager can be configured to perform
less optimization on certain nonpersistent messages. This includes
transferring nonpersistent messages across channels in a failure-tolerant
manner and maintaining nonpersistent messages on queues during a
planned restart of the queue manager. However, exactly once delivery is not
assured for nonpersistent messages regardless of the configuration of the

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 41

queue manager. Always mark messages containing business-critical data as
persistent.

� Persistent messages:
Messages containing business-critical data are marked as persistent.
WebSphere MQ assures exactly one delivery of persistent messages. This
means that WebSphere MQ does not discard a persistent message through
network failures, delivery failures, or planned restarts of the queue manager.
Each queue manager keeps a failure tolerant log, sometimes referred to as a
journal, of all actions performed on persistent messages. This protects
against unplanned abrupt failures causing persistent messages to be lost.
Incomplete actions on persistent messages are undone. This includes
maintaining the integrity of the units of work described in 3.4.2, “Units of work”
on page 42.

Persistent messages can allow the design of applications to be simplified by
relying on the exactly once delivery assurance of WebSphere MQ. A message
that is sent to perform an action is assured to arrive at its destination to be
processed. The application that actually performs the action on the message
does not need to be available at the time that the message requesting that action
is sent.

3.4.2 Units of work
Many actions performed by an application cannot be considered in isolation. An
application might need to send and receive multiple messages as part of one
overall action. Only if all of these messages are successfully sent or received,
should any messages be sent or received.

An application that processes messages might need to perform work against
other resources, as well as the WebSphere MQ infrastructure. For example, it
might perform updates to information in a database based on the contents of
each message. The actions of retrieving the message, sending of any
subsequent reply, and updating the information in the database should only
complete if all actions are successful.

These actions are considered to be within a unit of work. Units of work
performed by applications accessing a WebSphere MQ infrastructure can
include sending and receiving messages and updates to databases. WebSphere
MQ can coordinate all resources to ensure that a unit of work is only completed,
if all actions within that unit of work complete successfully.

Note: Always keep the log data held by queue managers on reliable
storage. If data on storage is lost or corrupted, due to a hard disk failure,
for example, WebSphere MQ might not be able to recover messages.

42 WebSphere MQ V6 Fundamentals

WebSphere MQ can also participate in units of work that are coordinated by
other products. For example, actions against a WebSphere MQ infrastructure
can be included in units of work that are coordinated by WebSphere Application
Server.

3.5 Security
WebSphere MQ provides features to assure security of access, authentication of
identity, and security and integrity of communication.

3.5.1 The Object Authority Manager (OAM)
All actions performed by an application connected to a queue manager are
authenticated by that queue manager by a component called the Object Authority
Manager (OAM).

The configuration of a queue manager is performed by defining WebSphere MQ
objects within that queue manager. In order to perform any action, such as
connecting to a queue manager, sending a message, or retrieving a message
from a queue, an application must access WebSphere MQ objects.

Every time an application attempts any action against a WebSphere MQ object,
the OAM ensures that the identity under which that application is connected to
the queue manager has been set to allow the type of access it is requesting on
the object it is performing an action against.

3.5.2 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
Applications which connect to WebSphere MQ do not need to be hosted on the
same machine as the queue manager to which they connect to access the
infrastructure. They can connect as a client to that queue manager over a
network.

Extending access in this way is very flexible, but reduces the assurance that a
queue manager has established the true identity of each application connecting
to it.

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are
industry-standardized technologies that provide assurance of identity.

SSL and TLS provide similar capabilities and build on similar principles for
establishing identity. TLS is often considered the successor of SSL, because it
provides some enhanced security features. WebSphere MQ V6.0 provides TLS
capabilities, as well as the SSL capabilities provided in WebSphere MQ V5.3.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 43

SSL or TLS can be used for all communication performed over a network within a
WebSphere MQ infrastructure.

Using these technologies, WebSphere MQ can verify the identity of applications
connecting to a queue manager and can also verify the identity of other queue
managers within the infrastructure with which it exchanges messages.

3.5.3 Securing communication using SSL or TLS
In addition to allowing the identity of entities to be verified, and thus allowing
authentication of that entity to be performed by the OAM of a queue manager,
SSL and TLS also provide industry standardized security of communication.

Any communication over a network within a WebSphere MQ infrastructure for
which identity has been verified using SSL or TLS can then be encrypted using a
variety of different algorithms within the SSL and TLS standards. This assures
the privacy of that communication.

SSL and TLS can also provide verification of the integrity of data flowing across a
network connection. This protects against both malicious modification of the data
and corruption of the data by the network communication link.

3.6 High availability
The reliability of the WebSphere MQ product makes it an excellent choice for
providing a message queuing infrastructure for services that need to be highly
available.

This should be combined with a quality assurance (QA) environment, which
closely matches the production environment, for development and testing of
applications and testing of changes to applications and the infrastructure before
these changes are undertaken in production.

Investing in the development of such a QA environment allows testing of the
services provided by a system to ensure that they match the external usage of
that system as closely as possible. This minimizes the possibility that software or
logic failures affect the availability of the services provided by the system.

For services where high availability is of critical importance, consideration should
be made for the planned and unplanned outages that occur. This includes
hardware failures and the maintenance and upgrading of applications and
infrastructure components.

44 WebSphere MQ V6 Fundamentals

For more information about all of the topics discussed in this chapter, see the
Understanding high availability with WebSphere MQ white paper available from
the following Web page:

http://www.ibm.com/developerworks/websphere/library/techarticles/0505_hiscock/0
505_hiscock.html

3.6.1 The role of queue manager clusters in high-service availability
Joining queue managers together within a queue manager cluster, as discussed
in 3.3.4, “Flexibly scaling capacity using queue manager clusters” on page 39,
allows multiple independent instances of a service to be implemented and
deployed dynamically within a system.

The queue managers within a queue manager cluster automatically route
messages to all available instances of the service. If a queue manager is marked
as unavailable, for example, to apply maintenance to WebSphere MQ or the
applications and other resources providing the service, new messages are no
longer sent to the instance of the service hosted through that queue manager.

Equally, if a queue manager becomes unavailable unexpectedly, for example,
due to a network failure or a hardware failure affecting that queue manager,
requests are automatically routed to the other instances of the service that are
still available. Queue manager clusters enable the infrastructure to automatically
route around failures.

WebSphere MQ V6.0 introduces additional features for queue manager clusters,
which allow more control over this automatic routing of requests. Queue
managers hosted on higher-capacity servers can route more messages than
those on lower-capacity servers. Queue managers can also be designated as
backups for a service so that they are only routed messages if the primary queue
managers are unavailable.

3.6.2 Queue sharing groups on WebSphere MQ for z/OS
IBM WebSphere MQ for z/OS builds on the facilities provided by joining z/OS
systems together in a sysplex. Queue managers in the same sysplex can be
members of a WebSphere MQ queue sharing group. These queue managers
can all access messages on the same shared queues.

This can address the problem of message availability, where a queue manager
becomes unavailable while messages are contained on its queues. Queue
manager clusters automatically route new requests around that queue manager,
but the messages on the queues of that queue manager cannot be accessed
until it is made available again.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 45

http://www.ibm.com/developerworks/websphere/library/techarticles/0505_hiscock/0505_hiscock.html

If the queue manager is a member of a queue sharing group, other queue
managers within the queue sharing group that are still available can access the
messages on the queue, preventing those messages from being unavailable.

3.6.3 High availability clusters
Another solution for the problem of providing message availability if hardware
failures occur or during planned maintenance, such as applying updates to
software components, is the use of high availability (HA) clusters.

These enable a primary and secondary hardware server to have all of the
software components installed that are required to provide a service. Failover
occurs between the primary and secondary server if requested manually or if any
component providing that service fails on the primary server.

The reliable storage, which is used by all of the software components on the
primary server to store data, is also failed over to the secondary server. This
allows the same components on this secondary server to have access to the
exact state of the data at the time of failure.

In a WebSphere MQ context, this means that a WebSphere MQ installation
exists on both servers, and both servers have a queue manager configured to
store data on the reliable storage that is failed over between the servers.

These two queue managers cannot run concurrently, accessing the same data,
but the HA clustering software switches the reliable storage between the two
servers if a failure is detected.

It is significant that this functionality is provided separately to WebSphere MQ.
This is because the resources that need to be failed over between the machines
are not limited to WebSphere MQ resources. All software components required
to implement a service, including the applications themselves and any
databases, application servers, or other infrastructure software, must be
available after the failover occurs. These software components must all have
access to the exact data from the time of the failure.

Note: HA clusters are not a feature of the WebSphere MQ product itself, but a
wider concept that multiple products, including many operating system
vendors, implement. Do not confuse HA clusters with queue manager
clusters, which are a feature of the WebSphere MQ product.

IBM HACMP™ is one example of a product that provides HA clustering
functionality for servers using the IBM AIX® 5L™ operating system.

46 WebSphere MQ V6 Fundamentals

In order for this to be transparent to the operation of the service, the identity of
the server within any network must also be failed over.

By being supplied within a separate product, the HA clustering software is able to
independently establish the availability of all of the software components under
its control and perform failover of all of those components between the
machines.

A HA clustering solution is a combination of HA clustering software, which can
perform full coordination of the resources, combined with a reliable storage
solution that can be switched between the primary and secondary servers. A
complete installation of all of the software required, including the custom
application software, is required on both servers to use the storage switched over
to that machine when failover occurs.

WebSphere MQ does not limit support to specific HA clustering solutions. A
business can choose a solution that matches their individual requirements,
operating systems, and hardware choices.

3.6.4 Disaster recovery
Recovering from disastrous outages, which cause significant loss of data or
multiple machines to become unavailable, requires careful consideration and
planning. Such events are unpredictable by their nature.

Full snapshots of all data for a queue manager can be taken to provide a backup
of that queue manager at a particular point.

Disaster recovery techniques cannot usually assure the most up-to-date
information is available after a failure. The action of backing up the data is not
generally performed synchronously as it is written due to the performance costs
of doing so.

WebSphere MQ V6.0 provides some facilities to allow a remote copy of a queue
manager to exist at a geographically remote location based on a snapshot of a
queue manager. Actions on the data of the original queue manager, as logged by
the original queue manager, can be transferred to the remote location in
segments as each segment is finished with by the queue manager. This can be
performed manually or using third-party products.

These actions can then be replayed by the remote copy of the queue manager to
make it a more recent reflection of the original queue manager. This can allow
the most recently backed up and transferred data to become more quickly
available after a disastrous outage. However, the asynchronous nature of
performing backups over long distances is unlikely to make the exact data from
the time of the failure available.

 Chapter 3. Facilities for message queuing provided by WebSphere MQ 47

3.7 Monitoring and accounting
WebSphere MQ V6.0 introduces new functionality to enable you to gather
performance monitoring and accounting information.

This section provides a high-level overview of the features provided. Refer to
Monitoring WebSphere MQ, SC34-6593, for details about these features, their
purpose, and use.

3.7.1 Performance monitoring
WebSphere MQ V6.0 can provide real-time performance information about the
flow of messages through queues hosted by a queue manager and the flow of
messages across channels between queue managers.

You can also generate summary reports regular intervals, containing statistics
about the usage of queues hosted by the queue manager or channels
connecting queue managers.

3.7.2 Accounting
WebSphere MQ V6.0 can generate reports about the usage of a queue manager
for each application that connects to a queue manager. These reports are
generated as each application disconnects, or at regular intervals for longer
running applications.

The reports are designed to provide enough information to identify the
application or the entity that invoked that application. Enough information is
contained about the actions performed by that application to analyze its
individual performance or to determine charging based on those actions.

3.7.3 Trace-route messaging
WebSphere MQ V6.0 provides facilities to identify the route that messages take
through a WebSphere MQ infrastructure or interconnected WebSphere MQ
infrastructures.

48 WebSphere MQ V6 Fundamentals

Chapter 4. Designing applications that
access a WebSphere MQ
infrastructure

This chapter describes how applications can be designed to build on the facilities
provided by a WebSphere MQ infrastructure to provide and access the services
of a system. It introduces the fundamental concepts of point-to-point and
publish/subscribe messaging in WebSphere MQ and describes the available
application programming interfaces (APIs).

We discuss the following topics:

� Cross-platform support

� Application programming interfaces (APIs)

� WebSphere MQ messages

� Interacting with a WebSphere MQ infrastructure

� Units of work and transactions

� Point-to-point messaging with WebSphere MQ

� Publish/subscribe messaging

4

© Copyright IBM Corp. 2005. All rights reserved. 49

4.1 Cross-platform support
The queue managers that form a WebSphere MQ infrastructure, and the
applications that access that infrastructure, can be hosted on a wide variety of
different hardware types and operating systems. The combination of a particular
hardware type and a particular operating system is called a platform.

See the following Web page for information about the platforms supported by
IBM for hosting queue managers:

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

This Web page provides a statement of environment (SOE) for each platform on
which WebSphere MQ is supported by IBM. The SOE provides details about the
levels supported for each software component with which WebSphere MQ can
interact and any maintenance required by WebSphere MQ for those software
components. On some platforms, the supported version of WebSphere MQ might
not be the latest version.

Additional platforms, which are not listed and not supported by IBM, might be
supported by IBM Business Partners.

A queue manager does not need to be hosted on the same hardware server as
the applications that connect to that queue manager. When a queue manager is
hosted on a different hardware server, a WebSphere MQ client product is
required for the application to connect to the WebSphere MQ queue manager.
WebSphere MQ client products might be supported on additional platforms, by
IBM and IBM Business Partners, than those supported for hosting queue
managers.

4.2 Application programming interfaces (APIs)
In order for applications to connect to a queue manager and interact with the
WebSphere MQ infrastructure of which that queue manager is a part, an
application programming interface (API) is required.

4.2.1 The message queue interface (MQI)
The core API provided by WebSphere MQ is the message queue interface (MQI).

The MQI is a procedural API and as such is suitable for applications developed
within procedural programming languages. A procedural API is one in which the
context and data required by each function is passed to that function when it is

50 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

invoked. The application itself must track all context and provide areas in which
to store each item of data.

The MQI also defines all structures, constants, and basic data types required to
interact with WebSphere MQ. Manipulation of these structures and types must
be performed explicitly when developing applications using the MQI.

Applications developed using the following programming languages are likely to
use the MQI directly:

� C

� COBOL

The other APIs described in this section build on the flexibility of the MQI to
provide interfaces that enable a business to exploit the benefits of modern
programming languages and approaches.

4.2.2 APIs based on the WebSphere MQ object model
Object-orientated programming languages allow actions, states, and data to be
associated with the logical objects on which those actions are performed. Using
this approach when developing applications can allow the structure of
applications to more logically match their function.

WebSphere MQ provides object-oriented APIs for a number of object-oriented
programming languages. Although programming using these APIs differs among
individual programming languages, all of these interfaces conform to a single
design, called the WebSphere MQ object model.

These interfaces wrap the functionality and data structures provided by the MQI
in classes from which objects can be instantiated. Each class provides methods
that can be performed on the objects instantiated from that class. This allows an
application to focus more on the business logic being performed by the
application and less on manipulating and tracking context, maintaining data
structures, or allocating and de-allocating memory.

WebSphere MQ provides the following object-oriented APIs:

� WebSphere MQ C++:
WebSphere MQ C++ provides an API for the C++ language, which conforms
to the WebSphere MQ object model. Developing applications to access
WebSphere MQ using the C++ language allows use of an object-oriented
interface, while still allowing direct access to operating system and hardware
functionality using C functions if required. For more information about the C++
API, refer to WebSphere MQ Using C++,SC34-6592.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 51

� WebSphere MQ base Java API:
The WebSphere MQ base Java API provides an API for the base Java
language, which conforms to the WebSphere MQ object model. Developing
applications to access WebSphere MQ using the Java language allows
applications to gain from the portability between platforms provided by the
Java platform. The functionality provided within the Java platform can simplify
other aspects of an application. For more information about the Java API,
refer to WebSphere MQ Using Java, SC34-6591.

� WebSphere MQ classes for .NET:
The WebSphere MQ classes for .NET provide an API for the .NET
environment, which conforms to the WebSphere MQ object model. Microsoft
Windows applications can be developed using the WebSphere MQ classes
for .NET in multiple programming languages. For more information about the
.NET environment and the WebSphere MQ classes for .NET, refer to
WebSphere MQ Using .Net, GC34-6605.

� WebSphere MQ component object model (COM) interface:
The WebSphere MQ COM interface contains a set of Microsoft ActiveX®
components called the WebSphere MQ Automation Classes for ActiveX
(MQAX). The components of MQAX conform to the normal conventions
expected of an ActiveX component, as well as the WebSphere MQ object
model. For more information about COM and MQAX, refer to WebSphere MQ
for Windows V6.0, Using the Component Object Model Interface, SC34-6594.

4.2.3 Standardized APIs available for WebSphere MQ
As discussed in 3.2.7, “Standardized application programming interfaces (APIs)”
on page 31, using standardized APIs to access WebSphere MQ can provide
added flexibility.

Note: See 4.2.3, “Standardized APIs available for WebSphere MQ” on
page 52, for an alternative API for the Java language.

Note: See 4.2.3, “Standardized APIs available for WebSphere MQ” on
page 52, for an alternative API for the .NET environment.

52 WebSphere MQ V6 Fundamentals

Examples of standardized APIs that can be used to access a WebSphere MQ
message queuing infrastructure include:

� Java Message Service (JMS):
JMS is part of the Java 2, Platform Enterprise Edition (J2EE) standard.

JMS encapsulates both the point-to-point messaging model and the
publish/subscribe messaging model. As such, applications developed in
Java, using the JMS interface, can be independent of the broker that provides
the publish/subscribe capabilities to WebSphere MQ. This provides the
flexibility to upgrade the WebSphere MQ publish/subscribe broker without the
costly redevelopment of applications.

Applications using the JMS API are not required to build and issue
WebSphere MQ publish/subscribe commands when accessing the
publish/subscribe messaging capabilities.

JMS is an industry standard for messaging within the J2EE standard. J2EE
standardizes interfaces to a broad range of common functionality, of which
messaging using JMS is one.

The WebSphere MQ product is supplied with all of the tools required to allow
an application, which is developed to perform messaging with the JMS API, to
access a WebSphere MQ infrastructure. WebSphere MQ becomes a provider
of JMS to that application.

Applications accessing a WebSphere MQ infrastructure through a JMS
interface can be deployed in WebSphere Application Server. This enables the
application to benefit from the full functionality provided by the J2EE

Note: Standardized APIs can simplify the logic of applications through the use
of simplified and standardized messaging concepts and hiding implementation
details. The layer provided between the standardized API and the WebSphere
MQ infrastructure uses relevant functionality provided by WebSphere MQ to
implement the functionality provided by the standardized API.

Access to the full range of functionality provided by a WebSphere MQ
infrastructure might require the use of a WebSphere MQ proprietary API.

Note: The messages placed in a WebSphere MQ infrastructure using the
JMS API by default have some additional meta information attached to
them. This information enables a remote application to receive those
messages through the JMS API. This information can be disabled for
interoperability with applications using other APIs to access a WebSphere
MQ infrastructure.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 53

standard, as well as the deployment and scalability functionality provided by
WebSphere Application Server.

The embedded JMS supplied with WebSphere Application Server V5 is
based on the WebSphere MQ V5.3 product. WebSphere Application Server
V6 provides a new JMS messaging provider called WebSphere Platform
Messaging. WebSphere MQ can be configured as the JMS provider for
WebSphere Application Server V6. A WebSphere Platform Messaging
infrastructure can be interconnected with a WebSphere MQ infrastructure.

When implementing a new application in Java, performing point-to-point or
publish/subscribe messaging, consider the use JMS to interface with
WebSphere MQ.

Java, JMS, J2EE, and WebSphere Application Server are significant topics in
their own right.

� IBM Message Service Client (XMS):
XMS is a messaging API for the C and C++ programming languages and the
.NET environment. XMS provides a very similar approach to messaging as is
used by the JMS API, and thus benefits from the industry standardization that
the JMS API has achieved.

XMS encapsulates both the point-to-point messaging model and the
publish/subscribe messaging model. Applications developed in C, C++, or
within the .NET environment using the XMS interface can be independent of
the broker that provides the publish/subscribe capabilities to WebSphere MQ.
This provides the flexibility to upgrade the WebSphere MQ publish/subscribe
broker without the costly redevelopment of applications.

Applications using the XMS API are not required to build and issue
WebSphere MQ publish/subscribe commands when accessing the
publish/subscribe messaging capabilities.

The messages placed into a WebSphere MQ infrastructure by applications
using an XMS API can be accessed by applications using the JMS API to
interact with the WebSphere MQ infrastructure.

Currently, the tools required to facilitate development of an application using
the XMS interface and to allow that application to perform messaging across
a WebSphere MQ message queuing infrastructure are provided in
SupportPac IA94. See the following Web page for more information:

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24007092&loc=en_US&cs=
utf-8&lang=en

Note: SupportPac IA94 is currently Category 2. Therefore, support is not
available for this SupportPac through IBM product service channels. See
the Web page for more detailed information.

54 WebSphere MQ V6 Fundamentals

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24007092&loc=en_US&cs=utf-8&lang=en

When implementing a new application in C, C++, or within the .NET
environment, performing point-to-point or publish/subscribe messaging,
consider using XMS to interface with WebSphere MQ.

4.2.4 Custom adapters
If WebSphere MQ does not provide an interface into a particular programming
language or software infrastructure component that is required for an application,
a custom adapter can be developed.

A custom adapter provides an interface between one of the previously described
APIs, such as MQI, and the programming language or software infrastructure
component within which the application has been developed.

A custom adapter is a general example of a proxy, taking an existing interface
into a service and extending it to benefit from the capabilities of the WebSphere
MQ message queuing infrastructure.

An example of such a custom adapter is SupportPac MA89 Perl language
support for MQSeries®. This custom adapter provides an interface between
WebSphere MQ and the Perl programming language. See the following Web
page for more information about SupportPac MA89:

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000208&loc=en_US&cs=utf-
8&lang=en

4.3 WebSphere MQ messages
The messages sent through a WebSphere MQ infrastructure can contain data of
many forms, as per the individual requirements of the applications that access
that infrastructure.

In order for processing of an individual message to be performed, information is
required about the message, which is not part of the message data itself, for
example, whether the message requires a reply to be generated by an
application processing that message.

4.3.1 The message descriptor
Every message that passes through a WebSphere MQ infrastructure has a
message descriptor associated with that message.

Note: SupportPac MA89 is Category 4. It is provided by a third-party supplier,
not from IBM. See the Web page for more detailed information.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 55

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000208&loc=en_US&cs=utf-8&lang=en

The message descriptor contains the meta information about the message. This
information describes the message, but does not constitute part of the data that
the message contains.

Some of this information is specified by the application that sends the message,
and some is generated and updated automatically by WebSphere MQ as the
message passes through the message queuing infrastructure. All of the
information is available to the application that receives the message.

Examples of this meta information, which we discuss throughout the rest of this
chapter, include:

� A uniquely generated, or custom, identity for the message
� The type of message, which determines whether a reply is required
� Details of where to send any replies to the message
� Whether this message has a limited life, called an expiry interval
� Information about how the message was produced, when, and by whom
� Information about the representation of data in the message body

4.3.2 Data conversion
The individual machines that host the queue managers of a WebSphere MQ
infrastructure can represent characters and numbers in different ways. Different
byte values can be used to represent a particular character and to represent a
particular number.

Each individual queue manager, running on a particular machine, has an
understanding of the way character and numeric data is stored on that machine.
This means that it can perform data conversion to convert data in other
representations to a representation understood by the applications running on
that machine.

WebSphere MQ can be configured to perform this in two ways:

� As the message passes through the WebSphere MQ infrastructure, data
conversion can be performed each time the message reaches a new queue
manager over a channel. This can be inefficient, because the message might
pass through multiple queue managers before reaching its destination.

� When an application receives a message, it can specify that it wants data
conversion to be performed. This data conversion is performed in the local
representation used by the machine on which that application is running, or
the application can request a specific representation. This is the
recommended method.

56 WebSphere MQ V6 Fundamentals

4.3.3 Message formats
In order for a queue manager to be able to perform this data conversion for
messages, it must be told about the data contained within that message. This is
specified by the application that sends the message by setting a message format
in the message descriptor. If this is not specified, WebSphere MQ treats the
message body as binary, and no data conversion can be performed.

The message format specifies one type of data.

Often messages contain only character data, because character data can be
used to represent both numbers and characters. For example, the Extensible
Markup Language (XML) can be used by applications sending and receiving
messages to provide a consistent structure for messages. XML messages
represent all the data they contain using characters, so WebSphere MQ can
perform character data conversion on the whole of those messages.

WebSphere MQ also allows messages to be structured in flexible ways,
containing combinations of binary, character, and numeric data, as well as
containing extra meta information that is understood by WebSphere MQ to
describe the structure of the data.

4.3.4 Chaining portions of a message together
Flexibility is gained by chaining together portions of the message in a way
understood by the data conversion algorithms of queue managers. Each portion
has a length, and the length of all of the portions totals the full length of the
message.

The format of each portion and information about its original representation are
specified by the previous portion of the message. The first portion of the
message is identified by fields in the message descriptor. For messages
containing only character or binary data, the message descriptor specifies the
details of the whole message.

The following points summarize the types of portions:

� One that can be considered as all one type of data by WebSphere MQ:
Data that can be considered by WebSphere MQ to be of all one type is
categorized as follows:

– Binary data: WebSphere MQ does not perform data conversion.

– Character data: WebSphere MQ can perform character data conversion.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 57

� A WebSphere MQ structure:
These structures can contain multiple different types of data, and some of
these structures contain extra meta information about the message. These
structures can be automatically added to, and removed from, messages by
WebSphere MQ as they pass through the WebSphere MQ infrastructure.

Where another portion of the message is allowed after the structure, the
structure contains enough information to specify the details of that portion.
This is a subset of the information contained in the message descriptor.

Some examples of such structures include:

– The transmission queue header and dead letter queue header:
These are added to a message automatically by a queue manager, in
circumstances described later in this book. It is not usual for an application
to add these structures to a message themselves, but it is useful to know
that these structures might be added to a message when looking at a
message on a queue within a queue manager.

– The rules and formatting header, and rules and formatting header 2:
These can be used by applications to describe the contents of a message
containing multiple different types of data, such as combinations of
character and numeric data. Chaining together multiple portions of a
message using these structures can be useful in allowing data conversion
to occur differently for the different portions of the message.

� A WebSphere MQ command:
Some messages are sent to WebSphere MQ components to perform actions.
Examples include the WebSphere MQ publish/subscribe broker and the
WebSphere MQ command server, discussed later in this book. WebSphere
MQ defines the structure of the messages that contain these commands.

4.4 Interacting with a WebSphere MQ infrastructure
Using any of the APIs discussed, applications connect to a queue manager in
order to access a WebSphere MQ infrastructure.

Note: Messages placed into a WebSphere MQ infrastructure using
standardized APIs, such as the Java Message Service (JMS), often
have rules and formatting headers added to them automatically to
contain the extra meta information required by the standardized API.

Note: Using standardized APIs, such as JMS, to perform publish/subscribe
messaging can remove the requirement to generate and issue commands
to the WebSphere MQ publish/subscribe broker.

58 WebSphere MQ V6 Fundamentals

Applications can connect to a queue manager hosted on the same machine on
which they are running. This is the most efficient connection method to a queue
manager and is called a bindings connection to the queue manager.

Applications can also connect to a queue manager hosted on a different machine
using a client connection over a network. There is a performance effect of
operating a connection as a client, and the remote queue manager must be
available in order for the connection to succeed. However, a WebSphere MQ
server installation is not required on the machine where the client is hosted.

4.4.1 WebSphere MQ client products
A smaller amount of WebSphere MQ software is required on a machine that
hosts applications connecting to a WebSphere MQ infrastructure as clients to a
queue manager.

4.4.2 Core facilities provided to a WebSphere MQ application
The following list provides a summary of the core facilities provided to an
application that connects to a WebSphere MQ infrastructure through an
individual queue manager:

� An application can retrieve messages from queues hosted on that queue
manager in order to process those messages and perform processing, for
example, to host a service with a request/reply, or send and forget, interface
on a queue.

� It can gain an identity within the infrastructure based on a queue on the queue
manager to which it is connected. This identity is provided to other
applications in order for them to send messages to this application. In
point-to-point messaging with WebSphere MQ, this is called a reply-to queue,
or response queue. This identity can exist beyond the life of the application if
required, and multiple applications can share the same queue by retrieving
only messages designated for that application, using a correlation identifier.
We discuss the options for gaining this identity in 4.6.14, “Reply-to queue
considerations” on page 75.

Note: Some WebSphere MQ client products are available as SupportPacs,
and some are supplied on the distribution media for a WebSphere MQ server
installation.

WebSphere MQ server licenses are currently not required for machines that
have only a WebSphere MQ client installation.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 59

� An application can send messages to queues anywhere within the
infrastructure, as long as the queue manager to which it is connected has
been configured to have knowledge of that destination.

Destination queues can be hosted on the same queue manager for
asynchronous intercommunication with other applications connected to that
queue manager.

The infrastructure can be configured to route messages based only on the
name of the queue. This is recommended when sending a message to a
service so that the infrastructure can be reconfigured without affecting the
interface into that service.

An application can specify a unique destination queue within the
infrastructure based on the queue name and queue manager name. This is
used when generating replies, or reports, in response to a request for a
service from an application.

In either case, the queue manager to which the application is connected must
have knowledge of how to route messages to that destination queue. An
individual decision is made by each queue manager on route to the final
destination using a process called queue name resolution, so a queue
manager only requires knowledge of the next step on route to the destination.

The knowledge of routes to queues and queue managers, held by each
queue manager, can be configured using WebSphere MQ queue objects
defined on that queue manager. Queue manager clusters allow a queue
manager to have automatic knowledge of other routes to queues and queue
managers within the infrastructure, as well as performing workload balancing
across multiple queues shared within the cluster with the same name.

For a further discussion of queue name resolution and the technical
configuration of queue managers that control queue name resolution, see
6.2.1, “Queue name resolution” on page 134.

� An application can access the publish/subscribe functionality provided by the
infrastructure to publish messages and subscribe to topics.

When using WebSphere MQ publish/subscribe directly, commands are sent
to a request/reply interface provided by a WebSphere MQ publish/subscribe
broker in the infrastructure. This allows an application to register as a
subscriber on a topic, or publish messages on a topic, and issue other
commands against the broker.

Subscriptions are received onto a queue hosted on the queue manager to
which the application is connected in a similar way that replies are received
from a request/reply interface.

For more information about WebSphere MQ publish/subscribe and extending
the publish/subscribe capabilities of a WebSphere MQ infrastructure, see 4.7,
“Publish/subscribe messaging” on page 78.

60 WebSphere MQ V6 Fundamentals

4.5 Units of work and transactions
Units of work allow multiple actions performed by an application to be grouped
together so that any individual action within that unit of work can only complete
successfully if all actions within that unit of work complete successfully.

The basic construct that allows actions within a unit of work to complete or fail as
a group is a transaction. The terms transaction and unit of work are often used
interchangeably.

WebSphere MQ provides transactions that allow multiple operations on
messages to complete, or fail, within a unit of work. Two basic actions can be
performed on messages in WebSphere MQ:

� A message can be placed on a queue. This occurs as the first action
performed by an application sending a message through the message
queuing infrastructure and each time a message is placed on a transmission,
or final destination, queue by a message channel.

This action is called putting a message to a queue, or a put.
� A message can be received from a queue by an application, or by a message

channel transferring a message from a transmission queue over a
communication link.

This action is called getting a message from a queue, or a get.

4.5.1 Local units of work
By default, a unit of work can only contain the WebSphere MQ put and get
actions. The unit of work is begun automatically by WebSphere MQ, and the
transaction is created automatically by WebSphere MQ. The unit of work is said
to be local to WebSphere MQ.

The transaction that controls a local unit of work is coordinated by WebSphere
MQ, because WebSphere MQ owns the transaction that controls the unit of work.

Note: Using a standardized API, as described in 4.2.3, “Standardized APIs
available for WebSphere MQ” on page 52, can simplify the interface for the
WebSphere MQ publish/subscribe.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 61

4.5.2 Syncpoint
The automatic creation of local units of work occurs the first time a put or get is
performed by an application, provided that WebSphere MQ is told to perform that
action under syncpoint.

Under syncpoint means that a put or get should be contained within the current
unit of work. All subsequent actions performed under syncpoint, which can be on
a variety of queues, continue to be part of that unit of work until the unit of work
ends.

4.5.3 Commit and back out
A local unit of work can end in three circumstances:

� The application chooses to commit the unit of work. This means that all
actions within that unit of work should be completed. The application is
informed by WebSphere MQ whether the action of committing a unit of work
was successful or not.

� The application chooses to back out the unit of work. This means that all
actions within that unit of work are undone so that each message returns to
the queue from which a get was performed in that unit of work, or a message
never arrives on the queue to which a put was performed within that unit of
work.

� The application disconnects from WebSphere MQ. If this disconnection is
performed in a controlled way by the application, a local unit of work is
committed by WebSphere MQ on behalf of the application and the application
is informed if this commit fails. However, if the application terminates without
disconnecting from WebSphere MQ in a controlled way, on detection of this
termination, WebSphere MQ backs out any in progress unit of work for that
application.

4.5.4 Uncommitted messages
When messages are put to a queue within a unit of work (under syncpoint), these
messages are not available for other applications, or the application that put the
message, to get from that queue until the unit of work has been committed. If a
unit of work is backed out, any messages put to queues within that unit of work
are never made available for other applications to get.

When messages are got from a queue within a unit of work (under syncpoint),
these messages are made unavailable to other applications as soon as the get
action completes. Therefore, two applications cannot get the same message
from a queue. However, messages got from a queue within a unit of work are not
actually removed from that queue until the unit of work is committed. If a unit of

62 WebSphere MQ V6 Fundamentals

work is backed out, any messages got from queues within that unit of work are
made available for all applications to get from the queue again. Therefore, if the
same application retries a get within a subsequent unit of work, it might get the
same message.

Messages that have been put to a queue within a unit of work that has not yet
been committed or backed out, or messages which that been got from a queue
within a unit of work that has not yet been committed or backed out, are called
uncommitted messages.

Only one unit of work can be in progress at any time for a single connection from
an application to a queue manager. However, an application can maintain
multiple connections to a queue manager by using different threads within that
application. A thread is a facility provided by an operating system or Java Virtual
Machine (JVM™) to allow multiple actions to be performed concurrently by an
application.

4.5.5 Global units of work
One of the most powerful features of a unit of work is that it can contain actions
performed against multiple resources, not only WebSphere MQ. The most
common example of such a resource is a database.

One common set of actions that can be performed by a service within a system
is:

1. Get a request message from a queue.

2. Perform database queries and database updates based on that request.

3. Send messages to other services within the system to perform additional
processing of the request.

4. Send a reply message back to the requesting application.

If the application providing the service fails abruptly, for example, after step 2 in
the previous example, the consistency of the system might be dependent on all
actions within the unit of work being backed out. If these actions are contained in
a global unit of work, a failure at any stage can be resolved by backing out the
unit of work. The original request message then returns to the queue for
processing as though it had not been retrieved from the queue at all.

Units of work that include WebSphere MQ actions and actions on other
resources are called global units of work.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 63

4.5.6 Coordination of global units of work
The transaction that controls a global unit of work is coordinated by a transaction
manager, which must be able to communicate with all participants within that unit
of work. The participants within a global unit of work are called resource
managers. In the previous example, WebSphere MQ and the database are the
resource managers participating in the global unit of work.

WebSphere MQ can act as the transaction manager coordinating global units of
work that include database products as resource managers.

When an application needs to begin a global unit of work, it must inform the
transaction manager for that unit of work. This includes informing WebSphere
MQ to begin a global unit of work. This is because the transaction manager does
not know when the first action within a global unit of work has been performed by
the application. For example, the first action in a global unit of work coordinated
by WebSphere MQ might be an update to a database.

WebSphere MQ can also act as a resource manager within global units of work
which are coordinated by external transaction managers. Examples of such
transaction managers are IBM CICS®, TXSeries® and WebSphere Application
Server.

For information about configuring WebSphere MQ as a transaction manager, or
resource manager, within global units of work, refer to Chapter 9, “Configuring
WebSphere MQ,” in WebSphere MQ System Administration Guide, SC34-6584.

4.5.7 Two-phase commit
Coordination must be performed between all of the participants within a global
unit of work to allow any resource manager to report a failure at any time. The
most important form of coordination is called two-phase commit.

The two-phase commit process consists of the following two steps:

1. Prepare:
All resource managers participating in a global unit of work are queried by the
transaction manager to ensure that they are able to commit the unit of work.
After a resource manager has successfully completed the prepare phase, it

Note: IBM only supports the operation of WebSphere MQ as a transaction
manager with certain resource managers. Equally, IBM only supports the
operation of WebSphere MQ as a resource manager with certain transaction
managers. See the following Web page for details:

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

64 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

can no longer signify that a unit of work must be backed out. From that point,
only the transaction manager can back out the unit of work. Therefore, a
resource manager must retain knowledge of a prepared unit of work
indefinitely until the transaction manager tells it to commit or back out that unit
of work.

2. Commit:
If the prepare phase completed successfully for all resource managers, the
transaction manager informs all resource managers to commit the unit of
work.

4.5.8 The XA specification
The Open Group publishes the XA Specification. This defines the interactions
that can occur between a transaction manager and resource managers.
WebSphere MQ conforms to this specification. See the following Web page for
more information or to download the XA Specification:

http://www.opengroup.org/bookstore/catalog/c193.htm

4.5.9 The extended transactional client
WebSphere MQ allows applications that connect to a queue manager to be
remote to that queue manager by connecting as a client to that queue manager
over a network.

However, during the coordination of global units of work, all resource managers
being controlled by a transaction manager must reside on the same machine as
the transaction manager itself.

Because of this, an application using a standard client product to connect to a
queue manager cannot include WebSphere MQ actions within global units of
work.

WebSphere MQ provides a product called the extended transactional client. This
product enables applications that connect to a remote queue manager to include
WebSphere MQ actions within global units of work.

In these circumstances, WebSphere MQ cannot act as the transaction manager
for the global unit of work, because only a queue manager can coordinate global
units of work within WebSphere MQ. However, WebSphere MQ can act as a

Note: This product is not supplied under the same terms as the WebSphere
MQ client installation. See the following Web page for more information:

http://www.ibm.com/software/integration/wmq/transclient.html

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 65

http://www.opengroup.org/bookstore/catalog/c193.htm
http://www.ibm.com/software/integration/wmq/transclient.html

resource manager within that global unit of work. For example, the application
can participate in global units of work coordinated by WebSphere Application
Server.

4.5.10 Failure handling and tolerance
By performing WebSphere MQ actions within a unit of work (under syncpoint)
and then committing those actions only when related processing has been
completed successfully by an application, that application can become tolerant to
failures.

If an application providing a service experiences problems while performing
processing on a message, it can back out the current unit of work and return that
message to a queue. That message then becomes available for processing
again by that same application or another application waiting for messages on
the same queue.

If an application needs to put and get a number of messages as part of a
particular piece of processing, containing those separate actions within a unit of
work means that each individual action only completes if the whole unit of work is
committed successfully. If the application experiences a problem at any point
during its processing, it can inform WebSphere MQ to back out the current unit of
work.

If an application experiences an abrupt failure while performing processing on a
message, and WebSphere MQ is coordinating a unit of work for that application,
WebSphere MQ automatically backs out the unit of work when it detects the
failure of the application, returning the message to the queue.

Note: Some actions performed by an application cannot be included within a
global unit of work, for example, updating a file on the file system or sending
an e-mail to an administrator. An application developer needs to consider that
WebSphere MQ is not able to back out these actions if an abrupt termination
of the application occurs.

66 WebSphere MQ V6 Fundamentals

4.6 Point-to-point messaging with WebSphere MQ
The core point-to-point messaging capabilities, including the exactly once
delivery assurance provided by WebSphere MQ when using persistent
messages, allow reliable performance of point-to-point messaging to occur
between applications that access a WebSphere MQ infrastructure.

This section expands on the facilities provided for send and forget and
request/reply point-to-point messaging by a WebSphere MQ infrastructure. This
includes a design-level view of how services are provided and accessed by
applications.

4.6.1 Retrieving messages from queues
Applications retrieve messages from the queues hosted by the queue manager
to which they are connected.

When retrieving messages, an application can specify that it has exclusive
access to all messages that arrive on a certain queue, or multiple applications
might wait for messages to arrive on the same queue.

When retrieving messages from a queue, applications can browse the messages
on a queue without removing them and without making them unavailable for
applications.

Note: WebSphere MQ can only detect the failure of a whole process, not
threads within that process. This means that if a single thread terminates
unexpectedly, an in progress unit of work for that thread is not resolved by
WebSphere MQ until the process ends.

An example of such a process is a Java Virtual Machine (JVM) within a J2EE
application server. If the application server detects a failure in an application it
hosts and terminates that application, which is running as a Java thread within
the virtual machine, WebSphere MQ does not detect termination of that thread
until the whole JVM ends. However, J2EE application servers provide
transaction management support, which might be able to account for these
circumstances. WebSphere MQ can be configured as a resource manager for
units of work coordinated by some J2EE application servers, such as
WebSphere Application Server, as described in 4.5.5, “Global units of work”
on page 63.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 67

Alternatively, they can destructively get messages from the queue, making them
unavailable to other applications. WebSphere MQ ensures that no two
applications can successfully get the same message.

Applications can choose to wait for messages to become available on the queue
for a specified period of time, or indefinitely, to browse or get available messages
as they arrive.

Applications can qualify that they only want to retrieve messages with certain
identity information, or match options. This is usually a correlation identifier,
which can be used by applications to link a message to a single application on a
queue shared by multiple applications.

4.6.2 Hosting services on queues
An application can provide a queue as an interface into the service it provides by
retrieving messages from that queue when they arrive and processing them
individually.

Any number of applications connected to the message queuing infrastructure
can submit requests to a service hosted on a queue without knowing the
availability of the service when sending the message. These requests are
buffered in the queue in the order in which they are received onto that queue and
can be processed in turn by the service. This is called first-in first-out (FIFO).

A priority can be associated with each message, and WebSphere MQ retrieves
messages with a higher priority when getting a message before messages with a
lower priority. This facility can be used to provide different qualities of service to
different applications requesting a service.

Multiple instances of an application providing a service might wait for messages
on the same queue, because for some services, it is more efficient for a number
of requests to be processed in parallel. These applications can be hosted on the
same machine as the queue manager, or connect to the queue manager from
remote machines as clients. Adding more instances of applications providing a
service can allow the capacity and performance of a service to be increased.

By using only a queue name, and not a specific queue manager name, when
sending messages to a service, the configuration of the infrastructure can be
changed without affecting applications requesting a service. For example, the
infrastructure can be changed to use the facilities of queue manager clusters and
provide multiple instances of the same service on queues of the same name on
different queue managers, thus on different machines.

The queue managers to which applications accessing the service are connected
then workload balance their requests to all available instances of the service.

68 WebSphere MQ V6 Fundamentals

After completing the processing of a message, the service can generate replies
on the request of an application accessing that service, or generate a report,
depending on the outcome of the processing. We discuss this in 4.6.15,
“Processing of messages by a service” on page 77.

4.6.3 Backout queues and backout counts
If the processing of a message fails, consistent action should be taken. One
option is to move the message to a different queue for special attention, possibly
adding extra information to the message based on the nature of the failure.

WebSphere MQ allows queues from which messages are retrieved to identify a
backout queue. An application can check the name of this queue and use this as
the destination of messages for which processing fails.

Some failures might not be permanent, and retrying the processing might be
appropriate. If an application gets a message within a unit of work and then
backs out that unit of work, or fails while processing, WebSphere MQ increases a
backout count within the message descriptor of that message.

Applications can check this backout count when retrieving messages from the
queue in order to determine whether that message should be processed or sent
to the backout queue.

A backout threshold can also be specified on a queue to determine how many
times processing of a particular message should be attempted.

4.6.4 Event-driven services
An application providing a service can efficiently wait for messages to arrive on a
queue indefinitely using WebSphere MQ, without placing undue loads on the
infrastructure.

This allows services to be driven by events that occur within the system, or from
external interactions with the system by users. These services can react to
external actions quickly and effectively; a service can process events as they
occur, rather than periodically checking whether events have occurred.

It might not be desirable for an application providing a service to be inactive for
long periods of time while waiting for messages to arrive, for example, due to the
resources used by that application while idle.

Note: WebSphere MQ does not move messages to a backout queue
automatically.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 69

WebSphere MQ provides a triggering mechanism to allow these applications to
be started automatically when messages become available on a queue. The
application can then process all messages on the queue before exiting.
Alternatively, an application can process all currently available messages and
then wait for messages to arrive for a short period before exiting.

WebSphere MQ also allows triggering to occur when a certain number of
messages have arrived on a queue, or for every message that arrives on a
queue. This allows for batch processing of messages and simple applications
that are designed to process a single message each time they run.

4.6.5 Send and forget messaging
Each message sent by an application only needs to be transferred to a queue
hosted by the queue manager to which it is connected before the application can
continue processing. This enables the application to begin processing quickly
after producing each message, especially if it is using a bindings connection to
the queue manager, rather than connecting as a client over a network.

Queue name resolution occurs based on the knowledge of the WebSphere MQ
infrastructure held by the queue manager to which the application is connected
to determine whether the message can be sent. If this is successful, the
message is delivered to a queue. If the destination queue is determined to be
local, it is delivered directly. Otherwise, it is placed on an intermediate queue,
called a transmission queue, to be transferred to another queue manager in the
infrastructure.

When placing a message on the transmission queue, the queue manager adds
enough information to allow queue name resolution to occur again when the
message reaches the next queue manager. That queue manager can host the
queue itself, or perform the same steps to pass the message to the next queue
manager on route to the destination.

This asynchronous messaging has the benefit of allowing the application to
continue performing business logic, while WebSphere MQ performs the
communication required to deliver each message to the destination queue.

Note: We provide the details of how to implement a WebSphere MQ
infrastructure, how the knowledge of a queue manager is configured using
WebSphere MQ objects, how this is affected by queue manager clusters, and
how message transmission occurs over channels in the subsequent chapters
of this book.

70 WebSphere MQ V6 Fundamentals

If the application connects to the service directly, for example, by using a direct
communications protocol, the operation is synchronous: The application needs
to wait for the service to be available and ready to accept the information,
connect to it, send the information, and then confirm the information has arrived
before it continues processing.

When an application sends a message, it can choose the persistence of that
message. If it does not do so, the queue manager sets an appropriate default
based on the configuration of the WebSphere MQ queue objects used during
queue name resolution.

A message that contains a request for an action from an application providing a
service, but does not require a reply, is marked as a datagram in WebSphere
MQ. Applications can use services by sending datagrams to queues that provide
interfaces into those services.

4.6.6 Distribution lists
An application can send the same message to multiple destinations using a
single WebSphere MQ operation with distribution lists. If multiple destinations
specified in a distribution list are reached from a queue manager by transferring
the message over the same channel to an intermediate queue manager or the
destination queue manager, the message is only sent once.

4.6.7 Segmentation of messages
The maximum length of an individual message allowed in a WebSphere MQ
infrastructure is 100 MB. However, by default, queues do not accept messages
larger than 4 MB.

Messages that are larger than 100 MB, or larger than 4 MB where a queue that a
message passes through on route to its destination is not configured to accept
messages of a larger size, can be broken into smaller segments.

Segmentation when sending messages and reassembly of the whole message
when receiving messages can be performed manually by an application or
automatically by a queue manager.

Note: This is functionality is not available in WebSphere MQ for z/OS. Refer to
WebSphere MQ Application Programming Guide, SC34-6595, for more
information.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 71

4.6.8 Logical grouping of messages
WebSphere MQ cannot, under certain circumstances, assure the ordering in
which messages arrive on a queue to be processed, or which messages are
retrieved from a queue by which applications. Messages are usually delivered in
the order in which they are sent, but this can be affected by a failure in
transmission of a message over a channel, multiple applications getting
messages from the same queue, and units of work.

An application can mark messages as being logically grouped together. The
messages within a group are numbered to allow applications to deliver these
messages in the order in which they were sent within the group. A queue
manager can automatically deliver messages within a group in the order they
were sent. The individual messages within a group can be segmented if required,
and WebSphere MQ does not require any relationship between the contents of
the messages.

4.6.9 Reports
Some messages are sent to signify that an event has occurred, for example, in
response to an unexpected event while processing a datagram message. These
messages are marked as a report in WebSphere MQ, and the message
descriptor for these messages contains a feedback field to identify the reason for
the report.

If a service receives a datagram, but experiences a failure while processing that
request, there are a number of possible actions that can be performed by the
service at this stage. One of these is to generate a report message and send it
back to the originator of the datagram, or send it to another queue for special
processing.

An application can explicitly request that a service generates a report message
only in the event of a failure, or only in the event of a success. WebSphere MQ
passes this request to the service within a field of the message descriptor, and
that service can be implemented to return a report in those circumstances.

Note: This is functionality is not available in WebSphere MQ for z/OS. Refer to
WebSphere MQ Application Programming Guide, SC34-6595, for more
information.

72 WebSphere MQ V6 Fundamentals

4.6.10 Confirmation of arrival and confirmation of delivery reports
WebSphere MQ queue managers can also automatically generate reports in the
following circumstances:

� Confirm on arrival (COA):
A message arrives on its target queue on the target queue manager.

� Confirm on delivery (COD):
A message is retrieved from its target queue by an application.

These are delivered to the destination specified by the application sending the
message. This application does so using the same mechanism as used for
request/reply messaging.

4.6.11 Synchronous request/reply messaging
The actions of sending a request message and waiting for a reply message in
WebSphere MQ are separate asynchronous actions. If required by an
application, these two actions can be joined together into a synchronous
operation.

The action of sending a request is the same as the action of sending a datagram,
but the application must provide some additional information to allow it to receive
the reply.

The application provides a reply-to queue, on which it waits for replies in
response to its requests. This reply-to queue can be unique to the application, or
shared between multiple applications. We discuss this in 4.6.14, “Reply-to queue
considerations” on page 75. The name of this queue is specified in the message
descriptor of the request.

A reply-to queue manager name can also be specified in the message
descriptor. However, this is filled in automatically by WebSphere MQ as the name
of the queue manager to which an application is connected.

A message that contains a request for an action from a service and requires a
reply to be returned to the requesting application is marked as a request in
WebSphere MQ.

A message that contains a reply from a service in response to a request
message from an application is marked as a reply in WebSphere MQ.

4.6.12 Partially synchronous request/reply messaging
The separation of generating a request and waiting for a reply into two separate
asynchronous actions can add flexibility to the requesting application.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 73

The application might not check for a reply immediately. Instead, it might perform
other processing that is not dependent on the reply and then check for a reply
message at a later time. This can be used to reduce the time during which an
application is idle while waiting for a service to process a request. It can also
allow processing of the reply to be deferred until it is requested by a user, or
required for further processing by the application.

Some requests performed synchronously by an application can query data that is
already stored reliably within the system. For these requests, an application
might not want to wait indefinitely for a response from the service; it might
time out after a specified interval. The asynchronous nature of messaging with
WebSphere MQ makes it possible for an application to time out and discard a
request before the reply has been received.

In order to perform a timeout, an application can specify that it will wait for
messages to arrive on the reply-to queue for a particular wait interval. After this
time, WebSphere MQ returns to the application that no messages were available
on the reply-to queue, and the application can continue processing.

If required, an application can wait multiple times for messages to arrive on the
reply-to queue, performing processing between each attempt. An application can
also repeatedly check for messages arriving on the queue, specifying to
WebSphere MQ that is does not want to wait at all if no messages are available
in order to poll WebSphere MQ for a reply.

4.6.13 Message expiry
If an application implements a timeout, it should specify an expiry time in the
message descriptor of the request message. This expiry time is specified in
tenths of a second by the requesting application and is reduced by WebSphere
MQ to reflect the time it spends within the infrastructure. This includes time spent
on the destination queue before being processed by the service and time spent
on all intermediate queues. After the expiry time reaches zero, the message can
no longer be received by applications and is eligible to be discarded by the
infrastructure.

It is usual for a service to duplicate the current expiry time of the request
message in the message descriptor of the reply message. However, a service

Note: During the time between sending a request message to a service and
receiving a reply message, an application cannot determine the state of that
request. After performing a timeout, the actual state of a request must not
affect any later processing, because it might still complete successfully or
have already completed.

74 WebSphere MQ V6 Fundamentals

can be implemented to reset the expiry time to a preset value, or to never set an
expiry on reply messages.

An application can request to receive an expiry report, indicating when an
expired message has been discarded by the infrastructure.

4.6.14 Reply-to queue considerations
The reply-to queue, provided by an application that generates a request, is
hosted on the queue manager to which the requesting application is connected.

In a large system, many applications connected to the same queue manager can
be requesting a service. WebSphere MQ scales efficiently in these
circumstances and provides some design choices for the requesting applications
when providing a reply-to queue in a request message:

� Use a single reply-to queue for all requests for a service:
Each message in WebSphere MQ has a message identifier in its message
descriptor. WebSphere MQ can generate this message identifier to be unique
throughout the infrastructure.

The message descriptor also contains a correlation identifier, which can be
used by applications to correlate replies with requests.

When sending a reply message in response to a request, a service copies the
message descriptor from the request into the correlation identifier of the reply.
This allows the reply message to have a unique message identifier, while
allowing correlation between the reply message and the original request. An
application requesting a service can then wait for a message with the same
correlation identifier as the message identifier for the request it produced.

This approach can simplify administration and reduce loads on a queue
manager, because only one reply-to queue is required, and this queue is
manually defined. This approach can be used for persistent messages.

If an application terminates without receiving a reply to a request it generated,
and the reply does not have an expiry time, the message needs to be
removed or processed manually.

Note: WebSphere MQ does not discard messages from a queue immediately
when the expiry time reaches zero. Expired messages continue to contribute
to a queue’s depth until an application attempts to retrieve those messages.
An expiry report is not generated until this occurs.

In WebSphere MQ Version 6.0, a periodic check can be made of all queues
hosted by a queue manager to cause expired messages to be removed
automatically. This is enabled by default.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 75

This can cause the queue to grow, but if these messages contain
business-critical data, some action might need to be performed on messages
that enter this state. For example, the requesting application can keep a
record of its requests in order to recover after a failure.

� Use a temporary dynamic queue:
WebSphere MQ allows queues to be created dynamically by applications to
provide a unique identity for the application within the infrastructure. A
temporary dynamic queue only exists as long as a particular application
accesses it. Temporary dynamic queues are automatically removed from the
queue manager by WebSphere MQ when an application specifies that it has
finished processing related to that queue, or the application that made the
request terminates.

This approach is only suitable for query data contained in nonpersistent
messages. Temporary dynamic queues cannot contain persistent messages
for business-critical data because they are automatically removed from the
queue manager by WebSphere MQ when an application terminates, even if
this is due to a failure and the queue contains messages.

Using this approach, an application can wait for any message to arrive on the
temporary dynamic reply-to queue, rather than requiring a message with a
particular correlation identifier. This provides strong isolation between
individual applications accessing a service so that an application is less likely
to affect the replies sent to other applications through logic errors.

A small quantity of system resource is required for each temporary dynamic
queue that is created or removed.

� Use a permanent dynamic queue:
A permanent dynamic queue is created in the same circumstances as a
temporary dynamic queue and can be used in the same way. However, it is
not removed automatically from the queue manager by WebSphere MQ,
including when the requesting application terminates. Instead, the requesting
application must manually remove the queue from the queue manager after it
has completed processing.

This approach provides the same benefits as the use of temporary dynamic
queues, but is suitable for use where the reply from a service contains
business-critical data.

Note: WebSphere MQ is optimized for applications that wait for messages
with a particular correlation identifier. We do not recommend developing
applications that wait for a message with a particular message identifier.
This is not as efficient if a queue grows to contain a large number of
messages.

76 WebSphere MQ V6 Fundamentals

Similar to the use of a single reply-to queue, if an application terminates
without receiving the reply for a request it generated, the reply message and
the permanent dynamic queue remain until action is taken to process the
message and remove the queue.

4.6.15 Processing of messages by a service
The following steps illustrate an outline of actions of a service in order to provide
consistent processing of messages to generate replies and reports in response
to datagrams and request messages:

1. If global units of work are being used, begin the global unit of work.

2. Retrieve a message from a queue. It might be necessary to consider
message segmentation, or the order of logically grouped messages, when
doing this. If so, inform WebSphere MQ that the whole message must be
retrieved or that the messages within a group must be retrieved in order. Also,
consider whether data conversion is required; if so, request that it is
performed by the queue manager. Specify that the action is performed under
syncpoint if using a unit of work.

3. Check the type of the message, the format of the message, and the
requested report options in the message descriptor. If they do not match the
functionality provided by the service, perform a consistent action. This might
be to check whether a backout queue has been specified and put it to that
queue.

4. If units of work and backout queues are being used, the backout count can be
checked. If this is above the backout threshold for the queue, put the
message to the backout queue.

5. Perform business logic on this message in order to provide the requested
service. This can include interactions with other products, such as databases,
and sending messages to other services provided by the system.

6. Decide a result based on the outcome of the processing to determine whether
it completed successfully.

7. If a reply or a report is required based on the type of message received and
the outcome of the processing, generate a reply. The following steps provide
an overview of the normal steps involved:

a. Create the data for the reply message.

b. Create a message descriptor for the reply/report message, or use the
original message descriptor.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 77

c. Ensure that all of the fields in the message descriptor relating to the
content of the message, such as the message format and details of the
way data is represented, are set appropriately. Setting these to the
defaults causes WebSphere MQ to choose values appropriate to the local
representation of data.

d. Set the message type to either reply or report as appropriate.

e. Copy the message identifier from the original message descriptor into the
correlation identifier of the reply/report message descriptor.

f. Clear the message identifier in the reply/report message descriptor. This
causes WebSphere MQ to generate a new message identifier for the reply.

g. Choose whether to use the expiry time of the original message descriptor,
or reset this to a particular value.

h. If a report message is being generated, specify an appropriate feedback
code in the message descriptor of the report.

i. Ensure that the persistence and priority of the reply/report is the same as
the original message.

j. Send the reply/report message using the reply-to queue manager name
and reply-to queue name from the original message. Specify that the
action is performed under syncpoint if using a unit of work.

8. Commit any unit of work.

4.7 Publish/subscribe messaging
Providing publish/subscribe messaging capabilities requires a publish/subscribe
broker.

The publish/subscribe broker tracks subscriptions to individual topics and
provides the facilities for a publisher to publish messages on a given topic.

4.7.1 WebSphere MQ publish/subscribe broker
WebSphere MQ is supplied with an integrated broker, which builds on the core
capabilities of WebSphere MQ to provide the publish/subscribe capability.

Note: These actions can be contained in a unit of work. We
recommend this for persistent messages containing business-critical
data.

78 WebSphere MQ V6 Fundamentals

The WebSphere MQ publish/subscribe broker uses the message queuing
infrastructure of WebSphere MQ to accept and process commands, track
subscriptions, hold current state information, and as a delivery mechanism to
send publications to subscribers. By doing this, the broker inherits the exactly
once delivery assurance of WebSphere MQ.

Each queue manager can host a maximum of one broker, and this broker shares
the same name within the infrastructure as the queue manager that hosts it.
Brokers can be connected together in a broker network to allow applications
connected to one queue manager to receive publications made to a broker
hosted on another queue manager.

4.7.2 Interacting with the WebSphere MQ publish/subscribe broker
The WebSphere MQ publish/subscribe broker provides a set of commands that
can be sent to the broker using a request/reply interface. These commands
perform functions such as registering an application as a subscriber and
publishing a message on a particular topic

The request/reply interface of the broker for each queue manager is hosted on a
queue called the broker control queue.

Standardized APIs, such as the Java Message Service (JMS), can simplify the
interface into the broker by removing the requirement to generate and issue
these commands explicitly.

Note: The publish/subscribe broker was integrated into the WebSphere MQ
product in Fix Pack 8 for WebSphere MQ Version 5.3 and is included in
WebSphere MQ Version 6.0. Previously, it was supplied in SupportPac MA0C.

Note: We provide an outline of the functionality provided by the WebSphere
MQ publish/subscribe broker.

See the following guides for more information about the publish/subscribe
capabilities provided by WebSphere MQ:

� WebSphere MQ Publish/Subscribe User's Guide, SC34-6606
� WebSphere Business Integration Pub/Sub Solutions, SG24-6088
� MQSeries Publish/Subscribe Applications, SG24-6282

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 79

4.7.3 Streams
The broker can separate the flow of information about topics into streams. A
publication made for a topic on one stream is not published to subscribers for that
topic registered on other streams. The subscriptions, and other required
information, are held on a separate WebSphere MQ queue for each stream.

4.7.4 Registration
Each subscriber must register with the broker before it can receive publications.
This registration process requires that the subscriber provides a queue onto
which suitable publications can be placed as they are received by the broker.

This queue can be individual to the subscriber or shared between multiple
subscribers. If a subscription queue is shared between multiple subscribers, a
correlation identifier must be provided by the subscriber during registration. This
correlation identifier is used to identify the ownership of messages on the queue.
Similar considerations exist for choosing a subscription queue, as discussed in
4.6.14, “Reply-to queue considerations” on page 75.

A publisher is not required to perform any registration with the broker before
publishing messages. However, a publisher can choose to register with the
broker so that some default behavior is configured regarding the publications that
it makes and to notify the broker of which topics it publishes. A publication made
by a publisher can contain any data that a WebSphere MQ message can contain
within the message body, as described in 4.1, “Cross-platform support” on
page 50.

4.7.5 Topics
Topics are identified within the broker by character strings, called topic strings.
When each publication is made by a publisher, a topic string is specified.

When each subscriber registers with the broker, it also specifies a topic string.
After the subscriber is registered, the topic string is matched against the topic of
each publication. If the two strings match, the publication is placed on the queue
specified by the subscriber during registration. The strings do not need to match
exactly; wildcard characters can be used in the topic string supplied by the
subscriber during registration in order to subscribe to a range of topics.

Registrations do not end when the subscribing application ends. This means that
publications build up on a subscriber’s queue while it is not active.

80 WebSphere MQ V6 Fundamentals

4.7.6 Publications
WebSphere MQ provides two forms of publications:

� Non-retained publications:
By default, the WebSphere MQ broker discards a publication after it has been
delivered to the queues of all matching registered subscribers.

� Retained publications:
A publisher can specify that an individual publication, or all publications that it
publishes, are retained by the broker. This means that each time a publication
is processed by the broker, it is delivered to the queues of all matching
registered subscribers, and a copy is retained by the broker. The broker only
keeps the most recent publication on a particular topic.

One particular use for retained publications is for state information. By publishing
state information as a retained publication, a subscriber can request the current
state of information about a particular topic when it begins processing. This
means that the subscriber does not need to wait for a publication on a topic in
order to determine the current state of the information.

4.7.7 Extending the WebSphere MQ publish/subscribe capabilities
The WebSphere MQ publish/subscribe broker provides the core functionality
required to use the publish/subscribe messaging model. However, the power of
decoupling the provider of information from the producer of that information can
be further exploited to simplify the design and implementation of business
services.

Fully exploiting the potential provided by the publish/subscribe messaging model
can provide a messaging infrastructure where diverse applications exchange
information in disparate forms and the flow of this information is controlled,
routed, and transformed using business rules, rather than proprietary logic.

IBM WebSphere Business Integration Message Broker and WebSphere
Business Integration Event Broker are separate broker products that build on the
core messaging capabilities of WebSphere MQ to fully exploit the potential of the
publish/subscribe messaging model.

Tip: Using standardized interfaces to access publish/subscribe services can
provide the flexibility to upgrade from the core WebSphere MQ
publish/subscribe messaging capabilities to a solution based on the
WebSphere Business Integration Message Broker or WebSphere Business
Integration Event Broker product without costly redevelopment to applications.

 Chapter 4. Designing applications that access a WebSphere MQ infrastructure 81

82 WebSphere MQ V6 Fundamentals

Chapter 5. Understanding and
configuring queue managers

In this chapter, we describe the administration interfaces used to create and
administer WebSphere MQ queue managers and also provide an overview of the
operation of queue managers and the facilities they provide for data integrity.

We discuss the following topics:

� Installation information

� WebSphere MQ administration interfaces

� The queue manager

5

© Copyright IBM Corp. 2005. All rights reserved. 83

5.1 Installation information
The WebSphere MQ Quick Beginnings guides provide information for performing
the installation of WebSphere MQ on Microsoft Windows, UNIX, and
IBM Eserver® iSeries platforms. The guides also provide the steps to validate
your WebSphere MQ installation. Refer to the WebSphere MQ V6.0 Quick
Beginnings guide relevant to your platform:

� WebSphere MQ for Windows V6.0 Quick Beginnings, GC34-6476
� WebSphere MQ for Linux V6.0 Quick Beginnings, GC34-6480
� WebSphere MQ for AIX V6.0 Quick Beginnings, GC34-6478
� WebSphere MQ for Solaris V6.0 Quick Beginnings, GC34-6477
� WebSphere MQ for HP-UX V6.0 Quick Beginnings, GC34-6479
� WebSphere MQ for iSeries V6.0 Quick Beginnings, GC34-6481

Refer to WebSphere MQ for z/OS V6.0 Concepts and Planning Guide,
GC34-6582, for installation instructions for z/OS and an introduction to concepts
specific to using WebSphere MQ on the z/OS platform.

5.1.1 Review available WebSphere MQ maintenance
We recommend that you apply the latest maintenance to the WebSphere MQ
product after installation. Refer to 12.2.1, “The WebSphere MQ support Web
site” on page 326 for more information.

5.1.2 Statement of environment
Details of the supported versions of operating systems, compilers, and other
software components that interact with the WebSphere MQ product, including
required maintenance updates, are available in a statement of environment
(SOE) for each platform supported by WebSphere MQ.

For these SOEs, refer to the following Web page:

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

Note: The special information section of the readme file supplied with the
latest maintenance delivery to WebSphere MQ might contain information
relevant to your platform.

84 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

5.2 WebSphere MQ administration interfaces
The administration of WebSphere MQ can be performed through a variety of
interfaces. This section provides an introduction to these interfaces.

5.2.1 WebSphere MQ Explorer
The graphical user interface (GUI) provided by WebSphere MQ for the
administration of queue managers and the objects they contain, as well as the
WebSphere MQ installation hosted on the same machine as the GUI, is the
WebSphere MQ Explorer.

The WebSphere MQ Explorer is new in WebSphere MQ V6.0. Previous versions
of WebSphere MQ for Windows are supplied with a Microsoft Management
Console (MMC)-based GUI. This consists of a set of MMC snap-ins, called the
WebSphere MQ Explorer snap-in and the WebSphere MQ Services snap-in.

The WebSphere MQ Explorer provides a GUI environment, which is similar in
appearance to the MMC snap-ins of previous releases of WebSphere MQ, for the
administration of queue managers and the WebSphere MQ installation. However,
the functionality provided by the WebSphere MQ Explorer has expanded on the
functionality provided in previous releases. This functionality continues to grow
due to the benefits of building the WebSphere MQ Explorer on the Eclipse
technology, as described in “WebSphere MQ Explorer and the Eclipse project” on
page 92.

Starting the WebSphere MQ Explorer
At the time of writing this book, the WebSphere MQ Explorer was run for
installations of the following WebSphere MQ products:

� WebSphere MQ for Windows
� WebSphere MQ for Linux® (x86)

After installing WebSphere MQ, including all the prerequisites, you can start the
WebSphere MQ Explorer by using one of the following methods:

� Using the strmqcfg WebSphere MQ control command.

� Clicking the WebSphere MQ Explorer icon. This method is only available on
WebSphere MQ for Windows. The icon is located in the IBM WebSphere MQ
program group, from the Windows Start menu.

Working with WebSphere MQ and local queue managers
Figure 5-1 on page 86 illustrates the WebSphere MQ Explorer with three queue
managers defined on the same machine as the WebSphere MQ Explorer. These
are called example.payroll, example.stock_control, and

 Chapter 5. Understanding and configuring queue managers 85

example.online_shopping. The figure shows the highlighted sections of the
layout that we discuss in this section.

Figure 5-1 WebSphere MQ Explorer layout

The layout of the WebSphere MQ Explorer is separated into two panes:

� The navigator view:
This contains a tree view of the WebSphere MQ resources that can be
administered from the WebSphere MQ Explorer. The resources shown in the
navigator view are separated into folders under the IBM WebSphere MQ root
icon. Click the + symbol next to an item in the tree to expand that item and
see the items it contains, and click the - symbol to collapse that item. Highlight
an item to view the content page for that item in the content view.

� The content view:
Selecting an item in the navigator view displays a corresponding content
pane in the content view. This page shows a table of all the objects that
correspond to that item or information describing the item. The content pane
might also provide actions.

Navigator view Content view

Queue managers
folder

Help button

86 WebSphere MQ V6 Fundamentals

The Queue Managers folder is used to perform the administration of the queue
managers hosted on the system and any queue managers that have been
connected remotely to the WebSphere MQ Explorer. For each queue manager to
which a connection exists, an item for that queue manager is listed under the
Queue Managers folder. This item also contains a set of folders that are selected
to access and configure the objects in the queue manager.

Some of the folders for a queue manager are located under an Advanced folder.
The Advanced folder can be eliminated so that these folders are shown directly
under the Queue Managers folder. To do this, click the Advanced folder and
follow the instructions shown in the content view.

Clicking a subfolder for a queue manager opens a content page containing a
table of those types of objects defined on that queue manager. The columns of
this table show the attributes of each object in the table with a different icon for
each type of object. If an attribute does not apply to a particular item in the table,
that cell is gray. The system objects can be hidden, but are shown in Figure 5-2
on page 88.

Note: Press F1 at any time to get a help summary of the current content pane
or the navigator view. Select Help → Help Contents for the full help system.

 Chapter 5. Understanding and configuring queue managers 87

Figure 5-2 WebSphere MQ Explorer: Queues content view for a queue manager, showing system objects

The Filter drop-down list shown in Figure 5-2 can be used to display only objects
that match specified criteria in the table, for example, only queues that contain
more than 10 messages. Some example filters are provided, and the Manage
Filters window available from this drop-down list can be used to configure custom
filters and add these filters permanently to the list of filters available.

The Filter drop-down list shown in Figure 5-2 can be used to change the order of
the attribute columns shown in the table or to add or remove columns for
particular attributes. A default column scheme is provided, and the Manage
Schemes window available from this drop-down list can be used to configure
custom schemes and add these schemes permanently to the list of schemes
available.

Functionality is generally accessed in the WebSphere MQ Explorer by
right-clicking an item in the navigator view, or a row in a table, and choosing the
required action from the menu displayed.

For example, to display the properties of a queue manager, right-click the queue
manager and select Properties. Figure 5-3 on page 89 shows the properties
window that is displayed for a queue manager hosted on the local machine.

Scheme drop-down

Filter drop-down

88 WebSphere MQ V6 Fundamentals

Figure 5-3 Properties window for a queue manager

This properties window has the same layout as other properties windows
provided by the WebSphere MQ Explorer. The tree on the left side can be used
to access subcategories into which the available properties are grouped.

The Queue Manager Clusters folder can be used to access information related to
queue manager clusters. An item is shown under this folder for each queue
manager cluster for which any queue manager shown under the Queue
Managers folder is a full repository. We discuss this folder in 8.2.2, “Viewing
repository information in WebSphere MQ Explorer” on page 196.

Considerations for migrated queue managers
Queue managers that were originally created with WebSphere MQ V5.3 or a
previous version of WebSphere MQ and then started after WebSphere MQ V6.0
is installed are called migrated queue managers.

The migration stage updates the queue manager data, including all WebSphere
MQ objects, and queue manager logs for that queue manager to WebSphere MQ
V6.0 data and logs. Migration maintains the existing configuration of the queue
manager.

Queue managers prior to WebSphere MQ V6.0 did not automatically start the
command server for the queue manager, which the WebSphere MQ Explorer
uses when performing the administration of all queue managers. This includes

Subcategories grouping attributes

 Chapter 5. Understanding and configuring queue managers 89

queue managers that are local to the machine running the WebSphere MQ
Explorer.

The WebSphere MQ Explorer also requires that a particular WebSphere MQ
system object is defined on queue managers in order to perform the
administration of those queue managers. This is not created during the migration
process.

In order to allow the administration of a migrated queue manager to occur,
perform the following steps:

1. End the queue manager if it is running.

2. Issue the following command to create the system objects of that queue that
are new for WebSphere MQ V6.0:

strmqm -c Queue_Manager_Name

3. Issue the following command to alter the queue manager so that it will start a
command server automatically on startup:

– Windows:

echo ALTER QMGR SCMDSERV(QMGR) | runmqsc Queue_Manager_Name

– UNIX:

echo "ALTER QMGR SCMDSERV(QMGR)" | runmqsc Queue_Manager_Name

4. Either restart the queue manager, or issue the following command to avoid a
restart now:

strmqcsv Queue_Manager_Name

Introduction to remote queue manager administration
The WebSphere MQ Explorer is capable of connecting to remote queue
managers and administering them under the Queue Managers folder.

These remote queue managers do not need to be running on the same platform
as the WebSphere MQ Explorer or be the same version of WebSphere MQ.

Remote administration of WebSphere MQ for z/OS queue managers is a new
feature available in the WebSphere MQ Explorer. However, the remote
WebSphere MQ for z/OS queue manager must be WebSphere MQ V6.0.

The WebSphere MQ Explorer uses a client connection to connect to remote
queue managers. It uses the programmable command formats (PCFs) interface
described in “MQSC syntax” on page 95.

90 WebSphere MQ V6 Fundamentals

We demonstrate performing remote administration, including the steps required
to enable a queue manager for remote administration, in 10.2, “Connect as a
client to a queue manager” on page 266.

WebSphere MQ Explorer preferences
To configure the options for the WebSphere MQ Explorer, select Window →
Preferences from the menu bar. This opens a Preferences window, which
contains a number of different sections containing preferences for the Eclipse
workbench within which the WebSphere MQ Explorer runs.

To change the WebSphere MQ properties, select the WebSphere MQ Explorer
category from the list of categories on the left side of the window, as shown in
Figure 5-4.

Figure 5-4 WebSphere MQ Explorer Preferences window

Note: The WebSphere MQ Explorer is capable of connecting to remote queue
managers using a Secure Sockets Layer (SSL) secured client connection.
This uses the SSL connection facilities provided by the WebSphere MQ Java
API. Details of performing this connection are beyond the scope of this book.

 Chapter 5. Understanding and configuring queue managers 91

WebSphere MQ Explorer and the Eclipse project
The WebSphere MQ Explorer is built as a set of plug-ins for the Eclipse platform,
which is part of the Eclipse project. The Eclipse platform is a universal tools
platform that provides the core functionality to implement integrated development
environments (IDEs), administration interfaces, and other applications.

Each one of these applications can exist within the same Eclipse workbench,
which provides a consistent look and feel for all applications. Each application
can customize this look and feel for their application by providing a perspective.

The WebSphere MQ Explorer provides a perspective called WebSphere MQ
Explorer so that the look and feel of the workbench, when it is started as the
WebSphere MQ Explorer or when the WebSphere MQ Explorer perspective is
manually selected, is tailored for convenient WebSphere MQ administration.

Every application in the Eclipse platform is constructed as a set of plug-ins that
build on the functionality of existing plug-ins in the Eclipse platform. The plug-ins
forming an application can themselves make functionality available for
applications to build on as plug-ins to that application. Each area in an
application where another application can extend functionality as a plug-in is
called an extension point.

WebSphere MQ provides a number of extension points to allow flexible growth in
the functionality provided by the WebSphere MQ Explorer through future
WebSphere MQ plug-ins or plug-ins developed by a third party.

5.2.2 WebSphere MQ Explorer Healthcheck plug-in
An example of such a plug-in that adds additional problem determination aids to
the WebSphere MQ Explorer through the extension points provided is the
WebSphere MQ Explorer Healthcheck plug-in.

The WebSphere MQ Explorer Healthcheck plug-in is provided in SupportPac
MH01. See the following Web page for more information:

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24010096

Note: By default, the WebSphere MQ Explorer starts in a stand-alone mode,
which does not provide access to the full Eclipse workbench. To make the full
workbench available, select Window → Preferences. Then, select in an
Eclipse Workbench from the available options. You must restart the
WebSphere MQ Explorer for this to take effect.

92 WebSphere MQ V6 Fundamentals

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24010096

5.2.3 WebSphere MQ control commands
WebSphere MQ for UNIX platforms and WebSphere MQ for Windows provide a
set of commands to perform operations against WebSphere MQ queue
managers and the WebSphere MQ product. These commands are executed
from the command line interface provided by the individual operating system.
Unless otherwise stated, the path to these commands is added to the operating
system command search path by the WebSphere MQ installation process.

5.2.4 WebSphere MQ for iSeries control language commands
IBM OS/400® control language (CL) commands are provided by WebSphere MQ
for iSeries to perform operations against WebSphere MQ queue managers and
the WebSphere MQ product. Access the main interface to the CL commands
provided by WebSphere MQ by using the CL WRKMQM command.

5.2.5 WebSphere MQ for z/OS commands
WebSphere MQ for z/OS provides a set of commands that can be issued against
a queue manager subsystem from a z/OS console, or equivalent, such as the
System Display and Search Facility (SDSF).

We introduce the queue manager subsystem in WebSphere MQ for z/OS in
5.3.4, “Queue manager structure and creation” on page 102.

5.2.6 WebSphere MQ Script (MQSC) commands
Performing configuration using the WebSphere MQ Explorer can have
drawbacks in a production environment. Changes made to a queue manager are
not logged, and consistently tracking changes made using a graphical user
interface (GUI) can be a difficult task.

Using a scripting interface to execute configuration commands against a queue
manager allows a business to implement change management procedures to
track and log the executed commands. By documenting scripted commands
used to create and configure a queue manager, small modifications to those
commands allow duplicates of that queue manager to be created, for example, to
scale the system to another machine.

You can create scripts to perform common administration commands, and the
output from these scripts can be processed in order to generate a pass/fail result
with associated diagnostic information.

WebSphere MQ provides the WebSphere MQ Script (MQSC) scripting interface
to a queue manager to provide this functionality. In combination with the

 Chapter 5. Understanding and configuring queue managers 93

WebSphere MQ control commands described in 5.2.3, “WebSphere MQ control
commands” on page 93, all actions against a queue manager can be scripted
using a third-party scripting language such as Perl or a Korn shell.

Executing MQSC commands
MQSC commands are executed against a queue manager as follows:

� WebSphere MQ for Windows and UNIX:
The runmqsc WebSphere MQ control program provides an interface to
execute MQSC commands against a queue manager. This program accepts
commands on the standard input of the command line interface from which it
is executed. To start an interactive MQSC session against a queue manager,
use the following syntax:

runmqsc Queue_Manager_Name

If a set of MQSC commands has been saved in a file, the contents of this file
can be passed into the runmqsc command on standard input using the
following syntax:

runmqsc Queue_Manager_Name < filename

The runmqsc command can also be used to execute MQSC commands
against a remote queue manager. Refer to Chapter 6, “Administering remote
WebSphere MQ objects,” in WebSphere MQ System Administration Guide,
SC34-6584.

� WebSphere MQ for iSeries:
MQSC commands can be executed interactively by using the RUNMQSC CL
command.

MQSC commands can also be executed from a script contained within a
source physical file using the STRMQMMQSC CL command.

� WebSphere MQ for z/OS:
MQSC commands are executed against the subsystem for a particular queue
manager.

Note: WebSphere MQ for iSeries also provides CL commands that can be
used to interactively perform the functions of MQSC commands using a
panel-based interface. To access these WebSphere MQ CL commands,
use the WRKMQM CL command.

Note: On WebSphere MQ for z/OS, a set of operations and control panels
are provided that can be used to interactively perform the functions of
MQSC commands. These are accessible from Time Sharing Option (TSO)
and Interactive System Productivity Facility (ISPF).

94 WebSphere MQ V6 Fundamentals

MQSC syntax
The syntax of MQSC is quite simple. The general format of a command is:

COMMAND OBJTYPE('Object_Name') ATTR1(VALUE) ATTR2('value') ATTR3

Where OBJTYPE is the object type, COMMAND is one of a set of command keywords
valid for that object type, and ATTR1, ATTR2, and ATTR3 are attribute names valid
for that object type.

Some command keyword and object type combinations, such as ALTER QMGR,
do not require an object name. Some attributes do not require a value. Many
commands and object types have a shorthand version, for example, ALT for
ALTER.

For some command keywords, a type and a subtype must both be specified. An
example is:

DEFINE CHANNEL('my.channel') CHLTYPE(RCVR)

Each combination of a command keyword and an object type takes a specific set
of attributes. Some of these attributes are required. In order to specify an empty
value for an attribute, use ATTR(), with a space between the parentheses.

Some attributes take multiple values. Where this is the case, these values are
separated by commas. An example is:

ALTER NAMELIST('my.namelist') NAMES(NAME1,'name2')

If a valid combination of command keyword and object type are specified, but the
attributes specified are not correct for that combination, or required attributes are
missing, the command is rejected and a summary of the usage of that
combination is displayed.

Note: Object names and attribute values, that are not enclosed in single
quotation marks are automatically converted to uppercase. Therefore, if
lowercase object names or attribute values are required, you must use single
quotation marks.

Attribute values that contain special characters, such as a parenthesis, must
be contained in single quotation marks.

MQSC is not case-sensitive for the keywords, such as COMMAND,
OBJTYPE, ATTR1, ATTR2, and ATTR3 in the previous example of the
general format.

 Chapter 5. Understanding and configuring queue managers 95

Some commonly used command keywords include:

� DEFINE or DEF:
Create a new object of a particular type and name with the attributes values
specified. The REPLACE attribute can be used in a DEFINE command to
cause an existing object of the same name and type to be replaced. The LIKE
attribute can be used to specify the name of another object of the same type,
the attribute values of which are used for any attributes not specified in the
command.

� ALTER or ALT:
Alter an existing object of a particular type and name, changing the attributes
specified to the values given.

� DELETE:
Delete an existing object of a particular type and name.

� DISPLAY or DIS:
Display the specified attributes of existing objects with a particular type and
name. The special attribute name ALL can be used to display all attributes for
each object. If no attributes are specified, a default set of attributes are
displayed for each object.

An asterisk (*) wildcard character can be used at the end of the object name
and type values. This cause the command to display the attributes of all
objects, with names or object types starting with the value specified before
the asterisk. For example, the following command displays all attributes of
queues with names starting with example:

DISPLAY QUEUE('example*') ALL

In WebSphere MQ V6.0, additional filtering of the output of DISPLAY
commands is available using the WHERE keyword. In the parenthesis for the
WHERE keyword, three values are specified: an attribute name, an operator,
and a filter value. For each object, the specified attribute is matched against
the filter value using the operator and only if this match is successful are the
attributes of the object displayed. For example, the following command shows
the depth and description of all queues containing more than 10 messages:

DISPLAY QUEUE(*) DESCR CURDEPTH WHERE(CURDEPTH,GT,10)

� START:
Cause an existing object of a particular type and name to start, for example,
starting a message channel or a listener.

� STOP:
Cause an existing object of a particular type and name to stop, for example,
starting a message channel or a listener.

96 WebSphere MQ V6 Fundamentals

An MQSC command can span multiple lines by placing a plus sign (+) as the last
character on the end of a line after a space character. For example:

DEFINE CHANNEL(TO.PAYROLL) +
 CHLTYPE(SDR) +
 CONNAME('another.machine.com(1414)') +
 XMITQ(PAYROLL)

A comment line can be placed in an MQSC script by placing an asterisk (*)
character as the first character on that line.

For full details of the syntax of MQSC commands and details of all the
commands and the descriptions of the attributes valid for those commands, see
WebSphere MQ Script (MQSC) Command Reference, SC34-6597, available at:

http://www.ibm.com/software/integration/wmq/library/

5.2.7 Programmable command formats (PCFs)
Programmable command formats (PCFs) provide a programming interface into a
queue manager. A matching PCF command exists for each MQSC command
that can be used against that queue manager. Matching PCF parameters are
provided for each MQSC attribute.

The PCF commands are processed by the command server of the queue
manager. This performs the action specified in each PCF command and
generates a reply message with the result of that command.

The interface into the command server is provided with a standard request/reply
model. This means that it processes requests from a queue and sends replies
back to the reply-to queue specified by the application that put the request. The
queue from which requests are retrieved by the command server is
SYSTEM.ADMIN.COMMAND.QUEUE.

The detail of generating and issuing individual PCF command messages, or
processing the responses, is beyond the scope of this book. Refer to WebSphere
MQ Programmable Command Formats and Administration Interface,
SC34-6598, available at:

http://www.ibm.com/software/integration/wmq/library/

The MS0B SupportPac can simplify the process of using the PCF interface into a
queue manager from a Java application. See the following Web page for details:

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000668&loc=en_US&cs=utf-
8&lang=en

A queue manager created with WebSphere MQ V6.0 on Windows, UNIX, and
iSeries automatically starts the command server for the queue manager when

 Chapter 5. Understanding and configuring queue managers 97

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000668&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

the queue manager starts. This functionality can be disabled by changing the
SCMDSERV attribute to MANUAL on the queue manager object in MQSC, or
setting Command server control to Manual on the Properties window for the
queue manager in the WebSphere MQ Explorer.

For queue managers created on these platforms prior to WebSphere MQ V6.0,
including those that have been migrated to WebSphere MQ V6.0, the command
server is not started automatically. The command server is started as follows:

� WebSphere MQ for Windows and UNIX:

strmqcsv Queue_Manager_Name

� WebSphere MQ for iSeries:

STRMQMCSVR MQMNAME('Queue_Manager_Name')

� In WebSphere MQ for z/OS, processing of PCF commands by the command
server is only available with WebSphere MQ for z/OS V6.0.

On WebSphere MQ for z/OS, start the command server using the command:

START CMDSERV MQSC

5.3 The queue manager
Queue managers are the core element in a WebSphere MQ message queuing
infrastructure. Every application that accesses the infrastructure must connect to
a queue manager in order to access that infrastructure. Applications can only
retrieve messages from queues hosted by the queue manager to which they are
connected.

The queue manager provides an entry point for an application into the message
queuing infrastructure. An application can send messages through the queue
manager to which it is connected to queues hosted on other queue managers
within the message queuing infrastructure.

For messages to flow between queue managers in the infrastructure, each
queue manager must have a network link to the queue managers to which it can
route messages. Messages might pass through multiple queue managers on
route from the application that produced a message to the final destination queue
for that message.

Note: Queue sharing groups on WebSphere MQ for z/OS allow multiple
queue managers to host a shared queue. Refer to 5.3.3, “Queue sharing
groups on WebSphere MQ for z/OS” on page 100 for more information.

98 WebSphere MQ V6 Fundamentals

A machine with a WebSphere MQ server installation can host multiple queue
managers. The number of queue managers that can be hosted by a machine
simultaneously is only limited by the resources provided by that machine.

5.3.1 Queue manager naming
Each queue manager has a name. The name of a queue manager should be
unique within the WebSphere MQ infrastructure to allow each queue within that
infrastructure to be a unique destination. The name of the queue manager is
used when performing a connection to a queue manager and when specifying
the location of a queue within the infrastructure.

WebSphere MQ only enforces a unique name for a queue manager name within
the queue managers hosted on the same machine.

Choosing a suitable name for a queue manager is important. The name can
reflect the usage of that queue manager, the machine name, and the location.

We recommend that you consider growth in the infrastructure when naming a
queue manager, such as adding queue managers hosted on the same machine
or joining multiple WebSphere MQ infrastructures in the future.

After a queue manager has been created, the name cannot be changed. In order
to rename a queue manager, it must be deleted and then re-created, including all
of the configuration items for that queue manager.

On WebSphere MQ for z/OS, the name of a queue manager can be a maximum
of four characters in length. This name can contain only uppercase alphabetic
characters, numeric characters, and the following symbol characters: $ # @.

On other platforms, the name of a queue manager can be a maximum of 48
characters in length. This name can contain uppercase and lowercase alphabetic
characters, numeric characters, and the following symbol characters: . / _ %. The
name of a queue manager is case-sensitive, so QMGR1 represents a separate
queue manager from Qmgr1.

Mixed case queue manager names, or queue manager names that differ only by
case, are fully supported by WebSphere MQ. However, consider use of case
carefully in order to reduce confusion for applications connecting to queue
managers or routing messages to queue managers.

5.3.2 WebSphere MQ objects
WebSphere MQ objects are defined and configured within a queue manager.
These objects are individual items that together make up the queue manager

 Chapter 5. Understanding and configuring queue managers 99

and its configuration. Each object has a type, a name, and a number of attributes
that configure that object.

A large part of this chapter discusses the types of objects that can be contained
within a queue manager, their definition, and configuration and the functionality
provided by each type of object. Examples of objects, which we explain in greater
detail throughout this chapter, include:

� The queue manager itself
� The queues hosted by a queue manager

A number of objects are automatically defined when a queue manager is
created. The objects have names starting with SYSTEM to distinguish them from
the objects created by an administrator of WebSphere MQ and are generally
referred to as system objects.

There are a number of different system objects, which we discuss individually in
relevant sections of this chapter. However, no system objects should be removed
by an administrator. The usage made by WebSphere MQ of these objects falls
into the following categories:

� Objects used internally by WebSphere MQ:
Some objects are required for the operation of certain features of WebSphere
MQ. These objects should not be altered by an administrator.

� Objects used to provide default functionality:
A small number of system objects are provided as the default object to
perform a particular function. It is generally recommended that an
administrator defines their own objects, with their own naming conventions, to
replace the functionality provided by these objects.

� System default objects:
For each object type, there is a system object with a name as follows:

SYSTEM.DEFAULT.OBJECT.TYPE

Each new object defined of that type, by default, inherits the same attributes
as the system default object for that type. Changing the properties of a
system default object changes the attributes of new objects defined of that
type. However, it does not change the attributes of objects already defined.

An object can also be created based on the attributes of any another object
that has already been defined of that type. This new object is said to be
created like the existing object.

5.3.3 Queue sharing groups on WebSphere MQ for z/OS
WebSphere MQ for z/OS operates on instances of the z/OS operating system,
with IBM Eserver zSeries® mainframe hardware. An instance of the z/OS

100 WebSphere MQ V6 Fundamentals

operating system, which can be running on a logical partition (LPAR), is generally
referred to in this book as a z/OS image.

WebSphere MQ for z/OS builds on the capabilities of the z/OS platform to
provide some additional features that are not provided on other platforms. The
most significant of these features is queue sharing groups (QSGs).

Multiple queue managers that are members of a QSG have access to shared
queues contained within that QSG. Each shared queue is available to all queue
managers that are members of the QSG, in a similar way to hosting that queue
locally to the queue manager.

This means that one application connected to a queue manager can put a
message to a shared queue, and then a second application connected to a
second queue manager within the QSG can get that message from the same
shared queue.

Without using the functionality of shared queues, this message would need to be
transferred to a queue hosted on the second queue manager by a distributed or
cluster message channel before the second application could get the message.

Another significant benefit of a QSG is that if one queue manager within a QSG
fails, the other queue managers within the QSG can continue to process data
from shared queues contained within that QSG.

QSGs build on the functionality provided by connecting z/OS images together in
a sysplex. All queue managers that are members of a QSG must be hosted on
z/OS images within the same sysplex.

A sysplex provides a coupling facility (CF), which allows multiple z/OS images
within a sysplex to share data. The WebSphere MQ for z/OS product uses the
CF in combination with the facilities provided by the IBM DB2® database
product.

Due to this, each queue manager within a QSG must have access to DB2. The
DB2 instances that the queue managers within a QSG access must be within the
same data-sharing group. A data-sharing group is a DB2 feature that enables
multiple DB2 instances to share a repository of information.

WebSphere MQ for z/OS uses the CF and DB2 to share the definition of the
queue, and the messages contained within that queue, between the queue
managers that are members of the QSG. When defined on one queue manager
within the QSG, all queue managers within the QSG can access a shared queue.

Each QSG has a name. The rules for a QSG name are the same as the rules
previously described for a queue manager name on WebSphere MQ for z/OS.

 Chapter 5. Understanding and configuring queue managers 101

5.3.4 Queue manager structure and creation
The details of the operation and configuration of a WebSphere MQ queue
manager are specific to each individual WebSphere MQ platform.

Providing the full details of the operation of the queue manager is beyond the
scope of this book. However, we provide an overview in this section for a number
of WebSphere MQ Version 6.0 platforms. We highlight some important
considerations for each platform discussed.

WebSphere MQ for Windows
In WebSphere MQ for Windows, a queue manager runs as a set of processes
hosted by the operating system.

This book assumes that the default installation directory has been specified
when installing WebSphere MQ for Windows V6.0. If a different directory has
been specified, substitute the custom directory for the following directory in all
examples: C:\Program Files\IBM\WebSphere MQ.

Each queue manager owns and maintains a number of files on the file system:

� Queue manager data directory:
The queue manager data directory contains the definitions of objects,
message data, and other queue manager data. The default location of this
directory is:

C:\Program Files\IBM\WebSphere MQ\Qmgrs\Queue_Manager_Name

� Queue manager log files:
Files containing the log for a queue manager. We discuss logging in 5.3.13,
“Logging” on page 116. The default location for these files is:

C:\Program Files\IBM\WebSphere MQ\log\Queue_Manager_Name

Note: WebSphere MQ for z/OS Version 6.0 provides some functional
enhancements relating to shared queues and QSGs, as summarized in the
following points:

� The maximum length of a message that can be put onto a shared queue
has been increased from 63 KB to 100 MB. When a message larger than
63 KB is put on a shared queue, a placeholder is stored in the CF (4 KB)
and the message data is stored using DB2.

� If QSGs are being used, and the administration structure fails, the queue
managers that are active in the QSG no longer terminate. Instead, work is
suspended, the structure is automatically reallocated and rebuilt, and then
the work continues.

102 WebSphere MQ V6 Fundamentals

The Queue_Manager_Name value in these paths might not identically match the
name of the queue manager. For details of how a directory name in the path is
generated from the queue manager name, see WebSphere MQ System
Administration Guide, SC34-6584. The most regular difference is that symbol
characters in a queue manager name are transformed in the directory name. The
symbol . is changed to ! and / is changed to &.

The core configuration information for a queue manager is stored in the Windows
registry. This information includes information about how logging is performed for
a queue manager and configuration related to communication protocols.
Changes made to this configuration information might not be detected by a
running queue manager until it is stopped and restarted.

The configuration for a queue manager in the Windows registry can be altered
using the WebSphere MQ Explorer. To access the configuration information of a
queue manager, right-click the icon for the queue manager in the navigator and
select Properties.

The information contained in the Windows registry for a queue manager can also
be altered using the amqmdain reg WebSphere MQ control command.

For full information regarding the WebSphere MQ configuration information
contained in the Windows registry, see Part 4, “Configuring WebSphere MQ,” in
WebSphere MQ System Administration Guide, SC34-6584.

A WebSphere MQ for Windows queue manager can be created in the following
ways:

� Using the WebSphere MQ Explorer
You can configure WebSphere MQ queue managers using the Create Queue
Manager wizard in the WebSphere MQ Explorer. Access this wizard by
right-clicking the Queue Managers folder and selecting New → Queue
Manager.

� Using the crtmqm WebSphere MQ control command.
The crtmqm WebSphere MQ control command is documented in Part 6,
“WebSphere MQ control commands,” in WebSphere MQ System
Administration Guide, SC34-6584.

Note: Editing any information contained in the Windows registry directly is an
advanced task. We do not recommend this when performing the WebSphere
MQ configuration.

 Chapter 5. Understanding and configuring queue managers 103

You can specify parameters when creating a queue manager that configure the
initial values for important configuration information held in the Windows registry.
Some of the configuration relating to logging cannot be changed after the queue
manager is created. See 5.3.13, “Logging” on page 116 for more information.

The parameters specified when creating a queue manager have default values.
These defaults are stored, along with other WebSphere MQ configuration
information that is not specific to an individual queue manager, in the Windows
registry.

The WebSphere MQ configuration can be altered using the WebSphere MQ
Explorer. To access the WebSphere MQ configuration, right-click the
WebSphere MQ icon in the navigator and select Properties.

The WebSphere MQ configuration can also be altered using the amqmdain reg
WebSphere MQ control command.

WebSphere MQ for UNIX platforms
In WebSphere MQ for UNIX platforms, a queue manager runs as a set of
processes hosted by the operating system.

Each queue manager owns and maintains a number of files on the file system:

� Queue manager data directory:
The queue manager data directory contains the definitions of objects,
message data, and other queue manager data. The default location of this
directory is:

/var/mqm/qmgrs/Queue_Manager_Name

� Queue manager log files:
Files containing the log for a queue manager. We discuss logging in 5.3.13,
“Logging” on page 116. The default location for these files is:

/var/mqm/log/Queue_Manager_Name

Note: In order to create a queue manager, the user performing the procedure
must be a member of the mqm group. This group is created automatically
during the installation of the WebSphere MQ product.

Note: For performance reasons, we recommend that you mount the
/var/mqm/qmgrs and /var/mqm/log file systems on different physical file
systems.

104 WebSphere MQ V6 Fundamentals

The Queue_Manager_Name value in these paths might not identically match the
name of the queue manager. For details of how a directory name in the path is
generated from the queue manager name, see the “Understanding WebSphere
MQ file names” section in WebSphere MQ System Administration Guide,
SC34-6584. The most regular difference is that symbol characters in a queue
manager name are transformed in the directory name. The symbol . is changed
to ! and / is changed to &.

The core configuration information for a queue manager is stored in the following
file on the file system, based on the default queue manager data directory:
/var/mqm/qmgrs/Queue_Manager_Name/qm.ini.

This contains information about how logging is performed for the queue manager
and configuration related to communication protocols. Changes made to this
configuration information might not be detected by a running queue manager
until it is stopped and restarted.

On all UNIX platforms, this file can be edited directly using a text editor such as vi
or emacs.

On UNIX platforms where it is supported, the configuration information contained
in this file can be changed using the WebSphere MQ Explorer. To access the
configuration of a queue manager, right-click the icon for the queue manager in
the navigator view and select Properties.

A queue manager is created in WebSphere MQ for UNIX platforms using the
crtmqm WebSphere MQ control command. Part 6, “WebSphere MQ control
commands,” in WebSphere MQ System Administration Guide, SC34-6584,
documents this command.

On UNIX platforms where it is supported, you can create a queue manager using
the Create Queue Manager wizard in the WebSphere MQ Explorer. Access this
wizard by right-clicking the Queue Managers folder in the navigator view and
selecting New → Queue Manager.

You can specify parameters when creating a queue manager to configure the
initial values for important configuration information held in the qm.ini file. Some
of the configuration relating to logging cannot be changed after the queue
manager is created. See 5.3.13, “Logging” on page 116 for more information.

Note: In order to create a queue manager, the user performing the procedure
must be a member of the mqm group. This group is created automatically
during the installation of the WebSphere MQ product.

 Chapter 5. Understanding and configuring queue managers 105

The parameters specified when creating a queue manager have default values.
These defaults are stored, along with other WebSphere MQ configuration
information that is not specific to an individual queue manager, in the
/var/mqm/mqs.ini file.

On all UNIX platforms, this file can be edited directly using a text editor such as vi
or emacs.

On UNIX platforms where it is supported, the WebSphere MQ configuration can
also be altered using the WebSphere MQ Explorer. To access this configuration
information for a queue manager, right-click the icon for the queue manager in
the navigator view and select Properties.

WebSphere MQ for iSeries
In WebSphere MQ for iSeries, a queue manager runs as a number of batch jobs.
By default, these batch jobs run within the QMQM subsystem that is created
when WebSphere MQ for iSeries is installed. For details of how WebSphere MQ
issues these batch jobs, see WebSphere MQ for iSeries V6.0 System
Administration Guide, SC34-6586.

Ensure that the QMQM subsystem is running before attempting to issue any
WebSphere MQ CL commands. Use the following command to start the QMQM
subsystem:

STRSBS QMQM/QMQM

Note: If any queue managers are running on a machine, or any applications
running on that machine make connections to a queue manager, take care
when editing the mqs.ini file.

In these circumstances, it must not be edited by making a duplicate copy and
then renaming this copy to overwrite the existing mqs.ini file. If these steps
need to be performed, all queue managers running on that machine and any
applications running on that machine that make connections to a queue
manager must be stopped before overwriting the mqs.ini file.

Note: This book makes no further reference to iSeries batch jobs. Where the
term process is used, it generally also refers to an iSeries batch job.

106 WebSphere MQ V6 Fundamentals

Each queue manager owns and manages a set of resources used in the
operation of that queue manager:

� The queue manager library:
Each queue manager has an associated library. This library contains the
journals that form the log for the queue manager. The name of the library is
based on the name of the queue manager.

� Queue manager data directory:
The queue manager data directory on the integrated file system (IFS)
contains the definitions of objects, message data, and other queue manager
data. The default location of this directory is:

/QIBM/UserData/mqm/qmgrs/Queue_Manager_Name

The name of the library for a queue manager and Queue_Manager_Name in the
above IFS path might not identically match the name of the queue manager. For
details of how the library and IFS directory names are generated from the queue
manager name, see WebSphere MQ for iSeries V6.0 System Administration
Guide, SC34-6586.

The core configuration information for a queue manager is stored in the following
file on the file system, based on the default queue manager data directory:

/QIBM/UserData/mqm/Queue_Manager_Name/qm.ini

This information includes information about how logging is performed for the
queue manager and configuration related to communication protocols. Changes
made to this configuration information might not be detected by a running queue
manager until it is stopped and restarted.

This file can be edited directly using the EDTF CL editor.

A queue manager is created in WebSphere MQ for iSeries using the CRTMQM
WebSphere MQ for iSeries CL command. Refer to WebSphere MQ for iSeries
V6.0 System Administration Guide, SC34-6586, for more information.

The parameters of this command configure the initial values for important
configuration information held in the qm.ini file. Some of the configuration relating
to logging cannot be changed after the queue manager is created. See 5.3.13,
“Logging” on page 116 for more information.

Note: In order to create a queue manager, the user performing the procedure
must be a member of the QMQMADM group. This group is created
automatically during the installation of the WebSphere MQ product.

 Chapter 5. Understanding and configuring queue managers 107

WebSphere MQ configuration that is not specific to an individual queue manager
is stored in the /QIBM/UserData/mqm/mqs.ini file in IFS.

This file can be edited directly using the EDTF CL editor.

WebSphere MQ for z/OS
For information about the operation of queue managers in WebSphere MQ for
z/OS, refer to WebSphere MQ for z/OS V6.0 Concepts and Planning Guide,
GC34-6582.

5.3.5 The default queue manager
Within the queue managers hosted on one machine, a queue manager can be
configured to be the default queue manager.

If an application connects to WebSphere MQ without specifying a queue
manager name, and the application is hosted on the same machine as the queue
manager, the application connects to the default queue manager.

Some WebSphere MQ control commands also use the default queue manager if
no queue manager is specified.

WebSphere MQ for Windows, iSeries, and UNIX
In WebSphere MQ for Windows, iSeries, and UNIX, the default queue manager
is specified when creating the queue manager as one of the options during the
creation process.

Specifying this option causes the name of the queue manager to be recorded in
the Default queue manager parameter in the WebSphere MQ configuration. This
can be changed at a later time by altering this parameter in the WebSphere MQ
configuration. We discuss altering the WebSphere MQ configuration on
Windows, UNIX, and iSeries in 5.3.4, “Queue manager structure and creation”
on page 102.

WebSphere MQ for z/OS
The method for specifying the default queue manager is dependent on the
environment from which the application is connecting. For details, see the
“Writing a WebSphere MQ application” section in WebSphere MQ Application
Programming Guide, SC34-6595.

108 WebSphere MQ V6 Fundamentals

5.3.6 The queue manager object
Configuration information that can be altered for a queue manager while that
queue manager is running is contained within the queue manager object. This is
administered in the same way as the other objects of the queue manager.

Using the WebSphere MQ Explorer, attributes of the queue manager object are
contained in the same Properties window as the configuration attributes for the
queue manager.

5.3.7 Starting and ending a queue manager
The method of starting or ending a queue manager is specific to each
WebSphere MQ platform. This section outlines the steps required on each
platform.

WebSphere MQ for Windows, UNIX, and iSeries platforms
In order to start and end queue managers, the user performing the procedure
must be a member of the mqm group. This group is created automatically during
the installation of the WebSphere MQ product.

To start a queue manager, use one of the following methods:

� Using the WebSphere MQ Explorer:
Right-click the icon for a queue manager in the navigator view and select
Start.

Note: WebSphere MQ V6.0 made significant changes to the names and
structure of the processes that implement a queue manager. This applies to all
platforms with the exception of WebSphere MQ for z/OS. The details of these
changes is beyond the scope of this book. However, this can affect existing
scripts that perform the termination or cleanup of a queue manager or that
detect whether a queue manager is active on a machine. For more information
about the processes that are part of a WebSphere MQ V6.0 queue manager,
refer to the following publications:

� Windows and UNIX:
WebSphere MQ System Administration Guide, SC34-6584, Appendix D,
“Stopping and removing queue managers manually”

� iSeries:
WebSphere MQ for iSeries V6.0 System Administration Guide,
SC34-6586, “Work management” section

 Chapter 5. Understanding and configuring queue managers 109

� Using the strmqm WebSphere MQ control command:
The strmqm command is available on WebSphere MQ for Windows and UNIX.
The strmqm command is documented in Part 6, “WebSphere MQ control
commands,” in WebSphere MQ System Administration Guide, SC34-6584.

� Using the amqmdain qmgr start WebSphere MQ control command:
The amqmdain qmgr start WebSphere MQ control command is only available
on WebSphere MQ for Windows. A queue manager that is started using
amqmdain qmgr start command remains running after the user executing the
command has logged out of the machine. This command is documented in
Part 6, “WebSphere MQ control commands,” in WebSphere MQ System
Administration Guide, SC34-6584.

� Using the STRMQM CL command:
The STRMQM CL command is available on WebSphere MQ for iSeries. The
STRMQM CL command is documented in WebSphere MQ for iSeries V6.0
System Administration Guide, SC34-6586.

When ending a queue manager, it is important to consider that applications might
still have active connections to that queue manager. Due to this, WebSphere MQ
has three methods of ending a queue manager.

Use these three methods in the following order of preference. If one method fails
to end the queue manager within a required time limit, move to the next. The next
command can be issued while a previous, less severe, command is still in
progress.

1. Quiesced shutdown:
This is the default method for ending a queue manager. The queue manager
waits until all applications have disconnected normally from the queue
manager before ending. Applications can continue to perform work against
the queue manager until they disconnect. Applications can choose to be

Note: The WebSphere MQ Explorer on Windows can be used to configure
a queue manager to start automatically with the machine. This is
performed by right-clicking the icon for the queue manager in the navigator
view and selecting Properties. Then, change the Startup value from
Manual to Automatic.

Note: When using the strmqm WebSphere MQ control command on
Windows, the queue manager is started under the user identifier of the
current user. This means that the queue manager ends when the current
user logs out of the machine. Consider using the amqmdain qmgr start
command instead of the strmqm command.

110 WebSphere MQ V6 Fundamentals

informed when a queue manager is quiescing when performing actions
against the queue manger so that they can detect that the queue manager is
quiescing and choose to disconnect.

2. Immediate shutdown:
All current actions being performed against the queue manager are allowed
to complete successfully before the queue manager ends. However, any new
actions issued against the queue manager fail.

3. Preemptive shutdown:
This immediately ends the queue manager. Only use this method when
options 1 and 2 have failed, because it can have unpredictable consequences
for connected applications.

If these three methods fail to end a queue manager, consult the following
documentation:

� The “Stopping a queue manager manually” section in WebSphere MQ
System Administration Guide, SC34-6584

� The “Quiescing WebSphere MQ for iSeries” section in WebSphere MQ for
iSeries V6.0 System Administration Guide, SC34-6586

All three methods for ending a queue manager are available using the same
procedure. To end a queue manager, use one of the following methods:

� Using the WebSphere MQ Explorer:
Right-click the icon for a queue manager in the navigator view and select
Stop.

� Using the endmqm WebSphere MQ control command:
The endmqm command is available on WebSphere MQ for Windows and UNIX.
The endmqm command is documented in Part 6, “WebSphere MQ control
commands,” in WebSphere MQ System Administration Guide, SC34-6584.

� Using the amqmdain qmgr end WebSphere MQ control command:
The amqmdain qmgr end WebSphere MQ control command is only available
on WebSphere MQ for Windows. This command is documented in Part 6,
“WebSphere MQ control commands,” in WebSphere MQ System
Administration Guide, SC34-6584.

� Using the ENDMQM CL command:
The ENDMQM CL command is available on WebSphere MQ for iSeries. The
ENDMQM CL command is documented in WebSphere MQ for iSeries V6.0
System Administration Guide, SC34-6586.

Note: A queue manager which was started with amqmdain qmgr start, can
be ended using endmqm.

 Chapter 5. Understanding and configuring queue managers 111

WebSphere MQ for z/OS
The z/OS subsystem associated with each WebSphere MQ queue manager is
started during the initial program load (IPL) time.

You can issue the START QMGR command against the queue manager
subsystem to start the queue manager.

The z/OS Automatic Restart Manager (ARM) can be used to automatically
restart a queue manager if it fails. This is documented in the “Using the z/OS
Automatic Restart Manager (ARM)” section in WebSphere MQ for z/OS V6.0
System Administration Guide, SC34-6585.

When ending a queue manager, it is important to consider that applications might
still have active connections to that queue manager. Due to this, WebSphere MQ
for z/OS has multiple methods of ending a queue manager:

� The STOP QMGR MODE(QUIESCE) command:
This is the default method for ending a queue manager. The queue manager
waits until all applications have disconnected normally from the queue
manager before ending. Applications can continue to perform work against
the queue manager until they disconnect. Applications can choose to be
informed when a queue manager is quiescing when performing actions
against the queue manger so that they can detect that the queue manager is
quiescing and choose to disconnect. The queue manager is deregistered with
ARM so that it is not automatically restarted.

� The STOP QMGR MODE(FORCE) command:
This forcefully ends the queue manager. Use this method when a quiesced
shutdown has failed to complete in a required period of time, or if there are no
active connections to the queue manager. The queue manager is
deregistered with ARM so that it is not automatically restarted.

� The STOP QMGR MODE(RESTART) command:
This ends the queue manager in the same way as a STOP QMGR
MODE(FORCE) command. However, the queue manager is not deregistered
with ARM. Therefore, if ARM has been configured to automatically restart the
queue manager, the queue manager restarts.

5.3.8 Providing network access to a queue manager
Queue managers and clients within the infrastructure need to establish
communication with a queue manager over a network. To do this, they use an
underlying communications protocol. The following protocols can be used for
WebSphere MQ communication:

� Transmission Control Protocol/Internet Protocol (TCP/IP)
� SNA LU 6.2 (Windows and z/OS only)

112 WebSphere MQ V6 Fundamentals

� NetBIOS (Windows only)
� SPX (Windows only)

This book only discusses the TCP/IP protocol. For details of the other protocols,
see WebSphere MQ System Administration Guide, SC34-6584.

In order for a communication link to be established over TCP/IP, the queue
manager must be listening for that connection to arrive on a particular port.

The IP address or host name of the machine, combined with a port number on
which a queue manager has an active listener, provides a connection name. This
connection name provides an identifier for the queue manager within the TCP/IP
network that other queue managers, or clients, can use to establish
communication.

Any port number that is not being listened on by another WebSphere MQ queue
manager or any other software running on the machine can be used for a queue
manager.

The well-known port number for WebSphere MQ is 1414. If a single queue
manager is hosted by a machine, it is common for this queue manager to listen
on TCP/IP port number 1414. If no port number is specified in a connection
name, WebSphere MQ assumes that the machine at a given host name or IP
address has a queue manager listening on port 1414.

5.3.9 WebSphere MQ listener
On all WebSphere MQ platforms, with the exception of WebSphere MQ for z/OS,
listening on TCP/IP is performed by the WebSphere MQ listener process.

This process listens for connections to arrive on a port and then creates a
message channel agent (MCA) to process that connection, whether it is a
distributed message channel, cluster message channel, or client connection. We
discuss message channels and MCAs in 7.1.2, “Message channel agents
(MCAs)” on page 157.

The MCA created by the WebSphere MQ listener does not run within its own
process on the system. Instead, the MCA is created within a pool of processes
by the listener process. The number of processes within this pool is managed
automatically by WebSphere MQ based on the number of MCAs active for the
queue manager.

This approach is generally called channel pooling. Using channel pooling means
that each MCA requires less resources than if it were running within its own
process. A queue manager can have thousands of connections active at any

 Chapter 5. Understanding and configuring queue managers 113

time depending on the design of the system and the loads on the queue
manager.

Listeners are created using the DEFINE LISTENER MQSC command and
started using the START LISTENER MQSC command.

In the WebSphere MQ Explorer, listeners can be created and started
automatically when creating a queue. Alternatively, create listeners by
right-clicking the Listeners folder under the queue manager in the navigator view
and selecting New → Listener.

You can start listeners using the WebSphere MQ Explorer by selecting the
Listeners folder under the queue manager in the navigator view. In the Listeners
content page that opens, right-click the listener object and select Start.

WebSphere MQ for Windows also supports LU 6.2, NetBIOS, and SPX listeners.

A listener can be configured to automatically start with the queue manager. We
recommend that all queue managers have a listener defined that is automatically
started with the queue manager, rather than manually starting the listener.

Note: Prior to Version 5.3, WebSphere MQ did not provide a channel pooling
mechanism on UNIX platforms. The operating system inetd listener process
was used instead. WebSphere MQ Version 5.3 and WebSphere MQ Version
6.0 still support the use of the inetd operating system listener. However, this
does not benefit from the channel pooling features provided by the
WebSphere MQ listener, because each MCA runs within its own process.

Note: Prior to WebSphere MQ Version 6.0, the WebSphere MQ listener was
not a queue manager object. For reference, the following methods for starting
a listener are available in WebSphere MQ, V5.3:

� In WebSphere MQ for UNIX platforms V5.3, you must manually run the
listener from a command shell using the runmqlsr WebSphere MQ control
command.

� In WebSphere MQ for iSeries V5.3, use the STRMQMLSR CL command to
start a listener.

� In WebSphere MQ for Windows V5.3, a listener was started, and you can
automatically start a listener with a queue manager using the amqmdain
crtlsr WebSphere MQ control command or the WebSphere MQ Services
snap-in.

114 WebSphere MQ V6 Fundamentals

5.3.10 WebSphere MQ for z/OS channel initiator
On WebSphere MQ for z/OS, listening on TCP/IP is performed within the
WebSphere MQ for z/OS channel initiator.

The WebSphere MQ channel initiator, also known as the mover, runs in the
address space of the queue manager. It hosts all message channel agents
(MCAs) for a queue manager, whether they host a distributed message channel,
cluster message channel, or client connection. We discuss message channels
and MCAs in 7.1.2, “Message channel agents (MCAs)” on page 157.

Start the channel initiator by issuing the START CHINIT command against the
subsystem of the queue manager.

Multiple TCP/IP listeners can be started within the channel initiator. Each listener
listens on a particular TCP/IP port. A listener is started using the START
LISTENER command against the subsystem of the queue manager.

WebSphere MQ for z/OS also supports LU 6.2 listeners.

5.3.11 The dead letter queue
WebSphere MQ provides assured delivery, and because of this, if a message
cannot be delivered to its destination queue, or to a transmission queue on route
to a destination, a consistent action is taken.

This involves placing the message on the dead letter queue of the last queue
manager that the message attempted to pass through on route to its destination.

When a queue manager is created, a dead letter queue is not automatically
created by WebSphere MQ. A queue must be created, and the queue manager
must be configured to use that dead letter queue.

Reasons why a message might not be deliverable include: A queue of the name
specified does not exist on the queue manager, the queue manager does not
have knowledge of the next queue manager on route to the destination, or a
queue already contains the maximum allowed number of messages specified for
that queue.

 Chapter 5. Understanding and configuring queue managers 115

We discuss dead letter queues and how they are configured in 7.4.11, “Message
delivery failures” on page 175.

5.3.12 The command server
WebSphere MQ enables administration to be performed remotely on queue
managers. To facilitate this, a command server can run within a queue manager.
This command server executes commands sent to that queue manager. We
describe these commands in 5.2.7, “Programmable command formats (PCFs)”
on page 97.

5.3.13 Logging
Logging is a fundamental function performed internally by a queue manager. A
queue manager’s log is a record of actions performed by the queue manager in
the order that they are performed.

All actions performed on persistent messages are logged as log records within
this log, as well as configuration changes to the objects of a queue manager and
other internal actions.

The method a queue manager uses to write to the log assures that the actions
that are logged are not completed until they have been written to reliable storage
in the log.

The log data is separate from the queue manager data. The queue manager
data contains only the current status of all objects and all messages stored on
queues for that queue manager. The methods used by the queue manager to
write to the queue manager data can involve buffering data in memory or writing
the data to reliable storage using optimized facilities provided by the operating
system.

Note: If no dead letter queue has been configured on a queue manager, and a
message cannot be delivered to that queue manager from another queue
manager, the transfer of all messages over the message channel that
connects those two queue managers stops. This message channel is only
able to start if configuration is performed on the target queue manager to
specify a dead letter queue or to allow the message to be delivered
successfully by defining a destination queue. Alternatively, the individual
message that cannot be delivered can be manually removed from the queue,
but this requires an application to identify and retrieve that message.

Because of this, configure a dead letter queue for all queue managers within
the message queuing infrastructure.

116 WebSphere MQ V6 Fundamentals

Because of this, it is possible that if the queue manager ends abruptly, for
example, because the machine fails abruptly, the queue manager data is in an
inconsistent state.

In these circumstances, the queue manager uses the log to rebuild the correct
current state of objects during the restart process. This is performed by replaying
log records since the last point of consistency between the log and the queue
manager data.

A queue manager regularly makes the log data and queue manager data
consistent with each other. This process happens during a checkpoint.
Checkpoints occur automatically while a queue manager is running and when a
queue manager ends.

If a queue manager is ended normally, the checkpoint means that a minimal
number of log records need to be replayed, and the queue manager starts
optimally. If a queue manager ends abruptly, more log records might need to be
replayed to start the queue manager.

If an item within the queue manager data becomes corrupted in some way, for
example, the message data for a queue, the object related to that item in the
queue manager, such as a queue, is marked as damaged. If an object is marked
as damaged, applications cannot access that object. If the object is a queue, the
messages on that queue are unavailable.

5.3.14 Media recovery
It might be possible to recover that object from the queue manager logs. This is
called media recovery. On WebSphere MQ for Windows and UNIX, the queue
manager must have been configured to use linear logging, rather than the
default circular logging, in order for media recovery to be available. On
WebSphere MQ for iSeries, the logging can be considered as always being linear
logging.

Considerations for logging and media recovery are different on WebSphere MQ
for z/OS and are not addressed in this book. Refer to WebSphere MQ for z/OS
V6.0 Concepts and Planning Guide, GC34-6582.

 Chapter 5. Understanding and configuring queue managers 117

The following points summarize circular and linear logging:

� Circular logging:
The queue manager manages the size of the log automatically, without any
administration being required. However, the queue manager only ensures
that enough information is held to maintain the integrity of business-critical
data, as held in persistent messages, and to perform a restart of the queue
manager. Media recovery is not available, because the logs do not contain
enough information about each object in the queue manager.

� Linear logging:
The queue manager maintains a continuous log from the point of creation of
the queue manager nd does not perform any management of the size of the
log. Therefore, the log contains all the information required to rebuild the
objects within the log. However, administration is required to archive or delete
logs that are no longer required or the available storage resources for the log
can eventually be filled.

A queue manager informs an administrator of the oldest log records required
to restart the queue manager. It also informs an administrator of the oldest log
records required to perform media recovery of the objects within that queue
manager.

An administrator can remove any log records that are older than the oldest
log record required for restart without affecting the operation of the queue
manager. However, an administrator can also choose to keep older log
records for a queue manager, possibly in a compressed form on backup
media, in order to facilitate the media recovery of objects.

A media image of individual objects within a queue manager, or all of the
objects within a queue manager, can be recorded in the log by an
administrator. Recording a media image writes all log records required to
perform media recovery of that object. Therefore, this can reduce the size of
the log required to perform media recovery. Without recording media images,
performing media recovery might require log records as old as the original
creation of an object being recovered and involve replaying a large number of
log records.

Note: WebSphere MQ V6.0 enables an administrator to determine the
oldest log records required to perform a media recovery of an individual
queue.

118 WebSphere MQ V6 Fundamentals

We recommend a more detailed understanding of logging for a queue manager
that hosts business-critical services. This knowledge can help when choosing the
logging mechanism for a queue manager, planning the administration of linear
logs, and for understanding how units of work affect logging. Refer to:

� Windows and UNIX:
WebSphere MQ System Administration Guide, SC34-6584, the “Recovery
and problem determination” section

� iSeries:
WebSphere MQ for iSeries V6.0 System Administration Guide, SC34-6586,
the “Backup, recovery and restart” section

5.3.15 Error logs
In WebSphere MQ for Windows, UNIX, and iSeries, important events that occur
for a queue manager are written to the queue manager error logs with time
stamps to show when those events occurred. These provide similar details for a
queue manager to the system logs provided for an operating system. Therefore,
they need to be regularly checked by the WebSphere MQ administrator for a
machine. Examples of the types of information contained in the queue manager
error logs includes:

� Information about the startup and shutdown of that queue manager.

� Information about the connections established to and from that queue
manager, including distributed message channels, cluster message
channels, and client connections. This includes information about failures.

� Security violations, where an attempt is made by an application to access an
object for which it is not authorized to access.

� Unexpected events that occur for the queue manager.

The queue manager error logs are contained in a set of human-readable files,
which can be opened in a text viewer. For each queue manager, a set of files are
held of a fixed size, 256 KB by default. Each time a file is filled, the queue
manager moves onto a new file, up to a maximum of three. The names of these
files are as follows:

� AMQERR01.LOG
� AMQERR02.LOG
� AMQERR03.LOG

 Chapter 5. Understanding and configuring queue managers 119

Some events that occur on a machine with WebSphere MQ installed cannot be
linked to an individual queue manager. These include information about failures
for a client application attempting to connect to a queue manager. These events
are logged in a set of error logs called the WebSphere MQ system error logs, in
the same format as queue manager error logs.

In a small number of cases, WebSphere MQ might associate an event with a
queue manager, but be unable to log the event for that particular queue manager.
In these cases, the event is either logged in another set of error logs, called the
system queue manager error logs, or a first-failure support technology (FFST)
report is generated. For more information, see 12.1.6, “First-failure support
technology (FFST)” on page 325.

The error logs are located in the following locations:

� Windows:

– Queue manager error logs:

C:\Program Files\IBM\WebSphere MQ\
Qmgrs\Queue_Manager_Name\errors

– WebSphere MQ system error logs:

C:\Program Files\IBM\WebSphere MQ\errors

– WebSphere MQ system error logs for a client only installation:

c:\Program Files\IBM\WebSphere MQ Client\errors

– System queue manager error logs:

C:\Program Files\IBM\WebSphere MQ\Qmgrs\@SYSTEM\errors

� UNIX:

– Queue manager error logs:

/var/mqm/qmgrs/Queue_Manager_Name/errors

– WebSphere MQ system error logs:

/var/mqm/errors

Note: In WebSphere MQ V6.0, the size of each error log can be configured
using the ErrorLogSize parameter in the queue manager configuration.
WebSphere MQ V6.0 also allows the frequency of logging for very common
events, such as establishing communication, to be limited. See the
“Configuring WebSphere MQ” section in WebSphere MQ System
Administration Guide, SC34-6584.

120 WebSphere MQ V6 Fundamentals

– System queue manager error logs:

/var/mqm/qmgrs/@SYSTEM/errors

� iSeries:

– Queue manager error logs:

/QIBM/UserData/mqm/Queue_Manager_Name/errors

– WebSphere MQ system error logs:

/QIBM/UserData/mqm/errors

– System queue manager error logs:

/QIBM/UserData/mqm/&SYSTEM/errors

5.3.16 64-bit hardware
64-bit hardware provides addressing of significantly more memory resources to
be available to an individual application than on a 32-bit system. In order for this
extra memory resource to be available to applications, the operating system
must also support 64-bit addressing.

WebSphere MQ queue managers on UNIX platforms prior to V6.0 did not exploit
the additional memory addressing provided by these platforms.

Applications that connected to queue managers from these platforms were only
able to exploit the 64-bit addressing provided by these 64-bit platforms by using
64-bit client products provided in SupportPacs. This reduced performance by
using a network connection.

WebSphere MQ V6.0 provides 64-bit queue managers on a number of UNIX
platforms. These queue managers still accept connections from 32-bit
applications using bindings or client connection methods, but can also accept
connections from 64-bit applications using bindings connections.

This allows applications providing services to exploit the 64-bit addressing
capabilities of the operating system and hardware, while using bindings
connections into WebSphere MQ Version 6.0 queue managers.

The queue manager also exploits the 64-bit addressing capabilities of these
platforms by allowing the capacity of an individual queue manager to scale
beyond the limits imposed by 32-bit addressing.

 Chapter 5. Understanding and configuring queue managers 121

See the following Web page for details about the 64-bit platforms currently
supported by WebSphere MQ:

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

Note: The 64-bit WebSphere MQ V6.0 queue managers are not necessarily
better performing than 32-bit WebSphere MQ V5.3 queue managers on the
same hardware. However, in some situations, the performance of WebSphere
MQ V5.3 was limited by 32-bit addressing, so in these circumstances,
performance improvements can be observed.

On platforms with 64-bit addressing, some internal structures used by
WebSphere MQ require more memory resources. Therefore, the ultimate
capacity of some 64-bit WebSphere MQ V6.0 queue managers might be lower
than a 32-bit WebSphere MQ V5.3 queue manager on the same hardware.
However, a 64-bit WebSphere MQ V6.0 queue manager is likely to scale to a
larger capacity on a more powerful server that provides a significant quantity
of memory resources. This is because some of this memory resource simply
cannot be used by a 32-bit queue manager.

122 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

Chapter 6. Technical introduction to
message queuing

This chapter provides details about the core functionality provided by
WebSphere MQ for message queuing. It provides information about the objects
that can be created within a queue manager and their use. We describe
WebSphere MQ messages and how to send and receive those messages using
the message queue interface (MQI).

Some of the details of the MQI do not directly apply to object-oriented, or
standardized application programming interfaces (APIs), such as the Java
Message Service (JMS). However, these APIs build on the core functionality
provided by the MQI. Because of this, gaining an understanding of the
WebSphere MQ objects, messages, and the MQI remains useful when
accessing that infrastructure through standardized APIs.

We discuss the following topics:

� Message queue interface

� Queues

� Triggering

6

© Copyright IBM Corp. 2005. All rights reserved. 123

6.1 Message queue interface
The message queue interface (MQI) is a procedural interface into messaging
with WebSphere MQ. Therefore, it is only used directly from procedural
programming languages, such as C. Many applications developed to access a
WebSphere MQ message queuing infrastructure use object-oriented languages,
such as Java or C++. Applications written in both procedural and object-oriented
languages can also benefit from using standardized interfaces into WebSphere
MQ messaging, such as the Java Message Server (JMS) or the Extended
Message Service (XMS).

However, these APIs all use the MQI in their underlying implementations, either
by calling into modules written in C or by sending MQI commands over a client
connection to the queue manager. Therefore, an understanding of the MQI itself
can be very useful when writing applications using these APIs and in
understanding the flow of messages through the WebSphere MQ infrastructure.

The MQI contains 13 functions, as well as structures and data types. These
provide access to the functionality provided by a queue manager for sending and
receiving message using a point-to-point model, defining the structure of
WebSphere MQ messages, and allowing the attributes of core object types to be
queried and modified.

6.1.1 WebSphere MQ message descriptor (MQMD)
A WebSphere MQ message descriptor (MQMD) is associated with every
message that resides on a queue within a queue manager. It is a structure
containing a number of fields that provide information about the message.

The MQMD for a message is passed into the queue manager by an application
separately from the message body, when it puts a message. It is returned by the
queue manager separately from the message body when an application gets a
message from a queue.

The following list provides a summary of commonly used fields contained in the
MQMD:

� Message type (MsgType):
WebSphere MQ messages can be marked as the following types:

– A datagram that does not need a reply, but can request reports.

– A request that requires a reply.

– A reply generated in response to a request.

– A report generated due to processing of a message.

124 WebSphere MQ V6 Fundamentals

� Report and feedback:
The report field is used to request report messages that are generated based
on the processing of a message by the queue manager or a target
application. For example, an application might request a report from the
destination queue manager that a message was delivered successfully, or it
might request a report from the target application that the message was
processed successfully. When a report message is generated, a code is
placed in the feedback field by the application, or queue manager, generating
the report. This code signifies the reason for the report being generated.

� Reply-to queue (ReplyToQ):
An application putting a request message, or specifying report options,
specifies a reply-to queue name in this field. Applications generating a reply
to a request, or a report in response to a datagram, put the reply or report to
this queue name.

� Reply-to queue manager (ReplyToQMgr):
This specifies the name of the queue manager where the reply-to queue is
hosted. WebSphere MQ automatically puts the name of the queue manager
to which the message is initially put in this field. An application only needs to
modify this field if it requires reports or replies to be sent to a queue on a
different queue manager.

� Message identifier (MsgId):
This is an identifier for the message. This can be specified by an application
or generated by the queue manager. The message identifier is returned by
the queue manager to an application putting a message, allowing for its use in
further processing.

A message identifier generated by a queue manager is unique within the
whole WebSphere MQ infrastructure. However, this depends on all queue
managers within the infrastructure having names that are unique within the
first 12 characters.

� Correlation identifier (CorrelId):
This field can be used by applications to provide a link between a message
and another message or an application. The most common use is to correlate
a reply with a request when using request/reply messaging. An application
processing a request copies the message identifier of the request into the
correlation identifier of the reply. If replies for multiple requests, or multiple
request applications, arrive on the same queue, an application can get the
correct reply by only getting messages with the correct correlation identifier.

� Persistence:
This field defines whether a message is persistent or nonpersistent, as
discussed in 3.4.1, “Persistent and nonpersistent messages” on page 41. If
not specified explicitly by an application putting a message, this field inherits
the default persistence of the queue to which the message is put.

 Chapter 6. Technical introduction to message queuing 125

� Priority:
Messages can be marked with a priority from 0 to 9. WebSphere MQ can be
configured so that messages with higher priorities are returned to applications
before messages with lower priorities.

� Coded character set identifier, CCSID (CodedCharSetId):
A CCSID identifies a character set that maps particular characters to
particular bytes or sets of bytes. For data that represents textual characters,
called string data, WebSphere MQ can perform a conversion between the
character sets so that the same characters are represented by the same data
in the message. We discuss this in 4.3.2, “Data conversion” on page 56. This
field defaults to the CCSID of the queue manager to which the message was
put, which is generally the CCSID of the machine.

� Encoding:
The order of the bytes within data that represents a number, called numeric
data, varies between platforms. WebSphere MQ uses the encoding field to
specify how numeric data represents a number. As with the CCSID,
conversion can be performed on numeric data by WebSphere MQ. The
encoding field defaults to the encoding of the machine where the message
was generated.

� Format:
The format field defines the type of data held within the message. The format
field can specify a type of data for the whole message, such as string data, a
numeric data type, or binary data. It can also specify a WebSphere MQ
structure type, which might be only the first of a number of structures
contained in a chain of structures within the message. Each of these
structures contains various types of data within each structure. The format
field defaults to binary data, on which WebSphere MQ performs no
conversion.

� Put time (PutTime) and put date (PutDate):
The queue manager stores a time and date in these fields, which represent
when the message arrived on the queue where it is currently stored.

� Expiry:
Messages can be given a lifetime, specified in this field in tenths of a second.
If the message remains in the WebSphere MQ message queuing
infrastructure for more than this time, it expires and becomes unavailable to
applications and becomes eligible for deletion by a queue manager. Expired
messages t are only deleted when an attempt is made to retrieve or view
them by an application. WebSphere MQ V6.0 has an expiry task that regularly
views all messages on all queues, causing expired messages to be deleted.

The MQMD contains information about the application that put the message to a
queue and the user identifier under which that application was running.

126 WebSphere MQ V6 Fundamentals

The MQMD contains information relating to grouped, or segmented, messages.
We discuss these messages in 4.6.7, “Segmentation of messages” on page 71.

6.1.2 Completion codes and reason codes
Every function call provided by the MQI returns a completion code (CompCode)
and a reason code (Reason):

� Completion code:
The completion code can have the following three values:

– MQCC_OK: The function call completed successfully.

– MQCC_WARNING: The function call partially completed. Check the reason
code for details.

– MQCC_FAILED: The function call failed. Check the reason code for details.

� Reason code:
There are multiple possible reason codes that can be returned from each
function call; some represent failures and some represent a partial completion
of the command. See the “Reason” section of the Fields description for the
individual function call being issued in WebSphere MQ Application
Programming Reference, SC34-6596.

The reason code is an integer value. To get the symbolic name from the
numeric value in hex or decimal, or to get the numeric value from the symbolic
name, use the mqrc WebSphere MQ command. The following example
commands give the same information for the MQRC_NO_MSG_AVAILABLE return
code:

mqrc MQRC_NO_MSG_AVAILABLE
mqrc 2033
mqrc 0x7F1
mqrc 0x000007f1

Refer to 12.1.2, “Reason codes” on page 323 for more information.

6.1.3 MQCONN and MQCONNX
Each application, or thread within that application, must make a connection to a
queue manager in order to send messages through the message queuing
infrastructure. This can be a local queue manager hosted on the same machine
as the application, or a remote queue manager hosted on another machine.

Whether an application connects to a local queue manager using bindings, or to
a remote queue manager using a client connection, is not chosen
programmatically in the MQI. For C applications using the MQI directly, this
choice is made by linking the application either with the bindings or client

 Chapter 6. Technical introduction to message queuing 127

libraries. When using other APIs, the method of choosing bindings or client
connections to a queue manager for an application depends on the API and is
discussed in the WebSphere MQ documentation for that API.

The MQI provides two functions that can be used to connect to a queue
manager: MQCONN and MQCONNX. These functions differ only in that
additional options can be passed to an MQCONNX call in a connection options
structure (MQCNO).

Using either call, the information required to perform a connection is the name of
the queue manager to which an application needs to connect. If a name is not
specified, and the application uses bindings connections, the default queue
manager is assumed, as described in 5.3.5, “The default queue manager” on
page 108.

An application can only connect to a queue manager if it is authorized to do so.
This authorization is based on an identity context. For applications using
bindings, this identity context is the user identifier provided by the operating
system under which the application is running. For client connections, the identity
context can be the user identifier under which the application is running, or the
queue manager might have been configured to provide the client with a particular
user identifier that exists on the remote machine where the queue manager is
hosted.

When successfully connected, the application is provided with a connection
handle (Hconn) that must be passed to all future MQI calls made by that
application.

6.1.4 MQOPEN and MQCLOSE
The MQOPEN MQI function is used to access a particular object within a
connected queue manager. A call to MQOPEN must be performed individually
for each object, such as a queue, that the application needs to access. Every
MQOPEN call should be partnered with a corresponding MQCLOSE call.

An application passes an object descriptor (MQOD) into the MQOPEN call. This
describes the object the application wants to open, providing a name for the
object. For queues, the name of a queue manager can also be provided. This
allows the application to target a particular message to a particular queue
manager in the system known to the local queue manager. See 6.2.1, “Queue
name resolution” on page 134 for more information.

It also passes in options to specify the actions to be performed by the application
on that object.

128 WebSphere MQ V6 Fundamentals

Based on the information provided in the object descriptor and the identity
context of the application, the queue manager determines whether the
application is authorized to perform the requested action on the specified object.
If it is authorized, the application is provided with an object handle (Hobj) that it
must pass to future MQI calls it makes against that object.

Not all types of objects can be accessed from the MQI. Most commonly, the MQI
is used to open queue objects to put and get messages. We discuss the types of
queue objects hosted by a queue manager and how queues on remote queue
manager can be accessed in 6.2, “Queues” on page 133.

The following possible actions can be requested in an MQOPEN call:

� Output: Put messages onto a queue using MQPUT calls. This is only
available for queue objects.

� Browse: Retrieve messages from a queue using MQGET calls, leaving them
available for other applications. This is only available for queue objects that
resolve to queues hosted on the queue manager to which the application is
connected.

� Input: Retrieve messages from a queue using MQGET calls, making them
unavailable to other applications after they are retrieved. Input can be
exclusive so that only one application can have the queue open for input at
any given time. This is only available for queue objects that resolve to queues
hosted on the queue manager to which the application is connected.

� Inquire: Get attribute values from the object using MQINQ calls.

� Set: Set attribute values for the object using MQSET calls.

6.1.5 MQPUT
The MQPUT MQI function is used to put messages onto queues opened for
output.

Calls to MQPUT are returned after the message has been placed on a queue on
the queue manager to which the application is connected. However, the queue
object opened in the MQOPEN call might have represented a queue destination
hosted on another, remote queue manager. In this case, the queue to which the
message is put is a transmission queue on the local queue manager.

Message delivery from this transmission queue to the target queue manager, or
another queue manager on route to the destination, is performed by message
channels. We discuss message channels in 7.4, “Distributed message channels”
on page 167.

 Chapter 6. Technical introduction to message queuing 129

A message descriptor structure (MQMD) is passed into the MQPUT call. During the
MQPUT, call the queue manager generates information within this structure and
returns it to the application within the same structure.

A put message options structure (MQPMO) is passed into the MQPUT call to
specify how the MQPUT call is performed, and some information is returned to
the application within this structure.

A common usage of the MQPMO is to specify that the MQPUT should be performed
under syncpoint. This means that the action of putting that message is contained
within the current unit of work, and the message is not available for other
applications to get or to be transferred to the target queue manager until an
MQCMIT call is made.

6.1.6 MQPUT1
The MQPUT1 MQI function performs an MQOPEN, followed by an MQPUT,
followed by an MQCLOSE. Enough information is provided to the call by an
application to perform all three operations.

The MQPUT1 call is convenient, and efficient, when an application is putting a
single message to a queue. This call is often used when putting a reply or a
report message.

6.1.7 MQGET
The MQGET MQI function is used to get messages from queues opened for
input or browse.

A message descriptor structure (MQMD) is passed into the MQGET call. The queue
manager returns the message descriptor of a message that is successfully
retrieved within this structure.

A get message options structure (MQGMO) is passed into the MQGET call to
specify how the MQGET call is performed, and some information is returned to
the application within this structure.

Note: If the same MQMD structure is used for multiple MQPUT calls, the fields
generated by the queue manager must be reset between these calls.
Specifically, the message identifier should be cleared, or all messages put with
that MQMD will have the same message identifier.

130 WebSphere MQ V6 Fundamentals

The MQGMO specifies whether the MQGET should browse messages, leaving them
available for other applications, or destructively get messages, removing them
from the queue.

An application might not be interested in all messages on a queue. For example,
the application might only be interested in reply or report messages relating to
datagrams or requests made by that application. To facilitate this, an application
can specify that it is only interested in messages with a particular correlation
identifier by placing that correlation identifier in the MQMD passed to the MQGET
call. The application can control whether any matching is performed against the
correlation identifier supplied in the MQMD using match options in the MQGMO. This is
called get by correlation identifier.

An application can also get by message identifier using the same mechanism.
However, this can be less efficient than the get by correlation identifier for
queues containing many messages and is not generally used under normal
operation. One use for get by message identifier is for administration tasks, such
as browsing or destructively getting a particular message from a queue.

The MQGMO specifies whether the application should wait for matching messages
to arrive on the queue, retrieving a matching message if it arrives within the
specified period. An application can choose not to wait for message to arrive, to
wait indefinitely for messages to arrive on a queue, or to wait for a wait interval
specified in milliseconds. Multiple applications can wait for messages to arrive on
a single queue. The order in which messages are retrieved from a queue when
multiple applications are waiting for messages is not defined.

An application provides a buffer to the MQGET call and specifies the size of this
buffer. If a message is too large to fit within this buffer, the application can use
the MQGMO to specify whether the queue manager should return a partial message
to the application, or fail the MQGET call.

The MQGMO specifies whether the MQGET should be performed under syncpoint.
This means that the action of getting that message is contained within the current
unit of work. The message remains on the queue, although unavailable for other
applications to get, until an MQCMIT call is made.

Note: We recommend performing MQGET calls under syncpoint and using a
subsequent MQCMIT call for applications getting persistent messages
containing business-critical data over a client connection. This protects the
message from loss due to communication failures between the application
and the queue manager, which can occur while the queue manager is sending
the message across the client connection to the application.

 Chapter 6. Technical introduction to message queuing 131

6.1.8 MQBEGIN
The MQBEGIN MQI function is only used when a queue manager has been
configured to coordinate global units of work involving database products. When
an application calls MQBEGIN, a new unit of work is started, which includes
database updates to database products correctly configured to participate in
WebSphere MQ coordinated units of work and MQPUT and MQGET calls made
under syncpoint.

If an external transaction manager has been configured to coordinate units of
work involving WebSphere MQ, a call must be made to that transaction manager
by the application in order to begin a unit of work.

We discuss global units of work in 4.5.5, “Global units of work” on page 63.

6.1.9 MQCMIT and MQBACK
The MQCMIT MQI function is used to commit the current unit of work. For local
units of work, those that only contain WebSphere MQ operations, this contains all
MQPUT and MQGET calls made under syncpoint since the application
connected or last performed an MQCMIT or MQBACK. For global units of work
coordinated by WebSphere MQ, those including database operations and
WebSphere MQ operations, this unit of work contains all MQPUT and MQGET
calls made under syncpoint since the application last performed an MQBEGIN,
MQCMIT, or MQBACK call.

The MQBACK MQI function is used to back out the current unit of work. The
operations contained in the unit of work are the same as described for MQCMIT.
Backing out a unit of work causes all operations to be undone, or rolled back.
Messages destructively got within the unit of work are returned to their queue,
and messages put within the unit of work are removed from their queue and
never become available to other applications.

6.1.10 MQINQ and MQSET
The MQINQ MQI function is used to query the values of specified attributes from
objects opened for inquire.

A set of selectors is passed into the MQINQ call. This set contains the names of
each attribute for which values are requested.

A set of buffers are also provided to contain the values returned by the call.
These buffers are split between buffers to store character string-based attributes,
such as a description, and buffers to contain numeric integer-based attributes,
such as the depth of a queue.

132 WebSphere MQ V6 Fundamentals

The MQSET MQI call is used to set the values of specified attributes of objects
opened for set.

Selectors and buffers are passed to the MQSET call; the buffers specify the new
values for the attributes when the call is issued.

6.1.11 MQDISC
An MQDISC should be performed corresponding to every MQCONN or
MQCONNX call made by an application. If the application fails to perform an
MQDISC call before exiting, or terminates abruptly, WebSphere MQ cleans up
the connection when it detects that the application has terminated.

An MQCMIT call is attempted by the queue manager during an MQDISC call
when WebSphere MQ is coordinating local or global units of work. If this
MQCMIT call fails, the application is notified in the result of the MQDISC call. If
an application does not perform an MQDISC call before exiting, the queue
manager performs an MQBACK call when it detects that the application has
terminated.

6.2 Queues
The term queue is used frequently in WebSphere MQ terminology. However, in
different contexts, the term has different meanings, as follows:

� A queue object:
Queue objects are objects defined within a queue manager and can be
specified in the object name when performing an MQOPEN call on that queue
manager. They are defined and administered using MQSC or the WebSphere
MQ Explorer.

There are a number of types of queue objects that can be defined. These can
represent an actual queue that can contain messages, or a method for finding
the destination of another queue within the WebSphere MQ infrastructure.

All types of queue objects can be displayed in MQSC using the general type
of QUEUE. Each individual queue object type is described in this section.

� A queue that can contain messages:
Only one type of queue object actually represents a queue within the queue
manager that can hold messages. This is a local queue object.

Transmission queues, which are the intermediate queues between queue
managers, are special cases of local queues.

Local queues can be defined explicitly within a queue manager.

 Chapter 6. Technical introduction to message queuing 133

Local queues can also be dynamically defined from model queue objects,
using an MQOPEN call against the model queue name. Local queues that
have been defined dynamically are generally called dynamic queues. They
are removed during an MQCLOSE call, and in the case of temporary dynamic
queues, they can be removed automatically by the queue manager when
applications disconnect.

� A cluster instance of a queue, known to the local queue manager:
These are generally referred to as cluster queues. A cluster queue is not an
actual queue object on the local queue manager. It is a representation, local
to the queue manager, of an instance of a queue object that exists
somewhere within a queue manager cluster. The actual queue object might
be hosted on the local queue manager, or it might be hosted on another
queue manager within the cluster. Multiple cluster queues can exist within a
queue manager with the same name. We discuss queue manager clusters
and cluster queues in more detail in Chapter 8, “Queue manager clusters” on
page 181.

6.2.1 Queue name resolution
When an application sends a message, the destination can be a queue on the
same queue manager to which the application is connected. However, it can also
be a destination on another queue manager within the WebSphere MQ
infrastructure. The queue manager to which the application is connected must
have knowledge of how to route messages to that remote queue manager. It
must have a queue designated to temporarily store messages travelling to that
destination, called a transmission queue.

There can be multiple intermediate queue managers between the queue
manager to which an application is connected and the final destination. Each
queue manager on route makes an independent decision regarding the next
destination for a message on route to its final destination. This is based on the
queue manager’s own knowledge of the infrastructure. This knowledge is
contained in the WebSphere MQ objects defined on that queue manager and

Note: All of the queue objects described in the rest of this section have
specific uses within a queue manager cluster. These uses include when
interconnecting queue manager clusters or interconnecting a queue manager
cluster with queue manager infrastructures that do not use queue manager
clusters.

However, when building a new WebSphere MQ infrastructure, using queue
manager clusters can remove many requirements for these object types and
thus simplify administration. See Chapter 8, “Queue manager clusters” on
page 181 for more information about queue manager clusters.

134 WebSphere MQ V6 Fundamentals

can be supplemented with knowledge received from other queue managers in a
queue manager cluster.

The process of resolving destination information, as provided by an application,
into the next destination for messages on route to their final destination is called
queue name resolution. Queue name resolution occurs within a queue manager
each time a message is received from an application or another queue manager.

Every time an MQOPEN call is performed to open a queue before putting
messages, queue name resolution is performed by the queue manager. This
takes the information provided in the MQOD structure on the MQOPEN call, the
object name, and object queue manager name, and attempts to resolve this
information into a valid destination queue name and queue manager name for
the message.

After queue name resolution has been performed, an application can put
messages to the resolved destination using MQPUT calls. This results in one of
the following actions being performed by the queue manager:

� If queue name resolution has identified that the destination queue is local to
the queue manager, the message are put directly into that queue.

� If queue name resolution has identified that the destination is on another
queue manager, known to the current queue manager, the message is put on
a transmission queue to be sent to that queue manager. This step requires
that information is added to the message so that queue name resolution can
be performed again when the message reaches the remote queue manager.
This information is called a transmission queue header. See 7.4.1, “Message
transmission” on page 167 for details about what happens to this message
after it has been placed on the transmission queue.

Figure 6-1 on page 136 provides a graphical overview of queue name resolution.
This chapter provides a description of each type of queue object, represented by
the icons within the queue name resolution box in Figure 6-1 on page 136. These
are the same icons used to represent each object type in the WebSphere MQ
Explorer.

Different types of objects affect queue name resolution in a different way. This is
illustrated with similar figures for each type of object in the following sections.
These figures show a circumstance in which the destination of a message is
affected by defining an object of that type on the queue manager to which an
application is connected.

Note: We discuss how queue name resolution is affected by being a member
of a queue manager cluster in 8.1.7, “Sharing queue objects within clusters”
on page 189.

 Chapter 6. Technical introduction to message queuing 135

Figure 6-1 Queue name resolution

6.2.2 Local queue objects and transmission queues
Local queue objects are the only type of queue object that represent a real queue
that holds messages. Local queue objects can be manually defined as described
in this section or created dynamically as described in 6.2.4, “Model queue
objects and dynamic creation of local queues” on page 141.

Because local queue objects are the only type that hold messages, they have a
wide variety of uses. This book generally refers to local queue objects as local
queues, because they represent a real queue.

A simple example of using a local queue is where multiple applications
communicate asynchronously on the same machine. Applications put messages
to and get messages from that same local queue.

Next queue
manager on route
to final destination.

Messages received from
another queue manager

Applications and channels send message
through a queue manager using two steps:

1. Opening a queue, specifying destination
information as follows:
- Object name
- Object queue manager name

2. Putting the message, or messages, to
that destination.

Note: The object queue manager name is
often left blank by applications to allow the
infrastructure to decide the destination.

Queue
manager

Locally hosted destination queue Transmission queue

Knowledge of routes to destinations from WebSphere MQ objects
defined on the queue manager (and queue manager clusters).

Application sending
messages

Queue name resolution uses the
destination information provided when
opening the queue and the knowledge of
the queue manager to determine the next
destination for the message in the
infrastructure.

This can resolve to the final destination
queue hosted by this queue manager.

It can also resolve to a remote destination
queue elsewhere in the infrastructure.
Resolved destination information is added
to the message, and it is placed on a
transmission queue to be sent to the next
queue manager on route to the destination.

Message +
destination
information

Message

channel (discussed later)

channel (discussed later)

2. Put messages containing
the data being sent.

Destination is remote?Destination is local?

Queue name resolution

1. Open a queue providing
destination information

Locally defined
queues

136 WebSphere MQ V6 Fundamentals

All other queue object types can be considered as methods for creating local
queues, resolving the name and location of local queues, or routing messages
between local queues.

Figure 6-2 shows an application putting a message to a local queue. In this case,
the queue name resolution simply resolves the object name specified to the local
queue using the local queue object defined.

Figure 6-2 Queue name resolution with a local queue object

Transmission queues
The USAGE attribute of a local queue object can be used to designate a local
queue as a transmission queue. To do this, specify the usage attribute of the
local queue as transmission (XMITQ).

If a local queue is designated as a transmission queue, applications should not
attempt to put messages to this queue directly.

The transmission of messages from a transmission queue to a remote queue
manager is performed by a message channel. We discuss message channels in
7.4.1, “Message transmission” on page 167.

Locally defined
queues

Local queue object defined called Queue_Name

Queue
manager

Queue_Name

Destination is local

Queue name resolution with a
local queue object

Destination information (specified in MQOPEN):
Object name: Queue_Name
Object queue manager name: Blank, or name of local queue manager

Message

Message

 Chapter 6. Technical introduction to message queuing 137

Defining a transmission queue provides a queue manager with knowledge of
how to route messages to a single destination queue manager. Any messages
sent with an object queue manager name the same as the name of the
transmission queue are placed on that transmission queue. For this reason, the
name of the transmission queue and the name of the remote queue manager
should generally match. However, the remote queue objects described in 6.2.5,
“Remote queue objects” on page 143 allow a route to be explicitly defined where
the queue manager name does not match the transmission queue name.

Figure 6-3 on page 139 shows an application sending a message and specifying
an object queue manager name. The message is placed on the transmission
queue, because the object queue manager name and the name of the
transmission queue match.

Note: Reply and report messages are sent using the ReplyToQMgr field in the
message descriptor of the original request or datagram message. If the queue
manager does not have knowledge of how to route messages to the reply-to
queue manager, the reply cannot be sent.

Defining a transmission queue with the same name as the reply-to queue
manager provides a queue manager with this knowledge.

138 WebSphere MQ V6 Fundamentals

Figure 6-3 Queue name resolution with a transmission queue

Manually defining local queue objects
The definition type (DEFTYPE) attribute of a local queue distinguishes between
local queues that have been manually defined and those that have been
dynamically created from model queue objects. For manually defined local
queues, the definition type (DEFTYPE) attribute is set to predefined (PREDEFINED).

You can manually define local queues using one of the following methods:

� Using the DEFINE QLOCAL MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Queues folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Local Queue.

Note: The definition type (DEFTYPE) attribute does not distinguish between
those local queues created automatically by WebSphere MQ when a queue
manager is created and those defined by an administrator.

Locally defined
queues

Local queue object defined called Remote_Qmgr_Name.
Usage (USAGE) is transmission (XMITQ).

Queue
manager

Remote_Qmgr_Name

Destination information (in
transmission queue header):

Any_Queue_Name
Remote_Qmgr_Name

Message

Destination is remote

Queue name resolution with a
transmission queue

Destination information (specified in MQOPEN):
Object name: Any_Queue_Name
Object queue manager name: Remote_Qmgr_Name

Message

 Chapter 6. Technical introduction to message queuing 139

c. Follow the instructions provided in the New Local Queue wizard.

6.2.3 Alias queue objects
An alias queue object is a representation of another target queue object, which
has a different name. An alias queue can be accessed in the same way as the
target queue object of which it is an alias. References to it are redirected to the
target queue object specified as part of the alias queue definition.

The target queue (TARGQ), or base queue, attribute of an alias queue object
specifies the name of the target queue object.

The target queue object specified must be one of the following types:

� A local queue defined on the same queue manager as the alias queue object.

� A remote queue object defined on the same queue manager as the alias
queue object.

� An instance of a queue object shared within a queue manager cluster of
which the queue manager is a member. We discuss queue manager clusters
in Chapter 8, “Queue manager clusters” on page 181.

Figure 6-4 on page 141 shows an application putting a message to a local queue
through an alias queue object. The object name requested by the application is
resolved into the target local queue object, as specified in the alias queue
definition.

Note: WebSphere MQ does not enforce that the specified target queue when
defining or altering an alias queue is the name of a valid queue object.
Attempts to perform an MQOPEN call for that alias queue, or routing of messages
through that alias queue, fail if the target queue is not valid.

140 WebSphere MQ V6 Fundamentals

Figure 6-4 Queue name resolution with an alias queue object, pointing at a local queue

Use one of the following methods to define alias queue objects:

� Using the DEFINE QALIAS MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Queues folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Alias Queue.

c. Follow the instructions provided in the New Alias Queue wizard.

6.2.4 Model queue objects and dynamic creation of local queues
Model queue objects provide the attributes of a local queue object that can be
created dynamically by an application. Dynamically created queues are
instances of local queues and can hold messages. This book generally refers to
a dynamically created instance of a local queue as a dynamic queue.

Dynamic queues can be used to give an application a temporary identity within
the WebSphere MQ message queuing infrastructure. The most common use is in

Locally defined
queues

Alias queue object defined called Alias_Queue_Name.
Target queue (TARGQ), or base queue, is Queue_Name.
Local queue object is also defined called Queue_Name.

Queue
manager

Queue_Name

Destination is local

Queue name resolution with an alias queue
object, pointing at a local queue object

Destination Information (specified in MQOPEN):
Object name: Alias_Queue_Name
Object queue manager name: Blank, or name of local queue manager

Message

Message

 Chapter 6. Technical introduction to message queuing 141

request/reply messaging to provide an individual reply-to queue for an
application. We discuss this in 4.6.14, “Reply-to queue considerations” on
page 75.

Simply by specifying the name of a model queue object in the object name of an
MQOD passed to an MQOPEN call, an application can dynamically create a local
queue. The name of the local queue that is created is not related to the name of
the model queue object.

The name of a dynamic queue can be chosen by the application that performs
the MQOPEN call using the dynamic queue name (DynamicQName) field in the
MQOD.

A wildcard can be placed at the end of the dynamic queue name field in an MQOD.
This causes the queue manager to generate the rest of the dynamic queue
name. This name is unique within the queue manager. To assure uniqueness
within the 48 characters available for a queue object name, a wildcard cannot be
placed after character 33 of the dynamic queue name field.

The default value of the dynamic queue name field in an MQOD is as follows:

� WebSphere MQ for z/OS:

CSQ.*

� WebSphere MQ for all other platforms:

AMQ.*

After it is created, the dynamic queue can be accessed in the same way as a
manually defined local queue. Applications must send messages to the queue
using its dynamically created name, not the name of the model queue object.

There are two distinct types of dynamic queue. The definition type (DEFTYPE)
attribute of a model queue object specifies the type of the dynamic queue that is
created by opening that model queue object. The type of a dynamic queue
defines how it can be used and when it is deleted by the queue manager. The
available definition types are as follows:

� Temporary dynamic (TEMPDYN):
The dynamic queue created, called a temporary dynamic local queue, can
only contain nonpersistent messages. This is because a queue manager can
automatically delete a temporary dynamic local queue. When this occurs, any
messages contained on the queue are lost. A temporary dynamic local queue
is deleted by the queue manager in the following circumstances:

– When the application performs an MQCLOSE specifying the object handle
(Hobj) returned from the MQOPEN call that created the queue.

142 WebSphere MQ V6 Fundamentals

– When the application disconnects from a queue manager by performing
an MQDISC call.

– After the queue manager has detected termination of the application if the
application ends without performing an MQDISC call.

– If the queue manager is restarted.

� Permanent dynamic (PERMDYN):
The dynamic queue created, called a permanent dynamic local queue, can
contain persistent or nonpersistent messages. Permanent dynamic local
queues are not deleted automatically by a queue manager. Permanent
dynamic local queues can be manually deleted as follows:

– An application, not necessarily the application that performed the
MQOPEN call that originally created the queue, performs an MQCLOSE
call specifying the delete (MQCO_DELETE) option. This call is only
successfully completed if the queue is empty.

– An application, not necessarily the application that performed the
MQOPEN call that originally created the queue, performs an MQCLOSE
call specifying the delete-purge (MQCO_DELETE_PURGE) option. This
succeeds if the queue contains messages. However, it fails if any
messages on the queue have been put or got within a unit of work, and
that unit of work has not yet been committed or backed out; these are
uncommitted messages.

– By deleting the queue object using an administration interface, such as the
WebSphere MQ Explorer or MQSC.

Use one of the following methods to define model queue objects:

� Using the DEFINE QMODEL MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Queues folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Model Queue.

c. Follow the instructions provided in the New Model Queue wizard.

6.2.5 Remote queue objects
Remote queue objects are used to define routes to other queue managers within
the WebSphere MQ message queuing infrastructure. This involves mapping
queue manager names to transmission queues, and mapping queue names to
different queue names on remote queue managers.

 Chapter 6. Technical introduction to message queuing 143

A remote queue object can be used in three ways:

� As a local definition of a remote queue:
This enables an application to open a remote queue object to put messages
without specifying an explicit remote queue manager name in the same way
as though it was a local queue. This can be used to place a queue on a
remote queue manager without making any changes to an application that
was originally written to access a local queue. To create a local definition of a
remote queue, create a remote queue object with attributes as follows:

– The name of the remote queue object:
The name of the queue to which applications connected to the queue
manager put messages.

– Remote name (RNAME):
The name of the queue on the destination queue manager. It can be the
same as the name of the remote queue object. Queue name resolution is
performed on the remote machine using this queue name.

– Remote queue manager name (RQMNAME):
The name of the destination queue manager, not necessarily the next
queue manager on route. Queue name resolution is performed on the
remote machine using this queue manager name.

– Transmission queue (XMITQ):
This attribute specifies the name of the transmission queue that takes the
message to the next queue manager on route to the destination. If the
remote queue manager name is the same as the transmission queue
name, this attribute can be left blank.

Figure 6-5 on page 145 shows an application sending a message through a
local definition of a remote queue. The object name specified by the
application is the name of the remote queue object. Queue name resolution
places this message on the transmission queue specified in the remote
queue object definition. A transmission queue header is added to the
message, which contains the remote name and remote queue manager name
attributes from the remote queue object definition. When the message
reaches its destination, the information in the transmission queue header is
used to perform queue name resolution on that remote queue manager.

144 WebSphere MQ V6 Fundamentals

Figure 6-5 Queue name resolution with a local definition of a remote queue

� As a queue manager alias:
These are used to provide a queue manager with knowledge of a route to a
destination queue manager. This includes when the name of the destination
queue manager is not the same as the transmission queue used to route
messages to that queue manager. Queue manager aliases can also be used
to map one queue manager name to another. This includes mapping to a
blank queue manager name to designate the local queue manager, or that
workload balancing needs to be performed when using queue manager
clusters.

– The name of the remote queue object:
This is the name of the queue manager that is being aliased. Queue name
resolution uses this object, where the object queue manager name
specified matches the name of the remote queue object.

– Remote name (RNAME):
This must be blank for a queue manager alias.

Locally defined
queues

Queue
manager

Xmit_Queue_Name

Destination information (in
transmission queue header):

Remote_Queue_Name
Remote_Qmgr_Name

Message

Destination is remote

Queue name resolution with a
local definition of a remote queue

Destination information (specified in MQOPEN):
Object name: Queue_Name
Object queue manager name: Blank, or name of local queue manager

Message

Remote queue object defined called Queue_Name.
Remote name (RNAME) is Remote_Queue_Name.
Remote queue manager name (RQMNAME) is Remote_Qmgr_Name.
Transmission queue (XMITQ) is Xmit_Queue_Name.

Note: If Xmit_Queue_Name
is the same as
Remote_Qmgr_Name,
the transmission queue (XMITQ)
attribute can be blank.

 Chapter 6. Technical introduction to message queuing 145

– Remote queue manager name (RQMNAME):
This is the name of the destination queue manager, not necessarily the
next queue manager on route. After a message has been routed to the
next queue manager on route using the specified transmission queue, this
queue manager name is used for queue name resolution. It can be left
blank to designate that queue name resolution needs to be performed as if
no queue manager name had been specified.

– Transmission queue (XMITQ):
This attribute specifies the name of the transmission queue that takes the
message to the next queue manager on route to the destination. If the
remote queue manager name is the same as the transmission queue
name, this attribute can be left blank. It is also left blank when defining an
alias for the local queue manager.

Figure 6-6 shows an application sending a message through a queue
manager alias. The object queue manager name specified by the application
is mapped to a different queue manager name, and the message is placed on
a transmission queue to be delivered to that queue manager.

Figure 6-6 Queue name resolution with a queue manager alias

Locally defined
queues

Queue
manager

Xmit_Queue_Name

Destination information (in
transmission queue header):

Any_Queue_Name
Remote_Qmgr_Name

Message

Destination is remote

Queue name resolution with a
queue manager alias

Destination information (specified in MQOPEN):
Object name: Any_Queue_Name
Object queue manager name: Alias_Qmgr_Name

Message

Remote queue object defined called Alias_Qmgr_Name.
Remote name (RNAME) is blank.
Remote queue manager name (RQMNAME) is Remote_Qmgr_Name.
Transmission queue (XMITQ) is Xmit_Queue_Name.

Note: If Xmit_Queue_Name
is the same as
Remote_Qmgr_Name,
the transmission queue (XMITQ)
attribute can be blank.

146 WebSphere MQ V6 Fundamentals

� As a reply-to queue alias:
These can be used to customize the routes that replies take back to a queue
manager through the infrastructure. These affect the reply-to queue manager
name in the message descriptor when an application puts a message, rather
than affecting queue name resolution when opening a queue. The use of
reply-to queue aliases is beyond the scope of this book. Refer to WebSphere
MQ Intercommunication, SC34-6587 for more information.

Use one of the following methods to define remote queue objects:

� Using the DEFINE QREMOTE MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Queues folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Remote Queue.

c. Follow the instructions provided in the New Remote Queue wizard.

6.2.6 Default attributes and authority checks
During the process of opening a queue, WebSphere MQ performs authority
checks to determine whether an entity is authorized to perform the requested
actions. We discuss this in 11.2, “Granting access to queue manager resources”
on page 303.

WebSphere MQ also sets up some defaults for messages that are subsequently
sent by the application opening the queue. The application can choose to
override these defaults.

These authority checks and defaults are based on the attributes and permissions
of one WebSphere MQ object. This can be considered as the first WebSphere
MQ object accessed while resolving the queue name specified by the
application.

When sending messages, the object used depends on the combination of object
name and object queue manager name specified by the application sending the
message. Table 6-1 on page 148 summarizes the possible combinations. This
includes those relating to queue manager clusters. We discuss queue manager
clusters in Chapter 8, “Queue manager clusters” on page 181.

 Chapter 6. Technical introduction to message queuing 147

Table 6-1 WebSphere MQ object used for authority checks and defaults

Default persistence
A commonly used queue attribute is the default persistence (DEFPSIST) attribute.
When messages are put, an application can choose whether a message is
persistent or not as an option to the MQPUT call. Alternatively, the application
can allow the default persistence attribute of the queue object to define whether
messages are persistent or not.

For example, a queue manager has a local queue called local.psist defined
with DEFPSIST(YES). This same queue manager has an alias queue defined
called alias.nonpsist with DEFPSIST(NO) and TARGQ('local.psist'). A
message put after opening local.psist is persistent. A message put having
opened alias.nonpsist is nonpersistent. However, both are placed on the same
queue.

Object name Object queue
manager name

WebSphere MQ object used for
authority checks and defaults

The name of a local,
alias, model, or remote
queue object defined
on the local queue
manager

Blank, or the name of
the local queue
manager

The WebSphere MQ object with
the specified name.

Anything The name of a remote
queue manager that
can be resolved to a
transmission queue

The transmission queue.

The name of a queue
shared within a queue
manager cluster of
which the queue
manager is a member

Blank Authority checks are performed
based on the
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

The defaults are taken from the
definition of the queue object on
the remote queue manager. The
defaults can be seen by
displaying the attributes of the
cluster queue record, for
example, using DISPLAY
QCLUSTER in MQSC.

Note: This is an example, rather than a recommended approach. WebSphere
MQ is most efficient when all messages on a queue are either persistent or
nonpersistent.

148 WebSphere MQ V6 Fundamentals

6.2.7 Queue status and online monitoring for queues
Local queues are the most important resource hosted by a queue manager,
because they contain all of the messages that reside within that queue manager.

When monitoring the operation of the applications accessing a queue manager,
or when diagnosing problems with those applications, an administrator is likely to
require knowledge of how applications are accessing particular queues.
Information about the flow of messages through particular queues can also be
useful to identify and resolve problems or monitor performance when
provisioning resources.

For this purpose, WebSphere MQ provides monitoring information about the
status of each local queue hosted by a queue manager. A summary of this
information, which has been significantly enhanced in WebSphere MQ V6.0, is
as follows:

� The number of messages on the queue.

� The number of applications with the queue open for input or browse.

� The last time and date an application got a message from the queue.

� The number of applications with the queue open for output.

� The last time and date an application put a message to the queue.

� The number of uncommitted messages on the queue. These are messages
that have been put to or got from a queue within a unit of work that is not yet
complete.

� Information about each application connection to the queue manager that has
the queue open. This includes the following information:

– The name of the application that created that connection

– The process identifier of the application

– The identity context under which the application is running

– The actions for which the application opened the queue, such as browse,
input, output, or inquire

– If the connection is remote to the queue manager using a client
connection, the information is provided about that connection

– Whether the application is actively performing work against the queue
manager

 Chapter 6. Technical introduction to message queuing 149

� Information regarding the performance of the applications using the queue.
This includes the following information:

– Short-term and longer-term estimated averages of the time each message
spends on the queue before being retrieved. These are provided in
microseconds, because a message might spend a very short amount of
time on a queue.

– The largest amount of time that any message currently on the queue has
spent on that queue. This is provided in seconds. For queues where
messages flow through this queue quickly, a large value can represent a
problem with the processing of one of the messages on the queue.

Use one of the following methods to view queue status information:

� Using the DISPLAY QSTATUS MQSC command.

� Using the WebSphere MQ Explorer. This is generally the most convenient
way to view queue status information.

a. Click the Queues folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Right-click the local queue of interest in the table shown on the Queues
content page.

c. Select Status.

6.3 Triggering
Messages arriving on queues represent events within the system. In most cases,
processing of that message is required.

WebSphere MQ provides triggering to allow this processing to automatically be
initiated by a queue manager. This processing can represent starting a channel
to move messages from a transmission queue to a remote queue manager, or
starting an application instance to perform an action on a message or a batch of
messages.

Note: This performance-related queue monitoring information is new for
WebSphere MQ V6.0. This information is called online monitoring
information. It can be enabled for all queues on a queue manager using the
MONQ attribute on the queue manager object, or for specific local queues
using the MONQ attribute on the queue. See Monitoring WebSphere MQ,
SC34-6593, for more information. Alternatively, press F1 with the Online
monitoring section of the properties page for a queue manager highlighted
in the WebSphere MQ Explorer.

150 WebSphere MQ V6 Fundamentals

Depending on the use of a queue, a message arriving on that queue might, or
might not, represent an event for which processing must be performed. The
queue can be configured to generate trigger events that match the usage of that
queue.

6.3.1 Generation of trigger events
A queue can be configured in the following ways to generate trigger events:

� Every:
A trigger message is generated for every message that arrives on the queue.
To enable this form of triggering on a local queue, specify the following
attributes:

– Trigger control to on: TRIGGER
– Trigger type to every: TRIGTYPE(EVERY)

� First:
After a queue becomes empty, the first message that arrives on that queue
generates a trigger event. A trigger event is usually generated if any
application has the queue open for input to retrieve messages. However, if a
message arrives after a specified trigger interval, and no application has the
queue open for input, another trigger event occurs. To enable this form of
triggering on a local queue, specify the following attributes:

– Trigger control to on: TRIGGER
– Trigger type to first: TRIGTYPE(FIRST)
– Trigger interval, which is a queue manager-wide attribute on the queue

manager object, to the required number of milliseconds: TRIGINT(5000)

� Depth:
A message arriving on a queue, which brings the total number of messages
on a queue above a certain threshold, generates a trigger event. A trigger
event is not generated if any application has the queue open for input to
retrieve messages. This form of triggering is configured by specifying the
following attributes on a local queue:

– Trigger control to on: TRIGGER
– Trigger type to first: TRIGTYPE(DEPTH)
– Trigger depth to the threshold required: TRIGDPTH(10)

Note: There are a number of conditions that must be met for a trigger event to
occur. If a trigger event is not generated when expected, we recommend that
you check each condition in turn to diagnose the problem. The “Starting
WebSphere MQ applications using triggers” section in WebSphere MQ
Application Programming Guide, SC34-6595, provides the full list of
conditions.

 Chapter 6. Technical introduction to message queuing 151

6.3.2 Initiation queues and trigger messages
When a trigger event occurs, a message is placed on an initiation queue. This
message is called a trigger message. The name of this queue onto which the
trigger message is place is specified in the initiation queue (INITQ) attribute of a
local queue object.

Any local queue can be designated as an initiation queue. No special
configuration needs to be performed on a local queue in order for it to be
designated as an initiation queue, but it should not be configured as a
transmission queue.

Each trigger message contains information about the action that needs to be
performed in response to the trigger event. The message contains the following
information:

� A queue name:
This is the name of the queue from which the event was generated.

� Details of an application to execute:
Details of how to execute an application are platform specific. WebSphere
MQ provides the PROCESS object type. This has attributes that provide enough
information to execute a particular application in the operating system. If the
PROCESS attribute of the queue that generated the event contains the name of
a valid PROCESS object, the trigger message contains all attributes from that
object.

� Trigger data:
This is custom data from the trigger data (TRIGDATA) attribute of the queue
that generated the event.

6.3.3 Trigger monitors
An application that waits for messages to arrive on a local queue designated as
an initiation queue is referred to as a trigger monitor.

Trigger monitors provided by WebSphere MQ
WebSphere MQ provides trigger monitors for each platform. These are provided
to perform the core functionality of executing applications based on the PROCESS
definition each time a trigger event is generated. The details of the trigger event
are passed to the application that is invoked.

Refer to the “Writing WebSphere MQ applications” section in WebSphere MQ
Application Programming Guide, SC34-6595, for further details.

152 WebSphere MQ V6 Fundamentals

The WebSphere MQ distributed channel initiator
The WebSphere MQ distributed channel initiator is a WebSphere MQ process
started automatically with the queue manager by default. It is a special trigger
monitor that starts message channels from the names of channels specified in
the trigger data attribute of transmission queues configured for triggering. See
7.4.13, “Channel initiation” on page 178 for details.

Note: Do not confuse the channel initiator described in this section with the
WebSphere MQ for z/OS channel initiator described in 5.3.10, “WebSphere
MQ for z/OS channel initiator” on page 115.

WebSphere MQ for z/OS and WebSphere MQ for iSeries provide channel
listener programs that provide the functionality for starting channels.

 Chapter 6. Technical introduction to message queuing 153

154 WebSphere MQ V6 Fundamentals

Chapter 7. Queue manager
intercommunication and
client connections in
WebSphere MQ

This chapter describes how intercommunication to and from a queue manager
occurs, including applications connecting remotely as clients to a queue
manager communicating between queue managers over message channels.

We discuss the following topics:

� Channels

� Starting and stopping channels

� Client channels

� Distributed message channels

� Channel auto-definition

7

© Copyright IBM Corp. 2005. All rights reserved. 155

7.1 Channels
All network communication in WebSphere MQ is performed across a channel. As
with the term queue, the term channel is used regularly within WebSphere MQ
terminology and can have different meanings in different contexts. We
summarize these meanings here:

� An established network communication link between two queue managers, or
between a client application and a queue manager:
After a WebSphere MQ network communication link has been established
through which messages can flow or MQI commands can be issued, it is
referred to as a channel.
A channel between two queue managers over which messages can flow is
referred to as a message channel.
A channel between a client application and a queue manager over which MQI
calls are issued is referred to as a client channel, or MQI channel.

� A channel object:
Channel objects are objects defined within a queue manager. Each channel
object has a name and a channel type.

The attributes of a channel object define how communication is performed.
For example, these attributes can specify whether Secure Sockets Layer
(SSL) authentication is required when establishing a channel.

Some channel object types are used to define how message channels can be
established for that queue manager. Other channel object types are used to
define how message channels can be established to other queue managers
in the infrastructure.

Some channel object types are used to join a queue manager to a queue
manager cluster. After the channel objects required to join a queue manager
cluster have been defined, message channels are established automatically
to and from the other queue managers in the queue manager cluster.

Other channel object types are used to define how applications can connect
directly to a queue manager over a network.

� A message channel agent (MCA):
Every channel in WebSphere MQ is a network link between two message
channel agents (MCAs).

Each connection established or attempted to or from a queue manager is
hosted by a message channel agent.

A connection performed by an application connecting to a queue manager is
also performed by an MCA, even though it is not performed from within a
queue manager.

156 WebSphere MQ V6 Fundamentals

7.1.1 Introduction to client channels
When using a client channel to connect to a queue manager, the MCA is invoked
to communicate with the remote queue manager whenever a WebSphere MQ
function call is issued by the application. This MCA is provided by the client API
being used to connect to the queue manager.

This client API can be part of the core WebSphere MQ client product. However, it
can also be the Java Message Service (JMS) client that is provided with the
WebSphere Application Server product, or another client product such as
provided in the Extended Message Service (XMS).

A client channel passes MQI commands to a queue manager. However, the
interface into the client MCA can be through an object-oriented interface, such as
the WebSphere MQ C++ or Java APIs, or a standardized interface, such as the
JMS API or the XMS API. Function calls within these APIs that send or receive
messages through the WebSphere MQ infrastructure perform the MQI
commands within the MCA.

7.1.2 Message channel agents (MCAs)
An MCA establishes a channel with a partner MCA hosted by a queue manager
through the listener provided by that queue manager.

The name and attributes of both MCAs are usually taken from channel objects
defined on a queue manager. However, applications using client channels can
manually specify the name and attributes of their MCA.

Channel auto-definition can occur on a queue manager to allow a queue
manager to receive a connection and start an MCA where no channel object of
the correct name exists on the queue manager. A channel object of the correct
name and type is automatically defined on that queue manager and remains
after the channel has disconnected. We discuss channel auto-definition in 7.5,
“Channel auto-definition” on page 179.

In order to establish a channel, the two MCAs negotiate, or bind. The following
list describes of some steps performed between the two MCAs during this
negotiation stage:

� The MCA that decides whether to accept a connection must ensure that a
channel object is known to the queue manager of a correct name and type to
accept a connection from the remote MCA. Channel auto-definition can be
used to create this object, as described in 7.5, “Channel auto-definition” on
page 179. The attributes of this object affect the negotiation.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 157

� Channel objects can be disabled. If either channel object is disabled, the
channel does not start. See 7.2.1, “Understanding channel status” on
page 160 for a description of how a channel is disabled.

� An SSL handshake might be performed depending on the configuration of the
two MCAs. The MCA accepting the connection or both of the MCAs provide a
certificate for validation by the partner during this handshake. An MCA can be
configured to only accept a connection from an entity with a certain
distinguished name within its validated certificate.

� An identity context is established for the partner MCA. This is most significant
for client channels, where this identity context is used to authenticate each
MQI call. This can be the user identifier the client application (or partner MCA)
is running under, or forced to a particular user identifier by the queue
manager based on a channel attribute.

� Some attributes of the channel must be negotiated between the two MCAs in
order to find a value acceptable to both MCAs. The batch size is one such
attribute, as described in 7.4.2, “Batches” on page 170. These attributes are
usually numeric and generally take the lower value of the two MCAs.

Figure 7-1 summarizes how two MCAs establish a channel.

Figure 7-1 Establishing a channel between queue managers or from an application to a queue manager

Network
Queue manager 2

Channel objects
that define the
connections
that this
queue manager
can establish.

Queue manager 1

MCA 1

MCA 2

MCA started
using the name
and attributes
from a channel
object defined on
queue manager 1.

Channel objects
that define
the connections
that can
be received into
this queue
manager.

Listener
(on a TCP/IP
port number,
for example)

1a

2 MCA 1 contacts
a target
queue manager
over the network
through its listener.

MCA started by an
application connecting
to queue manager 2
as a client.
The application can
specify the name and
attributes of the
channel.

1b

or

Application

3 Queue manager 2
creates
an MCA to accept
the connection.

Negotiation to
establish channel

4 The two MCAs negotiate, or bind, to establish the channel.

MCA 2 takes its attributes from a channel object defined on queue manager 2, which must have a
matching name to that used by MCA 1 and be of a valid type to receive that connection.

After the channel is established, messages (for message channels between queue managers) or MQI
commands (for applications connecting as clients to a queue manager) can flow across that channel.

158 WebSphere MQ V6 Fundamentals

7.2 Starting and stopping channels
Starting a channel represents initiating an MCA to connect to an MCA on a
remote queue manager and establish a channel.

Stopping a channel represents ending communication between two MCAs that
have established a channel.

Client channels are started when an application connects to a queue manager
and remain active until that application disconnects.

The START CHANNEL and STOP CHANNEL MQSC commands can be used to
start and stop message channels between queue managers. They are also used
to enable and disable channel objects to control whether channels can be started
using those channel objects.

The same functionality is provided by the WebSphere MQ Explorer by selecting
the Channels folder under a queue manager in the navigator view, right-clicking
a channel object, and selecting Start or Stop.

Issuing a start command against a message channel object, which is of a type
that establishes a channel from a queue manager to another queue manager,
causes that channel to become active and begin transferring messages between
the transmission queue of one queue manager and queues on the other queue
manager.

However, message channels can also be started automatically when messages
arrive on a transmission queue using a channel initiator. Message channels in a
queue manager cluster are started automatically by a queue manager by a
channel initiator when required.

Issuing a stop command against a channel object has two functions:

� To end all channels associated with that channel object, allowing them to be
restarted by a client application, channel negotiator, or queue manager
cluster when next required.

In MQSC, this action is performed using the MODE(INACTIVE) attribute on the
STOP CHANNEL command. In the WebSphere MQ Explorer, this action is
performed by selecting Inactive from the New state drop-down list on the
Stop Channel window.

� To disable that channel object so that no channels can be established that
use that channel object until the channel is enabled and manually started
again using a start command.

In MQSC, this action is performed using the MODE(STOPPED) attribute on the
STOP CHANNEL command. In the WebSphere MQ Explorer, this action is

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 159

performed by selecting Stopped from the New state drop-down list on the
Stop Channel window.

7.2.1 Understanding channel status
A queue manager holds status records associated with the channel objects
known to that queue manager. These channel objects are the ones manually
defined on that queue manager, defined automatically using channel
auto-definition, or known through a queue manager cluster.

For channel types that can accept connections from applications or other queue
managers, there can be multiple status records associated with a single channel
object. This is because a queue manager can accept multiple connections using
that channel object.

Status records are accessed with the DISPLAY CHSTATUS MQSC command.
The most significant attribute of a status record is the STATUS attribute, which
represents the overall state of that channel.

If no channel status records exist for a channel object, the channel associated
with that channel object is referred to as inactive, or in the INACTIVE state.

The STATUS attribute of a status record can have the following values:

� RUNNING: A running channel is one where the MCAs have successfully
negotiated, and messages or MQI commands can flow across that channel.

� STOPPED: The channel object associated with the status record is disabled.
This means that the channel that would be established using the channel
object is not able to start until the channel is enabled. This status can be
entered by manually stopping the channel using the STOP CHANNEL MQSC
command or the WebSphere MQ Explorer. A channel object can be enabled
using the START CHANNEL MQSC command or using the WebSphere MQ
Explorer. For channel objects that establish channels, this action causes the
channel to start. A STOPPED status record persists across a queue manager
restart.

Note: In the WebSphere MQ Explorer, all status records corresponding to a
distributed message channel, or client channel, object can be displayed. To do
this, select the Channels folder under the queue manager in the navigator
view, right-click a particular channel, and select Status → Current status.

160 WebSphere MQ V6 Fundamentals

� RETRYING: For channels that establish connections, an attempt to start the
channel has failed. The channel automatically retries the connection at
regular intervals. This behavior is defined using the short retry interval
(SHORTTMR), short retry count (SHORTRTY), long retry interval (LONGTMR), and
long retry (LONGRTY) attributes of the channel object. After the configured
number of retry attempts have been performed, the channel enters STOPPED
status and must be manually restarted. A RETRYING status record persists
across a queue manager restart.

� STOPPING, STARTING, BINDING, REQUESTING, INITIALIZING: These are
intermediate states channels can enter while being established or ending.

� PAUSED: This state relates to message channels retrying the action of
delivering a message. We describe this in 7.4.11, “Message delivery failures”
on page 175.

7.2.2 Channel names
Channel names can contain a maximum of 20 characters. These can be
uppercase characters, lowercase characters, numeric characters, or the . / _ %
symbol characters.

This length is significantly shorter than the 48-character maximum length of a
queue manager name on platforms except WebSphere MQ for z/OS. A channel
name should reflect its use in a consistent way to aid administration.

If you keep all queue manager names within the system 17 characters or shorter,
you can use the following naming scheme for all channels within the system:

TO.Destination_Qmgr

This naming convention can work for both distributed and cluster message
channels. It is flexible from the perspective that multiple queue managers can
connect to a queue manager using the same channel name, but each channel
from a particular queue manager only connects to one destination queue
manager.

7.3 Client channels
Client channels enable applications that are not running on the same machine as
a queue manager to connect to that queue manager and perform the same
operations as though they were connected to that queue manager locally.

Client channels can also be used to connect an application that is running on the
same machine as a queue manager in order to benefit from the stability provided
by client channels. Connecting to a queue manager using a client channel

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 161

provides the greatest isolation between the application and the queue manager;
so if an application fails and corrupts the resources to which it has access, it is
least likely to affect the operation of the queue manager.

7.3.1 Operation of client channels
When an application connects to a queue manager using the connect
mechanism provided by the API used to develop the application, it invokes an
MCA provided by that client API. This MCA is called a client MCA in this book.

This MCA establishes communication with the queue manager over a client
channel through the listener provided by that queue manager. It issues an
MQCONN or MQCONNX MQI call over that channel to create a connection.

All subsequent message queuing calls made by the application that use that
queue manager call into the MCA. The MCA issues MQI calls to the queue
manager across the client connection.

At the queue manager side of the connection, a server connection MCA is
started by the queue manager. This performs the MQI calls requested by the
client MCA using a local connection to the queue manager.

The attributes of this server connection MCA can be based on a server
connection channel object defined on that queue manager, or it can be defined
automatically using channel auto-definition, as described in 7.5, “Channel
auto-definition” on page 179.

7.3.2 Server connection channel objects
A server connection channel object defines the name of a channel that a client
can use to connect to a queue manager and the attributes of the MCA that hosts
that connection.

Use one of the following methods to define the server channel objects:

� Using the DEFINE CHANNEL CHLTYPE(SVRCONN) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Channels folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Server-connection Channel.

One important consideration for server connection channel objects is the identity
context that the server connection MCA assumes when performing MQI
commands.

162 WebSphere MQ V6 Fundamentals

7.3.3 Security considerations
By default, this identity context is the user identifier under which the application is
running on the remote machine where it is running. However, there are
complications relating to the passing of user identifiers between different
machines with different operating systems. Some examples of this include:

� The listener for a queue manager listens on a TCP/IP port on the machine
that hosts the queue manager. It might be difficult to restrict access to this
port to only the machines in the network or in interconnected networks that
are designated to connect to the queue manager. It might be possible for one
of these applications to run under the mqm administrator user identifier on the
local machine, and thus connect to the remote machine with the access
privileges of that user identifier.

� The number of applications that connect to a queue manager might be very
large and run under different user identifiers on different machines. Each one
of these user identifiers needs to be defined and maintained on the machine
hosting the queue manager in order for these applications to connect
successfully to the queue manager.

� WebSphere MQ for Windows supports longer user identifiers than
WebSphere MQ for UNIX. When an application running on Windows
connects using a client connection to a queue manager hosted on UNIX,
generally, the first 12 characters of the user identifier are passed in lowercase
as the identity context for that application. This user identifier needs to be
defined on the UNIX machine in order for the connection to succeed.
Common user identifiers on Windows, such as Administrator, are longer than
12 characters.

� Some client MCAs, such as the WebSphere MQ V5.3 Java or JMS client
MCAs, do not pass a user identifier to the server connection MCA.

Due to these considerations, we generally recommend that all applications that
connect using a particular channel name are given the same identity context.
This is performed using the MCA user (MCAUSER) attribute on the server
connection channel object.

In order to provide greater assurance that only correctly authorized applications
can connect to a queue manager, consider the use of technologies such as

Note: When using MQSC on UNIX, it is important to enclose the MCAUSER
attribute value in single quotation marks. This is because user identifiers are
case-sensitive on the UNIX platforms. An example definition is:

DEFINE CHANNEL(PAYROLL.CLIENT) CHLTYPE(SVRCONN) MCAUSER('mqclient')

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 163

firewalls. These allow only certain machines to connect to the ports of a machine
hosting a queue manager.

Another alternative is to protect a server connection channel using SSL. SSL can
ensure that a connecting application has a valid certificate signed by a trusted
certificate authority. A server connection channel can be configured to only
accept connections from particular distinguished names as contained within the
certificate provided by the connecting application.

7.3.4 Configuring a client MCA to connect to a queue manager
There are a number of ways in which an application can specify the attributes of
the client MCA.

For example, attributes that a client MCA requires are the connection name it
uses to connect to a queue manage and the name of the channel it establishes.

Some methods used by an application to specify these attributes are specific to
the individual API used to access the WebSphere MQ message queuing
infrastructure.

These attributes are often referred to as simply connection settings.

For example, a client using the MQI interface directly from the C programming
language can use the MQCNO structure passed to a MQCONNX call to specify the
connection settings of the client MCA.

C and C++ applications connecting to a queue manager can use the MQSERVER
environment variable to specify simple connection settings. The syntax of this
environment variable is as follows:

CHANNEL.NAME/TCP/hostnameoripaddress(port)

Applications using the WebSphere MQ base Java API, or the WebSphere MQ
.NET API, can specify connection settings in the properties of the MQEnvironment
class.

Applications using the JMS API can specify connection settings as parameters to
a MQConnectionFactory object created using the JMS administration interface.

7.3.5 Client connection channel objects
WebSphere MQ provides client connection channel objects as another method of
specifying connection settings, including the more advanced attributes such as
the configuration of SSL.

164 WebSphere MQ V6 Fundamentals

Use one of the following methods to define the client connection channel objects:

� Using the DEFINE CHANNEL CHLTYPE(CLNTCONN) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Client Connections folder under a particular queue
manager in the navigator view of the WebSphere MQ Explorer.

b. Select New → Client-connection Channel.

Each client connection channel object specifies a queue manager name (QMNAME)
attribute. This is used by the client MCA when finding a suitable client connection
channel object to use to connect to a queue manager. The application specifies
the name of a queue manager to which it needs to connect, and this queue
manager name can be prefixed with an asterisk (*) character.

The client MCA can attempt to connect using multiple client connection objects
defined on a queue manager. This way, an application can connect to a
secondary, or backup, queue manager when the primary queue manager is not
available.

How an application specifies a queue manager name depends on the API being
used, for example, the QMgrName parameter of the MQCONN or MQCONNX call
when using the MQI, or the QMANAGER property of a MQConnectionFactory object
created in the JMS administration tool for the JMS API.

Table 7-1 provides an overview of how the queue manager name specified by an
application relates to the client connection channels that are used by the client
MCA to connect to a queue manager.

Table 7-1 Summary of how a client MCA chooses client connection channel objects

Queue manager name given
by application

Description of how matching client connection channel objects
are found

A blank queue manager name Client connection channel objects with a blank queue manager name
attribute match. If a queue manager can be contacted using the channel
name and attributes of one of these client connection channel objects,
the connection succeeds regardless of the actual name of the queue
manager.

*Queue_Manager_Name

The asterisk must be the first
character of the queue
manager name given by the
application.

Only client connection channel objects with a queue manager name of
Queue_Manager_Name match. If a queue manager can be contacted
using the channel name and attributes of one of these client connection
channel objects, the connection succeeds regardless of the actual
name of the queue manager. This mechanism is useful for providing
backup queue managers if a single queue of a particular name is
unavailable for connection.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 165

7.3.6 Client channel definition table (CCDT)
Each client connection channel object that is defined adds an entry to a file called
the client channel definition table (CCDT) individual to that queue manager.

The CCDT is not human readable, but it can be read by multiple different client
MCAs provided by client APIs.

This file is stored in the following location:

� WebSphere MQ for Windows:

C:\Program Files\IBM\WebSphere MQ\Qmgrs
\Queue_Manager_Name\@ipcc\AMQCLCHL.TAB

� WebSphere MQ for UNIX:

/var/mqm/qmgrs/Queue_Manager_Name/@ipcc/AMQCLCHL.TAB

� WebSphere MQ for iSeries:

/QIBM/UserData/mqm/qmgrs/Queue_Manager_Name/&ipcc

After a set of client connection channel objects are defined on a queue manager,
not necessarily the queue manager to which an application connects, the file can
be copied to another location for use by a client API.

For example, it can be placed on a directory that is shared over a network to all
machines that run applications that connect to the queue manager.

Before an application can connect, in the way described in Table 7-1 on
page 165, the client API must be configured to know the location of the CCDT.

Not all client APIs currently support use of a CCDT. Examples that do support the
CCDT include:

� WebSphere MQ C and C++ client APIs:
The location of the CCDT is configured using the MQCHLLIB and MQCHLTAB
environment variables. MQCHLLIB is set to the directory that contains the
CCDT. MQCHLTAB is set to the name of the CCDT file.

Queue_Manager_Name Only client connection channel objects with a queue manager name of
Queue_Manager_Name match. If a queue manager can be contacted
using the channel name and attributes of one of these client connection
channel objects, the connection only succeeds if the actual name of the
queue manager is Queue_Manager_Name.

Queue manager name given
by application

Description of how matching client connection channel objects
are found

166 WebSphere MQ V6 Fundamentals

An example of a Windows client on the same machine as the queue manager
on which the CCDT was created is as follows:

MQCHLLIB=C:\Program Files\IBM\WebSphere MQ\Qmgrs\Queue_Manager_Name\@ipcc
MQCHLTAB=AMQCLCHL.TAB

� WebSphere MQ V6.0 base Java client API:
A URL object is passed as the second parameter to the constructor of a
MQQueueManager object.

� WebSphere MQ V6.0 JMS client API:
A URL is specified in the CCDTURL property of a MQConnectionFactory created
in the JMS administration tool.

7.4 Distributed message channels
A distributed message channel is one that takes messages from a particular
transmission queue on one queue manager and delivers those messages to
queues on a specific remote queue manager.

A distributed message channel must be manually configured for all transmission
queues defined on a queue manager. As discussed in 6.2.1, “Queue name
resolution” on page 134, a queue manager places a message on a transmission
queue as the result of queue name resolution. During this process, it adds
enough information to that message in a transmission queue header for queue
name resolution to occur when that message reaches the destination queue
manager.

7.4.1 Message transmission
Each distributed message channel consists of two MCAs, thus two channel
objects, one on each queue manager. Each MCA assumes one of the following

Note: If the MQCHLLIB and MQCHLTAB environment variables are not set, the
default location to search for a CCDT is:

� Windows:

C:\Program Files\IBM\WebSphere MQ\AMQCLCHL.TAB

� UNIX:

/var/mqm/AMQCLCHL.TAB

Note: The administrative impact of defining distributed message channels can
be reduced by using a queue manager cluster.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 167

roles based on the type of message channel object defined on the queue
manager:

� Sending MCA:
The sending MCA opens a particular transmission queue, specified in the
attributes of the channel object, for exclusive input. This means that no two
channels can be configured to flow messages from the same transmission
queue. It gets messages from that transmission queue and sends them to the
partner MCA.

� Receiving MCA:
The receiving MCA receives messages from the sending MCA. For each
message, it removes the transmission queue header from the message and
reads its contents. It opens the queue specified in the transmission queue
header for that message and then puts the message to the queue. These
open and put actions are performed using standard MQI calls. This means
that queue name resolution happens on the queue manager in the same way
as though an application had connected to that queue manager and put the
message using the details in the transmission queue header. If a valid
destination cannot be determined for the message during the queue name
resolution on that queue manager, the message cannot be delivered. We
discuss this in 7.4.11, “Message delivery failures” on page 175.

The transmission queue header is generated during queue name resolution on
the queue manager where the sending MCA is running and used to put the
message to a queue on the queue manager where the receiving MCA is running.
The header contains the following information:

� Remote queue name:
The name of the destination queue for the message, which was resolved by
the queue manager during queue name resolution. When the MCA at the
remote queue manager attempts to put the message to a queue on the
remote queue manager, it specifies this queue name in MQOD when opening
the queue.

� Remote queue manager name:
The name of the destination queue manager that hosts the destination queue.
This is also resolved during queue name resolution and might not match the
name of the queue manager to which the message is delivered, for example,
if the next queue manager to receive the message is not the final destination
for the message.

Note: This is not the case for cluster message channels, because all
cluster message channels use the same transmission queue. We discuss
queue manager clusters in Chapter 8, “Queue manager clusters” on
page 181.

168 WebSphere MQ V6 Fundamentals

� The original message descriptor of the message:
In order to add the transmission queue header to a message, the message
becomes altered. The message queue header is added to the beginning of
the message body, and the message descriptor is altered to describe the
transmission queue header, rather than the data contained in the message.
However, when the message arrives on the destination queue, the message
must reflect the original message correctly, including the message descriptor.
The original message descriptor of the message is stored in the transmission
queue header and used when the MCA puts the message to the remote
queue manager with the transmission queue header removed.

Figure 7-2 shows the intercommunication over a channel between two queue
managers.

Figure 7-2 Communication between queue managers with sending and receiving MCAs

Communications
Network

Transmission
queue

Queue
manager 1

Queue name
resolution

Application

Sending
MCA

Receiving
MCA

Message

Object name
Object queue manager name

Transmission
queue header

Message

Machine 1

Queue
manager 2

Object name
Object queue manager name
(from transmission queue header)

Message

Transmission
queue header

Message

Machine 2

1

2
3

Destination
queues

Transmission
queues

Queue name
resolution

4

6

5

1. An application connected to queue manager 1 sends a message,
specifying destination details during the MQOPEN.

2. Queue name resolution on queue manager 1 determines that the
destination is on a remote queue manager. The message is placed on a
transmission queue with a transmission queue header.

3. A sending MCA retrieves the message from the queue, including the extra
information in the transmission queue header.

4. The sending MCA sends the message to the receiving MCA across a
communications network.

5. The receiving MCA removes the transmission queue header from the
message and uses the information in it to perform an MQOPEN on queue
manager 2 and put the message.

6. Queue name resolution determines the destination for the message. This
is likely to be a queue local to queue manager 2. However, it might be
another transmission queue for the next queue manager on route to the
final destination.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 169

7.4.2 Batches
To provide exactly once assured delivery of messages, both the sending and
receiving MCA must be able to ensure that a message is not lost or sent twice
and that it is received successfully by the receiving MCA.

To ensure this, a sending MCA can use a unit of work when getting messages
from a queue, and a receiving MCA can use a unit of work when putting
messages.

These two separate units of work must be coordinated between the two MCAs, to
ensure that if a communications failure occurs, and messages are not lost or
delivered twice. To do this, the two MCAs must communicate over the network to
either both commit their unit of work, or both back out their unit of work if a
communication failure occurs.

Additional network communication is involved in this process, so it is not usually
performed for each message that is transferred across the channel. Individual
messages being transferred are grouped together in a batch, and all of those
messages are either committed to their target queues or backed out onto the
transmission queue as a group.

The maximum number of messages that are contained within a batch is called
the batch size. This is configured using the batch size attribute (BATCHSZ) on the
channel object for the sending and receiving MCA. The batch size used is
negotiated to the lower of the two attributes.

In some cases, there are insufficient messages available on the transmission
queue to fill a batch. In this case, the sending MCA waits for a short time for
messages to arrive on the transmission queue before committing the messages
in that batch that have already been sent. The number of milliseconds a sending
MCA waits before committing a batch is configured with the batch interval
attribute (BATCHINT). This is specified on the channel object for the sending MCA.

7.4.3 Indoubt channels and sequence numbers
If a network communication failure is encountered while a channel is performing
confirmation of a batch between the two MCAs, a channel can become indoubt.

Note: By default, message channels do not use a unit of work for transferring
nonpersistent messages. This means that communication failures can result in
the loss of nonpersistent messages. This default behavior can be changed for
a channel by specifying a nonpersistent message speed (NPMSPEED) of normal,
instead of fast, on the channel object for the sending or receiving MCA.

170 WebSphere MQ V6 Fundamentals

This is because a confirmation request was sent, but no reply was received. The
MCA that sent the confirmation request does not know if the partner MCA
received that request and the communication failed during the reply or whether
the communication failed during the send.

The unit of work for one channel must remain in a prepared state, ready to be
either committed or backed out, depending on the action that was performed by
the partner MCA. Both MCAs maintain a sequence number related to the number
of messages successfully transferred over the channel in order to automatically
resolve the indoubt state when the channel restarts.

An indoubt state on a channel is represented by an INDOUBT attribute of YES on
the channel status record for the channel.

7.4.4 Disconnection intervals
It might not be efficient to leave a communication channel open indefinitely.
WebSphere MQ allows a message channel to be automatically ended if no
messages are sent across that channel in a time interval.

This time interval is specified in seconds using the disconnect interval (DISCINT)
attribute on the channel object for the sending MCA.

A disconnect interval of zero can be used to specify that a channel should remain
open indefinitely.

7.4.5 Connection names
In order for a channel to be established between a sending and receiving MCA,
one MCA must contact the partner queue manager using the listener of that
queue manager.

A channel can be started from either side of a connection depending on the type
of channel object that defines the MCAs on each side of the channel. We discuss
this in 7.4.10, “Valid distributed message channel object pairs” on page 174.

The connection name (CONNAME) attribute of a channel object specifies the
TCP/IP host name or IP address and port where a listener is running for the
partner queue manager.

Note: Refer to WebSphere MQ Intercommunication, SC34-6587, for more
information about indoubt channels and the manual steps you can perform if
an indoubt state is encountered and not automatically resolved.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 171

We discuss connection names and listeners in 5.3.8, “Providing network access
to a queue manager” on page 112. A connection name is specified as follows:

hostname.or.ipaddress(port)

If no port is specified, the well-known TCP/IP port number of WebSphere MQ,
1414, is used.

7.4.6 Receiver channel objects
Receiver channel objects are defined on a queue manager to define the
attributes of a receiving MCA to which other queue managers can send
messages.

A receiver channel object cannot be used to initiate a channel.

Use one of the following methods to define receiver channel objects:

� Using the DEFINE CHANNEL CHLTYPE(RCVR) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Channels folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Receiver Channel.

7.4.7 Requester channel objects
Requester channel objects are defined on a queue manager to define the
attributes of a receiving MCA to which other queue managers can send
messages.

A requester channel object can be used to initiate a channel.

Use one of the following methods to define requester channel objects:

� Using the DEFINE CHANNEL CHLTYPE(RQSTR) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Channels folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

Note: When defining channels using MQSC, the connection name must be
contained in single quotation marks, for example:

DEFINE CHANNEL(TO.EXAMPLE.PAYROLL) CHLTYPE(SDR) +
 XMITQ(EXAMPLE.PAYROLL) +
 CONNAME('payroll.example.com(9001)')

172 WebSphere MQ V6 Fundamentals

b. Select New → Requester Channel.

The connection name (CONNAME) attribute is required.

7.4.8 Sender channel objects
Sender channel objects are defined on a queue manager to define the attributes
of a sending MCA that can send messages to other queue managers from a
specified transmission queue.

Only one sender or server channel MCA can be active at any time for the same
transmission queue.

A sender channel object can be used to initiate a channel.

Use one of the following methods to define sender channel objects:

� Using the DEFINE CHANNEL CHLTYPE(SDR) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Channels folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Sender Channel.

The transmission queue (XMITQ) and connection name (CONNAME) attributes are
required.

7.4.9 Server channel objects
Server channel objects are defined on a queue manager to define the attributes
of a sending MCA that can send messages to other queue managers from a
specified transmission queue.

Only one sender or server channel MCA can be active at any time for the same
transmission queue.

A server channel object can only be used to initiate a channel if a connection
name is specified in its definition. If a connection name is specified, the server
channel object is said to be fully qualified.

Use one of the following methods to define server channel objects:

� Using the DEFINE CHANNEL CHLTYPE(SVR) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Channels folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 173

b. Select New → Server Channel.

The transmission queue (XMITQ) attribute is required.

7.4.10 Valid distributed message channel object pairs
The MCAs created from the previously discussed channel objects can only be
partnered together to form a channel in certain combinations. In this section, we
describe the valid combinations and their uses.

Sender-receiver channels
This form of channel can only be initiated from the sender side.

Multiple sender channel objects, defined on different queue managers, can be
used to connect to the same receiver channel object on a queue manager.

Commonly, a single receiver channel object is defined on a queue manager, and
all queue managers in the infrastructure has sender channels defined with the
same name as that receiver channel to communicate with that queue manager.

Requester-server channels
This form of channel can be initiated from the requester side, or optionally also
from the server side if that server is fully qualified with a connection name.

This form of channel does not ensure that a requester initiating a channel is
hosted at a particular connection name. This allows multiple requesters to be
defined with the same name on different queue managers and for each to
request messages from a single transmission queue on the same remote queue
manager. However, only one channel to a requester can be active getting
messages from the transmission queue at any time.

Requester-sender channels
This form of channel is similar to a requester-server channel with a fully qualified
server. However, after the channel has been initiated by the requester, the
channel is disconnected and reinitiated by the sender channel using the
connection name in the sender channel object.

This enables the sender channel to ensure that it is partnered with a requester
channel hosted on a particular queue manager.

Note: Do not confuse server channel objects with server connection channel
objects, discussed in 7.3.2, “Server connection channel objects” on page 162.

174 WebSphere MQ V6 Fundamentals

Server-receiver channels
This form of channel is functionally equivalent to a sender-receiver pair. The
channel is initiated from the server side, so the server must be fully qualified with
a connection name.

7.4.11 Message delivery failures
If the receiving MCA cannot deliver a message to a queue, the MCA takes
predictable action for that message.

A delivery of a message might fail for the following reasons:

� Queue name resolution failed while attempting to open the queue. The queue
name and queue manager name used when opening the queue to put the
message are contained in the transmission queue header, as described in
7.4.1, “Message transmission” on page 167. We discuss queue name
resolution and how it is affected by defining each type of queue object in
6.2.1, “Queue name resolution” on page 134.

� The resolved queue, which can be a local queue on the queue manager or a
transmission queue representing the next destination on route to the final
destination, already contains the maximum allowed number of messages.

� The resolved queue has been put disabled.

The steps taken by the MCA are controlled by the attributes of the channel object
for that MCA and the dead letter queue (DEADQ) attribute of the queue manager
object. Here, we summarize these steps:

1. Because some delivery failures can be transitory in nature, such as a queue
containing the maximum allowed number of messages, the action of putting
the message can be retried by the receiving MCA. The number of times an
MCA attempts to retry putting the message is configured using the message
retry (MRRTY) attribute, specified on the channel object that defines the
receiving MCA. The delay between these retries is configured using the
message retry timer (MRTMR) attribute, specified on the channel object that
defines the receiving MCA.

2. If the dead letter queue (DEADQ) attribute on the queue manager object has
been specified, the receiving MCA attempts to open a queue of that name. If
this open is successful, a dead letter header (MQDLH) is added to the message,
and the message is put to the dead letter queue.

The dead letter header contains information about the failure. This includes
the queue name and queue manager name from the transmission queue
header. It also contains the reason code returned from the failed attempt to
open the queue to put the message. We discuss reason codes in 6.1.2,
“Completion codes and reason codes” on page 127.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 175

3. If no dead letter queue is defined for the queue manager, or the dead letter
queue does not exist, the action depends on whether units of work are being
used to transfer messages across the channel. As discussed in 7.4.2,
“Batches” on page 170, units of work are used when transferring persistent
messages, or nonpersistent messages when a nonpersistent message speed
of normal has been specified on the channel.

If units of work are not being used in delivering the messages, the
nonpersistent message is discarded.

If units of work are being used in delivering the message, the message is
backed out onto the transmission queue at the sending side. The channel
then enters RETRYING status, as described in 7.2.1, “Understanding channel
status” on page 160. The channel attempts to deliver the message again
each time it attempts to restart. If the number of retries configured for the
channel is exceeded, the channel enters STOPPED status and needs to be
manually restarted. No messages can flow across the channel until the
message can be delivered, a dead letter queue is defined, or the message is
manually removed from the transmission queue.

7.4.12 Dead letter queue handling
After a dead letter queue has been defined for a queue manager, consideration
should be taken for messages being delivered to that queue. Take actions to
ensure that messages do not remain on the dead letter queue indefinitely,
unprocessed by the applications in the system.

Performing actions on messages when they arrive on a dead letter queue is
generally referred to as dead letter queue handling.

Note: We recommend that you define a dead letter queue for all queue
managers to avoid the actions described in step 3.

A queue called the SYSTEM.DEAD.LETTER.QUEUE is provided when
each queue manager is created. The queue manager can be configured to
use this queue as the dead letter queue. However, this is not generally
advised, because it is useful to hide all queues with the SYSTEM. prefix in
the WebSphere MQ Explorer.

Ensure that the maximum message length attribute on the dead letter
queue is large enough to ensure that no messages are truncated when
they are put to this queue.

176 WebSphere MQ V6 Fundamentals

Approaches to dead letter queue handling include:

� Regular manual inspection of the dead letter queue:
The format of the dead letter header, attached to messages when they are
placed on the dead letter queue, is not easily human readable. Because of
this, the WebSphere MQ Explorer provides the ability to display the individual
fields within the dead letter header in a human readable form. To access this
functionality, perform the following steps:

a. Select the Queues folder under a queue manager in the navigator view.

b. Right-click the dead letter queue in the Queues content view.

c. Select Browse Messages.

d. Right-click a message displayed in the table.

e. Select Properties.

f. Select the Dead-letter header section.

� Triggering the same action every time the dead letter queue contains
messages:
An example of this type of action is to execute a simple application that sends
an e-mail to an administrator so that they can manually inspect the dead letter
queue. See 6.3, “Triggering” on page 150 for details about triggering.

Examples of the types of triggering that might be used are:

– FIRST triggering with a long trigger interval specified for the queue
manager. This causes the application to be executed regularly when there
are messages on the dead letter queue.

– EVERY triggering. This causes the application to be executed each time a
message arrives on the dead letter queue.

� Using the WebSphere MQ dead letter queue handler:
The WebSphere MQ dead letter queue handler can automatically perform
actions on the messages that arrive on the dead letter queue based on a set
of rules configured when the handler is started. For information about the
WebSphere MQ dead letter queue handler, see WebSphere MQ
Intercommunication, SC34-6587.

� Using a custom developed dead letter queue handler:
If the rules provided by the WebSphere MQ dead letter queue handler are not
sufficient for an individual requirement, a custom application can be written
that processes messages as they arrive on the dead letter queue.

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 177

7.4.13 Channel initiation
Message channels are not automatically restarted by WebSphere MQ when they
become inactive due to reaching their disconnect interval or after a queue
manager is restarted.

The number of channels on a queue manager can be large, and manually
starting channels using MQSC or the WebSphere MQ Explorer might not be an
efficient mechanism in an infrastructure of interconnected queue managers.

WebSphere MQ for Windows and UNIX provide the channel initiator process to
automatically start channels when messages arrive on transmission queues.

The channel initiator is a trigger monitor application that reads trigger messages
from an initiation queue and starts the channel specified in the trigger data
contained in each trigger message.

A WebSphere MQ channel initiator can be started using the runmqchi
WebSphere MQ control command. However, a default channel initiator is
provided by WebSphere MQ and started automatically with a queue manager.

This default channel negotiator can be disabled by changing the start channel
initiator (SCHINIT) parameter on the queue manager object to MANUAL.

The default channel initiator monitors the failing initiation queue:

SYSTEM.CHANNEL.INITQ

Configuring a transmission queue to automatically start a channel that processes
messages from that queue is performed by configuring attributes on the queue
as follows:

� Triggering to on: TRIGGER

� Trigger type to first: TRIGTYPE(FIRST)

� Trigger data to the name of the channel: TRIGDATA('TO.remote.qmgr')

� Initiation queue to: SYSTEM.CHANNEL.INITQ: INITQ(SYSTEM.CHANNEL.INITQ)

Note: Do not confuse the channel initiator described in this section with the
WebSphere MQ for z/OS channel initiator described in 5.3.10, “WebSphere
MQ for z/OS channel initiator” on page 115.

WebSphere MQ for z/OS and WebSphere MQ for iSeries provide channel
listener programs that provide functionality for starting channels.

178 WebSphere MQ V6 Fundamentals

7.5 Channel auto-definition
A queue manager can be configured to automatically create channel objects in
response to MCA connection requests.

Channel auto-definition is enabled for a queue manager by configuring the
channel auto-definition (CHAD) attribute of the queue manager object to ENABLED.

7.5.1 Channel auto-definition for client channels
If an application attempts to connect to a queue manager using a client channel,
and no corresponding server connection channel object exists of the correct
name on the queue manager, one is created automatically.

This object exists after channel auto-definition has occurred as though it had
been manually created. The attributes of this server connection channel object
are based on the following server connection channel object, which is created
automatically with the queue manager:

SYSTEM.AUTO.SVRCONN

7.5.2 Channel auto-definition for distributed message channels
If a remote queue manager attempts to establish a connection using a sender
channel object, or a fully qualified server channel object, and no corresponding
receiver or requester channel exists of the correct name on the queue manager,
a receiver channel object is created automatically.

This object exists after channel auto-definition has occurred as though it had
been manually created. The attributes of this receiver channel object are based
on the following receiver channel object, which is created automatically with the
queue manager:

SYSTEM.AUTO.RCVR

 Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ 179

180 WebSphere MQ V6 Fundamentals

Chapter 8. Queue manager clusters

This chapter introduces queue manager clusters and shows how they can
reduce administration of WebSphere MQ infrastructures and provide additional
features that can increase service availability and provide workload balancing
across multiple instances of a service hosted within a cluster.

We discuss the following topics:

� Overview of clustering concepts

� Viewing cluster repository information

� Actions on queue managers in a cluster

� Workload balancing

8

© Copyright IBM Corp. 2005. All rights reserved. 181

8.1 Overview of clustering concepts
All queue managers within a queue manager cluster have knowledge of the
resources hosted within that queue manager cluster without requiring explicit
local definitions for those resources. New resources, such as queue managers
and the queues they host, can be added dynamically to the queue manager
cluster and automatically made available for use by all queue managers within
the queue manager cluster.

This allows additional hardware resources to be added to or removed from the
queue manager cluster to respond to changing loads placed on the WebSphere
MQ message queuing infrastructure.

A queue manager can be a member of multiple queue manager clusters,
allowing the segregation of the components of a WebSphere MQ infrastructure
based on the services provided or organizing into groups. These queue
managers can provide a bridge between queue manager clusters, as well as
bridging between a queue manager cluster and an existing WebSphere MQ
infrastructure based on distributed message channels.

Existing WebSphere MQ infrastructures can be extended to benefit from the
additional workload balancing and high availability features provided by a queue
manager cluster by bridging the existing infrastructure to an extended
infrastructure based on a queue manager cluster.

The concepts of a queue manager cluster, as described in this section, are
sometimes considered initially complicated to understand. However, they resolve
to an infrastructure of queue managers that is much simpler to administer than
one using distributed message channels, as is shown in the practical examples
in 10.4, “Create a queue manager cluster” on page 291.

This infrastructure can scale to contain thousands of queue managers.

Note: When implementing a new WebSphere MQ infrastructure, we
recommend that you use a queue manager cluster as the basis of this
infrastructure.

Note: Within the rest of this chapter, the term cluster is used to mean a queue
manager cluster. Do not confuse this with high availability clusters, which are
not a WebSphere MQ-specific concept, as discussed in 3.6, “High availability”
on page 44.

182 WebSphere MQ V6 Fundamentals

8.1.1 Full and partial repository queue managers
Every queue manager holds a repository of information about the clusters of
which it is a member.

Each cluster of which a queue manager is a member can be configured to
maintain a partial or full repository of information for that cluster. We summarize
partial and full repositories as follows:

� Full repository:
A full repository contains knowledge of every resource shared in the cluster.
This includes all queue managers in the cluster and all queue objects shared
by queue managers in the cluster. There are normally exactly two queue
managers configured as a full repository for each cluster in the infrastructure.

A queue manager that hosts a full repository for a cluster is called a full
repository queue manager within that cluster.

� Partial repository:
A partial repository maintains knowledge of full repository queue managers
within the cluster. It only maintains knowledge of queue objects and partial
repository queue managers that are required by that queue manager. If an
application connected to that queue manager attempts to open a queue name
that is not already known to the queue manager, the full repository queue
managers of all clusters of which the queue manager is a member are
queried when attempting to find that resource.

A queue manager that hosts a partial repository for a cluster is called a
partial repository queue manager within that cluster.

In order to join a cluster, a queue manager must have knowledge of a full
repository for that cluster. For this reason, at least two full repository queue
managers must be defined within each cluster. These two queue managers
initially establish the cluster by communicating with each other.

It is not generally recommended to have more than two full repositories in a
cluster. Because full repositories maintain a complete knowledge of all resources
within the queue manager cluster, they must regularly exchange information.
Increasing the number of full repositories increases the loads placed on the
infrastructure from sharing this information.

8.1.2 Cluster names
Every cluster has a name. Cluster names can contain a maximum of 48
characters. These can be uppercase characters, lowercase characters, numeric
characters, and the . / _ % symbol characters.

 Chapter 8. Queue manager clusters 183

Using short cluster names can be useful, because it allows the cluster name to
be included in all cluster channel object definitions.

8.1.3 Configuring a queue manager as a full repository

The repository (REPOS) and repository namelist (REPOSNL) attributes of the queue
manager object specify the clusters in which a queue manager hosts a full
repository of information.

The repository (REPOS) attribute specifies a single cluster name.

The repository namelist (REPOSNL) attribute specifies multiple cluster names.
Specify the name of a namelist object defined on the queue manager in this
attribute. Define the namelist object to contain a list of cluster names.

8.1.4 Cluster message channels
All information within a cluster is transferred across cluster message channels.
This includes when an application sends a message to a queue hosted within the
queue manager cluster and when a queue manager requests information about
resources hosted in the cluster from a full repository.

Note: We recommended that you perform this step prior to joining the queue
manager to the cluster using the cluster sender channel objects and cluster
receiver channel objects described in this section.

Note: Maintaining a full repository can cause significant processing within a
queue manager, because a cluster might contain many queue managers or
many queues might be hosted by the queue managers within the cluster. For
this reason, we do not recommend that the full repository queue managers
within a cluster host the services provided by that cluster.

We recommend that other queue managers on the same machine are defined
if that machine is designated to host services within the cluster. In a large
cluster, it might be appropriate to dedicate hardware to hosting the full
repository queue managers for a cluster.

We also recommend that the two full repository queue managers for a cluster
are not hosted on the same machine. This eliminates a single point of failure
in the cluster, because partial repository queue managers are still able to gain
information about the cluster if one machine fails or becomes unavailable.

184 WebSphere MQ V6 Fundamentals

Cluster message channels are very closely related to distributed message
channels. They transfer messages from a transmission queue on one queue
manager to a queue hosted on a particular queue manager within the cluster.
However, an important difference is that all messages sent across cluster
channels are sent from the same transmission queue. The name of this
transmission queue, which is automatically defined on every queue manager
when it is created, is as follows:

SYSTEM.CLUSTER.TRANSMIT.QUEUE

The queue manager automatically places any messages that are targeted for
queue managers within a cluster on this queue.

WebSphere MQ automatically creates and starts these cluster message
channels whenever they are required. This means that after a queue manager
has joined a cluster, further manual administration of channels is not required.

Cluster message channels use sending and receiving message channel agents
(MCAs) and have the same capabilities as distributed message channels. For
example, they have disconnection intervals, perform batching, can use SSL
authentication, and have channel status records. See 7.4, “Distributed message
channels” on page 167 for information about distributed message channels and
how message transmission occurs between sending and receiving MCAs.

The initial step of a queue manager joining a cluster must be performed
manually. When joining a cluster, a queue manager specifies the attributes that
all queue managers within that cluster should use when establishing
communication with that queue manager.

For this purpose, WebSphere MQ provides cluster channel objects. Cluster
channel objects can be defined on a queue manager to initiate the process of
joining that queue manager to a cluster.

8.1.5 Cluster receiver channels
A cluster receiver channel object defines the attributes that to be used by all
queue managers within a cluster, or multiple clusters, when defining cluster
sender channels to that queue manager.

The cluster receiver channel object is published in the cluster to inform the full
repository queue managers in the cluster about the queue manager on which it is
defined. This means that it is sent to one full repository within the cluster, which
distributes it to the other full repository queue managers within the cluster. These
full repositories, in turn, publish this definition to other partial repository queue
managers in the cluster when they request resources hosted on that queue
manager.

 Chapter 8. Queue manager clusters 185

A cluster receiver channel object defines the name and attributes used by both
the sending and receiving MCAs when queue managers in the cluster establish a
channel to this queue manager.

For example, a disconnection interval is specified on the cluster receiver channel
object for cluster message channels. This disconnection interval is used by all
sending MCAs that establish a connection to the queue manager.

This can simplify administration, because certain attributes, such as SSL
configuration, must match in the sending and receiving MCAs. In a cluster, these
attributes only need to be configured on the queue manager joining the cluster,
rather than at the queue managers on both sides of the connection.

Use one of the following methods to manually define cluster receiver channel
objects:

� Using the DEFINE CHANNEL CHLTYPE(CLUSRCVR) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Channels folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Cluster-receiver Channel.

The connection name (CONNAME) attribute of a cluster receiver channel object is
required. This specifies the host name or IP address and port where a listener is
running for the queue manager on which it is defined. This is the connection
name that other queue managers in the cluster use to establish communication
with the queue manager.

The cluster (CLUSTER) and cluster namelist (CLUSNL) attributes of a cluster receiver
channel object specify the clusters to which the channel definition applies.

The cluster (CLUSTER) attribute specifies a single cluster name.

The cluster namelist (CLUSNL) specifies multiple clusters names. Specify the
name of a namelist object defined on the queue manager in this attribute. Define
the namelist object to contain a list of cluster names.

Removing a queue manager from a cluster is performed by a queue manager
when the cluster attribute or cluster namelist attribute of the receiver channel,
which joined that queue manager to the cluster, is changed to no longer specify a
cluster, or when the cluster name is removed from the names attribute of the
namelist specified in the cluster namelist attribute of the cluster receiver channel
that joined that queue manager to a cluster.

186 WebSphere MQ V6 Fundamentals

8.1.6 Cluster sender channels
The term cluster sender channel is often used to describe different things:

� A manually defined cluster sender channel object, or CLUSSDR. This is used
when joining a cluster to contact a full repository in the cluster.

� An automatically defined cluster sender, CLUSSDRA, or auto explicit cluster
sender. These are established automatically by a queue manager based on
the cluster receiver channel definitions published by queue managers in the
cluster to communicate with the queue managers in the cluster.

� An automatically defined cluster sender that replaces a manually defined
cluster sender, CLUSSDRB, or auto cluster sender. These are established
automatically by a queue manager based on the cluster receiver channel
definition published by a full repository queue manager to which a cluster
sender channel object was manually defined when joining the cluster.

A manually, or explicitly, defined cluster sender channel object has a single
purpose. This is to initially establish communication with a single full repository
when joining a cluster.

The name of a manually defined cluster sender channel object must match the
name of the cluster receiver channel object defined on the full repository queue
manager that was published by that full repository queue manager when it joined
the cluster.

Equally, some attributes of the manually defined cluster sender channel, such as
the SSL configuration, must be valid in order for the connection to succeed.

Note: A queue manager can publish a single cluster receiver channel object in
multiple clusters using the cluster namelist (CLUSNL), allowing the channels
established to that queue manager in multiple clusters to have the same
name. Channel objects of this type regularly use the following naming
convention:

TO.QmgrName

Alternatively, a queue manager can publish separate cluster receiver channel
objects in each cluster using the cluster (CLUSTER) attribute of each cluster
receiver channel object. Channel objects of this type regularly use the
following naming convention:

TO.ClusName.QmgrName

This second naming convention reduces the number of characters available
for the queue manager name in the 20-character channel name.

 Chapter 8. Queue manager clusters 187

Use one of the following methods to manually define cluster sender channel
objects:

� Using the DEFINE CHANNEL CHLTYPE(CLUSSDR) MQSC command.

� Using the WebSphere MQ Explorer:

a. Right-click the Channels folder under a particular queue manager in the
navigator view of the WebSphere MQ Explorer.

b. Select New → Cluster-sender Channel.

The connection name (CONNAME) attribute of a cluster sender channel object is
required. This specifies the host name or IP address and port where a listener is
running for a full repository queue manager within the cluster. It does not matter
which full repository is specified. However, the name of the channel must match
the name of the appropriate cluster receiver channel object defined on that full
repository.

The cluster (CLUSTER) and cluster namelist (CLUSNL) attributes of a cluster sender
channel object specify the clusters for which the channel definition can be used
to contact a full repository.

The cluster (CLUSTER) attribute specifies a single cluster name.

The cluster namelist (CLUSNL) specifies multiple cluster names. Specify the name
of a namelist object defined on the queue manager in this attribute. Define the
namelist object to contain a list of cluster names.

When a cluster sender channel object is defined, any cluster receiver channel
objects that apply to the same clusters are published to the full repository over
that channel. This causes the automated process of establishing the queue
manager’s membership in those clusters to begin.

For each cluster, this process results in the cluster receiver channel definition
being held by all full repositories in that cluster. The definition of any queue
objects shared by the queue manager joining the cluster are also held by all full
repositories. The queue manager joining the cluster gains knowledge of all full
repositories in the cluster.

After this process is complete, the explicitly defined cluster sender channel is no
longer used. The queue manager subsequently uses the cluster receiver channel
definitions shared by each queue manager in the cluster. These allow it to
establish channels to all full and partial repository queue managers in the cluster.
Equally, those queue managers can establish channels back to the queue
manager using its cluster receiver channel definition shared in the cluster.

188 WebSphere MQ V6 Fundamentals

8.1.7 Sharing queue objects within clusters
Full repository and partial repository queue managers within a cluster can share
queue objects within that cluster.

This allows these queue objects to be known automatically by all queue
managers within the cluster. For example, an application connected to one
queue manager can put a message to a local queue hosted on a second queue
manager that has been shared within the cluster without specifying the name of
that remote queue manager.

The following types of queue objects can be shared:

� Local queue objects:
These are the type of objects most regularly shared within a cluster. This
allows an application connected to any queue manager in a cluster to put a
message to a queue shared by another queue manager in the cluster by
specifying only the queue name when opening the queue.

Note: If more than two full repository queue managers are defined in a cluster,
cluster sender channels must be explicitly defined from each full repository to
each other full repository. Full repositories only gain knowledge of other full
repositories to which they have an explicit cluster sender defined.

Partial respository queue managers only require a single explicit cluster
sender channel definition, regardless of the number of full repository queue
managers in the cluster. There is no benefit of defining more than one explicit
cluster sender channel on a partial repository queue manager.

 Chapter 8. Queue manager clusters 189

� Alias queue objects:
An alias queue shared in a cluster enables a queue manager to share a
queue object hosted on that queue manager under a different name within the
cluster. The name of the queue object local to the queue manager is specified
in the target queue (TARGQ/base queue) attribute, and the name of the alias
queue object is the name under which that queue is available in the cluster.

� Remote queue objects:
Sharing different kinds of remote queue objects, described in 6.2.5, “Remote
queue objects” on page 143, in a cluster has different effects. Common uses
include:

– Local definition of a remote queue:
This enables a queue that is hosted outside of the cluster on a queue
manager that is not a member of a cluster to be shared within the cluster.
The name of the remote queue object is the name under which the queue
is shared in the cluster. The name of the destination queue on the target
queue manager is specified in the remote name (RNAME) attribute. The
name of the queue manager that hosts the queue is specified in the
remote queue manager name (RQMNAME) attribute. The name of the
transmission queue on the queue manager where the remote queue
definition is defined can be specified in the transmission queue (XMITQ)
attribute, or it defaults to the remote queue manager name.

Note: Dynamically created local queues cannot be shared in a cluster by
sharing the model queue definition from which they are created.

However, if an application puts a message to any queue name with a
specific queue manager name that is a member of the cluster, that
message is delivered to that queue manager. This means that an
application can send a reply to a dynamically created reply queue using
the reply-to queue name and reply-to queue manager name specified in
the message descriptor of the request message. The reply-to queue
manager name is provided automatically by the queue manager to which
the application that created the request message was connected.

As such, applications can perform request/reply messaging to a service
hosted on a queue shared in a cluster in the same way as though that
queue was hosted on the queue manager to which the application is
connected.

190 WebSphere MQ V6 Fundamentals

– Queue manager alias:
This is where the remote name (RNAME) attribute of the remote queue
object is blank. This has two primary uses:

• A queue manager can assume an alternative name within the cluster.
The alternate name is the name of the remote queue object shared in
the cluster; the actual queue manager name is specified in the remote
queue manager name (RQMNAME) attribute.

• The name of a queue manager outside of a cluster can be known
within the cluster and a transmission queue can be identified for that
queue manager on the queue manager sharing the remote queue
object definition. The name under which the queue manager is to be
known in the cluster is the name of the remote queue object shared in
the cluster. The name of the queue manager outside of the cluster is
specified in the remote queue manager name (RQMNAME) attribute. The
name of the transmission queue on the queue manager within the
cluster, if different to the name of the queue manager outside of the
cluster, is specified in the transmission queue (XMITQ) attribute.

With all of these queue object types, multiple queue managers in a cluster can
share queue objects with the same name and the same type, or different types,
within the same cluster. We describe this in 8.4, “Workload balancing” on
page 209.

The cluster (CLUSTER) and cluster namelist (CLUSNL) attributes of these queue
objects specify the clusters in which the object is shared.

The cluster (CLUSTER) attribute specifies a single cluster name.

The cluster namelist (CLUSNL) specifies the names of multiple clusters. Specify
the name of a namelist object defined on the queue manager in this attribute.
Define the namelist object to contain a list of cluster names.

Note: Another useful way to use remote queue objects within a cluster is to
define a queue manager alias on a queue manager with a blank remote queue
manager name (RNAME) attribute without sharing the remote queue object in
the cluster.

This causes the messages that arrive at that queue manager from outside of a
cluster with a particular queue manager name specified to be workload
balanced within the cluster.

 Chapter 8. Queue manager clusters 191

8.1.8 Queue manager identifier (QMID)
When each queue manager is created, a queue manager identifier (QMID) for
that queue manager is created based on the time the queue manager was
created and the queue manager name. It is very unlikely that two queue
managers have the same QMID, even if two queue managers are created with
the same name.

Clusters use this uniqueness to distinguish between the queue managers within
a cluster, rather than relying on the queue manager name to be unique.

It is unlikely, and definitely not recommended, that two queue managers are
intentionally joined to a cluster with the same name. However, it is possible that a
queue manager might be re-created for some reason, for example, after a
hardware failure. This new queue manager might be joined to the cluster without
the previous queue manager that had the same name successfully leaving the
cluster. It is important for the cluster to be able to distinguish between queue
managers in these situations.

If this situation occurs, and multiple queue managers are observed within the
cluster with the same name, see the documentation for the RESET CLUSTER
ACTION(FORCEREMOVE) MQSC command for information about how to
resolve the situation.

8.1.9 Cluster subscriptions and publications
In this section, we provide an overview of the way information is maintained
within the full and partial repositories of a cluster. This provides a basis for
understanding the information provided when viewing information about a cluster
from a partial or full repository.

All full repositories in a cluster communicate to ensure that they maintain the
same, complete information about all of the queue managers and queue objects
in the cluster.

When a partial queue manager joins a cluster, it publishes information about
itself, including the information provided within the cluster receiver channel
object, to two full repositories within the queue manager cluster.

Note: Only take this action after reading the appropriate documentation in
WebSphere MQ Queue Manager Clusters, SC34-6589. It is especially
important to consider this action carefully if it is performed in relation to full
repository queue managers in a cluster.

192 WebSphere MQ V6 Fundamentals

Equally, when a partial repository queue manager shares a queue object within a
cluster, it publishes information about this queue object to two full repositories
within the queue manager cluster.

These publications are repeated by a partial repository regularly, every 27 days,
in order for the full repositories to ensure that a queue manager remains active
within a cluster and information is up to date. In addition, any changes to these
objects shared in the queue manager cluster are published to the full
repositories.

If a publication is not repeated within 30 days, it expires and is not provided by full
repositories in response to requests for information made by partial repositories.
However, the repositories maintain them for another 60 days grace period in case
the queue manager was temporarily unavailable for some reason. If, after this
total 90 days has passed, a queue manager has not republished its information,
that queue manager is no longer considered part of the cluster by the full
repository. When communication to the full repository is reestablished by the
partial repository, it becomes known in the cluster again.

A partial repository only maintains information about the queue managers and
queue objects in the cluster in which it has an interest:

� All full repository queue managers successfully joined to the cluster

� Queue objects hosted within the cluster of the same name as the queue
objects that the queue manager shares within the cluster

� Queue objects hosted within the cluster with names to which applications that
connect to the queue manager send messages

� Partial repository queue managers that host queues objects known to the
queue manager

A partial repository queue manager subscribes to full repository queue managers
in order to gain this information. In response to a subscription, it receives all
relevant publications known to that full repository, or is informed that no matching
information is available.

These subscriptions are generated by a partial repository when it shares a new
object in the cluster. They are also generated during queue name resolution
when applications connected to the queue manager attempt to open queues to
put messages.

If object names or object queue manager names specified when opening queues
to put message are not known to the partial repository queue manager,
subscriptions are generated to full repositories for all clusters in which it is a
partial repository.

 Chapter 8. Queue manager clusters 193

Subscriptions only have a finite lifetime of 30 days. Within those 30 days, a partial
repository is automatically sent updates by full repository queue managers
regarding its subscriptions, and it will renew a subscription after 27 days.
However, it only does this if publications relating to that subscription have been
accessed since the subscription was last renewed. Otherwise, it lets the
subscription expire. However, it issues the subscription again when an
application next attempts to open the queue object.

While a subscription is valid, the information contained in the partial repository
relating to that subscription is also valid, because the full repository automatically
provides updates as they occur. This allows the partial repository to
communicate directly with the queue managers hosting queue objects, without
any need to contact a full repository. Therefore, queues can be opened and
messages can be put efficiently by the applications connected to that partial
repository.

The repository of a queue manager is maintained by the repository manager
component of the queue manager. This manages subscriptions and sends
publications to the full repositories in the cluster.

This mechanism provides a balance between the number of subscriptions that
must be maintained by a full repository and the knowledge contained within the
partial repositories to allow applications to access queue objects efficiently.

8.2 Viewing cluster repository information
As we discussed earlier, status records for cluster message channels are held by
each queue manager in the same way that status records are held for distributed
message channels. Cluster message channels can also be started, stopped,
enabled, and disabled using the START CHANNEL and STOP CHANNEL
commands in MQSC.

However, further information about clusters can also be obtained from MQSC
and the WebSphere MQ Explorer based on the current contents of the partial or
full repository held by a queue manager.

Note: A queue manager might wait for up to 10 seconds to get a response
from a full repository queue manager when opening a queue currently
unknown to the partial repository. If this fails, the application attempting to put
the message is unable to do so. Therefore, it is important that communication
can always be established with at least one full repository in the cluster.

194 WebSphere MQ V6 Fundamentals

8.2.1 Viewing repository information in MQSC
MQSC provides two commands to access this information:

� DISPLAY QCLUSTER:
This command shows information about all instances of queue objects shared
within clusters, as known to that queue manager. For example, issuing the
following command on a full repository for a cluster shows all the information
known about all queue objects shared within a queue manager cluster:

DISPLAY QCLUSTER(*) CLUSTER('Cluster.Name') ALL

Each queue object instance shared in the cluster is called a cluster queue.
Note that multiple cluster queues of the same name can be listed as shared
by different queue managers in the cluster to facilitate the workload balancing,
as described in 8.4, “Workload balancing” on page 209. Each cluster queue
record contains information about the type of queue object, which queue
manager hosts it within the cluster, and whether applications can put to the
cluster queue or if it has been put disabled.

� DISPLAY CLUSQMGR:
This command shows information about queue managers within the cluster
known to that queue manager. For example, issuing the following command
on a full repository for a cluster shows all the information known about all
queue managers within a queue manager cluster:

DISPLAY CLUSQMGR(*) CLUSTER('Cluster.Name') ALL

Each record displayed in this output is called a cluster queue manager
(CLUSQMGR) record. This includes the cluster queue manager record for the
local queue manager where the command is issued. The information in this
record includes the name and details about the cluster message channel that
relates to the queue manager. This can be a cluster receiver channel object
for the local queue manager, or any of the cluster sender channel types
discussed in 8.1.6, “Cluster sender channels” on page 187. The type of
cluster message channel is shown in the definition type (DEFTYPE) attribute of
a cluster queue manager record. This includes status information about
cluster sender channels from that queue manager to other queue managers
in the cluster.

Note: The same command issued on a partial repository might not return
the full list of cluster queues shared within a cluster. This is due to the
considerations discussed in 8.1.9, “Cluster subscriptions and publications”
on page 192.

 Chapter 8. Queue manager clusters 195

The cluster queue manager record also contains details about the queue
manager, including its QMID and whether it is a full repository in the cluster.
The record for a full repository has a queue manager type (QMTYPE) attribute of
repository (REPOS) and a partial repository has a queue manager type
(QMTYPE) attribute of normal (NORMAL).

If a manually defined cluster sender channel cannot be started to a full
repository when joining a cluster, a cluster queue manager record is displayed
with a name of the following form:

SYSTEM.TEMPQMGR.hostname(port)

Where hostname(port) is the connection name for the channel. This is
because the name of the queue manager cannot be established until a
channel is successfully started to that queue manager.

8.2.2 Viewing repository information in WebSphere MQ Explorer
The WebSphere MQ Explorer provides the Queue Manager Clusters folder in the
navigator view in order to view cluster repository information.

Icons for clusters are automatically displayed under this folder whenever a queue
manager that is a full repository for a cluster is connected to the WebSphere MQ
Explorer under the Queue Managers folder. These queue managers can be
hosted on the same machine as the WebSphere MQ Explorer, or remotely
connected to the WebSphere MQ Explorer.

Note: Use the DISPLAY CHSTATUS command for information about
channels established to that queue manager using its cluster receiver
channel definition shared in the cluster. Multiple queue managers in the
cluster can have active cluster channels to a queue manager, and these
share the name of the cluster receiver channel. The cluster queue
manager record might show an inactive status when channels to the queue
manager are running.

Note: The same command issued on a partial repository might not return
the full list of queue managers within a cluster, but it should show all full
repositories in the cluster. This is due to the considerations discussed in
8.1.9, “Cluster subscriptions and publications” on page 192.

196 WebSphere MQ V6 Fundamentals

Under each of these icons in the navigator tree, two folders are shown as follows:

� Full Repositories:
Clicking this node displays a summary page about the queue managers that
are members of the cluster and hold full repositories for the cluster. Under this
node, an icon is displayed for each full repository queue manager within the
cluster.

� Partial Repositories:
Clicking this node displays a summary page about the queue managers that
are members for the cluster and hold a partial repository for the cluster. Under
this node, an icon is displayed for each partial repository queue manager
within the cluster.

Figure 8-1 on page 198 shows the Queue Manager Clusters folder in the
WebSphere MQ Explorer. The example cluster contains four queue managers,
all local to the machine hosting the WebSphere MQ Explorer, of which two are
full repositories and two are partial repositories.

Note: The WebSphere MQ Explorer does not display information about
clusters for which only partial repository queue managers are connected
under the Queue Managers folder.

This is because these queue managers do not hold enough information about
the cluster to reliably know about all queue managers within the cluster, as
described in 8.1.9, “Cluster subscriptions and publications” on page 192.

 Chapter 8. Queue manager clusters 197

Figure 8-1 The Queue Manager Clusters folder in the WebSphere MQ Explorer

If multiple full respository queue managers that host a full repository for the same
cluster are connected to the WebSphere MQ Explorer, the WebSphere MQ
Explorer chooses one of these queue managers to propagate the contents of the
Full Repositories and Partial Repositories folders for that cluster. This queue
manager is called the cluster information source for the cluster.

All full repositories in the queue manager holds the same information, as
described in 8.1.9, “Cluster subscriptions and publications” on page 192.
However, if a queue manager is disconnected from the network, or the cluster
channels to that queue manager have been disabled, it is possible for the
information contained within a full repository about the queue managers within a
cluster to be incomplete. In these circumstances, a different queue manager,
which also holds a full repository for the cluster and is connected under the
Queue Managers folder, can be chosen as the cluster information source for the
cluster. To do this, highlight the icon for the cluster in the navigator view, and click
the Select button on the displayed Cluster content page.

198 WebSphere MQ V6 Fundamentals

Viewing the repository of an individual queue manager
After the cluster information source has been queried to gain information about
the queue managers in the cluster, the information contained in the partial or full
repository of each queue manager in the cluster can be displayed.

When a queue manager is selected under the Full Repositories or Partial
Repositories folders for a particular cluster, a content page opens containing the
information that queue manager holds in its repository.

The information on this page is queried from the queue manager that is selected,
not the cluster information source.

If a remote queue manager is not displayed under the Queue Managers folder,
the repository information held by that queue manager for the cluster can still be
displayed. The icon for the queue manager is initially unavailable, and the tables
in the display contain no data. To establish a connection to that queue manager
through the cluster and propagate the repository information on this page,
right-click the unavailable icon for the queue manager under the Partial
Repositories or Full Repositories folder for the cluster in the navigator tree, and
select Connect To Queue Manager.

Note: The connection to a queue manager that is not displayed under the
Queue Managers folder used to display repository information is not
performed directly to that queue manager. Instead, it is performed by sending
and receiving messages to that queue manager through the cluster. The
connection used by the WebSphere MQ Explorer is to the cluster information
source selected for the cluster.

The queue manager for which repository information is to be displayed must
have a running command server in order for this connection to be successful.
Also, communication to that queue manager must be possible through the
cluster to and from the full repository queue manager that is selected as the
cluster information source for the cluster. If the target queue manager is not
running, a command server is not running for that queue manager, an
authorization failure occurs, or the communication through the cluster fails, the
error message displayed is usually as follows:

Command server not responding within timeout period. (AMQ4032)

 Chapter 8. Queue manager clusters 199

The information in the repository content page, displayed after successfully
establishing a connection to that queue manager, is split into three tabs:

� Cluster Queues:
This view shows information about all instances of queue objects shared
within clusters as known to that queue manager. This is the same information
displayed when issuing the DISPLAY QCLUSTER MQSC command against
that queue manager.

Each queue object instance shared in the cluster is called a cluster queue.
Note that multiple cluster queues of the same name might be listed as shared
by different queue managers in the cluster to facility the workload balancing
described in 8.4, “Workload balancing” on page 209. Each cluster queue
record contains information about the type of queue object, which queue
manager hosts it within the cluster, and whether applications can put to the
cluster queue or if it has been put disabled.

The number of queue objects shared in the cluster, which that queue
manager has knowledge of in its repository, is shown in the graphical display
above the table.

Each of these cluster queues has a row in the table. The table columns show
the attributes of each cluster queue record. Double-clicking an individual
record shows these attributes in a properties window.

� Cluster-sender channels:
This view shows the same information as the DISPLAY CLUSQMGR MQSC
command for all remote queue managers in the cluster. These are records
about all queue managers in the cluster known to this queue manager with
which this queue manager uses a cluster sender channel to communicate.
We discuss the types of cluster sender channels in 8.1.6, “Cluster sender
channels” on page 187.

The table has a row for each queue manager known by this queue manager
within the cluster. Each row represents a cluster sender channel that is
running, or can run, to that queue manager. This is a cluster queue manager

Note: It is not possible to alter the attributes of the queue object that the
cluster queue record represents from this properties window. This includes
where the queue manager is connected to the WebSphere MQ Explorer
under the Queue Managers folder.

In order to alter these attributes, the queue manager must be connected to
the WebSphere MQ Explorer under the Queue Managers folder. Then,
select the Queues folder under that queue manager in the navigator tree,
and double-click the queue object, which is shared in the cluster, in the
table.

200 WebSphere MQ V6 Fundamentals

record. The cluster queue manager record contains details regarding the
status of the channel and about the queue manager, including its QMID and
whether it is a full repository in the cluster. The table columns show these
details, which can be accessed in a properties window by double-clicking the
row in the table. See 8.2.1, “Viewing repository information in MQSC” on
page 195 for more details about the cluster queue manager records this tab
displays.

� Cluster-receiver channels:
This view shows the same information as the DISPLAY CLUSQMGR MQSC
command for the local queue manager. This is usually a single record. It
describes the information published by the queue manager when it joined the
queue manager in its cluster receiver channel definition. See 8.1.5, “Cluster
receiver channels” on page 185 for more information.

The table usually contains a single row showing that this queue manager has
published a single cluster receiver channel object to the cluster. This is a
cluster queue manager record. The cluster queue manager record contains
details regarding the status of the channel and about the queue manager,
including its QMID and whether it is a full repository in the cluster. The table
columns show these details, which can be accessed in a properties window
by double-clicking the row in the table. See 8.2.1, “Viewing repository
information in MQSC” on page 195 for more details about the cluster queue
manager records this tab displays.

Note: It is not possible to alter the attributes of any channel objects to
which the cluster queue manager records refer from this properties
window. This includes where the queue manager is connected to the
WebSphere MQ Explorer under the Queue Managers folder.

These cluster queue manager records, although they show cluster sender
channels, generally represent automatically defined channels based on the
cluster receiver channel defined by a queue manager when it joined the
cluster. See 8.1.5, “Cluster receiver channels” on page 185 for details.
Cluster sender channel objects are only manually defined when joining a
cluster to contact a full repository within the cluster. See 8.1.6, “Cluster
sender channels” on page 187 for details.

 Chapter 8. Queue manager clusters 201

8.3 Actions on queue managers in a cluster
This section describes the common actions that are performed when
administering or creating a queue manager cluster. This administration is not a
complicated procedure, but should be followed correctly in order to ensure that
incorrect information about a queue manager is not held by the other queue
managers in the cluster and that communication to a queue manager in the
cluster can be established.

8.3.1 Suspending and resuming a queue manager within a cluster
Suspending a queue manager in a cluster is not the same as removing it from
the cluster. Suspending a queue manager in a cluster makes it unlikely that
messages are delivered to the queues shared by that queue manager within the
cluster. It significantly reduces the likelihood that the workload balancing
algorithm on other queue managers chooses to deliver messages to queues
hosted by that queue manager. We discuss workload balancing in 8.4, “Workload
balancing” on page 209.

Suspending a queue manager in a cluster does not prevent messages that are
targeted specifically for that queue manager from reaching that queue manager
through the cluster.

After being suspended, a queue manager can be subsequently resumed.

Use one of the following methods to suspend and resume a queue manager in a
cluster:

� Using the SUSPEND QMGR CLUSTER or RESUME QMGR CLUSTER
MQSC commands to suspend or resume the queue manager in a single
cluster.

� Using the SUSPEND QMGR CLUSNL or RESUME QMGR CLUSNL MQSC
commands to suspend or resume the queue manager in multiple clusters.

Note: It is not possible to alter the attributes of the channel object to which
the cluster queue manager record refers from this properties window. This
includes where the queue manager is connected to the WebSphere MQ
Explorer under the Queue Managers folder.

We discuss the use of cluster receiver channels in joining a cluster in 8.1.5,
“Cluster receiver channels” on page 185.

202 WebSphere MQ V6 Fundamentals

� Using the WebSphere MQ Explorer:

a. If the queue manager being suspended is a partial repository in the
cluster, a full repository for the cluster must be connected under the
Queue Managers folder in the navigator view.

b. Expand the Queue Manager Clusters folder in the navigator view.

c. Expand the icon in the navigator view with the same name as the cluster.

d. Expand either the Full Repositories folder, or the Partial Repositories
folder in the navigator view, depending on whether the queue manager is
a full or partial repository in the cluster.

e. Right-click the icon in the navigator view with the same name as the queue
manager.

• If the queue manager is to be suspended in the cluster, select
Suspend Cluster Membership.

• If the queue manager is to be resumed in the cluster, select Resume
Cluster Membership. This option is only available if the queue
manager is suspended in the cluster.

8.3.2 Resetting a queue manager’s cluster membership
You can use the RESET CLUSTER MQSC command to flush all information held
about a queue manager from the cluster to provide that queue manager with a
clean start in the cluster without needing it to leave and rejoin the cluster.

This action is also available from the WebSphere MQ Explorer by right-clicking a
queue manager icon under a particular cluster.

8.3.3 Steps to join a queue manager to a cluster
We describe the manual steps involved in adding a queue manager to an existing
cluster, or creating a new cluster, in this section. For clusters that do not use
namelists in the channel definitions or the repository attribute of queue
managers, you can also perform these actions using wizards in the WebSphere
MQ Explorer.

Note: Only take this action after reading the appropriate documentation in
WebSphere MQ Queue Manager Clusters, SC34-6589. It is especially
important to consider this action carefully if it is performed in relation to full
repository queue managers in a cluster.

 Chapter 8. Queue manager clusters 203

Using wizards in the WebSphere MQ Explorer
The WebSphere MQ Explorer wizards distinguish between the creation of a new
cluster and adding a queue manager to an existing cluster. For either action, the
queue managers involved must have already been created and started and must
be connected under the Queue Managers folder in the WebSphere MQ Explorer.

To access the Create Cluster wizard:

1. Ensure that two full repository queue managers, which initially form the
cluster, exist and are connected under the Queue Managers folder.

2. Right-click the Queue Manager Clusters folder in the navigator tree.

3. Select New → Queue manager cluster.

To access the Add to cluster wizard:

1. Ensure that a full repository for the cluster is connected to the WebSphere
MQ Explorer under the Queue Managers folder.

2. Ensure that the queue manager that is joining the cluster is connected under
the Queue Managers folder.

3. Right-click the cluster the queue manager is joining under the Queue
Manager Clusters folder in the navigator tree.

4. Select Add Queue Manager To Cluster.

Manual steps
Use the following manual steps to add a queue manager to an existing cluster or
create a new cluster:

1. Ensure that a listener is defined for the queue manager on a particular port
and that the host name or IP address of the machine hosting the queue
manager is known and available to all other queue managers in the cluster.

2. Ensure that the connection name of a full repository within the cluster is
known, including the host name or IP address of the machine hosting the
queue manager and the port on which the listener is running. If you are
performing these steps for one of the initial two full repository queue
managers for the cluster, this is the connection name of the other queue
manager that hosts, or can host, a full repository for the cluster.

Note: Do not use host name of localhost or the IP address of 127.0.0.1,
because these are only valid on the local machine.

204 WebSphere MQ V6 Fundamentals

3. If the queue manager is to host a full repository for a single cluster, set the
repository (REPOS) attribute of the queue manager object to the name of the
cluster.

If the queue manager is to host full repositories for multiple clusters, define a
namelist object with the names of all clusters specified in the NAMES attribute.
Specify the name of this namelist object in the repository namelist (REPOSNL)
attribute of the queue manager object.

4. Define a cluster receiver channel object to define how other queue managers
within the cluster contact this queue manager:

– Specify the connection name to use to contact the queue manager joining
the cluster in the connection name (CONNAME) attribute.

– If the cluster receiver channel object is to be used to join the queue
manager to only one cluster, specify the name of the cluster in the cluster
(CLUSTER) attribute.

– Alternatively, if the same cluster receiver channel object is to be used to
join the queue manager to multiple clusters, define a namelist object with
the names of all clusters specified in the NAMES attribute. Specify the name
of this namelist object in the cluster namelist (CLUSNL) attribute of the
queue manager object.

– Specify any additional attributes, such as the disconnection interval, batch
size, or SSL configuration, that queue managers within the cluster should
use when sending messages to this queue manager.

5. Define a cluster sender channel object to define a connection to an existing
full repository in the cluster, or the other full repository queue manager that is
defined:

– Specify the connection name to use to contact the queue manager hosting
the full repository for the cluster in the connection name (CONNAME)
attribute.

– If the remote full repository queue manager only hosts a full repository for
one cluster that this queue manager joins, or if the full repository queue
manager has different cluster receiver channel objects specified for each
cluster for which it hosts a full repository, specify the name of the cluster in
the cluster (CLUSTER) attribute.

Note: If this queue manager is going to replace an existing full repository
within the cluster, we recommend that this is the connection name of the
full repository that remains in the cluster.

 Chapter 8. Queue manager clusters 205

– Alternatively, if the same cluster receiver channel object is defined on the
full repository queue manager for multiple clusters that this queue
manager is to join, define a namelist object with the names of all clusters
specified in the NAMES attribute. Specify the name of this namelist object in
the cluster namelist (CLUSNL) attribute of the queue manager object.

– Specify any additional attributes, such as the SSL configuration, that are
required by the cluster receiver channel definition defined on the remote
full repository queue manager.

6. The queue manager now becomes a member of the cluster and can share
queue objects within the cluster by using cluster (CLUSTER) or cluster namelist
(CLUSNL) attributes. Existing queue objects can be altered and new ones
defined.

8.3.4 Steps for a queue manager to leave a cluster
We describe the manual steps involved in removing a queue manager from a
cluster. For clusters that do not use namelists in the channel definitions or the
repository attribute of queue managers, you can also perform this action using
wizards in the WebSphere MQ Explorer.

Note: If the queue manager joining the cluster is a full repository queue
manager, and more than one other full repository exists in the cluster,
explicitly define cluster sender channel objects to all other full repository
queue managers in the cluster.

Note: Until the process of joining the cluster has completed successfully,
entries of the following form are shown in output from DISPLAY CLUSQMGR
commands or under the Clusters folder in the WebSphere MQ Explorer:

SYSTEM.TEMPQMGR.hostname(port)

You should do observe these entries if the full repository queue manager to
which the explicit cluster sender is defined is running, has a listener running
on the correct port, and has already joined the cluster. If you observe these,
carefully check the attributes specified on the defined cluster channel objects
and check that listeners are running for both queue managers on the correct
ports. We provide general troubleshooting information in 12.3.3,
“Troubleshooting cluster message channels” on page 331.

206 WebSphere MQ V6 Fundamentals

Using wizards in the WebSphere MQ Explorer
Use the following steps to access the Remove Queue Manager from Cluster
wizard through the WebSphere MQ Explorer:

1. Find the icon for the queue manager under the icon for the cluster in the
Queue Manager Clusters folder of the navigator view. It is either in the Full
Repositories or Partial Repositories folder.

2. Right-click this icon and select Remove Queue Manager From Cluster.

Manual steps
Use the following manual steps to remove a queue manager from a cluster:

1. If the queue manager hosts a full repository for the cluster, ensure that two full
repositories remain available in the cluster.

2. If the queue manager hosts a full repository for the cluster, inform all queue
managers in the cluster that the queue manager no longer hosts a full
repository. To do this:

– If the queue manager only hosts a repository for one cluster, set the
repository (REPOS) or repository namelist (REPOSNL) attribute of the queue
manager object to blank, depending on which contains a value.

– If the queue manager hosts a full repository for multiple clusters and is
only to be removed from one, alter the namelist object specified in the
repository namelist (REPOSNL) attribute of the queue manager to remove
the cluster from the list of names.

3. Suspend the queue manager in the cluster, as described in 8.3.1,
“Suspending and resuming a queue manager within a cluster” on page 202.

4. Inform the queue managers in the cluster that the queue manager is leaving
the cluster. To do this:

– If the cluster receiver used to join the cluster was used to join the cluster to
only one cluster, set the cluster (CLUSTER) or cluster namelist (CLUSNL)
attribute of that cluster receiver channel object to blank, depending on
which contains a value.

Note: If this is not the case, join a new queue manager to the cluster as a
full repository before removing the existing full repository queue manager.

Note: In MQSC, enclose the blank value in single quotation marks:

ALTER QMGR REPOS(' ')

 Chapter 8. Queue manager clusters 207

– If the cluster receiver used to join the cluster was used to join multiple
clusters and is only to be removed from one, alter the namelist object
specified in the cluster namelist (CLUSNL) attribute of the cluster receiver
channel object to remove the cluster from the list of names.

5. Issue a stop channel command against the cluster receiver channel object
used to join the queue manager to the cluster. For example, in MQSC use the
following command:

STOP CHANNEL('TO.QmgrName')

6. If the cluster or cluster namelist was set to blank during these steps, and the
cluster receiver channel is not required to rejoin this queue manager to a
cluster, the cluster receiver channel object can now be deleted.

7. If the cluster sender channel object used to join the queue manager to the
cluster was only used to join the queue manager to one cluster, it can also be
stopped and deleted at this stage. Otherwise, follow the same procedure as
was followed for the cluster receiver channel to remove the reference to the
cluster from the definition of the cluster sender channel object or the namelist
it references.

8. Issue a refresh cluster command against the queue manager for the cluster
that the queue manager is leaving. This ensures that the information about
the cluster is cleared from the repository held by the queue manager.

Note: In MQSC, enclose the blank value in single quotation marks:

ALTER CHANNEL('TO.QmgrName') CHLTYPE(CLUSRCVR) CLUSTER(' ')

Note: After performing this step, any messages that are sent to this queue
manager though the cluster become stuck on the cluster transmit queues
of the sending queue managers. Therefore, wait for the messages to stop
flowing to the queue manager before issuing the command. Because the
queue managers in the cluster have been informed of this queue
manager’s removal, workload balancing does not send new messages to
this queue manager.

208 WebSphere MQ V6 Fundamentals

8.4 Workload balancing
The most powerful feature provided by a queue manager cluster is workload
balancing. This enables the same service to be hosted through multiple queue
managers in the cluster and for the requests from applications to be workload
balanced across those service instances. This is transparent to the operation of
the application accessing the service.

The capacity of services hosted by a cluster can be scaled efficiently by adding
resources to the infrastructure. New machines hosting queue managers and
services are automatically sent new requests by the applications that connect to
queue managers in that cluster to request services.

Workload balancing can also provide high service availability, because it
automatically detects if a queue manager becomes unavailable. New requests
for services are workload balanced across the remaining available queue
managers in the cluster.

No special configuration is required in a cluster in order to benefit from workload
balancing. In order to add an instance of a service to the cluster, a new queue
manager joins the cluster and shares an instance of the queue that represents
that service identified by the queue name. All queue managers within the cluster
that have accessed, or subsequently access, that queue name within the cluster
are automatically notified of the new instance. These queue managers can then
begin sending messages to that instance.

The choice of which instance of a queue to which to send a particular message is
made by the queue manager, usually a partial repository, to which the application
sending that message is connected.

The first time a queue of a particular name is accessed by any application
connected to a queue manager, it subscribes to information about the instances
of that queue hosted in the cluster from a full repository for that cluster. It is then

Note: If the queue manager that left the cluster held a full repository for that
cluster, it is possible that partial repositories had explicitly defined cluster
sender channels to that queue manager. Define new cluster sender channel
objects on these queue managers to point to a full repository that remains in
the cluster and remove the old cluster sender channel object. Otherwise,
these queue managers will be unable to leave and rejoin the cluster if required
in the future. This includes performing a REFRESH CLUSTER command with
REPOS(YES) specified.

 Chapter 8. Queue manager clusters 209

automatically informed of changes to those instances or the removal or addition
of instances.

In order to benefit from workload balancing, an application must not specify the
name of a particular queue manager when it opens a queue using an MQOPEN
call.

8.4.1 Bind on open and bind not fixed
In the execution of a particular application, the application might send a number
of messages to the same service, identified by a queue name, within a cluster.

Often, each message can be delivered to a different instance of the service
within the cluster with no adverse effect on the operation of the application
requesting that service. If the service being contacted is using a request/reply
model, each message sent by the requester is marked with an explicit
destination for the service to reply to, so no context is necessary. This form of
operation is very efficient for workload balancing and can increase the tolerance
of the application to an individual service instance becoming unavailable.

However, messages exchanged between two applications can be
conversational, with requests followed by responses followed by requests based
on the context established in the previous request. The relation between these
messages is called message affinity. Due to message affinity, an application
might need to bind to a particular instance of a service within the cluster.

To provide for this, an application can explicitly specify one of the following
options in the options provided to the queue manager when opening the queue.

� Bind on open:
All messages sent using the object handle returned from the MQOPEN call,
until the MQCLOSE is issued, are sent to the same instance of a queue in the
cluster. Workload balancing is only performed once when the queue is first
opened by the application.

� Bind not fixed:
Workload balancing occurs each time a message is put by the application
using the object descriptor.

Note: If a queue manager name is specified when opening a queue, the uses
of queue objects described in 8.1.7, “Sharing queue objects within clusters” on
page 189 can be used to allow workload balancing to still occur. This is often
the case for messages that arrive from a queue manager outside of a cluster
where the receiving MCA opens a queue with the queue manager name
specified in the transmission queue header.

210 WebSphere MQ V6 Fundamentals

The default behavior is determined by the default bind (DEFBIND) attribute of the
cluster instance of the queue, which is chosen during the MQOPEN call. This
attribute is specified on the queue object shared in the cluster on the queue
manager that created that object and shared it in the cluster.

8.4.2 The workload balancing algorithm
Each time a queue manager chooses a destination for messages within a cluster
based on a queue name, the workload balancing algorithm of the queue
manager is invoked.

At a basic level, with a default configuration and channels to all queue managers
in the cluster successfully established, this workload balancing algorithm can be
considered to perform a round-robin type distribution of messages. Therefore, if
1000 messages are put by an application with bind not fixed, and 10 queues of
the name specified are hosted by 10 queue managers within the cluster,
approximately 100 messages arrive at the applications hosted on that queue on
each of those 10 queue managers.

However, this is not exact and is affected by many considerations. This section
provides an overview of how the workload balancing algorithm operates and can
be customized using the facilities of WebSphere MQ V6.0. For full details of the
decision process made by the workload balancing algorithm each time it is
called, refer to WebSphere MQ Queue Managers Clusters, SC34-6589.

8.4.3 Destination sequence numbers
In order to perform a round-robin type algorithm, a destination sequence number
is held locally to a queue manager for each queue manager it has knowledge of
in the cluster.

The cluster workload algorithm preferentially chooses a suitable destination
queue manager with the lowest destination sequence number.

Note: Existing applications that use the MQPUT1 call, or perform an
MQOPEN and MQCLOSE with each message put, cannot benefit from bind
on open functionality. These applications need to be modified to perform
multiple puts with the same object handle, or preferably to remove the
message affinity.

Note: This is performed on a per cluster channel basis, but under most
circumstances, each cluster channel known to a queue manager for a cluster
reflects one queue manager in the cluster.

 Chapter 8. Queue manager clusters 211

This destination sequence number is incremented each time a message is sent
to that queue manager through the cluster. It is not held on a per queue basis, so
messages sent to a queue instance of one name on a queue manager affect
workload balancing of messages sent through the same cluster to queue
instances of other names on that queue manager. This includes where
commands are sent to other queue managers in the cluster to maintain
information within the repositories and where applications specify a particular
queue manager when sending messages through a cluster.

In the default configuration, this value is incremented by the same amount each
time a message is sent. Therefore, in the simple case previously described, an
even distribution of messages occurs.

However, there are a number of other factors that affect the operation of the
workload balancing algorithm. The rest of this chapter discusses these
considerations.

These are placed in the order in which they are considered by the workload
balancing algorithm. The channel sequence number is the last factor to be
considered, because it provides balancing only between the suitable candidate
destinations for the message.

8.4.4 Put disabling queues
When a queue shared in a cluster is put disabled, this is published to all
interested queue managers within the cluster.

The workload balancing only attempts to send messages to a put disabled
cluster queue instance if no other instances are available within the cluster.

Note: The sequence number is maintained by a WebSphere MQ V6.0 queue
manager while it is running to account for changes such as resuming queue
managers in the cluster. A reset of all channel sequence numbers can be
forced by restarting the queue manager.

Note: If messages are explicitly sent to that queue manager, or no other
cluster queue instances of the correct name are available in the cluster,
messages are still delivered to the queue manager. These messages are
processed by the receiving MCA, as described in 7.4.1, “Message
transmission” on page 167.

212 WebSphere MQ V6 Fundamentals

8.4.5 Workload balancing and locally hosted queues
If an application is connected to a queue manager and puts a message
specifying the name of a local queue object on that queue manager, the default
behavior is to always use that local instance as long as it is not put disabled.

This default behavior can be overridden on WebSphere MQ V6.0 to allow
workload balancing to occur, treating the locally hosted queue in the same way
as queues hosted remotely in the cluster.

The default behavior for all queues hosted on a queue manager is overridden
using the cluster workload use queue (CLWLUSEQ) attribute of the queue manager
object.

The queue manager wide default can be overridden on a queue by queue basis
using the cluster workload use queue (CLWLUSEQ) attribute of a local queue object.

8.4.6 Ranking queue managers and queues
In WebSphere MQ V6.0, queue managers within a cluster can be ranked by
specifying or changing the cluster workload rank (CLWLRANK) attribute on the
cluster receiver channel, which was used by a queue manager to join a cluster.

Queue instances hosted on a queue manager with a higher rank are always
chosen over instances hosted on a queue manager with a lower rank unless no
other put enabled queue instances of the correct name are known in the cluster.

Individual queue instances can be also be ranked using the cluster workload
rank (CLWLRANK) attribute on the queue object that is shared in the cluster.
Ranking of individual queues is considered after ranking of queue managers by
the cluster workload algorithm.

Ranking can force the final destination for messages in the cluster. This is useful
when interconnecting multiple clusters and defining routes between those
clusters. Ranking is useful in order to specify how messages should be routed
through interconnected clusters to get to a preferred destination.

8.4.7 Suspending queue managers in the cluster
If a queue manager is suspended in a cluster, as described in 8.3.1, “Suspending
and resuming a queue manager within a cluster” on page 202, the workload
balancing algorithm chooses other queue managers in preference to that queue
manager.

 Chapter 8. Queue manager clusters 213

This is useful before performing planned maintenance on that queue manager to
recommend to applications that they do not route messages to the queue
manager while it is unavailable.

However, if no other queue instances of the correct name are available,
messages are still sent to a suspended queue manager.

8.4.8 Channel status
Queue instances hosted on queue managers to which channels are already
running or have become naturally inactive are chosen in preference to other
queue managers.

If no such instances are found, instances on queue managers to which channels
are in the process of starting are chosen.

If it has still not been possible to find instances, queue managers to which
channels that have failed to start previously but are in the process of retrying the
connection are chosen. Messages wait on the cluster transmission queue until
the channel restarts.

If the only instances are hosted on queue managers to which channels must be
manually restarted, such as stopped channels, messages must be sent to those
queue managers and remain on the transmission queue until the channels are
started manually.

This enables the cluster to automatically route around individual failures of queue
managers within the cluster.

8.4.9 Prioritizing queue managers and queues
In WebSphere MQ V6.0, queue managers within a cluster can be prioritized by
specifying or changing the cluster workload priority (CLWLPRTY) attribute on the
cluster receiver channel, which was used by a queue manager to join a cluster.

Queue instances hosted on a queue manager with a higher priority are usually
chosen over instances hosted on a queue manager with a lower priority.

However, instances hosted on a queue manager with a lower priority are chosen
if a queue manager is considered unavailable for some reason. For example,
queue managers might be suspended in the cluster or channels to queue
managers might have failed.

Individual queue instances can be also prioritized using the cluster workload
priority (CLWLRANK) attribute on the queue object that is shared in the cluster.

214 WebSphere MQ V6 Fundamentals

Prioritization of individual queues is considered after prioritization of queue
managers by the cluster workload algorithm.

Prioritization allows secondary, or failover, resources to be allocated for hosting
services. These resources might be in a geographically remote location, thus
affecting performance. They might be designated as primary resources for other
services in the system, so sending requests to them under normal operation
affects the performance of their primary services. If a failure occurs for the
resources normally hosting the service, they are able maintain service
availability.

8.4.10 Limiting cluster connections from a queue manager
If a large number of applications access a service in a system, and a number of
instances of the service exist to manage this workload, it might not be efficient for
all applications to workload balance over all instances. This can cause a large
number of channels to be active to each queue manager hosting the service.

WebSphere MQ V6.0 allows the number of instances over which a queue
manager workload balances to be limited. Then, workload balancing using a
destination sequence number only occurs over these instances.

A limit is configured on the maximum number of channels that are established
from a queue manager to other queue managers in a cluster. This is configured
using the cluster workload manager recently used channel (CWMRUC) attribute on
the queue manager object.

By enabling this limit on all queue managers accessing a service, the number of
channels established concurrently to a queue manager hosting a service can be
reduced.

8.4.11 Weighting queue managers
Some machines hosting a service might be more powerful, and thus able to
service more requests than other machines hosting the same service within the
system.

In WebSphere MQ V6.0, queue managers within a cluster can be weighted
between 1 and 99 by specifying or changing the cluster workload weight
(CLWLWGHT) attribute on the cluster receiver channel, which was used by a queue
manager to join a cluster.

The cluster workload algorithm sends more messages to queue managers with a
higher weight than those with a lower weight. The number of messages sent are
proportional to the weight.

 Chapter 8. Queue manager clusters 215

The algorithm achieves this by increasing the destination sequence number of
each queue manager by a value related to the weight. A higher weight results in
less being added to the destination sequence number when each message is
sent. The increment is 1000 divided by the weight of the queue manager.

For example, two available queue managers have weights of 60 and 20, and the
same destination sequence number. Four messages are workload balanced
between a queue name hosted by both queue managers. Three of these
messages are sent to the queue manager with a weight of 60, and only 1 is sent
to the queue manager with a weight of 20. This is because destination sequence
numbers both increase by 50:

� (1000/60) x 3 = 50
� (1000/20) x 1 = 50

216 WebSphere MQ V6 Fundamentals

Chapter 9. Hands-on introduction to
messaging with WebSphere
MQ

In this chapter, you create, start, and administer local WebSphere MQ queue
managers. You learn the use of both the WebSphere MQ Explorer and
WebSphere MQ control commands. We provide equivalent steps for common
queue manager configuration tasks using the WebSphere MQ Explorer and
MQSC script commands. You perform both point-to-point and publish/subscribe
messaging using the local WebSphere MQ infrastructure you build. This
infrastructure provides a queue manager hosting a service with a request/reply
interface, triggered to start when messages arrive on a queue.

We discuss the following topics:

� Overview of the hands-on chapters of this book

� Environment setup

� Messaging with a local queue manager

� Host a request/reply service on a queue

� WebSphere MQ publish/subscribe with JMS

9

© Copyright IBM Corp. 2005. All rights reserved. 217

9.1 Overview of the hands-on chapters of this book
The hands-on introduction to WebSphere MQ in this book is split into two
chapters:

� In this chapter, you create and administer individual queue managers. You
provide and access services through these queue managers, using
point-to-point and publish/subscribe messaging models.

� In Chapter 10, “Hands-on guide to building WebSphere MQ infrastructure” on
page 265, you connect multiple queue managers together over a TCP/IP
network. You build a hub and spoke infrastructure and then a queue manager
cluster. Through these infrastructures, you provide and access the same
services as in this chapter.

Throughout the hands-on introduction, you use the administration interfaces and
sample applications provided by WebSphere MQ.

9.1.1 Administration of queue managers
Many administration tasks can be performed using either the WebSphere MQ
Explorer or MQSC scripting interface. This book provides equivalent steps using
both methods.

We recommend that those without previous WebSphere MQ experience use the
WebSphere MQ Explorer. However, the MQSC steps can be useful later as your
knowledge progresses in order to build scripts based on the tasks in this chapter.
For example, your change control procedures might require an MQSC script to
be submitted for any changes to a production environment.

9.1.2 WebSphere MQ sample programs
WebSphere MQ is supplied with a variety of sample programs.

These sample programs are provided in source code form, and many samples
are also provided precompiled and ready to use.

Note: We use lowercase naming conventions, because these are well-suited
for administration with the WebSphere MQ Explorer.

When using MQSC commands, ensure that any attribute values and object
names that contain lowercase characters are enclosed in single quotation
marks. Regularly using quotation marks is general good practice in MQSC to
avoid confusion.

218 WebSphere MQ V6 Fundamentals

This book uses the samples provided in the C programming language, using the
message queue interface (MQI), to demonstrate point-to-point messaging.
Similar samples are provided for other programming languages with the
WebSphere MQ product.

We use the samples provided in the Java language, using the JMS standardized
application programming interface (API), to demonstrate publish/subscribe
messaging. Very similar principles apply to the IBM Message Service (XMS)
client.

Publish/subscribe messaging can also be performed by building WebSphere MQ
publish/subscribe commands and issuing them against the WebSphere MQ
publish/subscribe broker. You can be perform this using any of the point-to-point
messaging APIs provided for use with WebSphere MQ.

Application programmers are encouraged to inspect the source code of the
samples provided by WebSphere MQ when beginning to implement a solution
based on the WebSphere MQ product. Many of the samples provided in other
programming languages by WebSphere MQ match the function of the C samples
used in these steps. Therefore, using these steps and the infrastructures
developed as a starting point for development and testing can be beneficial.

9.2 Environment setup
This chapter assumes a WebSphere MQ V6.0 server installation on your desktop
Microsoft Windows or Linux machine. However, with the exception the
WebSphere MQ Explorer steps, you can also perform the steps in this chapter
with remote access to a UNIX machine that has a WebSphere MQ V6.0 server
installation.

9.2.1 WebSphere MQ V6.0 installation
For information about performing a WebSphere MQ server installation, refer to
the WebSphere MQ V6.0 Quick Beginnings guide appropriate to your platform:

� WebSphere MQ for Windows V6.0 Quick Beginnings, GC34-6476

� WebSphere MQ for Linux V6.0 Quick Beginnings, GC34-6480

Install all optional components and prerequisites.

Note: If you use a Linux installation of WebSphere MQ, follow the UNIX
instructions where a platform-specific choice is given.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 219

9.2.2 WebSphere MQ administrator privileges
The user under which you log in to the machine must have WebSphere MQ
administrator privileges.

� On Windows:

Your user identifier must be a member of either the following groups:

– Administrators

– mqm

� On UNIX:

Your user identifier must be a member of the following group:

– mqm

9.2.3 Accessing the WebSphere MQ samples
The WebSphere MQ samples need to be in your operating system search path.
For WebSphere MQ for Windows installations, this is performed automatically.

The WebSphere MQ samples are installed into the following directory:

� Windows:

C:\Program Files\IBM\WebSphere MQ\Tools\c\Samples\Bin

� UNIX, except IBM AIX 5L:

/opt/mqm/samp/bin

Add this to the path for the current terminal session:

PATH=$PATH:/opt/mqm/samp/bin
export PATH

� IBM AIX 5L:

/usr/mqm/samp/bin

Add this to the path or the current terminal session:

PATH=$PATH:/usr/mqm/samp/bin
export PATH

9.2.4 Java considerations
The steps in 9.5, “WebSphere MQ publish/subscribe with JMS” on page 255
require a Java Development Kit (JDK™) installation. A JDK is supplied in the
prereqs directory of the WebSphere MQ V6.0 installation media.

220 WebSphere MQ V6 Fundamentals

If a JDK is not available, all publish/subscribe-related steps in this book must be
skipped.

9.3 Messaging with a local queue manager
This section helps you to become familiar with the graphical and command line
interfaces used to create, start, end, and delete queue managers. It also shows
how you can put and get test messages to queues and view the contents of
queues using the WebSphere MQ Explorer and the WebSphere MQ sample
programs.

Future sections assume some familiarity with these interfaces and samples as
developed in this section.

9.3.1 Create a default queue manager on the machine
This step creates a new queue manager on the machine and makes it the default
queue manager for the machine.

This step can either be performed using the WebSphere MQ Explorer Create
Queue Manager wizard, or the crtmqm WebSphere MQ control command.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queue Managers folder in the navigator view, and select
New → Queue Manager. The Create Queue Manager wizard opens,
showing Enter Basic Values (Step 1)

2. Type host1/qm1 into the Queue manager name field.

3. Select the Make this the default queue manager option.

4. Leave the other fields with their default values, and click Next. Do not click
Finish. The wizard shows Enter log values (Step 2).

5. Leave the fields with their default values, and click Next. Do not click Finish.
The wizard shows Enter configuration options (Step 3).

6. Clear the Start queue manager check box.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 221

7. Leave the other fields with their default values, and click Next. Do not click
Finish. The wizard shows Enter listener options (Step 4).

8. Clear the Create listener configured for TCP/IP check box.

9. Leave the other fields with their default values, and click Next. Do not click
Finish. The wizard shows Enter explorer options (Step 5).

10.Leave the fields with their default values, and click Finish.

11.A status window opens with the title Creating Queue Manager “host1/qm1”.

12.After this task completes, notice that the queue manager is shown in the
navigator view under the Queue Managers folder with the correct icon for a
stopped local queue manager.

Using WebSphere MQ control commands
Execute the following command to create a queue manager with a default
configuration and make it the default queue manager for the machine.

crtmqm -q host1/qm1

Note: The Start queue manager check box can be used to automatically
perform the steps 9.3.2, “Start the default queue manager on the machine”
on page 223.

An Auto start queue manager option is provided on Windows only to cause
the queue manager to be automatically started when the machine is turned
on or restarted.

Note: If you have a queue manager already created on the machine with a
listener configured on the well-known TCP/IP port for WebSphere MQ, this
page might show “The port is already used by another WMQ Listener.”

Note: This option can be used to automatically perform the steps in 10.2.1,
“Create and start a listener” on page 267.

Note: You can click Show details on this window to see the WebSphere
MQ control commands being executed by the WebSphere MQ Explorer to
create the queue manager. If you do so, the status windows need to be
closed manually after the original window shows Finished.

222 WebSphere MQ V6 Fundamentals

The expected output from this command is:

WebSphere MQ queue manager created.
Creating or replacing default objects for host1/qm1.
Default objects statistics : 43 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

Issuing the following command checks that the queue manager has been
created:

dspmq

The following line is expected in this output:

QMNAME(host1/qm1) STATUS(Ended immediately)

9.3.2 Start the default queue manager on the machine
This step starts the queue manager created in the previous step. It can be
performed using either the WebSphere MQ Explorer or the amqmdain/strmqm
WebSphere MQ control commands.

The WebSphere MQ control commands do not require the queue manager
name, because it has been created as the default queue manager for the
machine.

Using the WebSphere MQ Explorer
Right-click the icon for the queue manager host1/qm1 in the navigator view, and
select Start. The same form of progress window opens as was shown when
creating the queue manager.

After this task completes, notice that the queue manager is shown in the
navigator view under the Queue Managers folder with the correct icon for a
running local queue manager.

Using WebSphere MQ control commands
The control commands used on UNIX and Windows differ as follows:

� Windows:

amqmdain qmgr start

Note: If the -q option is not specified, the queue manager is not made the
default queue manager for the machine.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 223

� UNIX:

strmqm

The expected output from this command is:

WebSphere MQ queue manager 'host1/qm1' starting.
5 log records accessed on queue manager 'host1/qm1' during the log replay
phase.
Log replay for queue manager 'host1/qm1' complete.
Transaction manager state recovered for queue manager 'host1/qm1'.
WebSphere MQ queue manager 'host1/qm1' started.

Note: This starts the queue manager in a way that allows you to log off and
then log back on and for the queue manager to continue running. The
WebSphere MQ control command under the UNIX heading works, but
logging off ends the queue manager.

On WebSphere MQ for Windows V5.3, use:

amqmdain start host1/qm1

224 WebSphere MQ V6 Fundamentals

9.3.3 Define a new locally hosted queue
This section shows how to define a new local queue object on the queue
manager. A local queue object represents an actual queue hosted by that queue
manager to which messages can be put and got.

You can perform this task using the WebSphere MQ Explorer or by issuing a
DEFINE MQSC command from the runmqsc command. The runmqsc command is
used to issue MQSC commands against a queue manager.

Note: If you get the following output, this probably indicates that the
queue manager was not created as the default queue manager for the
machine:

AMQ8118: WebSphere MQ queue manager does not exist.

To check this, or to make the queue manager the default, perform the
following steps:

� Using the WebSphere MQ Explorer (on Windows):

a. Right-click IBM WebSphere MQ in the navigator view, and select
Properties.

b. Inspect or change the Default queue manager name field. For
these steps, it should contain:

host1/qm1

c. Click OK.

� Using the mqs.ini file on UNIX:

a. Open the mqs.ini file in a text editor, such a vi or emacs. The
mqs.ini file is located in the following location:

/var/mqm/mqs.ini

b. Search for the following line:

DefaultQueueManager:

c. If that line does not exist, create it at the end of the file.

d. The next line after this line is:

Name=host1/qm1

e. Edit or add this line as appropriate.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 225

Using the WebSphere MQ Explorer
Perform the following steps:

1. Expand the icon for the queue manager host1/qm1 in the navigator view,
which displays a Queues folder under the queue manager.

2. Right-click the Queues folder and select New → Local Queue. The Create
Local Queue wizard opens showing “Enter a name” and a red cross.

3. Enter queue1 into the Name field.

4. Click Next. Do not click Finish. The Change the properties of the new Local
Queue window opens. This is the window from where the initial attributes of
the local queue object can be specified.

5. Enter the following value in the Description field:

Redbook example queue1: Newly defined

6. Click Finish. A progress window might briefly open. The result window opens,
containing the following message:

The object was created successfully. (AMQ4148)

Using MQSC commands
Perform the following steps:

1. Start an interactive MQSC session for the default queue manager using the
following command:

runmqsc

2. The interactive MQSC session starts and waits for input with a flashing cursor.
The initial output is as follows:

5724-H72 (C) Copyright IBM Corp. 1994, 2004. ALL RIGHTS RESERVED.
Starting MQSC for queue manager host1/qm1.

The session is ready to accept input; you do not see a subsequent message
saying that the session has started.

Note: If the queue manager has not been started, or has not been
specified as the default, you see the following output and a normal
operating system prompt is displayed:

5724-H72 (C) Copyright IBM Corp. 1994, 2004. ALL RIGHTS RESERVED.
AMQ8146: WebSphere MQ queue manager not available.

No MQSC commands read.
No commands have a syntax error.

All valid MQSC commands were processed.

226 WebSphere MQ V6 Fundamentals

3. Issue the following command to create the queue:

DEFINE QLOCAL('queue1') +
 DESCR('Redbook example queue1: Newly defined')

The output is as follows:

AMQ8006: WebSphere MQ queue created.

4. Exit the interactive MQSC session using the following command:

END

You are returned to an operating system prompt. Output is displayed showing
a summary of the commands you executed during that session, for example:

END
 2 : END
One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.

9.3.4 Display the attributes of the newly created queue
This step shows that the description (DESCR) attribute specified has been stored
in the definition of the object. All other attributes contain their default values. For
example, the (default) persistence (DEFPSIST) attribute is set to not persistent
(NO). The number of messages on the queue, as reflected in the read-only current
queue depth (CURDEPTH) attribute, is zero for the newly created queue.

Note: It is important to use the single quotation marks, as shown in the
previous command. This allows the name and description to contain
lowercase characters.

Note that the + symbol is the last character on the first line, and that it is
preceded by a blank space after the closing parenthesis. This allows the
second line to be part of the same MQSC command.

Note: If you make multiple attempts to create the queue, subsequent
attempts might fail with the following message:

AMQ8150: WebSphere MQ object already exists.

If this occurs, add the REPLACE attribute to the command to replace any
existing definition. For example:

DEFINE QLOCAL('queue1') REPLACE +
 DESCR('Redbook example queue1: Newly defined')

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 227

You can perform this step using the WebSphere MQ Explorer, showing the
schemes feature provided by the WebSphere MQ Explorer. It can also be
performed using runmqsc, demonstrating how wildcards and attribute values can
be used in MQSC DISPLAY commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Highlight the Queues folder under queue manager host1/qm1 in the Queue
Managers folder in the navigator view.

2. An entry in the table is displayed for the queue queue1. The table columns
display the attribute values. Scroll the table to the right to view the
Description, Persistence, and Current queue depth attributes.

3. You can change the default order of these columns, or save your own set of
customized columns using WebSphere MQ schemes. At the bottom of the
table, you see the following text displayed:

Scheme: Standard for Queues - Distributed

This shows that the default column scheme is being used, and that this queue
manager is not a WebSphere MQ for z/OS queue manager. The term
distributed generally represents all non-mainframe platforms.

To the right of this text is an arrow. Click this arrow to open a menu from which
you can apply existing schemes to the table, edit the current scheme, or
manage the schemes.

Click Manage Schemes to access a window where you can create your own
schemes or edit the default scheme for all tables showing queues on your
WebSphere MQ Explorer.

For example, you can move the Description, Persistence, and Current queue
depth columns to near the beginning of the column order.

Using an MQSC command
Perform the following steps:

1. Start an interactive MQSC session for the default queue manager using the
following command:

runmqsc

2. Issue the following MQSC command to list all local queue objects defined:

DISPLAY QLOCAL(*)

228 WebSphere MQ V6 Fundamentals

In the output from this command, which summarizes all local queue objects,
queue1 is displayed as follows:

AMQ8409: Display Queue details.
 QUEUE(queue1) TYPE(QLOCAL)

3. Issue the following MQSC command to display all attributes of the queue:

DISPLAY QLOCAL('queue1') ALL

You see a large number of attributes displayed in this output.

4. Limit the output to only the description, default persistence, and current queue
depth attributes using the following MQSC command:

DISPLAY QLOCAL('queue1') DEFPSIST DESCR CURDEPTH

The output is as follows:

AMQ8409: Display Queue details.
 QUEUE(queue1) TYPE(QLOCAL)
 CURDEPTH(0) DEFPSIST(NO)
 DESCR(Redbook example queue1: Newly defined)

5. Issue the following command to exit the MQSC interactive session:

END

9.3.5 Alter the attributes of a queue object
This step alters the attributes of the previously defined local queue object. For
this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Highlight the Queues folder under queue manager host1/qm1 in the Queue
Managers folder in the navigator view.

Note: It is important you use the single quotation marks as shown in the
previous command. This allows the name of the object to contain
lowercase characters. If you do not do this, you see the following output:

AMQ8147: WebSphere MQ object QUEUE1 not found.

Note: You can use the DISPLAY QUEUE MQSC command to display the
attribute of any queue object, regardless of its type. For example, the following
command shows all queue objects defined on a queue manager:

DISPLAY QUEUE(*)

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 229

2. Right-click the entry for queue1 in the table and select Properties, or
double-click the entry in the table. This displays the properties window for the
local queue object.

3. Enter the following value in the Description field:

Redbook example queue1: Altered description

4. Click OK. A progress window opens and then closes.

5. Note the change in the description attribute of the local queue object in the
queues table.

Using MQSC commands
Perform the following steps:

1. Start an interactive MQSC session for the default queue manager using the
following command:

runmqsc

2. Issue the following MQSC command to alter the description attribute of the
queue:

ALTER QLOCAL('queue1') +
 DESCR('Redbook example queue1: Altered description')

3. Display the updated attribute of the queue using the following command:

DISPLAY QLOCAL('queue1') DESCR

4. Issue the following command to exit the MQSC interactive session:

END

9.3.6 Put test messages onto this queue
This step places messages, containing your own custom text, onto the queue
previously created. For this step, you can use the WebSphere MQ Explorer the
amqsput WebSphere MQ sample program against the default queue manager on
the machine.

After you have put these messages, you see the current queue depth (CURDEPTH)
attributes on the queue change to the number of messages put to the queue. In

Note: It is important to use the single quotation marks as shown in the
previous command. This allows the name of the object and the description
to contain lowercase characters. If you do not do this, you see the following
output:

AMQ8147: WebSphere MQ object QUEUE1 not found.

230 WebSphere MQ V6 Fundamentals

9.3.4, “Display the attributes of the newly created queue” on page 227, we
describe how to view this attribute.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Highlight the Queues folder under queue manager host1/qm1 in the Queue
Managers folder in the navigator view.

2. Right-click the row in the table for queue1 and select Put Test Message. This
opens the Put test message window.

3. Type a message into the Message data field.

4. Click Put message. The Message data field becomes blank. You can enter
multiple test messages, clicking Put message after each one.

5. Click Close. The window closes.

Using the WebSphere MQ sample programs

Perform the following steps:

1. Execute the following command:

amqsput queue1

The following output is displayed, and the command waits for user input:

Sample AMQSPUT0 start
target queue is queue1

2. Type a message and press Enter. You can enter multiple messages, pressing
Enter after each one.

3. Leave a blank line, and press Enter to exit.

Note: Ensure that the WebSphere MQ sample programs have been added to
your operating system command search path.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 231

9.3.7 Browse messages put to the queue
This step shows how to view, or browse, the messages currently on a queue in
WebSphere MQ without removing any of those messages. This includes both the
data the message contains and the information about that message held in the
message descriptor.

The messages put are nonpersistent messages. The reply-to queue manager is
automatically filled in as host1/qm1 by the queue manager to which the
messages were put.

The messages generated in 9.3.6, “Put test messages onto this queue” on
page 230 were datagram messages, meaning they do not require a reply.

Note: If you receive output similar to the following output (including where
2059 is replaced by 2058), check that the queue manager is correctly
configured as the default, as described in 9.3.2, “Start the default queue
manager on the machine” on page 223, and is running by issuing the dspmq
command:

Sample AMQSPUT0 start
MQCONN ended with reason code 2059

If you receive output similar to the following output, check that the queue name
you specified is correct (including the case) and check that the object you
defined has the correct name (including the case) by viewing it, as described
in 9.3.4, “Display the attributes of the newly created queue” on page 227:

Sample AMQSPUT0 start
target queue is QUEUE1
MQOPEN ended with reason code 2085
unable to open queue for output
Sample AMQSPUT0 end

These reason code numbers can be viewed in a more readable form by using
the mqrc command, followed by the reason code. Example output from calls to
mqrc for 2058, 2059, and 2085 is as follows:

2058 0x0000080a MQRC_Q_MGR_NAME_ERROR
2059 0x0000080b MQRC_Q_MGR_NOT_AVAILABLE
2085 0x00000825 MQRC_UNKNOWN_OBJECT_NAME

If you see another reason code from MQCONN, MQOPEN, or MQPUT
displayed in the output from the sample, use the mqrc command to display it in
a readable form. For more information about the reason code, refer to the “API
completion and reason codes” section of WebSphere MQ Messages,
GC34-6601.

232 WebSphere MQ V6 Fundamentals

Because of this, no reply-to queue was specified by the WebSphere MQ Explorer
or amqsput sample when putting the message.

For this step, you can use the WebSphere MQ Explorer or the amqsbcg
WebSphere MQ sample program.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the queue in the table of queues for the queue manager and select
Browse Messages. A progress window opens, followed by the Message
browser window.

2. Each row in the table of the Message browser window represents a message
on the queue. The table columns displays the information about that message
contained in the message descriptor and the message data that message
contains. You can use schemes on this window to change the column order,
for example, to bring the Persistence, Message type, Message data, Reply-to
queue, and Reply-to queue manager columns near the beginning of the
column order.

3. Some messages are best viewed as binary data, rather than as text. To do
this, double-click a row in the table representing a message. A properties
window opens. Select the Data section in this properties window.

Using the WebSphere MQ sample programs
Perform the following steps:

1. Execute the following command to browse the messages on the queue, which
is hosted on the default queue manager, and redirect the output to a file called
queue1.txt:

amqsbcg queue1 > queue1.txt

2. Open the queue1.txt file in a text editor of your choice. For each message, the
information about the message stored in the message descriptor is displayed,
and the message data contained in the message is shown in a binary display
with the text version to the right of the data.

The information in this output is not as easy to read as the data in the
WebSphere MQ Explorer. Extracts (not necessarily full lines) from such an
output, which are of interest, are explained as follows:

MsgType : 8

Note: These methods can be very useful in a real system during development,
testing, or when monitoring information on queues. Browsing a queue in this
way does not affect the messages it contains.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 233

A message type of 8 is a datagram message. Request messages are 1, reply
messages are 2, and report messages are 4.

This shows the message is nonpersistent; a value of 1 means that the
message is persistent:

Persistence : 0

This shows the full 48 characters of the reply-to queue name, with blanks to
the right of the data. This is called blank-padded data and is used frequently
in WebSphere MQ structures. Here, the field in the message descriptor is
entirely blank:

ReplyToQ : ' '

This shows the 48 character blank padded reply-to queue manager name, as
automatically filled in by the queue manager when the message was put:

ReplyToQMgr : 'host1/qm1 '

This shows a binary display of the message data, with a text-based display to
the right. This is provided because some message data, especially as
contained in large messages, is more easily viewed in a binary format.
However, for our simple test messages, the data is not as easy to read.

**** Message ****
 length - 20 bytes
00000000: 5265 6462 6F6F 6B20 7465 7374 206D 6573 'Redbook test mes'
00000010: 7361 6765 'sage '

9.3.8 Defining and putting to an alias of a locally hosted queue
This step defines a queue alias object that has a different name that the
previously created queue but references the same queue containing messages.

The attributes of a queue alias object affect the default behavior for messages
put to the target queue. This step shows how specifying a default persistence of
persistent on a queue alias can causes the messages put to a queue through
that queue alias object to be persistent.

Note: In this step, both persistent and nonpersistent messages are placed on
the same queue for demonstration purposes. However, WebSphere MQ is
most efficient when a queue contains either persistent or nonpersistent
messages. Therefore, we do not generally recommend placing a mixture of
persistent and nonpersistent messages on a queue.

234 WebSphere MQ V6 Fundamentals

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host1/qm1, and select New → Alias Queue.
This opens the New Alias Queue wizard, with “Enter a name” displayed with a
red cross.

2. Type the name queue1.persistent in the Name field.

3. Click Next. Do not click Finish. The wizard displays Change the properties of
the new Alias Queue. This window is used to specify the attributes of the
queue alias object.

4. Type queue1 in the Base queue field.

5. Enter the following value in the Description field:

Redbook example alias to queue1: For persistent messages

6. Select Persistent for the Persistence field.

7. Click Finish, and click OK on the AMQ4148 message that opens stating that
the object was created successfully.

8. Right-click the new entry in the Queues table called queue1.persistent,
select Put Test Message, and put some messages to the queue.

9. Notice that the current queue depth of queue1 has increased. Browse the
messages on queue1, as described in 9.3.7, “Browse messages put to the
queue” on page 232. Notice that the new messages put to the queue through
the queue alias have a persistence of Persistent, while the messages
previously put directly to the queue have a persistence of Not Persistent.

Using MQSC commands
Perform the following steps:

1. Execute the following MQSC command (using runmqsc):

DEFINE QALIAS('queue1.persistent') TARGQ('queue1') DEFPSIST(YES) +
 DESCR('Redbook example alias to queue1: For persistent messages')

2. Verify the attributes of the alias queue object using the following MQSC
command:

DISPLAY QALIAS('queue1.persistent') TARGQ DEFPSIST DESCR

Note: This specifies the target queue (TARGQ) attribute of the queue alias
object.

Note: Remember that queue1 is lowercase, so it is important to enclose the
TARGQ in single quotation marks when defining the queue alias object.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 235

3. After exiting runmqsc using END, execute the following command and put some
messages to the alias queue using the WebSphere MQ sample program (a
blank line exits the program):

amqsput queue1.persistent

4. Browse the queue, as described in 9.3.7, “Browse messages put to the
queue” on page 232. Notice that the new messages put to the queue are
persistent, while the existing messages put directly to the queue are
nonpersistent.

9.3.9 End and restart the queue manager
This step ends the queue manager, using either the WebSphere MQ Explorer or
the endmqm WebSphere MQ control command. The queue manager is then
restarted, and the queue containing messages is browsed. You will see that the
nonpersistent messages are lost, while the persistent messages remain on the
queue.

This step performs a quiesced shutdown of the queue manager, informing all
applications connected to the queue manager that the queue manager is ending,
but not denying new actions from those applications.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the icon for the queue manager under the Queue Managers folder,
and select Stop. This opens the End Queue Manager window.

2. Leave the Controlled radio button selected.

3. Wait for the status window to complete.

Notice that the icon for the queue manager has changed to the correct icon
for a stopped local queue manager.

Note: An immediate shutdown can also be performed. This allows the current
action of each application to complete successfully, but allows no further
actions to be performed. Use this method if a queue manager does not end
within a reasonable amount of time. The immediate shutdown action can be
performed while an existing quiesced shutdown action is in progress.

Note: The controlled end method in the WebSphere MQ Explorer is the
same as the wait end method available with the endmqm command. This
performs a quiesced shutdown of the queue manager and displays the
status window until the end has completed.

236 WebSphere MQ V6 Fundamentals

4. Restart the queue manager by right-clicking the queue manager and
selecting Start. Wait for the progress window to complete.

5. Browse the contents of queue1. Notice that only the persistent messages put
through the queue alias object remain on the queue.

Using WebSphere MQ control commands
Perform the following steps:

1. Use the following command to end queue manager, waiting for a quiesced
shutdown to complete:

endmqm -w host1/qm1

2. Restart the queue manager using the amqmdain qmgr start (Windows) or
strmqm (UNIX) command, as described in 9.3.2, “Start the default queue
manager on the machine” on page 223.

3. Browse the messages on queue1, as described in 9.3.7, “Browse messages
put to the queue” on page 232. Notice that only the persistent messages put
through the queue alias object remain on the queue.

Note: The queue manger name must be specified on an endmqm command,
even for the default queue manager. This is to avoid an accidental
shutdown of the default queue manager.

Another shutdown option for the endmqm command is:

endmqm Queue_Manager_Name

Without arguments, this initiates a quiesced shutdown and then returns
immediately. The dspmq command can then be used to determine when the
shutdown has completed.

This performs an immediate shutdown of the queue manager:

endmqm -i Queue_Manager_Name

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 237

9.3.10 Get messages from a queue
This step shows how to get messages currently on a queue in WebSphere MQ.
This permanently retrieves a message from a queue. Only one application can
successfully get any given message. Perform this step using the WebSphere MQ
sample programs.

Perform the following steps:

1. If no messages remain on queue1, put some test messages onto the queue,
either directly or through the queue alias.

2. Execute the following command to get all messages on the queue, which is
hosted on the default queue manager:

amqsget queue1

This command shows a line for each message that is on the queue and then
waits for 10 seconds for messages to arrive on that queue before ending. If
you put more messages within that 10 seconds, they are displayed instantly,
and the command waits another 10 seconds.

Example output is as follows:

Sample AMQSGET0 start
message <Redbook test message 1>
message <Redbook test message 2>
message <Redbook test message 3>
no more messages
Sample AMQSGET0 end

3. Notice that if you browse the queue after the command has ended, no
messages remain.

Note: You can configure an individual local queue to retain nonpersistent
messages during a normal restart by specifying an NPM class (NPMCLASS) of
High. This attribute is in the Storage section of the properties window for the
queue. You can try using this now, but configuring queue1 for a high
nonpersistent message class and performing this step again with
nonpersistent messages on the queue.

However, this is not the same as using persistent messaging. WebSphere MQ
does not log actions on nonpersistent messages and does not attempt to
recover the messages after an abrupt failure of the queue manager, so
nonpersistent messages on queues with a high non persistent message class
can still be lost. Always mark business-critical data as persistent.

238 WebSphere MQ V6 Fundamentals

9.3.11 Delete a queue object
This step demonstrates how to delete a queue object using the alias queue
object previously defined. For this step, you can use the WebSphere MQ
Explorer or the DELETE MQSC command.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the alias queue object queue1.persistent in the queues table for
the queue manager, and select Delete. This opens a confirmation window.

2. Check the name of the object, and click Yes.

3. After the status window closes, a confirmation opens. Click OK.

4. Notice that the object is no longer listed in the queues table.

Using MQSC commands:
Perform the following steps:

1. Issue the following MQSC command (using runmqsc):

DELETE QALIAS('queue1.persistent')

You receive the following output:

AMQ8007: WebSphere MQ queue deleted.

2. Notice that the queue object is no longer displayed in the output of either of
the following MQSC commands:

DISPLAY QUEUE(*)
DISPLAY QALIAS(*)

9.3.12 Define a queue manager alias using a remote queue object
A queue manager alias is just one example of a use of a remote queue object.
This step shows how one can be created. Use the WebSphere MQ Explorer or
the DEFINE QREMOTE MQSC command.

Note: A queue manager alias is a remote queue object with a blank remote
queue name attribute. We demonstrate the use of a remote queue object as a
local definition of a remote queue in 10.3.12, “Create a local definition of a
remote queue” on page 288.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 239

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host1/qm1, and select New → Remote
Queue. This opens the New Remote Queue wizard, with “Enter a name”
displayed with a red cross.

2. Type the name host1/qm1.alias in the Name field.

3. Click Next. Do not click Finish. The wizard displays Change the properties of
the new Alias Queue. This window is used to specify the attributes of the
queue alias object.

4. Type host1/qm1 in the Remote queue manager field.

5. Enter the following value in the Description field:

Redbook example queue manager alias to host1/qm1

6. Click Finish, and click OK on the AMQ4148 message that opens stating that
the object was created successfully.

Using MQSC commands
Perform the following steps:

1. Execute the following MQSC command (using runmqsc):

DEFINE QREMOTE('host1/qm1.alias') RNAME('') RQMNAME('host1/qm1') +
 DESCR('Redbook example queue manager alias to host1/qm1')

2. Verify the attributes of the remote queue object defining the queue manager
alias using the following MQSC command:

DISPLAY QREMOTE('host1/qm1.alias') RNAME RQMNAME DESCR

9.3.13 Specify a queue manager name when opening a queue
This step demonstrates how a specific queue manager name can be specified
when opening a queue to put a message. Use the WebSphere MQ sample
programs to perform this step. This example demonstrates the flexibility the
different types of queue objects provided for controlling queue name resolution.

The WebSphere MQ sample programs are flexible in the options they provide,
and this example uses some extra options on the amqsput sample.

Note: Remember that host1/qm1 is lowercase, so it is important to enclose
RQMNAME in single quotation marks when defining the queue alias object.

240 WebSphere MQ V6 Fundamentals

Using the WebSphere MQ sample programs
Perform the following steps:

1. Execute the WebSphere MQ sample command as follows, and put some
messages:

amqsput queue1 host1/qm1 8208 0 host1/qm1.alias

The following parameters are passed to this sample:

– queue1 is the name of the queue.

– host1/qm1 is the name of the queue manager being connected to.

– 8208 is a decimal value requesting options to be passed to the MQOPEN
call. This is not important to the example. It is requesting that the queue is
opened for output to put messages and to fail any subsequent puts if the
queue manager is quiescing.

– 0 requests that no options are passed to the MQCLOSE call. This is not
important to the example.

– host1/qm1.alias is the name of the object queue manager specified in the
MQOPEN call. This is the extra parameter used in this example. You can
see that this name matches the queue manager alias that was previously
defined, not the queue manager name to which the application is
connected. Queue name resolution can resolve this to the name of the
local queue manager, which is host1/qm1, through the queue manager
alias.

2. By browsing queue1, you can see that the messages are delivered to queue1
on queue manager host1/qm1, even though addressed to host1/qm1.alias.

9.3.14 Delete the queue manager
This step shows how to delete a queue manager. All messages, including
persistent messages, held on the queues of that queue manager are lost and

Note: The particular command shown in this example can be useful to test a
route to a remote queue manager by sending messages to a queue of a
particular name on that queue manager through a local queue manager.

Note: If you delete the remote queue object defining the queue manager
alias, or specify an incorrect queue manager name (case-sensitive) in
either the name or attribute of the queue remote definition or on the
amqsput command, you see a 2087 MQRC_UNKNOWN_REMOTE_Q_MGR return
code from the MQOPEN call.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 241

cannot be recovered by WebSphere MQ. For this step, you can use the
WebSphere MQ Explorer or the dltmqm WebSphere MQ control command.

Using the WebSphere MQ Explorer
Perform the following steps:

1. If queue manager host1/qm1 is running, right-click the queue manager in the
navigator view and select Stop to end the queue manager.

2. After choosing the end method and clicking OK, a status window opens.
When the status window completes, right-click queue manager host1/qm1 in
the navigator tree and select Delete.

3. Check the name of the queue manager displayed in the confirmation window.
If it is correct, click Yes to complete the deletion; otherwise, click No to return
to the WebSphere MQ Explorer. A status window opens if you choose to
complete the deletion.

4. When the status window completes, the queue manager is deleted and thus
no longer displayed in the navigator view.

Using WebSphere MQ control commands
Perform the following steps:

1. End the queue manager, as described in 9.3.9, “End and restart the queue
manager” on page 236, for example using:

endmqm -w host1/qm1

2. When the queue manager ends, the following command can be used to
delete the queue manager:

dltmqm host1/qm1

Note: The dltmqm WebSphere MQ control command does not request
confirmation before deleting a queue manager. Take care whenever issuing a
dltmqm command. The action of deleting a queue manager cannot be undone
by WebSphere MQ.

Note: As with the endmqm command, the dltmqm command requires you to
provide the name of the queue manager, even if deleting the default queue
manager on the machine.

242 WebSphere MQ V6 Fundamentals

9.4 Host a request/reply service on a queue
This section demonstrates how a service can be hosted on a queue manager
and provides a request/reply interface through a queue. This includes configuring
triggering to automatically start the service when messages arrive on that queue.
We demonstrate this using the WebSphere MQ samples.

9.4.1 Create and start a queue manager to host the service
This step creates a new queue manager, called host1/echo.hub. This reflects that
the queue manager is a hub for a particular service and that this service echoes
the text in a request back in the reply.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queue Managers folder, and select New → Queue Manager.

2. Type host1/echo.hub into the Queue manager name field.

3. Ensure Make this queue manager the default queue manager is not selected.

4. Click Next.

5. Click Next, leaving the default logging values.

6. Ensure that Start queue manager check box is selected to cause the queue
manager to start automatically.

7. Click Next.

8. Clear Create listener configured for TCP/IP.

9. Click Finish.

Using WebSphere MQ control commands
Perform the following steps:

1. Create the queue manager without specifying that it should be the default
queue manager using the following command:

crtmqm host1/echo.hub

2. Start the queue manager using the following command:

– Windows:

amqmdain qmgr start host1/echo.hub

– UNIX:

strmqm host1/echo.hub

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 243

9.4.2 Create a queue to host the service
This step creates a local queue object from which the service is later configured
to be triggered and process requests. For this step, you can use the WebSphere
MQ Explorer or MQSC commands. This reply-to queue has the default queue
attributes. By default, requests put to this queue are nonpersistent.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host1/echo.hub, and select New → Local
Queue.

2. Type echo into the Name field.

3. Click Next.

4. Enter the following value in the Description field:

Queue hosting the echo service

5. Click Finish.

Using MQSC commands
Issue the following MQSC command against host1/echo.hub:

DEFINE QLOCAL('echo') +
 DESCR('Queue hosting the echo service')

9.4.3 Manually define a reply-to queue
This step manually creates a local queue object, which the requesting application
uses to receive replies.For this step, you can use the WebSphere MQ Explorer or
MQSC commands. This reply-to queue has the default queue attributes.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host1/echo.hub, and select New → Local
Queue.

2. Type echo.replies.manual into the Name field

3. Click Next.

4. Enter the following value in the Description field:

Manually defined reply-to queue for echo service

5. Click Finish.

244 WebSphere MQ V6 Fundamentals

Using MQSC commands

Issue the following MQSC command against host1/echo.hub:

DEFINE QLOCAL('echo.replies.manual') +
 DESCR('Manually defined reply-to queue for echo service')

9.4.4 Put an example request message and inspect it
This step puts an example request message and inspects the message to see
how a request message differs from a datagram. For this step, you can use the
WebSphere MQ sample programs and browse the queue as discussed in 9.3.7,
“Browse messages put to the queue” on page 232.

Perform the following steps:

1. Issue the amqsreq WebSphere MQ sample command as follows:

amqsreq echo host1/echo.hub echo.replies.manual

The initial output from this command is:

Sample AMQSREQ0 start
server queue is echo
replies to echo.replies.manual

Note: Because host1/echo.hub is not the default queue manager, an
interactive MQSC session is started using the following command:

runmqsc host1/echo.hub

Remember that the END command is used to end an interactive MQSC
session.

Note: This command uses the following parameters:

� echo is the name of the queue hosting the service that provides the
request/reply interface. Currently, no service is active against this
queue.

� host1/echo.hub is the name of the queue manager to which the
requesting application connects.

� echo.replies.manual is the name of the reply-to queue that the
requesting application specifies in the message descriptors of requests
and waits for replies to arrive on.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 245

2. Type some messages into the command. Press Enter after each message.
Enter a blank line to stop sending messages. The sample then waits for 10
seconds for any responses. No responses are received, because the service
is not configured at this time.

3. Browse the messages placed on the echo queue. Notice the following
information:

– The message type (MsgType) is request (or the number 1).

– The reply-to queue is echo.replies.manual.

– The reply-to queue manager is host1/echo.hub.

– If using the WebSphere MQ Explorer, select the Identifiers section of the
message properties window. Notice that the message identifier (MsgId)
contains a value, which is uniquely generated by WebSphere MQ.

– Notice that the correlation identifier (CorrelId) is blank.

9.4.5 Clear the requests from the queue hosting the service
This step clears the echo queue that hosts the service. This step ensures that a
message already on the queue is not preventing the WebSphere MQ triggering
rules from generating a trigger message when a subsequent message arrives.
You might want to refer back to this step if you experience problems in later
steps.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Select the Queues folder for host1/echo.hub.

2. Right-click the row in the table for queue echo, and select Clear Messages.

3. On the Clear queue window, leave Queue will be cleared with the CLEAR
command selected, and click Clear.

Note: Remember to check the case of the name of the queues in MQSC
and the WebSphere MQ Explorer, as well as all of the parameters specified
on the command. Use the mqrc command for a textual description of any
unexpected return codes.

Note: This step is not strictly required. In a real environment, clearing a queue
containing requests might cause the loss of important data.

246 WebSphere MQ V6 Fundamentals

4. Notice that the current queue depth attribute returns to zero.

Using MQSC commands
Issue the following MQSC command against host1/echo.hub:

CLEAR QLOCAL('echo')

9.4.6 Create a process definition for the service
These steps use the amqsech WebSphere MQ sample program to provide a
request/reply service hosted on the echo queue. This sample program is
designed to be started using the WebSphere MQ triggering mechanism.

This step creates a process definition, which is used to start the amqsech
WebSphere MQ sample application performing the service. For this step, you
can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Process Definitions folder for host1/echo.hub and select
New → Process Definition.

2. Type amqsech into the Name field.

3. Click Next.

4. Enter the following value in the Description field:

The amqsech WebSphere MQ sample program

5. Choose an appropriate value for the Application type, as follows:

– For Windows, use Windows NT.

– For UNIX, use Unix.

6. Type the path of the sample in the Application ID, as follows:

– For Windows:

C:\Program Files\IBM\WebSphere MQ\Tools\c\samples\bin\amqsech.exe

– For UNIX (except AIX 5L):

/opt/mqm/samp/bin/amqsech

Note: This folder is under the Advanced subfolder for the queue manager
in the navigator tree.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 247

– For AIX 5L:

/usr/mqm/samp/bin/amqsech

7. Click Finish.

Using MQSC commands
Perform the following steps:

1. Issue the following MQSC command against host1/echo.hub:

– Windows:

DEFINE PROCESS('amqsech') +
 DESCR('The amqsech WebSphere MQ sample program') +
 APPLTYPE(WINDOWSNT) +

APPLICID('C:\Program Files\IBM\WebSphere MQ\Tools\c\samples\bin\amqsech.exe')

– UNIX (except AIX 5L):

DEFINE PROCESS('amqsech') +
 DESCR('The amqsech WebSphere MQ sample program') +
 APPLTYPE(UNIX) APPLICID('/opt/mqm/samp/bin/amqsech')

– AIX 5L:

DEFINE PROCESS('amqsech') +
 DESCR('The amqsech WebSphere MQ sample program') +
 APPLTYPE(UNIX) APPLICID('/usr/mqm/samp/bin/amqsech')

2. Display the attributes of the process definition object created using the
following MQSC command:

DISPLAY PROCESS('amqsech')

9.4.7 Create a queue to use as an initiation queue
This step creates a local queue with default attributes that is subsequently
configured as the initiation queue for trigger messages for the echo queue. For
this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host1/echo.hub, and select New → Local
Queue.

2. Type echo.initq into the Name field.

3. Click Next.

Note: Check the case of the attributes and the name of the process
definition object. On UNIX platforms the path is case-sensitive.

248 WebSphere MQ V6 Fundamentals

4. Enter the following value in the Description field:

Initiation queue for triggering the echo service

5. Click Finish.

Using MQSC commands
Issue the following MQSC command against host1/echo.hub:

DEFINE QLOCAL('echo.initq') +
 DESCR('Initiation queue for triggering the echo service')

9.4.8 Enable triggering on the queue hosting the service
This step alters the echo queue to enable triggering. The triggering mechanism
being used is first. This generates a trigger message on the initiation queue
when the first message arrives on the queue.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Select the Queues folder for host1/echo.hub.

2. Right-click the row in the table for queue echo and select Properties.

3. Select the Triggering section.

4. Change the Trigger control field to On.

5. Change the Trigger type to First.

6. Type echo.initq into the Initiation queue field.

7. Type amqsech into the Process name field.

8. Click OK.

Using MQSC commands
Perform the following steps:

1. Issue the following MQSC command against host1/echo.hub:

ALTER QLOCAL('echo') +
 TRIGGER TRIGTYPE(FIRST) INITQ('echo.initq') +
 PROCESS('amqsech')

2. Check the attributes of the queue object using the following MQSC command:

DISPLAY QLOCAL('echo') TRIGGER TRIGTYPE INITQ PROCESS

Note: Check that the case of the attributes is correct.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 249

9.4.9 Start the WebSphere MQ trigger monitor
This step starts the WebSphere MQ trigger monitor, listening for trigger
messages arriving on the echo.initq initiation queue previously defined.

Perform the following steps:

1. Start a new command window or terminal session. When started, the
WebSphere MQ trigger monitor should remain running indefinitely for the
echo service, because it is used later in this chapter. Refer back to this
section if the trigger monitor is ended at any point. If the trigger monitor needs
to be ended, press Ctrl+C after selecting the command window or terminal
session in which it is running.

2. Issue the following command to start the WebSphere MQ trigger monitor for
queue manager host1/echo.hub and initiation queue echo.initq:

runmqtrm -m host1/echo.hub -q echo.initq

The initial output from this command is as follows:

5724-H72 (C) Copyright IBM Corp. 1994, 2004. ALL RIGHTS RESERVED.
WebSphere MQ trigger monitor started.

__
Waiting for a trigger message

9.4.10 Issue a request against the service
This step sends a request message to the echo queue, which causes a trigger
message to be placed on the initiation queue, due to the attributes of the echo
queue.

This trigger message is processed by the WebSphere MQ trigger monitor, which
starts the amqsech WebSphere MQ sample program using the process definition
object specified on the parameters of the echo queue.

The WebSphere MQ trigger monitor passes all information to the amqsech
program from the trigger message. This allows the amqsech program to determine
the queue from which to process messages.

The amqsech program sends replies that contain the original messages echoed
back to the reply-to queue specified in the message descriptor of the request
message.

Perform the following steps:

1. Issue the amqsreq WebSphere MQ sample command as follows:

amqsreq echo host1/echo.hub echo.replies.manual

250 WebSphere MQ V6 Fundamentals

2. Type a single message and press Enter. Do not place a blank line after the
message yet.

3. Look at the output from the trigger monitor. Notice that some extra output is
displayed. This shows that a trigger message was generated on the initiation
queue, processed by the trigger monitor, and that the amqsech sample
program was started. Extra output is displayed after about 10 seconds when
the amqsech sample stops waiting for messages and ends. Example output is
as follows:

C:\PROGRA~1\IBM\WEBSPH~1\Tools\c\samples\bin\amqsech.exe "TMC 2echo
 amqsech
 C:\Program Files\IBM\WebSphere
MQ\Tools\c\samples\bin\amqsech.exe

 host1/echo.hub
"
Sample AMQSECHA start
Example request message
MQGET ended with reason code 2033
Sample AMQSECHA end
End of application trigger.

4. This indicates that the amqsech sample, started by the WebSphere MQ trigger
monitor, processed the message and sent a reply to the reply-to queue
specified. This queue is the echo.replies.manual queue specified on the
command line of the amqsreq sample that created the request message.

Browse the message that has been produced on the echo.replies.manual
queue. If you are using the amqsbcg sample to do this, you might need to open
a new command window to run the browse command without ending the
amqsreq sample.

Notice the following information in the reply:

– The message type (MsgType) is reply (or the number 2).

– Both the message identifier (MsgId) and correlation identifier (CorrelId)
have values. This is because the amqsech sample copied the message
identifier from the request message descriptor into the correlation identifier
of the reply message descriptor. This allows the reply to be correlated with
the request by the application that performed the request. The message
identifier of the reply is one uniquely generated by WebSphere MQ.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 251

5. Return to the command window from which the request was issued using
amqsreq. Press Enter on a blank line. After about 10 seconds, the amqsreq
sample program completes. Example output is as follows:

Sample AMQSREQ0 start
server queue is echo
replies to echo.replies.manual
Example test message

response <Example test message>
no more replies
Sample AMQSREQ0 end

9.4.11 Define a model queue object for a dynamic reply-to queue
This step defines a model queue object from which temporary dynamic reply-to
queues are created by the amqsreq sample when it requests the echo service.
For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host1/echo.hub, and select New → Model
Queue.

2. Type echo.replies.tempdyn into the Name field.

3. Click Next.

4. Enter the following value in the Description field:

Temporary dynamic reply-to queues for echo service

5. Select the Extended section.

6. Notice that Temporary Dynamic is specified in the Definition Type field.

7. Click Finish.

Note: If you experience problems during this step, check the attributes of all
previously defined objects. Ensure that the case of object names and
attributes is specified correctly. Also ensure that the case of parameters
passed to commands, including the WebSphere MQ trigger monitor, is correct.

252 WebSphere MQ V6 Fundamentals

Using MQSC commands
Perform the following steps:

1. Issue the following MQSC command against host1/echo.hub:

DEFINE QMODEL('echo.replies.tempdyn') +
 DESCR('Temporary dynamic reply-to queues for echo service')

2. Check the properties of the object defined using the following MQSC
command:

DISPLAY QMODEL('echo.replies.tempdyn') DESCR DEFTYPE

Notice that the definition type (DEFTYPE) is temporary dynamic (TEMPDYN).

9.4.12 Issue requests using a temporary dynamic reply-to queue
This step requests the service in the same way as 9.4.10, “Issue a request
against the service” on page 250. However, the reply-to queue specified on the
amqsreq command line is the echo.replies.tempdyn model queue defined.

When the amqsreq sample opens the model queue, the queue manager
automatically defines a temporary dynamic queue based on the attributes of the
echo.replies.tempdyn model queue object. The queue manager automatically
removes this object when the amqsreq sample completes. This includes when the
queue manager detects the amqsreq sample completes uncleanly, for example,
by pressing Ctrl+C during its operation. This might occur a number of seconds
after the amqsreq sample is terminated.

Perform the following steps:

1. Issue the amqsreq WebSphere MQ sample command as follows:

amqsreq echo host1/echo.hub echo.replies.tempdyn

Example initial output is as follows:

Sample AMQSREQ0 start
server queue is echo
replies to AMQ.42DD88DE02C70120

AMQ.42DD88DE02C70120 is the name of the dynamic queue that has been
created.

2. View the properties of this temporary dynamic queue as follows:

– Using the WebSphere MQ Explorer:

i. Select the Queues folder for host1/echo.hub.

ii. Enable the WebSphere MQ Explorer to display temporary queues, as
shown in Figure 9-1 on page 254.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 253

Figure 9-1 Showing temporary queues in the WebSphere MQ Explorer

iii. Notice that the description of the dynamic queue is the same as the
description of the model queue object from which it was created.

– Using MQSC commands:

i. Issue the following MQSC command against host1/echo.hub:

DISPLAY QL('AMQ.*') DEFTYPE DESCR

ii. Notice that the description (DESCR) attribute of the dynamic queue is the
same as the description of the model queue object from which it was
created.

3. Notice that the operation of the amqsreq application is the same as with a
manually defined queue.

4. After the amqsreq application has completed, notice that the temporary
dynamic queue is removed automatically.

Note: You might see temporary dynamic queues with names starting
AMQ.MQEXPLORER. These are created by the WebSphere MQ Explorer
based on the SYSTEM.MQEXPLORER.REPLY.MODEL model queue. The
WebSphere MQ Explorer uses the request reply interface provided by
the command servers of queue managers.

254 WebSphere MQ V6 Fundamentals

9.5 WebSphere MQ publish/subscribe with JMS
This section demonstrates the WebSphere MQ publish/subscribe broker, using
the WebSphere MQ Java Message Service (JMS) publish/subscribe sample.

9.5.1 Configure the JMS environment
Create a directory on the machine from which all commands are run and in which
all files and other directories required for these steps are created. All command
windows or terminal sessions should work within this directory.

The compiled components of a Java application are found by the Java Runtime
Environment (JVM) within which a Java application runs by configuring a class
path. This is configured using an environment variable.

On Windows, the WebSphere MQ installation adds the components required for
running WebSphere MQ JMS applications to the Java class path. However, on
UNIX platforms, this must be performed by running a script in the current shell.

On all platforms, these instructions assume the working directory is added to the
Java class path.

Note: The amqsreq sample application does not support use of permanent
dynamic queues, because it does not specify the required options to delete
the queue when it closes the queue. However, you can to experiment with
model queues with a definition type of permanent dynamic (PERMDYN) and the
amqsreq sample to see how this allows persistent messages to be used. The
temporary queues created need to be manually removed using the MQSC
commands or the WebSphere MQ Explorer.

Note: This requires that a Java Development Kit (JDK) is installed on the
machine from which these steps are run. A Version 1.4.2 JDK is supplied in
the Prereqs directory of the WebSphere MQ V6.0 installation media.

Ensure that the directory containing the java and javac executables from this
JDK have been added to the operating system path.

Some very basic editing of the WebSphere MQ JMS publish/subscribe sample
is required, and the sample must be compiled. However, this can be
performed without previous knowledge of the Java programming language.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 255

Due to these considerations, the perform the following steps in each command
window or terminal session that is used for these steps:

� Windows:

a. Change directory to the chosen working directory. For example:

C:
cd \wmq_redbook\jmspubsub

b. Execute the following commands to add the current directory to the Java
class path:

set CLASSPATH=%CLASSPATH%;.

� UNIX:

a. Change directory to the chosen working directory. For example:

cd ~/wmq_redbook/jmspubsub

b. Execute the following command, appropriate to the UNIX platform (the
space between the . and the / is important):

• UNIX, except AIX 5L:

. /opt/mqm/java/bin/setjmsenv

• AIX 5L:

. /usr/mqm/java/bin/setjmsenv

c. Execute the following commands to add the current directory to the Java
class path, as well as an additional Jar package not added by setjmsenv:

• UNIX, except AIX 5L:

CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jms.jar:.
export CLASSPATH

• AIX 5L:

CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/jms.jar:.
export CLASSPATH

256 WebSphere MQ V6 Fundamentals

9.5.2 Create and start a queue manager
Create and start a queue manager called host1/jmspubsub, which provides the
publish/subscribe broker.

For this step, you can use WebSphere MQ control commands or the WebSphere
MQ Explorer, as described in 9.4.1, “Create and start a queue manager to host
the service” on page 243.

Note: If you experience errors in later steps containing the following text,
use the solution here:

Exception in thread "main" java.lang.NoClassDefFoundError

Manually configure the CLASSPATH environment variable as follows:

� UNIX, except AIX 5L:

CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mq.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/com.ibm.mqjms.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/connector.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jms.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jndi.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/jta.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/providerutil.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/fscontext.jar
CLASSPATH=$CLASSPATH:/opt/mqm/java/lib/ldap.jar
CLASSPATH=$CLASSPATH:.
export CLASSPATH

� AIX 5L:

CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/com.ibm.mq.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/com.ibm.mqjms.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/connector.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/jms.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/jndi.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/jta.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/providerutil.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/fscontext.jar
CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/ldap.jar
CLASSPATH=$CLASSPATH:.
export CLASSPATH

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 257

9.5.3 Start the broker on the queue manager
WebSphere MQ V6.0 provides a service object created with the queue manager
that you can use to start the WebSphere MQ publish/subscribe broker on that
queue manager.

The WebSphere MQ publish/subscribe broker is not started by default, but can
be configured to be started with a queue manager. For this step, you can use the
WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Select the Services folder for queue manager host1/jmspubsub.

2. Click the icon to display system objects (unless these are already displayed),
as shown in Figure 9-2.

Figure 9-2 Show system objects in the WebSphere MQ Explorer

3. Right-click the service called SYSTEM.BROKER and select Properties.

4. Change the Service control field to Queue manager. This configures the
publish/subscribe broker to start with the queue manager.

5. Click OK.

6. Right-click the service called SYSTEM.BROKER and select Start to start the
WebSphere MQ publish/subscribe broker.

258 WebSphere MQ V6 Fundamentals

Using MQSC commands
Perform the following steps:

1. Issue the following MQSC command against host1/jmspubsub to configure
the WebSphere MQ publish/subscribe broker to start with the queue
manager:

ALTER SERVICE('SYSTEM.BROKER') CONTROL(QMGR)

2. Issue the following MQSC command against host1/jmspubsub to start the
publish/subscribe broker:

START SERVICE('SYSTEM.BROKER')

9.5.4 Configure the queue manager for JMS publish/subscribe
WebSphere MQ requires that certain configuration is performed on the queue
manager in order for JMS applications to access the capabilities of the
publish/subscribe broker on that queue manager.

An MQSC script is provided to perform this configuration. Run this script against
the host1/jmspubsub queue manager as follows:

� Windows (all one line):

runmqsc host1/jmspubsub < "C:\Program Files\IBM\WebSphere MQ
 \Java\bin\MQJMS_PSQ.mqsc"

� UNIX (except AIX 5L):

runmqsc host1/jmspubsub < /opt/mqm/java/bin/MQJMS_PSQ.mqsc

� AIX 5L:

runmqsc host1/jmspubsub < /usr/mqm/java/bin/MQJMS_PSQ.mqsc

9.5.5 Set up a simple JMS provider
JMS is a standardized interface that is not specific to WebSphere MQ. Therefore,
WebSphere MQ-specific information is required to map JMS actions into
WebSphere MQ actions.

Information about this mapping can be gained flexibly by an application by
querying a directory for information about how JMS is provided to that
application. This directory might not be a directory on the file system; it can be
located in many places. Often, in a production environment, it is in an Lightweight
Directory Access Protocol (LDAP) server, accessed over the network. This
allows changes to the configuration to happen flexibly.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 259

The application using JMS looks up details of how JMS is provided to that
application by accessing the directory through an interface called the Java
Naming and Directory Interface™ (JNDI).

In this simple example, a directory on the file system is set up to provide this
information. We then configure it using the WebSphere MQ JMS Administration
tool to set up the contents of this directory.

The following setup is required before the WebSphere MQ JMS Administration
tool can be used:

1. Within the working directory for this example, create the following
subdirectory:

jms.provider

Do not change the working directory to this directory.

2. Within the working directory, create a file called JMSAdmin.config with the
following contents:

INITIAL_CONTEXT_FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
PROVIDER_URL=file:jms.provider
SECURITY_AUTHENTICATION=none

This configures the WebSphere MQ JMS Administration tool to set up the
contents of the file system directory created.

9.5.6 Use WebSphere MQ JMS Administration tool to configure JMS
The WebSphere MQ JMS Administration tool creates objects in a directory
accessed through JNDI. After these objects have been configured, the same
directory is accessed by applications accessing WebSphere MQ with JMS
through JNDI to configure how JMS is provided to that application by WebSphere
MQ.

The syntax of the commands executed within the WebSphere MQ JMS
Administration tool are similar to MQSC. However, lowercase object names and
attributes do not need to be enclosed in single quotation marks.

For details of the WebSphere MQ JMS Administration tool and the objects that
can be created, refer to WebSphere MQ V6.0 Using Java, SC34-6591.

This step creates a Topic Connection Factory object, which defines how a JMS
application can connect to provider of publish/subscribe capabilities, and a Topic
object, which defines a topic on which that application can publish messages or
subscribe publications.

260 WebSphere MQ V6 Fundamentals

Perform the following steps:

1. Run the WebSphere MQ JMS Administration tool as follows:

– Windows:

"C:\Program Files\IBM\WebSphere MQ\Java\Bin\JMSAdmin.bat"

– UNIX (except AIX 5L):

/opt/mqm/java/bin/JMSAdmin

– AIX 5L:

/usr/mqm/java/bin/JMSAdmin

The initial output is as follows:

5724-H72, 5655-L82, 5724-L26 (c) Copyright IBM Corp. 2002,2005. All Rights
Reserved.
Starting Websphere MQ classes for Java(tm) Message Service Administration

InitCtx>

2. Create the Topic Connection Factory (TCF) object to connect to the
publish/subscribe broker on queue manager host1/jmspubsub using the
following command:

DEFINE TCF(PubSub.TCF) QMANAGER(host1/jmspubsub) TRANSPORT(BIND)

3. Create a Topic object, which uses a WebSphere MQ topic string of
MQJMS/Samples/PubSub, using the following command:

DEFINE T(PubSub.T) TOPIC(MQJMS/Samples/PubSub)

4. End the WebSphere MQ JMS Administration tool using the following
command:

END

9.5.7 Make a copy of the WebSphere MQ sample JMS application
The WebSphere MQ JMS publish/subscribe sample application is in the following
location:

� Windows:

C:\Program Files\IBM\WebSphere MQ\Tools\Java\jms\JMSPubSub.java

� UNIX (except AIX 5L):

/opt/mqm/samp/java/jms/JMSPubSub.java

� AIX 5L:

/usr/mqm/samp/java/jms/JMSPubSub.java

Copy this file to the working directory used for these steps.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 261

9.5.8 Modify the WebSphere MQ sample JMS application
This step modifies the JMS sample to access the same directory, through JNDI,
as the WebSphere MQ JMS Administration tool that created objects within it.

It also changes the names of the objects accessed within this directory to use our
basic naming convention, rather than an LDAP naming convention. The details of
the LDAP naming convention are beyond the scope of this book.

Perform the following steps:

1. Open the JMSPubSub.java file in a text editor.

2. Locate the following lines in the file (located at line 88 in the WebSphere MQ
V6.0 sample):

String CTX_FACTORY = "com.sun.jndi.ldap.LdapCtxFactory";
String INIT_URL = "ldap://polaris/cn=PubSub,o=ibm_us,c=us";

3. Change these lines to the following lines to match the WebSphere MQ JMS
Administration tool configuration:

String CTX_FACTORY = "com.sun.jndi.fscontext.RefFSContextFactory";
String INIT_URL = "file:jms.provider";

4. Locate the following lines in the file (located at line 98 in the WebSphere MQ
V6.0 sample):

TopicConnectionFactory tcf =
(TopicConnectionFactory)ctx.lookup("cn=PubSub.TCF");

5. Change these lines to the following lines to match the name of the Topic
Connection Factory object defined in the WebSphere MQ JMS Administration
tool:

TopicConnectionFactory tcf =
(TopicConnectionFactory)ctx.lookup("PubSub.TCF");

6. Locate the following line in the file (located at line 112 in the WebSphere MQ
V6.0 sample):

Topic t = (Topic)ctx.lookup("cn=PubSub.T");

7. Change this line to the following line to match the name of the Topic object
defined in the WebSphere MQ JMS Administration tool:

Topic t = (Topic)ctx.lookup("PubSub.T");

8. Save the file.

9.5.9 Compile the sample application
The WebSphere MQ JMS publish/subscribe sample is compiled as follows:

javac JMSPubSub.java

262 WebSphere MQ V6 Fundamentals

This creates a file called JMSPubSub.class in the working directory.

9.5.10 Start the sample as a subscriber
The WebSphere MQ JMS publish/subscribe sample can be started as either a
publisher or a subscriber. Multiple instances of publishers can be started, and
multiple instances of subscribers can be started.

To start an instance of the sample as a subscriber, perform the following steps:

1. Open a command window or terminal session to execute the publishing
instance. Configure this as described in 9.5.1, “Configure the JMS
environment” on page 255.

2. Execute the following command to start the sample as a subscriber:

– Windows:

java JMSPubSub -sub

– UNIX (except AIX 5L):

java -D"java.library.path=/opt/mqm/java/lib" JMSPubSub -sub

– AIX 5L:

java -D"java.library.path=/usr/mqm/java/lib" JMSPubSub -sub

The initial output is as follows:

[R]eceiveBlock, Receive[N]oWait, Receive[5]Secs, [Q]uit?

3. To cause the subscriber to wait for the next message on the topic to be
published, press R and then Enter.

9.5.11 Start the sample as a publisher
The WebSphere MQ JMS publish/subscribe sample can be started as either a
publisher or a subscriber. Multiple instances of publishers can be started, and
multiple instances of subscribers can be started.

To start an instance of the sample as a publisher, perform the following steps:

1. Open a command window or terminal session to execute the publishing
instance. Configure this as described in 9.5.1, “Configure the JMS
environment” on page 255.

Note: This needs to be pressed again after each publication is received.

 Chapter 9. Hands-on introduction to messaging with WebSphere MQ 263

2. Execute the following command to start the sample as a publisher:

– Windows:

java JMSPubSub -pub

– UNIX (except AIX 5L):

java -D"java.library.path=/opt/mqm/java/lib" JMSPubSub -pub

– AIX 5L:

java -D"java.library.path=/usr/mqm/java/lib" JMSPubSub -pub

The initial output is as follows:

[P]ublish message, [Q]uit?

3. To publish a message, press P and then Enter.

4. Type the message to be published and then press Enter.

The message is published to all waiting subscribers. The following output shows
example output from a subscriber receiving a message:

JMS Message class: jms_text
 JMSType: null
 JMSDeliveryMode: 2
 JMSExpiration: 0
 JMSPriority: 4
 JMSMessageID: ID:414d5120686f7374312f6a6d73707562d1dcdd4220001e08
 JMSTimestamp: 1121839520615
 JMSCorrelationID:ID:414d5120686f7374312f6a6d73707562d1dcdd4220006f05
 JMSDestination: topic://MQJMS/Samples/PubSub
 JMSReplyTo: null
 JMSRedelivered: false
 JMS_IBM_PutDate:20050720
 JMSXAppID:host1/jmspubsub
 JMS_IBM_Format:MQSTR
 JMS_IBM_PutApplType:26
 JMS_IBM_MsgType:8
 JMSXUserID:pbroad
 JMS_IBM_PutTime:06052061
 JMSXDeliveryCount:1
Redbook test message

264 WebSphere MQ V6 Fundamentals

Chapter 10. Hands-on guide to building
WebSphere MQ
infrastructure

In this chapter, you extend the local infrastructure built in the previous chapter.
You access queue managers as clients to those queue managers, including
performing remote administration using the WebSphere MQ Explorer. You build a
hub and spoke infrastructure, manually defining channels between one or more
spoke queue managers connected to the hub queue manager created in the
previous chapter. The service provided by the hub is accessed through the
spokes of the hub and spoke infrastructure. You build a queue manager cluster,
seeing how administration is simplified and the queue manager cluster provides
additional workload balancing features. These hub and spoke and queue
manager cluster infrastructures are interconnected, sharing access to the
service between them.

We discuss the following topics:

� Environment setup

� Connect as a client to a queue manager

� Build a hub and spoke infrastructure

� Create a queue manager cluster

10

© Copyright IBM Corp. 2005. All rights reserved. 265

10.1 Environment setup
The same environment is required in this chapter as in Chapter 9, “Hands-on
introduction to messaging with WebSphere MQ” on page 217.

The only addition is that this chapter uses network connections over a TCP/IP
network to interconnect applications and queue managers.

Multiple machines can be used, and the host names and IP addresses used in
this chapter reflect this. However, all tasks in this chapter can be performed using
a single Windows or Linux desktop workstation, and no external network access,
or network configuration, is required.

10.2 Connect as a client to a queue manager
This section shows how an application can connect to a queue manager
remotely, gaining access to the same functionality as is available to an
application connected on the same machine.

These steps show this by allowing you to access and administer the queue
manager host1/echo.hub created in 9.4, “Host a request/reply service on a
queue” on page 243. This enables you to access the service hosted by that
queue manager over a client connection.

Alternatively, you can create and start a new queue manager to which to
connect. If doing this, substitute host1/echo.hub with the name of that queue
manager in all steps.

Note: If you are using a single desktop machine that does not have an identity
on a wider network, replace all of the host names in this chapter with the
following host name, which identifies your local machine:

localhost

This includes the following host names provided as examples in this chapter:

host1.example.com
host2.example.com

In this chapter, all port numbers on which queue managers listen are unique.
This means that the same port numbers can be used whether the queue
managers are all on the same machine or on multiple machines.

266 WebSphere MQ V6 Fundamentals

10.2.1 Create and start a listener
This step creates and starts a listener for the queue manager, which provides an
identity for that queue manager in the network. In WebSphere MQ V6.0, listeners
are WebSphere MQ objects defined on a queue manager. For this step, you can
use the WebSphere MQ Explorer or MQSC commands.

The listener listens on a particular port on the TCP/IP network. A port is a
fundamental concept of TCP/IP networks. There are a large range of ports that
can be listened on by the network services provided by a machine. These
instructions assume that no network services are currently listening on the ports
used. If you know that a network service is listening on a port suggested, choose
a different port number, remembering to substitute that port number in all future
steps.

If there is only one queue manager on a system, it is often chosen for this queue
manager to listen on port 1414. This is the well-known port for WebSphere MQ.
These instructions choose an arbitrary port range that is unlikely to be used by
other queue managers, or network services, on the machine.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Listeners folder for the queue manager, and select New →
TCP Listener.

Note: All of these steps can be performed on one machine. Simply substitute
host1.example.com for the host name or IP address of the machine you are
using.

You can use the generic host name localhost for your machine if you do not
have a host name or IP address on a network or if your IP address is likely to
change.

Note: This step assumes that you have a WebSphere MQ V6.0 queue
manager. Listeners are created and started differently for queue managers in
previous versions.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 267

2. Enter LISTENER.TCP in the name field.

3. Click Next.

4. Enter the following value in the Description field:

TCP/IP Listener for queue manager

5. Enter 9001 in the Port field.

6. Change the Control field to Queue Manager to cause the listener to be
automatically started and stopped with the queue manager in the future.

7. Click Finish.

8. Right-click the LISTENER.TCP entry created in the table, and select Start.
This starts the listener.

9. Check that the Listener status column contains Running. If not, click the
Refresh button in the top-right corner of the display and check the status
again.

Note: The Listeners folder is shown under the Advanced folder for a queue
manager in the navigator view.

If you selected the Create listener configured for TCP/IP check box in
Enter listener options (Step 4) of the Create Queue Manager wizard, a
listener object might already exist called LISTENER.TCP.

If so, right-click the listener object in the table and select Stop. After the
listener stops, right-click again, select Delete, and then confirm the
deletion.

Note: If the status still contains Stopped, it is likely that another queue
manager defined on the system already has a listener running on port
1414. Check the LISTENER.TCP listener object of each queue manager
defined.

Each queue manager on a machine must listen on a different TCP/IP port
number.

268 WebSphere MQ V6 Fundamentals

Using MQSC commands
Perform the following steps:

1. Create a listener that is started and stopped automatically with the queue
manager by issuing the following MQSC command against host1/echo.hub:

DEFINE LISTENER('LISTENER.TCP') +
 TRPTYPE(TCP) PORT(9001) CONTROL(QMGR) +
 DESCR('TCP/IP Listener for queue manager')

2. Start the listener using the following MQSC command:

START LISTENER('LISTENER.TCP')

10.2.2 Create a server-connection channel object
A server-connection channel object defines a channel name and channel
attributes for a client connection that can be established to a queue manager.

One significant attribute that can be configured on a server connection channel
object is the local user identifier that remote applications assume when they
connect over that channel. This is configured using the MCA user identifier
(MCAUSER).

This is useful, because applications accessing the queue manager from remote
machines might run under different user identifiers, for example, if one machine
is a UNIX machine and another is a Windows machine. In these steps, you can
optionally configure this to the same user identifier as which you are logged into
the machine. This allows applications from any machine to access the machine
with the same WebSphere MQ administrator authority as you have.

This step creates a server connection channel object called all.clients that is
used throughout this section by applications connecting to the queue manager.
For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Note: If you are using the WebSphere MQ Explorer, you might want to use the
Create listener configured for TCP/IP check box in Enter listener options
(Step 4) of the Create Queue Manager wizard when creating future queue
managers that require listeners.

Ensure that you check the port number before clicking Finish. The port of the
listener object can be changed after the queue manager is created. However,
ensure that you stop and restart the listener object if you change the port
number.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 269

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Channels folder for host1/echo.hub, and select New →
Server-connection Channel.

2. Type all.clients in the Name field.

3. Click Next.

4. Optionally, select the MCA section, and specify your user identifier in the
MCA user ID field.

5. Click Finish.

Using MQSC commands
Issue the following MQSC command against host1/echo.hub:

DEFINE CHANNEL('all.clients') CHLTYPE(SVRCONN) MCAUSER('userid')

10.2.3 Connect using the MQSERVER environment variable
The client message channel agent (MCA) provided when using the MQI directly,
for example, from applications written in C, can be configured by using
environment variables. The basic attributes, including the channel name and
connection name, are configured using the MQSERVER environment variable.

Applications that use this core client MCA are built against a different set of
WebSphere MQ libraries than those which that to a queue manager directly.
These are generally called the WebSphere MQ client libraries.

The base WebSphere MQ sample programs, such as amqsput, amqsget, amqsbcg,
amqsreq, and amqsech, are all supplied with WebSphere MQ in versions that are
prebuilt against the WebSphere MQ client libraries. These are invoked by adding
a c to the end of the application name, for example, amqsputc, amqsgetc,
amqsbcgc, amqsreqc, and amqsechc.

The queue manager name specified when connecting to a queue manager as a
client usually matches the queue manager name. However, an asterisk (*)
character can be used to specify to connect to any queue manager.

Note: The client MCAs provided for use from other APIs, such as Java, JMS,
.NET, and XMS, are configured in different ways. For details, see the
appropriate WebSphere MQ guide for the API you are using.

270 WebSphere MQ V6 Fundamentals

To put and get messages from a queue as a client to a queue manager using the
MQSERVER environment variable and the WebSphere MQ sample programs,
perform the following steps:

1. Define a local queue on the queue manager, using a name of your choosing.
This step assumes queue1.

2. Set the MQSERVER environment variable as follows:

– Windows:

set MQSERVER=all.clients/TCP/host1.example.com(9001)

– UNIX:

MQSERVER=all.clients/TCP/'host1.example.com(9001)'
export MQSERVER

3. Put messages onto the queue using amqsputc:

amqsputc queue1 host1/echo.hub

4. Browse messages on the queue using amqsbcgc:

amqsbcgc queue1 host1/echo.hub > queue1.txt

5. Get messages from the queue using amqsgetc:

amqsgetc queue1 host1/echo.hub

6. Issue requests against the triggered echo service on host1/echo.hub:

amqsreqc echo host1/echo.hub echo.replies.manual

10.2.4 Connect using a client-connection channel object
Client-connection channel objects are provided by WebSphere MQ to allow full
configuration of the attributes of a client MCA.

Defining a client-connection channel object within a queue manager creates an
entry in a file called the client channel definition table (CCDT) for that queue
manager. This can be used by clients to gain information about available queue
managers. This file can be created on any queue manager, not necessarily the
one to which an application connects. It can then be copied to remote machines,
or be made available over the network.

This step configures the base WebSphere MQ samples to use the channel
configuration contained within a CCDT when connecting to a queue manager.

Note: If you experience problems, such as 2058 or 2059 return codes, check
the queue manager and WebSphere MQ system error logs, as described in
5.3.15, “Error logs” on page 119.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 271

Perform the following steps:

1. Create two server-connection channels on host1/echo.hub, as described in
10.2.2, “Create a server-connection channel object” on page 269. The names
of these channels should be client.channel1 and client.channel2.
Alternatively, you can define these two channels on different queue managers
that have listeners configured on different ports of the same machine or on
different machines.

2. Create two client-connection channel objects, both on queue manager
host1/echo.hub, matching the names of the server-connection channel
objects defined.

– Using the WebSphere MQ Explorer:

i. Right-click the Client Connections folder for host1/echo.hub, and
select New → Client-connection Channel.

ii. Type client.channel1 into the Name field.

iii. Click Next.

iv. Enter echo.hub into the Queue manager name field. This is
intentionally not the actual name of the queue manager.

v. Enter host1.example.com(9001) into the Connection name field.

vi. Click Finish.

vii. Repeat steps i to vi to create another client-connection channel. Call
this second channel client.channel2. The queue manager name
attribute is echo.hub. The connection name can be the same if both
server-connection channel objects are on the same queue manager or
the connection name of a second queue manager.

– Using MQSC commands:

Issue the following MQSC commands against host1/echo.hub:

DEFINE CHL('client.channel1') CHLTYPE(CLNTCONN) +
 QMNAME('echo.hub') CONNAME('host1.example.com(9001)')
DEFINE CHL('client.channel2') CHLTYPE(CLNTCONN) +
 QMNAME('echo.hub') CONNAME('host1.example.com(9001)')

The connection name (CONNAME) attribute for the second definition can be
the connection name of a different queue manager, where a
server-connection channel called client.channel2 is defined.

3. This step assumes the client applications are on the same machine as the
host1/echo.hub queue manager. If not, copy the CCDT across to the other
machine, and change the environment variables below to reflect the location
local to the client applications.

272 WebSphere MQ V6 Fundamentals

To configure the core client MCA used by the WebSphere MQ samples to find
this CCDT, specify the following environment variables:

– Windows:

set MQSERVER=
set "MQCHLLIB=C:\Program Files\IBM\WebSphere MQ\Qmgrs\host1&echo!hub\@ipcc"
set MQCHLTAB=AMQCLCHL.TAB

– UNIX:

unset MQSERVER
MQCHLLIB='/var/mqm/qmgrs/host1&echo!hub/@ipcc'
MQCHLTAB=AMQCLCHL.TAB
export MQCHLLIB
export MQCHLTAB

4. Run the amqsputc sample program against a queue defined on
host1/echo.hub:

amqsputc queue1 *echo.hub

5. Leave the amqsputc sample waiting for input so that it remains connected to
the queue manager.

6. Display which channel is being used. If using two queue managers, perform
this on both queue managers:

– Using the WebSphere MQ Explorer:

Select the Channels folder (for host1/echo.hub). Notice that the status of
server-connection channel client.channel1 or client.channel2 is running.

– Using MQSC commands:

Issue the following MQSC command, and notice that one of the
server-connection channels has a STATUS of RUNNING:

DIS CHSTATUS('client.*')

7. Enter a blank line into the input of the running amqsputc command to end it.

Note: The asterisk (*) character specifies that the application does not
require a connection to a specific queue manager. Instead, any entries in
the CCDT that have a queue manager name attribute of echo.hub are valid
for use.

Note: For more information about the connection, you can right-click
host1/echo.hub in the navigator view, and select Application
Connections. Then, select the connection in which you are interested.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 273

8. Disable the server-connection channel previously used by the command:

– Using the WebSphere MQ Explorer:

Select the Channels folder (for host1/echo.hub). Right-click the channel
and select Stop. Ensure that Stopped is selected in the New State.

– Using MQSC commands:

Execute the following command against host1/echo.hub, specifying the
name of the channel which was previously running:

STOP CHANNEL('client.channel1') STATUS(STOPPED)

9. Run the amqsputc command again. Notice that the command can still operate
even though the channel previously used is not available. This is because the
second entry in the CCDT is being used for the connection. This can be to a
different queue manager, as previously discussed.

10.2.5 Perform remote administration of a queue manager
This step shows how the WebSphere MQ Explorer can be used to perform
remote administration of queue managers using a client connection to those
queue managers.

In this example, it is likely that the queue manager is on the same machine as the
WebSphere MQ Explorer. However, the WebSphere MQ Explorer can remotely
administer queue managers on multiple different remote machines, including
different platforms. WebSphere MQ for z/OS V6.0 queue managers can also be
administered using the WebSphere MQ Explorer.

274 WebSphere MQ V6 Fundamentals

Perform the following steps:

1. Right-click the Queue Managers folder in the WebSphere MQ Explorer, and
select Show/Hide Queue Managers.

Figure 10-1 on page 276 shows the Show/Hide Queue Managers window.

Note: Queue managers that are remotely administered using the WebSphere
MQ Explorer must have:

� A listener defined nd running on a known port.
� A server-connection channel defined of a known name.
� A command server running.
� A model queue defined called SYSTEM.MQEXPLORER.REPLY.MODEL.

For Windows and UNIX, queue managers created with WebSphere MQ V6.0
have a running command server and the correct model queue by default.
However, queue managers created with WebSphere MQ V5.3, and previous
versions, require these to be configured manually. This includes queue
managers created with WebSphere MQ V5.3 and migrated to WebSphere MQ
V6.0. To do this:

1. Use the following WebSphere MQ control command to manually start the
command server for the queue manager:

strmqcsv Queue_Manager_Name

2. Define the required model queue in MQSC:

DEFINE QMODEL('SYSTEM.MQEXPLORER.REPLY.MODEL') DEFTYPE(TEMPDYN)

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 275

Figure 10-1 WebSphere MQ Explorer Show/Hide Queue Managers window

2. In the Show/Hide Queue Managers window, click Add. The Add Queue
Manager wizard opens, where you specify the way the WebSphere MQ
Explorer connects to the queue manager. In this example, we connect by
specifying the same information as was provided to the WebSphere MQ
sample programs in 10.2.3, “Connect using the MQSERVER environment
variable” on page 270.

3. On the first page of the wizard, enter the name of the queue manager into the
Queue manager name field, for example, host1/echo.hub.

4. Ensure that Connect directly is selected.

5. Click Next.

6. Specify the host name or IP address of the computer on which
host1/echo.hub is running. We use host1.example.com as an example in
these instructions, and this can be localhost for the local machine.

7. Specify the port on which the listener is running for the queue manager, for
example, 9001.

8. Specify the name of the server-connection channel object defined on the
queue manager, which is all.clients in this example.

276 WebSphere MQ V6 Fundamentals

9. Click Finish.

Figure 10-2 shows an example of the information to provide.

Figure 10-2 Add Queue Manager wizard for direct connection to queue manager

This adds the queue manager to the Shown Queue Managers table in the
Show/Hide Queue Managers window.

10.Click Close on the Show/Hide Queue Managers window.

11.Notice that the queue manager is available under the Queue Managers folder
in the same way as the locally connected queue managers. The name of the
queue manager is appended with the connection name for the queue
manager to show that it is remote. This icon is different from the locally
connected queue managers. Figure 10-3 on page 278 provides an example.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 277

Figure 10-3 WebSphere MQ Explorer remotely administering a queue manager

10.2.6 JMS publish/subscribe sample using a client connection
In order to modify the JMS publish/subscribe example, set up in 9.5, “WebSphere
MQ publish/subscribe with JMS” on page 255, to use a client connection to the
queue manager, modification is only required to the objects within the directory
as accessed using JNDI. No modification is required of the sample itself or the
way it is invoked.

This step changes the configuration of the objects within the directory accessed
by JNDI to cause the JMS sample to connect as a client to the queue manager.

Perform the following steps:

1. Ensure that the current command window or terminal session is configured as
described in 9.5.1, “Configure the JMS environment” on page 255.

2. Configure a listener for queue manager host1/jmspubsub on port 9010, as
described in 10.2.1, “Create and start a listener” on page 267.

3. Define a server connection channel object on queue manager
host1/jmspubsub called jms.clients.

4. Start the WebSphere MQ JMS Administration tool, as described in 9.5.6,
“Use WebSphere MQ JMS Administration tool to configure JMS” on
page 260.

278 WebSphere MQ V6 Fundamentals

5. Alter the Topic Connection Factory to specify a client connection to connect
remotely to the queue manager. Previously, the Topic Connection Factory
used a bindings connection to connect locally to the queue manager. This is
performed by issuing the following command in the WebSphere MQ JMS
Administration tool (all one line):

ALTER TCF(PubSub.TCF) HOSTNAME(host1.example.com) PORT(9010)
TRANSPORT(CLIENT) CHANNEL(jms.clients)

6. Exit the WebSphere MQ JMS Administration tool using END.

7. Without performing any modification of the Java sample, or recompiling, run
the sample as publishers and subscribers. We describe this in 9.5.10, “Start
the sample as a subscriber” on page 263 and 9.5.11, “Start the sample as a
publisher” on page 263.

10.3 Build a hub and spoke infrastructure
This section makes queue manager host1/echo.hub the hub of a hub and spoke
infrastructure. We create spoke queue managers and manually configure
intercommunication between the hub and spoke queue managers.

All spoke queue managers are then able to access the echo service provided by
the host1/echo.hub queue manager.

10.3.1 Create a dead letter queue on the hub queue manager
This step configures the host1/echo.hub queue manager to have a dead letter
queue. This is important to ensure that nonpersistent messages do not get lost if
the destination is incorrectly specified. This can be frustrating when beginning to
use channels and trying to find messages placed into the infrastructure. For this
step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host1/echo.hub, and select New → Local
Queue.

2. Type dead.letters in the Name field.

3. Click Finish.

4. Right-click the icon for queue manager host1/echo.hub and select
Properties.

5. Select the Extended section of the properties window.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 279

6. Type dead.letters into the Dead letter queue field.

7. Click OK.

Using MQSC commands
Perform the following steps:

1. Issue the following MQSC command against host1/echo.hub to create a local
queue object:

DEFINE QLOCAL('dead.letters')

2. Issue the following MQSC command against host1/echo.hub to configure the
queue manager object to use the dead letter queue created:

ALTER QMGR DEADQ('dead.letters')

10.3.2 Create a receiver channel object on the hub queue manager
In this step, we define a channel object on the hub queue manager to allow
channels to be established from the spoke queue managers in the infrastructure.
This example uses a single channel object of a receiver type to allow
connections from all spoke queue managers in the infrastructure. Later steps
configure communication to and from the hub queue manager for each spoke
individually.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Channels folder for host1/echo.hub, and select New →
Receiver Channel.

2. Type to.host1/echo.hub in the Name field.

3. Click Finish.

Using MQSC commands
1. Issue the following MQSC command against host1/echo.hub:

DEFINE CHANNEL('to.host1/echo.hub') CHLTYPE(RCVR)

2. Check the attributes of the channel using the following MQSC command:

DISPLAY CHANNEL('to.host1/echo.hub')

Note: Make sure that the DEADQ attribute of the queue manager object exactly
matches the name of the local queue object defined.

280 WebSphere MQ V6 Fundamentals

10.3.3 Create and start a spoke queue manager with a listener
We recommend that you run through the instructions from this point once, adding
a single spoke queue manager. Then, you can repeat them using different queue
managers, and connection names for the spokes.

Create and start a new queue manager. The first spoke queue manager created
is assumed to have the name host2/spoke.

If more queue managers are created, increase the number in the queue manager
name or replace host2 with the name of the machine if you are using multiple
machines.

To distinguish the machine on which a spoke queue manager is running from the
machine on which the hub is running, these steps use the host
namehost2.example.com.

Replace this name with the actual host name or IP address of the machine. As in
previous steps, all queue managers can be on the same machine. In this case,
replace host2.example.com in all steps with the host name or IP address of the
local machine, or localhost.

Each queue manager must have a listener defined. Because a number of these
queue managers can be hosted on the same machine, we recommend that the
port number is relevant to the queue manager name. The first spoke queue
manager created should have a listener running on the 9002 port.

We recommend that you increase the port number by one for each queue
manager to avoid confusion.

We also recommend that you define a dead letter queue on each spoke queue
manager. Refer to 10.3.1, “Create a dead letter queue on the hub queue
manager” on page 279, replacing host1/echo.hub with the name of the spoke
queue manager.

10.3.4 Create a transmission queue on the spoke queue manager
Creating a transmission queue gives a queue manager a temporary place to
store messages that are transferred to another queue manager within the
infrastructure. However, a transmission queue does not, in itself, cause
messages to be transferred to that queue manager.

Note: Different queue managers on different machines can have a listener
running on the same port number. However, two queue managers on the
same machine cannot.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 281

A transmission queue is a local queue object that has been specified to be used
as a transmission queue.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for queue manager host2/spoke, and select
New → Local Queue.

2. Type host1/echo.hub in the Name field.

3. Click Next.

4. Select Transmission in the Usage field.

5. Enter the following value in the Description field:

Transmission queue for messages to host1/echo.hub

6. Click Finish.

Using MQSC commands
Issue the following MQSC command against host2/spoke:

DEFINE QLOCAL('host1/echo.hub') USAGE(XMITQ) +
 DESCR('Transmission queue for messages to host1/echo.hub')

10.3.5 Create a sender channel object on the spoke queue manager
A sender channel object allows a channel to be established from a queue
manager to another queue manager in the infrastructure. The name of the
sender channel object must match the name of a remote channel object on the
destination queue manager of a compatible type. A receiver channel object has
already been defined on the hub queue manager, which is used by all connecting
spoke queue managers.

A channel takes messages from a single transmission queue on one queue
manager and transfers them to the remote queue manager. For this step, you
can use the WebSphere MQ Explorer or MQSC commands.

Note: Ensure that the case of the queue manager name is correct and is
enclosed in single quotation marks.

282 WebSphere MQ V6 Fundamentals

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Channels folder for queue manager host2/spoke, and select
New → Sender Channel.

2. Type to.host1/echo.hub in the Name field.

3. Click Next.

4. The sender channel object is used to establish channels to the hub queue
manager, so specify the Connection name field as follows:

host1.example.com(9001)

5. Type host1/echo.hub in the Transmission queue field.

6. Click Finish.

Using MQSC commands
Perform the following steps:

1. Issue the following MQSC command against host2/spoke:

DEFINE CHANNEL('to.host1/echo.hub') CHLTYPE(SDR) +
 CONNAME('host1.example.com(9001)') XMITQ('host1/echo.hub')

2. Check the attributes of the channel using the following MQSC command:

DISPLAY CHANNEL('to.host1/echo.hub')

10.3.6 Test the channel using a WebSphere MQ ping
This step issues a WebSphere MQ ping command to test that communication
can occur across a channel. However, it does not cause messages to start to
flow across the channel. For this step, you can use the WebSphere MQ Explorer
or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Select the Channels folder for queue manager host2/spoke.

2. Right-click the entry in the table called to.host1/echo.hub and select Ping.

3. A window opens to show the result.

Using MQSC commands
Issue the following MQSC command against host2/spoke:

PING CHANNEL('to.host1/echo.hub')

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 283

10.3.7 Configure the channel to the hub to be initiated
This step causes the channel from the spoke queue manager to the hub queue
manager to be automatically started by the WebSphere MQ channel initiator of
the queue manager when messages arrive on the transmission queue. For this
step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Select the Queues folder for host2/spoke.

2. Right-click the entry for queue host1/echo.hub and select Properties.

3. Select the Triggering section of the properties window.

4. Change the Trigger control field to On.

5. Ensure that the Trigger type field contains First.

6. Type to.host1/echo.hub in the Trigger data field.

7. Type SYSTEM.CHANNEL.INITQ in the Initiation queue field

8. Click OK.

Using MQSC commands
Issue the following MQSC command against host2/spoke:

ALTER QLOCAL('host1/echo.hub') TRIGGER TRIGTYPE(FIRST) +
 TRIGDATA('to.host1/echo.hub') INITQ('SYSTEM.CHANNEL.INITQ')

Note: If an error is returned by the ping command, check the following
information:

� The connection name in the sender channel object has the correct host
name or IP address and port number or the host1/echo.hub queue
manager.

� The name of the sender channel object matches the name of the receiver
channel object defined on host1/echo.hub, including the case.

� A listener is running on the host1/echo.hub queue manager.

Note: It is important that all of these attributes are correct in order for the
channel initiation to occur.

284 WebSphere MQ V6 Fundamentals

10.3.8 Put a test message through the channel to the hub
This step sends a test message through the channel to the hub queue manager.
In this step, we manually specify that the destination of the message is on
host1/echo.hub so that the queue manager does not need any local knowledge
of the queue. The queue manager knows about the host1/echo.hub queue
manager, because it has a transmission queue of the correct name. It is by this
mechanism that replies are sent through a WebSphere MQ infrastructure to a
specific queue on a specific queue manager.

Perform the following steps:

1. Issue the following WebSphere MQ sample command, and type messages to
send to the queue hosted on the hub queue manager:

amqsput queue1 host2/spoke 8208 0 host1/echo.hub

The following parameters are passed to this sample:

– queue1 is the name of the queue on host1/echo.hub.

– host2/spoke is the name of the queue manager being connected to.

– 8208 is a decimal value requesting options to be passed to the MQOPEN
call. This is not important to the example. It is requesting that the queue is
opened for output to put messages and to fail any subsequent puts if the
queue manager is quiescing.

– 0 requests that no options are passed to the MQCLOSE call. This is not
important to the example.

– host1/echo.hub is the name of the object queue manager specified in the
MQOPEN call. This is the parameter used in this example. You can see
that this name matches both the name of the remote queue manager and
the name of the transmission queue on host2/spoke used to send
messages to that queue manager.

2. The message is delivered onto the transmission queue by the spoke queue
manager. This causes a trigger message to be passed to the queue
manager’s channel initiator through the SYSTEM.CHANNEL.INITQ. The
channel starts, and the messages flow across to the remote queue manager.
The remote message channel agent (MCA), created based on the receiver
channel object on host1/echo.hub, puts this message to the specified queue
on that queue manager.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 285

10.3.9 Create a receiver channel object on the spoke queue manager
Communication has been successfully established between the spoke queue
manager and the hub. Later, this is used to issue requests against the service
hosted by that queue manager. However, in order for the replies to be routed
back to the requesting application, communication must be established between
the hub and each spoke queue manager.

This step defines a receiver channel object, which is used by the hub when
establishing a channel to the spoke queue manager. For this step, you can use
the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Channels folder for host2/spoke, and select New → Receiver
Channel.

2. Type to.host2/spoke in the Name field.

3. Click Finish.

Note: Ensure that the queue name specified exists as a local queue object on
the hub queue manager. If you are unable to find the message on the
transmission queue at the spoke side, or the target queue at the remote side,
browse the dead.letters dead letter queue configured for the hub queue
manager. If you do this using the WebSphere MQ Explorer, you can see the
contents of the dead letter header for any messages that are sent there.

At the sender side, you can view the status of the channel in the WebSphere
MQ Explorer using the Status column of the row in the Channels table.
Alternatively, you can view the status using the following MQSC command:

DISPLAY CHSTATUS('to.host1/echo.hub')

You can manually start a channel from the sender side by right-clicking the
channel and selecting Start. Alternatively, you can start the channel using the
following MQSC command:

START CHANNEL('to.host1/echo.hub')

To stop a channel, but not disable it from being started by the channel initiator,
select Inactive from the New State drop-down list when stopping a channel in
the WebSphere MQ Explorer. Alternatively, stop a channel, without disabling
it, using the following MQSC command:

STOP CHANNEL('to.host1/echo.hub') MODE(INACTIVE)

286 WebSphere MQ V6 Fundamentals

Using MQSC commands
Issue the following MQSC command against host1/echo.hub:

DEFINE CHANNEL('to.host2/spoke') CHLTYPE(RCVR)

10.3.10 Create a transmission queue on the hub queue manager
This step defines a transmission queue on the hub queue manager
host1/echo.hub to provide a temporary queue for messages for the spoke queue
manager. The triggering required for channel initiation is configured in this step,
but the sender channel object on which channel initiation occurs is defined in
subsequent steps. For this step, you can use the WebSphere MQ Explorer or
MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for queue manager host1/echo.hub, and select
New → Local Queue.

2. Type host2/spoke in the Name field.

3. Click Next.

4. Select Transmission in the Usage field.

5. Enter the following value in the Description field:

Transmission queue for messages to host2/spoke

6. Select the Triggering section.

7. Change the Trigger control field to On.

8. Ensure that the Trigger type field contains First.

9. Type to.host2/spoke in the Trigger data field. This channel is defined in
subsequent steps.

10.Type SYSTEM.CHANNEL.INITQ in the Initiation queue field

11.Click Finish.

Using MQSC commands
Issue the following MQSC command against host1/echo.hub:

DEFINE QLOCAL('host2/spoke') USAGE(XMITQ) +
 TRIGGER TRIGTYPE(FIRST) +
 TRIGDATA('to.host2/spoke') INITQ('SYSTEM.CHANNEL.INITQ') +
 DESCR('Transmission queue for messages to host2/spoke')

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 287

10.3.11 Create a sender channel object on the hub queue manager
This step creates the sender channel object used to establish communication
with the spoke queue manager.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Channels folder for queue manager host1/echo.hub, and
select New → Sender Channel.

2. Type to.host2/spoke in the Name field.

3. Click Next.

4. The sender channel object is used to establish channels to the hub queue
manager, so specify the Connection name field as follows:

host2.example.com(9002)

5. Type host2/spoke in the Transmission queue field.

6. Click Finish.

Using MQSC commands
Issue the following MQSC command against host2/spoke:

DEFINE CHANNEL('to.host2/spoke') CHLTYPE(SDR) +
 CONNAME('host1.example.com(9002)') XMITQ('host2/spoke')

10.3.12 Create a local definition of a remote queue
Communication has been successfully established in both directions between
the spoke queue manager and the hub queue manager. You have seen how
messages can be explicitly targeted for the partner queue manager.

However, when requesting a service, the application should not specify an
explicit queue manager name. This limits the ability of the infrastructure to
change without making modifications to the requesting application.

Note: It is beneficial at this stage to ping the channel from the sender side at
host1/echo.hub and to ensure that messages can flow across it. To send
messages across the channel, you need to define a test queue on the spoke
queue manager to which to send messages. Then, refer back to 10.3.8, “Put a
test message through the channel to the hub” on page 285, and change the
parameters on the command. For example:

amqsput queue1 host1/echo.hub 8208 0 host2/spoke

288 WebSphere MQ V6 Fundamentals

This step creates a local definition on the spoke queue manager of a queue
hosted on the hub queue manager. This is performed using a remote queue
object. The local definition of the remote queue means that an application only
needs to specify the queue name when sending messages. The infrastructure
decides where that message is sent, rather than the application.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host2/spoke, and select New → Remote
Queue Definition.

2. Type echo in the Name field.

3. Click Next.

4. Enter the following value in the Description field:

Local definition for routing requests for the echo service

5. Type echo in the Remote queue field. This field enables the queue to be
known by a different name locally to the local queue object defined remotely.
In these steps, the same name is used.

6. Type host1/echo.hub in the Remote queue manager field.

7. Leave the Transmission queue field blank, because the transmission queue
has the same name as the remote queue manager specified.

8. Click Finish.

Using MQSC commands
Issue the following command against host2/spoke:

DEFINE QREMOTE('echo') RNAME('echo') RQMNAME('host1/echo.hub') +
 DESCR('Local definition for routing requests for the echo service')

10.3.13 Define a reply-to queue on the spoke queue manager
Because applications can only retrieve messages from queues hosted on the
queue manager to which they are connected, a reply-to queue is required on
each spoke queue manager that requests the service.

Note: Remote queue objects have a number of uses. This is one common use
in a hub and spoke architecture, where channels are manually defined
between queue managers.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 289

This step defines a model queue from which temporary dynamic reply-to queues
are generated when requesting the service. For this step, you can use the
WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for host2/spoke, and select New → Model
Queue.

2. Type echo.replies in the Name field.

3. Click Finish.

Using MQSC commands
Issue the following MQSC command against host2/spoke:

DEFINE QMODEL('echo.replies')

10.3.14 Request the echo service using a spoke queue manager
This step issues a request as an application connected to a spoke queue
manager processed by the hub queue manager.

1. Issue the following WebSphere MQ sample command:

amqsreq echo host2/spoke echo.replies

This command has the following parameters:

– echo is the name used during queue name resolution on the local queue
manager. The local definition of the remote queue causes this message to
be routed to host1/echo.hub using the transmission queue and initiated
sender/receiver channel pair.

– host2/spoke is the name of the local spoke queue manager to which the
application connects.

– echo.replies is the name of the model queue opened in order to
dynamically create a reply-to queue for the application.

Note: This step assumes that the host1/echo.hub queue manager remains
configured to provide the echo service through the echo queue it hosts. It is
important that the trigger monitor is running against the echo.initq initiation
queue. We advise that you ensure that the service can still be requested by
applications locally connected to host1/echo.hub before proceeding. Refer to
9.4.10, “Issue a request against the service” on page 250.

290 WebSphere MQ V6 Fundamentals

2. Type a message and press Enter.

3. Leave a blank line and press Enter.

4. Wait for 10 seconds.

5. If successful, the output from the command contains a line of output
containing your original message, as follows:

response <Example test message>

10.4 Create a queue manager cluster
As shown in the previous section, there are a number of administration tasks
required on multiple queue managers to join a queue manager to a hub and
spoke infrastructure.

This section shows how clusters reduce the number and scope of administration
tasked required when adding a queue manager to a WebSphere MQ
infrastructure. This is because all queue managers within a cluster automatically
have knowledge of, and communication links to, the other queue managers in the
cluster.

The name of this cluster is example.cluster.

10.4.1 Create queue managers
Create four new queue managers with listeners created and running.

For this section, the naming of these queue managers reflects their roles within
the cluster. Table 10-1 on page 292 shows the names of the queue managers to
create and the ports on which to create and start listeners.

Note: The amqsreq command does not specify that the host1/echo.hub
queue manager is contacted to provide the service. The infrastructure has
been configured to route this request, transparent to the operation of the
application.

Note: If you experience problems, refer back to Refer to 9.4.10, “Issue a
request against the service” on page 250 for detailed instructions.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 291

Table 10-1 Queue managers to be members of example.cluster

Two of these queue managers host full repositories for the cluster, containing all
the information about that cluster, and two contain partial repositories, containing
only the information they require.

The example host names provided in the table reflect that this example can be
usefully performed with access to two machines. However, all of these host
names can be replaced with the host name or IP address of the local machine.

10.4.2 Assign queue managers as full repositories
This step is performed for the queue managers host1/full and host2/full.

These queue managers are configured to hold a full repository for the cluster
example.cluster.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the icon for the queue manager in the navigator view and select
Properties.

2. Select the Repository section in the properties window.

3. Select Full repository for a cluster.

Name Host name Listener
port

Repository Channel name

host1/full host1.example.com 9031 Full clus.host1/full

host1/partial host1.example.com 9032 Partial clus.host1/partial

host2/full host2.example.com 9033 Full clus.host2/full

host2/partial host2.example.com 9034 Partial clus.host2/partial

Note: We do not recommend using the host name localhost or IP address
127.0.0.1 in clusters in a real environment. However, they can be used in this
example if all queue managers are hosted on the same machine.

In clusters, the channel receiver object that a queue manager publishes in a
cluster is distributed to all queue managers within that cluster. Therefore, the
connection name in that definition must be accessible from all machines that
host queue managers in that cluster.

292 WebSphere MQ V6 Fundamentals

4. Enter example.cluster in the field that becomes enabled.

5. Click OK.

Using MQSC commands
Issue the following MQSC command against the queue manager:

ALTER QMGR REPOS('example.cluster')

10.4.3 Create cluster receiver channel objects
This step is performed for all queue managers in the cluster.

A cluster receiver channel object defines how other queue managers within the
cluster can establish communication with this queue manager.

Due to this, the connection attribute of this object defines the host name or IP
address and port that other queue managers should use when connecting to this
queue manager. Because a queue manager can be a member of multiple
clusters and might want queue managers connecting from those clusters to use
different attributes when establishing a connection, a cluster receiver channel
object is configured to apply to particular cluster names.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Channels folder for the queue manager, and select New →
Cluster-receiver Channel.

2. Enter clus. followed by the name of the queue manager in the Name field.
For example, for queue manager host1/full, enter:

clus.host1/full

3. Click Next.

4. Enter the connection name for the queue manager being administered in the
Connection name field. For example, for queue manager host1/full, enter:

host1.example.com(9031)

5. Select the Cluster section.

6. Select Shared in cluster.

Note: Ensure that the connection name (especially the port) and the
channel name are correct for the queue manager being administered.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 293

7. Type example.cluster in the field that becomes enabled.

8. Click Finish.

Using MQSC commands
Issue the following MQSC command against the queue manager, replacing
host1/full with the name of the queue manager, and host1.example.com(9031)
with the connection name for the queue manager:

DEFINE CHANNEL('clus.host1/full') CHLTYPE(CLUSRCVR) +
 CONNAME('host1.example.com(9031)') CLUSTER('example.cluster')

10.4.4 Create cluster sender channel objects
This step is performed first for the two full repository queue managers host1/full
and host2/full. It is then performed for the partial repository queue managers,
host1/partial and host2/partial.

In order to join a cluster, a queue manager publishes its cluster receiver channel
object definition to one full repository within the cluster. This queue manager
automatically shares this information with all other full repositories within the
cluster. To initially contact this full repository, the details of how to establish a
connection are required. These are provided within a single, manually defined,
cluster sender channel object.

The choice of full repository for the cluster sender channel objects of partial
repositories is arbitrary. However, for the two full repository queue managers, the
cluster sender channel object must be defined to the partner full repository.

The name of the cluster sender channel object must match the name of the
cluster receiver channel object defined by the remote full repository to specify
how queue managers should connect to the queue manager in the cluster.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Channels folder for the queue manager, and select New →
Cluster-sender Channel.

Note: Ensure that the connection name (especially the port) and the channel
name are correct for the queue manager being administered.

294 WebSphere MQ V6 Fundamentals

2. Enter clus. followed by the name of the full repository queue manager that is
going to be contacted to join the cluster, in the Name field. For example, for
queue manager host1/full, enter clus. followed by host2/full:

clus.host2/full

3. Click Next.

4. Type the connection name for the queue manager that is going to be
contacted to join the cluster in the Connection name field. For example, for
queue manager host1/full, enter:

host2.example.com(9033)

5. Select the Cluster section.

6. Select Shared in cluster.

7. Type example.cluster in the field that becomes enabled.

8. Click Finish.

Using MQSC commands
Issue the following MQSC command against the queue manager, replacing
host2/full with the name of the full repository queue manager being contacted
to join the cluster, and host2.example.com(9033) with the connection name for
the queue manager being contacted to join the cluster:

DEFINE CHANNEL('clus.host2/full') CHLTYPE(CLUSSDR) +
 CONNAME('host2.example.com(9033)') CLUSTER('example.cluster')

10.4.5 View information about the cluster
You have now established a cluster between the four queue managers. See 8.2,
“Viewing cluster repository information” on page 194 for information about how
information about this cluster can be viewed using the WebSphere MQ Explorer
and MQSC commands.

As long as one of the full repository queue managers is shown in the WebSphere
MQ Explorer, either because it is on the same machine or it is being remotely
administered from the WebSphere MQ Explorer, the structure of the cluster is
displayed under the Queue Manager Clusters folder.

Note: Ensure that the connection name (especially the port) is correct for
the same full repository queue manager as the channel name.

Note: Ensure that the connection name (especially the port) is correct for the
same full repository queue manager as the channel name.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 295

Figure 10-4 shows the structure of the cluster, as shown in the WebSphere MQ
Explorer under the Queue Manager Clusters folder.

Figure 10-4 The structure of example.cluster displayed in the WebSphere MQ Explorer

10.4.6 Share queues in the cluster
This step is performed for all queue managers in the cluster.

This step creates a queue, of the same cluster.queue name, on each queue
manager within the cluster and shares it in the cluster.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the Queues folder for the queue manager under the Queue
Managers folder in the navigator view, and select New → Local Queue.

2. Type cluster.queue in the Name field.

Note: Initially after creation, each of the partial repositories only has
knowledge of itself and the full repositories of the cluster. This is because it
has not yet had reason to request information about the other partial
repositories in the cluster from the full repositories.

296 WebSphere MQ V6 Fundamentals

3. Click Next.

4. Select the Cluster section.

5. Select Shared in cluster.

6. Type example.cluster in the field that becomes enabled.

7. Click Finish.

Using MQSC commands
Issue the following MQSC command against the queue manager:

DEFINE QLOCAL('cluster.queue') CLUSTER('example.cluster')

10.4.7 Enable workload balancing with a local instance of a queue
This step is performed for all queue managers in the cluster.

By default, when messages are sent to a queue, and a queue of that name exists
on the queue manager to which an application is connected, messages are
always delivered to that local queue.

In WebSphere MQ V6.0, this behavior can be overridden to allow workload
balancing to occur, including the local instance and all other instances of the
queue shared in the cluster.

For this step, you can use the WebSphere MQ Explorer or MQSC commands.

Using the WebSphere MQ Explorer
Perform the following steps:

1. Right-click the icon for the queue manager under the Queue Managers folder
in the navigator view, and select Properties.

2. Select the Cluster section in the properties window.

3. Change the CLWL use queue field to Any.

4. Click OK.

Using MQSC commands
Issue the following MQSC command against the queue manager:

ALTER QMGR CLWLUSEQ(ANY)

10.4.8 Workload balance messages across available queue instances
This step can be performed on any queue manager in the cluster.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 297

Perform the following steps:

1. Put a number of messages connecting to a single queue manager in the
cluster. The following example commands put 100 messages:

– Windows:

FOR /L %1 IN (1,1,100) DO echo Message%1 | amqsput cluster.queue host1/partial

– UNIX (with a shell of either the Bash or Korn shell):

i=0; while [$i -lt 100]; do let i=i+1;
echo Message$i | amqsput cluster.queue host1/partial;
done

2. Notice the current queue depth and browse the cluster.queue queue hosted
on each queue manager in the cluster. See 9.3.7, “Browse messages put to
the queue” on page 232 for details about how to browse the queue.

10.4.9 Share the echo service in the cluster
This step joins the host1/echo.hub queue manager to the example.cluster cluster
and shares the echo service to all queue managers within that cluster.
Administration is only required on this queue manager in order for it to join the
cluster.

We provide an overview of the actions in this step. Refer to 10.4.3, “Create
cluster receiver channel objects” on page 293 and 10.4.4, “Create cluster sender
channel objects” on page 294 for further details.

Perform the following steps:

1. Create a cluster receiver channel object as follows:

– Name: clus.host1/echo.hub

– Connection name (CONNAME): host1.example.com(9001)

– Shared in cluster (CLUSTER): example.cluster

2. Create a cluster sender channel object as follows:

– Name: clus.host1/full

– Connection name (CONNAME): host1.example.com(9031)

– Shared in cluster (CLUSTER): example.cluster

Note: The number of messages delivered to each queue instance shared
in the cluster might not be exactly equal.

298 WebSphere MQ V6 Fundamentals

3. Alter the echo local queue object to share it in the cluster:

– Using the WebSphere MQ Explorer:

i. Select the Queues folder for host1/echo.hub under the Queue
Managers folder of the navigator view, and select Properties.

ii. Select the Cluster section.

iii. Select Shared in cluster.

iv. Enter example.cluster in the field that is enabled.

v. Click OK.

– Using the following MQSC command:

ALTER QLOCAL('echo') CLUSTER('example.cluster')

10.4.10 Share the queue providing the echo service in the cluster
This step can be performed by requesting the echo service by issuing the
amqsreq WebSphere MQ sample against any queue manager in the cluster.

Perform the following steps:

1. Define a model queue, or local queue, on the queue manager called
echo.replies with the default attributes.

2. Issue the following command, specifying the queue manager name:

amqsreq echo host2/partial echo.replies

3. Type a message and press Enter.

4. Leave a blank line and press Enter.

5. Wait for 10 seconds.

6. If successful, the output from the command contains a line of output
containing your original message, as follows:

response <Example test message>

Note: Remember to enclose attributes in single quotation marks when using
MQSC.

Note: This step assumes that the host1/echo.hub queue manager remains
configured to provide the echo service through the echo queue it hosts. It is
important that the trigger monitor is running against the echo.initq initiation
queue. We advise you to ensure that the service can still be requested by
applications locally connected to host1/echo.hub before proceeding. Refer to
9.4.10, “Issue a request against the service” on page 250.

 Chapter 10. Hands-on guide to building WebSphere MQ infrastructure 299

Note: If you experience problems, refer back to 9.4.10, “Issue a request
against the service” on page 250 for detailed instructions.

300 WebSphere MQ V6 Fundamentals

Chapter 11. Securing a WebSphere MQ
infrastructure

This chapter introduces the security model provided by WebSphere MQ and
some of the security considerations for building a WebSphere MQ infrastructure.
This includes securing access to the resources of each queue manager. It also
includes securing communication between queue managers and applications
over network links using the Secure Sockets Layer (SSL) or Transport Layer
Security (TLS). We provide a summary of how to configure the WebSphere MQ
Explorer and other Java client applications to connect to a queue manager over a
secure connection.

We discuss the following topics:

� Administering a WebSphere MQ installation

� Granting access to queue manager resources

� Establishing identity context for client applications

� Secure Sockets Layer (SSL)

� WebSphere MQ internet pass-thru (IPT)

11

© Copyright IBM Corp. 2005. All rights reserved. 301

11.1 Administering a WebSphere MQ installation
In order to initially configure a WebSphere MQ installation, or create, start, and
stop queue managers, a user logs directly on to the machine with the
WebSphere MQ installation.

This user requires the ability to execute WebSphere MQ control commands on
Microsoft Windows and UNIX, issue CL commands on IBM Eserver iSeries, or
issue commands against queue manager subsystems on z/OS. These users are
referred to as WebSphere MQ administrators in this book.

This same user, or users, maintains the WebSphere MQ installation and queue
managers. For example, these users regularly check the queue manager error
logs of the queue managers hosted by that machine and check for FFSTs.

How a WebSphere MQ installation restricts access to these operations is
individual to each platform as follows:

� Windows:
Access to WebSphere MQ control commands is restricted to members of the
mqm and Administrators groups.

� UNIX:
Access to WebSphere MQ control commands is restricted to members of the
mqm group.

� iSeries:
Members of the QMQMADM group have access to all WebSphere MQ CL
commands. However, more granular access can be granted to individual CL
commands on iSeries. Refer to the “Authority to administer WebSphere MQ
on i5/OS” section in WebSphere MQ Security, SC34-6588.

� z/OS:
All authority checks performed by WebSphere MQ for z/OS are routed
through an External Security Manager (ESM), which is assumed to be the
z/OS Security Server Resource Access Control Facility (RACF®) in this book.
The administration of profiles within RACF is required in order to grant access
to queue manager data sets and commands that can be issued against
queue manager subsystems. Refer to the “Authority to administer WebSphere
MQ on z/OS” section in WebSphere MQ Security, SC34-6588.

Note: The runmqsc command is a WebSphere MQ control command.
Therefore, on Windows, UNIX, and iSeries, only users that have been
authorized as WebSphere MQ administrators can issue MQSC commands
directly against a queue manager.

302 WebSphere MQ V6 Fundamentals

11.2 Granting access to queue manager resources
The security model of WebSphere MQ is based on configuring access profiles for
individual WebSphere MQ objects or groups of WebSphere MQ objects.

WebSphere MQ objects represent all resources owned and controlled by a
queue manager, and we have discussed a number of these in this book. For
example, WebSphere MQ objects configure the queues hosted by a queue
manager and the channels that define the network communication to and from
that queue manager.

This security model can be used to provide fine-grain security control over the
entities connecting to a queue manager, allowing entities access only to the
resources they require.

11.2.1 The Object Authority Manager (OAM)
On Windows, UNIX, and iSeries, each queue manager has a component called
the Object Authority Manager (OAM). Whenever an entity connected to the
queue manager attempts to perform an action against a WebSphere MQ object,
the OAM is queried to determine if that entity has authority to perform the action.

The entity is identified by an operating system user identifier. For applications
running on the same machine, this is the real user identifier that issued that
application (not the effective user identifier on UNIX). We discuss considerations
for establishing the identity context of entities connecting as clients from remote
systems in 11.3, “Establishing identity context for client applications” on
page 308.

OAM authorities
Each action that can be performed against an object has an associated authority
that can be granted or revoked using the OAM. The following actions can be
performed against WebSphere MQ objects by entities connected to a queue
manager:

� Connecting to a queue manager:

There is a WebSphere MQ object that represents the queue manager. In
order to connect to a queue manager, an entity must have first been granted
the connect authority on the queue manager object.

� Message queue interface (MQI) operations:

Any action performed programmatically against a queue manager, regardless
of the application programming interface (API) used, resolves into one or
more MQI operations, for example, MQPUT, MQGET, MQINQ, and MQSET.

 Chapter 11. Securing a WebSphere MQ infrastructure 303

The MQI interface requires that an MQOPEN operation is performed before
performing these operations to access the resource before using it. Most
commonly, MQOPEN is used to open a queue before putting and getting
messages.

It is during the MQOPEN call that the OAM is queried to determine whether
the entity is authorized based on the requested operations specified in the
MQOPEN call. Each operation that can be requested has a matching
authority maintained by the OAM: get, put, browse, inquire, set. After
performing the MQOPEN call, the application can only perform the MQI
actions that were requested and authorized during the MQOPEN.

The object name specified on the MQOPEN call is often the name of a queue
object defined on the queue manager to which the application is connected.
When opening a queue to get or browse, this is always the name of a local or
alias queue object. When opening a queue to put messages, this can be the
name of a local, model, alias, or remote queue object. In these cases, the
entity must have been granted the requested authority on that object.

However, when putting a message to a destination on a remote queue
manager, the name specified in the MQOPEN call might not be the name of
an object defined on the queue manager to which the application is
connected. For example, an application might specify an object queue
manager name in the MQOPEN call, or the queue might reside on another
queue manager within a queue manager cluster. In these cases, the
application must be granted put authority on the transmission queue identified
during the queue name resolution.

Table 6-1 on page 148 provides a summary of objects on which authority
checks are performed when opening a queue to send a message.

Note: Performing this authorization takes a small amount of time.
Therefore, it is generally more efficient to perform multiple puts or gets after
a single MQOPEN call, rather than issuing MQOPEN and MQCLOSE calls
around each operation. This includes using the MQPUT1 call, which
resolves to MQOPEN, MQPUT, and MQCLOSE.

Note: In order to gain authority to put to all queues shared within a queue
manager cluster, an application can be granted put authority on the
SYSTEM.CLUSTER.TRANSMIT.QUEUE of the queue manager to which it
connects. However, more granular access can be provided by defining
model queue objects specifying the names of queues shared in the cluster
in the target queue (TARGQ), and granting put authority only to those model
queue objects.

304 WebSphere MQ V6 Fundamentals

� Performing actions under a different user context:

In some circumstances, an application might be required to perform actions
as though the application had connected under a different user context, or to
specify a different user identity context in the MQMD of messages put by the
application.

One example is a service that maintains the identity information from a
request message in a reply message.

If an application requires the ability to perform these operations, it must
specify this when performing the MQOPEN operation on the queue.
WebSphere MQ has a set of authorities that match the options available on
the MQOPEN call: altusr, passid, passall, setid, setall.

Refer to the “MQOPEN - Open object” section in WebSphere MQ Application
Programming Reference, SC34-6596.

� Performing administrative operations on WebSphere MQ objects:

Only users designated as WebSphere MQ administrators can perform the
direct administration of queue managers using WebSphere MQ control
commands and CL commands, including issuing MQSC commands using
runmqsc. We discuss this in 11.1, “Administering a WebSphere MQ
installation” on page 302.

However, WebSphere MQ allows administration to be performed on queue
managers by other users using the WebSphere MQ Explorer or by issuing
PCF commands directly against the command server of a queue manager.

These commands are authorized based on the user identifier in the MQMD of
the command message. This user identifier is based on the identity context of
the application that generated the message on the queue manager to which it
was connected. However, that application might have had authority to put
messages with an alternate user context.

To allow granular control of which objects can be administered by which
users, the OAM provides the following set of authorities related to
administration:

– Create (crt) and delete (dlt):
When granted against any individual object of a particular type, these
authorities allow an entity to create or delete any object of that type.

– Display (dis) and change (chg):
When granted against an individual object, these authorities allow an
entity to display or change the attributes of that individual object.

Note: A command server is started by default for queue managers created
with WebSphere MQ V6.0 on platforms other than z/OS.

 Chapter 11. Securing a WebSphere MQ infrastructure 305

– Clear (clr), ping (ping), control (ctrl), and control-extended (ctrlx):
When granted against an individual object of an appropriate type, these
authorities allow an entity to perform particular control operations against
that object. For example, clear (clr) authority allows an entity to issue a
clear of a queue, control (ctrl) authority allows an entity to start and stop
a channel, and control-extended (ctrlx) authority allows an entity to reset
or resolve a channel.

We discuss considerations for establishing the identity of users connecting to
a queue manager over a network and issuing commands against the
command server later in this chapter.

Granting, revoking, and displaying OAM authorities
A set of WebSphere MQ control commands are provided to control the
authorities granted to entities against individual objects or groups of objects.

WebSphere MQ V6.0 also provides a set of PCF commands that you can use to
programmatically remotely administer these authorities. For more information
about these PCF commands, refer to WebSphere MQ Programmable Command
Formats and Administration Interface, SC34-6598.

Authority can only be granted to user identifiers and group identifiers known to
the local operating system.

Note: Some administrative actions against a queue manager can only be
performed by a WebSphere MQ administrator. Prior to WebSphere MQ
V6.0, this included starting, stopping, and resolving channels. Refer to the
“Authority checking for PCF commands” section in WebSphere MQ
Programmable Command Formats and Administration Interface,
SC34-6598.

Note: On WebSphere MQ for UNIX platforms, authority is always granted or
revoked at an operating system user group level. If an authority is granted or
revoked on an individual user identifier, that authority is granted or revoked on
the primary group of that user identifier, not the user identifier itself.

306 WebSphere MQ V6 Fundamentals

The following WebSphere MQ control commands are used to administer OAM
authorities:

� setmqaut:
The setmqaut command is used to grant or revoke OAM authorities for
WebSphere MQ objects of a particular queue manager with a particular type
and a particular name. The name parameter can contain a wildcard asterisk
(*) character to allow a group of names to be specified. The queue manager
object itself does not require the name parameter.

� dspmqaut:
The dspmqaut command is used to display the authorities that are resolved
against a particular user identifier or group identifier for a particular object.

� dmpmqaut:
The dmpmqaut command has a similar purpose as the dspmqaut command, but
provides significantly more details. This command is especially useful if
attempting to identify why a particular user identifier is being granted the
authorities shown by the dspmqaut command, for example, because of group
memberships.

For more information about these commands, refer to the “WebSphere MQ
control commands” section in WebSphere MQ System Administration Guide,
SC34-6584.

11.2.2 Object authority in WebSphere MQ for z/OS
Authority checks on WebSphere MQ for z/OS objects are performed externally to
WebSphere MQ by RACF.

We describe the circumstances in which they are performed in 11.2.1, “The
Object Authority Manager (OAM)” on page 303. However, the checks are
performed based on RACF profiles for individual objects, rather than OAM
authorities.

Note: After making any changes using the setmqaut command for a
running queue manager, it is important to issue a REFRESH SECURITY
MQSC command against that queue manager. This is because queue
managers hold a cache of authority information for efficiency, so might not
react to changes made to authorities until this cache is cleared using a
REFRESH SECURITY MQSC command. This is also important after
making changes to group memberships for user identifiers in the operating
system.

 Chapter 11. Securing a WebSphere MQ infrastructure 307

These profiles can be individual to a queue manager, or shared between the
queue managers within a queue sharing group. Different operations performed
on WebSphere MQ objects of a queue manager require different RACF access
levels.

For more information, refer to the “Setting up security” section in WebSphere MQ
for z/OS V6.0 System Setup Guide, SC34-6583.

11.3 Establishing identity context for client applications
Establishing the identity context is simplified for applications running on the same
machine as a queue manager and connecting to that queue manager using a
bindings connection. In these cases, the queue manager can be sure of the
operating system user identifier under which that application is running, and
administration of the user identifiers on that machine can be relied on to ensure
that OAM authentication is accurate.

However, starting a listener gives a queue manager an identity on a network.
Applications can connect as client applications to the queue manager from
remote machines through this listener.

The administration of these remote machines might not be as tightly controlled.
For example, some of these machines might be desktop workstations, where
users have administrator or root authority, and thus can define their own user
identifiers. In some cases, the host name and port of the queue manager might
be accessible over public networks, such as the Internet.

11.3.1 WebSphere MQ default behavior for establishing identity
When an application connects to a queue manager as a client over a network,
the client MCA flows a user identifier over that channel for the queue manager to
use to establish the identity context of the application.

This user identifier is based on the user identifier under which the application is
running on the remote machine. This same user identifier must exist on the
machine hosting the queue manager in order for the connection to be successful.
Authority checks are then performed using that established identity context.

308 WebSphere MQ V6 Fundamentals

Consider that there are some common user identifiers, such as mqm, and
common channel names, such as SYSTEM.DEF.SVRCONN, that a remote
application can use to connect to a queue manager with a running listener on an
accessible network.

Many networks are secured using an intranet and firewalls, and such
considerations are not considered necessary. However, WebSphere MQ
provides a set of features that allow such connections to be further secured.

11.3.2 MCA user identifier
The MCA user identifier (MCAUSER) attribute of the server connection channels
allows the default behavior previously described for client connections to be
overridden. When specified, all client applications using that channel name are
given the same authority on the queue manager. This is regardless of the user
identifier under which they are running on the remote machine.

The value of the parameter is specified as a user identifier defined on the
machine where the queue manager is hosted, noting that this might be
case-sensitive. All applications that then connect to the queue manager as a
client using that channel name have the same authority as though they were
running under that user identifier.

This can be used to reduce administration on the remote machines, allowing the
client application to run under any user identifier on the remote machine.

It can also be used to limit access to resources on a queue manager by
configuring the MCA user identifier for server connection channels to provide the
correct level of access. However, in some cases, full privileges on a machine are
required to be made available, for example, to allow remote administration using
the WebSphere MQ Explorer.

Some queue managers never receive client connections, but have a listener
active for message channels. In this case, an invalid MCA user identifier attribute

Note: When connecting to a remote queue manager, the user identifier flowed
across the channel by the client MCA might not be identical to that on the
remote machine. For example, when connecting to UNIX machines, it is based
on the first 12 characters, in lowercase, of the user identifier under which the
application is running. Administrator is flowed to the UNIX queue manager as
admin. Therefore, a user identifier called admin must exist and be authorized
on the machine hosting the queue manager in order for the connection to be
successful.

 Chapter 11. Securing a WebSphere MQ infrastructure 309

can be specified on server connection channel objects. This disables client
applications from connecting to that queue manager.

Use of the MCA user identifier alone is not always sufficient to provide the level of
security required for communication with a queue manager. In these
circumstances, identity context can be assured, and privacy of communication
protected, using Secure Sockets Layer (SSL) or Transport Layer Security (TLS).

11.4 Secure Sockets Layer (SSL)
Secure Sockets Layer (SSL) is an industry-standard technology for securing the
flow of confidential data across public networks and providing assured identity
context.

SSL builds on a number of fundamental concepts, including asymmetric and
symmetric cryptography, message digests, digital signatures, digital certificates,
CipherSuites, and certificate authorities. These concepts are common to all SSL
implementations.

Refer to the “Introduction” section in WebSphere MQ Security, SC34-6588, for a
full description of each of these concepts.

11.4.1 Support for SSL in WebSphere MQ
WebSphere MQ allows channels of all types to be secured using SSL. This
includes distributed message channels, cluster message channels, and client
channels.

SSL can be used to provide authentication of the identity of a remote application
or queue manager.

SSL can also be used to assure confidentiality and data integrity for the
communication link after it is established.

11.4.2 CipherSpecs
A channel is configured to require SSL authentication by specifying a single
CipherSpec string in the SSL Cipher Specification (SSLCIPH) attribute of the
channel object.

The name of a CipherSpec identifies the encryption algorithm and message
authentication code (MAC) algorithm that is used after the channel is
established.

310 WebSphere MQ V6 Fundamentals

Each CipherSpec available in WebSphere MQ correlates with a CipherSuite
used by other SSL applications, where that CipherSuite uses the RSA key
exchange protocol.

Different CipherSpecs provide different levels of security and performance. For
information about the CipherSpecs available, refer to the “Working with
CipherSpecs” section in WebSphere MQ Security, SC34-6588.

11.4.3 Transport Layer Security (TLS)
Transport Layer Security (TLS) Version 1.0 is a similar protocol to SSL Version
3.0, with some additions that can increase the security of the established link.

WebSphere MQ V6.0 uses the TLS protocol for certain CipherSpecs. Refer to
the “Transport Layer Security (TLS) concepts” section in WebSphere MQ
Security, SC34-6588, for more information.

11.4.4 Required or optional SSL client authentication
In an SSL handshake, the side that initiates the communication is called the SSL
client and the side that responds to that communication is called the SSL server.

The SSL handshake allows for the circumstance where the identity of the SSL
server is authenticated, but the identity of the SSL client is not. For example,
when connecting an Internet browser to an Internet shopping Web site, the
identity of the Web site is authenticated using its certificate, but the Web browser
itself does not usually require a certificate.

For each valid channel pairing in WebSphere MQ, one MCA acts as the SSL
client and one MCA acts as the SSL server. For a sender to receiver pair, the
receiver is the SSL server. For a client application to server connection pair, the
server connection is the SSL server.

The channel object at the SSL server side can be configured to require a valid
certificate from the SSL client, or to allow the SSL client to optionally provide this

Note: Only one CipherSpec can be specified for a channel. Therefore, this
must match the CipherSpec specified on the partner channel. For connections
with Java client applications or WebSphere MQ internet pass-thru, the
CipherSpec must be compatible with a CipherSuite specified by the Java client
or WebSphere MQ IPT instance.

Note: This this point on the discussion of SSL in this chapter equally relates to
TLS.

 Chapter 11. Securing a WebSphere MQ infrastructure 311

certificate. This is performed using the SSL Client Authentication (SSLCAUTH)
attribute. Regardless of the setting of this attribute, if the SSL client provides a
certificate, the certificate must be authenticated correctly by the SSL server.

11.4.5 Queue manager certificate repositories
Each queue manager has its own certificate repository. This repository contains
the personal certificate and private key used to identify that queue manager
within the infrastructure. It also contains the public certificates of all trusted
entities. These can be the public certificates of other entities that have
self-signed certificates or the public certificates of trusted certificate authorities
that sign the certificates in the infrastructure.

The SSL Key Repository (SSLKEYR) attribute of the queue manager object
identifies the key repository for the queue manager. For details of how this
attribute is specified on individual platforms, refer to the “ALTER QMGR” section
in WebSphere MQ Script (MQSC) Command Reference, SC34-6597.

The queue manager identifies which certificate within this repository it must use
as a personal certificate based on the certificate label, or friendly name, of the
certificate within the repository. This label must be of the correct format for
WebSphere MQ to be able to use the certificate. For more information, see the
“Setting up SSL communications” section in WebSphere MQ Security,
SC34-6588.

11.4.6 Administering certificate repositories for WebSphere MQ
For information about how to perform certificate administration tasks, refer to the
“Working with WebSphere MQ SSL support” section in WebSphere MQ Security,
SC34-6588. This includes performing the following tasks:

� Creating a key repository for a queue manager.
� Creating a self-signed certificate.
� Creating a certificate request to send to a certificate authority.

Note: The certificate label, or friendly name, is an identifier for the certificate
within the repository. Do not confuse this with the distinguished name in the
certificate. If you receive a personal certificate and private key in a PKCS12
file from a certificate authority, the label might not be of the correct format.

The IBM KeyMan utility can be useful in editing the label of the certificate in
the PKCS12 file before importing it into a WebSphere MQ key repository. This
tool is available from the following Web page:

http://www.alphaworks.ibm.com/tech/keyman

312 WebSphere MQ V6 Fundamentals

http://www.alphaworks.ibm.com/tech/keyman

� Receiving a signed certificate from a certificate authority.
� Adding the certificate of trusted certificate authority to a repository.
� Importing a personal certificate and private key from a PKCS12 file.
� Exporting a personal certificate and private key to a PKCS12 file.
� Extracting the public part of a certificate from a repository.

For information about the full function available from the IBM GSKit iKeycmd
command line tools, supplied with WebSphere MQ for Windows and UNIX
platforms, refer to the “Managing keys and certificates” section in WebSphere
MQ System Administration Guide, SC34-6584.

11.4.7 WebSphere MQ client applications
For client applications written in C or C++, the administration of a certificate
repository is very similar to the administration of a queue manager certificate
repository.

The certificate repositories are of the same format, and the same administration
interface is used to create them. The MQSSLKEYR environment variable can be
used in the same way as the SSLKEYR queue manager attribute to specify the
location of the repository. Requirements are placed on the label, or friendly
name, of the personal certificate in the certificate repository. Refer to the “Setting
up SSL communications” and “Working with the Secure Sockets Layer (SSL) on
UNIX and Windows systems” sections in WebSphere MQ Security, SC34-6588,
for more information:

In order to configure a CipherSpec to use on the channel when connecting to the
queue manager, you can use a client channel definition table (CCDT).

Alternatively, the location of the key repository and the CipherSpec can be
specified explicitly. This is performed by attaching MQCD and MQSCO
structures to the MQCNO structure passed into an MQCONNX call. Refer to
WebSphere MQ Application Programming Reference, SC34-6596.

11.4.8 Java applications accessing WebSphere MQ as clients
Java applications can access a WebSphere MQ infrastructure as clients over an
SSL secured connection. This includes the WebSphere MQ Explorer and
applications running within a WebSphere MQ application server.

Note: It is important to consider the file system security of the key repository
files for a queue manager. Specifically, you need to control access to .kdb and
.sth files.

 Chapter 11. Securing a WebSphere MQ infrastructure 313

The client MCA in these cases uses a Java Secure Sockets Extension (JSSE)
implementation to perform the SSL authentication with the queue manager.
Refer to the “Secure Sockets Layer (SSL) support” section in WebSphere MQ
Using Java, SC34-6591, for full information.

Refer to the following summary of the steps involved in configuring a Java
application to connect using SSL with the default JSSE implementation:

� Specify a CipherSuite that corresponds to the CipherSpec of the server
connection channel definition on the server:

– For applications using the base Java API:
A CipherSuite can be specified in the sslCipherSuite attribute of the
MQEnvironment, or the MQC.SSL_CIPHER_SUITE_PROPERTY of the hashtable
passed into the constructor of the MQQueueManager object.
Alternatively in WebSphere MQ V6.0, a CCDT can be specified on the
constructor of the MQQueueManager object. This should contain a
channel with an appropriate SSL Cipher Specification (SSLCIPH) attribute.

– For JMS applications:
The SSLCIPHERSUITE attribute of the ConnectionFactory object can be
used to specify a CipherSuite.
Alternatively in WebSphere MQ V6.0, a CCDT can be specified in the
CCDTURL attribute of the ConnectionFactory object. This should contain a
channel with an appropriate SSL Cipher Specification (SSLCIPH) attribute.

� Specify the location and password for a JSSE KeyStore:
The KeyStore should contain at least one personal certificate, including the
private key. The label associated with this certificate in the KeyStore is not
important for Java client applications. This certificate is password protected in
the KeyStore, so a password needs to be provided for the KeyStore. The
default method for specifying a JSSE KeyStore is to set the following Java
properties:

javax.net.ssl.keyStore
javax.net.ssl.keyStorePassword

Note: JSSE does not use the same file format for key repositories as is used
by WebSphere MQ queue managers. Instead a Java KeyStore (JKS) file is
used. However, the KeyMan tools provided with the WebSphere MQ product
on Windows and UNIX can administer JKS key repositories. This includes
both the gsk7cmd command line tool and the gsk7ikm graphical user interface
(GUI). Alternatively, the keytool utility, regularly supplied with a Java Runtime
Environment (JRE), can be used.

314 WebSphere MQ V6 Fundamentals

� Specify the location of a JSSE TrustStore:
The TrustStore should contain the public certificates of all certificate
authorities trusted by the Java application. These certificates are not usually
password protected in the JKS file. Therefore, the password is optional. The
TrustStore can be the same file as the KeyStore. The default method for
specifying a JSSE TrustStore is to set the following Java properties:

javax.net.ssl.trustStore
javax.net.ssl.trustStorePassword

11.4.9 SSL considerations for the WebSphere MQ Explorer
The WebSphere MQ Explorer connects as a client Java application to queue
managers.

You can configure the JSSE KeyStore and TrustStore in the SSL Client
Certificate Stores section of the WebSphere MQ Preferences window.
Figure 11-1 shows this window.

Figure 11-1 Configuring KeyStore and TrustStore in WebSphere MQ Explorer

It is not possible to manually specify the CipherSuite to use on an individual
connection to a queue manager. However, the WebSphere MQ Explorer allows
connections to be made to queue managers using a CCDT.

 Chapter 11. Securing a WebSphere MQ infrastructure 315

The following steps are required to connect the WebSphere MQ Explorer to a
queue manager over a SSL secured connection:

1. Create a listener and server connection channel object on the remote queue
manager. Specify a value in the SSL Cipher Suite (SSLCIPH) attribute on the
server connection channel object.

2. Create a client connection channel object of exactly the same name, with an
identical SSL Cipher Suite (SSLCIPH) attribute. The Queue Manager Name
(QMNAME) attribute of the client connection channel object must exactly match
the name of the target queue manager where the server connection channel
was created.

It does not matter on which queue manager this object is created. However,
the CCDT file needs to be transferred to the machine running the WebSphere
MQ Explorer, or shared on a network drive. This file is created by a queue
manager in the following location on Windows:

C:\Program Files\IBM\WebSphere MQ\Qmgrs\QMNAME\@ipcc\AMQCLCHL.TAB

3. Place the CCDT file in a location accessible to the WebSphere MQ Explorer.

4. Create a Java KeyStore (JKS) file containing the following:

– A personal certificate and private key to identify the WebSphere MQ
Explorer. This is optional if SSL Client Authentication (SSLCAUTH) has been
specified to be OPTIONAL on the server connection channel.

– The public certificates of all certificate authorities required to authenticate
the personal certificate of the queue manager.

This step can be performed by issuing the strmqikm command on Windows,
and using the IBM Key Management GUI that opens.

5. Open the WebSphere MQ Explorer.

6. Select Window → Preferences on the menu bar to open the Preferences
window.

7. Select WebSphere MQ Explorer → SSL Client Certificate Stores.

8. Enter the location of the JKS file created in both the Trusted Certificate Store
and Personal Certificate Store text boxes.

9. Click Enter Password in the Personal Certificate Store section.

Note: Before attempting these steps, review APAR IC47466.

You can review this APAR by visiting the following WebSphere MQ support
Web page and performing a search for IC47466:

http://www.ibm.com/software/integration/wmq/support/

316 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/wmq/support/

10.Enter the password configured for the JKS file.

11.Click OK.

12.Create a direct connection to the queue manager using the Add queue
manager wizard. Specify the exact name of the queue manager, and specify
to use a client channel definition table. Provide the location of the CCDT file
as made accessible to the WebSphere MQ Explorer previously.

11.4.10 Certificate revocation lists
It is possible for the integrity of a certificate to be compromised within the validity
period of that certificate. For example, the security of a private key associated
with that certificate might be compromised. These certificates should no longer
be trusted, even though they have been correctly signed.

SSL provides a mechanism to allow a certificate authority to revoke certificates
that it has signed. For this, use certificate revocation lists (CRLs), which can be
checked by WebSphere MQ queue managers using the Lightweight Directory
Access Protocol (LDAP).

For more information about CRLs and how to configure WebSphere MQ queue
managers to check CRLs, refer to the “Working with Certificate Revocation Lists
and Authority Revocation Lists” section in WebSphere MQ Security, SC34-6588.

11.4.11 Choosing a certificate authority
There are three main choices of certificates to use in a WebSphere MQ
infrastructure:

� Using self-signed certificates:
Each certificate is signed by itself. The private part is kept in the certificate
repository of the queue manager or client application that is identified by that
certificate. The public certificate is extracted from this repository and
distributed to all entities that trust that entity.

This approach can involve a large amount of administration in maintaining the
certificates in certificate stores. However, it can provide fine-grain control over
the certificates and does not require a certificate authority to be set up.

Note: The Add Queue Manager wizard is accessed by right-clicking the
Queue Managers folder and selecting Show/Hide Queue Managers to
display the Show/Hide Queue Managers window. Then, click Add on that
window.

 Chapter 11. Securing a WebSphere MQ infrastructure 317

� Creating a certificate authority:
The WebSphere MQ product is supplied with tools that can be used to create
and sign certificate requests. A self-signed certificate can be created in a key
repository designated as a certificate authority. This can be used to sign the
certificates of other queue managers and client applications. In addition,
many third-party tools exists to perform these functions.

This approach can simplify administration over using self-signed certificates
and provide a more scalable solution. However, you consider the security of
the certificate authority. In addition, building the infrastructure and processes
for validation and signing and revoking certificates in a large infrastructure
can be a significant administrative task.

� Using a third-party certificate authority:
There are a number of third-party certificate authorities that can perform the
administration of signing certificates. Certificate requests can be generated
from the key repository of an entity with the correct parameters. Generating a
certificate request also causes a private key to be generated, but kept
securely within the key repository of that entity. The certificate request can be
sent to a certificate authority to sign and return the signed public certificate.
The public certificate can then be received back into the key repository of the
entity to join the private certificate.

Although there are costs involved, using a certificate authority in this way can
provide significant benefits. These include that the third-party takes
responsibility for the security of the certificate authority itself and might
provide LDAP server access to query CRLs. This option generally requires
the smallest amount of administration of certificates and certificate stores.

11.4.12 Validation of distinguished name using SSL Peer
Often, there is a requirement to provide different access privileges to different
entities connecting to a queue manager over a network.

SSL validation ensures that the identity context contained in the certificate is
trusted. After this trust has been established, the distinguished name (DN)
contained in the certificate can be used to identify that entity. The DN might
contain a name, e-mail address, company name, server name, country, or other
relevant information.

WebSphere MQ allows individual channels to be configured to only accept
connections from entities with a correctly matching DN. The DN is matched
against the SSL Peer (SSLPEER) attribute of the channel object.

This matching is flexible to allow some fields in the DN to require a fixed string,
while others contain wildcards. For a list of rules of how this matching is

318 WebSphere MQ V6 Fundamentals

performed, refer to the “WebSphere MQ rules for SSLPEER values” section in
WebSphere MQ Security, SC34-6588.

An example application of this is to configure different SSL Peer (SSLPEER)
attributes on the server connection channels for administrators using the
WebSphere MQ Explorer and applications accessing certain queues. Combining
this with specifying different MCA user identifier (MCAUSER) attributes on these
channels allows the authority provided to those groups to be controlled
independently.

11.4.13 Federal Information Processing Standard (FIPS) compliance
WebSphere MQ uses IBM components, common to multiple products, to provide
SSL secured communications. This means that WebSphere MQ benefits from
the testing and security validation performed on these components.

On many platforms supported by WebSphere MQ, these components have
passed validation programs relating to the Federal Information Processing
Standard (FIPS).

For further details refer to the “Federal Information Processing Standard (FIPS)”
section in WebSphere MQ Security, SC34-6588.

11.5 WebSphere MQ internet pass-thru (IPT)
The communication links that interconnect the nodes of a system, or provide
external interfaces into that system, are often implemented using varied
technologies and with different security requirements.

These links can cover large physical distances, use public networks and
infrastructures such as the Internet, or be independently managed with only
certain routes in and out.

Technologies such as firewalls can protect the external interfaces into networks,
only allowing certain forms of network traffic to enter that network from particular
destinations or using particular routes.

Other technologies, such as network address translation (NAT), can provide
different addresses for a single node when communicating within a particular
network in comparison to communicating from outside of that network.

Some interfaces into networks might only allow particular transport mechanisms
for data, such as the HTTP protocol used to transfer Web pages. These might

 Chapter 11. Securing a WebSphere MQ infrastructure 319

have additional security restrictions, such as use of the secure HTTPS protocol
built on SSL technologies.

WebSphere MQ provides the WebSphere MQ internet pass-thru (IPT) product in
order to flexibly route WebSphere MQ communication through these varied
networks.

WebSphere MQ IPT can be used to tunnel WebSphere MQ communications
through a number of different forms of network built on the Internet protocol suite
(TCP/IP).

Client connections, distributed message channels, and cluster message
channels, including where these channels are secured by SSL, can be routed
through WebSphere MQ IPT instances, transparent to the operation of
WebSphere MQ.

Multiple instances of the WebSphere MQ IPT product can be connected together
to bridge WebSphere MQ communications over multiple nodes in the network. At
each stage, a different communications protocol, target address for the
destination, or security level can be implemented by WebSphere MQ IPT.
WebSphere MQ IPT nodes can communicate with other WebSphere MQ IPT
nodes or a final WebSphere MQ destination.

WebSphere MQ IPT provides SSL capabilities that can connect to the SSL
capabilities of WebSphere MQ by matching the CipherSuites used by
WebSphere MQ IPT to the CipherSpecs used by WebSphere MQ.

A WebSphere MQ server installation is not required on machines where an
WebSphere MQ IPT instance is hosted. WebSphere MQ IPT is supplied
separately from the WebSphere MQ product through SupportPac MS81. Refer to
the following Web page for more information about the WebSphere MQ internet
pass-thru product:

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006386&loc=en_US&cs=utf-
8&lang=en

320 WebSphere MQ V6 Fundamentals

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006386&loc=en_US&cs=utf-8&lang=en

Chapter 12. Troubleshooting

This chapter outlines the information available for diagnosing and resolving
WebSphere MQ problems. We provide specific guidance for some common
issues experienced when building, administering, and accessing a WebSphere
MQ environment. To aid the efficient resolution of any problems encountered that
cannot be resolved using the information resources available, we provide advice
about the information to provide to IBM Service.

We discuss the following topics:

� Primary information provided by WebSphere MQ

� Solving known problems

� Common problems building an infrastructure

� Common problems accessing an infrastructure

� Gathering documentation for service

12

© Copyright IBM Corp. 2005. All rights reserved. 321

12.1 Primary information provided by WebSphere MQ
Review the following sources of information when you experience any
unexpected behavior from WebSphere MQ. This behavior includes:

� An unsuccessful WebSphere MQ control command

� An unsuccessful action in the WebSphere MQ Explorer

� An unsuccessful execution of a WebSphere MQ sample program

� A failure to connect to WebSphere MQ from an application

� A failure to send or receive a message from an application

� A failure in communication between queue managers

� Failures of other actions performed programmatically against WebSphere MQ

12.1.1 AMQXXXX messages
The information displayed to a user administering a WebSphere MQ
infrastructure in response to an action or to signify an event is tagged with an
AMQXXXX message identifier.

This includes success or failure messages for actions performed in the
WebSphere MQ Explorer and when using MQSC and WebSphere MQ control
commands. This also includes information about the operation of the queue
manager as shown in the queue manager error logs.

The format of these message identifiers is AMQ followed by four digits. The range
of numbers is from AMQ4000 to AMQ9999.

Any time you see information displayed by WebSphere MQ with a message
identifier in this format, you can gain more information about that message.

This includes a more detailed explanation of the circumstances in which the
message is seen. It might also provide suggested actions to take in response to
the message.

Use the following methods to access this additional information:

� By looking up the message identifier in WebSphere MQ Messages,
GC34-6601

� By executing the mqrc command, specifying a message identifier, from a
machine with a WebSphere MQ server installation. For example:

mqrc AMQ4002

322 WebSphere MQ V6 Fundamentals

12.1.2 Reason codes
All actions performed programmatically against WebSphere MQ that do not
complete successfully, or only complete partially, cause a reason code to be
returned to the application.

This reason code identifies the reason the action did not complete successfully,
or only partially completed. Applications are developed to expect certain reason
codes in certain situations. For example, an application waiting for messages to
arrive on a queue for a number of seconds expect to receive a reason code and
unsuccessful completion of the action if no messages arrive on that queue.

If an action does not complete successfully, and the application is not expecting
that failure, the reason code is the first piece of information to inspect when
determining the reason for the failure.

Reason codes are four digit decimal numeric values that map to a defined name
for that reason code. The mqrc command provides the mapping between the
decimal representation, a hexidecimal representation of the same value, and the
definition name of a reason code.

The parameter of this command can be the decimal value of a reason code, 0x
followed by a hexidecimal representation of the reason code, or the defined
name of the reason code. All three representations are then returned.

For more information about a particular reason code, look up the reason code by
number in WebSphere MQ Messages, GC34-6601.

Reason codes using the MQI or object-oriented APIs
Reason codes are returned directly from actions that are performed using the
core MQI application programming interface (API), or APIs based on the
WebSphere MQ object model, to interact with a queue manager. WebSphere MQ
Application Programming Reference, SC34-6596, documents the possible
reason codes that can be returned by each MQI action.

Reason codes using standardized APIs such as JMS
When using standardized APIs, such as the Java Message Service (JMS), the
concept of a WebSphere MQ reason code is not part of the standard for that API.
However, the WebSphere MQ reason code might be contained in the information
provided to that application. This information documents the failure according to
the standards of the API. For example, when using the JMS API to interact with
WebSphere MQ, a Java exception might contain a WebSphere MQ reason code.

 Chapter 12. Troubleshooting 323

12.1.3 Queue manager error logs
The queue manager error logs are the primary source of information about the
operation of the queue manager.

If the reason code or AMQXXXX message is not sufficient to explain an
unsuccessful action performed programmatically or using an administration
interface, the next place to find information is in the queue manager error logs.
However, these error logs do not only contain information about failures.

The queue manager error logs provide very useful information about the
operation of that queue manager. We recommend the regular inspection of these
logs by a WebSphere MQ administrator in the same way that the operating
system logs of a machine are regularly inspected by a system administrator.

12.1.4 WebSphere MQ system error logs
Some interactions with a WebSphere MQ infrastructure cannot be linked to an
individual queue manager. For example, when an application attempts to connect
to a queue manager as a client, and that connection fails, the information about
the failure from the perspective of the application is separate from the queue
manager to which it attempted to connect.

This type of information is stored in the WebSphere MQ system error logs.
Consult these logs, along with the error logs for the individual queue manager,
when diagnosing problems connecting to a queue manager as a client.

These logs are available for a WebSphere MQ client installation and a
WebSphere MQ server installation.

12.1.5 Error log locations
The error logs in the following locations:

� Windows:

– Queue manager error logs:

C:\Program Files\IBM\WebSphere MQ\Qmgrs\
Queue_Manager_Name\errors

– WebSphere MQ system error logs:

C:\Program Files\IBM\WebSphere MQ\errors

– WebSphere MQ system error logs for a client only installation:

c:\Program Files\IBM\WebSphere MQ Client\errors

324 WebSphere MQ V6 Fundamentals

– System queue manager error logs:

C:\Program Files\IBM\WebSphere MQ\Qmgrs\@SYSTEM\errors

� UNIX:

– Queue manager error logs:

/var/mqm/qmgrs/Queue_Manager_Name/errors

– WebSphere MQ system error logs:

/var/mqm/errors

– System queue manager error logs:

/var/mqm/qmgrs/@SYSTEM/errors

� iSeries:

– Queue manager error logs:

/QIBM/UserData/mqm/Queue_Manager_Name/errors

– WebSphere MQ system error logs:

/QIBM/UserData/mqm/errors

– System queue manager error logs:

/QIBM/UserData/mqm/&SYSTEM/errors

For more information about these error logs, see 5.3.15, “Error logs” on
page 119.

12.1.6 First-failure support technology (FFST)
If an unexpected event has been detected by a WebSphere MQ queue manager,
which might affect the ability of that queue manager to perform its function,
information is provided in a first-failure support technology (FFST) report.

Some of the information in an FFST report can be read directly by an
experienced WebSphere MQ administrator. However, some of the information
relates to the internal operation of WebSphere MQ at the time of the failure. This
information is extremely useful for an IBM Service representative diagnosing an
issue experienced with WebSphere MQ.

As such, keep any FFST files created by WebSphere MQ for a reasonable period
of time. Providing a full history of any FFST files that were created by
WebSphere MQ can be extremely helpful for IBM Service representatives.
FFSTs created some time previous to external symptoms of a problem being
observed can be instrumental in understanding the reason for a problem being
experienced.

 Chapter 12. Troubleshooting 325

Not all FFST reports represent a failure in the WebSphere MQ product. However,
they represent unexpected events. Check for FFST files regularly.

12.1.7 WebSphere MQ documentation
The WebSphere MQ documentation provides reference information about
performing administration tasks and developing applications to access
WebSphere MQ infrastructures.

Refer to “Related publications” on page 387 and WebSphere MQ Bibliography
and Glossary, SC34-6603, for an overview of the contents of each publication.

The WebSphere MQ V6.0 documentation is also available in an Information
Center, which provides a very useful search facility. This Information Center is
supplied on the documentation media for the WebSphere MQ product. It is also
available from the following Web page:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

12.2 Solving known problems
WebSphere MQ is a mature product, with a wide user base. If you experience an
issue when building a WebSphere MQ infrastructure, or attempting to perform an
administrative or programmatic action against a WebSphere MQ infrastructure, it
is likely that the same issue has been experienced by other WebSphere MQ
users.

Your issue may have been resolved through a change to the WebSphere MQ
product in an APAR. The issue might have been resolved with a change to the
configuration of the WebSphere MQ infrastructure, a change to an application
accessing that infrastructure, or related to other hardware and software
infrastructure components in the system.

12.2.1 The WebSphere MQ support Web site
Access to all IBM support information for the WebSphere MQ product is available
through a central Web site:

http://www.ibm.com/software/integration/wmq/support/

This includes access to the WebSphere MQ documentation, a searchable
interface into all problems previously fixed in the WebSphere MQ product,
SupportPacs available for the WebSphere MQ product, and access to
WebSphere MQ maintenance downloads.

326 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/wmq/support/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

12.2.2 Applying maintenance
IBM regularly ships packages of fixes for the WebSphere MQ product. It is
important to apply these maintenance deliveries regularly to every WebSphere
MQ installation in a WebSphere MQ infrastructure.

Applying maintenance deliveries regularly, regardless of whether problems have
been experienced, protects your WebSphere MQ infrastructure from being
affected by known problems.

Details of the maintenance deliveries available for WebSphere MQ are available
on the WebSphere MQ support Web page.

Before applying a maintenance delivery, read the readme document associated
with that maintenance delivery. This contains details of the problems fixed within
that maintenance delivery, as well as a history of problems fixed in previous
maintenance deliveries for that version of the WebSphere MQ product.

Updates to the information contained in the WebSphere MQ documentation and
special information that might be relevant to your WebSphere MQ installation are
also contained in this readme document.

12.2.3 Flashes
Each time a new maintenance delivery is released, or if an important interim fix is
released to supplement a maintenance delivery, a flash is sent out to all users
registered through the IBM support Web site.

Note: We recommend that all changes to a production environment, including
changes to applications, changes to infrastructure configuration, and
application of maintenance to infrastructure software, are performed in the QA
environment prior to performing them in a production environment. This
includes applying maintenance deliveries to WebSphere MQ.

Note: You can use the dspmqver WebSphere MQ control command on
Windows and UNIX to determine the current level of maintenance applied to
the WebSphere MQ installation.

This is of the form Version.Release.Modification.Fixpack.

On iSeries, you can use the CALL QMQM/DSPMQVER command.

 Chapter 12. Troubleshooting 327

We recommend that all WebSphere MQ administrators subscribe to these
flashes. To do this, register through the IBM support Web site and add the
WebSphere MQ product to your personalized page.

12.2.4 Searching APARs and Technotes
A knowledge base of solutions to common issues in documents providing advice
and guidance is also provided. Each document in this knowledge base is called a
Technote.

The search function provided on the WebSphere MQ support Web page enables
you to search all APAR descriptions and Technotes.

12.2.5 Further sources of information
There are many sources of information on the Internet about the WebSphere MQ
product. These include newsgroups, forums, and even dedicated Web sites.

The IBM developerWorks® Web site contains links to a number of such
resources. See the following Web page for more information:

http://www.ibm.com/developerworks/websphere/community

12.2.6 WebSphere MQ Explorer Healthcheck plug-in
The WebSphere MQ Explorer Healthcheck plug-in extends the ability of the
WebSphere MQ Explorer. It examines the configuration of all queue managers
connected to the WebSphere MQ Explorer and looks for potential problems in
the configuration of those queue managers.

The WebSphere MQ Explorer Healthcheck plug-in is supplied in SupportPac
MH01, available from the following Web page:

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24010096

12.3 Common problems building an infrastructure
This section suggests steps for diagnosing and resolving problems experienced
when establishing communication between queue managers.

328 WebSphere MQ V6 Fundamentals

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24010096
http://www.ibm.com/developerworks/websphere/community

12.3.1 Troubleshooting distributed message channels
We recommend following these steps when diagnosing problems related to
establishing communication between two queue managers using manually
defined distributed message channels:

1. Ensure that the names of the channel objects defined on both sides of the
connection match. Channel object names are case-sensitive.

2. Ensure that no channel status record exists on either queue manager for the
channel name with status STOPPED. This disables the channel. To enable the
channel, issue a start channel command against the channel object on the
queue manager that has a channel status record with status STOPPED. To see
all status records for a channel in the WebSphere MQ Explorer, right-click the
channel and select Status → Current Status.

3. Ensure that the object type of the sending MCA, which retrieves messages
from a transmission queue, and the object type of the receiving MCA, which
delivers messages to queues on the target queue manager, represent a valid
combination. We describe valid combinations in 7.4.10, “Valid distributed
message channel object pairs” on page 174.

4. Ensure that the host name or IP address specified in the connection name
(CONNAME) attribute of the channel object for the MCA that establishes the
connection matches the name of the machine where the partner queue
manager is hosted. Use an operating system ping command to ensure that
the machine can be accessed over the network. Both sides of some channel
pairs can establish a connection.

5. Ensure that the port number specified in the connection name (CONNAME)
attribute of the channel object for the MCA that establishes the connection
matches the port of the listener running for the partner queue manager. Both
sides of some channel pairs can establish a connection.

6. Perform a WebSphere MQ ping across the channel.

7. If the ping is unsuccessful, check the queue manager error logs of both queue
managers.

8. Ensure that the transmission queue (XMITQ) attribute of the channel object
that defines the sending MCA matches the name of a local queue object
defined on the same queue manager. Queue object names are
case-sensitive.

9. Ensure that the usage (USAGE) attribute of the local queue object is set to
transmission (XMITQ).

10.Attempt to manually start the channel.

11.If the channel does not start, check the queue manager error logs of both
queue managers.

 Chapter 12. Troubleshooting 329

12.Check that a dead letter queue is defined on the queue manager hosting the
receiving MCA. Persistent messages stuck on a transmission queue due to a
delivery failure where no dead letter queue is defined cause the channel to
enter RETRYING status, and eventually STOPPED status.

13.Check that no two channel objects on a queue manager have the same
transmission queue name attribute.

14.If a status entry for the channel exists, ensure that the indoubt (INDOUBT)
attribute of the channel status record for the channel is not YES.

12.3.2 Troubleshooting message channel initiation
We recommend following these steps when diagnosing problems related to
initiation of distributed message channels after ensuring that the channel can be
established manually:

1. Ensure the trigger control (TRIGGER) attribute is specified on the local queue
object with usage transmission defined on the same queue manager as the
sender channel object. This object is called the transmission queue from this
point.

2. Ensure that the trigger type (TRIGTYPE) attribute of the transmission queue is
set to FIRST or DEPTH.

3. If depth triggering is used, ensure that the trigger depth (TRIGDPTH) is set
appropriately.

4. Ensure that the trigger data (TRIGDATA), or process (PROCESS), attribute of the
transmission queue is set to the name of the sender channel object. Channel
object names are case-sensitive.

5. Ensure that the initiation queue (INITQ) attribute of the transmission queue is
set to SYSTEM.CHANNEL.INITQ.

6. Ensure that the default channel initiator for the queue manager is running. In
WebSphere MQ V6.0, use the DISPLAY QMSTATUS CHINIT MQSC
command, or right-click the queue manager in the WebSphere MQ Explorer
and select Status.

7. Check that the disconnect interval (DISCINT) attribute of the sender channel
object is set appropriately.

8. Start the channel manually to allow all messages to flow from the
transmission queue to the remote queue manager.

Note: Custom initiation queues can be used. However, a channel initiator
must be started manually against a custom initiation queue.

330 WebSphere MQ V6 Fundamentals

9. Let the channel reach its disconnect interval. Alternatively, stop the channel,
specifying the target status (STATUS) as INACTIVE.

10.Put a message to a queue hosted on the remote queue manager. This should
cause a message to be placed on the transmission queue, and the channel to
be started automatically by the queue manager.

12.3.3 Troubleshooting cluster message channels
When joining a queue manager to a queue manager cluster, refer to 8.3.3, “Steps
to join a queue manager to a cluster” on page 203.

When removing a queue manager from a queue manager cluster, refer to 8.3.4,
“Steps for a queue manager to leave a cluster” on page 206.

This section provides general advice for troubleshooting problems with cluster
message channels. Most problems relate to the attributes specified on the
cluster sender or cluster receiver channel object definitions.

A common external symptom of a problem is entries of the following form shown
in output from DISPLAY CLUSQMGR commands, or under the Clusters folder in
the WebSphere MQ Explorer:

SYSTEM.TEMPQMGR.hostname(port)

These are most commonly seen due to a problem joining a cluster, or rejoining a
cluster after issuing a REFRESH CLUSTER command with REPOS(YES)
specified.

One important issue in a queue manager cluster is that all queue managers must
be able to establish communication with all other queue managers in the cluster
using the connection name specified in the cluster receiver channel object
defined on that queue manager.

If a change needs to be made to that connection name, remove that queue
manager from all clusters it has joined, using that cluster receiver channel object,
before rejoining with the altered connection name. We do not recommend that
you change the connection name specified on a cluster receiver channel object
while that object is published within any queue manager cluster.

Note: Alterations to the manually defined cluster sender channel object, used
to first establish contact with a full repository, do not generally have an effect
after the queue manager has joined the queue manager cluster. The attributes
of the manually defined cluster sender channel are overridden by an
automatically defined cluster sender based on the cluster receiver channel
object defined on the full repository queue manager.

 Chapter 12. Troubleshooting 331

Cluster channels are affected by many of the same considerations as distributed
cluster sender channels. Always start by validating the channels between the full
repository queue managers for a cluster. Then, validate the channels between a
partial repository and both full repositories for the cluster. Only after establishing
the health of these channels, attempt to establish the health of channels between
partial repositories.

For any two queue managers in a cluster, check the following information:

� For a full repository queue manager, check that the repository (REPOS) or
repository namelist (REPOSNL) attribute queue manager object contains the
correct cluster name or namelist object name. Cluster names and namelist
object names are case-sensitive. If a namelist is used, check the names
(NAMES) attribute to that ensure the cluster name is contained.

� Ensure that a listener is created and running on both queue managers.

� Check that the cluster (CLUSTER) or cluster namelist (CLUSNL) attribute of the
cluster sender channel object and cluster receiver channel object contain the
correct cluster name or namelist object name. Cluster names and namelist
object names are case-sensitive. If a namelist is used, check the names
(NAMES) attribute to ensure that the cluster name is contained.

� Issue a DISPLAY CLUSQMGR(*) MQSC command on both queue
managers. Ensure that no records exist with a
SYSTEM.TEMPQMGR.hostname(port) name. If one does, this signifies that the
queue manager has not correctly joined the cluster. This might be for two
reasons:

– The manually defined cluster sender channel is incorrect:

This prevents a channel being established to the full repository queue
manager. Check that the name of the cluster sender channel object
matches the name of the cluster receiver channel object defined on the full
repository queue manager. Check that the host name or IP address and
port in the connection name is valid to contact the full repository queue
manager.

– The cluster receiver channel object is incorrect:

This prevents the channel being established from the full repository.
Check the connection name specified in the cluster receiver channel
object. We recommend that you set the CLUSTER or CLUSNL attribute to
blank before making any changes to the connection name.

Note: It does not matter which full repository is contacted. However, the
connection name must match the same full repository as the channel
name; otherwise, the channel cannot start.

332 WebSphere MQ V6 Fundamentals

� Ensure that the host name or IP address specified in the connection name
(CONNAME) attribute of the cluster receiver channel object for both queue
managers can be accessed from the partner queue manager. You can use an
operating system ping command to do this. Check that the port numbers are
correct for the listeners defined.

� Check the queue manager error logs for both queue managers.

� Issue a DISPLAY CHSTATUS(*) MQSC command on both queue managers.
Check for any channels which have a channel status record, but are not in
RUNNING status, for example, records in RETRYING status. Also check for an
INDOUBT attribute of YES on any channel status records.

� If the two queue managers are partial repositories, and both have knowledge
of the full repositories for the cluster, but not of each other, this can be
normal. To add knowledge of a remote partial repository, define a local queue
object on that remote partial repository. Share this queue object in the cluster
by specifying the cluster (CLUSTER) attribute to the name of the cluster. Use
the amqsput sample, connected to the local partial repository, to put a
message to this queue. If this completes successfully, a DISPLAY
CLUSQMGR(*) command on the local partial repository shows an entry for
the remote partial repository.

12.4 Common problems accessing an infrastructure
This section suggests steps for diagnosing and resolving problems experienced
by applications accessing a WebSphere MQ infrastructure.

12.4.1 Troubleshooting connection failures to a queue manager
We recommend using the following steps when diagnosing problems related to
an application connecting to a queue manager:

1. Ensure that the queue manager is running. For example:

– Using the dspmq command on Windows and UNIX, or the WebSphere MQ
Explorer.

– Using the WRKMQM command on iSeries.

2. View the information about the return code from the connection action.

 Chapter 12. Troubleshooting 333

3. For applications connecting as clients, ensure that a listener is running for the
queue manager. Ensure that the transport (usually TCP) and connection
name are correct for the queue manager. If a client channel definition table
(CCDT) is being used, ensure that the location specified for this file is correct.
For JMS applications, these are specified on the connection factory object in
the directory being accessed through JNDI, which must be accessible from
the application.

4. For applications connecting as clients, ensure that the channel name being
used matches a server connection channel on the queue manager, or that the
channel auto-definition (CHAD) has been enabled on the queue manager.
Channel names are case-sensitive and must match.

5. Ensure that the queue manager name specified by the application is correct,
including the case. For applications connecting as clients using a CCDT,
ensure that the client connection channel object, defined on the queue
manager that created the CCDT, has the correct queue manager name
(QMNAME) attribute.

6. View the WebSphere MQ system error logs.

7. View the queue manager error logs for the queue manager to which the
connection is failing.

8. Ensure that the user identifier under which the application is connecting has
authority to connect to the queue manager.

12.4.2 Troubleshooting failures sending messages
We recommend using the following steps when diagnosing problems related to a
failure to open a queue to put a message or when putting that message:

1. View the information about the return code from the open or put action.

2. Ensure that the application is specifying the correct object name, and
optionally the object queue manager name, when opening the queue. Object
names and object queue manager names are case-sensitive.

3. Ensure that the destination queue is known to the queue manager. For
example, a valid transmission queue and local definition of the remote queue
are defined.

Note: For applications connecting as clients, it is advisable to consider
specifying a message channel agent (MCA) user identifier (MCAUSER)
attribute on the server connection channel object. This causes any
application connecting using that channel name, regardless of their local
user identifier, to have authority on the queue manager based on the user
identifier specified in the server connection channel object.

334 WebSphere MQ V6 Fundamentals

4. If the queue is hosted by a queue manager in the same queue manager
cluster, ensure that the object has been shared in the cluster by the remote
queue manager. Also, ensure that both queue managers are able to establish
communication with a full repository for the cluster.

5. Ensure that the application is specifying the correct options when opening the
queue. Specifically, that the queue is being opened for output.

6. Review table Table 6-1 on page 148 to determine the object that is used for
authority checks with the combination of object name and object queue
manager name specified by the application. Ensure that the entity under
which the application is connected to the queue manager has put authority for
that queue. Displaying connection information for the queue manager while
the application is connected might help confirm the identity context of the
application, for example using the DISPLAY CONN(*) ALL command.

7. Ensure that the put message options are valid, including whether syncpoint is
specified to include the put in a unit of work.

8. If syncpoint is specified, ensure that the unit of work is being committed.

9. Ensure that all queues on route to the destination are put enabled.

10.Ensure that the maximum message length (MAXMSGL) attributes of the locally
hosted queue, and any transmission queue, are large enough for the
message. Also, ensure that the maximum message length (MAXMSGL) attribute
of the queue manager is large enough for the message.

11.View the queue manager error logs for the queue manager to which the
application is connected.

12.4.3 Troubleshooting failures getting messages
We recommend using the following steps when diagnosing problems related to a
failure to open a queue to get a message or when getting that message:

1. View the information about the return code from the open or get action.

2. Ensure that either a valid local queue object, or model queue object, has
been defined on the queue manager to which the application is connected.

3. Ensure that the application is specifying the correct object name when
opening the queue. Object names are case-sensitive.

4. Ensure that the application is specifying the correct options when opening the
queue. Specifically, ensure that the queue is being opened for input, input
exclusive, or browse.

 Chapter 12. Troubleshooting 335

5. Review Table 6-1 on page 148 to determine the object that is used for
authority checks with the combination of object name and object queue
manager name specified by the application. Ensure that the entity under
which the application is connected to the queue manager has get authority for
that queue. Displaying connection information for the queue manager while
the application is connected might help confirm the identity context of the
application, for example using the DISPLAY CONN(*) ALL command.

6. Ensure that the get message options are valid, including whether syncpoint is
specified to include the get in a unit of work.

7. If syncpoint is specified, ensure that the unit of work is being committed.

8. Ensure that the buffer provided by the application is large enough to contain
the message, unless the get message options specify that truncated
messages should be accepted.

9. Ensure that messages are available on the queue. This includes ensuring
that other applications have not already retrieved the message from the
queue and that the match options specified match the required messages.

10.Ensure that the required messages have been committed to the queue.
Possible reasons for uncommitted messages on a queue are an application
that did not commit a unit of work after putting a message under syncpoint, an
indoubt channel to the queue manager, or another application that got the
message under syncpoint, but not yet committed the unit of work.

11.View the queue manager error logs for the queue manager to which the
application is connected.

Note: If a get fails because the buffer is not large enough, the size of the
message is returned to the application. Then, the application can retry the
action with a larger buffer.

Note: Unless the version field in the get message options structure is set to
version 2 or 3 with no match options, the message identifier and correlation
identifier in the message descriptor passed to the get action should be
cleared before each get.

Note: You can check if there are uncommitted messages on a queue using
the DISPLAY QSTATUS MQSC command, or by right-clicking the queue in
the WebSphere MQ Explorer and selecting Status.

336 WebSphere MQ V6 Fundamentals

12.4.4 Troubleshooting common triggering problems
There are a number of triggering rules that must be satisfied in order for a trigger
message to be generated on an initiation queue when a message arrives on the
queue configured to be initiated. Refer to the “Starting WebSphere MQ
applications using triggers” section in WebSphere MQ Application Programming
Reference, SC34-6596, for a full list.

12.4.5 Finding a message put into the infrastructure
WebSphere MQ V6.0 queue managers provide a facility called trace-route. This
allows routes through infrastructures of queue managers to be tested with
information provided back to the trace-route application from WebSphere MQ
V6.0 queue managers through which the test messages pass.

Trace-route functionality builds on functionality called activity reporting provided
by WebSphere MQ V6.0 queue managers. This causes the components of the
queue manager, such as the message channel agents (MCAs), to generate
activity reports every time an action is performed on a message.

For information about trace-route and activity reporting, refer to the “Message
monitoring” section in Monitoring WebSphere MQ, SC34-6593.

General steps for locating messages
We recommend using the following general steps when attempting to locate a
message within infrastructures of interconnected queue managers:

1. Note that nonpersistent messages might be lost. Factors that affect this are
restarting of queue managers, queue managers without dead letter queues
defined, nonpersistent messages too large to be delivered, and network
failures for channels with a fast nonpersistent message speed.

2. Ensure that all queue managers have a dead letter queue configured.

3. Browse the dead letter queue on all queue managers.

4. Check for any status other than RUNNING or no status (called inactive) on all
channels over which the message might have been routed.

5. Browse the transmission queue on the queue manager to which the
application was connected when it generated the message, and then browse
subsequent transmission queues on the possible routes to the destination.
This includes the SYSTEM.CLUSTER.TRANSMIT.QUEUE for queue
managers within a queue manager cluster.

6. Ensure that each queue manager, transmission queue, channel, and the
destination queue has a large enough maximum message length specified,
especially if the message is larger than 4 MB.

 Chapter 12. Troubleshooting 337

7. Check for uncommitted messages on all transmission queues and the
destination queue. If found, ensure that no channels are marked indoubt. Also
ensure that no application has an uncommitted unit of work containing a get
of that message.

How messages are routed through infrastructures
The route a message can take through an infrastructure, or interconnected
infrastructures, can be complex. Queue name resolution is performed
independently at each queue manager to determine the next step on route to the
final destination.

For the first queue manager to which the application that sent the message is
connected, this is based on the object name and object queue manager name
specified when the application performed an open action in order to put
messages.

For subsequent queue managers on route to the destination, the queue name
resolution is performed based on queue name and queue manager name
resolved by the previous queue manager. These are passed across the channel
within the transmission queue header. The receiving message channel agent
(MCA) performs an open action, based on this information in the transmission
queue header, in the same way that an application would.

Queue name resolution, at each queue manager, is based on the queue objects
residing on that queue manager, such as local queues with a usage attribute of
transmission (transmission queues), queue alias objects, and queue remote
objects. Queue remote objects have three separate uses in queue name
resolution: to locally define a remote queue, as a queue manager alias, and as a
reply-to queue alias.

The membership of a queue manager cluster also affects the queue name
resolution of all queue managers that are members of that cluster. This is due to
the queue managers that are members of that cluster and the queue objects they
share in the cluster. Workload balancing can also occur when multiple queue
objects of the same name are shared within the queue manager cluster.

12.5 Gathering documentation for service
If the particular behavior being experienced does not match the information
gained by inspecting the WebSphere MQ documentation, the AMQXXXX
messages returned during administration tasks, reason codes returned to an
application, and the queue manager or WebSphere MQ system error logs, you
might need to contact IBM Service.

338 WebSphere MQ V6 Fundamentals

This might be due to problems experienced while building a WebSphere MQ
infrastructure, developing an application to access that infrastructure, or
diagnosing unexpected behavior of an application in a quality assurance (QA) or
production environment.

In any of these cases, providing a comprehensive set of documentation
describing the issue being experienced is key to resolution of that issue by an
IBM Service representative.

12.5.1 Providing a description of the observed issue
Writing a technical description, summarizing an issue observed, reduces the
chance of misinterpretation of information. After contacting IBM Service, you
might communicate with a number of different IBM Service representatives.

Your description needs to fully describe the external symptoms of the problem
being observed. Include technical details of the symptoms, and if an individual
action can be identified that is resulting in these symptoms, describe that action.

A clear technical summary of an issue can be made available to all IBM Service
representatives, as well as representatives from your business, through the
Problem Management Record (PMR) raised when contacting IBM Service.
Raising this PMR electronically enables you to provide this description directly
into the PMR, rather than through verbal communication with IBM
representatives.

Visit the following Web page for information about the electronic submission of
PMRs:

http://www.ibm.com/software/support/probsub.html

After submitting the record, the PMR becomes the primary source of information
for the problem. IBM Service representatives update this PMR with the results of
all investigations performed.

12.5.2 Environment details
Describe the environment on which the problem occurs in detail. Always include
the following information:

� The hardware platform of all machines involved
� The operating system of all machines, including the maintenance level
� The WebSphere MQ product version number
� Details of all maintenance applied to the WebSphere MQ installation

 Chapter 12. Troubleshooting 339

http://www.ibm.com/software/support/probsub.html

12.5.3 Describing the use of WebSphere MQ
A context for the issue being observed is extremely useful. Describe how the
product is being used in the circumstances in which the problem is observed.
Provide as much detail as you are able. The more information is provided, the
more efficient the investigation can be. Examples of such details include:

� How many machines, queue managers, and applications are involved?

� Are applications involved connecting directly to queue managers using a
bindings connection or through a client connection? If through a client
connection, is the hardware platform and operating system on which
applications are running the same as the platform on which the queue
manager is running?

� In which programming language are the applications developed?

� Are the applications using the MQI API directly using an API conforming to
the WebSphere MQ object model, or using a standardized API such as JMS?

� Are the applications hosted directly by the operating system, or running within
an application server, or other environment?

� What are the details of the objective of the application action, or
administrative task, attempted when the issue is observed? Include technical
details wherever possible, such as MQI actions, MQSC commands, or
WebSphere MQ control commands.

12.5.4 Collecting failure documentation to send to IBM Service
The Technote “MustGather: Read first for all WebSphere MQ v5.3, v5.3.1, and
v6.0 products” describes specific documentation to gather relevant to the issue
being experienced. Refer to the following Web page for this Technote:

http://www.ibm.com/support/docview.wss?rs=171&uid=swg21177923

12.5.5 Re-creating the issue
The occurrence of a problem might be related to attempting to perform a specific
action and thus can hence be re-created by repeating the attempt to perform that
action.

If it is possible to re-create the issue being experienced by creating a simplified
WebSphere MQ infrastructure including one or more queue managers, providing
this information to IBM Service is useful.

However, this is not always the case. If a system is operational in a production
environment and unexpected behavior occurs, re-creating the issue, or
determining the original cause of that issue, can be challenging.

340 WebSphere MQ V6 Fundamentals

http://www.ibm.com/support/docview.wss?rs=171&uid=swg21177923

These circumstances can be the most important, because the operation of the
system might be affected. Attempting to reproduce the problem in the production
environment is not always possible.

A QA environment, which closely matches the production environment, can be
extremely useful in these circumstances. You can simulate similar conditions in
the QA environment and attempt to re-create the problem.

The documentation produced in the FFSTs and error logs by WebSphere MQ
provides a high level of detail. This data from the original time of a failure
significantly improves the ability of IBM Service representatives to identify and
resolve an issue experienced in a production environment where a re-creation
might not be possible.

12.5.6 WebSphere MQ trace
WebSphere MQ infrastructures, and the use of those infrastructures, can be
complex and specific to the individual requirements of a business. Re-creating an
issue on IBM machines is not always efficient, due to the individual nature of a
business’s use of the WebSphere MQ product.

Trace is a powerful feature of the WebSphere MQ, in which all internal operations
of WebSphere MQ are logged to files on the file system. These files can then be
sent to IBM Service for analysis.

This enables IBM Service to thoroughly investigate an issue, without requiring
access to machines or making any modifications to the environment.

Trace can be started and stopped while queue managers are running on a
machine.

If a problem can be re-created in a QA environment, start the trace before
re-creating the problem, then re-create the problem, and then stop the trace.
Send all trace information produced, along with any FFSTs, all queue manager
error logs, and all WebSphere MQ system error logs for the affected machines
and queue managers to IBM support for analysis.

Tracing every operation performed by WebSphere MQ can affect the
performance of a WebSphere MQ infrastructure. Therefore, it is preferable to
enable trace and re-create the problem in a QA environment rather than a
production environment. If such a QA environment is not available, or the
problem can only be reproduced in the production environment, enabling trace in
the production environment might be required to resolve an issue.

 Chapter 12. Troubleshooting 341

If the specific action causing unexplained behavior cannot be identified, tracing
the operation of WebSphere MQ during the time the external symptoms are
observed aids the IBM Service investigation into the issue.

Gathering trace on Windows
On the Windows platform, start trace for all WebSphere MQ operations occurring
on a system by issuing the following command:

strmqtrc -t detail -t all

Stop trace using the following command:

endmqtrc

In WebSphere MQ V6.0, the trace files are in C:\Program Files\IBM\WebSphere
MQ\Trace.

In WebSphere MQ V5.3, the trace files are in C:\Program Files\IBM\WebSphere
MQ\Errors.

Refer to the “Problem determination” section in WebSphere MQ Application
Programming Guide, SC34-6595, for information about configuring options to
limit the size of the trace files produced.

Gathering trace on UNIX
On UNIX platforms, start trace for all WebSphere MQ operations occurring on a
system by issuing the following command:

strmqtrc -e -t detail -t all

You can start trace for one queue manager using the following command:

strmqtrc -m Queue_Manager_Name -t detail -t all

Trace files are created in the /var/mqm/trace directory.

You need to format these files to make them human readable. To do this, issue
the following command from the directory containing the .TRC files:

dspmqtrc *.TRC

Refer to the “Problem determination” section in WebSphere MQ Application
Programming Guide, SC34-6595, for information about configuring options to
limit the size of the trace files produced.

Note: If a problem occurs while starting a queue manager, or involves an
application connecting to a queue manager, use the -e option rather than
specifying an individual queue manager.

342 WebSphere MQ V6 Fundamentals

Gathering trace with WebSphere MQ for AIX 5L V5.3
WebSphere MQ for AIX 5L V5.3 uses the AIX 5L operating system trace
functionality. This functionality remains available on WebSphere MQ for AIX 5L
V6.0, but the WebSphere MQ trace facilities described earlier are preferred.

Configure WebSphere MQ trace as follows:

MQS_TRACE_OPTIONS=4194303
export MQS_TRACE_OPTIONS

Start trace with a maximum 50 MB size non-wrapping trace file:

trace -a -j30D,30E -o wmq_trace.trc -s -L 52428800

Stop trace as follows:

trcstop

Format the single trace file produced as follows:

trcrpt -t /usr/mqm/lib/amqtrc.fmt wmq_trace.unf > wmq_trace.fmt

Gathering trace for iSeries
On the iSeries platform, trace can be started for all WebSphere MQ operations
occurring on a system, by issuing the following command:

TRCMQM TRCEARLY(*YES) SET(*ON) TRCLEVEL(*DETAIL) MAXSTG(8)

Start trace for one queue manager using the following command:

TRCMQM SET(*ON) TRCLEVEL(*DETAIL) MAXSTG(8) MQMNAME(QMGR_NAME)

Stop trace using the following command:

TRCMQM SET(*END)

Trace files are stored in the /QIBM/UserData/mqm/trace/ directory on the
integrated file system (IFS).

These files need to be formatted in order to be human readable. To do this, issue
the following command from QShell after changing to the directory containing
the .TRC files:

dspmqtrc *.TRC

Note: See the man page for the AIX 5L trace command for options that you
can specify on the trace command.

 Chapter 12. Troubleshooting 343

Refer to the “Analyzing problems” section in WebSphere MQ for iSeries V6.0
System Administration Guide, SC34-6586, for information about configuring
options to limit the size of the trace files produced.

z/OS
For information about WebSphere MQ trace facilities on the z/OS platform, refer
to WebSphere MQ for z/OS V6.0 Problem Determination Guide, GC34-6600.

344 WebSphere MQ V6 Fundamentals

Appendix A. Functionality new to
WebSphere MQ V6.0

This appendix provides a summary of the new functionality in Version 6.0 of IBM
WebSphere MQ. This is in comparison to the previous Version 5.3 release of the
WebSphere MQ product.

A

© Copyright IBM Corp. 2005. All rights reserved. 345

The WebSphere MQ Explorer
The WebSphere MQ Explorer is a graphical user interface (GUI) for monitoring
and administrating a WebSphere MQ infrastructure from a desktop workstation.

The WebSphere MQ Explorer is supplied with WebSphere MQ V6.0 installations
for desktop platforms, such as Microsoft Windows and Linux (x86). However, it
can be used to administer queue managers hosted on machines of all platforms,
including where the WebSphere MQ installation is a version previous to
WebSphere MQ V6.0.

WebSphere MQ for z/OS queue managers can be administered using the
WebSphere MQ Explorer, including the administration of queue sharing groups.

The WebSphere MQ Explorer can connect to queue managers for remote
administration using SSL secured client connections.

For more information about the WebSphere MQ Explorer and the Eclipse
technology on which it is based, see 5.2.1, “WebSphere MQ Explorer” on
page 85.

PCF commands on WebSphere MQ for z/OS V6.0
The command server of WebSphere MQ for z/OS V6.0 queue managers can
process programmable command format (PCF) commands, as well as the
MQSC format commands previously supported by the WebSphere MQ for z/OS
command server.

In addition to enabling remote administration using the WebSphere MQ Explorer,
this functionality allows PCF commands to be used as a consistent,
programmable administration interface into all queue managers within a
WebSphere MQ infrastructure.

64-bit queue managers
The most significant functional difference between WebSphere MQ V5.3 and
WebSphere MQ V6.0 on AIX 5L, Solaris™, and HP-UX is that queue managers
on these platforms are now 64 bit.

Note: Only WebSphere MQ for z/OS V6.0 queue managers can be remotely
administered from the WebSphere MQ Explorer. Queue managers of previous
versions of WebSphere MQ for z/OS cannot be administered in this way.

346 WebSphere MQ V6 Fundamentals

This allows both 32-bit and 64-bit applications to connect to these queue
managers using bindings connections. The 64-bit applications can then also
connect to other 64-bit resources hosted by the machine, such as 64-bit
database products.

The 64-bit queue managers also benefit from access to more memory than
32-bit queue managers on a machine with a large amount of memory resources.
On such machines, a 64-bit queue manager can scale to accommodate a larger
capacity than a 32-bit queue manager.

At the time of writing of this book, the WebSphere MQ V6.0 product does not
provide 64-bit queue managers across all platforms. See the following Web page
for details about the 64-bit platforms supported by WebSphere MQ V6.0:

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

Internet Protocol Version 6 (IPv6)
In WebSphere MQ Version 6.0, queue managers can communicate using the
IPv6 protocol, in addition to the existing IPv4 protocol.

For more information about the IPv6 protocol, and for information regarding the
migration of existing WebSphere MQ infrastructures to IPv6, refer to WebSphere
MQ Migration Information, SC34-6604.

Changes to SSL on Windows
WebSphere MQ for Windows V5.3 uses functionality provided by the Windows
platform in order to provide Secure Sockets Layer (SSL) functionality. On other
platforms, this functionality was provided using the IBM Global Security Toolkit
(GSKit) component.

WebSphere MQ for Windows V6.0 uses GSKit to provide SSL functionality, inline
with other platforms. This provides additional consistency across platforms and
allows WebSphere MQ for Windows to benefit from additional functionality
provided by GSKit.

There are migration considerations for customers using SSL and migrating
queue managers or WebSphere MQ client applications from WebSphere MQ for
Windows V5.3 to WebSphere MQ for Windows V6.0.

Refer to WebSphere MQ Migration Information, SC34-6604 for more information
about the migration of WebSphere MQ for Windows V5.3 SSL certificate
repositories to WebSphere MQ for Windows V6.0.

 Appendix A. Functionality new to WebSphere MQ V6.0 347

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

SSL and TLS improvements and FIPS certification
WebSphere MQ V6.0 can secure communication over channels using both the
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols. TLS
is used for all channels where the SSL Cipher Specification (SSLCIPH) attribute of
a channel begins with TLS_.

WebSphere V6.0 allows the static key, used to encrypt information that flows
across a channel after an SSL handshake has been performed, to be
renegotiated at regular intervals without stopping and restarting the channel.
This behavior is controlled using the SSL reset key count (SSLRKEYC) attribute on
the queue manager object.

The ability to refresh the SSL environment of a queue manager is also
introduced. This is performed using the REFRESH SECURITY TYPE(SSL)
MQSC command. Issuing this command causes all running SSL channels to be
restarted and all cached SSL information to be discarded. Issue this command
after changing any certificates in the key repository for a queue manager or to
cause a queue manager to discard all cached certificate revocation lists (CRLs)
previously retrieved from a Lightweight Directory Access Protocol (LDAP) server.

On the Windows and UNIX platforms, the cryptography modules used by
WebSphere MQ to provide SSL and TLS functionality have passed the Federal
Information Processing Standard (FIPS) Cryptomodule Validation Program of the
U.S. National Institute of Standards and Technology, at level 140-2.

This FIPS compliance only applies to the cryptography modules used for certain
CipherSpecs. A queue manager can be configured to only allow channels to start
that use a CipherSpec that has been certified as FIPS compliant using the FIPS
required (SSLFIPS) attribute on the queue manager object.

Refer to WebSphere MQ Security, SC34-6588, for more information about SSL,
TLS, FIPS, CipherSpecs, and the new MQSC commands and configuration
attributes.

Built-in publish/subscribe broker
The WebSphere MQ publish/subscribe broker was previously supplied
separately to the WebSphere MQ product in SupportPac MA0C.

Note: The CipherSpecs available vary by platform.

348 WebSphere MQ V6 Fundamentals

In WebSphere MQ V6.0, the publish/subscribe broker is supplied with the
product and can be automatically started and stopped with a queue manager.
See “Custom services started and stopped with a queue manager” on page 351.

The number of platforms supported by the publish/subscribe broker has been
increased to include all platforms except WebSphere MQ for z/OS.

WebSphere MQ as a transport for Web services
WebSphere MQ V6.0 is supplied with the functionality required to allow a
WebSphere MQ infrastructure to be used as a transport for Web services.

Queue sharing group enhancements on z/OS
You can use queue sharing groups in WebSphere MQ for z/OS, as described in
5.3.3, “Queue sharing groups on WebSphere MQ for z/OS” on page 100, c to
increase both service and message availability.

WebSphere MQ for z/OS V6.0 provides the following enhanced queue sharing
group functionality:

� Messages larger than 63 KB are supported:
Previously, the largest message that could be placed on a shared queue
within a queue sharing group was 63 KB. WebSphere MQ for z/OS V6.0
removes this limitation, and shared queues can hold messages up to the
full100 MB supported by other WebSphere MQ queues.

� Toleration of failure of the administration coupling facility structure:
If queue sharing groups are used, and the administration coupling facility
structure fails, WebSphere MQ for z/OS V6.0 queue managers within that
queue sharing group do not terminate. Instead, work related to the queue
sharing group is suspended and the administration structure is automatically
reallocated and rebuilt. Work then continues.

Note: On many platforms, the publish/subscribe broker was integrated into the
product in WebSphere MQ V5.3 Fix Pack 8 (CSD8).

Note: The message body of messages larger than 63 KB is held within
DB2 rather than within the coupling facility.

 Appendix A. Functionality new to WebSphere MQ V6.0 349

Queue manager cluster workload balancing
The workload balancing algorithm, used by queue managers to route and
workload balance messages to the queues shared within a queue manager
cluster, has been significantly enhanced in WebSphere MQ V6.0.

This allows customization of the algorithm to account for the different capacities
provided by the queue managers within a queue manager cluster, to force
messages to travel along a certain route between clusters, to mark queue
managers as primary or secondary locations for messages, and to include
disable prioritization of local instances of a queue.

To facilitate these enhancements, WebSphere MQ V6.0 queue managers have a
number of extra attributes that can be specified on the cluster receiver definition
a queue manager publishes within a cluster, the queues shared within a cluster,
and the queue manager object.

Refer to 8.4, “Workload balancing” on page 209 for details of the facilities
provided by the WebSphere MQ V6.0 workload balancing algorithm.

Administering connections to a queue manager
WebSphere MQ V5.3 provided the ability to identify applications that had a
particular queue open using the DISPLAY QSTATUS MQSC command.

WebSphere MQ V6.0 provides new functionality to identify all applications
connected to a queue manager, see details of how that application has
connected to the queue manager, and to see a complete list of the queues that
are open for each one of those applications. It is also possible for an
administrator to disconnect individual applications from the queue manager.

This functionality is available from the Application Connections window in the
WebSphere MQ Explorer. It is also available using the DISPLAY CONN and
STOP CONN MQSC commands.

Consistent method for starting and stopping listeners
In previous versions of WebSphere MQ, on all platforms except Windows and
z/OS, it was necessary to start and stop listeners using WebSphere MQ control
commands or operating system facilities.

350 WebSphere MQ V6 Fundamentals

In WebSphere MQ for Windows V5.3, listeners can be defined, started, and
stopped graphically using the WebSphere MQ Services snap-in. They could also
be started automatically with a queue manager.

In WebSphere MQ V6.0, on all platforms except z/OS where the behavior is
unchanged, listeners can be administered as WebSphere MQ objects in the
same way as any other object defined on a queue manager.

This provides the same functionality as was previously available only on
Windows for all of these platforms. Because listeners are WebSphere MQ
objects, the administration is consistent across all platforms and can be graphical
using the WebSphere MQ Explorer or be performed using the
DEFINE/START/STOP/DISPLAY LISTENER and DISPLAY LSSTATUS MQSC
commands.

On Windows, listeners defined using the WebSphere MQ Services snap-in are
automatically converted to WebSphere MQ objects during migration of the queue
manager.

Custom services started and stopped with a queue
manager

In addition to allowing listeners to be automatically started and stopped with a
queue manager, with WebSphere MQ V6.0, applications specified by an
administrator can be automatically started and stopped with a queue manager on
all platforms except WebSphere MQ for z/OS.

This is performed by defining Service WebSphere MQ objects. These specify the
details of how the application is started and stopped and at which points the
queue manager should start and stop the application. It is also possible to use
WebSphere MQ to check whether an application started using a Service object is
still reported as running by the operating system.

These objects can be administered graphically using the WebSphere MQ
Explorer, or using the DEFINE/START/STOP/DISPLAY SERVICE and DISPLAY
SVSTATUS MQSC commands.

Each WebSphere MQ V6.0 queue manager has a Service object automatically
defined for the WebSphere MQ publish/subscribe broker. However, this is not
configured by default to start with the queue manager. To cause the
publish/subscribe broker to be automatically started with a queue manager,
change the service control (CONTROL) attribute of the SYSTEM.BROKER Service
object to queue manager (QMGR).

 Appendix A. Functionality new to WebSphere MQ V6.0 351

Filtering of information about a queue manager
Previous versions of WebSphere MQ allowed wildcards to be used at the end of
an certain attributes on DISPLAY MQSC commands and PCF display commands
to limit the number of objects displayed.

WebSphere MQ V6.0 significantly extends this functionality to allow a more
sophisticated filter to be applied in combination with the existing wildcards. This
is based on an attribute name, an operator, and a value. A number of operators
are available, such as equal to, less than, and greater than.

For example, you can use a filter to display queues containing more than a
specified number of messages, or to display channel status records that have a
particular overall status or an indoubt status.

This filtering is available from the WebSphere MQ Explorer using the Filter
drop-down list shown above the majority of tables showing objects. The
WebSphere MQ Explorer allows filters to be saved for future reuse. The MQSC
DISPLAY commands can also use filtering by adding the FILTER keyword to the
command, and PCF display commands can also use this filtering.

Improved real-time monitoring information
WebSphere MQ V6.0 significantly improves the real-time monitoring information
available regarding the usage of a WebSphere MQ infrastructure and the
performance of delivery and processing of messages that flow through that
infrastructure.

Queue status records can provide information about the average time a message
spends on a queue before being processed, as well the maximum age of any
message on a queue. Monitoring this information for significant changes can
allow early identification of problems processing messages and might help when
provisioning resources for applications accessing a WebSphere MQ
infrastructure.

Channel status records can provide information about the average number of
messages within each batch flowing across that channel to aid in the tuning of
the batch size and help you gather information about the usage of that channel.
More detailed status information about a channel is also available, as well as
some information about the performance of the network over which the channel
is operating. The information in queue status records for transmission queues
can also be used to infer information about the flow of information across
channels.

352 WebSphere MQ V6 Fundamentals

Accounting information
WebSphere MQ V6.0 can generate report messages containing information
about the use of a queue manager by each application that connects to that
queue manager. These event messages are generated each time an application
disconnects from a queue manager, or at regular intervals for longer running
applications.

When enabled, these report messages are written in a PCF format to a particular
queue. A sample application is provided that processes these messages and
provides a textual summary. The output from this sample can be used directly, or
the sample code can be used as a basis for a custom application processing the
report messages.

Refer to Monitoring WebSphere MQ, SC34-6593, for more information about
gathering accounting information.

Statistics information
Similar to accounting messages, WebSphere MQ V6.0 can generate report
messages containing information about the usage of particular resources of a
queue manager.

Granularity is provided to allow statistics messages to be enabled and disabled
on a per-resource basis, or for all resources of a queue manager. When enabled,
they are generated at regular intervals, summarizing usage within that interval.

Statistics messages fall into three categories:

� MQI statistics messages:
These contain information about all MQI commands of each type executed by
applications connected to the queue manager. All actions that involve sending
or receiving messages in WebSphere MQ resolve to MQI commands,
regardless of the actual application programming interface (API) used to
interact with the infrastructure.

� Queue statistics messages:
These contain information about the usage of a particular queue, for example,
the number of messages put or got to a particular queue within the preceding
interval.

� Channel statistics messages:
These contain information about the usage of a channel within a particular
interval, for example, the number of messages that flowed across that
channel within the preceding interval.

 Appendix A. Functionality new to WebSphere MQ V6.0 353

Refer to Monitoring WebSphere MQ, SC34-6593, for more information about
gathering statistics information.

Trace-route for WebSphere MQ infrastructures
WebSphere MQ V6.0 queue managers are able to generate activity messages
every time an action is performed on a specially marked trace-route message
that passes through that queue manager. Trace-route messages can be
discarded automatically by a WebSphere MQ V6.0 queue manager when they
reach their destination queue.

Examples of activities for which activity messages are generated are when a
message is retrieved from a queue, sent across a channel, put to a destination
queue, or placed on a dead letter queue.

This functionality provides the basis for tracing the full route of a message
through a WebSphere MQ infrastructure by sending a trace-route message to a
destination and collecting activity messages from all queue managers on route to
that destination.

WebSphere MQ V6.0 provides the display route application to generate
trace-route messages, place them into a WebSphere MQ infrastructure, collect
activity reports, and summarize the contents of these activity reports in a
human-readable form.

Refer to Monitoring WebSphere MQ, SC34-6593, for more information about
activity reports, trace-route messages, and the display route application.

Logging enhancements on distributed platforms
On platforms other than z/OS, WebSphere MQ V6.0 introduces some
enhancements to the logging performed by a queue manager.

354 WebSphere MQ V6 Fundamentals

An overview of this functionality is as follows:

� Increased maximum active log size:
The maximum size of the active portion of the log has been significantly
increased. This increase affects both the maximum size of log extents and the
maximum number of primary and secondary log extents within the active
portion. Therefore, the size of the active log of migrated queue managers,
which previously had the maximum number of log extents configured, can be
increased without re-creating the queue manager.

� Facilities to aid the administration of linear logs:
For the administration of linear logs, previous versions wrote details of the
oldest log extents required for queue manager restart and media recover of
all queue manager objects to the queue manager error logs. WebSphere MQ
V6.0 also allows information about required log extents to be queried
dynamically and more granularly. This information is available graphically in
the WebSphere MQ Explorer, or using the DISPLAY QMSTATUS and
DISPLAY QSTATUS MQSC commands.

� Command to force advance to a new log extent:
WebSphere MQ V6.0 allows the current log extent in use by a queue
manager to be moved forward. This can be used to back up the queue
manager logs, which is more consistent with the current state of a queue
manager. This is performed with the RESET QMGR TYPE(ADVANCELOG)
MQSC command.

� Ability to replay log records on a physically remote backup queue manager:
WebSphere MQ V6.0 provides facilities to allow a backup queue manager to
be maintained at a physically remote location by replaying backups of log
extents transferred from a primary location. This can provide a solution for
disaster recovery. This mechanism cannot be used to make the backup
queue manager an exact copy of the primary, because the synchronous
replication of data over long distances has significant performance
implications. However, it can allow a queue manager, with reasonably
up-to-date information, to become available quickly after a disastrous outage.

Dynamic configuration of queue managers on z/OS
WebSphere MQ for z/OS V6.0 introduces functionality to allow more queue
manager configuration to be performed dynamically while a queue manager is
active. An overview of this functionality is as follows:

� Many channel initiator configuration parameters can be modified while a
queue manager is running using the ALTER QMGR MQSC command,
instead of being set within CSQXPARM.

 Appendix A. Functionality new to WebSphere MQ V6.0 355

� Page sets and buffer pools can be dynamically added and removed, and
buffers can be dynamically added and removed from buffer pools.

� There is an automatic preemptive expansion of page sets.

� Page sets can grow to 64 GB, allowing queues to contain larger quantities of
data.

� Log data sets can be dynamically added, for example, to temporarily add log
data sets if the current log fills and archiving is temporarily unavailable.

Log shunt on WebSphere MQ for z/OS
Log shunting causes the log records for some units of work to be written further
down the log. This reduces the amount of log data that must be read at the
queue manager restart, or backout, for long-running or long-term indoubt units of
work.

For more information, refer to the “Managing the logs” section in WebSphere MQ
for z/OS V6.0 System Administration Guide, SC34-6585.

356 WebSphere MQ V6 Fundamentals

Appendix B. Quick reference

This appendix provides a quick reference of the WebSphere MQ commands,
object types, and data structures described in this book.

We discuss the following topics:

� WebSphere MQ control commands

� WebSphere MQ for iSeries CL commands

� WebSphere MQ message descriptor (MQMD) fields

� Message queue interface (MQI) verbs

� The WebSphere MQ Script (MQSC) command interface

� The queue manager object

� Listener objects

� Service objects

� Namelist objects

� Queue objects

� Cluster queue records

� Cluster queue manager records

� Channels and channel objects

� Channel status records

B

© Copyright IBM Corp. 2005. All rights reserved. 357

WebSphere MQ control commands
Use the following WebSphere MQ control commands on Microsoft Windows and
UNIX to perform the administration of queue managers:

� dspmq
Display a list of queue managers that exist on the machine and their status.

� crtmqm
Create a queue manager.

� amqmdain
Start or end a queue manager on Windows. Perform WebSphere MQ
configuration on Windows.

� strmqm
Start a queue manager on UNIX.

� endmqm
End (stop) a queue manager.

� runmqsc
Interactive console for MQSC commands.

� runmqsc <input.txt
Execute MQSC commands contained in a script.

� strmqcsv
Start the command server for a queue manager.

� setmqaut
Configure Object Authority Manager (OAM) authorities for the objects of
queue manager.

� dspmqaut
Display OAM authorities for the objects of a queue manager.

� dmpmqaut
Display detailed information regarding the OAM authority records held by a
queue manager.

� runmqlsr
WebSphere MQ V5.3 command to start a listener. For WebSphere MQ V6.0,
use listener objects.

� mqrc
Display details and numeric values for WebSphere MQ reason codes and
AMQXXXX message numbers.

� dspmqver
Report information about the current maintenance level of the WebSphere
MQ installation. The version reported is in the form
Version.Release.Modification.Fixpack, and changes each time a
maintenance delivery is applied to the installation.

358 WebSphere MQ V6 Fundamentals

WebSphere MQ for iSeries CL commands
Use the following WebSphere MQ CL commands on iSeries to perform the
administration of queue managers:

� WRKMQM
Access all WebSphere MQ CL command panels.

� CRTMQM
Create a queue manager.

� STRMQM
Start a queue manager.

� ENDMQM
End (stop) a queue manager.

� RUNMQSC
Interactive console for MQSC commands.

� STRMQMMQSC
Execute MQSC commands contained in a script.

� STRMQMCSVR
Start the command server for a queue manager.

� STRMQMLSR
WebSphere MQ V5.3 command to start a listener. For WebSphere MQ V6.0,
use listener objects.

� CALL QMQM/DSPMQVER
Report information about the current maintenance level of the WebSphere
MQ installation. The version reported is in the form
Version.Release.Modification.Fixpack, and changes each time a
maintenance delivery is applied to the installation.

WebSphere MQ message descriptor (MQMD) fields
The WebSphere MQ message descriptor (MQMD) associated with each
message that passes through a WebSphere MQ infrastructure contains the
following fields:

� Message Type (MsgType)
The type of the message: datagram, request, reply, or report.

� Report (Report)
The circumstances in which reports are generated when delivering or
processing this message.

 Appendix B. Quick reference 359

� Feedback (Feedback)
The reason a report message was generated.

� Reply-to queue (ReplyToQ)
The queue name to which report or reply messages created in response to
this message are sent.

� Reply-to queue manager (ReplyToQMgr)
The queue manager that hosts the reply-to queue. Usually, automatically
filled by WebSphere MQ.

� Message identifier (MsgID)
A unique identifier for the message. Usually, automatically created by
WebSphere MQ.

� Correlation identifier (CorrelID)
An identifier to correlate report and reply messages with the original request
or datagram message.

� Persistence (Persistence)
Whether the message is persistent (business critical) or nonpersistent (query
data).

� Coded Character Set Identifier (CodedCharSetId)
The way character data is stored as binary data in the message.

� Encoding (Encoding)
The way numeric data is stored as binary data in the message. Often
messages contain only character data.

� Put time (PutTime)
The time the message arrived on the queue on which it is currently stored.

� Put date (PutDate)
The date the message arrived on the queue on which it is currently stored.

� Expiry (Expiry)
The amount of time before the message can be discarded by the WebSphere
MQ infrastructure.

Message queue interface (MQI) verbs
The following verbs make up the message queue interface (MQI), which is the
core WebSphere MQ application programming interface (API):

� MQCONN
Connect to a queue manager.

� MQCONNX
Connect to a queue manager, specifying additional options.

360 WebSphere MQ V6 Fundamentals

� MQDISC
Disconnect from a queue manager previously connected using MQCONN or
MQCONNX.

� MQOPEN
Open a queue, specifying which actions are going to be performed on that
queue. Some other WebSphere MQ object types can be opened to inquire or
set attributes.

� MQCLOSE
Close a queue, or other WebSphere MQ object, previously opened with
MQOPEN.

� MQPUT
Put a message to a queue previously opened for output with MQOPEN.

� MQPUT1
Wraps MQOPEN, MQPUT, and MQCLOSE into a single verb.

� MQGET
Get, or browse, a message from a queue previously opened for input, or
browse, with MQOPEN.

� MQCMIT
Commit the current unit of work.

� MQBACK
Back out (roll back) the current unit of work.

� MQBEGIN
Begin a global unit of work coordinated by WebSphere MQ, including external
participants such as databases.

� MQINQ
Inquire attributes from a WebSphere MQ object previously opened for inquire
with MQOPEN.

� MQSET
Set attributes of a WebSphere MQ object previously opened for set with
MQOPEN.

The WebSphere MQ Script (MQSC) command interface
WebSphere MQ Script (MQSC) is an administration interface that can be used to
create and administer the WebSphere MQ objects within an individual queue
manager. MQSC commands can be run interactively, or placed within a script.

The general format of an MQSC command is:

COMMAND OBJTYPE('object.name') ATTR1(VALUE) ATTR2('value') ATTR3

 Appendix B. Quick reference 361

Lowercase names and values, or values that contain characters that are not
alphanumeric, must be contained in single quotation marks.

For commands that display the attributes of existing WebSphere MQ objects, a
generic name can be used. A generic name can end in an asterisk (*) character
to match any objects that begin with the specified string.

We provide MQSC commands and commonly used attributes for a range of
WebSphere MQ object types in this quick reference. Command keywords and
object types often have short versions, which are also listed for each command.

Example MQSC commands
The following example MQSC commands demonstrate the MQSC syntax and
some features of the MQSC interface:

� Define a local queue with a lowercase name:

DEFINE QLOCAL('payroll.queue') DESCR('Payroll Queue')

� Replace an existing local queue using the REPLACE keyword:

DEFINE QLOCAL('payroll.queue') DESCR('Payroll Queue NEW') REPLACE

� Create a namelist with an uppercase name and multiple values in the NAMES
attribute, including a lowercase value:

DEFINE NAMELIST(CLUSTER.NAMELIST) NAMES(CLUSTER1.UCASE,'cluster2.lcase')

� Display all attributes of local queues that have names starting with payroll.
followed by any other string:

DISPLAY QLOCAL('payroll.*') ALL

� Display only the current depth (CURDEPTH) and description (DESCR) attributes of
all local queues defined on a queue manager:

DISPLAY QLOCAL(*) CURDEPTH DESCR

� Display the current depth (CURDEPTH) and description (DESCR) attributes of
queues with names starting with payroll. and a depth of more than 10
messages (new functionality in WebSphere MQ V6.0):

DISPLAY QLOCAL('payroll.*') CURDEPTH DESCR WHERE(CURDEPTH GT 10)

� An MQSC command that defines a sender channel and, for readability in a
script, spans multiple lines and is preceded by a comment:

* Define a channel to queue manager QM_REMOTE
DEFINE CHANNEL(TO.QM_REMOTE) +
CHLTYPE(SDR) +
CONNAME('remotehost.domain.com(1414)') +
XMITQ(QM_REMOTE) +
DESCR('Channel to qmgr QM_REMOTE')

362 WebSphere MQ V6 Fundamentals

The queue manager object
Each queue manager has a single queue manager object. By changing the
attributes of this object, you can preform configuration of the queue manager.

You can change many of these attributes while the queue manager is running.

MQSC command for the queue manager object
The MQSC command for the queue manager is:

� ALTER QMGR or ALT QMGR
Alter the attributes of the queue manager object.

Queue manager object attributes
The queue manager object attributes are:

� Dead letter queue (DEADQ)
The name of a local queue defined on the queue manager, which is
designated to receive messages that cannot be delivered.

� Queue manager identifier (QMID)
Read-only attribute. Unique identifier for the queue manager to distinguish
this queue manager instance from other queue managers that might have
previously existed in a queue manager cluster with the same name.

� Channel auto-definition (CHAD)
Whether channel auto-definition is enabled for the queue manager.

� Trigger interval (TRIGINT)
The interval after which to generate an additional trigger events for queues
with trigger type FIRST.

� Maximum message length (MAXMSGL)
The maximum length of any message that can be stored on any queue
hosted by this queue manager.

� Start command server (SCMDSERV)
Whether to automatically start the command server with the queue manager.

� Start channel initiator (SCHINIT)
Whether to automatically start the channel initiator with the queue manager
on Windows, UNIX, and iSeries.

� SSL key repository (SSLKEYR)
The location of the SSL key repository for the queue manager.

� Repository (REPOS)The name of a single cluster for which this queue manager
should hold a full repository.

 Appendix B. Quick reference 363

� Repository namelist (REPOSNL)
The name of a namelist object, contains the names of multiple clusters for
which this queue manager should hold a full repository.

� Cluster workload use queue (CLWLUSEQ)
Whether to by default perform workload balancing across remote cluster
instances of a queue when a local queue with the same name exists on the
queue manager.

� Cluster workload recently used channel (CWMRUC)
The maximum number of instances of a queue in a cluster across which to
workload balance.

Listener objects
Listeners give a queue manager an identity within a network. Listener objects
define the attributes of a listener that can be started for a queue manager.

MQSC commands for listener objects
The MQSC commands for listener objects are:

� DEFINE LISTENER(NAME) TRPTYPE(TCP) or DEF LSTR(NAME)
TRPTYPE(TCP)
Create a new listener object.

� ALTER LISTENER(NAME) TRPTYPE(TCP) or ALT LSTR(NAME)
TRPTYPE(TCP)
Alter an existing listener object.

� DELETE LISTENER(NAME) or DELETE LSTR(NAME)
Delete an existing listener object.

� DISPLAY LISTENER(GENERIC_NAME) or DIS LSTR(GENERIC_NAME)
Display the attributes of existing listener objects.

� DISPLAY LSSTATUS(GENERIC_NAME) or
DIS LSSTATUS(GENERIC_NAME)
Display the status of running listeners.

� START LISTENER(NAME) or STA LSTR(NAME)
Start the listener associated with a listener object.

� STOP LISTENER(NAME) or STOP LSTR(NAME)
Stop the listener associated with a listener object.

364 WebSphere MQ V6 Fundamentals

Attributes for listener objects
The attributes for listener objects are:

� Port (PORT)
The port on which a TCP/IP listener listens for connections.

� Control (CONTROL)
Whether the listener is started manually (MANUAL), or automatically when the
queue manager starts (QMGR).

Service objects
Service objects allow custom applications to be started and stopped by a queue
manager. This includes automatically starting and stopping an application when
a queue manager is started and ended.

The WebSphere MQ publish/subscribe broker is an application that can be
started using a service object. A service object called SYSTEM.BROKER is created
with a WebSphere MQ V6.0 queue manager for the publish/subscribe broker.

MQSC commands for service objects
The MQSC commands for service objects are:

� DEFINE SERVICE(NAME) or DEF SERVICE(NAME)
Create a new service object.

� ALTER SERVICE(NAME) or ALT SERVICE(NAME)
Alter an existing service object.

� DELETE SERVICE(NAME)
Delete an existing service object.

� DISPLAY SERVICE(GENERIC_NAME) or DIS SERVICE(GENERIC_NAME)
Display the attributes of existing service objects.

� DISPLAY SVSTATUS(GENERIC_NAME) or
DIS SVSTATUS(GENERIC_NAME)
Display the status of running services.

� START SERVICE(NAME) or STA SERVICE(NAME)
Start the application associated with a service object.

� STOP SERVICE(NAME)
Stop the application associated with a service object.

 Appendix B. Quick reference 365

Attributes for service objects
The attributes are service objects are:

� Service type (SERVTYPE)
Whether only a single instance of the service can be started at a time
(SERVER), or whether multiple instances can be started (COMMAND).

� Control (CONTROL)
Whether the service is started manually (MANUAL), started and stopped with
the queue manager (QMGR), or only started with the queue manager
(STARTONLY).

� Start command (STARTCMD)
The path of the executable used to start the service.

� Start arguments (STARTARG)
Arguments to pass to the command on startup.

� Stop command (STOPCMD)
The path of the executable used to stop the service.

� Stop arguments (STOPARG)
Arguments to pass to the command when stopped.

� Standard out (STDOUT)
A file name to which the standard output from the service is redirected while it
is running.

� Standard error (STDERR)
A file name to which the standard error from the service is redirected while it
is running.

Namelist objects
Namelist objects contain a set of names. Namelists objects are most commonly
used to contain a list of clusters, which can then be specified in the cluster
namelist (CLUSNL) or repository namelist (REPOSNL) attributes of other objects.

MQSC commands for namelist objects
The MQSC commands for namelist objects are:

� DEFINE NAMELIST(NAME) or DEF NL(NAME)
Create a new namelist object.

� ALTER NAMELIST(NAME) or ALT NL(NAME)
Alter an existing namelist object.

366 WebSphere MQ V6 Fundamentals

� DELETE NAMELIST(NAME) or DELETE NL(NAME)
Delete an existing namelist object.

� DISPLAY NAMELIST(GENERIC_NAME) or DIS NL(GENERIC_NAME)
Display the attributes of existing namelist objects.

Attribute for namelist objects
The attribute for namelist objects is:

� Names (NAMES)
A list of names. Specify in MQSC by separating each name with a comma.

Queue objects
Queue objects define the queues hosted by a queue manager and control how a
queue manager routes message to queues hosted by other queue managers
within a WebSphere MQ infrastructure.

Types of queue objects
The types of queue objects are:

� Local queue (QLOCAL or QL)
Local queues are the only type of queue object that represent a queue within
a queue manager that can hold messages.
A local queues can be designated as transmission queues to provide a
temporary location for message designated for another queue manager
within the WebSphere MQ infrastructure. Messages sent to a remote queue
manager with the same name as a transmission queue are placed on that
transmission queue.

� Alias queue object (QALIAS or QA)
Alias queue objects provide a reference to another queue object with a
different name. The target queue object can be a local queue, a remote
queue object, or a queue shared within the queue manager cluster.

� Model queue object (QMODEL or QM)
Model queue objects provide a mechanism for local queues to be dynamically
created by applications. This can be used to give an application a temporary
identity within the WebSphere MQ infrastructure. The attributes of the model
queue object determine the attributes of the dynamic queue created.

 Appendix B. Quick reference 367

� Remote queue object (QREMOTE or QR)
Remote queue objects are used to explicitly define and control routes
between queue managers. Remote queue objects have the following uses,
depending on the attributes specified:

– Queue manager alias
A queue manager alias defines a route to a queue manager, where the
name of the remote queue manager does not match the name of the
transmission queue. Queue manager aliases can also provide a reference
to a queue manager with a different name.

– Local definition of a remote queue
A local definition of a remote queue defines an explicit route through a
transmission queue to a queue of a particular name hosted on a remote
queue manager.

– Reply-to queue alias
A reply-to queue alias causes a queue manager to replace reply-to
information specified within the MQMD of a message with the information
contained in the reply-to queue alias at the time a message is sent.

MQSC commands for queue objects
The following commands are common to all queue objects. Replace QLOCAL or QL
with the required queue object type listed earlier.

� DEFINE QLOCAL(NAME) or DEF QL(NAME)
Create a new queue object.

� ALTER QLOCAL(NAME) or ALT QL(NAME)
Alter an existing queue object.

� DELETE QLOCAL(NAME) or DELETE QL(NAME)
Delete an existing queue object.

� DISPLAY QLOCAL(GENERIC_NAME) or DIS QL(GENERIC_NAME)
Display the attributes of existing queue objects.

The following command can be used to display the attributes of any locally
defined queue object, regardless of its type:

DISPLAY QUEUE(GENERIC_NAME) or DIS Q(GENERIC_NAME)

The following MQSC command displays status records associated with local
queues. This command applies only to local queues.

DISPLAY QSTATUS(GENERIC_NAME) or DIS QS(GENERIC_NAME)

368 WebSphere MQ V6 Fundamentals

Attributes for all queue objects
The following attributes apply to all queue object types:

� Put (PUT)
Whether it is possible to put messages onto this local queue, or send
messages through this queue object. Put disabling a queue shared in a
cluster prevents messages from being routed to it.

� Default persistence (DEFPSIST)
The default persistence of messages sent (with MQPUT), after opening this
queue object (with MQOPEN).

Queue attributes for workload balancing within clusters
The following attributes apply to all queue object types, with the exception of
model queue objects. Dynamic queues, created from model queue objects,
cannot be shared within a cluster.

� Cluster (CLUSTER)
The name of a single cluster in which the queue object is shared.

� Cluster namelist (CLUSNL)
The name of a namelist object, containing multiple cluster names in which the
queue object is shared.

� Default bind type (DEFBIND)
The default bind type when opening this queue object. If bind on open (OPEN)
is specified, multiple messages addressed to the name of this queue object
sent using the same object handle (a single MQOPEN) are delivered to the same
queue manager within a cluster. Otherwise, if bind not fixed (NOTFIXED) is
specified, workload balancing occurs independently for each message sent.

� Cluster workload rank (CLWLRANK)
A queue instance shared in a cluster with a higher rank is chosen in
preference to queues with a lower rank, even if the queue manager hosting it
is unavailable.

� Cluster workload priority (CLWLPRTY)
A queue instance shared in a cluster with a higher priority is chosen in
preference to queues with a lower priority, as long as the queue manager
hosting it is available.

Note: Sharing a queue object in a cluster allows the queue managers in that
cluster to include this queue object as a destination when workload balancing
messages addressed to the name of the queue object.

 Appendix B. Quick reference 369

� Cluster workload use queue (CLWLUSEQ)
Whether to perform workload balancing across remote cluster instances of a
queue when a local queue with the same name exists on the queue manager.
This attribute applies only to manually created local queues.

Attributes for local queues, including dynamic queues
The following attributes apply to local queues (QLOCAL). These attributes can be
specified on a model queue object (QMODEL) to control the attributes of the
dynamic queue created.

� Definition type (DEFTYPE)
Whether a queue was created manually (PREDEFINED) or dynamically from a
model queue object. Dynamic queues can be permanent (PERMDYN) or
temporary (TEMPDYN). Temporary dynamic queues cannot hold persistent
messages, because they are automatically deleted when an application
disconnects or a queue manager ends.

� Get (GET)
Whether it is possible to open this local queue to get or browse messages.
This attribute also applies to alias queue objects that alias local queues.

� Usage (USAGE)
A usage of transmission (XMITQ) marks a local queue as a transmission
queue, which provides a route to a single remote queue manager. In order for
messages to flow to the remote queue manager, a channel is required to
process messages from the transmission queue.

Triggering is a mechanism that can be used to start applications when messages
arrive on a queue. On Windows and UNIX, triggering can be enabled on a
transmission queue to automatically start channels when messages are
available to send. This is called channel initiation. The following attributes
configure triggering on a queue:

� Trigger control (TRIGGER)
Whether triggering is enabled for this queue. Triggering should be enabled for
channel initiation.

� Trigger type (TRIGTYPE)
The type of triggering enabled for this queue. For channel initiation, this
should be FIRST.

� Trigger depth (TRIGDPTH)
The threshold on which to generate a trigger event when the trigger type is
DEPTH.

� Trigger data (TRIGDATA)
Custom data to add to the trigger message. For channel initiation, this is set
to the name of the channel to initiate.

370 WebSphere MQ V6 Fundamentals

� Initiation queue (INITQ)
The queue on which to generate trigger messages when a trigger event
occurs. For channel initiation, this is SYSTEM.CHANNEL.INITQ.

Attribute for alias queue objects
The following attribute applies to alias queue objects (QALIAS):

� Target queue (TARGQ) or base queue
The name of the queue being aliased.

Attributes for local definitions of remote queues
The following attributes of a remote queue object (QREMOTE) are used when
defining a local definition of a remote queue:

� Remote name (RNAME)
The name of the queue on the remote queue manager.

� Remote queue manager name (RQMNAME)
The name of the remote queue manager.

� Transmission queue (XMITQ)
The name of the transmission queue where messages are placed to be
transferred to the remote queue manager. This can be blank if the same as
the remote queue manager name.

Attributes for queue manager aliases
The following attributes of a remote queue object (QREMOTE) are used when
defining a queue manager alias:

� Remote name (RNAME)
Blank for queue manager aliases.

� Remote queue manager name (RQMNAME)
The name of the queue manager being aliased.

� Transmission queue (XMITQ)
The name of the transmission queue where messages are placed to be
transferred to the remote queue manager. This can be blank if the same as
the remote queue manager name, or if the local queue manager is being
aliased.

 Appendix B. Quick reference 371

Attributes for reply-to queue aliases
The following attributes of a remote queue object (QREMOTE) are used when
defining a reply-to queue alias:

� Remote name (RNAME)
The name to place in the reply-to queue field.

� Remote queue manager name (RQMNAME)
The name to place in the reply-to queue manager field.

� Transmission queue (XMITQ)
Blank for reply-to queue aliases.

Cluster queue records
A cluster queue record represents a queue object that has been shared by a
queue manager within a cluster. Each cluster queue record is a destination that
can be sent messages by the workload balancing algorithm.

If a queue manager holds a full repository for a cluster, it has a cluster queue
record for every queue shared in that cluster. If a queue manager holds a partial
repository for a cluster, it only has cluster queue records for queue names of
which it shares an instance, or queue applications connect to the queue manager
have accessed.

MQSC command for cluster queue records
The MQSC command for cluster queue records is:

� DISPLAY QCLUSTER(GENERIC_NAME) or DIS QC(GENERIC_NAME)
Display the attributes of cluster queue records known to this queue manager.

Attributes of cluster queue records
The attributes of cluster queue records are:

� Cluster (CLUSTER)
The cluster in which the queue object is shared.

� Cluster queue manager (CLUSQMGR)
The name of queue manager within the cluster that has shared this object.

� Queue manager identifier (QMID)
A unique identifier for the queue manager within the cluster that has shared
this object.

372 WebSphere MQ V6 Fundamentals

� Cluster queue type (CLUSQT)
The type of queue object shared in the cluster.

Cluster queue manager records
A cluster queue manager record represents a queue manager and how it is
contacted through a cluster of which it is a member.

If a queue manager holds a full repository for a cluster, it has a cluster queue
manager record for every queue manager that is a member of that cluster. If a
queue manager holds a partial repository for a cluster, it only has cluster queue
manager records for queue managers that are full repositories for the cluster, or
host queue objects known by the local queue manager.

MQSC command for cluster queue records
The MQSC command for cluster queue records is:

� DISPLAY CLUSQMGR(GENERIC_NAME) or
DIS CLUSQMGR(GENERIC_NAME)
Display the attributes of cluster queue manager records known to this queue
manager.

Attributes of cluster queue manager records
The attributes of cluster queue manager records are:

� Cluster (CLUSTER)
The cluster of which the queue manager is a member.

� Cluster queue manager (CLUSQMGR)
The name of queue manager.

� Queue manager identifier (QMID)
A unique identifier for the queue manager.

� Queue manager type (QMTYPE)
Whether this queue manager holds a full or partial repository for the cluster.

� Channel (CHANNEL)
The name of the channel used to establish communication with this queue
manager.

� Definition type (DEFTYPE)
The type of channel used to establish communication with this queue
manager.

 Appendix B. Quick reference 373

� Connection name (CONNAME)
The host name or IP address and port number used to establish
communication with this queue manager.

� Status (STATUS)
The current status of the channel used to communicate with this queue
manager.

Channels and channel objects
Channel objects configure the message channel agents (MCAs) that establish
and receive connections to and from a queue manager over a network.

MCAs always work in pairs. The names of the two MCAs, thus the name of the
channel objects, must match. An established connection between two MCAs is
called a channel.

Applications connecting as clients to a queue manager often programatically
specify the attributes of their MCA, instead of using channel objects.

Channel objects are used to join a queue manager to a queue manager cluster.

Types of channel objects
The following types of channel objects can be defined on a queue manager:

� Distributed message channel types:

– Sender (SDR)
Sends all messages that arrive on a specified transmission queue. The
partner can be a receiver or a requester. Always establishes the
connection, although it can receive requests to establish a connection
from a requester.

– Receiver (RCVR)
Receives messages and routes them to queues. The partner should be a
sender. Never establishes the connection.

– Server (SVR)
Send all messages that arrive on a specified transmission queue. The
partner should be a requester. Can receive connections. Can also
establish connections if a connection name has been specified in the
definition.

– Requester (RQSTR)
Receives messages and routes them to queues. The partner can be a
sender or server. Can receive, establish, or request connections.

374 WebSphere MQ V6 Fundamentals

� Cluster message channel types:

– Cluster sender (CLUSSDR)
Sends messages from the cluster transmission queue to other queue
managers within a cluster. When explicitly defined, these establish an
initial connection to a full repository queue manager in order to begin
joining the specified clusters. Cluster sender channels are automatically
established by WebSphere MQ between queue managers in a cluster.
The attributes of automatically defined cluster sender channels are based
on the cluster receiver channel objects published by the queue managers
in a cluster.

– Cluster receiver (CLUSRCVR)
Defines how all queue managers within the specified clusters should
connect to this queue manager. The partner can be a manually defined
cluster sender, or an automatically defined cluster sender.

� Message queue interface (MQI) channel types:

– Server connection (SVRCONN)
Defines how a client application can connect to a queue manager.

– Client connection (CLNTCONN)
This is different to all other channel types, because it is never used by the
queue manager itself. Instead, an entry is added to a client channel
definition table (CCDT) file, which can be distributed to other machines
and used by client applications to configure their MCAs.

MQSC commands for channel objects
The MQSC commands for channel objects are:

� DEFINE CHANNEL(NAME) CHLTYPE(TYPE) or DEF CHL(NAME)
CHLTYPE(TYPE)
Create a new channel object.

� ALTER CHANNEL(NAME) CHLTYPE(TYPE) or ALT CHL(NAME)
CHLTYPE(TYPE)
Alter an existing channel object.

� DELETE CHANNEL(NAME) or DELETE CHL(NAME)
Delete an existing channel object.

� DISPLAY CHANNEL(GENERIC_NAME) or DIS CHL(GENERIC_NAME)
Display the attributes of existing channel objects.

 Appendix B. Quick reference 375

Attributes of channel objects
The attributes of channel object are:

� Connection name (CONNAME)
For channels that can be used to establish a connection, this is the network
connection information for the target queue manager. For cluster receiver
(CLUSRCVR) channels, this is connection information for the local queue
manager. For TCP/IP channels, the format is hostnameoripaddress(port).

� Transmission queue (XMITQ)
For sender (SDR) and server (SVR) channels, this is the name of the
transmission queue from which they get messages and send them over the
channel.

� Short retry (SHORTRTY)
For message channels that establish connections, this is the number of times
to attempt to establish a connection at intervals specified by the short retry
timer (SHORTTMR).

� Short retry timer (SHORTTMR)
The number of milliseconds to wait between short retry (SHORTRTY) attempts.
While waiting between retry attempts, the channel is in RETRYING status.

� Long retry (LONGRTY)
If the number of short retry attempts has been reached on a message
channel attempting to establish a connection, the channel continues to
attempt to establish a connection at intervals specified by the long retry timer
(LONGTMR). If the number of long retry attempts is reached, the channel enters
STOPPED status and must be manually restarted.

� Long retry timer (LONGTMR)
The number of milliseconds to wait between long retry (LONGRTY) attempts.
While waiting between retry attempts, the channel is in RETRYING status.

� Message retry (MRRTY)
For message channels that receive messages, this is the number of times to
attempt to deliver the message to the destination queue before placing the
message on the dead letter queue.

� Message retry timer (MRTMR)
The number of milliseconds to wait between message retry attempts.

� MCA user identifier (MCAUSER)
For server connection (SVRCONN) channels, this forces the actions of clients
connecting using that channel to be validated using the specified user
identifier.

� Nonpersistent message speed (NPMSPEED)
For message channels, this specifies whether to use units of work when
transferring nonpersistent messages.

376 WebSphere MQ V6 Fundamentals

� Batch size (BATCHSZ)
For message channels, this is the maximum number of message to transfer
before confirming delivery and committing the unit of work.

� Batch interval (BATCHINT)
For message channels, this is the maximum amount of time to wait for a
batch to fill before confirming delivery and committing the unit of work.

� Disconnect interval (DISCINT)
For message channels that send messages, this is the amount to time to
leave a channel active while no messages are available on the transmission
queue.

� SSL cipher specification (SSLCIPH)
The Secure Sockets Layer (SSL) or Transport Layer Security (TLS) cipher
specification to use to secure the channel. This must match on both sides of
the channel.

� SSL client authentication (SSLCAUTH)
For channels that act as an SSL server receiving connections, this
determines whether the SSL client is required to provide a certificate.

� SSL peer (SSLPEER)
A string specifying the distinguished names (DN) that are allowed to connect
to this channel. This is checked after performing the authentication of the
partner’s certificate.

� Cluster (CLUSTER)
For cluster message channels, this is the name of a single cluster to which
the channel object applies.

� Cluster namelist (CLUSNL)
For cluster channels, this is the name of a namelist object, containing multiple
cluster names to which the channel object applies.

MQSC commands for controlling channels
The following MQSC commands are used to manually establish connections to
remote queue managers. These commands also control whether channels can
be started automatically by WebSphere MQ, in response to connections from
remote queue managers and applications, or by a channel initiator.

� START CHANNEL(NAME) or STA CHL(NAME)
Establish a connection to a remote queue manager, using the specified
channel object.
This command can also be used to enable channels previously disabled with
a STOP CHANNEL command.

� STOP CHANNEL(NAME) or STOP CHL(NAME)
Stop all channels currently established with the specified name.

 Appendix B. Quick reference 377

By default STATUS(STOPPED) is specified on the command. This disables
any channels of that name from starting automatically. This behavior can be
overridden using STATUS(INACTIVE) on the command.

Channel status records
A channel status record is held for each message channel agent (MCA) that is
active for a queue manager. A channel status record is also created whenever a
channel is disabled by issuing a STOP CHANNEL command or because a
channel reaches its number of long retry (LONGRTY) attempts.

If a channel is in INACTIVE status, no channel status record exists.

Some of the attributes specified on channel objects are negotiated between the
two MCAs that form the channel. A channel status record shows the negotiated
value for these attributes.

MQSC command for channel status records
The MQSC command for channel status records is:

� DISPLAY CHSTATUS(GENERIC_NAME) or DIS CHS(GENERIC_NAME)
Display the attributes of channel status records.

Attributes of channel status records
The attributes of channel status records are:

� Status (STATUS)
The overall status that this channel status record represents: RUNNING for
active channels, RETRYING for channels that have failed to connect and are
retrying, or STOPPED for channels that are disabled. Other values, such as
BINDING or STOPPING, are transitory.

� In doubt status (INDOUBT)
Whether a message channel that sends messages is currently indoubt. A
channel is indoubt while waiting for acknowledgment that a batch of
messages has been received and can remain indoubt if the connections
breaks during that time. Indoubt status is automatically resolved by restarting
a channel.

� Remote queue manager name (RQMNAME)
For message channels, this is the name of the remote queue manager.

378 WebSphere MQ V6 Fundamentals

Glossary

Application server. A managed environment
within which applications are deployed and run with
access to a defined set of functionality that might
include a messaging facilities, such as WebSphere
MQ.

Broker. In a publish/subscribe messaging model,
a broker maintains information about topics and the
subscribers on those topics. When a publisher
publishes information about a topic to the broker, the
broker distributes that information to all registered
subscribers.

Business-critical data. Data that is not stored
elsewhere in the system. If this data is lost, important
information, or a change in state within the system,
is lost.

Capacity. The number of requests for the service
that can be processed by the system as a whole
within a given time interval.

Certificate Authority (CA). A entity, identified by
their public certificate, that is trusted to sign the
certificates of others.

Certificate repository. A password-protected
store containing the public certificates of trusted
certificate authority (CA) and also personal
certificates, including their private keys.

Certificate Revocation List (CRL). A list of
revoked certificates previously signed by a
certificate authority that have been compromised
and should not be trusted. Usually queried from a
Lightweight Directory Access Protocol (LDAP)
server.

Channel. A network communications link between
two queue managers over which messages flow, or
a network communications link between an
application and a queue manager over which
message queue interface (MQI) commands flow.

© Copyright IBM Corp. 2005. All rights reserved.
CipherSpec. A method for specifying a
CipherSuite that assumes RSA is used as the key
exchange protocol.

CipherSuite. A method for specifying the key
exchange, encryption, and message authentication
code (MAC) algorithms to use for securing a channel
with Secure Sockets Layer (SSL) or Transport Layer
Security (TSL).

Client application. An application connecting to a
WebSphere MQ queue manager over a network.

Cluster. See Queue manager cluster.

Cluster message channel. A message channel
between two queue managers within the same
queue manager cluster.

Data conversion. The process of converting the
binary representation of characters and numbers
from that of one environment to that of another.

Disaster recovery. The process of recovering
data and restoring access services after a significant
event that impacts multiple nodes in a system.

Distributed message channel. A message
channel between two queue managers where all
messages are transferred from a single transmission
queue on one queue manager to destination queues
on the remote queue manager.

Event information. Information that describes an
event that has occurred and might require action.

Exactly once delivery. An assurance provided by
a messaging infrastructure that a message arrives at
its destination, that it arrives once, and that it arrives
once only.
 379

Failover. The process of making the data held by
a node and the services provided by that node
available on a different node.

Fix pack. A maintenance delivery that increments
the fourth, Fixpack, digit in the WebSphere MQ
version. The format of the WebSphere MQ V6.0
version, as displayed with the dspmqver command, is
Version.Release.Modification.Fixpack.

Global unit of work. A unit of work that includes
actions on multiple different resources, which might
include WebSphere MQ and database products.
This unit of work is coordinated by a transaction
manager.

High availability. High availability encompasses
the concepts of service availability and message
availability in a message queuing environment.

High availability cluster. A mechanism to
automatically failover the data held by a node and
the services provided by that node in the event that
that node experiences a planned or unplanned
outage.

Hub and spoke architecture. A WebSphere MQ
infrastructure architecture in which services are
provided by a small number of hub queue managers,
and access to those services is extended through a
larger number of intermediate spoke queue
managers interconnected with those hub queue
managers.

IBM Message Service Client (XMS). An
application programming interface for the C and C++
programming languages and the .NET environment,
which is consistent with the Java Message Service
application programming interface.

Java Message Service (JMS). An industry
standardized application programming interface for
the Java programming language, which is part of the
Java 2 Platform, Enterprise Edition standard.

Load. The number of attempts made to request a
service within a given time interval.

Maintenance delivery. A package of fixes that can
be applied to a WebSphere MQ installation. These
are released at regular intervals through the
WebSphere MQ support Web site.

Maintenance pack. A maintenance delivery that
increments the third, Modification, digit in the
WebSphere MQ version. The format of the
WebSphere MQ V6.0 version, as displayed with the
dspmqver command, is
Version.Release.Modification.Fixpack. See also Fix
pack.

Message. A piece of information, with addressing
or other meta information associated, that can be
passed between software components.

Message availability. If a failure occurs on a node
through which messages flow, whether those
messages be recovered if that node fails and how
quickly they become available.

Message channel. A network communications link
between two queue managers over which messages
flow.

Message channel agent (MCA). A component of
a WebSphere MQ queue manager, or a WebSphere
MQ client product, that forms one half of a channel,
establishing network communications with, or
responding to network communications from, a
partner MCA.

Message descriptor. See WebSphere MQ
message descriptor (MQMD)

Message queuing. A middleware technique that
allows unlike software components to interact
asynchronously through a queue.

Message queue interface (MQI) channel. A
network communications link between an
application and a queue manager over which
message queue interface (MQI) commands flow.

380 WebSphere MQ V6 Fundamentals

Middleware. A software infrastructure layer
between applications and the infrastructure
components with which they interact, which is
common to multiple nodes in a system, and
simplifies interaction between the unlike software
and hardware components that reside on those
nodes.

Object Authority Manager (OAM). A component
of a WebSphere MQ queue manager that performs
authority checking.

Outage. A period of time when a service or
services provided by a system are unavailable.

Performance. The time taken between submitting
a request for a service and completion of that
service. How the start and end points of a service
are determined are specific to the function being
performed by the service.

Personal certificate. A public certificate that can
be used to identify an entity combined with the
private key for that certificate.

Planned outage. Periods when a service or
services are unavailable in order to perform planned
work on those services.

Point to point messaging. The sending of
messages from one location to a single destination
that is determined based on addressing information
provided by the sender of the message.

Polling. Repeatedly requesting a piece of
information at regular intervals in order to detect
changes in that information.

Production environment. An environment
through which real services are made available
within or outside of the business, or both.

Proxy. An interface between an existing service,
usually with a proprietary interface, and a
middleware layer that is used by other nodes in the
system to access that service.

Publish/subscribe messaging. A model of
messaging in which the producers of information do
not have direct knowledge of the consumers of that
information, which can be zero or many.

Publisher. In a publish/subscribe messaging
model, a publisher produces information on a
particular topic which is distributed to registered
subscribers on that topic by a broker.

Quality assurance environment. An environment
created to simulate a production environment for
testing and development of application and
infrastructure changes.

Query data. Transient data being sent through a
system derived from data that is stored safely within
the system.

Queue. A container for messages from which
messages are usually retrieved in first-in first-out
order, which can be used as an asynchronous buffer
between two software components.

Queue manager. Queue managers are the
interconnected nodes within a WebSphere MQ
infrastructure that maintain the messages and
queues, provide data integrity, and provide
applications with access to the infrastructure to send
and receive messages.

Queue manager cluster. A mechanism provided
by WebSphere MQ to interconnect queue managers
in a flexible way, which simplifies administration and
provides workload balancing facilities for scalability
and service availability.

Queue name resolution. The action performed by
a queue manager whenever an application or
channel attempts to open a queue in order to put a
message on a queue hosted by that queue manager
or to send a message through that queue manager.

Queue sharing group. A feature of WebSphere
MQ for z/OS that allows applications connected to
multiple queue managers, running on different z/OS
systems within a sysplex, to get and put messages
to the same queue.

 Glossary 381

Request/reply messaging. Asynchronous
communication between two software components
in which a request message is sent and a reply
message is returned following processing of the
request.

Resource manager. A component that, under the
control of a transaction manager, manages an
individual resource that is participating in a global
unit of work.

Scalability. How easily the capacity of the system
can be increased to cope with increased load and
how this affects performance.

Secure Sockets Layer (SSL). An industry
standardized technology to provide authentication
and secure communication.

Security of access. Ensuring that services are
only accessible by those entities authorized to do so.

Security of communications. Ensuring that
sensitive information cannot be intercepted or
tampered with during communication.

Send and forget messaging. Sending messages
without requiring a reply upon the processing of
those messages, thus relying on the exactly once
delivery assurance of the message queuing
infrastructure to deliver the message.

Service availability. If a planned or unplanned
outage affects nodes in the system that provide a
service, whether the system as a whole can
continue to provide that service.

State information. Information that changes over
time, but only has one value at any point in time.

Statement of environment (SOE). Details of the
supported versions of operating systems, compilers,
and other software components that interact with the
WebSphere MQ product. SOEs are available
through the WebSphere MQ support Web page.

Subscriber. In a publish/subscribe messaging
model, a subscriber registers with a broker to
receive all information published about a particular
topic.

SupportPac. A package of additional functionality
or documentation for the WebSphere MQ product,
distributed through the IBM SupportPacs Web page.
SupportPacs are not related to fix pack maintenance
deliveries.

Topic. In a publish/subscribe messaging model, a
topic uses group information so that publishers that
produce information about a topic can be loosely
coupled with the subscribers that consume the
information about that topic.

Transaction. The mechanism by which multiple
actions, possibly on multiple resources, can be
grouped together in a unit of work.

Transaction manager. The component that
manages the resources participating in a global unit
of work.

Transport Layer Security (TLS). An industry
standardized technology to provide authentication
and secure communication.

Unit of work. A logical grouping of actions that
must either all succeed or all fail.

Unplanned outage. Periods when a service or
services become unavailable unexpectedly.

Web services. A standardized way to describe
and invoke services.

WebSphere MQ message descriptor (MQMD). A
data structure, associated with each WebSphere
MQ message, that contains meta information
associated with that message, such as identifying
and type information.

382 WebSphere MQ V6 Fundamentals

WebSphere MQ object model. A defined set of
classes, methods, and properties to interact with
WebSphere MQ that are implemented for multiple
object-oriented programming languages, including
Java and C++, building on the facilities provided by
the message queue interface (MQI).

 Glossary 383

384 WebSphere MQ V6 Fundamentals

acronyms
API Application Programming
Interface

ARM Automatic Restart Manager

CCDT Client Channel Definition
Table

CF Coupling Facility

CL Control Language

COA Confirm on Arrival

COD Confirm on Delivery

COM Component Object Model

CRL Certificate Revocation List

DN Distinguished Name

ESM External Security Manager

FFST First-Failure Support
Technology

FIPS Federal Information
Processing Standard

FIFO First-In First-Out

GUI Graphical User Interface

GSKit IBM Global Security Toolkit

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IFS Integrated File System

IPL Initial Program Load

IPT WebSphere MQ internet
pass-thru

ISPF Interactive System
Productivity Facility

IT Information Technology

ITSO International Technical
Support Organization

IPv6 Internet Protocol Version 6

Abbreviations and

© Copyright IBM Corp. 2005. All rights reserved.
J2EE Java 2 Platform, Enterprise
Edition

JDK Java Development Kit

JKS Java KeyStore

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSSE Java Secure Sockets
Extension

JVM Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LPAR Logical Partition

MAC Message Authentication Code

MCA Message Channel Agent

MMC Microsoft Management
Console

MQAX WebSphere MQ Automation
Classes for ActiveX

MQI Message Queue Interface

MQOD WebSphere MQ Object
Descriptor

MQSC WebSphere MQ Script
Command

MQMD Message Descriptor Structure

MQPMO Message Options Structure

NAT Network Address Translation

OAM Object Authority Manager

PCF Programmable Command
Formats

PMR Problem Management Record

QA Quality Assurance

QMID Queue Manager Identifier

QSG Queue Sharing Group

 385

RACF Resource Access Control
Facility

SDSF System Display and Search
Facility

SOAP Simple Object Access
Protocol

SOE Statement of Environment

SSL Secure Sockets Layer

TSL Transport Layer Security

TCF Topic Connection Factory

TCP/IP Transmission Control
Protocol/Internet Protocol

TLS Transport Layer Security

TSO Time Sharing Option

WSDL Web Services Description
Language

XML Extensible Markup Language

XMS IBM Message Service Client

386 WebSphere MQ V6 Fundamentals

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 390. Note that some of the documents referenced here may
be available in softcopy only.

� WebSphere MQ Solutions in a Microsoft .NET Environment, SG24-7012

� WebSphere Business Integration Pub/Sub Solutions, SG24-6088

� MQSeries Publish/Subscribe Applications, SG24-6282

Other publications
These publications are also relevant as further information sources.

Multiplatform publications:

� WebSphere MQ Application Programming Guide, SC34-6595

� WebSphere MQ Application Programming Reference, SC34-6596

� WebSphere MQ Bibliography and Glossary, SC34-6603

� WebSphere MQ Clients, GC34-6590

� WebSphere MQ Constants, SC34-6607

� WebSphere MQ Intercommunication, SC34-6587

� WebSphere MQ Messages, GC34-6601

� WebSphere MQ Migration Information, SC34-6604

� Monitoring WebSphere MQ, SC34-6593

� WebSphere MQ Programmable Command Formats and Administration
Interface, SC34-6598

� WebSphere MQ Publish/Subscribe User's Guide, SC34-6606

� WebSphere MQ Queue Manager Clusters, SC34-6589

© Copyright IBM Corp. 2005. All rights reserved. 387

� WebSphere MQ Script (MQSC) Command Reference, SC34-6597

� WebSphere MQ Security, SC34-6588

� WebSphere MQ System Administration Guide, SC34-6584

� WebSphere MQ Transport for SOAP, SC34-6651

� WebSphere MQ Using C++, SC34-6592

� WebSphere MQ Using Java, SC34-6591

� WebSphere MQ Using .Net, GC34-6605

Platform-specific publications:

� WebSphere MQ for AIX V6.0 Quick Beginnings, GC34-6478

� WebSphere MQ for HP-UX V6.0 Quick Beginnings, GC34-6479

� WebSphere MQ for iSeries V6.0 Application Programming Reference (ILE
RPG), SC34-6599

� WebSphere MQ for iSeries V6.0 Quick Beginnings, GC34-6481

� WebSphere MQ for iSeries V6.0 System Administration Guide, SC34-6586

� WebSphere MQ for Linux V6.0 Quick Beginnings, GC34-6480

� WebSphere MQ for Solaris V6.0 Quick Beginnings, GC34-6477

� WebSphere MQ for Windows V6.0 Quick Beginnings, GC34-6476

� WebSphere MQ for Windows V6.0, Using the Component Object Model
Interface, SC34-6594

� WebSphere MQ for z/OS V6.0 Concepts and Planning Guide, GC34-6582

� WebSphere MQ for z/OS V6.0 System Setup Guide, SC34-6583

� WebSphere MQ for z/OS V6.0 System Administration Guide, SC34-6585

� WebSphere MQ for z/OS V6.0 Messages and Codes, GC34-6602

� WebSphere MQ for z/OS V6.0 Problem Determination Guide, GC34-6600

Online resources
These Web sites and URLs are also relevant as further information sources:

� All WebSphere MQ guides

http://www.ibm.com/software/integration/wmq/library/

388 WebSphere MQ V6 Fundamentals

http://www.ibm.com/software/integration/wmq/library/

� WebSphere MQ multiplatform guides

http://www.ibm.com/software/integration/mqfamily/library/manualsa/manuals/c
rosslatest.html

� WebSphere MQ platform-specific guides

http://www.ibm.com/software/integration/mqfamily/library/manualsa/manuals/p
latspecific.html

� IBM WebSphere MQ Information Center

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp

� WebSphere MQ support site

http://www.ibm.com/software/integration/wmq/support/

� IBM developerWorks WebSphere community

http://www.ibm.com/developerworks/websphere/community

� Understanding high availability with WebSphere MQ white paper

http://www.ibm.com/developerworks/websphere/library/techarticles/0505_hisco
ck/0505_hiscock.html

� Platforms supported by IBM for hosting queue managers (statements of
environment)

http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html

� SupportPac IA94: IBM Message Service Client for C/C++

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24007092&loc=en_US&cs=
utf-8&lang=en

� SupportPac MA89: Perl language support for MQSeries

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000208&loc=en_US&cs=
utf-8&lang=en

� SupportPac MH01: WebSphere MQ Explorer Healthcheck Plug-in

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24010096

� SupportPac MS0B: WebSphere MQ Java classes for PCF

http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000668&loc=en_US&cs=
utf-8&lang=en

� SupportPac MS81: WebSphere MQ internet pass-thru

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006386&loc=en_US&cs=
utf-8&lang=en

� The XA Specification from The Open Group

http://www.opengroup.org/bookstore/catalog/c193.htm

 Related publications 389

http://www.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www.ibm.com/software/integration/mqfamily/library/manualsa/manuals/platspecific.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0505_hiscock/0505_hiscock.html
http://www.ibm.com/software/integration/websphere/mqplatforms/supported.html
http://www.ibm.com/support/docview.wss?rs=171&uid=swg24007092&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000208&loc=en_US&cs=utf-8&lang=en
http://www.opengroup.org/bookstore/catalog/c193.htm
http://www.ibm.com/support/docview.wss?rs=171&uid=swg24010096
http://www.ibm.com/support/docview.wss?rs=171&uid=swg24000668&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006386&loc=en_US&cs=utf-8&lang=en
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/support/
http://www.ibm.com/developerworks/websphere/community

� WebSphere MQ Extended Transactional Client

http://www.opengroup.org/bookstore/catalog/c193.htm

� IBM KeyMan utility

http://www.alphaworks.ibm.com/tech/keyman

� Software support: Submit/track problems

http://www.ibm.com/software/support/probsub.html

� Technote “MustGather: Read first for all WebSphere MQ v5.3, v5.3.1, and
v6.0 products”

http://www.ibm.com/support/docview.wss?rs=171&uid=swg21177923

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

390 WebSphere MQ V6 Fundamentals

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.opengroup.org/bookstore/catalog/c193.htm
http://www.alphaworks.ibm.com/tech/keyman
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/support/docview.wss?rs=171&uid=swg21177923

Index

Symbols
(QMNAME) attribute 165
+ and - symbols 86, 391
.NET environment 54–55

Numerics
2087 MQRC_UNKNOWN_REMOTE_Q_MGR 241
20-character channel name 187
4 characters in length 99
48 characters available 142
48 characters in length 99
4-digit decimal numeric values 323
64-bit addressing capabilities 121
64-bit hardware 121
64-bit queue managers 121
64-bit WebSphere MQ V6.0 queue managers 122

A
ability to replay log records 355
ability to supply 8
abrupt failure 41, 66
abrupt termination 66
abstracts communication 2
accept and process commands 79
access a service 30
access privileges 163
access queue manager cluster-related information
89
access services 19
access subcategories 89
access to existing services 14
access to services 19
accessing services 31
accounting 23
accounting information 48
accounting statistics 23
accuracy of the information 10
across the client connection 131
actions performed 48
ActiveX component 52
activity reporting 337
actual state of a request 74

© Copyright IBM Corp. 2005. All rights reserved.
actual status 16
additional configuration 27
additional features for queue manager clusters 45
additional filtering of the output of DISPLAY com-
mands 96
additional flexibility 31
additional functionality 27, 32
additional meta information 53
additional options 128
additional programming languages 27
additional requests 15
additional resources 15
additional workload balancing 182
addressing significantly more memory resource
121
administration coupling facility structure 349
administration interfaces 27, 83
administration of a migrated queue manager 90
administration of a WebSphere MQ infrastructure 2
administration of linear logs 355
administration of queue managers 27, 85
administration of WebSphere MQ 85
administration required 27
administrative impact 167
administrator 163
administrator of WebSphere MQ 100
advance to a new log extent 355
Advanced folder 87
adversely affecting performance 15
advice and guidance 328
affected by defining an object 135
affecting queue name resolution 147
affecting service availability 19
affects performance 14
against the correlation identifier 131
aid efficient resolution 321
alias queue object 140
allocated and deallocated 15
allocating and deallocating memory 51
allow multiple actions 61
allowing authentication of an entity 44
allowing the attributes 124
alter an existing object 96
alter the queue manager 90

 391

AMQ4000 to AMQ9999 322
amqmdain reg WebSphere MQ control command
103
amqsbcg 270
amqsbcg sample 251
amqsbcgc 270
amqsech WebSphere MQ sample program 247
amqsget 270
amqsgetc 270
amqsput 270
amqsputc 270
amqsreq WebSphere MQ sample command 250
amqsreqc 270
AMQXXXX message identifier 322
anticipate problems 23
anticipated loads 15
APAR 326
APAR descriptions and Technotes 328
application and infrastructure design decisions 1
application can extend functionality 92
application development 13
application disconnects 48, 62
application in the Eclipse platform 92
application is authorized 129
application is idle 74
application logic 18, 28
application programming interface (API) 28, 31,
49–50, 219
application programming interface (API) used 303
application providing a service 69
application sends a message 134
application server detects a failure 67
application servers 46
application to connect 50
application using the XMS interface 54
applications 6
applications accessing a service 37
applications accessing a WebSphere MQ infrastruc-
ture 28
applications accessing the Web service 34
applications developed in C, C++, or in the .NET en-
vironment 54
applications developed in Java 53
applications disconnect 134
applications portability 14
applications sending and receiving messages 57
applications using an XMS API 54
applications using bindings 128
applications using the JMS API 53–54

applications using the XMS API 54
apply maintenance 45
applying maintenance 19–20
applying service updates 327
archive or delete logs 118
archiving 356
areas of functionality 27
associated library 107
assurance of identity 43
asterisk * wildcard character 96
asymmetric and symmetric cryptography 310
asynchronous 29
asynchronous actions 73
asynchronous communication 8, 14, 37–38
asynchronous intercommunication 60
asynchronous messaging 70
asynchronous nature 34, 47
asynchronous nature of messaging 28, 36
asynchronous nature of performing backups 47
attempt to access 19
attempt to start 161
attempts to resolve 135
attribute can be left blank 146
attribute columns 88
attribute name ALL 96
attribute of an alias queue object 140
attribute values 95, 218
attributes and permissions 147
attributes are required 95
attributes of new objects defined 100
attributes of the client MCA 164
attributes specified 95
authenticate each MQI call 158
authentication of identity 43
authority checks 147
authority checks and defaults 147
authorized 128
authorized to access services 20
auto cluster sender 187
auto explicit cluster sender 187
automatic creation of local units of work 62
automatic knowledge 60
Automatic Restart Manager (ARM) 112
automatically converted 95
automatically flow 26
automatically flow through 9
automatically generate reports 73
automatically resolve the indoubt state 171
automatically restart a queue manager 112

392 WebSphere MQ V6 Fundamentals

automatically route new requests 45
automatically starts the command server 97
automatically workload balances 39
availability of services 18
availability of the services 31, 68
available over the Internet 33
available properties are grouped 89

B
back out a unit of work 132
back out the current unit of work 66, 132
back out the unit of work 62–63
backed-up and transferred data 47
backing up or reorganizing data 20
backout count 69, 77
backout queue 69
backout threshold 69, 77
backup media 118
backup strategy 22
backups for a service 45
base WebSphere MQ sample programs 270
batch interval attribute (BATCHINT) 170
batch processing 9, 70
batch size 158, 170
batch size attribute (BATCHSZ) 170
behavior can be overridden 297
beyond limits imposed by 32-bit addressing 121
binary data 57, 126
binary, character, and numeric data 57
bind not fixed 210
bind on open 210
bindings connection 59, 70
blank-padded data 234
both 32-bit and 64-bit applications 347
bottom-up approach 34
bridging the nodes 6
broker 11
broker control queue 79
broker network 79
browse 129
browse messages 67, 131
buffer between each node 9
buffering data in memory 116
buffers between intermediate nodes 9
building and accessing WebSphere MQ infrastruc-
tures 1
business and costs 20
business logic 6, 12, 34, 51, 70

business services 81
business-critical data 16, 26, 76, 131
business-critical services 119
busy periods 8

C
C and C++ programming languages 54
calling into modules written in C 124
calls to MQPUT 129
capabilities of a service 23
capabilities of the z/OS platform 101
capacity 14
capacity and performance 68
capacity and performance of a service 68
capacity needs 15
capacity of the system 14
capacity requirements 13
careful consideration and planning 47
careful design and planning 15
careful planning 22
CCDTURL property 167
CCSID identifies 126
certain distinguished name 158
certificate authorities 310, 312
certificate for validation 158
certificate is trusted 318
certificate label 312
certificate repository 313
certificate revocation list (CRL) 348
chain of structures 126
chaining together 57
chaining together multiple portions 58
change in state 16
change management procedures 93
change the order 88
change the WebSphere MQ properties 91
changes 31, 105, 107
changes in the QA environment 18
changing loads 15
changing the attributes 96
changing the configuration 20
changing the properties 100
channel 56, 156
channel attribute 158
channel auto-definition 157
channel auto-definition (CHAD) 334
channel auto-definition (CHAD) attribute 179
channel automatically retries 161

 Index 393

channel enters STOPPED status 161
channel indoubt 170
channel initiator (SCHINIT) parameter 178
channel initiator is started 115
channel listener programs 153
channel negotiator 159
channel object is disabled 158
channel object types 156
channel objects 156
channel passes MQI commands 157
channel pooling 113
channel statistics messages 353
channel to become active 159
channel type 156
channels 26, 70
Channels folder 159
character 33 of the dynamic queue name field 142
character and numeric data formats 13
character data 57
character or binary data 57
charging 23
check the type of the message 77
checkpoint 117
checkpoints occur automatically 117
choosing a subscription queue 80
choosing the logging mechanism 119
cipher spec (SSLCIPH) attribute 348
CipherSpec string 310
CipherSuite 311
CipherSuites 310
circular logging 118
CL command WRKMQM 93
CLASSPATH environment 257
cleanup of a queue manager 109
CLEAR command 246
clear the message identifier 78
client channel 156
client channel definition table (CCDT) 166, 271
client connection 59, 90, 113, 115, 131
client connection methods 121
client connections 128
client MCA 162
client Message Channel Agent (MCA) 270
clients 36
CLUSSDR 187
CLUSSDRA 187
CLUSSDRB 187
cluster 182
cluster (CLUSTER) 186

cluster (CLUSTER) attribute 187
cluster attribute 186
cluster information source 198
cluster infrastructures 265
cluster instance of a queue 134
cluster message channel 113, 115
cluster message channels 184
cluster namelist (CLUSNL) 186
cluster queue is not 134
cluster queue manager (CLUSQMGR) record 195
cluster queues 200
cluster receiver channel object 185
cluster sender channel 187
cluster workload balancing algorithm 2
cluster workload manager recently used channel
(CWMRUC) attribute 215
cluster workload priority (CLWLPRTY) attribute
214
cluster workload priority (CLWLRANK) attribute
214
cluster workload rank (CLWLRANK) attribute 213
cluster workload use queue (CLWLUSEQ) attribute
213
cluster workload weight (CLWLWGHT) attribute
215
cluster-receiver channels 201
cluster-sender channels 200
code signifies the reason 125
Coded Character Set Identifier 126
combination of a command keyword 95
combination of HA clustering software 47
command is rejected 95
command keyword 95
command line interface 93
command server 89, 97, 116
command server control 98
command to create a queue manager 222
commands and descriptions of the attributes 97
comment line 97
commit 65
commit any unit of work 78
commit fails 62
commit the current unit of work 132
commit the unit of work 62, 65
committed or backed out 143
common functionality 53
common queue manager configuration tasks 217
common registry 34
common specification 34

394 WebSphere MQ V6 Fundamentals

common standards 33
common usage of the MQPMO 130
commonly used command keywords 96
commonly used fields contained in the MQMD 124
communication links 6, 20, 113
communication protocols 103, 105, 107
communications link 34
communications links of varied types 12
communications logic 12
communications protocol 112
comparison to synchronous interaction 34
complete processing 8
completed the prepare phase 64
completion code 127
completion of the service 14
complex binary data 7
complexity of services 20
complexity of the infrastructure 7
complicated failure processing 12
components and technologies 6
components of the underlying infrastructure 13
comprehensive set of documentation 339
compressed form 118
concept of a topic 11
concept of exactly once delivery 17
concepts of a queue manager cluster 182
concepts of the WebSphere MQ product 1
configuration and infrastructure changes 18
configuration attributes 109
configuration changes to the objects 116
configuration information 103, 105–107
configuration of a queue manager 43
configuration of SSL 164
configuration of the infrastructure 68
configuration of the WebSphere MQ infrastructure
35
configuration options 91
configuration related to communication protocols
103, 105, 107
configuration related to logging 105
configure a transmission queue 178
configure and monitor 26
configure custom filters 88
configure custom schemes 88
configure initial values 105
configure specific routes 27
configure the queue manager 88
configure to generate trigger events 151
confirm on arrival (COA) 73

confirm on delivery (COD) 73
confirm receipt of the information 29
connect as a client over a network 70
connect mechanism 162
connect other nodes 6
connect to a different queue manager 32
connect to a remote queue manager 65
connect to queue managers 99
connect to remote queue managers 90
connected to a queue manager 41
connection details 31
connection details for a queue manager 32
connection handle (Hconn) 128
connection name 113
connection name (CONNAME) attribute 171
connection names and listeners 172
connection options structure (MQCNO) 128
connection to a queue manager 99
connections from 64-bit applications 121
connections over a TCP/IP network 266
consistency of the system 63
consistent action 29, 77
consistent action is taken 115
consistent and tolerant handling 18
consistent processing of messages 77
consistent structure for messages 57
consistently tracking changes 93
constant rate 8
consumed exactly once 9
consumers of information 11
consumes and processes messages 8
consuming a message 21
contain the values 132
container of messages 7
containing query data only 17
content page 86
content view 86
contents of a message 58
contents of the messages 72
context of message queuing 21
continuous log 118
conversion of character 7
coordinate global units of work 132
coordinated by WebSphere MQ 61
coordinating global units of work 64
coordinating local or global units of work 133
coordination of the resources 47
copy the message identifier 78, 125
core configuration information 103, 105, 107

 Index 395

core element 98
core functionality 81, 123
core messaging capabilities of WebSphere MQ 81
core point-to-point messaging capabilities 67
core WebSphere MQ client product 157
correct destination 17
correctly authorized applications 163
correlate a reply 125
correlation identifier 68, 75, 125
corrupted 117
corruption of the data 44
corrupts resources 162
costly process 12
costly redevelopment 81
coupling facility (CF) 101
create a certificate authority 318
create a connection 162
create a message descriptor 77
create a new object 96
create a queue manager 104–105, 107
create and configure a queue manager 93
Create Queue Manager wizard 105
create the data for the reply message 77
create the system objects 90
created automatically 107
creates a new queue manager 221
creates the sender channel object 288
creation process 108
critical importance 44
crtmqm WebSphere MQ control command 103
cryptography modules 348
cryptography modules used 348
Cryptomodule Validation Program 348
current log fills 356
current status of all objects 116
current unit of work 66, 130–131
custom adapter 55
custom application software 47
custom applications 31
custom business logic 30
custom developed dead letter queue handler 177
custom directory 102
customization of a standardized API 32
customize the routes 147

D
damaged 117
data conversion 56

data conversion algorithms 57
data integrity 41, 83
Data section 233
database operations 132
database updates 63, 132
databases 46
datagram 71, 124
data-sharing group 101
day to day operations 20
DB2 feature 101
dead letter queue 115
dead letter queue handling 176
dead letter queues 116
decide a result 77
decimal representation 323
decouples the provider 11
decoupling the provider 81
default behavior 80
default bind (DEFBIND) attribute 211
default channel initiator 178
default circular logging 117
default column scheme 88
default installation directory 102
default method for ending a queue manager 110
default object 100
default persistence (DEFPSIST) 148
default persistence attribute 148
default queue manager 108
default queue manager parameter 108
default set of attributes 96
default value of the dynamic queue name field 142
defaults for messages 147
defaults, storing 106
DEFINE CHANNEL CHLTYPE(CLNTCONN) 165
DEFINE CHANNEL CHLTYPE(CLUSRCVR)
MQSC command 186
DEFINE CHANNEL CHLTYPE(CLUSSDR) MQSC
command 188
DEFINE CHANNEL CHLTYPE(RCVR) MQSC com-
mand 172
DEFINE CHANNEL CHLTYPE(RQSTR) MQSC
command 172
DEFINE CHANNEL CHLTYPE(SDR) MQSC com-
mand 173
DEFINE CHANNEL CHLTYPE(SVR) MQSC com-
mand 173
DEFINE CHANNEL CHLTYPE(SVRCONN) 162
DEFINE QALIAS MQSC command 141
DEFINE QMODEL MQSC command 143

396 WebSphere MQ V6 Fundamentals

DEFINE QREMOTE MQSC command 147
DEFINE/START/STOP/DISPLAY SERVICE 351
defined explicitly 133
defining channels using MQSC 172
defining or altering an alias queue 140
defining the structure 124
definition and configuration 100
definition type (DEFTYPE) attribute 139, 195
definitions of objects 102, 104, 107
DEFPSIST(YES) 148
delete (MQCO_DELETE) option 143
delete an existing object 96
delete-purge (MQCO_DELETE_PURGE) option
143
delivered directly 70
delivered successfully 125
delivery failures 42
delivery mechanism 79
demonstration purposes 234
deployed dynamically 45
deployment and scalability functionality 54
deregistered with ARM 112
describes the message 56
describes the object 128
design methodologies 28
designate a local queue as a transmission queue
137
designate the local queue manager 145
designated to temporarily store 134
desktop workstation 27
destination on another queue manager 134
destination queue manager 125
destination queues 60
destination sequence number 211
destructively get messages 131
detailed understanding of logging 119
detect and process 18
detect termination 67
detection of problems 18
determine charging 48
determining the reason for the failure 323
developed and tested 19
developing a proxy 14
developing applications using the MQI 51
developing proxies 28
development and deployment of a new service 18
development and maintenance 6
development and testing 18
development efforts 14

development of a WebSphere MQ application 1
development of applications 2
diagnosing and resolving 321
diagnosing problems 149
different algorithms 44
different algorithms within the SSL and TLS stan-
dards 44
different applications 68
different byte values 56
different directory 102
different hardware and software environments 28
different hardware platforms and operating systems
28
different hardware types 50
different hub queue managers 38
different infrastructure components 6
different operating systems 163
different physical file systems 104
different programming languages 28
different qualities of service 68
different queue manager 125
different system objects 100
different technologies 6
different types of objects 135
different underlying infrastructure components 14
digital certificates 310
digital signatures 310
direct communications protocol 71
direct knowledge 9
directory for information 259
directory name 105
directory of information 32
disable channel object 159
disaster recovery techniques 47
disastrous failures 22
disastrous outage 355
disastrous outages 47
disconnect interval (DISCINT) attribute 171
disconnect interval of zero 171
disconnected normally 112
disconnection interval 186
disparate forms 81
DISPLAY CHSTATUS MQSC command 160
DISPLAY CLUSQMGR 195
DISPLAY CONN 350
DISPLAY QCLUSTER 195
DISPLAY QMSTATUS 355
DISPLAY QSTATUS 355
DISPLAY QSTATUS MQSC command 150

 Index 397

display route application 354
DISPLAY SVSTATUS 351
display the attributes of all objects 96
display the authorities 307
display the specified attributes 96
displayed in MQSC 133
distinguished name (DN) 318
distributed and cluster message channels 161
distributed environment 39
distributed message channel 113, 115, 160
distributed or cluster message channel 101
distribution lists 71
distribution media 59
diverse applications 81
dltmqm WebSphere MQ control command 242
dmpmqaut command 307
documentation and guides 27
documenting scripted commands 93
driven by events 69
dspmqaut command 307
duplicate the current expiry time 74
duration of actions 22
dynamic queue name (DynamicQName) 142
dynamic queues 134
dynamically created 30
dynamically defined 134
dynamically join 39
dynamically join and leave the cluster 40

E
Each object has 100
each publication made 80
Eclipse project 92
Eclipse technology 85
Eclipse workbench 91
editing the mqs.ini file 106
EDTF CL editor 107
efficiencies of scale 9
efficient asynchronous intercommunication 36
eliminate single points of failure 18
embedded provider 33
empty value for an attribute 95
enable a queue manager for remote administration
91
enable and disable channel objects 159
enclosed in single quotation marks 218
encoding 126
encoding field 126

encrypted 44
encryption algorithm 310
end all channels 159
ending a queue manager 110, 112
ending communication 159
enhanced queue sharing group functionality 349
enhanced security features 43
entity is authorized 19, 147
entry point 98
entry point for an application 98
error logs are located 120, 324
establish communication 113
established network communication link 156
establishing communication 120
estimated averages 150
event information 11
event of a failure 72
event of a success 72
eventual consumer 26
every MQCONN or MQCONNX call 133
exact state 46
exactly once delivery 16
exactly once delivery assurance 29, 67
example commands 127
example filters 88
example of attributes 164
examples of meta information 56
examples of objects 100
examples of standardized APIs 32, 53
examples of structures 58
examples of transaction managers 64
exchange information 29
exchanges messages 44
exclusive access 30, 67
exclusive input 168
execute configuration commands 93
execute MQSC commands 94
execute on a node 14
existing infrastructure components 28
existing IPv4 protocol 347
existing scripts 109
existing services 6
existing technologies 6
expansion of page sets 356
expired message 75
expired messages 75
expiry 126
expiry report 75
expiry task 126

398 WebSphere MQ V6 Fundamentals

expiry time 74
expiry time of the original message descriptor 78
explicitly fail 17
expose sensitive information 19
exposed communication links 20
extend the local infrastructure 265
Extended Message Service (XMS) 124, 157
extended transactional client 65
extending the publish/subscribe capabilities 60
Extensible Markup Language (XML) 57
extension point 92
external access 31
external entities 19
external interactions 69
external interfaces 6, 31
external intervention 20
External Security Manager (ESM) 302
external symptoms of the problem 339
external transaction manager 132
external usage 44
external user 23
extra benefits 18
extra functionality 27
extra information 7
extra memory resource 121
extra meta information 57–58

F
facilitate media recovery 118
facilitate publish/subscribe capability 11
facilities for message queuing 26
facilities provided by a WebSphere MQ infrastruc-
ture 49
facility called trace-route 337
fail the MQGET call 131
failed node or nodes 22
failed nodes 31
failover 46
fails to perform an MQDISC call 133
failure in communication 13
failure in communication between queue managers
322
failure in data integrity 20
failure in transmission 72
failure of other actions performed 322
failure to connect to WebSphere MQ from an appli-
cation 322
failure to send or receive a message from an appli-

cation 322
failure tolerant log 42
failures 69, 127
failures due to configuration and infrastructure
changes 18
failures due to resource limitations 17
failures due to software errors 17
failures in data integrity 20
failures within a business 17
fast connection 37
fault tolerant infrastructure 18
features of a unit of work 63
features of the message queuing product 25
Federal Information Processing Standard (FIPS)
348
feedback code 78
feedback field 72, 125
Filter drop-down list 88
FILTER keyword 352
final destination for a message 35
final destination queue 98
finite lifetime of 30 days 194
FIPS compliant 348
FIPS required (SSLFIPS) attribute 348
firewalls 164
first 12 characters 163
first portion 57
first-failure support technology (FFST) 120
first-failure support technology (FFST) report 120,
325
first-in first-out (FIFO) 68
flexibility in design of the applications 36
flexibility to upgrade 81
flexible and maintainable 31
flow of information 80
flow of messages 48, 149
focusing development efforts 13
following actions being performed 135
following sources of information 322
forcefully ends the queue manager 112
format 126
format field 126
format field defaults 126
format of the message 77
frequency of logging 120
full details of the syntax of MQSC commands 97
full length of the message 57
full repositories 197
full repository 89

 Index 399

full repository contains 183
full repository queue manager 183
fully qualified 173
function call completed successfully 127
function call failed 127
function call partially completed 127
function calls 157
functional difference 346
functionality 88
functionality and data structures 51
functionality and documentation 27
functionality for starting channels 153
functionality of existing plug-ins 92
functionality provided 100
functionality provided by the service 77
functionality provided by the WebSphere MQ Ex-
plorer 85
fundamental concepts 49
fundamental failure 15
further messaging 9
further processing 125
future MQI 128

G
gain information 6
gateways into the infrastructure 40
gathering information 23
gathering trace for iSeries 343
gathering trace on UNIX 342
gathering trace on Windows 342
gathering trace with WebSphere MQ for AIX 5L,
V5.3 343
general descriptions 14
general format 95
general troubleshooting information 206
generalized definition 29
generate a pass/fail result 93
generate trigger events 151
generated at regular intervals 48
generating a trigger message 246
generating and issuing individual PCF command
messages 97
geographically remote location 47
get 61
get a request message 63
get attribute values 129
get by correlation identifier 131
get by message identifier 131

get messages 68
getting a message 61
given time interval 14
given topic 78
global unit of work 63–64, 77
global units of work 63, 132
grant or revoke OAM authorities 307
granted access 19
graphical interface 41
graphical overview of queue name resolution 135
graphical user interface (GUI) 26, 85, 93, 346
group is created automatically 104–105, 109
grouped or segmented messages 127
grouped together 61
grouped together in a batch 170
grow or shrink dynamically 12
grow to meet requirements 14
growth in the infrastructure 99
gsk7cmd command line tool 314
gsk7ikm Graphical User Interface (GUI) 314
GUI environment 85

H
HA clustering functionality 46
HA clustering software 47
HA clustering solution 47
HA clusters 46
handling failures in communications links 35
hard disk failure 42
hardware errors 17
hardware failure 22, 45, 192
hardware or software failures 20
hardware platforms 6
hardware servers 6
health of the system 22
hex or decimal 127
hexidecimal representation 323
high availability 44
high availability (HA) clusters 46, 182
high availability features 182
high availability of services 20
high capacity 15
high capacity server 39
high performance 14
high priority messages 8
high service availability 45, 209
higher capacity servers 45
higher priority 68

400 WebSphere MQ V6 Fundamentals

high-level overview 48
history of problems fixed 327
hold current state information 79
host a service 6
hosted by a machine simultaneously 99
hosted by a queue manager 129
hosting queue managers 50, 389
hostname(port) 196
how logging is performed 103, 105
how to route messages 31, 134
hub and spoke architecture 289
hub queue manager 38
human-readable files 119

I
IBM DB2 database product 101
IBM developerWorks Web site 328
IBM Global Security Toolkit (GSKit) component 347
IBM KeyMan utility 312
IBM Message Service Client (XMS) 32, 54, 219
IBM product service channels 54
IBM support information 326
IBM support Web site 327
IBM WebSphere MQ program group 85
identified or unidentified entity 19
identifier for the message 125
identify a valid destination 12
identify an entity 19
identify ownership 80
identify ownership of messages 80
identify the application 48
identifying the entity 19
identity context 128–129, 158
identity of applications 44
identity of entities to be verified 44
identity of the server 47
IFS path 107
illustration of the WebSphere MQ Explorer 85
immediate shutdown 111, 236
immediately ends the queue manager 111
impact and length 21
impact on services 21
impersonate an entity 20
implement a service 46
implement change management 93
important configuration information 104–105, 107
important considerations 102
important feature of a message queuing infrastruc-

ture 12
important information 16
inactive 159
INACTIVE state 160
incomplete actions 42
inconsistent state 17, 117
incorrect specification 17
increase capacity and cope 15
increase service availability 181
increase the scalability and availability 27
increased load 14–15
increased maximum active log size 355
increased to cope 14
increasing capacity 15, 31
independent decision 134
independent of the technology 32
individual communication protocols 2
individual developer 13
individual failure 21
individual nodes 10
individual performance 48
individual product 31
individual queue object type 133
individual services 10
individual WebSphere MQ platform 102
INDOUBT attribute 171
indoubt channels 171
industry standard technology for securing 310
industry standardized technologies 43
inetd operating system listener 114
information about failures 120
information added to the message 135
information can be gained 322
information in the transmission queue header 144
information is lost 16
information provided 19
information required 30
information technology (IT) 2, 14
information technology (IT) solutions 5
information technology infrastructure 6
information updates 12
informed decision 2
informed design and implementation choices 2
infrastructure components 44
infrastructure hardware and software 18
infrastructure of the system 6
infrastructure software 46
initial performance and capacity 15
initial producer of a message 26

 Index 401

Initial Program Load (IPL) 112
initial requirements 15
initiated 150
initiating an MCA 159
initiation queue 152
initiation queue (INITQ) 152
input 129
inquire 129
inspection of the dead letter queue 177
installation of the WebSphere MQ product 84,
104–105, 107, 109
instances of applications 68
instances of the z/OS operating system 100
integer value 127
integrate and extend 2
integrated broker 78
integrated development environments (IDEs) 92
integrity of business-critical data 26, 118
integrity of sensitive information 19
integrity of the information 7
intended destination 16
interact with WebSphere MQ 27
interactive MQSC session 226
Interactive System Productivity Facility (ISPF) 94
intercommunication between queue managers 27
intercommunication failures 29, 31
interconnect applications 266
interconnected system 7
interconnected WebSphere MQ infrastructures 48
interconnecting a queue manager cluster 134
interconnecting queue manager clusters 134
interface between the middleware layer 14
interface into the command server 97
interface into the service 38
interface over the Internet 38
interfaces conform 51
interfaces into WebSphere MQ 27
interim fix 327
intermediate nodes 9, 12, 16, 31
intermediate queues 35, 70, 133
intermediate states 161
intermittent communication failures 17
internal user 23
Internet protocol suite 320
invasive process 19
invoked by authorized applications 13
IP address and port 171
IP address or host name 113
issuing a start command 159

issuing the START CHINIT command 115
item within the queue manager data 117

J
J2EE application server 33, 67
J2EE standard 53
Java 2 Platform, Enterprise Edition (J2EE) 32
java and javac executables 255
Java APIs 157
Java Development Kit (JDK) installation 220
Java KeyStore (JKS) 314
Java Message Service (JMS) 32, 53, 58, 79, 123
Java Message Service (JMS) client 157
Java Naming and Directory Interface (JNDI) 260
Java or JMS client MCAs 163
Java Runtime Environment 255
Java Secure Sockets Extension (JSSE) 314
Java Virtual Machine (JVM) 63, 67
JKS key repositories 314
JMS administration tool 167
JMS API 157
JMS functionality 33
JMS interface 53
JMS provider for WebSphere Application Server V6
54
JMS, part of the Java 2 Platform, Enterprise Edition
(J2EE) 53
join queue managers together 39
joining a cluster 185
joining multiple WebSphere MQ infrastructures 99
journal 42
journals 107
JVM ends 67

L
last character 227
last performed an MQCMIT or MQBACK 132
last point of consistency 117
latest maintenance 84
latest service update 84
layer of abstraction 6
layout of the WebSphere MQ Explorer 86
leave the queue manager cluster 39
level of support 27
Lightweight Directory Access Protocol (LDAP) 348
Lightweight Directory Access Protocol (LDAP) serv-
er 259
LIKE attribute 96

402 WebSphere MQ V6 Fundamentals

linear logging 117–118
link a message to a single application 68
Linux installation 219
list of cluster names 186
list of filters available 88
list of schemes available 88
listener 163
listener can be configured 114
listeners are created 114
listening 113
listening on TCP/IP 115
load 14
load exceeds capacity 15
local queue manager 127
local queue object 133
local queue object represents 225
local to WebSphere MQ 61
local units of work 132
location of local queues 137
location of the CCDT 166
log data 42, 116
log data and queue manager data consistent 117
log for a queue manager 102, 104
log for the queue manager 107
log records 116
logged and tested 19
logging 102, 104, 116
logging, performing 107
logic failures 44
logical objects 51
logical partition (LPAR) 101
logically flow 12
logically grouped 8, 72
logically grouped messages 77
long periods of time 40
long retry (LONGRTY) 161
long retry interval (LONGTMR) 161
longer than 12 characters 163
longer-running applications 48
loss due to communication failures 131
loss in the integrity 21
loss of the data 41
low performance 15
lower capacity servers 45
lower priority 68
lower priority messages 8
lowercase naming conventions 218
lowercase object names 95

M
machine fails abruptly 117
main interface into the CL commands 93
maintain a partial or full repository 183
maintain a sequence number 171
maintain and interface 13
maintaining and upgrading applications 44
maintaining data structures 51
maintaining nonpersistent messages 41
maintaining the integrity of the units of work 42
maintenance required by WebSphere MQ 50
malicious modification 44
manage filters 88
manage schemes 88
management of the size 118
manual intervention 22
manual or automated actions 30
manually defined local queues 139
manually routed 17
many instances 15
mapping queue manager names 143
mapping queue names 143
mapping to a blank queue manager name 145
match options 68, 131
match specified criteria 88
matching PCF command 97
matching PCF parameters 97
maximum length 71
maximum length of a message 102
maximum number of channels 215
maximum of 20 characters 161
maximum of one broker 79
MCA accepting the connection 158
MCA at the remote queue manager 168
MCA created by the WebSphere MQ listener 113
MCA created within a pool of processes 113
MCA establishes a channel 157
MCA invoked 157
MCA issues MQI calls 162
MCAs negotiate or bind 157
measuring 22
media image 118
media recovery 117–118
meet the capacity 15
meet the requirements 14
member of a queue manager cluster 135
members of a QSG 101
message affinity 210
message authentication code (MAC) 310

 Index 403

message authentication code (MAC) algorithm 310
message availability 21, 45
message body 80, 124
message browser window 233
message cannot be delivered 115
message channel 156
message channel agents (MCAs) 113, 115, 156
message channels 129
message contents 30
message data 102, 104, 107
message delivery 129
message descriptor 55, 57, 69, 147
message descriptor specifies 57
message descriptor structure (MQMD) 130
message digests 310
message fails 69
message format 57
message identifier 75, 125, 130
message identifier generated 125
message identifier is returned 125
message identifiers is AMQ 322
message is correctly delivered 7
message is initially put 125
message is too large 131
message might not be deliverable 115
message options structure (MQGMO) 130
message options structure (MQPMO) 130
message put directly 135
message queue infrastructure 8, 26, 56, 98
message queue interface (MQI) 50, 123, 219
message queuing 6
message queuing calls 162
message queuing implementation 32
message queuing infrastructure for services 44
message queuing technology 5, 14
message segmentation 77
message transmission 70
message type 124
messages are made unavailable 62
messages are not available 62
messages arriving on queues 150
messages containing business-critical data 41
messages destructively got 132
messages relating to datagrams 131
messages to be retrieved 8
messages with higher priorities 126
messages with lower priorities 126
messages within a group 72
messaging capabilities 32

messaging infrastructure 7–8
meta information 56
method for finding 133
methods for creating local queues 137
Microsoft Management Console (MMC) 85
middleware 13
middleware layer 6
middleware technologies 6
migrated queue managers 89
migration considerations 347
migration stage 89
minimize planned and unplanned outages 20
minimize the impact 21
mixed-case queue manager names 99
MMC snap-ins 85
model queue objects 134, 141
monitor performance 149
monitoring performance 23
more than 10 messages 88
more than two full repositories 183
mover 115
moving applications 31
MQBACK MQI function 132
MQBEGIN MQI function 132
MQBEGIN, MQCMIT or MQBACK call 132
MQCLOSE 130
MQCLOSE call 128
MQCMIT call 130–131, 133
MQCMIT call fails 133
MQCMIT MQI function 132
MQCONN 128
MQCONN, or MQCONNX MQI call 162
MQConnectionFactory object 164
MQCONNX 128
MQDISC 133
MQDISC call before exiting 133
MQEnvironment class 164
MQGET 303
MQGET call 130
MQGET calls under syncpoint 131
MQGET MQI function 130
MQGMO is used 131
MQI channel 156
MQI contains 124
MQI provides two functions 128
MQI statistics messages 353
MQINQ 303
MQINQ call 132
MQINQ MQI function 132

404 WebSphere MQ V6 Fundamentals

mqm administrator 163
mqm group 104–105, 109
MQMD for a message 124
MQOD structure on the MQOPEN call 135
MQOPEN call 128–129
MQOPEN call is performed 135
MQOPEN MQI function 128
MQPUT 303
MQPUT and MQGET calls 132
MQPUT call 130
MQPUT MQI function 129
MQPUT1 MQI function 130
MQRC WebSphere MQ command 127
MQSC 27
MQSC commands 94, 218
MQSC is not case-sensitive 95
MQSC script commands 217
MQSC session starts 226
MQSC steps 218
MQSET 303
MQSET call 133
MQSET MQI call 133
MQSSLKEYR environment variable 313
multiple applications 30
multiple applications can share 59
multiple applications communicate asynchronous-
ly 136
multiple cluster queues 134
multiple connections 160
multiple DB2 instances 101
multiple different types of data 58
multiple instances 13
multiple interconnected nodes 22
multiple intermediate nodes 12
multiple intermediate queue managers 134
multiple MQPUT calls 130
multiple nodes 6
multiple nodes within the system 21
multiple operations 61
multiple outcomes 10
multiple physical or virtual processing units 35
multiple possible reason codes 127
multiple publishers 11
multiple queue manager clusters 182
multiple queue managers 37, 98
multiple queues 60
multiple resources 63
multiple services 38
multiple tasks 35

multiple TCP/IP listeners 115
multiple values 95

N
name and attributes 157
name of a queue manager 99, 125, 128
name resolution is performed 135
namelist attribute 186
namelist object 186
names of queues 29, 32
names starting with SYSTEM 100
naming conventions 100, 161
naming scheme 161
navigator view 86
need to bind 210
negative outcomes 15
Network Address Translation (NAT) 319
network communication 41
network communication failures 41
network communication in WebSphere MQ 156
network connection 37
network failures 42, 45
network links 9, 98
New Alias Queue wizard 141
new areas of function for WebSphere MQ V6.0 2
new JMS messaging provider 54
New Local Queue wizard 140
New Model Queue wizard 143
new object defined 100
new queue manager 56
New Remote Queue wizard 147
new services 6
New state drop-down list 159–160
new technologies 6
new unit of work 132
new values for the attributes 133
next destination for a message 134
node 6
nodes in the system 20–21
nonpersistent message speed (NPMSPEED) 170
nonpersistent messages 41, 76
non-retained publications 81
normal operation 131
not proprietary 31
not to wait for message 131
NPM class (NPMCLASS) 238
number of attempts 14
number of clients 36

 Index 405

number of MCAs active 113
number of messages 66
number of messages delivered 298
number of requests 14
numeric data 7, 126
numeric data type 126
numeric integer based attributes 132
numeric value 127

O
Object Authority Manager (OAM) 43, 303
object descriptor 129
object descriptor (MQOD) 128
object handle (Hobj) 129
object name 135
object name and object queue manager name 147
object name requested 140
object names 218
object names and attribute values 95
object queue manager name 135, 146
object queue manager name matches 145
object type combinations 95
object-orientated programming languages 51
object-oriented 123
object-oriented APIs 51
object-oriented APIs provided by WebSphere MQ
51
object-oriented interface 157
object-oriented languages 124
objects are automatically defined 100
objects defined within a queue manager 133
objects of the queue manager 109
objects opened for inquire 132
objects opened for set 133
objects used internally 100
objects used to provide default functionality 100
oldest log records 118
once delivery assurance 79
one batch 9
one common set of actions 63
one instance of a service 21
one of more services 21
online monitoring 150
only type of queue object 136
open and put actions 168
open queue objects 129
operating system command search 93
operating system inetd listener process 114

operating systems 6
operation and configuration 102
operation of queue managers 83
operation of the queue manager 324
operations and control panels 94
optimized 8
optimized for applications 76
original data 16
original message descriptor 78, 169
original queue manager 47
original request message 63
OS/400 Control Language (CL) commands 93
other channel object types 156
other considerations 31
other internal actions 116
other queue manager data 102, 104, 107
other queue object types 137
other WebSphere MQ configuration 104
outage 15
outline of actions 77
output 129
overall state 160
override defaults 147
overview of the normal steps 77
overwrite the existing mqs.ini file 106
owns and maintains 104

P
packages of fixes 327
page sets and buffer pools 356
panel based interface 94
panel-driven administration 27
parameters 104–105
parameters specified 106
parameters specified when creating a queue man-
ager 104
partial completion 127
partial message 131
partial repositories 183, 197
partial repository queue manager 183
participants within a global unit of work 64
particular areas of function 27
particular correlation identifier 76, 131
particular message identifier 76
particular queue manager 128
particular topic 11
partner application 29
partner MCA 158

406 WebSphere MQ V6 Fundamentals

patterns and levels 18
patterns of usage 23
PAUSED 161
PCF commands 97
peak time periods 15
perform a connection 128
perform a restart 118
perform a timeout 74
perform administration 87
perform an action 6
perform business logic 77
perform common administration commands 93
perform database queries 63
perform encryption 13
perform failover 47
perform media recovery 118
perform media recovery of the objects 118
perform planned work 20
perform the core functionality 152
perform the MQI commands 157
perform the same operations 161
performance 14
performance and available capacity 22
performance and capacity 15
performance and capacity information 23
performance and capacity of the applications 36
performance costs 47
performance effect 59
performance implications 16, 37
performance monitoring 22, 48
performance of each request 15
performance of other services 15
performance of point-to-point messaging 67
performance of WebSphere MQ 27
performance reasons 104
performance requirements 15
performed across a channel 156
performed by a message channel 137
performed manually 47
performed synchronously 47, 74
performed under syncpoint 78
performing an MQOPEN call 133
performing configuration 93
performing maintenance 31
performing processing 8
performing remote administration 91
performing the procedure 104–105, 107
performing workload balancing 60
periodic check 75

periodically check 69
Perl or Korn shell 94
permanent dynamic (PERMDYN) 143
permanent dynamic local queue 143
permanent dynamic queue 76
persistence 71, 125
persistence and priority 78
persistent messages 42, 67, 118, 131
persistent or nonpersistent 125, 148
personal certificate 313
perspective 92
perspective of the application 324
physical location 22
PKCS12 file 312
planned and unplanned outages 17, 20, 44
planned maintenance 46
planned outages 20–21
planned restart 41
planned restarts 42
planning, designing, developing, and provisioning
14
platform 50
platforms with 64-bit addressing 122
plug-ins for the Eclipse platform 92
point-to-point and publish/subscribe messaging 49
point-to-point messaging 9–10, 59
point-to-point messaging model 10, 53–54
point-to-point model 30
poll 74
polling 10
polling services 10
pool of machines 39
port 113
port an application 14
porting 14
possible combinations 147
potential problems 18
preemptive shutdown 111
preferences window 91
prepare 64
prepare phase completed successfully 65
prepared unit of work 65
prevent external intervention 20
preventing 19
primary and secondary hardware server 46
primary queue managers 45
principles for establishing identity 43
principles of Web services 33
prior to WebSphere MQ V6.0 89

 Index 407

priority 126
priority from 0 to 9 126
privacy of communication protected 310
problem determination aids 92
Problem Management Record (PMR) 339
problems fixed 327
procedural API 50
procedural interface 124
procedural programming languages 50, 124
process 106
process a request 74
process a single message 70
PROCESS attribute 152
PROCESS definition 152
process each message 8
PROCESS object type 152
process of changing an application 14
processed by a service 21
processed in parallel 68
processed successfully 125
processes for validation 318
processing of a message 69, 125
processing the responses 97
production environment 18
programmable command format (PCF) 90, 97
programmable command format (PCF) commands
346
programmable command format (PCF) interface 90
programming interface 97
programming language and environment 28
programming languages 6, 51
programming languages and approaches 51
programming paradigms 2
progress unit of work 62
properties of a queue manager 88
properties window 89, 109
proprietary logic 81
protect a server connection channel 164
protect communication links 20
protocol 29
provide greater assurance 163
provide interfaces 51
provide security 15
provide workload balancing 181
provided in source code form 218
provided precompiled 218
provider of JMS 53
provides a buffer 131
provides assurances 16

provides significantly more detail 307
providing a buffer 8
providing a full history 325
providing a service 29
providing message availability 46
providing multiple instances 21
providing publish/subscribe messaging capabili-
ties 78
provisioning of resources 15
proxy 55
public networks 19
public or exposed 20
publication made for a topic 80
publication to occur 81
publish/subscribe 31
publish/subscribe broker 26, 32, 78
publish/subscribe capabilities 32
publish/subscribe capabilities to WebSphere MQ
53–54
publish/subscribe message queueing functionality
33
publish/subscribe messaging 10–11, 33, 54–55, 58
publish/subscribe messaging capabilities 53–54
publish/subscribe messaging model 11–12, 53–54,
81
publish/subscribe model 26, 30
publish/subscribe sample 255
publish/subscribe services 81
published in the cluster 185
publisher 11
publishes information 192
put 61
put and get messages 129
put date 126
put disabled 200
put messages onto a queue 129
put time 126
putting a message 61
putting a request message 125

Q
QA environment 327
qm.ini file 105, 107
QMANAGER property 165
QMgrName parameter 165
QMQM subsystem 106
QMQMADM group 107
quality assurance (QA) 44

408 WebSphere MQ V6 Fundamentals

quality assurance (QA) environment 18, 44
quality of service 23
quantity of data 22
quantity of memory resource 347
queried and modified 124
query and update information 33
query data 16, 41, 74
query data contained in nonpersistent messages
76
queue 133
queue concept 8
queue destination 129
queue instance 298
queue manager becomes unavailable 45
queue manager cluster 27, 45, 134
queue manager clusters 35, 60, 70, 181
Queue Manager Clusters folder 89
queue manager data 116–117
queue manager data directory 102, 104, 107
queue manager data sets 302
queue manager determines 129
queue manager ends abruptly 117
queue manager error logs 119–120, 324
Queue Manager Identifier (QMID) 192
queue manager is configured 70
queue manager is ended normally 117
queue manager is quiescing 111
queue manager logs 89
queue manager object 109
queue manager object attributes 88
queue manager owns and maintains 102
queue manager owns and manages 107
queue manager performs an MQBACK call 133
queue manager runs as a number of batch jobs 106
queue manager starts optimally 117
queue manager subsystem in WebSphere MQ for
z/OS 93
queue manager subsystems 302
queue manager’s log 116
queue managers and clients 112
Queue Managers folder 87
queue managers in the same sysplex 45
queue name resolution 60, 70, 135
queue object 133
queue object shared 140
queue objects 129
queue objects can be manually defined 136
queue on the same queue manager 134
queue shared by multiple applications 68

queue sharing groups 98
queue sharing groups (QSGs) 101
queue statistics messages 353
queue within the queue manager 133
Queue_Manager_Name match 165
queues created dynamically 76
queues hosted 21
queues of an identical name 29
quiesced shutdown 110
quiesced shutdown failed 112

R
RACF required 302
range of numbers 322
reading or modifying 20
readme document 327
ready to use 218
real-time performance 48
reason code 127, 323
reason code numbers 232
reason code, 0x 323
reassembly 71
rebuild the correct current state of objects 117
receive a connection 157
receive messages 11
receive output 232
receive publications 80
receiver channel objects 172
receiving MCA 168
receiving messages 17
recent reflection 47
record of actions 116
recording a media image 118
recover the affected resources 22
recovery of messages 22
Redbooks Web site 390

Contact us xx
redevelopment of applications 54
reduce confusion for applications 99
reduce loads 75
reduce outages 21
reduce the size of the log 118
reduced performance 121
referred to as a channel 156
referred to as cluster queues 134
REFRESH CLUSTER command 209
REFRESH SECURITY MQSC command 307
REFRESH SECURITY TYPE(SSL) MQSC com-

 Index 409

mand 348
registered subscribers 81
registering an application 79
registration process 80
regular application of maintenance 19
regular backups 22
regular intervals 48, 161
related systems and services 9
reliability and exactly once delivery assurance 34
reliability and security 15
reliability of components 20
reliability of the system 20
reliability of the WebSphere MQ product 44
reliable communication 7
reliable message queuing 26
reliable recovery 22
reliable storage 42, 46
reliable storage solution 47
remain open indefinitely 171
remote administration of WebSphere MQ 90
remote copy of a queue manager 47
remote MCA 157
remote name (RNAME) 144–145
remote name (RNAME) attribute 190
remote queue manager 127
remote queue manager name (RQMNAME) 144,
146
remote queue manager name (RQMNAME) at-
tribute 190
remote queue objects 143
remote service 13
removed automatically 134
removed during an MQCLOSE call 134
removed from their queue 132
rename a queue manager 99
renew a subscription after 27 days 194
REPLACE attribute 96, 227
replaying log records 117
reply 73, 124
reply and report messages 138
reply from a service 73
reply immediately 74
reply or report 125, 131
reply-to queue 59, 73–74, 125
reply-to queue alias 147
reply-to queue manager 125, 138
reply-to queue manager name 73
ReplyToQMgr field 138
report 69, 124

report a failure 64
report and feedback 125
report field 125
report in WebSphere MQ 72
report message 72, 78, 130
report messages 125
REPOS(YES) specified 209
repository (REPOS) 184
repository (REPOS) attribute 184
repository namelist (REPOSNL) 184
repository namelist (REPOSNL) attribute 184
repository of information 101, 183
represent a real queue 136
represent each object type 135
request 73, 124
request a service 6, 14
request message 10
request/reply 26, 31, 67
request/reply interface 60, 217
request/reply messaging 10, 73
requested action 129
requested actions 147
requested in an MQOPEN call 129
requester channel objects 172
requester side 174
requesting node 10
requesting services 40
require protection 13
required attributes 95
required for channel initiation 287
required for the operation of certain features 100
RESET CLUSTER ACTION(FORCEREMOVE)
MQSC command 192
RESET CLUSTER MQSC command 203
RESET QMGR TYPE(ADVANCELOG) MQSC com-
mand 355
reset the expiry time 75
resolve problems 149
resolved correctly 22
resolves the object name 137
resolving the name 137
Resource Access Control Facility (RACF) 302
resource manager 64
resource managers 64
resource requirements 10
resource shortages 20
respond to changing loads 182
response from the service 74
response is lost 16

410 WebSphere MQ V6 Fundamentals

response queue 59
restart process 117
restart the queue manager 118
restructuring or combining infrastructures 31
result of the MQDISC call 133
resume cluster membership 203
RESUME QMGR CLUSNL 202
RESUME QMGR CLUSTER 202
retained by the broker 81
retained publications 81
retaining the integrity of data 22
retrieve messages 59
retrieve messages from a queue 69, 77, 129
RETRYING status record 161
return a report 72
returned to their queue 132
rigger type 151
rolled-back 132
root authority 308
route messages 98
route to a remote service 13
route to be explicitly defined 138
routing messages between local queues 137
routing messages to queue managers 99
row in a table 88
RSA key exchange protocol 311
rules and formatting header, and rules and format-
ting header 2 58
rules and formatting headers 58
RUNMQSC CL command 94
runmqsc WebSphere MQ control program 94
running application 30
running channel 160

S
same channel 71
same Eclipse workbench 92
same version of WebSphere MQ 90
sample applications 27
scalability 14
scalability and availability 27
scalability and performance features 15
scalability of the service 15
scalable and reliable 8
scale performance 35
scale the capabilities 23
scales well 15
SCMDSERV attribute 98

scripting interface 27, 93
scripts 27
Secure Sockets Layer (SSL) 43, 91, 301, 348
Secure Sockets layer (SSL) authentication 156
Secure Sockets Layer (SSL) functionality 347
secure, flexible, and reliable message queuing infra-
structure 13
secured client connection 91
security 19
security and integrity of communication 43
security considerations 301
security model 301
security of access 43
security violations 119
segmentation 71
send a reply message 63
send and forget 10, 31, 67
send and forget messaging 9, 26
send and receive multiple messages 42
send messages 63
send the reply/report message 78
sender side 174
sender-receiver pair 175
sending a datagram 73
sending an e-mail 29
sending and receiving MCAs 186
sending MCA 168
sending messages 17, 30
sending messages to a service 68
sending MQI commands 124
sending the information 29
sensitive data 20
sent once 71
sent with an object queue manager name 138
separate actions 17
separate actions within a unit of work 66
server channel objects 173
server connection 162
server connection channel 162
service availability 21
service fails 46
service hosted 45
service or group of services 20
services 6
services and the infrastructure of the business 6
services of a system 49
services within a business IT system 19
set 129
set attribute values 129

 Index 411

set of buffers 132
set of commands 79
set of processes 104
set of selectors 132
set the message type 78
set to expire 17
set to predefined (PREDEFINED) 139
share the definition 101
shared between multiple subscribers 80
shared queues 45, 98, 101
short retry count (SHORTRTY) 161
shorter polling intervals 10
shorter than 48 characters 161
shorthand version 95
show the attributes 87
Show/Hide Queue Managers window 277
Shown Queue Managers table 277
significant amount of redevelopment 15
significant resources 12
significantly enhanced in WebSphere MQ V6.0 149
simple character data 7
simple interfaces 20
Simple Object Access Protocol (SOAP) 34
simplified communication 28
simplified failure handling 34
simplify administration 75, 134
simplify design and implementation 81
simplify the administration of WebSphere MQ 27
single consumer 9
single message 130
single physical server 26
single point of failure 21
single reply-to queue 77
single thread terminates unexpectedly 67
size of each error log 120
small numbers of messages 8
small numbers of requests 14
small quantity of system resource 76
smaller segments 71
SOEs available 84
software and hardware environments 2
software components 6, 46, 84
software within a system 19
solid and secure framework 19
solutions to common issues 328
span multiple lines 97
special cases of local queues 133
special characters 95
special processing 72

specific set of attributes 95
specific uses 134
specifically marked 17
specified interval 74
specified object 129
specified period 131
specified period of time 17, 68
specified trigger interval 151
specify the usage attribute 137
specifying an explicit remote queue manager name
144
specifying report options 125
spectrum of functionality 33
speeds and quality 12
spokes of a hub 38
SSL capabilities 43
SSL connection facilities 91
SSL handshake 158
SSL reset key count (SSLRKEYC) attribute 348
stability provided by client channels 161
stable and reliable 20
standard client product 65
standard input of the command line interface 94
standard request/reply model 97
standardized API for messaging 32
standardized APIs 31, 53, 58
standardized application programming interfaces
(APIs) 123
standardized interfaces 81
START 96
start an interactive MQSC session 94
start an MCA 157
start and administer local WebSphere MQ queue
managers 217
start and end points 14
start and stop message channels 159
START CHANNEL 159
START CHANNEL and STOP CHANNEL com-
mands in MQSC 194
START CHANNEL MQSC command 160
START LISTENER command 115
start queue manager check box 222
start the QMQM subsystem 106
started using the START LISTENER MQSC com-
mand 114
starting a channel 159
starting a queue manager 109
starting or ending a queue manager 109
state information 10–11, 81

412 WebSphere MQ V6 Fundamentals

statement of environment (SOE) 50, 84
statistics about the usage 48
STATUS attribute 160
STATUS attribute of a status record 160
status of an order 16
status of each local queue 149
status record is disabled 160
status records 160
STOP 96
STOP CHANNEL 159
STOP CHANNEL command 159
Stop Channel window 159
STOP CONN 350
STOP QMGR MODE(FORCE) command 112
STOP QMGR MODE(QUIESCE) command 112
STOP QMGR MODE(RESTART) command 112
stopped 160
STOPPED status 160
stopping a channel 159
storage section 238
store character string-based attributes 132
stored reliably 74
stores a time and date 126
stranded messages 22
string data 126
strmqcfg 85
STRMQMLSR CL command 114
STRMQMMQSC CL command 94
structure automatically reallocated and rebuilt 102
structure of applications 51
structured handling of failures 28
structures 58
subfolder for a queue manager 87
subject to change 9
submit requests to a service 68
submitting a request 14
subscribe 11
subscriber 11
subscriber is registered 80
subscriber must register 80
subscribes to full repository 193
subscriptions 80
subsequent MQCMIT call 131
subsequent reply 29
subsequent unit of work 63
subset of the information 58
subsystem of the queue manager 115
successful request 14
successfully completing 21

successfully connected 128
successfully retrieved 130
successor of SSL 43
summary of the core facilities 59
summary of the functionality 345
summary of the technical concepts 1
summary of the usage 95
summary reports 48
supplemented with knowledge 135
support 64-bit addressing 121
supported versions 84
SupportPac IA94 54
SupportPac MA0C 348
SupportPac MA89 Perl language support for
MQSeries 55
SupportPac MH01 328
SupportPac MS81 320
SupportPacs 28, 326
suspend cluster membership 203
SUSPEND QMGR CLUSTER 202
suspending a queue manager in a cluster 202
symbol characters 103, 105
symbolic name 127
synchronous 71
synchronous communication 8
synchronous operation 73
synchronously 29
syntax of MQSC 95
sysplex 45, 101
system 6
system 17 characters 161
system default objects 100
System Display and Search Facility (SDSF) 93
system logs 119
system object 90
system objects 100
system queue manager error logs 120
system recovers efficiently 21
system under different loads 22
SYSTEM.BROKER 258

T
table of all the objects 86
target a particular message 128
target destination 16
target queue 73
target queue (TARGQ) 140
target queue (TARGQ/base queue) attribute 190

 Index 413

target queue by an application 73
target queue manager 73, 129
target queue object 140
target service 6
TCP/IP host name 171
TCP/IP port 163
TCP/IP port number 1414 113
team of developers 13
technical description 339
technical details 1
technical details of the symptoms 339
technical overview 2
technical sections 2
technical understanding 1
technique for application development 18
technologies that increase reliability 15
Technote 328
temporarily add log data sets 356
temporarily exceed 8
temporary condition 15
temporary dynamic (TEMPDYN) 142
temporary dynamic local queue 142
temporary dynamic queue 76
temporary dynamic queues 134
temporary dynamic reply-to queue 76
terminal session 250
terminates abruptly 133
testing 18
text editor 106
text viewer 119
textual characters 126
third-party scripting language 94
threading and multitasking features 36
threads 63
three methods 110
three methods fail to end a queue manager 111
three methods of ending a queue manager 110
threshold of messages 9
through the listener 157
time critical 22
time interval 9, 14
time out and discard a request 74
Time Sharing Option (TSO) 94
time stamps 119
timeout 74
TLS capabilities 43
tolerant of failures 26, 66
toleration of failure 349
tools required to facilitate development 54

top-down approach 34
Topic Connection Factory (TCF) object 261
topic on one stream 80
topic strings 80
trace-route message 354
tracing every operation 341
track and log the commands 93
track changes 10
track subscriptions 79
tracking context 51
tracking of usage 22
transaction 61
transaction created automatically 61
transaction management support 67
transaction managers 64
transfer messages 159
transferred across the channel 170
transferred data 47
transferred to the remote location 47
transferring nonpersistent messages 41
transient data 16
transmission (XMITQ) 137
Transmission Control Protocol/Internet Protocol
(TCP/IP) 112
transmission of messages 137
transmission queue 70, 129, 134
transmission queue (XMITQ) 144, 146
transmission queue header 135
transmission queue header and dead letter queue
header 58
transmission queues 133
transparent to the operation 47
transport for Web services 349
transport layer 34
Transport Layer Security (TLS) 43, 301, 348
transport the message 7
transporting a message 12
tree view 86
trigger control 151
trigger data (TRIGDATA) 152
trigger message 152
trigger monitor 152
triggered to start 217
triggering 150
triggering mechanism 70
triggering the same action 177
TRIGTYPE(DEPTH) 151
TRIGTYPE(EVERY) 151
TRIGTYPE(FIRST) 151

414 WebSphere MQ V6 Fundamentals

trusted certificate authority 164
tunnel WebSphere MQ communications 320
two applications 29, 68
two basic concepts, messages and queues 7
two forms of publications 81
two separate asynchronous actions 73
two strings match 80
two-phase commit 64
two-phase commit process 64
type of data held 126
types of objects 87, 100
types of portions 57
types of queue objects 129, 133

U
unable to process 15
unacceptably slow 15
unauthorized use of a service 19
unavailable for connection 165
uncommitted messages 63, 143
under syncpoint 62, 130–131
underlying infrastructure components 14
understanding of the concepts 2
understanding the flow of messages 124
unexpected consequence 19
unexpected events 119
unique destination 30, 99
unique destination queue 60
unique message identifier 75
unique reference 27
unit of work 17, 42, 132
unit of work backed out 62
unit of work completes successfully 61
units of work 22, 61
units of work coordinated by J2EE application serv-
ers 67
units of work to complete 17
universal tools platform 92
UNIX platforms 105
unplanned abrupt failures 42
unplanned outage 21
unplanned outages 20
unspecified number of applications 30
unsuccessful action in the WebSphere MQ Explorer
322
unsuccessful completion of the action 323
unsuccessful execution of a WebSphere MQ sam-
ple program 322

unsuccessful WebSphere MQ control command
322
update a database 9
updates to components 21
updating databases 17
updating information 29
updating or requesting information 30
usage 100
USAGE attribute 137
usage patterns 23
use for retained publications 81
use in a consistent way 161
use mqrc 246
use of a system 22
use of Certificate Revocation Lists (CRLs) 317
use of reply-to queue aliases 147
use of services 18
used in the following order of preference 110
user identifier 110, 126, 128, 158
user identifiers between different machines 163
user performing the procedure 109
using a channel initiator 159
using a client channel 157
using a client connection 127
using a middleware layer 14
using a network connection 121
using a queue manager 48
using a request/reply interface 79
using a third-party certificate authority 318
using amqmdain qmgr start 110
using an intranet and firewalls 309
using an MQOPEN call 134
using bindings 121, 127
using bindings connections 121
using business rules 81
using channel pooling 113
using MQGET calls 129
using MQINQ calls 129
using MQPUT calls 129
using MQSC 133
using MQSET calls 129
using multiple client connection objects 165
using of 64-bit client products 121
using optimized facilities 116
using queue manager clusters 35, 134
using request/reply messaging 125
using Secure Sockets Layer (SSL) 301
using self-signed certificates 317
using standardized APIs 58

 Index 415

using the amqmdain crtlsr WebSphere MQ control
command 114
using the amqmdain qmgr end WebSphere MQ con-
trol command 111
using the amqmdain qmgr start WebSphere MQ
control command 110
using the amqmdain reg WebSphere MQ control
command 104
using the Create queue manager wizard 103
using the crtmqm WebSphere MQ control command
105
using the DEFINE LISTENER MQSC command
114
using the DEFINE QLOCAL MQSC command 139
using the ENDMQM CL command 111
using the endmqm WebSphere MQ control com-
mand 111
using the facilities of queue manager clusters 68
using the functionality of shared queues 101
using the IPv6 protocol 347
using the MCA user (MCAUSER) attribute 163
using the MCA user identifier 269
using the MODE(INACTIVE) 159
using the MODE(STOPPED) 159
using the MONQ attribute 150
using the MQCHLLIB and MQCHLTAB environment
variables 166
using the PCF interface 97
using the publish/subscribe messaging model 81
using the runmqlsr WebSphere MQ control com-
mand 114
using the short retry interval (SHORTTMR) 161
using the STOP CHANNEL MQSC command 160
using the storage 47
using the STRMQM CL command 110
using the strmqm WebSphere MQ control command
110
using the XMS API 54
using WebSphere MQ publish/subscribe 60

V
valid combination of command keyword 95
valid combinations 174
valid destination queue name 135
valid queue object 140
validated certificate 158
values of specified attributes 132
variety of sample programs 218

varying loads 36, 39
verbal communication 339
verification of the integrity of data 44
verify the identity 44
version field 336
vi or emacs 105–106
view cluster repository information 196
view or browse 232

W
wait for a wait interval 131
wait for matching messages 131
wait indefinitely 74
wait indefinitely for messages 131
wait interval 74
waiting for a service 74
Web browser 31, 33, 38
Web services 33
Web Services Description Language (WSDL) 33
WebSphere Application Server 32, 53, 67
WebSphere Application Server application servers
36
WebSphere Application Server product 157
WebSphere Application Server V5 33
WebSphere Application Server V6 33
WebSphere Business Integration Event Broker 32,
81
WebSphere Business Integration Message Broker
32, 81
WebSphere MQ actions 63
WebSphere MQ actions within global units of work
65
WebSphere MQ administrator privileges 220
WebSphere MQ administrators 2
WebSphere MQ application programmers 2
WebSphere MQ as a transaction manager 64
WebSphere MQ assures delivery 35
WebSphere MQ automation classes for ActiveX
(MQAX) 52
WebSphere MQ base Java API 52
WebSphere MQ C++ 51, 157
WebSphere MQ CL commands 106
WebSphere MQ classes for .NET 52
WebSphere MQ cleans up 133
WebSphere MQ client installation 59
WebSphere MQ client product 50
WebSphere MQ client products 59
WebSphere MQ command 58

416 WebSphere MQ V6 Fundamentals

WebSphere MQ command server 58
WebSphere MQ communication 112
WebSphere MQ Component Object Model (COM)
interface 52
WebSphere MQ components 58
WebSphere MQ configuration 106
WebSphere MQ control commands 85, 94, 108,
217
WebSphere MQ coordinated units of work 132
WebSphere MQ dead letter queue handler 177
WebSphere MQ distributed channel initiator 153
WebSphere MQ Explorer 26, 85, 92
WebSphere MQ Explorer Healthcheck plug-in 92,
328
WebSphere MQ Explorer icon 85
WebSphere MQ Explorer is capable 91
WebSphere MQ Explorer perspective 92
WebSphere MQ Explorer snap-in 85
WebSphere MQ for iSeries 93, 106
WebSphere MQ for UNIX 93, 104, 163
WebSphere MQ for Windows 93, 102, 163, 220
WebSphere MQ for z/OS 93
WebSphere MQ for z/OS, Version 6.0 102
WebSphere MQ infrastructure 27, 33, 48, 50, 55
WebSphere MQ installation process 93
WebSphere MQ internet pass-thru (IPT) 320
WebSphere MQ Java API 91
WebSphere MQ JMS publish/subscribe sample
255
WebSphere MQ key repository 312
WebSphere MQ listener process 113
WebSphere MQ maintenance downloads 326
WebSphere MQ message descriptor (MQMD) 124
WebSphere MQ message queuing infrastructure
28, 30, 54
WebSphere MQ object model 51
WebSphere MQ objects 27, 70, 89, 99
WebSphere MQ operations 132
WebSphere MQ problems 321
WebSphere MQ product 1
WebSphere MQ publish/subscribe broker 53–54,
58, 60
WebSphere MQ publish/subscribe commands
53–54
WebSphere MQ put and get actions 61
WebSphere MQ queue objects 60
WebSphere MQ queue sharing group 45
WebSphere MQ Quick Beginnings guides 84
WebSphere MQ resources 86

WebSphere MQ root icon 86
WebSphere MQ samples are installed 220
WebSphere MQ Script (MQSC) commands 93
WebSphere MQ Script (MQSC) commands scripting
interface 93
WebSphere MQ server installation 99
WebSphere MQ server licenses 59
WebSphere MQ Services snap-in 85, 114
WebSphere MQ structure 58
WebSphere MQ structure type 126
WebSphere MQ support Web page 327
WebSphere MQ system error logs 120, 271
WebSphere MQ technology 26
WebSphere MQ terminology 133
WebSphere MQ trace 341
WebSphere MQ V5.3 89
WebSphere MQ V6.0 89
WebSphere Platform Messaging 33, 54
WebSphere Platform Messaging infrastructures
33, 54
well-known port number 113
WHERE keyword 96
wide range of audience 1
wide variety of uses 136
wildcard 142
wildcard characters 80
Windows registry 103
Windows registry can be altered 103
Windows Start menu 85
work suspended 102
workload balancing 60, 68, 145, 209
workload balancing algorithm 202, 211
workload balancing requests 31
write to the log 116
writing the data to reliable storage 116
written to reliable storage 116
WRKMQM CL command 94

X
XMS API 157
XMS to interface 55

Z
z/OS channel initiator 115
z/OS image 101
z/OS Security Server Resource Access Control Fa-
cility (RACF) 302

 Index 417

418 WebSphere MQ V6 Fundamentals

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

W
ebSphere M

Q V6 Fundam
entals

®

SG24-7128-00 ISBN 073849299X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere MQ V6
Fundamentals

Overview of message
queuing and
WebSphere MQ V6.0

Broad technical
introduction to the
Websphere MQ
product

Hands-on guide to
the first steps of
building a
WebSphere MQ
infrastructure

This IBM Redbook describes the fundamental concepts and
benefits of message queuing technology. This book is an
update of a very popular Redpaper (REDP-0021) based on IBM
WebSphere MQ Versions 5.0 to 5.2.

This publication provides a design-level overview and
technical introduction for the established and reliable
WebSphere MQ product.

A broad technical understanding of the WebSphere MQ
product can improve design and implementation decisions for
WebSphere MQ infrastructures and applications. To reduce
the time required to gain this understanding, this IBM
Redbook summarizes relevant information from across the
WebSphere MQ product documentation.

We also include hands-on security and troubleshooting
sections to aid understanding and provide a reference for
common administrative actions performed when building and
maintaining WebSphere MQ infrastructures.

In the appendix, we provide a summary of the new features in
WebSphere MQ Version 6.0.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	November 2005

	Chapter 1. Overview
	Chapter 2. Concepts of message queuing
	2.1 Core concepts
	2.1.1 Middleware
	2.1.2 Messages
	2.1.3 Queues
	2.1.4 Point-to-point messaging
	2.1.5 Publish/subscribe messaging

	2.2 Simplification
	2.2.1 Development focuses on business logic
	2.2.2 Application maintenance and portability

	2.3 Scalability and performance
	2.4 Reliability and data integrity
	2.4.1 Exactly once delivery
	2.4.2 Units of work
	2.4.3 Failure handling
	2.4.4 Quality assurance (QA) environments

	2.5 Security
	2.5.1 Security of access
	2.5.2 Security of communications

	2.6 High availability
	2.6.1 Service availability
	2.6.2 Message availability
	2.6.3 Disaster recovery

	2.7 Monitoring and accounting
	2.7.1 Performance monitoring
	2.7.2 Accounting

	Chapter 3. Facilities for message queuing provided by WebSphere MQ
	3.1 Core concepts
	3.1.1 WebSphere MQ message queuing infrastructure
	3.1.2 Facilities for building a WebSphere MQ infrastructure
	3.1.3 SupportPacs

	3.2 Simplification
	3.2.1 Applications accessing a WebSphere MQ infrastructure
	3.2.2 Asynchronous intercommunication using WebSphere MQ
	3.2.3 Generalizing destinations using WebSphere MQ
	3.2.4 Specific destinations using WebSphere MQ
	3.2.5 Providing services within a WebSphere MQ infrastructure
	3.2.6 WebSphere MQ queues as an interface for accessing services
	3.2.7 Standardized application programming interfaces (APIs)
	3.2.8 WebSphere MQ and WebSphere Application Server
	3.2.9 Web services as an interface for accessing services
	3.2.10 Simplification of failure handling with WebSphere MQ

	3.3 Scalability and performance
	3.3.1 Scalability features of WebSphere MQ queue managers
	3.3.2 An architecture based on a single queue manager
	3.3.3 Hub and spoke WebSphere MQ architectures
	3.3.4 Flexibly scaling capacity using queue manager clusters

	3.4 Reliability and data integrity
	3.4.1 Persistent and nonpersistent messages
	3.4.2 Units of work

	3.5 Security
	3.5.1 The Object Authority Manager (OAM)
	3.5.2 Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
	3.5.3 Securing communication using SSL or TLS

	3.6 High availability
	3.6.1 The role of queue manager clusters in high-service availability
	3.6.2 Queue sharing groups on WebSphere MQ for z/OS
	3.6.3 High availability clusters
	3.6.4 Disaster recovery

	3.7 Monitoring and accounting
	3.7.1 Performance monitoring
	3.7.2 Accounting
	3.7.3 Trace-route messaging

	Chapter 4. Designing applications that access a WebSphere MQ infrastructure
	4.1 Cross-platform support
	4.2 Application programming interfaces (APIs)
	4.2.1 The message queue interface (MQI)
	4.2.2 APIs based on the WebSphere MQ object model
	4.2.3 Standardized APIs available for WebSphere MQ
	4.2.4 Custom adapters

	4.3 WebSphere MQ messages
	4.3.1 The message descriptor
	4.3.2 Data conversion
	4.3.3 Message formats
	4.3.4 Chaining portions of a message together

	4.4 Interacting with a WebSphere MQ infrastructure
	4.4.1 WebSphere MQ client products
	4.4.2 Core facilities provided to a WebSphere MQ application

	4.5 Units of work and transactions
	4.5.1 Local units of work
	4.5.2 Syncpoint
	4.5.3 Commit and back out
	4.5.4 Uncommitted messages
	4.5.5 Global units of work
	4.5.6 Coordination of global units of work
	4.5.7 Two-phase commit
	4.5.8 The XA specification
	4.5.9 The extended transactional client
	4.5.10 Failure handling and tolerance

	4.6 Point-to-point messaging with WebSphere MQ
	4.6.1 Retrieving messages from queues
	4.6.2 Hosting services on queues
	4.6.3 Backout queues and backout counts
	4.6.4 Event-driven services
	4.6.5 Send and forget messaging
	4.6.6 Distribution lists
	4.6.7 Segmentation of messages
	4.6.8 Logical grouping of messages
	4.6.9 Reports
	4.6.10 Confirmation of arrival and confirmation of delivery reports
	4.6.11 Synchronous request/reply messaging
	4.6.12 Partially synchronous request/reply messaging
	4.6.13 Message expiry
	4.6.14 Reply-to queue considerations
	4.6.15 Processing of messages by a service

	4.7 Publish/subscribe messaging
	4.7.1 WebSphere MQ publish/subscribe broker
	4.7.2 Interacting with the WebSphere MQ publish/subscribe broker
	4.7.3 Streams
	4.7.4 Registration
	4.7.5 Topics
	4.7.6 Publications
	4.7.7 Extending the WebSphere MQ publish/subscribe capabilities

	Chapter 5. Understanding and configuring queue managers
	5.1 Installation information
	5.1.1 Review available WebSphere MQ maintenance
	5.1.2 Statement of environment

	5.2 WebSphere MQ administration interfaces
	5.2.1 WebSphere MQ Explorer
	5.2.2 WebSphere MQ Explorer Healthcheck plug-in
	5.2.3 WebSphere MQ control commands
	5.2.4 WebSphere MQ for iSeries control language commands
	5.2.5 WebSphere MQ for z/OS commands
	5.2.6 WebSphere MQ Script (MQSC) commands
	5.2.7 Programmable command formats (PCFs)

	5.3 The queue manager
	5.3.1 Queue manager naming
	5.3.2 WebSphere MQ objects
	5.3.3 Queue sharing groups on WebSphere MQ for z/OS
	5.3.4 Queue manager structure and creation
	5.3.5 The default queue manager
	5.3.6 The queue manager object
	5.3.7 Starting and ending a queue manager
	5.3.8 Providing network access to a queue manager
	5.3.9 WebSphere MQ listener
	5.3.10 WebSphere MQ for z/OS channel initiator
	5.3.11 The dead letter queue
	5.3.12 The command server
	5.3.13 Logging
	5.3.14 Media recovery
	5.3.15 Error logs
	5.3.16 64-bit hardware

	Chapter 6. Technical introduction to message queuing
	6.1 Message queue interface
	6.1.1 WebSphere MQ message descriptor (MQMD)
	6.1.2 Completion codes and reason codes
	6.1.3 MQCONN and MQCONNX
	6.1.4 MQOPEN and MQCLOSE
	6.1.5 MQPUT
	6.1.6 MQPUT1
	6.1.7 MQGET
	6.1.8 MQBEGIN
	6.1.9 MQCMIT and MQBACK
	6.1.10 MQINQ and MQSET
	6.1.11 MQDISC

	6.2 Queues
	6.2.1 Queue name resolution
	6.2.2 Local queue objects and transmission queues
	6.2.3 Alias queue objects
	6.2.4 Model queue objects and dynamic creation of local queues
	6.2.5 Remote queue objects
	6.2.6 Default attributes and authority checks
	6.2.7 Queue status and online monitoring for queues

	6.3 Triggering
	6.3.1 Generation of trigger events
	6.3.2 Initiation queues and trigger messages
	6.3.3 Trigger monitors

	Chapter 7. Queue manager intercommunication and client connections in WebSphere MQ
	7.1 Channels
	7.1.1 Introduction to client channels
	7.1.2 Message channel agents (MCAs)

	7.2 Starting and stopping channels
	7.2.1 Understanding channel status
	7.2.2 Channel names

	7.3 Client channels
	7.3.1 Operation of client channels
	7.3.2 Server connection channel objects
	7.3.3 Security considerations
	7.3.4 Configuring a client MCA to connect to a queue manager
	7.3.5 Client connection channel objects
	7.3.6 Client channel definition table (CCDT)

	7.4 Distributed message channels
	7.4.1 Message transmission
	7.4.2 Batches
	7.4.3 Indoubt channels and sequence numbers
	7.4.4 Disconnection intervals
	7.4.5 Connection names
	7.4.6 Receiver channel objects
	7.4.7 Requester channel objects
	7.4.8 Sender channel objects
	7.4.9 Server channel objects
	7.4.10 Valid distributed message channel object pairs
	7.4.11 Message delivery failures
	7.4.12 Dead letter queue handling
	7.4.13 Channel initiation

	7.5 Channel auto-definition
	7.5.1 Channel auto-definition for client channels
	7.5.2 Channel auto-definition for distributed message channels

	Chapter 8. Queue manager clusters
	8.1 Overview of clustering concepts
	8.1.1 Full and partial repository queue managers
	8.1.2 Cluster names
	8.1.3 Configuring a queue manager as a full repository
	8.1.4 Cluster message channels
	8.1.5 Cluster receiver channels
	8.1.6 Cluster sender channels
	8.1.7 Sharing queue objects within clusters
	8.1.8 Queue manager identifier (QMID)
	8.1.9 Cluster subscriptions and publications

	8.2 Viewing cluster repository information
	8.2.1 Viewing repository information in MQSC
	8.2.2 Viewing repository information in WebSphere MQ Explorer

	8.3 Actions on queue managers in a cluster
	8.3.1 Suspending and resuming a queue manager within a cluster
	8.3.2 Resetting a queue manager’s cluster membership
	8.3.3 Steps to join a queue manager to a cluster
	8.3.4 Steps for a queue manager to leave a cluster

	8.4 Workload balancing
	8.4.1 Bind on open and bind not fixed
	8.4.2 The workload balancing algorithm
	8.4.3 Destination sequence numbers
	8.4.4 Put disabling queues
	8.4.5 Workload balancing and locally hosted queues
	8.4.6 Ranking queue managers and queues
	8.4.7 Suspending queue managers in the cluster
	8.4.8 Channel status
	8.4.9 Prioritizing queue managers and queues
	8.4.10 Limiting cluster connections from a queue manager
	8.4.11 Weighting queue managers

	Chapter 9. Hands-on introduction to messaging with WebSphere MQ
	9.1 Overview of the hands-on chapters of this book
	9.1.1 Administration of queue managers
	9.1.2 WebSphere MQ sample programs

	9.2 Environment setup
	9.2.1 WebSphere MQ V6.0 installation
	9.2.2 WebSphere MQ administrator privileges
	9.2.3 Accessing the WebSphere MQ samples
	9.2.4 Java considerations

	9.3 Messaging with a local queue manager
	9.3.1 Create a default queue manager on the machine
	9.3.2 Start the default queue manager on the machine
	9.3.3 Define a new locally hosted queue
	9.3.4 Display the attributes of the newly created queue
	9.3.5 Alter the attributes of a queue object
	9.3.6 Put test messages onto this queue
	9.3.7 Browse messages put to the queue
	9.3.8 Defining and putting to an alias of a locally hosted queue
	9.3.9 End and restart the queue manager
	9.3.10 Get messages from a queue
	9.3.11 Delete a queue object
	9.3.12 Define a queue manager alias using a remote queue object
	9.3.13 Specify a queue manager name when opening a queue
	9.3.14 Delete the queue manager

	9.4 Host a request/reply service on a queue
	9.4.1 Create and start a queue manager to host the service
	9.4.2 Create a queue to host the service
	9.4.3 Manually define a reply-to queue
	9.4.4 Put an example request message and inspect it
	9.4.5 Clear the requests from the queue hosting the service
	9.4.6 Create a process definition for the service
	9.4.7 Create a queue to use as an initiation queue
	9.4.8 Enable triggering on the queue hosting the service
	9.4.9 Start the WebSphere MQ trigger monitor
	9.4.10 Issue a request against the service
	9.4.11 Define a model queue object for a dynamic reply-to queue
	9.4.12 Issue requests using a temporary dynamic reply-to queue

	9.5 WebSphere MQ publish/subscribe with JMS
	9.5.1 Configure the JMS environment
	9.5.2 Create and start a queue manager
	9.5.3 Start the broker on the queue manager
	9.5.4 Configure the queue manager for JMS publish/subscribe
	9.5.5 Set up a simple JMS provider
	9.5.6 Use WebSphere MQ JMS Administration tool to configure JMS
	9.5.7 Make a copy of the WebSphere MQ sample JMS application
	9.5.8 Modify the WebSphere MQ sample JMS application
	9.5.9 Compile the sample application
	9.5.10 Start the sample as a subscriber
	9.5.11 Start the sample as a publisher

	Chapter 10. Hands-on guide to building WebSphere MQ infrastructure
	10.1 Environment setup
	10.2 Connect as a client to a queue manager
	10.2.1 Create and start a listener
	10.2.2 Create a server-connection channel object
	10.2.3 Connect using the MQSERVER environment variable
	10.2.4 Connect using a client-connection channel object
	10.2.5 Perform remote administration of a queue manager
	10.2.6 JMS publish/subscribe sample using a client connection

	10.3 Build a hub and spoke infrastructure
	10.3.1 Create a dead letter queue on the hub queue manager
	10.3.2 Create a receiver channel object on the hub queue manager
	10.3.3 Create and start a spoke queue manager with a listener
	10.3.4 Create a transmission queue on the spoke queue manager
	10.3.5 Create a sender channel object on the spoke queue manager
	10.3.6 Test the channel using a WebSphere MQ ping
	10.3.7 Configure the channel to the hub to be initiated
	10.3.8 Put a test message through the channel to the hub
	10.3.9 Create a receiver channel object on the spoke queue manager
	10.3.10 Create a transmission queue on the hub queue manager
	10.3.11 Create a sender channel object on the hub queue manager
	10.3.12 Create a local definition of a remote queue
	10.3.13 Define a reply-to queue on the spoke queue manager
	10.3.14 Request the echo service using a spoke queue manager

	10.4 Create a queue manager cluster
	10.4.1 Create queue managers
	10.4.2 Assign queue managers as full repositories
	10.4.3 Create cluster receiver channel objects
	10.4.4 Create cluster sender channel objects
	10.4.5 View information about the cluster
	10.4.6 Share queues in the cluster
	10.4.7 Enable workload balancing with a local instance of a queue
	10.4.8 Workload balance messages across available queue instances
	10.4.9 Share the echo service in the cluster
	10.4.10 Share the queue providing the echo service in the cluster

	Chapter 11. Securing a WebSphere MQ infrastructure
	11.1 Administering a WebSphere MQ installation
	11.2 Granting access to queue manager resources
	11.2.1 The Object Authority Manager (OAM)
	11.2.2 Object authority in WebSphere MQ for z/OS

	11.3 Establishing identity context for client applications
	11.3.1 WebSphere MQ default behavior for establishing identity
	11.3.2 MCA user identifier

	11.4 Secure Sockets Layer (SSL)
	11.4.1 Support for SSL in WebSphere MQ
	11.4.2 CipherSpecs
	11.4.3 Transport Layer Security (TLS)
	11.4.4 Required or optional SSL client authentication
	11.4.5 Queue manager certificate repositories
	11.4.6 Administering certificate repositories for WebSphere MQ
	11.4.7 WebSphere MQ client applications
	11.4.8 Java applications accessing WebSphere MQ as clients
	11.4.9 SSL considerations for the WebSphere MQ Explorer
	11.4.10 Certificate revocation lists
	11.4.11 Choosing a certificate authority
	11.4.12 Validation of distinguished name using SSL Peer
	11.4.13 Federal Information Processing Standard (FIPS) compliance

	11.5 WebSphere MQ internet pass-thru (IPT)

	Chapter 12. Troubleshooting
	12.1 Primary information provided by WebSphere MQ
	12.1.1 AMQXXXX messages
	12.1.2 Reason codes
	12.1.3 Queue manager error logs
	12.1.4 WebSphere MQ system error logs
	12.1.5 Error log locations
	12.1.6 First-failure support technology (FFST)
	12.1.7 WebSphere MQ documentation

	12.2 Solving known problems
	12.2.1 The WebSphere MQ support Web site
	12.2.2 Applying maintenance
	12.2.3 Flashes
	12.2.4 Searching APARs and Technotes
	12.2.5 Further sources of information
	12.2.6 WebSphere MQ Explorer Healthcheck plug-in

	12.3 Common problems building an infrastructure
	12.3.1 Troubleshooting distributed message channels
	12.3.2 Troubleshooting message channel initiation
	12.3.3 Troubleshooting cluster message channels

	12.4 Common problems accessing an infrastructure
	12.4.1 Troubleshooting connection failures to a queue manager
	12.4.2 Troubleshooting failures sending messages
	12.4.3 Troubleshooting failures getting messages
	12.4.4 Troubleshooting common triggering problems
	12.4.5 Finding a message put into the infrastructure

	12.5 Gathering documentation for service
	12.5.1 Providing a description of the observed issue
	12.5.2 Environment details
	12.5.3 Describing the use of WebSphere MQ
	12.5.4 Collecting failure documentation to send to IBM Service
	12.5.5 Re-creating the issue
	12.5.6 WebSphere MQ trace

	Appendix A. Functionality new to WebSphere MQ V6.0
	The WebSphere MQ Explorer
	PCF commands on WebSphere MQ for z/OS V6.0
	64-bit queue managers
	Internet Protocol Version 6 (IPv6)
	Changes to SSL on Windows
	SSL and TLS improvements and FIPS certification
	Built-in publish/subscribe broker
	WebSphere MQ as a transport for Web services
	Queue sharing group enhancements on z/OS
	Queue manager cluster workload balancing
	Administering connections to a queue manager
	Consistent method for starting and stopping listeners
	Custom services started and stopped with a queue manager
	Filtering of information about a queue manager
	Improved real-time monitoring information
	Accounting information
	Statistics information
	Trace-route for WebSphere MQ infrastructures
	Logging enhancements on distributed platforms
	Dynamic configuration of queue managers on z/OS
	Log shunt on WebSphere MQ for z/OS

	Appendix B. Quick reference
	WebSphere MQ control commands
	WebSphere MQ for iSeries CL commands
	WebSphere MQ message descriptor (MQMD) fields
	Message queue interface (MQI) verbs
	The WebSphere MQ Script (MQSC) command interface
	The queue manager object
	MQSC command for the queue manager object
	Queue manager object attributes

	Listener objects
	MQSC commands for listener objects
	Attributes for listener objects

	Service objects
	MQSC commands for service objects
	Attributes for service objects

	Namelist objects
	MQSC commands for namelist objects
	Attribute for namelist objects

	Queue objects
	Types of queue objects
	MQSC commands for queue objects
	Attributes for all queue objects
	Queue attributes for workload balancing within clusters
	Attributes for local queues, including dynamic queues
	Attribute for alias queue objects
	Attributes for local definitions of remote queues
	Attributes for queue manager aliases
	Attributes for reply-to queue aliases

	Cluster queue records
	MQSC command for cluster queue records
	Attributes of cluster queue records

	Cluster queue manager records
	MQSC command for cluster queue records
	Attributes of cluster queue manager records

	Channels and channel objects
	Types of channel objects
	MQSC commands for channel objects
	Attributes of channel objects
	MQSC commands for controlling channels

	Channel status records
	MQSC command for channel status records
	Attributes of channel status records

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

