Lotus. software

Portalizing Domino
Applications for
WebSphere Portal

Integrating existing Domino
applications into a portal

Portlet builders from IBM,
Bowstreet, and CONET

~ Step-by-step integration
techniques applied to
practical scenarios

Tommi Tulisalo
Christopher Heltzel
Camilo Rojas
Michael Ticknor
Oliver Trabert
Marko Viksten

ibm.com/redbooks Red h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Portalizing Domino Applications
for WebSphere Portal

September 2003

SG24-7004-00

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

First Edition (September 2003)

This edition applies to IBM Lotus Domino 6 and IBM WebSphere Portal 4.2.

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices vii
Trademarks viii
Preface iX
The team that wrote this redbook. iX
Become a publishedauthor Xi
Comments WelCOME.t Xi
Chapter 1. Introduction to portalizing Domino applications. 1
1.1 Theportal vision e 2
1.2 Introduction to WebSphere Portal 2
1.2.1 Theworkplacesidea. 4
1.2.2 What the workplace means for Domino applications 6
1.2.3 Benefits of WebSphere Portal and Lotus Domino together 7
1.3 Integrating Domino applications into portlets and workplaces 9
1.3.1 Introductiontoportlets. 9
1.3.2 Portletapplications 10
1.3.3 Introductiontoplaces i 11
1.3.4 The portalizing process.t 14
1.3.5 The portalizingchallenge 15
1.3.6 Domino applications 16
1.3.7 Portletpatterns 19
1.3.8 Considerations for the portletdesign 22
1.3.9 Considerationst e 28
1.4 Portal architecture considerations., 31
1.4.1 Page aggregationconcept i 31
1.4.2 Themesandstyles i 32
1.4.3 Page customization. 33
1.4.4 Using Domino LDAP with WebSphere Portal 34
1.5 Summary e 35
Chapter 2. Integrationtechniques................................ 37
2.1 Choosing an integration technique 38
2.1.1 Step 1: Pre-project preparation and training. 38
2.1.2 Step 2: Identify project requirements and considerations. 39
2.1.3 Step 3: Select the appropriate portletpattern. 39
2.1.4 Step 4: Select the appropriate integration technique 40
2.2 Integration techniques and developmentoptions 41
2.2.1 Usingexistingportlets. i 42

© Copyright IBM Corp. 2003. All rights reserved. iii

2.2.2 Domino JSP tag libraries. 44

2.2.3 Developing Domino portletsusingdJava 45
224 Portletbuilders 46
2.3 Case study: A simple sales tracking application 47
2.4 Deployingthe case studyportlets, 54
241 Installportlets 54
242 Creatingaplace 56
243 Crealing apage. . .« oo vv it e 57
2.4.4 Addingportletstoapage 58
Chapter 3. Using existingportlets. 63
B OVEIVIEBW . . oot e e 64
3.1.1 Technologiesinvolved. 64
3.1.2 Softwareandtoolsused 64
3.1.3 Integrationtechniques. 65
3.2 Integrate using the QuickLinks portlet. 65
3.2.1 Considerations i 66
3.2.2 Implementationdetails 67
3.3 Integrate using the Web Page portlet 74
3.3.1 Considerations 74
3.3.2 Implementation details 75
3.4 Integrate using the Web Clipping portlet. 79
3.4.1 Considerations 80
3.4.2 Implementation details 81
3.5 Integrate using Lotus Notes portlets 98
3.5.1 Lotus Notesportlets 98
3.5.2 Considerations i 99
3.5.3 Implementationdetails 100
3.6 Integrate using XML helperand RSS portlets. 107
3.6.1 Considerations it 108
3.6.2 Implementation details 109
3.7 Integrate using multiple portlets 121
3.7.1 Considerationst 121
3.8 Reference material 136
Chapter 4. Using custom Domino JSP tag libraries 137
4.1 Overview of the Domino custom JSP Tag option 138
4.2 Technologiesinvolved. i 138
421 J2ZEE OVerVIEW 139
422 JavaServer Pages.t 143
4.3 Software andtoolsused 149
4.3.1 WebSphere Studio Application Developer5.................. 150
4.3.2 WebSphere Portal Toolkit for WebSphere Studio4.2.5......... 153

Portalizing Domino Applications for WebSphere Portal

4.3.3 Lotus Domino Toolkit for WebSphere Studio1.0 154

4.4 Integrationtechniques. i 156
4.5 Integration using Domino custom JSP Taglibraries 159
451 OVeIVIEW . . oot e e e 160
452 Considerationsi i e 167
4.5.3 Implementationexample. 168
4.5.4 Conclusions to the custom Domino tags integration technique ... 198
4.6 Integration via Clickto Action i 199
46.1 Clickto Action e 199
4.6.2 Considerationst 203
4.6.3 Implementation of the technique. 203
4.7 Integration via people awarenessc. i 215
4.7.1 People awareness.ttt e 215
4.7.2 Implementation of the technique. 219
4.8 Reference Material 222
Chapter 5. Portlet development using Java: Technology review 225
B OVeIVIEW . o o 226
5.1.1 Technologiesinvolved. 226
5.2 Technical introductionto portlets. 227
5.2.1 Basicportletterms 227
5.2.2 Model-view-controller (MVC) design pattern. 227
5.2.3 Portlet APl overview 229
5.2.4 Portletsandthe Serviet APl 229
5.2.5 Portletconcepts 231
5.2.6 Portletapplications 232
5.2.7 Basic elements of the Portlet API 233
5.2.8 Frequentlyusedobjects 235
5.2.9 Configurationobjects 240
5.2.10 Miscellaneousobjects. i 242
5.2.11 Portletevents 244
5.8 Accessing Domino data from portlets using Java and CORBA. 247
5.4 Domino objectsfordava APl. 255
55 DominoRich Text 264
5.6 Lotus Collaborative Components APl 270
5.7 Domino 6 new featuresforDIIOP 273
5.8 Object pooling oot 274
5.9 Loggingfromportlets. e 282
5.10 Struts Portal framework. 287
5.11 General portlet development guidelines 295

Chapter 6. Portlet development using Java: Integration examples 305
6.1 Software andtoolsused i 306

Contents v

6.1.1 Domino Toolkit forJavaversion2.1 306

6.1.2 Hybrid integration techniques 306
6.2 Search functionality. 308
6.3 Pagingthroughtheview i ... 310
6.4 HelloWorldFromDominoServer portlet 313
6.5 Using JavaBeans inthe sample portlet. 324
6.6 Browsing Domino ACL portlet......... 329
6.7 Howtouse logd)o e 338
6.8 Session POOliNg.ot 342
6.9 Reference material, links, Redbooks. 352
Chapter 7. Portletbuilders 355
7.1 Overview of the portlet buildersoption 356
7.2 IBM Portlet BuilderforDomino i 356

7.2.1 Implementationdetails 359

7.2.2 Implementationexample. 371
7.3 Bowstreet Portlet Factory for WebSphere. 372

7.3.1 Implementationdetails 377

7.3.2 Implementationexample. i 390
7.4 CONET Portlet Factory forDomino. 394
7.5 Implementing the Sales Workplace example 403
7.6 Other portletbuilders. e 409

7.6.1 Sofor Interactive Portlet Builder forDomino 409

7.6.2 Aptrix Portlet Connector 411
Appendix A. Data dictionary forcasestudy....................... 415
A1 Product Form 416
A2 SalesPerson Form. e 416
A3 Customer FOrm e e 417
A.4 Customer Contact Form 418
A5 Sales Activity Form e 419
Appendix B. Additional material 421
Locating the Web material i 421
Usingthe Web material 421
Related publications 423
IBM Redbooks e 423
Other publications 423
ONliNE rESOUICES . .\ v vttt et e e e e e e 424
Howtoget IBM Redbooks 426
Help from IBM e 426
INdeX . .. e 427

Vi Portalizing Domino Applications for WebSphere Portal

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2003. All rights reserved. vii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

@server ™ Domino™ Lotus®
developerWorks® Domino Designer® Notes®

ibm.com® DB2® QuickPlace®

iNotes™ Everyplace® Redbooks™

iSeries™ IBM® Redbooks (logo) (@ ™
zSeries® Lotus Discovery Server™ Sametime®

AIX® Lotus Enterprise Integrator® WebSphere®

CICS® Lotus Notes®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

viii Portalizing Domino Applications for WebSphere Portall

Preface

This IBM® Redbook describes how to integrate existing Domino™ applications
into the IBM WebSphere® Portal. We have coined the term “portalizing” to
describe this effort.

We begin by explaining why portal integration is so useful for any company that
has a Domino environment, and the importance of integrating Domino
applications into the WebSphere Portal. We also explain some of the key
concepts of portals and Domino application integration, and outline some
recognized design patterns for Domino application integration.

Next, we preview the recognized integration options which are described in detalil
later in the book. We also introduce the sample Domino application we used for
our portalizing exercises throughout the book.

The following chapters present detailed discussions about the integration options
currently available:

» Using existing portlets that ship with WebSphere Portal, including QuickLinks,
Web page, Web Clipper, NotesView, XML/XSL Helper, and RSS portlet

» Using custom Domino JSP tag libraries

» Using Java programming

» Using portlet builders, including software products from IBM, Bowstreet,
CONET, and others

For each of the integration options, we provide an overview of the technology, an
introduction to the software and tools used, and step-by-step examples of using
the techniques to portalize our sample Domino application.

This book is aimed at Domino application developers or anyone else who wants
to learn how to portalize their Domino applications.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Cambridge Center.

Tommi Tulisalo is a Project Leader for the International Technical Support
Organization at Cambridge, Massachusetts. He manages projects whose
objective is to produce redbooks on all areas of Lotus® Software products.

© Copyright IBM Corp. 2003. All rights reserved. ix

X

Before joining the ITSO in 2001, he was an IT Architect for IBM Global Services
in Finland, designing solutions for customers, often based on Lotus software.

Christopher Heltzel is an Advisory I/T Specialist with IBM Software Services for
Lotus (ISSL). Christopher has over six years of IT consulting experience in the
areas of application development, systems administration, and collaborative
technologies. He is a Principal Certified Lotus Professional in System
Administration R4.5 and a Principal Certified Lotus Professional in Application
Development R4-5 and ND6. He received his B.S. in Microbiology from Texas
A&M University.

Camilo Rojas is an Accredited IT Specialist at IBM Colombia. He been working
with the WebSphere family of products for 3 years. Currently he works the
WebSphere Portal server and Foundation products. He is certified in WebSphere
Application Server 4, WebSphere Studio Application Developer 4, WebSphere
Portal 4.1 and he is a Principal Certified Lotus Professional in Application
Development R5. His areas of expertise range from Java (J2EE) development, to
analysis of systems architecture, open source software and solution design. Prior
to joining IBM, Camilo worked with Global DataTel with Lotus Domino services.
Camilo can be reached at: camilor@ co.ibm.com®

Michael Ticknor is an Advisory I/T Specialist for IBM Software Services for
Lotus in Cincinnati, Ohio. He has over 9 years of experience designing and
developing mission-critical applications using a wide range of Lotus, WebSphere,
and Internet-based technologies. He is a Sun Certified Web Component
Developer for the J2EE Platform and a Principal Certified Lotus Professional for
Notes® and Domino Application Development (R4, R5, & Notes & Domino 6). He
holds a B.S. in Computer Science from the University of Kentucky. Contact
Michael at michael_ticknor@ us.ibm.com.

Oliver Trabert is a Senior Consultant with WP-Experts in Cologne, Germany
(http://www.wpexperts.com). Oliver trains and coaches IBM/Lotus Business
Partners who want to build a WebSphere Portal business practice. He has been
involved in portalizing Domino applications since WebSphere Portal 2.1.
Previously he worked for CONET and developed the idea and concepts for the
CONET Portlet Factory product. Oliver specializes in developing high
performance Domino/Portal integrations using Domino object pooling and
advanced data caching. Oliver holds a Master of Science degree from
Rheinische Friedrich-Wilhelms-University Bonn. You can contact Oliver at
otrabert@wpexperts.com.

Marko Viksten is an IT Architect with IBM Global Services, Helsinki, Finland.
Working in Business Consulting Services, his primary responsibility is designing
and implementing WebSphere Portal-based projects, which often have strong
emphasis in integrating Domino and collaborative technologies. Marko is also a

Portalizing Domino Applications for WebSphere Portal

Principal Certified Lotus Professional in Application Development. He has more
than seven years of experience in the IT technology sector.

The following IBM Redbooks™ and Redpapers have been extremely useful to
the team and we have adapted and reused some of the content from these
publications:

» IBM WebSphere Portal Application Developers Handbook, SG24-6897.
» WebSphere Portal Collaboration Services, REDP0319.

The team would like to say special thanks to Carl Kriger, Sr. Marketing Manager,
Lotus Workplaces, for direction and contributions.

Thanks to the following people for their contributions to this project:

Alan Lepofsky, Peter Janzen, Steve Leland, Lun Xiao - IBM Software Group
Jonathan Booth, Nicole Carrier, Brian Chaput, Ted Snyder, Dee Zepf - Bowstreet
Markus Marenbach - CONET AG

William Tworek - ITSO Cambridge Center

Alison Chandler - ITSO Poughkeepsie Center

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,

Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

» Use the online Contact us review redbook form found at:
ibm.com/redbooks

» Send your comments in an Internet note to:
redbook@us . ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099

2455 South Road

Poughkeepsie, New York 12601-5400

Xii Portalizing Domino Applications for WebSphere Portal

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Introduction to portalizing
Domino applications

In this chapter we introduce WebSphere Portal and discuss the important role of
Domino integration into the Portal. We show that for companies moving towards
WebSphere Portal it is essential to be able to seamlessly integrate Domino
applications.

There are many options for Domino integration into the Portal, and no one
method fits all needs. Using a portalizing methodology can assist you in making
the right choice for your specific requirements.

We also discuss important aspects of the Portal architecture that you need to
understand to successfully portalize Domino applications.

© Copyright IBM Corp. 2003. All rights reserved.

1.1 The portal vision

Portals serve as a simple, unified access point to applications. Portals also do
much more: they provide valuable functions like security, search, collaboration,
and workflow. A portal delivers integrated content and applications, plus a
unified, collaborative workplace. Indeed, portals are the next-generation desktop,
delivering e-business applications over the Web to all kinds of client devices.

A complete portal solution should provide users with convenient access to
everything they need to get their tasks done anytime, anywhere, in a secure
manner. IBM's vision is that portals are the key to reach users and give them the
experience of an e-business application. That is, portals provide the tools and
user interface to access information and applications, and to manage the
selection and personalization of content.

1.2 Introduction to WebSphere Portal

2

IBM WebSphere Portal allows you to establish customized portals for your
employees, Business Partners, and customers. As illustrated in Figure 1-1, the
framework architecture implemented in this product provides a unified access
point to internal and external Web applications as well as portal access to other
legacy applications. In this way, users sign on to the portal and receive
personalized Web pages.

Cansumer BZB Employee Investor
Partal Portal Portal Portal

Horizontal Portals Infrastructure

Figure 1-1 Horizontal and vertical portals

IBM WebSphere Portal was designed in response to the following fundamental
business objectives:

» A single point of access to all resources associated with the portal domain
» Personalized interaction with the portal services

» Federated access to hundreds of data types and repositories, aggregated and
categorized

» Collaboration technologies that bring people together
» Integration with applications and workflow systems

Portalizing Domino Applications for WebSphere Portal

IBM and many industry analysts have coalesced around the concept of
horizontal and vertical portals. Horizontal portals are the primary infrastructure
upon which a portal is built. Vertical portals are built upon the horizontal layer and
represent a specific portal instance, usually defined by a major topic or domain.

As illustrated in Figure 1-2, the horizontal portal infrastructure consists of several
modular subsystems including the following:

>

>

Presentation layer - a Web user interface plus pervasive device support

Personalization - the ability to serve dynamic response to the user based on
personal profiles

Collaboration - tools that allow e-mail, team rooms, shared places, and so
forth to be exchanged

Portlets - a framework for easily attaching software modules (portlets) and
services

Applications and workflow - integration of legacy and new applications

Search and navigation - categorizing repositories of content and searching
them for relevant information

Publish and subscribe - the ability to author new content and publish it to
subscribers

Administration and security - basic Web site services such as page designers,
performance monitors, cluster services, and metadata management
Integration (metadata sharing, XML, connectors, standards, EAI).

Chapter 1. Introduction to portalizing Domino applications 3

Proguremenl e-Commerce Operalions L]
Portal Partal Partal \

Sell Service Sabes Support Employes
Partal Paorial Parial | Types ol
[Partal
Busginess CRM ConsUmsr
Portal Partal Portal |

Prasentation Services

Personalization Collaboration 1
Categorize b
| WebSphere
Publigh amd Administration | Portal
Integraticn Portlets f
Subscribe and Security f

Connectivity Services

Commercial and Siruclured and People and Apglications \
Ewmq Feeds Unsirucly Parlners \
o Data | ! Enderprigs
! | @ H ¢ HAesources
- ::I - 'Il.

Figure 1-2 WebSphere Portal architecture

WebSphere Portal provides additional services such as single sign-on, security,
Web content publishing, search, personalization, collaboration services,
enterprise application integration, support for mobile devices, and site analysis.

Note: WebSphere Portal provides an extensible framework for interacting with
enterprise applications, content, people, and processes. Self-service features
allow end users to personalize and organize their own view of the portal, to
manage their own profiles, and to publish and share documents with their
colleagues.

1.2.1 The workplaces idea

The workplace is a central concept of the WebSphere Portal. A workplace offers
a portal user a view that is role-based, and delivers information based on the
business function need within the organization. That means it gives us a single
point of access to all the applications and information that we need to do our job.
This implies that different users will get access to different applications. And
within the application different functions and content. Bottom line, the workplace

4 Portalizing Domino Applications for WebSphere Portal

provides us with a tailored view that helps us to perform our specific business

tasks and functions.

A workplace can include a large variety of applications. A few of those are very
obvious - mail and calendar, for example - but you also see other business
applications like HR, CRM, Learning and many more systems.

Figure 1-3 shows an example workplace.

Content Management Corporate Messages

Applications IEEYE]
~

» Skills and Leaming
= Glohal Campus
= Americas Procurement Guide
¥ Team Tools
» Sametime emeetings
= Samelime Gonnect
» QuickPlace
* Meeting Wizard
= AudioNideo Conference
= |BM Teammooms
» Human Resources
= Conbact and Phone list
P« Foms and apps
* Marager services

D oswnload Central =] [T B3

Test software is now
availeble o IS5 website!
» System Chack
= |BM Standard software insfaller
= alphavorks
= developariiorks

| | Trovel and Exnenses [Eon]>]

Team Tools—1”

e-HR

Tools, Apps & Links =] S PN

April 10, 7001 1:30pm (White Plains)

Welcome, Sandesh Bhat -

Elccaibad

/ ¥ know the business

ibm .

wins

* \ranscript avalizble

Froat-end kudes; back-end ins

Fow units execute $AOM deal
+reap b apply the tools

MyNews upirades
Exdemal nens channel confert

©.husiness principals: Leam the husines
+ READ

om people who know

Messaging & Calendar_[=1 10 I

] Calendar

[schedule Meeting
SHMTWTFS
1234567
[8]9 101121314
145 16 17 18 49 20 24

nBuB WA N
 »

= EA2000 (expense
= Expense Accouri Siatus
= Online Travel [tinerary

Business_
Apps

gy Amex aniine stalements
= Travel website

¥ Todolist

Tl Read email

Send email

@ Notes address book

2 My Documents

= SiteSarv {IBM locafions)

= Herlz car rental reservations.

I
Mail &
Calendar

IBM Discussign Groups [E B
» Hardware
Harduuats inte, g, devalopirg,
= discuss hardware: server. el
= discuss hardware thinkpar 500
b Software
Sotsrareinto, peogramiming. languages. .
= discuss software il
= discuss software java.eib
» News and Articles
Nes

Bymbol_Ladt Change Volume

Tailored
News

& Anthory Insolia
19147002543 (T <20

= diseuss news. announce
= discuss news antiles
 discuss news wheris

[=] ET0 B3

Global campus releases
new ffehSphere courses

Leaming Resources

|

= Global Campus
= elearing Services
= IBM University Connection

= Redhooks

e-Learning

rali i
1212:746:7118 (Tie 243)
mosalin Bus Jbm.com

»1GS Hosting

Roy Lucchose
1203-086.7467 (Tie 376)
buoohesefus. bm com

(&) Jerry Lieherman
1945802815

) Vincen! Pavdowski
1-516-240-2120(Tie 263)
vipawlo@us b com

¥ My Customers.

MSFT 5610 056 46312 | People
CSCO 1362 131 07986 |
cPQ 1630 086 1134 |
DELL 2401 038 46,238 |
My Bluepages [=1 [B
» My Team
Peler Rodriguer
‘msmusmﬂem) | I“stant
§ R .
= tnpmm i, = T'Messaging
ananduafdis, b com |

| Expert
| Location

A Mike Boose Uniliver)

Figure 1-3 Dynamic workplace Example

In today’s world many of us work in more than just one function. For example: the
team members that wrote this book all have additional projects in the works.
Team members can easily switch between the team workplace for the Redbook
and their other project places. In the redbook project our role is content authors;
in other projects we have a variety of other roles, from programmer to project
leader to supervisor.

The workplace approach enables us to easily switch roles by just navigating
between different workplace. IBM calls this concept the Dynamic Work mode.

Chapter 1. Introduction to portalizing Domino applications

5

Attention: The “workplaces” word and concept used in this book should not
be confused with the new Lotus Workplace, which is the new platform for
collaboration built on J2EE and relational database technology. Lotus
Workplace combines market-leading collaborative capabilities with the
WebSphere Portal framework to enable simplified access to people,
information, and business processes on a single platform.

1.2.2 What the workplace means for Domino applications

6

It is important for us to understand why Domino integration into the Portal is so
significant. Our experience with large Domino customers is that, over time, they
utilized Domino for internal application development, and typically have
developed dozens—even hundreds—of proprietary applications that contain
critical data and business processes. If such a company now moves to
WebSphere Portal, it is vital for the success of the Portal to be able to seamlessly
integrate the Domino applications into the workplaces.

The history of Lotus Notes® and Domino

Let’s look at the history of Domino to get a better understanding of the
importance of Domino integration. In version 2, Notes was used primarily as an
e-mail system. In subsequent versions Lotus enhanced programming elements,
like the @Formula language, and views and forms that allowed users to build
simple applications. Companies were impressed by the rapid application
development concept that Notes introduced. Notes made it easy for developers
or even power users to prototype applications. This new paradigm in application
development was widely accepted by line of business (LOB) managers and
users, and helped build the success of Notes/Domino. Since version 4.5, Notes
could also be used for Web development; since then, it was ultimately accepted
by many IT departments as a full-blown development platform.

Today many companies rely on their Domino infrastructure for business and
mission-critical applications.

These range from document stores, to complex workflow applications supporting
supply chains, to B2B business exchange Web sites.

Portalizing Domino Applications for WebSphere Portal

3 R2 R3 R4 R4.5 RS R6

2 § Forms Forms Forms Forms Forms Forms
EE Views Views Views Views Views Views
eo @Formula @Formula @Formula @Formula @Formula @Formula

Agents Agents Agents Agents Agents

ODBC ODBC ODBC ODBC ODBC

Lotus Secript Lotus Secript Lotus Seript Lo
300 — HTML Pages HTML Pages
400 —| CRM Mission Critical
C-““Ga\ Intranet Application
\\!\-\6.;;\0“ Extranet platform!
300 \0(\\\{" o Reporting Internet
0 o Division News Pool Knowledge Base
o - :
200 Car Pool Licenses FAQ
Learning Space QA Database Blue Pages
Employees Holidays Release Library SRM

100 Competencies Software Lib Proposal DB Competitor Pool

Salaries e-Library Policies Corp. News

Time
Figure 1-4 Domino’s history: From e-mail only to a mission-critical platform

1.2.3 Benefits of WebSphere Portal and Lotus Domino together

If we consider the current situation—Domino is recognized as a successful and

reliable application infrastructure—we naturally need to raise the question why

not use it as our Portal Infrastructure as well? Why should we move to the
WebSphere Portal framework?

If you have worked with Domino to build larger applications, you might have
experienced a few limitations of the current Domino platform.

One of the most common challenges in developing large-scale Domino Web
applications is to make the Domino HTTP access scale and perform well under a
heavy load. Not that it isn’t possible, but it requires a lot of experience, and

sometimes you have to spend a lot of time, for example, to implement caching

strategies.

A workplace also has the need to implement personalization. On the one hand
you need to deliver content that is relevant to the user’s role, on the other you
also want to allow the user to filter the information that is presented to them.
Implementing this on Domino, for example executing queries on the fly, puts
heavy load on the Domino server and calls for a big investment in the server
hardware.

Chapter 1. Introduction to portalizing Domino applications

7

8

A portal most often serves as a single point of access into all systems of an
organization and therefore it is important to be able to implement interfaces into
other applications, besides Domino.

Taking these considerations into account, it makes sense to look at an alternative
scenario for a portal implementation. Not one where Domino is completely out of
the picture, but one that combines the strength and the scalability of a J2EE
application server platform with the strong collaboration and document-centric
capabilities of Domino.

Such a combination can have lots of advantages since it is:

>

Deeply integrated: WebSphere Portal provides the most robust integration
with IBM's entire software portfolio, including your Lotus infrastructure;
WebSphere Portal comes with out-of-the-box Portlets for IBM Lotus Notes
and Domino, IBM Lotus Instant Messaging (Sametime®), IBM Lotus
Discovery Server™, and much more.

Open: WebSphere Portal lets you integrate best-of-breed applications. IBM is
helping define the key open standards for the portal industry.

Comprehensive: WebSphere Portal provides a complete framework that lets
you answer all of your requirements for integrating your Lotus Domino assets
with a single, powerful portal infrastructure.

Right for Contextual Collaboration: WebSphere Portal weaves the advanced
collaborative capabilities of Lotus into your portal, enabling your organization
to achieve the highest level of productivity.

Secure: WebSphere Portal provides granular security at the level you need for
your applications and content. Use your Lotus Domino directory or other
LDAP source.

Flexible: WebSphere Portal lets you adjust the presentation of data for a wide
range of client devices.

Easily delegated: You can delegate sections of your portal to various
“downstream” groups, enabling them to manage their segment of the portal.

Personalized: Users can personalize content within portlets based on profiles
and business rules.

Global: WebSphere Portal supports multiple languages, enabling you to
support your global organization.

Portalizing Domino Applications for WebSphere Portal

1.3 Integrating Domino applications into portlets and
workplaces

In this section we look at the methodology with which Domino applications can
be portalized, that is, transformed and embedded into a portal.

To better understand this we need to first introduce the concepts of portlets and
places.

1.3.1 Introduction to portlets

Portlets are the heart of a portal. The term portlet refers to a small portal
application, usually depicted as a small box on the Web page. Figure 1-5 shows
a sample Web page that contains six portlets.

V'

Collabar

Tuesday, May 20,2003 9:59:00 AM EST

- IBM 86,38 -0.07 -0.08%
a $COMPQ 149984 7.07 047%
IBM WebSphere Portal Server 4.2 a $DII 3,523.50 30.20 0.36%
Build Level: 063 2003-01-09 19:36 L $5PX 972,57 1.80 0.20%

$N22Z5 §,039.153 0.00 0.00%
$GDAX 2,850,658 0.00 0.00%

Data delayed at least 20 minutes,

Licensed Materials - Property of IBM
5724-BES

(C) Copyright IBM Carp. 2001, 2003 All Rights
Reserved,

I— Get Quote | Symbol Lookup
q& Copyright 2003 Pinnacor Inc,

Reminder

Tuesday, May 20,2003 12:15:00 PM GMT

Tuesday, May 20, 2003
M Read the Readme for important
inforrnation

Cambridoe, Massachusetts 63° " §
Maostly Sunny Spe 790 o o

Two U.S. soldiers stand next € Enjoy Your Portall
Kiiln, Germany 5@ to Iragi men looking for lost
Maostly Sunny 33e/60° relatives among the piles of B -
hurnan remains after they .
were exhurmed from a mass D Guide to WebSphere Portal
Santa Fe De Bogota, Colombia 55° i i R
grave in Mahawil, {Agence D 7
Partly Cloudy 55e/7ze France-Presse AFP B o
International Telephoto wiebSphers Portal: The Big Picture
Cincinnati, Ohio 69° Service) webSphere Portal Product
X Owvercast 47°/69° Evidence May Be Lost in Mass Graves Docurnentation
b
FULL STORY === webSphere Portal Zone
Helsinki, Finland s0° WebSphere Portal Catalog
sunny 4z°/54° World News

wiebSphere Portal Support
wiebSphere Portal Offerings

Evidence May Be Lost in Mass Graves

Koreas squaring off on nuclear issue

Bomb Explosion Kills One In Cafe in
Turkish Capital

Figure 1-5 Portal page with several portlets displaying weather, news, and so forth

\-& Copyright 2003 Pinnacor Inc,

Chapter 1. Introduction to portalizing Domino applications 9

Portlets are reusable components that provide access to applications,
Web-based content, and other resources. Web pages, Web services,
applications, and syndicated content feeds can be accessed through portlets.

Portlet modes

Portlet modes allow a portlet to display a different user interface, depending on
the task required of the portlet. A portlet has several modes of display, which can
be invoked by icons on the portlet title bar: configure, edit, and help. The portlet
shown in Figure 1-6 is currently displayed in view mode.

My Weather

Tuesday, May 13,2003 12:20:00 PM GMT

Cambridge, Massachusetts 55¢
Partly Sunny 434607

Figure 1-6 Portlet modes example

» A portlet is initially displayed in its view mode. As the user interacts with the
portlet, it may display a sequence of view states, such as forms and
responses, error messages, and other application-specific states.

» Help mode is used to provide user assistance about the portlet.

» Edit mode provides a page for users to change the portlet settings. For
example, a weather portlet might provide an edit page for users to specify
their location. Users must be logged into the portal to access edit mode.

» If Configure mode is supported by a portlet, it provides a page for portal
administrators to configure portlet settings that are shared by all users.

Each portlet mode can be displayed in normal, maximized, or minimized state.
When a portlet is maximized, it is displayed in the entire body of the portal page,
replacing the view of other portlets. When a portlet is minimized, only the portlet
title bar is displayed on the portal page.

1.3.2 Portlet applications

10

Portlets are more than simple views of existing Web content. A portlet is a
complete application having multiple states and view modes, plus event and
messaging capabilities.

Portlets run inside the portlet container of a portal server, similar to a servlet
running on an application server. The portlet container provides a runtime
environment in which portlets are instantiated, used, and finally destroyed.
Portlets rely on the portal infrastructure to access user profile information,

Portalizing Domino Applications for WebSphere Portal

participate in window and action events, communicate with other portlets, access
remote content, look up credentials, and to store persistent data.

Generally, portlets are administered more dynamically than servlets. For
example, portlet applications consisting of several portlets can be installed or
removed while the server is running, and administrators can change the settings
and access rights of a portlet while the portal is running, even in a production
environment.

1.3.3 Introduction to places

The flexible design of WebSphere Portal allows users to initiate diverse places
organized around specific projects, issues, or groups. It provides access to a
wide range of tools, such as instant messaging, discussion databases, people
awareness, and other collaborative tools that support teams. Best of all, users
can create and modify these places to best meet their needs, without
involvement from IT personnel. The result? Greater efficiency and faster results
from any team effort.

Portal content is organized on pages that can be grouped. A page group
becomes a virtual place when a user organizes content selectively and grants
permission for other portal users to use the place. Within portal places, people
can find other people and the right information quickly, building better teams and
stronger ties to each other.

Places:

» Provide a new way to view, organize, and use portal resources, and are
designed to improve communication, workflow, content management, and
teamwork

» Present people and information in context with organizational or community
needs

» Show links to individuals within places and portlets (people awareness)
» Have portlets that launch collaborative applications (for example instant
messaging, Lotus Notes)

In addition, portlets have the ability to interact with each other. This functionality
allows you to present information in a new context, which can greatly improve the
user experience.

Let’s look at this functionality in more detail.

Chapter 1. Introduction to portalizing Domino applications 11

12

Portlet cooperation

The portal server provides a mechanism for portlets to communicate with each
other, exchanging data or other messages. In a production portal, portlet
communication could be used to copy common data between portlets. This
saves redundant typing by the user and makes the portal easier to use. For
example, one portlet might display information about accounts while a second
portlet displays information about transactions that have occurred for one of the
accounts over the last 30 days. To do this, the transactions portlet needs to
obtain the corresponding account information when it displays the transaction
details. This is accomplished by communication between the two portlets, using
portlet actions and portlet messages. In this example, the account portlet creates
a portlet action and encodes it into the URL that is rendered for displaying
transactions. When the link is clicked, the action listener is called, which then
sends a portlet message to send the necessary data.

Programmatic messaging helps unify portlet applications that access different
back-end applications. However, this is relatively static, and requires planning
and design work in advance. The portlets exchanging messages must already
know about each other in order to make the interchange work. Next we discuss
more flexible means of portlet cooperation.

Brokered cooperation

Brokered cooperation allows independently developed portlets to exchange
information. Portlets register their intent to cooperate with a broker, which
facilitates the exchanges at runtime. The broker works by matching data types
between the sources in one portlet and the actions of another portlet. When the
types match, an exchange is possible. Portlets that exchange data in response to
a user action are called “Click to Action” portlets.

The objective of the Click to Action portlets is to increase the productivity of
portal users working with multiple portlets by enabling them to send information
easily from one portlet to another. For example, users can click on information
that is displayed in one portlet and transfer that information to another portlet.
The portlet receiving the information processes it and updates its display.

Click to Action automatically matches the portlet information sources and
possible actions based on their data type compatibility. Click to Action does not
rely on drag and drop or other non-standard browser features. A unique
advantage of Click to Action is that is it designed to work in different browsers,
making it more accessible to users.

In WebSphere Portal 4.2, Click to Action is limited to Portlets that reside on the
same page.

Portalizing Domino Applications for WebSphere Portal

Example of a place with portlet cooperation
Figure 1-7 is an example of a place that incorporates portlet cooperation.

I'L

Ernployes Directory Emplogree Detail
Flease salect Ermployes Bdit Delete
First Marme Peter ot o i
Last Marne st
Ernployes & First Marme: Peter Divizion Product hanagement
Last Narne: Proman WS Ben Berger
- Birthday: 0 .02.2002 FE: Goldunen hdeier
|# | First Nzrne| Last Mame | Emp # | Phonie | [E—— . Ph- Gioldunyn hMsier
1 Peter Proman 4TEE Py Ernployes 8 4736 Bbbreviston: PP
2 Peter Race Q555 pcryy
3 Peter Cameron Qavh P i) Cornrnuni cation Company
;’ Ezer :hlsrl‘l iz‘—;i '212 ice: +48 7247 929-899 Jniin: 0140111338
. F;r D’; = bl +40 2242 920-300 Wohours: 40
F :: M":r's s '321 il +49 172 25672093 Emplaymnert: unlimied
I — — - E-Mail: P proman [Eeompary com End: Mo dae
17 nea 12 Emplayees +40 221 1234667 Price Cat.: 2
Skill=
Edit Satus By Project Tvpe Launczh OB in Nates
Mame: Peter Proman [hr [Tl [Oiwiior] Stan | End |
Datzbazes » Open Frojects
DB/2, 0L Server, DBZ 310-8282 Deveoping Intranet Wionderngo A5 AlS 010189 033089
Lotus Motes. Orache 320-9393 Consuting Rice Braethouser Woopers AE 1ae 023089
Management Skills 320-8585 Portal Protoyp Gamman 26 AlS 010189 0330089
) 5 . 3206732 Intermnat Solution E-Business AG AlS 010189 033089
Project hisnagemert, Coaching 320-7654 Intemal Project: Building 3 Emploves Portal AS MDISE CHI0AD
Presentation
Commerts » Closed Projects
i i . s 210-9882 Price Sheet Cookie Cutter biachine 2003 BSS 010189 0330089
Eﬁ:&f&ﬂ?ﬂlﬂﬂﬂéﬁi ':fgdal'j?z‘;fi'm"a"r%un i 218721 Presertation Markating Database BSS DIM1M0 (X300
the word. Our produrts and sendses drive the way NO-G666 Employment Infommation System A BES oo me os0mee
the industry thinks about web-bazed business 466-72882 Wwhnagment-Irfommation-System Gayer AG Ens 010189 0x30/09
practice for Doming, s ned
L i net

Figure 1-7 Example of a workplace with portlet cooperation

The example shows an HR workplace. In the upper left corner we have placed an
employee directory. The other portlets show employee details (top right), skills

(bottom left) and the projects (bottom right) the employee is currently working on.
The skills and project information are coming from separate Domino databases.
In previous times they were all developed and used separately. Now that we are
moving to a workplace interface, we want to use the Portlet cooperation features
to present the information in a new context.

If we search for an employee in the employee directory and click on the person
entry we are looking for, we can have the other portlets react to our selection.
The employee’s detail information and skills, as well as the projects he is

Chapter 1. Introduction to portalizing Domino applications

13

currently working on, will be shown in the other portlets. All this is triggered by a
simple click on the employee link.

This example illustrates why portlet cooperation is a great concept that helps us
to build new kind of applications, just by exposing old Domino applications inside
the portal.

1.3.4 The portalizing process

Before we talk about portalizing, we first need to establish a common
understanding of what this means.

Figure 1-8 presents a high-level outline of the overall portalizing process.

Domino

® Employees

2 Competencies

® Salaries

2 Car Pool

2 Learning Space

2 Holidays

2 Software Standards
2 e-Library

2 Policies

2 CRM

2 Success Stories

2 Division News Pool
© Licenses

2 QA Database

2 Release Library

S Competitor Pool

2 Proposal DB

2 Intranet

°...

Portlets

P1

P5

P8

P13

P12

P17

P23

P21

Workplaces

Consultant

P1

P5

Sales Manager

P12

P13

Assistant of the Board

P23

Figure 1-8 From Domino applications to portlets and workplaces

14

On the left is a list of typical Domino applications. They need to be portalized into
portlets, which can then be made available for different workplaces.

A Domino application can be represented by a single portlet, but there is usually
not a one-to-one relationship between applications and portlets. Most cases
exhibit a one-to-many relationship. Portal applications are usually made up of
multiple portlets that use portlet cooperation. This way, application functionality
exposed in portlets can be combined in many different ways, sometimes allowing

Portalizing Domino Applications for WebSphere Portal

the user to put information in a context that not even the developer of the
individual portlet has thought about.

It is also important to understand that the same portlet can be used in different
workplace contexts with different user roles.

1.3.5 The portalizing challenge

Looking at the portalizing process raises the following questions:
» What portlet development techniques are available?

» What is the effort required for portlet development?

» What functionalities can be implemented within a portal?

» How can scalability and performance be ensured?

In the following discussion we address these questions and describe the factors
and dependencies of the portalization process.

Figure 1-9 illustrates the relevant factors.

Domino

Integration-
Applications

techniques

The Challenge:
What Portlet patterns do we need
and what is the ,best* implementation
method?

Domino

Portlet Patterns SO

Figure 1-9 Factors and dependencies

Chapter 1. Introduction to portalizing Domino applications 15

As with any development project, there are multiple factors and dependencies
that influence a portalizing project. The important parameters for a Domino
portlet project are:

» Domino application: the characteristics of the Domino application.
» Integration techniques: knowledge of all the different options.

» Domino portlet pattern: defines the portal integration depth and user interface
requirements for the portlet. This is discussed in greater detail later in this
chapter.

» Considerations: overall project parameters like resources, skills, and so forth.

You need to develop a good understanding of the different factors and their
dependencies to be able to successful portalize a Domino application into
portlets. Therefore, in the following sections we drill down deeper into the various
factors and dependencies.

1.3.6 Domino applications

16

The most important piece in the portalizing process is the Domino application
itself.

You need to consider the following parameters to characterize the application:
» Number of documents

» Number of users, number of maximum users

» Usage pattern, number of concurrent users

» Application complexity

» Single or multiple database application

» Web-enabled or Notes client-based

Figure 1-10 on page 17 can help to characterize a given Domino application.

Portalizing Domino Applications for WebSphere Portal

O Bubble size represents database size (# docs) u Application comp lexity

Help-Desk
>
o
©
£
External
MNews
@ Intranet
3
[
=1
#* Folicies
L
Literature
DocLib TR B
Competiter DB o CRI
low Usage high

Figure 1-10 Domino application types

It shows several Domino applications, with their database usage on the
horizontal axis and the number of users on the vertical axis. The size of each
bubble represents the database size, and the bar in the middle indicates the
application complexity.

Placing a given Domino application into this grid can help to develop a better
understanding of the usage scenario for a Domino portlet.

This then allows us to estimate the workload on the portal and Domino servers.

Another important consideration is that the portal introduces new usage
scenarios for your applications. With a Notes Client a user usually accesses
Domino applications sequentially, meaning one at a time. On a workplace there
are multiple portlets active, which will concurrently access your applications. This
increases the server load significantly. In addition, the portal will broaden the
user community for your applications because they are more visible now.

All this can have severe implications on your Domino backend and performance.

Performance considerations
From our experience, we know that portlet performance is the most important
factor in a Domino portlet development project.

Chapter 1. Introduction to portalizing Domino applications 17

Let’s imagine the following example. We are going to build an employee directory.
The portlet is specified to look like this:

Ernplogres Direchory

Fleaze select Ermployes

First Marne: Petar ™
Last Narne:
Ernployes #

WECOEFGHIJELMHMOPORS TUWMIKEYZ

1 Peter Proman 4786 s
2 Peter Race Lt Ry
3 Peter Cameron QaTE 466
4 Peter fuliar 2453 =380
5 Peter Tabert 214 -28d
G Peter Oaters 2761 el
7 Peter Huiller 3|44 3N
1 2 nest 12 BEmployee: found

Figure 1-11 Example portlet “Employee Directory”

It has the following requirements:

» Employee directory with 100,000 entries
Initially the portlet shows the first 10 Employees of the A-name category.
Users can page through the Employees like in a paper phone book, or search
for an Employee by Name or Employee Number.

» Portal user community of 40,000 users
We assume a concurrency of 5% of the total portal user number for the
workplace the portlet is placed on. That means we have approximately 2,000
concurrent users for the portlet.

Let’s assume the following scenario:

The portlet is available on the portal home page for all users. Monday morning at
8 AM all employees are going to log on to the portal.

The interesting question now is: What is going to happen to the overall portal
performance and server load?

Let’s analyze: We are going to have 2,000 concurrent requests to display the

initial view of the portlet. Creating 2,000 concurrent sessions to the Domino
backend and rendering the first page for each user does not seem feasible.

18 Portalizing Domino Applications for WebSphere Portal

If we planned for this scenario, we probably would have thought about caching
strategies and overall session management for this use case. If not, this portlet
can significantly decrease the overall portal performance and put a very high
load on the Domino backend. Later in the book, we discuss caching strategies
and session management in detail.

Note: Portlet performance and scalability is often underestimated in Domino
portlet development projects. It is good best practice to do performance
testing right from the start of the project. Performance is not only dependant
on your coding or the Domino backend, but also on the overall portal/Domino
infrastructure.

1.3.7 Portlet patterns

Portlets can be as simple as data display windows into existing applications, or
as advanced as a replacement for complex workflow applications. They also can
have a different level of integration with the portal.

Portlet patterns will help you to classify what type of integration level you are
looking for; this information is relevant when deciding what integration technique
to use.

In this section we describe the following patterns:

» Link

» Display

» Integrated

» Migrated

As for any development project, it is best practice to establish use cases for the
portlet usage. We need to ask:

» What is the use case from a user’s perspective?

» Does the use case vary with the role of the user?

With this information we can then decide what portlet pattern our application falls
into.

Link

The Link type is the easiest of all integration types. It provides the user with a link
that launches into the native application. This can be either a Notes-based or a
browser-based application. Depending on the setup of the authentication system,
the user may need to log on to the specific application. The Notes client will
challenge you for your password if you have not configured it to use your

Chapter 1. Introduction to portalizing Domino applications 19

20

operating system login. If the application is browser-based and you did enable
single sign-on (SSO), the re-authentication is not necessary.

A link type integration can be achieved by using, for example, the Bookmark
Portlet or Quicklinks Portlet that ship with WebSphere Portal.

Bookmarks i |) ‘
IBM Corporation

[¥) IBM websphere |

Figure 1-12 Link type example

Display

In the display category are portlets that only display information from Domino. If
the user needs to interact with the application functionality, they must launch
either into the Notes Client or a Browser interface. This can be a good option if an
application is already Web-enabled. In the portal we can give the user an
overview of, for instance, all the expense reports that he needs to approve, and
then for the approval process launch the expense report application in a new
browser window. Depending on the implementation, it would be possible to
launch immediately into the expense report that the user wants to approve.

Expense Reports
by Hatus by Consutant

| Conzdtant | Project Amourt
~ Pendng

1 Oliver Trabert RBedbook F 2000
2 ke Smith |Bhd Portal F 500
3 Jul hiller Partal Training F 1700
4 James Friz Portlet Builder 40450
- bpproyved

1 Camilic Lopez Testing 350
2 Julia Dee Redpaper ¥ 1500
= Daclined

1 Cahres Champ Las Wegas trp Fa00

2 Chris Roberts Dinner with Julia 150

Figure 1-13 Display type example

This example illustrates that it is not necessary to portalize the whole application
to the portal. Sometimes a small view into the application might be enough.

Portalizing Domino Applications for WebSphere Portal

Integrated

An integrated scenario lets the user perform tasks in other applications inside the
portlet, rather than having to launch the other application.

In the previous scenario we could provide the user with a list of expense reports
to approve, but to perform the approval task we had to launch into a different
application. Launching into a separate application might not be a problem, but
being able to perform the task inside of the portlet context enhances the user
experience and the usability of the portlet.

In our example, we want to allow the user to approve or deny an expense report.
In the denial case he should also be able to provide a reason.

For a different user role, we also want to allow the creation of new expense
reports from within the portal. In these two use cases we have exposed only
some of the functionality of the expense report application to the portal. Other
workflow processing of the expenses and back-end integration with an HR
system will remain untouched in the native Domino application.

This example shows the advantages of the coexistence of portlets and Domino
Applications. Only the information and logic needed for certain use cases will be
transferred into the portlet.

Expense Reports Expenze Detal
by Satus by Consukant Ppprove Dery Comment
Conzutant Project Amourt
|# | bl | il | 2 Froject: Working on the Redbook team
« Pendng r—__d_,,——‘-‘ Subrnitter: Oliwer Trabert Bpprowver: Peter Promans*
1 QOliverTrabert Redbock F 2000 Subritted: 1152202 Satus: Pending
2 hflee Smith |Bhd Portal F 500 Srnourit: F 2000
3 Jul hller Portal Trairing 1700
4 James Friz Portlet Builder F d0a0 Deszcription
= fpproved | hawe been in Cambridge working inthe Redbook project.
The attached dzheet shows the details fo .
1 Camilio Lopes Testing 350 e - ST CRLAIS TOF M EXpENSEs
2 Julia Dea Fedpaper F 1500
« Declined @
1 Cahdes Chanp Las ‘Aug@s top F 500 -
2 Chris Robets DinnerwithJulia § 150 expergeslds

Figure 1-14 Integrated type example

Migrated

A migrated portlet is one that is used to replace an application and transform
entire business processes into portlets. Usually an approach like this would
involve a redesign of the application.

Chapter 1. Introduction to portalizing Domino applications 21

1.3.8 Considerations for the portlet design

22

In this section we outline a few design issues that are important to consider the
requirement gathering process for the two portlet patterns.

We want to try to reuse as much of the Domino application functionality and code
as possible. The reusability will greatly depend on the architecture of the original
Domino application. If it is a Web-enabled application the chances for reuse are
much higher.

What can be reused?
Usually you can reuse:

» Views

» Agents

» Forms

» Field validations

The options for application reuse vary with the chosen integration technique, and
are discussed in detail in the corresponding chapters.

Figure 1-15 shows a portlet user interface that we are using to illustrate some
common requirements for a Domino Portlet.

Portalizing Domino Applications for WebSphere Portal

Policies for Peter

Edit | 2010

Topic @ Department Responsible
Marketing New Personnel Policy Marketing Fratelli, Juliet 05/23/02
cmplats information for gcrasning naw hires, training
and background Stas req . and 1aR)
__“CookiaCutter Equal Dppartunity policies.
HR Corporate Guidlines Human Resource Miller, Erwin 05/07/02
Cotporate palicies for inferdeparmental cammunication,
tross-tepanment hifng and transfers, and blanket = 'd’
and procedures which affect i deplatments.
Sales Partnering Procedures Sales P Max 04/29/02
Definas corporate requirements for executing sales @ '.’
e agreednunts with third-pary Brovide:s
Iointly with the Legal and HR depantmeants).
R&D Overtime Policies Human Resource Churchill, Liz 02/13/02
Interdeparntmental brlef outining RAD ovartime = '.’
policies which deviate from corporate-defined standards,
Including hobday benalit transfars and Special requests.
Holiday Benefits - New Sales Hires Sales Schultz, Georga 02/10/02
Upetated holcay Bting inchudes MUK holiday, and raw B0
conforms I comporate standards. Additional sales-
benelits and policy amend ments for rew hires.
1 2345678 Next (@ seheeH

2

Pl sefect ane o o

| My selactions:

rw catagvien. If rone an

[Humen Ressures
O marketing
0 s

| O mo
[m

Figure 1-15 Elements of a Portlet

Layout and functional aspects
Key elements of the illustrated portlet are numbered, and have the following

meanings:

1. Layout definition for views and forms

2. Retrieving and aggregating documents from multiple databases

Let's imagine that we have a product manager. He works with lots of
departments; for instance, Marketing, Sales, Research and Development.
Over time all these different departments have built there own policy
databases. To find a particular policy, our product manager has to look into
every single database. In the portlet context we now want to consolidate all
the different policy databases into one portlet.

3. Edit-Mode: Implementing user personalization

This can have two different aspects. Since a workplace is tailored for a
specific user role, we want to deliver only the subset of information that is
relevant for a particular user to do his or her work. In addition, we want to
allow the user to set a filter to further refine the information that is delivered to

them.

Chapter 1. Introduction to portalizing Domino applications 23

Sametime integration
Advanced layout (buttons, alternating line colors, and so forth)
Search functionality

N o o &

Pagination

Additional functionalities that may be needed in your portlet include:

» Categorization of data

» Write access to enable editing of existing data or creation of new documents
» Transactional handling, for example, calling Agents

» Search - full text or field level

» Rich Text Support for display and editing

» Page flow between different input screens/workflow

» Portlet cooperation

Considerations in choosing a portalizing type

Portlets can have view and form-like display, page flows (workflow), page
navigation, read and write access, transactions (for example, using agents), and
portlet cooperation.

Several levels of integration are possible. Each has a different degree of
integration with the portal.

To decide on the portalizing type for a particular portlet, the answers to the
following questions can be helpful:

» What functionality do you want to include/expose?

» What functionality do you need in the portlet?

» Do users perform transactions?

» Do you need simple write access to single fields or have complex forms with
field validation?

» Do you have a page flow within the application?

> Is the portlet a replacement for a Domino application?

» Is your Domino application Web-enabled?

» Will the portlet be used to Web-enable an application?

» Are you going to have one complex portlet or many task-oriented portlets?

It is a good practice to develop a clear understanding of the purpose and use
case for a portlet before starting the development. Portlets are true applications,

24 Portalizing Domino Applications for WebSphere Portal

and therefore it is important to a have detailed requirements for the development.
Using portlet patterns can help in the requirement gathering process, and to
develop a common understanding with the business users.

Portlet patterns can be characterized as requirement definitions for portlets.

Portlet pattern examples

In this section we look at a few more examples for portlet patterns. We are going
to start with simple ones and move forward to more complex portlets.

Display example: News portlet

Corporate Mews

Mew Opportunities!
'-I:I Mew Job afferings with our
& *| teamn

- 4
Lh U= 12vi02 [Corporate Mews]

i are taking the lead in delivering enterprize
web soltions to organizations around the word.
Our products and semvices drivethe waythe
industry thinks about web-bazed business
practice for Doming, frore. ..

Latest Mews

112702 |Bhl acquires hdarimba Tech.
112702 Inemational Sales hisetings
1102602 Mew Schedde for 5 Universiby

Figure 1-16 News portlet

Portlet description:

The portlet displays news from a high-volume news database.

Portlet functionalities:
Displays data from one underlying Domino database.

Opens the content document in a new browser window.

Value for users:

The portlet will be a mass channel for combining internal news. As an
enhancement, users can personalize which news categories they want to
see.

Chapter 1. Introduction to portalizing Domino applications 25

Integrated example: New Documents

Mew Docurnents

Ery Oae By Cateqory B futhor Fdditional Information

[#] Date | Title [B[#*] Author | Source |

* 11022002 Presentation Markaing Databaze H #* o Lker miark. Docs

11/22/02 Prce Sheet Cookie Cutter bBchine 2003" B #* Peter Proman Cuickplace

#* 11/22/02 Presentstion haroting Database #* Hleen Shannon Dom.Doc
1102102 Presentation Markating Daabase # harcello Mastrada Teamroom
1102102 Presentation Markating Daabase # loe | ker Dizcuss0H
1182102 Presentation hriating Database B # Hleen Shannon Doclib Sales
11/20/02 Presentation hrkaing Database #* Gicwanni Agusta Teamroom
11020002 Presentation Markating Daabaze #* Pazcde Oubois hiark. OB
11£20/02 Presentation brating Database B #* Peter Proman Doclib Sales
11/2002 Presentation hiarkaing Daabase =% Pater hfller Teamroom
11020002 Presentation Markating Daabaze #* Peter Miller Daclib Sales

123t Search: | | *

Figure 1-17 New Documents portlet

Portlet description:

The portlet consolidates several enterprise knowledge databases based on
Standard Document Library, Domino Doc, or Teamrooms. This is the key
differentiation from the previous portlet. It adds the ability to select the view
and a search option. Additionally, users have People awareness to get in
touch with the author of the document.

Portlet functionalities:
— Combines data from several Domino databases

All databases have a different database structure, are not Web-enabled
(only standard-view functionality is supported) and have high data
volumes.

Tools for merging the different Domino databases into one consolidated
database are available, including the Lotus Enterprise Integrator® (LEI).

— Searches inside of the consolidated database
— Content is opened in a form-like layout embedded in the portlet
— Form display also includes Rich Text fields

Displaying Rich Text inside of a portlet requires special attention. This is
covered in detail in a later chapter.

— Allows the creation of new documents
— Has integrated people awareness
Value:

Users never miss published documents again. All relevant information and
documents will be available in one portlet.

26 Portalizing Domino Applications for WebSphere Portal

Integrated example: Policies portlet with write access and
transactions

Organizational Policies ‘ Organizational Policies

Topic Department Responsible Date Please select one or more categorias.
My selections:

Jarketing New Personne! Paolicy B0 Marketing Fi li, Jul 05/23/02
vl et i MAtion ar SCraening raw Nired, 1BNIng

[——————————” =1 i)

ConkieGutter Equal Opporturity polkcies.

HA Corporate Guidiines Human Resource Miller, Erwin 05/07/02
CHmponae Dol 17 bk Sanivedtal Somemuicaton,

erceE-gapartment hising and frirefirs, and blane) = ‘J

and precodures which attect il ceptartments.

Sales Partnening Procedures [IEETI Sales El Max 04/29/02
Dl Corporita nequinemats 0 SXECUING Eakd RS ’

Human Resources
Markating

Sales

OoOoonosE

pirinecship agremeats with third-party providers
Join®y wath tha Legal and HEY departments).

R&D Overtime Policles Human Resource Churchill, Liz 02113502

Fiaraapanment bt cullnig FED ovirtine T
molicios which deviale licm Sorparate-talined standarnds. Eiam, [sme] [ros]

inciuding hobday bansit transfars and special recuases.

Holictay Benafits - New Salas Hires Salas Schultz, George 02/10/02
Uipdsted holbdey kesng inchuges MUK holday, and row = o)
contonms to corponate slandards. AddBond saks:

enalits and policy amendments for naw hines.

1 2345678 Next | @lsenen 3

Organizational Policies Edit | '* &b O
Topic: Holiday Work Policy Date: 0112/01

Department: Human Resources

Responsible: Claudia Johnson 3y

Abstract: Corporate guidelines for requsting/requiring employes

participation in project commitments that fall on recognized
corporate holidays, including pay and benefits factors.

Content: Working on holidays always involves special considerations. Please
foliow these guidelines to make sure employees are being taken care of.
8 a Everyone works hard enough as it is, and holiday overtime contributions
TR need to be adequately compensated to prevent problems for the
u:mnggg employee, and thereby prevent problems for the company.

TR W M OAE
WM T e R
HEDMHE®RD
R

1. Requisitioning development resources for critical time-sensitive
projects is required VOLUNTARY compliance on the part of the resource.

Figure 1-18 Portlet with personalization and form display

Portlet description:

The portlet displays the company’s consolidated policy databases. Users
have the option to select the policy categories they are interested in. The

Chapter 1. Introduction to portalizing Domino applications 27

portlet also has a built-in search function. The individual policies are opened
in a form-like display and are embedded inside of the portlet. Additionally,
users have People awareness to get in touch with subject matter experts.

The HR staff can create and modify policies from within the portlet. The HR
manager who is responsible to approve policies can perform the approval
process from within the portlet.

Portlet functionalities:
The portlet has the same functionality as the previous example, plus:
— Content creation and modification from within the Portlet
— Integrated approval workflow for policies

Value:

Users never miss new or updated policies. Through personalization they only
see the policies that are relevant to them.

For the HR staff it is very convenient to update and create new policies. The
integrated approval workflow expedites policy publishing.

Summary

These are just a few examples that should help you to develop a general
understanding of portlet patterns and how they can help in the requirements
gathering process.

1.3.9 Considerations

There are a number of factors that have great influence on a project. Some of
these are:

» Time frame for the project and milestones

» Available people and resources

» Available or set products and versions

» Target platform, such as AIX®, Win 2000, and so forth

» Scalability and performance requirements

» Experience and development skills

» Portal/Domino infrastructure

Most conditions for a Domino integration project are not any different than for
other software development projects. Therefore, you should apply the same

project management and development methodology to a portalization project
that you would use for other development project.

28 Portalizing Domino Applications for WebSphere Portal

The Portal/Domino infrastructure
The Portal/Domino infrastructure is one condition that needs our special

attention. It can have tremendous impact in a transformation project.
There are two aspects that are relevant in this context:
» Server infrastructure

Figure 1-19 shows the three portal/Domino infrastructure options that are
used most often:

— Single server configuration

In this scenario the portal and Domino Server run on one machine.
Databases from remote servers get replicated onto the local Domino
server. This configuration is typical for the WebSphere Portal Express
offering, as well as for Proof of Concept scenarios.

— Domino hub configuration

In this configuration the Domino and Portal servers are separate; a
dedicated hub server is used for integration with the portal.

— Distributed Domino configuration

In this configuration all Domino servers hosting Domino applications are
accessed directly from the portal.

Chapter 1. Introduction to portalizing Domino applications 29

Single server Domino hub Distributed Domino
configuration configuration configuration

WebSphere Portal WebSphere Portal WebSphere Portal

Lotus Domino

Replication

ooo EE D

N

Replication Replication

CEOE oo

Figure 1-19 Portal/Domino Infrastructure options - D1, D2 and D3 represent Domino servers

Looking at the different infrastructure scenarios can help us to identify and
avoid bottlenecks in the infrastructure.

Here are a few checkpoints from a Domino portlet point of view:

— Local Domino access is faster than remote access, but limits the scalability
to one physical server

— Having a dedicated server to host the Domino applications for the portal
makes the performance more predictable and scalable, but introducing a
Domino cluster makes the programming more difficult. You then need to
handle failover and load-balancing yourself. It is important to ensure a fast
network connection between the Portal and Domino hub server.

— Accessing multiple Domino servers helps with balancing the load, but you
need to check whether the Domino servers can handle the extra load from
the portlet. Depending on the access method you choose, you might have
to load the HTTP and/or DIIOP task on the Domino server. Bandwidth
constraints can also be problematic for portlet performance.

30 Portalizing Domino Applications for WebSphere Portal

» Single sign-on

The portal server provides comprehensive single sign-on (SSO) support.
Users want to be able to log on only once, and be known to the different parts
of the portal server with the same consistent user credentials. Users should
not be asked to do multiple logons simply because they access different
portal applications.

The portal server supports single sign-on realms using WebSphere
Application Server as well as authentication proxies. This means that the user
needs to log on only once to gain access to all enterprise applications that are
installed within the single sign-on realm.

With Domino there are two single sign-on options that you can use:
— LTPA Token authentication

This option requires that the WebSphere and Domino server are
configured to share an LTPA session cookie. Using this method has the
least impact on your portlet coding since the sign-on process is handled
transparently for you.

For configuration information refer to the Portal InfoCenter.
— Active and passive credential vault

In the case that, for example, the portal server and the Domino server use
different directories or are in different DNS domains, it is necessary to
handle authentication manually. You need to get the user credentials either
out of the current portal session or out of a slot in the credential vault, and
then use these user credentials for the authentication with the Domino
server.

For further information refer to the Portal InfoCenter.

1.4 Portal architecture considerations

In this section we discuss certain aspects of the Portal architecture that will be
important to portalizing Domino applications.

For further information on the Portal architecture refer to the Portal InfoCenter.

1.4.1 Page aggregation concept

The portal should provide the user with a consistent view of portal applications
and allow the user to define specific sets of applications which are presented to
the user in a single context. Depending on the device of the user, the rendering of
this application set has to vary to fulfill the requirements of the device. Consider,
for example, a set of applications that include News, Stocks, Weather, and

Chapter 1. Introduction to portalizing Domino applications 31

Search, which have to be rendered to a conventional phone using voice
interactions, a WML device with a limited display and keyboard, or a PC-based
browser. The tasks of the aggregation, which are repeated with each request
coming from the device, are:

» Gather information about the user, the device, and the selected language.

» Select the active portlets from the set of applications to which the user has
access.

» Aggregate the output of the active portlets into a coherent, usable display.

Once the active page is determined, the layout of this page has to be used to
aggregate the content of the defined applications, arrange the output, and
integrate everything into a complete page. WebSphere Portal provides fully
dynamic aggregation of pages from page descriptors held in the portal database.

Rendering of page components is done using JSPs, images, style sheets, and
other resources. These resources are located in the file system, and are
discussed in more detail in the next section. For all other resources refer to the
Portal Infocenter, in the section entitled “Designing your portal”

1.4.2 Themes and styles

32

The portal page is displayed using styles and themes defined by the Web
designer or administrator of the portal. Themes define the look and feel of the
portal overall, including colors and fonts. For example, the theme is used in the
navigation bar to pick the correct color images for the corners on the page tabs.
Themes make use of HTML style sheets to format the layout.

The style sheets used by WebSphere Portal contain classes that can be used by
portlets to ensure visual consistency between portlets on the page.

Using these classes ensures that no matter what theme has been selected, the
portlet’s look and feel matches that of other portlets and the portal page.

Examine the file Styles.css in the wp_root/app/wps.ear/wps.war/themes/html/
directory to determine which classes to invoke in your portlet output. The file
includes comments explaining the use of each class. To find the portlet classes,
look for the following comment in the style sheet:

e /

/* Styles used in portlets */

e /

Portalizing Domino Applications for WebSphere Portal

Styles.css is the default style sheet used by the portal and portlets.
HelpStyles.css is used for portlet helps.

Portal aggregation looks up the correct copy of the style sheets based on the
theme, locale, and client indicated in the request. You can change the tag
definitions as well as the class definitions in the CSS style sheets. However,
make sure you do not delete any style sheets or remove any style classes.
Portlets require these style classes for JSP output.

We want to encourage you to use the style-definition for your own portlet markup.
This way you will ensure that your portlet is going to comply with the overall look
and feel of the portal if it is displayed on places using different themes.

1.4.3 Page customization

The portal allows you to define the layout and content of a portal page. During
page creation, you can modify the number and placement of rows and columns
on a page to your specifications. You then place the portlets into the resulting
containers.

Figure 1-20 gives an example of a page that has the following layout:

» A row container that contains:
— Two column containers, each containing:
* Two portlet containers, with a portlet in each

How container

Hello warld portlet News Portlet

Apollo launched
Grammy awards
Tigers beat lions

Hello Waorld!

Stocks portlet

Weather portlet

45 drizzle
65 cloudy
85 sunny

59 USH
150 US3
45 USH

Figure 1-20 Page layout example

Chapter 1. Introduction to portalizing Domino applications 33

It is important to understand that the portal “owns” the entire HTML page. Our
portlet will be placed inside of an HTML table cell, and therefore only owns the
real estate within that cell.

This also means that we do not have to handle any opening or closing HTML or
BODY tags. Those will be rendered by the portal page aggregater.

It is also important to keep in mind that the portlet can be displayed in column
containers of different widths. Therefore we should not use absolute width
settings in our own rendering. It is good practice to use relative width wherever
possible.

Since portals support pervasive devices as well, we also have to consider
support for other devices besides HTML browsers.

1.4.4 Using Domino LDAP with WebSphere Portal

34

The WebSphere Application Server uses Lightweight Third-Party Authentication
(LTPA) tokens to provide single sign-on. When a user is authenticated, the portal
server creates an LTPA single sign-on cookie containing the authenticated user
credential. This encrypted cookie conforms to the format used by WebSphere
Application Server and can be decrypted by all application servers in the shared
domain, provided they all have the same cipher key. This cookie enables all
servers in the cluster to access the user’s credentials without additional
prompting, resulting in a seamless single sign-on experience for the user. To
benefit from the LTPA method of single sign-on, the user’'s browser must support
cookies and have its support for session cookies enabled.

The portal server can be configured to use Domino as its LDAP directory.

The configuration process is explained in detail in the Portal Infocenter, section
entitled “Configuring Domino LDAP”

Here are just a few hints that we found useful:

» Make sure that you have created the users WPSADMIN and WPSBIND in the
Domino directory. Also create the group WPSADMINS and add both users to
it.

» Check that the group WPSADMINS has proper permissions and roles in the
ACL of NAMES.NSF.

» Specify the correct LDAP settings in the global configuration document.

» If you plan to use the collaboration portlets, make sure that you have
extended the list of fields that can be queried by anonymous users.

Portalizing Domino Applications for WebSphere Portal

» When you install the portal, use the following settings for the LDAP:
user prefix="cn"
user suffix="o=yourco.com"

group prefix="cn"

group suffix=
Portal administrator DN = "cn=wpsadmin,o=yourco.com"
Portal administrator group = "ch=wpsadmins"

» If you are installing WebSphere Application Server-Domino single sign-on,
make sure you change the field for the LDAP server name in the Domino SSO
document. You need to add a backslash after the colon and before the Port
number.

1.5 Summary

In this chapter we have shown that Domino integration into the portal is important
for building workplaces. Existing Domino applications can be reused and
exposed inside of the portal, allowing the display of existing information in new
contexts. Bringing together the best of the Portal and Domino allows you to build
a new class of hybrid applications.

We outlined a transformation methodology to achieve successful
Domino-to-Portal transformation. It helps you to understand the integration
challenge and to carefully choose the best integration technique and
development approach for a given Domino application.

We also introduced you to basic concepts of the portal that are necessary to
understand the role of the portal and the portlets in the integration process.
Having a thorough understanding of the portal and its architecture is very helpful
in preventing problems in the portlet development process.

Chapter 1. Introduction to portalizing Domino applications 35

In the following chapters of the book we will drill down more deeply into the vast
set of Domino integration options.
Figure 1-21 Basket of integration options

DominoWeb- Standard WP WP Portlet
Enabling + Notes View Builder for
iFrame Portlet Domino

Domino Objects
for Java: Local
and Remote

XML Helper
Portlet

Domino Tag Web Services

Library (JSP)

DCO (Domino
LDDJ (JDBC) Collaboration Portlet Builders
Objects)

Our goal is to brief you on all the different methods so that you can make an
educated decision for your projects.

36 Portalizing Domino Applications for WebSphere Portal

Integration techniques

This chapter provides a detailed overview of the integration techniques available
for portalizing a Domino application. It also provides a guide to help you
determine the best integration technique for your project.

The chapter concludes with the introduction of a fictitious Domino application
case study that will be used in subsequent chapters to provide examples of how
to implement each integration technique.

© Copyright IBM Corp. 2003. All rights reserved. 37

2.1 Choosing an integration technique

As discussed in the previous chapter, there are four main issues to consider
when choosing an integration technique:

» Domino applications - the characteristics of the Domino applications

v

Integration techniques - knowledge of all the different options

» Portlet pattern - concrete requirements for the portlet

» Conditions - overall project parameters like resources, skills, and so forth
Each of these issues must be addressed to ensure the successful transformation

of a Domino application into a useful component of the WebSphere Portal
workplace.

Each issue has many complex and potentially competing factors that must be
considered. This can make it difficult to identify the integration technique that
best satisfies the conditions at hand.

While every project is different, the use of a structured approach can help reduce
the complexity of this decision-making process. The following sections detail a
four-step approach to identify the appropriate integration technique. These steps
are:

1. Pre-project preparation and training

2. ldentify project requirements and considerations
3. Select the appropriate portlet pattern

4. Select the appropriate integration technique

2.1.1 Step 1: Pre-project preparation and training

38

Issues addressed:
» Portlet patterns
» Integration techniques

Description:

Before starting a portal integration project, obtain as much information and
training as possible. Focus on understanding the portal patterns and integration
techniques, and familiarize yourself with the skills and technologies required to
implement each technique.

Portalizing Domino Applications for WebSphere Portal

When learning new technologies, there is no substitute for hands-on training and
experience. Try to implement the examples found in this book, or make up your
own “case study” with which you can experiment.

2.1.2 Step 2: Identify project requirements and considerations

Issues addressed
» Domino application
» Conditions

Description

While in the requirements gathering phase of your project, obtain the Domino
application characteristics as discussed in 1.3.6, “Domino applications” on
page 16. It is important to have a solid understanding of the application design,
size, performance, and usage patterns before you recommend a portlet pattern
or integration technique.

Also, identify the miscellaneous project considerations outlined in 1.3.9,
“Considerations” on page 28. The project budget, the skill set of the development
team, and the application environment details (including SSO, software versions,
and so forth) can each play a significant role in your final decision.

Finally, identify specific functional requirements that your portlet will be required
to perform. These requirements may affect your selection of an integration
technique.

Together, the Domino application characteristics, project considerations, and
functional requirements define the capabilities that the selected integration
technique for this project must be able to implement.

2.1.3 Step 3: Select the appropriate portlet pattern

Issues addressed:
» Portlet pattern

Description:

Use the client’s functional requirements to identify the best portlet pattern for this
application. Table 2-1 on page 40 summarizes some of the main advantages and
disadvantages of each portlet pattern.

Chapter 2. Integration techniques 39

Table 2-1 Portlet pattern advantages and disadvantages

Portlet Advantages Disadvantages
pattern
Link Quick and easy. This is a simple Web link from a
Accesses existing applications. portlet. No content or functionality
No modifications to existing is available within the portal
functionality. framework.
Display Minimal enhancements to existing | Minimal or no application
application functionality. functionality within the portal
Optional link outside portal to framework.

access existing application for
more advanced functionality.

Integrated Significant functionality within the Requires more development time

portlet. and might be more difficult to
implement.
Migrated Full application functionality within [The most technically challenging
the portlet. and resource-intensive to
implement.

A description of each portlet pattern can be found in 1.3.7, “Portlet patterns” on
page 19.

2.1.4 Step 4: Select the appropriate integration technique

Issues addressed:
» Integration technique

Description:

Identify one or more integration techniques that will work well with the portlet
pattern chosen in the previous step. Guidelines for this process are in the next
section. Once the set of candidate integration techniques has been identified,
compare each integration technique with the considerations identified in Step 2.

If none of the integration techniques satisfies all of the considerations for this
application, identify the restricting factors that are feasible to change. While every
project is different, some of the more flexible factors tend to be: estimated
development time, developer skill set, and non-essential functional requirements.
You may also consider a less complex portlet pattern. Some examples of factors
which may be more difficult to change are: performance requirements and
Domino application characteristics (database size, usage patterns, and so forth).

40 Portalizing Domino Applications for WebSphere Portal

Once an integration technique that satisfies all project parameters has been
identified, the first and most important step in the process is complete. You are
now ready to design, develop, and deploy your portal application.

Considerations

Table 2-2 outlines many of the considerations that will influence your integration
technique selection. In the following chapters, the discussion of each integration
technique includes a brief discussion of each of these considerations. This will
prove useful when comparing and contrasting the available techniques

Table 2-2 Considerations for integration technique selection

Consideration Description

Portlet patterns

The portlet pattern or patterns most compatible with this
integration technique.

Development time

Relative time/resources required to implement this
integration technique.

Developer skill set

The technologies with which developers must be familiar to
implement this integration technique.

Range of application
functionality

The degree of control a developer has over the portlet
features and functionality when implementing this technique.

Handle rich text

Can portlets implementing this technique easily display or
edit the content of rich text fields?

Performance and
scalability

How well do applications using this integration technique
scale? Is session pooling used for Domino sessions? Can
this technique be used in a clustered environment?

Requires single
sign-on

Does this implementation technique require that single
sign-on be enabled between WebSphere Portal and Lotus
Domino servers?

Required software
versions

Versions of server and development software are required to
implement this technique?

2.2 Integration techniques and development options

Developers wishing to expose Domino content and functionality within a portal

environment have many integration techniques at their disposal. The integration
techniques presented in this book have been categorized into four main groups,
called development options. These development options are:

1. Using existing portlets

Chapter 2. Integration techniques 41

2. Domino JSP tag library

3. Java

4. Portlet builders

The integration techniques within each development option share many similar
characteristics. These characteristics include:

» The technologies and technical skill set required for implementation

» Development time

» The developer’s level of control over the application functionality

This section provides a brief overview of the characteristics of each development
option and outlines the integration techniques found within each option. Further

details and implementation examples are provided for each option in subsequent
chapters.

2.2.1 Using existing portlets

42

Note: Chapter 3 provides a full description of this development option.

Description

There are many general-purpose portlets provided with WebSphere Portal that
can be used to access Domino applications. Other general purpose portlets are
available from third-party sources. If a portlet is available that meets your Domino
application’s needs, this is the most expedient option.

Advantages

Using an existing portlet is by far the simplest option to implement and requires
the least amount of development time. Developers do not need to be familiar with
Java or WebSphere Portal, or often even Domino development technologies, to
implement this option.

Limitations

The developer is limited to the functional capabilities provided by the portlet
being used. Customizing the functionality of an out-of-the-box or third party
portlet is not always possible.

Integration Techniques
QuickLinks portlet

The QuickLinks portlet simply stores a configurable collection of URLs and URL
labels. It is very easy to configure and deploy.

Portalizing Domino Applications for WebSphere Portal

Applicable portlet patterns
The QuickLinks portlet is ideal for implementing the Link portal pattern.

Web Page portlet (IFrame)

By using the <IFRAME-> tag to create a nested frameset, the WebBrowser portlet
allows us to embed almost any HTML content, including Web-enabled Domino
applications, within the portal context. It is a quick and easy way to provide
custom content within a portal page, but has all of the caveats of using framesets
in general.

Applicable portlet patterns

If framesets can be tolerated, the WebBrowser portlet can be used for the Link,
Display, and Hybrid patterns. The behavior of content in this portlet is essentially
outside of the portal framework, and should not be used if access to portal
resources or inter-portlet communication is required.

Web Clipping portlet

The Web Clipping portlet takes content from a specified URL, extracts a selected
subset of this Web page, and embeds the content into a portlet. Unlike the Web
Page portlet, content is rendered within the portlet context. However, this portlet
does not always work as intended with existing HTML. For example, JavaScript
does not always function as intended, and much of the header information is lost.

Applicable portlet patterns
Simple Link or Display portlets can be implemented using the Web Clipping
portlet.

Notes View portlet

The Notes View portlet provides access to a specified view in any Domino
database. It is simple to implement and can be applied to any application.
However, the interface cannot be customized.

Applicable portlet patterns

The Notes View portlet can be used to implement a basic Display portal pattern.
However, it should not be used if any customized interface or additional
functionality is required.

XML helper and RSS portlets

The Rich Site Summary (RSS) news format is a simple, common format for
delivering news to portals and other Web sites. By default, the RSS Portlet
renders XML data that conforms to the RSS DTD. However, it can be easily
configured to render any XML data using any XSLT stylesheet.

Chapter 2. Integration techniques 43

Currently, the RSS portlet only allows for a single, static URL to be specified
when the portlet is configured. This significantly reduces the usefullness of this
portlet as an effective integration technique.

An XSLT stylesheet can be written to render DXL, Domino’s native XML format.
Or, a custom Domino view or agent can be developed that generates XML in the
RSS format.

An XML/XSL helper portlet can be configured to get the XML from Domino and
format it for presentation. This set of methods produces portlets by simply
modifying your Domino application to serve up XML to the XML/XSL helper
portlet. The style sheet used to render the view creates an HTML table out of the
Domino XML (DXL) resulting from a ReadViewEntries request to the Domino
database.

Applicable portlet patterns

Link and Display portlet patterns using a very small data set can be implemented
using this RSS portlet. XML/XSL helper portlet can be used to implement Link
and Display portlet patterns.

Using multiple existing portlets together

By combining the Web Clipping and Web Page portlets with some custom
JavaScript and Domino development, it is possible to create a basic portal
application which implements the integrated portlet pattern without custom Java
or JSP development. The main advantage of this integration technique is that it is
relatively quick and easy to implement. Its main limitation is that the developer is
tied to the features provided by the portlets being used.

Applicable portlet patterns
Display portlet pattern and Integrated portlet pattern (with limited functionality)

2.2.2 Domino JSP tag libraries

44

Note: Chapter 4 provides a full description of this development option and its
integration techniques.

If the functionality provided by existing portlets is not adequate for your Domino
portal integration requirements, the Domino JSP tag library is a good option to
consider. JSPs and the Domino JSP tag library provide a rich set of development
options that are quicker and easier to implement than the Java development
option discussed in Chapter 5.

Portalizing Domino Applications for WebSphere Portal

Note: At the time of writing, the Domino JSP tag library implementation did not
fully support a portal environment. Refer to the release notes of the new
Domino versions to see if the support has been added.

Integration Techniques
Domino JSP Tag Libraries

JSP Tag Libraries provide developers with a quick and easy technique for giving
a Web application the ability to incorporate complex Lotus Domino interactions,
simply by adding custom Domino JSP tags to a JSP page. Because the
WebSphere Portal framework and JSPs are both based on the J2EE
environment, a developer can easily use Domino JSP tags to expose Domino
data and functionality in a WebSphere Portal portlet.

A key drawback of the Domino JSP tag library is that it does not currently support
session pooling for connections to Domino servers. This can result in
performance limitations for heavily used portal applications.

Applicable portlet patterns

Link and display portal patterns can be implemented using the JSP tags, but are
often more easily implemented using techniques described earlier in this chapter.
Generally JSP tags are used when implementing integrated and migrated
portlets.

A great number of options and techniques are available to the developer. Some
of the options are:

J2EE development

JSPs

JSP tags

Custom Domino JSP tags
Click to Action
Collaborative components

vyVvyYvyvyYyvyy

2.2.3 Developing Domino portlets using Java

Note: Chapter 5 provides a full description of the Java development option
and its integration techniques.

While JSP tags provide developers significantly more power than using existing
portlets, developers may still require specific functionality that is difficult or not
possible to implement within the JSP tag model. Pure Java coding overcomes
the development limitations of other integration technologies or options.

Chapter 2. Integration techniques 45

Java is the base programming language, ultimately used by all portlets running
on WebSphere Portal. You are not limited by the functionality or the user
interactions provided by portlet builders or existing portlets, or by any scalability
limitations. When you are creating your own Java programs, you can deal with all
of these issues, as well as others.

The disadvantages of developing in Java are that extensive Java programming
skills and portlet programming skills are required, and in many cases the
development time can be a lot longer than for other integration techniques.

A great number of options and techniques are available to the Java developer.
Some of the options are:

» The WebSphere Portlet API

» Domino Java API, handling Rich Text in Domino

» Corba mechanism and IIOP access to Domino databases

» Implementing object pooling

» Using the Struts framework with Domino and WebSphere Portal

» Using JavaBeans

» Portlet logging using the server-based log and log4j

2.2.4 Portlet builders

Note: Chapter 6 provides a full description of the Portlet Builder development
option and its integration techniques.

This option covers the tools and technologies available in the marketplace that
attempt to bridge the gap between the limitations of the use of existing portlets
and the complexity of the custom Java development options. It focuses on the
technology offerings from vendors including IBM, Bowstreet, Conet, and others.

Portlet builder technologies provide a “middle-ground” approach to portlet
development. They offer significantly more development capabilities than the use
of existing portlet option. In addition, they promise a shorter development time
and require less in-depth knowledge about custom portlet development than the
more advanced custom development options of JSPs and Java.

The portlet builders that are included in our detailed discussion in Chapter 6 are:

» IBM Portlet Builder for Domino
» Bowstreet Portlet Factory for WebSphere
» Conet Portlet Factory for Domino

46 Portalizing Domino Applications for WebSphere Portal

Other portlet builders introduced in that chapter are:

» Aptrix Portlet Connector
» Sofor Interactive Portlet Builder for Domino

These tools vary in capability, development approach, user interface, strengths,
and weaknesses.

2.3 Case study: A simple sales tracking application

The remainder of this book discusses each development option and integration
technique in greater detail. To facilitate this discussion, a sample application is
used throughout the book to provide examples of how to implement each
technique. This sample application is available for download from the IBM
Redbooks Web site. For information on how to download this software, see
Appendix B, “Additional material” on page 421.

Note: This application is intended only to provide portlet migration examples.
It is not intended for use in a production setting.

Case study overview

The fictitious company Widget Corp. is using Lotus Domino to support the sales
department. Over the years they have built a sales tracking application to help
their sales force track interactions with their customers. The databases can be
accessed from a Notes client or a Web browser.

There are two main databases in the sales tracking application: the Customers
database and the Sales database. Figure 2-1 on page 48 and Figure 2-2 on
page 49 illustrate the user interface when accessed from Lotus Notes. A third
database, Products, is used for product keywords and is not accessed directly by
the sales force.

Chapter 2. Integration techniques 47

Sales Reporting - Sales Activity\by Customer - Lotus Notes =Joed
File Edit View Create Actions Help

IOLE- 98| ABAR| 2T oD E ¢+ == BaC B

J Address v”J = @@C};‘vl

[Welcome l% Replication xl Sales Reporting - Sales Activit ...)(l

Widget Corp. Sales Tracking Application

Sales Q Search in View 'Sales Activity\by Customer®) Indexed T
Sales Activity
By Customer Search for I s | * More
By Date
By Sales Person Customer |Date Activity Sales Person Contact Made Sale?
Sales People b Doe Inc.
g::”mber - |BM Corporation
ame - . -
05/12f2003 Sales Pitch Ticknor, Bob Smith Mo
Create Sales Activity 12/ Michael
Create Sales Person + Portals-R-Us
Open Customer DB 05/08/2003 Phone Call Smith, John Wilbur B. Good Mo
05/07/2003 Phone Call Smith, John Wilbur B. Good Mo
¥ Wanda's World of Wigs
* WP Experts
05/12/2003 Sales Pitch Heltzel, Oliver Trabert Mo

Chris
05/02/2003 Phone Call Heltzel, QOliver Trabert Mo

&
@ Chris

3 [T

[| «|[<2 «][On Network - Local | (3 «

Figure 2-1 The Lotus Notes interface for the Sales Tracking application Sales DB

48 Portalizing Domino Applications for WebSphere Portal

Customers - Customer Contacts\By Customer Name - Lotus Motes

M=%

File Edit View Create Actions Help

CLE-TES AEOR| ST oo chE o= BaQE]

Address

- &~ R~

[Q Welcome [% Replication 3 [ﬂ Customers - Customer Cortact .. X

i

Widget Corp. Sales Tracking Application

J9E

Customers Employer |Contact Name Phone i
@ Customers - Doe Inc.
By Account Owner Jane Doe 617-555-5555
@ By Customer Name Tohn Dos A
@ Coﬁ;:::jmer A = |BM Corporation
By Name Camilo Rojas 617-555-5655
¥
Q By Number - Portals-R-Us
Create Customer Wilbur B. Good §72-555-5555
@ Create Contact = Wanda's World of Wigs
Wanda Worley 617-555-5555
@ Open Sales DB + WP Experis
°\| Oliver Trabert

==

| [=2 =] [On Network - Local_+|[€5a 4]

Figure 2-2 The Lotus Notes interface for the Sales Tracking application Customers DB

There are five main types of documents used by this application. They are

defined in Table 2-3.

Table 2-3 Document types used by the example Sales Tracking application

Document type Database Description

Customer Customers.nsf An organization that is a customer or
potential customer of Widget Corp.

Customer contact Customers.nsf An employee of a Widget Corp. customer
who is responsible for a purchasing
decision.

Product Products.nsf A product sold by Widget Corp.

Sales person Sales.nsf A member of Widget Corp.s sales force.

Sales activity Sales.nsf A document tracking a specific interaction
between a Sales Person and a Customer
Contact.

Chapter 2. Integration techniques 49

Case study objective: Sales Workplace
Widget Corp. has decided to build a Sales Force Workplace using WebSphere
Portal. On the workplace, they would like to expose the content of the Domino
databases that are related to the sales process. They also want to use the
portlet’s cooperation functionality to create a seamless user experience. Their
vision is to present the sales person all the information available on a given
customer in context with the products the customer buys and the most recent
sales activities with that customer. In addition, they want to use people
awareness to allow better communication between the different sales people.

Figure 2-3 shows a prototype of the workplace that they want to build.

[#] First Name| Last Mame

1 Dawid Herbrand
2 Michael Heide

3 Miker Cameron
4 hibdws fubeier

5 Tommi Trabert
6 Camilio Daters

7 Chis ifller

& Tommi Tabert

9 Camilio Oaters
10 Chris hufller

11 Camilia Daters
12 Chrs tufiller

Custorner Directory Cornpany Det=l
Please =s=lect Custorner Bdit Delete
Harne 1Bh r* ;
Location: Cormpany Address:
Custorner # Marne: |BMt Lotus 1 Roger &.
Cormpany®: 20030501 Camrbridge, bt
. (BT
[#] Compary | Location | Company # | # Bmplayees: 10000
1 IBhtlotus Cambridge 4736 o
7 IBhTwoli Rochester 9645 REROIOLS el Hezou
3 |BMEDOBS Bogota LRl Office: +1 617 6931153 Marne: Peter Salesman
4 [BhtIGE Colagne 24453 Fan: + 6176231154 Fhome: + 1760311463
5 |BMEISSL Dewer il Website: www_ibm com Fax: +1 617 6931154
E-M=il: IrfoEs ibm.com Ernzil: Ppromanigwidgat com
17 e 12 Lacations found | |
Custorner contacts 2 [Recent 53 es Aotivity

By Oae By lctiviy By Sales Rep.

Additional Infommation

12 cortacts found 1

[#] Cortat Name [Title [#*] sales Rep.
w David Herbrand
A H 11522/02 Price Sheet Cookie Cutter hiachine 2003 #* Peter Proman
L] 1142202 Presertation Markaing Daabaze #* Patar Proman
L 11422/02 Presentation hariating Database #* Peter Proman
A H 11522/02 Price Sheet ,Cookie Cutter hiachine 2003 #* Tamara ht:Kinsey
3 11422/02 Presentation hadiating Daabase #* Peter Proman
I 1122002 Presertation Markating Database #* Peter Proman
i 1102202 Preseriation harkaing Daabase #* Pater Proman
b Michad Heide
E1 B 112202 Price Sheet Cookie Cuiter hdachine 2003" #* Pater Proman
3 11422/02 Presentation hariating Database #* Peter Proman

Figure 2-3 Example of a customer information workplace

50

Portalizing Domino Applications for WebSphere Portal

The Sales Workplace is made up of four portlets:
» Customer Directory

This portlet allows the sales person to search for a customer by name or
customer number. He can also browse through the customers page by page,
just as he would through a paper directory.

Customer Detail

This portlet displays detailed information from a customer record, like the
address or the responsible sales person, in a form-like display.

Customer Contacts
The Customer Contacts portlet lists all contacts for a given customer.
Recent Sales Activities

The recent sales activities are displayed in this portlet. It allows the user to
switch between different views of the date. Supported views are: by date, by

activity, and by sales person.

The portlets on this Sales Workplace communicate with each other. Choosing a
customer record automatically updates all the other portlets. They immediately

display the customer details, all the contacts at this customer, and the most

recent sales activities with this customer.

Case study: Application details

The relationships between document types in this application are defined in

Table 2-4.

Table 2-4 Relationships between the record types in the sample application

1st Document Relationship 2nd Document Key

Customer 1 to many Customer Contact | Customer Number
Sales Person 1 to many Customer Employee Number
Sales Person 1 to many Sales Activity Employee Number
Customer Contact | 1to many Sales Activity Contact Name
Product 0-3 to many Sales Activity Product Number

Chapter 2. Integration techniques

51

52

User Roles

The application is designed for two types of users, identified in Table 2-5.

Table 2-5 User roles

User type

Access rights

Access method

Sales person

Author access to all databases.

Rights to create Customer, Customer
Contact, and Sales Activity documents.
No deletion rights.

Notes client or Web
browser

Application owner

Full rights to create, edit, and delete all
record types.

Notes client

Use Cases

Table 2-6 summarizes the ways in which sales people interact with the system.
Many of these use cases are good candidates for use within a portal

Environment.

Table 2-6 Use cases for the sales person role

Activity

Use case

Document creation

Create customer document
Create customer contact
Create sales activity document

Document edit

Edit customer document

Edit customer contact document
Edit sales activity document
Edit sales person document

View/Lookup/Search documents

Customers by name

Customer contacts by Name
Customer contacts by customer
Sales people by name

Sales activities by sales person
Sales activities by customer

Sales activities by customer contact
Sales activities by date

Delete documents

None

Application owners have a superset of the rights given to sales people. Table 2-7
summarizes the additional rights application owners have to the system. While

technically feasible, there is a lower business need to provide this functionality in
a portal environment.

Portalizing Domino Applications for WebSphere Portal

Table 2-7 Additional use cases for the application owner role

Activity Use case

Document creation Create sales person document
Create product document

Document edit Edit product document

View/Lookup/Search documents Products by name
Products by number

Delete documents Delete all record types

Additional application functionality

In order to provide an example as close to the real world as possible, this appli-
cation uses many development features used by the majority of Notes/Domino

a

>

>

>

»

>

pplications. These include:
Keyword lists based on @DbLookups and other @ Functions

Input validation and input translation formulas
Computed fields, hidden fields, shared fields
Hide-when formulas based on keyword changes

A page with embedded outline for the sales and customer databases to
maintain consistent feel with cross-database navigation

Links between related documents from a Web browser. For example, a sales
activity record has links to the corresponding customer and sales person
records.

Use of $$Return field on document save

Rich text for additional information

Action buttons with hide-when formulas on forms
Use of sections

Use of subforms

Categorized, sorted views

Full-text indexed databases

Data dictionary

A complete description of the fields in each document type can be found in
Appendix A, “Data dictionary for case study” on page 415.

Chapter 2. Integration techniques 53

2.4 Deploying the case study portlets

Instructions for downloading case study Domino databases and many of the
portlets used throughout this book can be found be found in Appendix B,
“Additional material” on page 421.

The Domino databases should be added to the /apps/ subdirectory of your
Domino server. Verify that you have set Anonoymous & Default access to at least
editor, or that you have granted known user IDs with at least editor access.
Complete the following tasks to deploy the portlets:

1. Install the portlet WAR file.

Create a place for the demo portlets.

Create pages in this place to hold the various demo portlets.

Add the pages to this place.

o kM DN

If needed, configure the portlets.

The remainder of this section presents the detailed steps for performing each of
these tasks.

2.4.1 Install portlets

54

A portlet application is installed through a Web Archive (WAR) file, or you can
install remote portlets via UDDI directory (Web Services portlet). The WAR file
used to install the portlet application can contain multiple portlets. The install
process uploads the WAR file to the server, installs portlets, adds them to the list
of available portlets and activates the portlets. Once you install a portlet, it is
automatically activated, but with no permissions. Use the Access Control portlet
to specify which users and groups can view, edit, or manage the new portlet.

Perform the following steps:

1. From the Portal Administration tab, select Portlets — Install Portlets. Browse
for the WAR file, as shown in Figure 2-4. Click Next.

Portalizing Domino Applications for WebSphere Portal

2 IBM WebSphere Portal - Microsoft Internet Explorer
J File Edit View Favorites Tools Help HLinkS &P 0P @RedpStats E1Sanat € Webster ElW3FL
J EBack v = v @D 7 ”J Gaogle vlge vour exchange” j »

J Address I@j hittp:/fitsatest-wps.cam.itso ibm.com/fwps/myportal/ cm

rk with Pages Collabaration Centsr | Portsl-Domino Redhook
\ Local install
Install Portlets " Nexnt

Portlet Applications

Specify the location of the file.
Manage Partlets

Directary:

web Clipping

C\WebSphere\IBM_d1glinks.war Browse...
Manage Web I —I
Services
Web Services o Nent

Global Settings

Themes and Skins

Figure 2-4 Browse for the WAR file

2. Check for the list of the Portlets included in the WAR file, as shown in
Figure 2-5. In our example, QuickLinks is selected for installation. Click Install
to begin the installation. You can click Cancel at any time to stop the
installation process.

M IBM WebSphere Portal - Microsoft Internet Explorer

Fle Edit View Favores Tools Help Hunks €IBP @IOP @RedpStats €]Sanat &lwebster &JW3FI
EBack v = v @ [4| »J Google '|ge your exchangs" j &

2] http:/ firsotest-wps .cam.itso.bm.com/wps/myportal/_s. 19

J Address

with Pages Collaboration Center | “Rartal-Domino R

- Tnstall Partlet Application
Install Portlets Install | Cancel
Partlet Applications

The following portlets will be installed:
Manage Portlets

web Clipping Pt B
Manage Wieh QuickLinks
Services » QuickLinks

teb Services
- Install | [cancel
Global Settings

Themes and Skins

Figure 2-5 Check for the portlets that will be installed

3. When installation is complete, if successful, you should get the message
Portlets Successfully Installed, as shown in Figure 2-6. Click Next if you
want to install more portlets.

Tip: If portlet installation fails, check for the portal server logs directory and
check the latest log file located under \WebSphere\PortalServerlogs\. The
name of the log file can be determined with the append of the latest time and
date stamp on it (for example, wps_2003.06.24-11.00.47.log).

Chapter 2. Integration techniques 55

A IBM WebSphere Portal - Microsoft Internet Explorer

J Fle Edit View Favorites Took Help Hunks EBP @10P @RedpStats @15anat €lwebster EIW3FI
J EBack » = ~ @ [F o J Google ‘Ige your exchange"j i

»

J Address |ej hittp://itsotest-wps .cam.itso.bm.com/fwps/myportal/_s, 1

|| EditLayour | Mew Pags |

et | Portal-Domino R

Local install

Install Portlets 2 Nent
Partlet Applications

Specify the location of the file,
Manage Portlets

Directory:
Web Clipping
Browse...
Manage Weh I —I
Services

+ Portlets successfully installed,
eb Services

> :: Next

Global Settings

Thernes and Skins

Figure 2-6 Portlet successfully installed

You have now successfully installed the portlet WAR. Portlets in this WAR are
available for deployment on pages on this WebSphere Portal.

2.4.2 Creating a place

From the Portal Administration tab, you can use the Create place option to name

and create a new place. To be able to use this option, you must have Create
permission.

By default, any user in WebSphere Portal will have Create permission for Places
and Pages.

Use the following steps to create a place:

1. Click the Create place icon in the Manage places and pages portlet. The
screen shown in Figure 2-7 is displayed.

2 IBM WebSphere Portal - Microsoft Intérnet Explorer

J Fle Edit View Favorites Tools Help Hunks &1Bp @Qp @RedpStats Elsanat ElWebster E1W3FI
J +Back ~ + - @ @ & »J Gm’sle'lge your exchange” j o

J Address IE hittp//fitsotest-wps .cam.itso.bm.com/Awps/myportal/_s. 1

9§ Save cancel
WP;‘\ Create a place

& We\cume Administrative name:

@ [Pwork with Pages [redbook place

@ [APortsl Administration Theme:

@® [Pcollaboration Center lm w
@ [JPortal-Domino Redbook Supported markups:

[WML T eHTmL T wmL

Figure 2-7 Creating a new place

Portalizing Domino Applications for WebSphere Portal

2. Specify the new place name.

3. Select a theme for your place from the drop-down menu. The selected theme
will appear in the theme preview on the right-hand side of the page. You can
select from among various themes and, based on the preview, finalize the
theme.

Note: You should not apply the Admin theme to a place. This theme is
intended for administrative portlets and renders portlets without a title bar.

4. Make sure HTML is checked as a supported markup.
5. Click Save to create a place or Cancel to return.

6. The new place will be added to the list of places you can manage if you
selected Save.

2.4.3 Creating a page

This section describes how to create a new page in an existing place. You must
have Create permission to create a page in a place. Using this option, you can
also reference an existing page, apply a layout, select supported markups, define
a list of associated portlets, and specify locale-specific titles.

If you reference an existing page, the page name, layout, supported markups,
locks, skins, and portlet list are predetermined by the referenced page. If you
choose to reference an existing page, you must have Manage and Delegate
permissions for the page that is referenced.

1. On the Work with Pages tab, click the Create page icon (third icon from the
left).

2. The window shown in Figure 2-8 is displayed.

Chapter 2. Integration techniques 57

22 IBM WebSphere Portal - Microsoft Internet Explorer

J File Edit View Favorites Took Hep Hunks €IBP €IQP €lRedpStats €lSanat Elwebster EIW3FI
J EBack v = v @ [A | ”H Google 'Ige your exchange” j ”HAddI’ESS I@j hitp:/fitsotest-wps.cam.itso.bm.comfwps/myportal/_s.19

Save Cancel

Create a page
o Adrministrative name:
B [Fwwork with Rages [ITs0Tester
B [Frortal AdminNgration F Bookmarkable

® [Pcollaboration Center & New page

9 [Prartal-Domino Redbook Mumber of columns:
BN 7.dbook place s |:| I I:l s |:|
Supported markups:
W HTmL
" Refersnce an existing page
All available pages:
[Harne =

Figure 2-8 Create page options
3. Specify the administrative name. For this example, we specified the page
name as ITSOTester.

4. Select a page layout you would like the page to use. The column layout can
be changed later using the Edit layout and content portlet.

5. Specify the supported markup. In our example, we have only HTML as an
option since we selected HTML as the only markup for our place.

6. Click Save to create a page or Cancel to return.

7. The page ITSOTESTER is added to the list of pages you can manage if you
selected Save.

2.4.4 Adding portlets to a page

58

Open the page you want to add portlets to in edit mode using the following steps:
1. Click the Edit Layout page on the Work with pages tab.

2. Expand the place containing your page, Redbook place in our example.

3. Select the page you want to add portlets to, ITSOTester in our example.

4. Click the Add portlets icon to add the portlet to the page (Figure 2-9).

Portalizing Domino Applications for WebSphere Portal

2 IBM WebSphere Portal - Microsoft Internet Explorer
J File Edit View Favorites Tocls Help Hunks €IBP €IQP €lRedpStats €lSanat ElWebster E1W3FI

| ®Back v =» ~ @ [@A at| »

| Gocgle ~lge your exchange' 7]l »

JAddT’ESS Iﬂj hittp://fitsotest-wps.cam.itso bm. com/wps/myportal/_s. 19

! | EditLayout | Mew Page |

Deactivate

WPS
] Welcome

‘D [Fwork with Pages
[Frartal Administration

ollaboration Center

lrortal-Domino Redbook
= [JRedbook place

Page:ITS0OTester

[

Add portlets

Figure 2-9 Adding portlets

5.

a particular date.

6.

Click the Go button.

7. A list of portlets is displayed.

Note: If specific portlets are already associated with the selected page, the
portlet list will be locked. Only portlets available in the portlet list can be

placed on the selected page.

Chapter 2. Integration techniques

Specify a search criteria and search for the portlets you want to add. You can
search for all portlets, for a specific portlet by name, or for portlets modified on

59

BM WebSphere Portal

J File Edit View Favorites Took Hep Hunks €IBP €IQP €IRedpStats €lSanat Elwebster EIW3FI |

oft Internet Explorer

| ®Back » =» ~ @ [a] ”

| Govgle~lge vour exchange” | *

Fortal &drni

j Address |@ http:/fitsotest-wps cam.itso.bm.com/fwps fmyportal_s.155/158/ cmd/fad/ -Ej P60

|| EditLayout | Mew

My Favorites -

ok | [cancel H
@ all available
' Name contains:
" Title contains:
" Date modified: year/ month/ day l— l— l—
| Go
? Access Control List Access Contral List The ACL administration portlet hitmnl
[T |Account Details AccountsC2Za Portlet showing your account details htrnl
[|ACL Browser ACL Browser ::Lshlssh:ds?nmf]:ﬂboguﬂku_ I willie
™ |ACLBrowser portlst ACLBrowser portlet null htral
[|Bookmarks Bookmarks Bookmarks portlet hitmnl
[T |choose Skins Choose skins sg?&;f;g;;ser to change portlet skins of 2 hitml
[T |Content Organizer Cantent Organizer Cantent Organizer Portlet htrl
[|credential ¥ault Credential Vault Credential vault portlet application hitml
[T |CSY File Viewer CSV File Wiewer Displays CSV format files in a tabular format htrnl
[| Cusomter Details Hybrid portlet Customer Details hybrid portlet Lc'sr:’d°;};§'fjd;i2'ays the customer information. |y
[~ |Cusomter Details portlet Customer Details portlet This portlet displays the customer information | html
[T |Cust Contacts Portlet Cust Contacts Portlet mare stuff htrnl LI
|@ Applet menuDisplayer started ‘ | ‘ |. Internet o

Figure 2-10 List of portlets

8.

60

Specify each portlet you wish to add to your page by selecting the check box
next to the portlet name. Click OK to confirm your selection or Cancel to
cancel the selection list. The portlets are added to your page if you clicked
OK.

In our example, we added Welcome Portlet to the left side of the page (left
column container) and World Clock to the right side (right column container),
as shown in Figure 2-11.

Portalizing Domino Applications for WebSphere Portal

J

2 IBM WebSphere Portal - Microsoft Internet Explorer
File Edit View Favorites Took Hep Hunks €IBP €IQP €lRedpStats €1Sanat Elwebster EIW3FI

| ®Back = ~ @ [4| ”

| Gosgle ~lge vour exchange” | *

JAddress |ej http:/fitsotest-wps cam.itso.bm.com/fwps fmyportal_s.155/158/ cmd/fad/ -Ej P60

| Edit Layout | Mew Page | Editmy profile | Help | Logoff B

My Favorites -

Activate ?
Page:ITSOTester Show layout controls
Welcorme d i
Work with Pages
Portal Adrministration + & + g
o =
Collaboration Center
Portal-Domino Redbook [T welcome to WabSphere Portsl X T world Clack X
= [JRedbook place

Activate

Figure 2-11 Portlets added to the ITSOTester page

When you select a page to modify, the page is deactivated to prevent users
from seeing the page as you work on it. The tasks that you can perform on the

page depend on the access permission.

9. Click the Activate icon to activate the page when you have finished, so that
users can access it. You will notice that the page status button at the bottom

of the screen will turn to Deactivate.

To test how the portlets are laid out on your page:

1. Select your place. In our example, we selected Redbook Place.

2. You will see a page, ITSOTester. This is the available page in our Redbook

Place place.

3. Select the ITSOTester tab and you should see a window like that shown in

Figure 2-12.

Chapter 2. Integration techniques 61

A IBM WebSphere Portal - Microsoft Internet Explorer

Fle Edit View Favorites Took Help Hunks €IBF €I0P €IRedpStats €lSanat €lwebster E1WIFI
“®Back ¥ # ~ @ [af| 7| Google e your exchangs” x| 7| Address & hp:/fisotestwps cam.itso.bm.comywps/myportalf emd/es/.ce/ 155/ /31 7| ©Go
rere— wo— — T . ofile | Help | Log off [

2| | EditLayour | MewPage | Editm

Portal Administration | Co n Center | Portal-Do

Local Time:
I6M WebSphere Portal Server 4.2 6:28 AM Eastern Time (US & Canada) - £/24/03
Build Level: 063 2003-01-09 19:36
Licensed Materials - Property of IBM
Quick Search:
5724-B88
I CIE|
{C) Copyright IBM Caorp, 2001, 2003 Al Rights Reserved.
|@ Applet menuDisplaysr started | ‘ | |. Internst o

Figure 2-12 Portlets displayed on your page

The Welcome Portlet is displayed on the left side of the page and the World
Clock portlet is on the right side.

Tip: If you open your page and do not see any portlet, make sure that you
have activated the page. Any time you make changes on the page, you need
to click Activate.

62 Portalizing Domino Applications for WebSphere Portal

Using existing portiets

This chapter describes how to use some of the portlets that ship with WebSphere
Portal to access Domino data. The portlets we have selected for this chapter
utilize existing Domino applications to present information to the end user.

The outline of this chapter is as follows:

» Overview

» Why choose this option

» Technologies involved

» Software and tools used

» Integration techniques

» Reference material

© Copyright IBM Corp. 2003. All rights reserved. 63

3.1 Overview

This option relies on using existing prepackaged portlets to integrate existing
Notes and Domino applications into the WebSphere Portal environment.
Depending on the extent of your Notes and Domino applications, the techniques
described in this chapter may provide a quick and effective option for integration
into the portal environment. The programming skills required to use these
techniques are minimal, and with some portlets, no programming skills are
needed. Basic WebSphere Portal administration skills are needed. It is helpful to
have Notes and Domino development skills to be able to recognize which options
are beneficial, but it is not crucial.

3.1.1 Technologies involved

This option provides relatively simple techniques to integrate existing Notes and
Domino applications into WebSphere Portal. There may be existing Notes and
Domino applications that would not benefit from these technologies. The
technologies presented involve taking Web-enabled data that is being generated
in Domino and linking to or displaying this data using existing portlets in the
portal environment.

3.1.2 Software and tools used

64

This section provides a brief description of the software and tools that are used in
the implementation of the techniques included in this option. The software and
tools used are as follows:

» Notes and Domino
» WebSphere Portal

Notes and Domino

A fully installed, configured, and running Domino server is a base requirement for
this option. A workstation Notes client should be included because some
techniques link to the supporting Notes client. Applicable versions are identified
in the integration techniques section of this chapter.

WebSphere Portal

The base requirement for this option is for a fully installed, configured, and
running WebSphere Portal Extend 4.2 environment, including the supporting
infrastructure. This base environment will include a DB2® or Oracle database,
and an LDAP authentication directory (which could be Domino), for use by
WebSphere Portal. In addition, the Lotus Notes and collaborative portlets must

Portalizing Domino Applications for WebSphere Portal

also be installed. A properly configured WebSphere Portal is vital for
communication to the Domino server.

3.1.3 Integration techniques

This option includes techniques that enable data from Notes and Domino
applications to be accessed via existing portlets that are included with
WebSphere Portal. Our examples are based on an existing Notes and Domino
application that resides in the apps subdirectory of our Domino server. The
application includes two Web-enabled databases, Sales Reporting (Sales.nsf)
and Customers (Customers.nsf), as well as an internal look-up database called
Products (Products.nsf). The databases contain design elements that can be
accessed through a Web browser as well as through the Notes client. The
application and these databases are described in detail in Chapter 2.3, “Case
study: A simple sales tracking application” on page 47.

The techniques included in this chapter are the following:

» QuickLinks portlet

» Web Page portlet

» Web Clipping portlets

» Domino portlets

» XML portlets

» Integrated portlets

For each technique, the discussion includes an overview, considerations

regarding when its use is appropriate and details about the portlet, and complete
implementation details, configuration options, and results.

3.2 Integrate using the QuickLinks portlet

Using the QuickLinks portlet is a very easy and powerful way to bring Notes and
Domino applications into the portal environment. The QuickLinks portlet can be
configured to provide links that open a Web browser window to display
Web-enabled Domino data. Links can also be generated to open a Notes client
on the workstation if certain conditions are met. Because this portlet is very
flexible, it potentially could provide a link to any accessible database, view, or
document. A close-up of the portlet is provided in Figure 3-1.

Chapter 3. Using existing portlets 65

QuickLinks

Quick Browse:

Gn

Url:
fhttp:/ Go

Figure 3-1 The QuickLinks portlet in display mode

The QuickLinks portlet has two ways to launch URLSs to the user: the Quick
Browse area and the URL area. They function as follows:

» Quick Browse area - This area provides a means to generate reusable links.
To enable Quick Browse for use, the configuration mode must be entered. If
you highlight a Quick Browse link and click the Go icon, you are taken to the
URL associated with the link.

» URL area - If you enter a valid URL and click the Go icon, you will be taken to
that URL.

Portlet listing

The QuickLinks portlet is listed in WebSphere Portal Extend using the
nomenclature in Table 3-1.

Table 3-1 Portlet listing

QuickLinks Portlet The name used in the documentation (for example, InfoCenter)

QuickLinks Portlet Title in portlet selector (Edit Layout and Content)

QuickLinksPortlet Name in portlet selector (installation)

3.2.1 Considerations

The QuickLinks portlet was designed to be a configurable way to store links to
various Web sites. It potentially could provide a link to any accessible database,
view, or document. Although implementing this technique is easy, Web site
location changes, deletion of Web content, and removal of linked
workstation-located applications could limit the usability of this type of portlet. A
new browser or workstation session is opened when a user clicking on the links

Portalizing Domino Applications for WebSphere Portal

in this portlet. There is no customization available for this portlet. Key aspects of
the QuickLinks portlet are summarized in Table 3-2.

Table 3-2 QuickLinks details

Applicable portlet Link

patterns

Development time Insignificant

Developer skill set WebSphere Portal administration skills are needed.

Domino developer skills would be useful but not required.

Range of applications Narrow

Handle rich text This technique launches either a Web browser or a Notes
client. If a connection is made to the Domino HTTP server
directly (out of the portlet context) then Rich Text is shown,
otherwise no. If linking to Notes client, then this technique
will handle rich text.

Performance Limited
Session Management No
Clustering No
Scalability No

Requires single sign-on No. If Domino databases are accessed, users must have
the appropriate authorization to open the database.

Required software Client:

versions Browser- This portlet supports Netscape Navigator 4.72
and higher and Internet Explorer 5.0 and higher.

Notes client- The workstation should have a Notes client
version of 5 or higher.

Server: There are no special server requirements.

3.2.2 Implementation details

In this section we describe how to generate links and place them in the
QuickLinks portlet’s Quick Browse area located on a page in our portal. We also
describe how to create URLs to launch a Web browser that displays Web-enable
views in your databases, and how to create URLs to access views in your
databases using a Notes client that you have installed on your workstation. To
fully explain this implementation, we provide complete details concerning:

» Initial setup
» Configuration options
» Results

Chapter 3. Using existing portlets 67

68

Initial setup

This example begins with accessing the QuickLinks portlet. Place a QuickLinks
portlet onto a page and activate it. This process is described in detail in 2.4.4,
“Adding portlets to a page” on page 58.

Open the portal page with the activated QuickLinks portlet. Figure 3-2 shows the
initial portal page.

3 1BM WebSphere Portal - Microsoft Internet Explorer b . i IEI |£

&

‘File Edit Wiew Favorites Tools Help

Address IE hiktp: fitsotest-wps, cam.itso. bm. comjwpsmyportalf . cmdfcs/.cef 155/ 5/ 1896) s, 155/15896 j (]
‘WebSphere, s

Welcarme | Work with Pages | Portal Administration | Callaboration Center

Starter portlets | J5P Domino Tags

1. Link Portlet QuickLinks
2. Web Page Portlet Quick Browse:

3. Web Clipper
Portlets

4. Domino Portlets

5. XML Portlets

6. Integrated
Portlets Url:

[httpesy o

1| | o
€ | [[e nternet Y
Figure 3-2 QuickLinks portlet

Configuration options

In order to show Quick Browse URLs you must complete the configuration. Enter
the portlet’s edit mode and complete the configuration screen. The configuration
screen is shown in Figure 3-3.

Portalizing Domino Applications for WebSphere Portal

QuickLinks
Configure QuickLinks Portlet:

Manme: URL:

| Add
m Delete

Import

oK | ’

Figure 3-3 QuickLinks portlet configuration for Quick Browse URLs

Click OK to exit edit mode and return to the portlet display mode.

Use the following edit options and naming suggestions to configure the
QuickLinks portlet:

» Edit options (Figure 3-3):

Add When a name and URL are placed in the corresponding fields,
clicking the Add icon places the name into the Quick Browse panel,
while the URL is stored to be executed when a user highlights the
name and clicks Go while in portal display mode.

Delete When you click on a Quick Browse entry, the entry’s Name and URL
are placed into the corresponding fields. Clicking the Delete icon will
delete the entry from the Quick Browse list.

Import This feature allows the importation of Netscape’s bookmarks.htm
file or Internet Explorer’s favorites listings. Click the Import icon to
access a file input dialog that allows you to browse your workstation
for the appropriate file.

» Name and URL considerations:

Name Choose a short name to describe the URL being entered in the URL
box. Limit your entry to one line. Wrapping of the name to another
line is not allowed.

URL Any valid URL can be entered. Non-valid URLs will generate an
error.

Chapter 3. Using existing portlets 69

Note: The Domino database Access Control List must allow for the
access, or a login screen may be presented.

To link to Web-enabled Domino databases, standard Domino URLs
must be used. See Table 3-3 for our examples.

To link to Domino databases using a Notes client, the Notes client must
be installed on your workstation and be listed in the workstation’s
registry system. The format of the URL is
notes://servet/filepath/database/view/document. See Table 3-3 for our
examples.

Table 3-3 displays the Name and URL values in our example.

Table 3-3 Configuration values for the QuickLinks portlet example

Name URL value
Web browser Open: Customer http://itsotest-dom.cam.itso.ibm.com/apps/C
view in customer database ustomer.nsf/CustomersByName
Web browser Open: Sales view in | http://itsotest-dom.cam.itso.ibm.com/apps/S
the Sales database ales.nsf/saByCustomer
Notes client Open: Customer view | notes://itsotest-dom.cam.itso.ibm.com/apps/
in customer database Customer.nsf/CustomersByName
Notes client Open: Sales view in notes://itsotest-dom.cam.itso.ibm.com/apps/
the Sales database Sales.nsf/saByCustomer

Results

Once the Quick Browse links are configured, click OK and return to the
QuickLinks display mode. A close-up of our configured QuickLinks portlet is
shown in Figure 3-4.

70 Portalizing Domino Applications for WebSphere Portal

QuickLinks

Quick Browse:

Browser Open: Custormer view of the cust
Browser Open; Sales view in the Sales dal
Motes client Open: Customer wiew in custo
Motes client Open: Sales wview in the Sales

el
[http:7 Go

Figure 3-4 QuickLinks portlet with example links

To visit the first link, highlight the first listing and click the Go icon next to the

Quick Browse area. Figure 3-5 shows the result.

23 Customers-By Customer Name - Microsoft Internet Explorer %g : | =] Iil

File Edit View Favorites Tools Help | -"..'
Address I@ http:} fitsokest-dom.cam.itso.ibm, comfapps) Customer . nsf CustomersByTame j a G0 | Links **
=]

<mPrevions =Next <pExpand = Collapge < Search

Customers-By Customer Name

Customer Name Customer # « Account Owmner

Doe Inc. 1002 Gary Someone

IEM Corporation 1 Michael Ticknor

Portalg-R-Usg 500 Tohn Smith

Wanda's World of Wigs 1234567 Chris Heltzel

WP Experts 1001 Gary Someone

<mPrevions =Next pExpand = Collapze & Search
=

& [e 7

Figure 3-5 Result of clicking the first link in Quick Browse

Next, highlight the second listing and click the same Go icon. The result is shown

in Figure 3-6.

Chapter 3. Using existing portlets

71

72

3 Sales Activity-by Customer - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

=1o|x]

I

dmPrevious = Next

pExpand = Collapge

Address I@ http:,f,fitsotest-dom.cam.itso.ibm.com,l’apps,l’SaIes.nsF,l'saByCustomer?OpenView&Steﬂ Go | Links **
=

&, Search

Customer Date Activity Sales Person Contact DMMade Sale?
¥YDoe Inc.
05/12/2003 Follow Up Someone, Jane No
Gary Doe
05/07/2003 Contract Someone, John Yes
Negotiation Gary Doe
05/05/2003 Sales Pitch Someone, Jane No
Gary Doe
05/01/2003 Phone Call Someone, John No
Gary Doe
» IBM Corporation
» Portals-R-Us
P Wanda's World of Wigs
P WP Experts
dmPrevions = Next <pExpand = Collapze & Search :I
5] [W mmtermet 4

Sales Activity-by Customer

Figure 3-6 Result of clicking the second link in Quick Browse area

The previous results show the appropriate Web views in new Web browser
sessions. Highlighting the third listing and clicking the Go icon, a Notes client will
be started if it has been installed on the workstation and configured properly.
Figure 3-7 on page 73 exhibits this result.

Portalizing Domino Applications for WebSphere Portal

Customers - Customers'By Customer Name - Lotus Notes

=lox|

e Edit Wiew Create Actions Help

CHES- 88| S

TOONNE =t @M@HQH@']

‘Wielcome Iﬂ Customers - CustomershBy... X]

Widget Corp. Sales Tracking Application

Cuslomer Q\ Search in Yiew "Customers\By Customer Name" O Indexed B
b
? Search for | Search b hore ‘

By Account Dwner
By Customer Mame
By Customer Mumber
Contacts
By Mame
By Mumber
Create Customer

Customer Name |Cuslom9l # -~ |Accounl Owner |

Dioelnc. 1002 Gary Someone
IBM Corpoaration 1 ichael Ticknar
Paortals-R-Us 500 John Smith
YWanda's World of Wigs 1234567 Chris Heltzel
WP Experts 100 Gary Someane

Create Contact

Open Sales DB

I < [=2 <] |0ffice
Figure 3-7 Result of clicking the third link in Quick Browse area

A]UA

Finally, highlighting the fourth link opens the Notes client with the appropriate
Notes view showing, as shown in Figure 3-8.

Sales Reporting - Sales Activity',by Customer = Lotus Notes

Edit ‘Wiew Create Actions Help
DI S| T Co0HE == BaQH| [&<~
Welcome 2 Sales Reporting - Sales Activit... Xl
Widget Corp. Sales Tracking Application
Sales Q\ Search in Yiew "Sales Activitylby Customer® O Indexed
Sales Activity
By Customer Search for | Search
By Date |
By Sales Person |Customer Date |Aclivily |53|98 Person |Contacl |Made 5
Sales People [* Doe Inc.
By Number 05/12/2003 Follow Up Someone, Jane Doe Mo
By Mame Gary
e "= - " 05/07/2003 Contract Someone, JohnDoe Yes
reate Sales Person Negatiation Gary
Open Customer DB 05/05/2003 Sales Pitch g;r;eone, Jane Doe Mo
05/01/2003 Phone Call Someone, John Doe Mo
Gary
» IBM Corporation
» Portals-R-Us
» Wanda's World of Wigs
» WP Experts
[+|[=3 |[Office

Figure 3-8 Result of clicking the fourth link in Quick Browse area

Chapter 3. Using existing portlets 73

3.3 Integrate using the Web Page portlet

The Web Page portlet is a quick and easy technique to bring a Web-enabled
Domino application to the portal environment. Similar to the QuickLinks portlet,
the Web Page portlet can be used to configure a link to a Web-enabled view in a
Domino database. The link will open the element into your portlet context. No
external Web browser session will open.

Portlet listing

The Web Page portlet is listed in WebSphere Portal Extend using the
nomenclature in Table 3-4.

Table 3-4 Portlet listing

Web Page Portlet The name used in the documentation (for example, InfoCenter)
Web Page Portlet Title in portlet selector (Edit Layout and Content)
WebPagePortlet Name in portlet selector (installation)

3.3.1 Considerations

74

The Web Page portlet allows you to embed almost any HTML content, including
Web-enabled Domino applications, within the portlet context. It is a quick and
easy way to provide custom content within a portal page.

The Web Page portlet uses an “iFrame.” This portlet type is basically a frameset
within the portal page. Scroll bars or maximizing the portlet window are often
required to make the portlet usable because it is difficult to fit the existing
application within the portlet confines. The navigation within the iFrame can add
an additional layer of complexity to overall portal navigation.

The overall look and feel of the embedded application may not be consistent with
the rest of the portal, meaning the portlet will not use portal themes. Multiple
iFrame portlets do not work well on the same portal page because of different
content styles and colors. Also, iFrames containing applets will not work correctly
in a portal. For every request, the portal server sends down a new portal page,
the old applet instance is stopped, and a new instance is built.

The Web Page portlet should not be used if access to portal resources or
inter-portlet communication is required.

Portalizing Domino Applications for WebSphere Portal

Applicable portlet patterns Link, Display, Hybrid patterns

Development time Insignificant

Developer skill set WebSphere Portal administration skills are needed.
Domino developer skills would be useful but not
required.

Range of applications Moderate

Handle rich text No

Performance Limited

Session Management No

Clustering No

Scalability No

Requires single sign-on Depending on the application, the Web Page portlet
can be configured to use single sign-on.

Required software versions Standard HTML browsers with JavaScript support are
required. Netscape 5 and above and Internet Explorer
4 and above are supported

3.3.2 Implementation details

This section describes how to construct a link to be placed into the Web Page
portlet located on a page in your portal. This link will display a Web-enabled view
from one of your Domino databases. The view will be displayed within the portal
context. No external Web browser session will open. To fully explain this
implementation, we provide complete details concerning:

» Initial setup
» Configuration options
» Results

Initial setup

Our example begins with accessing the Web Page portlet. Install the Web Page
portlet and place it onto a page. Figure 3-9 shows a page with the Web Page
portlet at its initial setup. The portlet in the page has not been configured.

Chapter 3. Using existing portlets 75

IBM WebSphere Portal - Microsoft Internet Explorer

|File Edit VWiew Favorites Tools Help

po 5 d
1. Link Portlet Web Page

2. Web Page Portlet Please customize your portlet to specify a Web page.

3. Web Clipper
Portlets

4. Domino Portlets
5. XML Portlets

6. Integrated
Portlets

R_ShE —
@ | ’_ ’_ |4 Internet &

Figure 3-9 Web Page portlet before configuration

Configuration options

As in the QuickLinks portlet, the Web Page portlet has an edit mode with a
configuration screen that must be completed in order to display properly. The
configuration page is shown in Figure 3-10.

Wweb Page

Edit Web Page.

Portlet title:
IWeb Page
URL:

|http:// E

Fortlet width:
" Fit ta calumn

s I pixels

Portlet height:
ISDD pixels

Save I Cancel |

Figure 3-10 Web Page portlet configuration

Fill in the appropriate values and click Save to exit the configuration screen and
return to the portlet display mode. Click Cancel to return to the portlet’s display
mode without saving your changes.

Portalizing Domino Applications for WebSphere Portal

Use the following edit options and URL considerations to configure the Web

Page portlet:

» Edit options (Figure 3-10 on page 76):

Portlet title
URL

Portlet width

The title that will be displayed in the portlet title area.

The location of the Web page that you want to display.
Clicking the eyeglass icon at the end of the URL line opens a
browser window to assist you in entering the URL for the
Web page.

This feature allows you to set the width of the browser
window. The choices are Fit to column or a numerical value
for the width in pixels. The default is Fit to column.

Portlet height This feature allows you to set the height of the browser

window in pixels. The default is 300 pixels.

» URL considerations:

URL

Any valid URL can be entered. Non-valid URLs will generate
an error.

Note: The Domino database access control list must allow for the access;

otherwise, a

login screen may be presented.

Our example provides a link to a Web-enabled view in one of our databases. The
configuration values are listed in Table 3-5.

Table 3-5 Configuration values for the Web Page portlet

Field Inserted value

Portlet title Web Page portlet showing the By Customer Name view of the
customer database in a portlet

URL http://itsotest-dom.cam.itso.ibm.com/apps/customer.NSF/Customers
ByName

Portlet width Fit to column

Portlet height | 300

Results

The result of our
The view shows

configuration of the Web Page portlet is shown in Figure 3-11.
inside the Web Page portlet within our portal context. The

vertical scroll bar is visible because the portal height was not set high enough.
Modifying this parameter higher would remove the scroll bar.

Chapter 3. Using existing portlets 77

a 1BM WebSphere Portal - Microsoft Internet Explorer

File Edit View Favortes Tools Help

Address IE http: | fitsotest-wps, cam.itso.ibm.comfwpsimyportalf _s,155/187 1} .cmdfadf .ar/sa EditSavedction).pmf- .. 615/ cef.

is! | EditL

1. Link Portlet

2. Web Page Portlet N
g;:;‘;:“ﬂpe" “aPrevious =Next <Expand = Collapze 3 Search
4. Domino Portlets
5. XML Portlets Customers-By Customer Name
6. Integrated
Portlets
Customer Name Customer # « Acconnt Owner
After portal 7 Marko Viksten
AnyPortal Inc 8 Michael Ticknor
Company A 2 Tohn Smith
Doe Inc. 3 Camilo Rojas
Domino Portalizers 9 Marko Viksten
Fire Portals Co 10 Gary Someone B
a | >|J
@ ’_l_l_ & Internet 4

Figure 3-11 Configured Web Page portlet

Clicking any highlighted link within the portlet would perform that action inside of
the portlet if that element was able to be displayed in the Web. For example, if
you click the first link under Customer Name, the database record shown in
Figure 3-12 is displayed inside the portal context.

78 Portalizing Domino Applications for WebSphere Portal

3 1BM WebSphere Portal - Microsoft Internet Explorer -0 Iil

| File Edit View Favortes Tools Help | .s.'..’
Address I@ http:ffitsotest-wps, cam.itso.ibm, comjwpsmyportalf . cmdjc: G0
ofile | Help | Logoff |£S
[71. Link Portlet " y
["2. Web Page Portlet PTEd-“ =
[3. Web Clipper
Portlets
[4. Domino Portlets |CUStomer Profile
[5. XML Partlets Customer After portal
[6. Integrated MName
Portlets
Customer 7
MNumber
Customer One New Orchard Road
Address Armonk, NY 10504
of Employees | 325000
Account Marko Vilksten (100)
Owrner b
=l
4 |» lJ
@ ’_’_’_ 0 Internet &

Figure 3-12 Result of clicking the first highlighted link inside of the portlet

3.4 Integrate using the Web Clipping portlet

The Web Clipping portlet displays, on a portal page, Web content that was
“clipped” from another Web site. Web Clipping actually uses two portlets:

» Administration portlet - The administration portlet builds the resultant
“runtime” portlet by obtaining the specifications of the external HTML page to
be “clipped” and then clipping the regions of those pages that should be
displayed in the portlet.

» Runtime portlet - The resultant “clipped” portlet is an instance of the Web
Clipping portlet. This portlet is added to your page like any other portlet.

The Web Clipping portlet provides a quick and effective means of presenting
portions of, or even whole Web pages in WebSphere Portal. We used the Web
Clipping portlet to “clip” a Web-enabled view from one of our sample Domino
databases.

Chapter 3. Using existing portlets 79

Portlet listing
Table 3-6 contains information on the Web Clipping portlets.

Table 3-6 Portlet listing

Web Clipping The name used in the documentation (for example, InfoCenter)

Web Clipping Title in portlet selector (Edit Layout and Content”)

Web Clipping Portlet | Name in portlet selector (installation)

When a Web page has been clipped, a new entry into the portal catalog will be
shown that includes the new clipped portlet. For our example, the new listing is
shown in Table 3-7.

Table 3-7 Clipped Web page portlet listing

Web Clipping Customer View No information in the documentation for this portlet

Web Clipping Customer View Title in portlet selector (Edit Layout and Content)

Web Clipping Customer View Name in portlet selector (installation)

3.4.1 Considerations

80

The Web Clipping portlet takes content from a specified URL, extracts a selected
subset of this Web page, and embeds the content into a portlet. Unlike the Web
Page portlet, the content is rendered within the portlet context. However, this
portlet does not always work as intended with existing HTML. For example,
JavaScript does not always function as intended. Header information is mostly
lost.

Display cache

The display cache is a feature that uses the WebSphere Application Server
dynamic cache feature to store portlet output for a specified time before it
expires. If a user requests that portlet during that timeframe, the content is drawn
from the cache instead of from the portlet. This may not be desirable since you
may want caching enabled for some, but not all, clipping portlets. An alternative
is to specify a CacheTimeout configuration parameter for a specific portlet. To
specify a caching timeout value, set the following configuration parameter in the
clipping portlet under Portal Administration — Portlets — Manage Portlets.
Highlight your portlet and click Modify Parameters. Specify:

CacheTimeout = ##

where ## is some number of seconds. Note that this parameter has no effect if
the display cache is not enabled for the portal.

Portalizing Domino Applications for WebSphere Portal

Applicable portlet patterns Display

Development time Insignificant

Developer skill set WebSphere Portal administration skills are needed.
Domino developer skills would be useful, but are not
required.

Range of applications Narrow

Handle rich text No

Performance Limited

Session Management No

Clustering No

Scalability No

Requires single sign-on Depending on the application, the Web Clipping
portlet has extensive firewall, security, and
authentication configurations.

Required software versions Standard HTML browsers with JavaScript support are
required. Netscape 5 and above and Internet Explorer
4 and above are supported.

3.4.2 Implementation details

In this section we describe how to use this technique to “clip” a Web-enabled
view from one of your sample Domino databases and generate a runtime portlet.
We have already “clipped” the example for presentation purposes. We have
placed the administration Web Clipping portlet on a page along with our
completed portlet for this demonstration. Although we have included the Web
Clipping (administration portlet) on the page, it can also be accessed (and most
likely would be) by clicking Portal Administration -> Web Clipping. This approach
would generally be used since the administration portlet would not be shown to
users. We used the first method in our example just to show both portlets in the
same page. To fully explain this implementation, we provide complete details
concerning:

Initial setup

Administration portlet options
Configuration options
Results

vyvyyy

Chapter 3. Using existing portlets 81

82

Initial setup

Our example begins with accessing the Web Clipper portlet page. Deploy the
portlet and add it to a page; Figure 3-13 shows the result.

IBM WebSphere Portal

icrosoft Internet Explorer

File Edit View Favorites Tools Help

rter portl |
1. Link Portlet

Clipping

2. Web Page Portlet
3. Web Clipper

Add, edit, and delete Web clippers

pping

dm Previous g, Next

dm Previous gy Next

{lI!ExDand = Collap

&

Portlets Wweb clippers:

4. Domino Portlets Customers b Add
5. XML Portlets ;:?Ci::Sing Customer View @Edit
Portiets 0" 2hn

C%Search

After portal 7 Marko Viksten
AnyPortal Inc g Michael Ticknor
Company & z John Smith
Doe Inc 3 Camilo Rojas
Comino Portalizers 9 Marko Viksten

Fire Portals Co 10 Gary Someone
1IBM Corporation 1 Michael Ticknor
ITs0 John Smith
Joe's Pizza 13 Camilo Rojas
Kevboards Inc 17 Gary Someone
My Bank.com 19 Marko Viksten
MyCompanyPortal 4 Chris Heltzel
MNeo Portals 18 Michael Ticknor
Portal-rnakers 3 Camilo Rojas
Fortal People eaters 15 Marko Viksten
Portals-R-Ls 11 Chris Heltzel
The cormpany 6 Marko Viksten
Wwanda's World of Wigs 14 Chris Heltzel
Winging Portals 1z Chris Heltzel
WP Experts 16 Gary Someane

{lI!ExDand = Collap

&

Customers-By Customer Name

Customer Name Customer # « Account Owner

C%Search

Back

Back

Figure 3-13 Web Clipper Portlets page

Portalizing Domino Applications for WebSphere Portal

A close-up of the administration portlet is shown in Figure 3-14.

web Clipping
Add, edit, and delete Wweb clippers ?
web clippers:
Customers b oadd
John Doe3
Web Clipping Customer View @Edit
X Delete

Figure 3-14 The Web Clipping (administration) portlet

Administration portlet options

Add Web clipper To add a Web clipper, click Add. Follow the Web clipping
configuration options and then add the generated portlet to a
page and activate.

Edit Web clipper To modify the settings for a Web clipper, select it from the
Web clippers list, and click Edit. Make your desired changes
to the Web clipper configuration information, and click Done.

Delete Web clipper To delete a Web clipper, select it from the Web clippers list,
and click Delete. A confirmation dialog appears. Click OK to
delete the Web clipper. Click Cancel to keep the Web clipper.

Note: When deleting a Web clipper, be sure to delete both the portlet itself,
and its associated portlet application, through Portal Administration.
Otherwise, you will not be able to create another Web clipper using the same
name.

Configuration options

The Web Clipping portlet has a number of configuration options. This portlet
actually has three basic edit screens that must be completed. The first edit
screen is shown in Figure 3-15 on page 84. Be sure to click Next on the bottom of
the first edit screen to go on to the second edit screen. If you click Cancel on this
screen, you will exit the edit view and no changes will be saved.

Chapter 3. Using existing portlets 83

YWeb Clipping

Add a web clipper

o Mext | Cancel

Mame and default locale title:

|We|:u Clipping Custorner View

Description:

|This iz an example of the web clipper clipping the custormer wiew

r* Set locale specific titles and descriptions

URL to clip:

Ihttp:.-f'.-‘itsatest-dnm.cam.itsn.il:nrn.cam:SDSS.-"apps.-f'CLISTOMER.NSF.-"Cu

Connection timeout (seconds):

—

Madify clipping type
Modify firewall options
Modify authentication options

Modify rules for URL rewriting

R R L

Madify security options

o Mext | Cancel

Figure 3-15 Adding a Web clipper: Edit screen 1 options

The first Web Clipping edit screen options are the following:

» Name and default locale title:
Specify the name for the Web clipper. This is the default locale title. Select the
Set locale-specific titles and descriptions option to set locale-specific titles.

» Set locale-specific titles and descriptions:
Select this option to specify locale-specific titles and descriptions for the Web
clipper. This option only appears if the portal is configured to support more
than one language. A list of locales appears. Select a locale, then click Set
title for selected locale. A prompt for the title appears. Type in the Web clipper
title for the selected locale, then click OK. Repeat this procedure for each
locale for which you want a locale-specific title. Click Done when you have
finished setting locale values. Figure 3-16 shows the locale options.

84 Portalizing Domino Applications for WebSphere Portal

Add a web clipper = Configure titles ?

bl Done | Cancel

@ Set title for selected locale
simplified Chinese

English Web Clipping Customer Yiew
Hebrew

Paolish

ITtalian

Brazilian Portuguese
Czech

French

Turkish

German

Traditional Chinese
Spanish

Japanese

o Bie Bt TS Te e Te e T TENS T IS Nl IS |

Korean

hol Done | Cancel

Figure 3-16 Set title for selected locale page from edit screen 1 options

» Description:
Specify a description to provide more detailed information about the Web
clipper.

» URL to clip:
Enter the URL of the Web page you want to clip.

» Connection timeout:
Enter the amount of time, in seconds, that you want to keep the connection to
the original server open when idle (maximum time: 100).

» Modify clipping type:
To change the type of clipping that the Web clipper performs, click Modify
clipping type when creating or editing a Web clipper. Specify the clipping
method, and click Done. Click Cancel to return to the edit page without
modifying the clipping type. The Modify clipping type screen is shown in
Figure 3-17.

Chapter 3. Using existing portlets 85

web Clipping

add a web clipper = Modify clipping type

Done | Cancel

{* HTML clipping
{ Keep all content

{© Text clipping
Start clipping after text:

End clipping before text:

[T Include start and end text with clipped content

Done | Cancel

Figure 3-17 Modify clipping type page from edit screen 1 options

The following are options on the modify clipping type page:

— HTML clipping: This choice enables you to manually select elements of
the document by clicking them with the mouse. Selected elements are
highlighted in yellow to indicate that they will be kept after clipping.

Note: When performing HTML clipping, consider using the following:

To select more than one element, hold the Control key when you click
on additional elements. By default, a single click selects an element,
and if any other elements were previously selected, they are
deselected.

You might need to experiment on the best place to click to highlight the
particular element you are interested in, whether it is the contents of a
table cell or the entire table itself. You can also click mouse button 2 and
step up through the element nesting order to whatever level you wish.
To ensure that you get the expected content, pay attention to the
highlighting.

— Text clipping: This choice enables you to select the content between
specific text strings that are in the HTML document. Content between
these strings is kept, and all other content is discarded.

86 Portalizing Domino Applications for WebSphere Portal

— Start clipping after text: Begin clipping (or keeping) content after this text
string.

— End clipping before text: Stop clipping content after this text string.

— Include start and end text with clipped content: Select this option to include
the text strings in the resulting output.

— Keep all content: This choice brings the entire Web page into your portlet
without discarding any content.

Modify firewall options

If you are clipping an HTML document accessed through a firewall, specify
the proxy server information. Click Modify firewall options. Click Use a proxy
server. Enter the hostname and port of the proxy server, along with a user ID
and password, if necessary. Click Done. Click Cancel to return to the edit
screen without modifying the firewall options. The Modify firewall options are
displayed in Figure 3-18.

add a web clipper = Maodify firewall options

Done | Cancel

[T Use a proxy server

Froxy hostname:

Proxy port:

—

User ID:

Fassword:

[

Done | Cancel

L
Figure 3-18 Modify firewall options page from edit screen 1 options

The following are options on the Modify firewall options page:

— Do not use a proxy server: This choice indicates that you do not require a
proxy server to access the HTML document you want to clip.

— Use a proxy server: This choice indicates that you require a proxy server
to access the HTML document.

Chapter 3. Using existing portlets 87

Note: If you specify proxy settings, the proxy must have access to the
target content. If the proxy does not, local system access will not be
used, and you will receive an error in the browser indicating that the
content could not be retrieved.

— Proxy host: Enter the hostname of the proxy server.

— Proxy port: Enter the port number used to communicate with the proxy
server.

— User ID: If required, enter the user ID used to access the proxy server.
— Password: If required, enter the password used to access the proxy server.
— Confirm password: Enter the password again for verification.

» Modify authentication options:
If you are clipping an HTML document which requires authentication for
access, provide the authentication information.
To specify the proxy server information, click Modify authentication options.
Click Authentication required. Select the type of authentication to be used and
enter any appropriate information, such as a user ID and password. Click
Done. Click Cancel to return to the edit screen for modifying the
authentication options. The authentication options are shown in Figure 3-19.

88 Portalizing Domino Applications for WebSphere Portal

web Clipping

add a web clipper > Modify authentication options

Done | Cancel

% Mo authentication required
= Authentication required

* Set credentials

{© HTTP Basic &uthentication

Realm:

{~ Form-based authentication

Log-in URL:

User parameter name:

Fassword parameter name:

additional key value pairs:

Done | Cancel

Figure 3-19 Modify authentication options page from edit screen 1 options

The following are options on the Modify authentication options page:

— No authentication required: Select this choice if no authentication is
needed to access the HTML document.

— Authentication required: Select this choice to define an authentication
method for accessing the HTML document.

— Set credentials: Clicking this takes you to the credential vault. Figure 3-20
on page 91 shows the credential vault options screen.

Chapter 3. Using existing portlets 89

Note: The Web Clipping Portlet now stores authentication information
within the WebSphere Portal's credential vault. The authentication
settings page has a link to a credential settings page.

Select to either use a shared credential slot or a non-shared slot. In
either case, the slots must already have been configured on the
Credential Vault administration page. The shared credential slot will
already have the user ID and password credential, which cannot be
modified on this page. The non-shared slot is a slot identifier only. If a
non-shared slot is selected, a user ID and password is requested in
order to create a credential for the administrator building this clipping
portlet.

The editor will pull the user ID and password from the credential in order
to log in to the backend system. From then on, the credential vault is
required to store all credential information.

When the clipping portlet is later edited, the Authentication Settings
page will pull up the credential of the user editing the clipping portlet
and will show user ID and password if the credential is non-shared.

If the Web clipper is using a shared credential, the portlet will access
the backend content using that credential without requiring the user to
log in first. If the Web clipper specifies a non-shared slot, and an
instance of that slot does not yet exist for this portlet and the user
accessing it, then the user will have to edit the portlet and provide a
user ID and password for logging into the backend system. This user ID
and password are stored in a new slot instance for the defined
non-shared slot. The next time that user accesses this portlet, the
credential will be reused and the user will not have to log in again.

Editing of the portlet at runtime is still available to users with existing
credentials to allow them to modify the user ID and password.

90 Portalizing Domino Applications for WebSphere Portal

web Clipping

Modify authentication options = Set credential wault options ?
het Done | hal Cancel

& Selectthe type of vault zlot vou would like to aszociate with this Web clipper. If

het Done | fal Cancel

vou would like this Web clipper to be associated with a wault slot that is not
shared, you must specify the uzer ID and password to be stored with it,

Use a shared vault slot:

Ipredefined.credential.TrustStUre =]
Use & vault slot that is not shared:

[- |

User ID:

Fassword:

Figure 3-20 Credential vault options

HTTP Basic Authentication: If HTTP basic authentication is used to
access the HTML document, specify the realm to which the document
belongs.

Form-based Authentication: If the HTML document you are clipping is a
form, specify the URL and parameters used by the form.

Log-in URL: Enter the URL of the form. To locate the target URL of the
form submission, look for the FORM tag on the login page (browse the
source of the page) and locate the ACTION attribute. The URL in the
ACTION is the URL that you need to specify.

User parameter name: To determine this value, log in to the page, right
click on View Source, and use the name attribute of the INPUT tag.

Password parameter name: To determine this value, log in to the page,
right click on View Source, and use the password attribute of the INPUT
tag.

Additional key value pairs: Enter any additional key value pairs
corresponding to other parameters required by the form. Use an
ampersand (&) to separate each pair.

Modify rules for URL rewriting: To change the way URLs are handled by the

Web clipper, you can specify rules for URL rewriting. The regular expression

Chapter 3. Using existing portlets 91

syntax for specifying URL rewriting rules is based on the Perl standard. Enter
the appropriate entries and click Done. Click Cancel to return without
modifying the rules. Figure 3-21 shows this option.

Clipping

&dd a web clipper = Modify rules for URL rewriting

n Done | Cancel

p Ifthe content of your Web clipper contains links, the URLs in thoze links will be
modified ta point to the partal server. However, vou can create rules that exclude

certain URELs from being modified in this manner,

Use standard URL rewriting

)

i~ Use rules to exclude URLs from rewriting
The following URLs will not be modified.

Rule:

TF Add

X Delete

The following URLs will not be modified and will be opened in a new browser window,

Rule:

TF add

¥ Delete

EDnne | Cancel

Figure 3-21 Modify rules for URL writing page from edit screen 1 options

92 Portalizing Domino Applications for WebSphere Portal

The following are options on the Modify rules for URL rewriting page:

— Use standard URL rewriting: This choice ensures that URLs in links within
the Web clipper are modified to point to the portal, rather than the host
originally targeted by the link.

— Use rules to exclude URLs from rewriting: This choice enables you to
specify rules that are used to identify which URLs will not be altered.
These links will not go through the portal. For example, a rule of ".*.gif$"
will match any URL that ends in ".gif", while a rule of ".*ibm.com.*" will
match any URL containing "ibm.com". In the field “The following URLs will
not be modified,” enter one or more rules to identify URLs whose content
will be retrieved from the original host. These links are opened in the same
window. Click Add to add listings or highlight a link and click Delete to
delete. In the field “The following URLs will not be modified and will be
opened in a new window,” enter one or more rules to identify URLs whose
content will be retrieved from the original host. These links are opened in a
new window. Click Add to add listings or highlight a link and click Delete to
delete.

» Modify security options:
Choose whether to include or remove JavaScript in the clipped content.
Check Remove JavaScripts from the clipped content to remove JavaScript
from the clipped contents. Click Done or Cancel. This option is shown in
Figure 3-22.

a8dd a web clipper = Madify security options

Done | cancel

v Rermove JavaScript from clipped content

Done | Cancel

Figure 3-22 Modify security options page from edit screen 1 options

Web Clipping edit screen 2 (clip contents) is shown in Figure 3-23. Choose the
content you want to keep by pointing and clicking.

Chapter 3. Using existing portlets 93

webh Clipping

Clip content ?

o Next | Cancel

7 By pointing and clicking, chooze the content you would like to clip, Select
"Preview" to open or update the Web Clipping Preview window with 2 preview of
the content for your Web clipper, When you are zatisfied with the content of your

Web clipper, select "Ment",
Follow: links I Mever 7 I W Clear ﬂ Preview

o

i Previous gz, Mext gh Expand — Collapse O _Search

Customers-By Customer Name

Customer Name Customer # - Account Owner

Doe Inc, 100z Gary Someane
IBM Caorpaoration 1 Michael Ticknor
Portals-R-Us =] John Smith
Wanda's world of Wigs 1234567 Chris Heltzel
WP Experts 1001 5ary Someang
o Previous g, Wext Zh Expand — Collapse QJ Search

Followr links I Mewver = I W Clear [t'i' Preview

o Next | Cancel

Figure 3-23 Web Clipping portlet edit screen 2 options
The selected contents will be yellow. The options on this edit screen are the
following:

— Next: Click Next to progress to the next screen after you have made your
selection.

— Cancel: Click Cancel if you would like to go back to the previous screen.

— Follow Links: Specify whether links should be followed. The choices are
Never and Ask. The default is Never.

— Clear: Clicking Clear resets the Specify a description to provide more
detailed information about the Web clipper.

— Preview: Clicking Preview pops up a browser to show your highlighted
selection.

Web Clipping Edit screen 3 (content preview) options are shown in (Figure 3-24
on page 96). This screen contains the preview of the clipped Web page. Click

94 Portalizing Domino Applications for WebSphere Portal

Done to keep your new content; click Cancel if you would like to go back to the

previous screen.

Table 3-8 provides the configuration values that we used in our example.

Table 3-8 Configuration values for the Web Clipping portlet example

Field

Inserted value

Name and default local title

Web Clipping Customer View

Description This is an example of the Web clipper clipping the
customer view
URL to clip http://itsotest-dom.cam.itso.ibm.com/apps/CUSTO

MER.NSF/CustomersByName?OpenView

Connection timeout (seconds)

5

All other fields

default

Results

The result of setting up the Web Clipper, “clipping” the Web page, and placing the
portlet on the page is shown in the original figure, Figure 3-13 on page 82. A
close-up of our Web Clipped Web page is shown in Figure 3-24.

Chapter 3. Using existing portlets

95

96

Clipping Customer Wiew

fmPrevious g Mext

Customers-By Customer Name

After portal
AnvPortal Inc
Company &
Coe Inc,

Dormino Portalizers

Fire Portals Co
IBM Corporation
IT5Q

Joe's Pizzs
Kevboards Inc
My Bank.com

MyCompanyPortal

Meo Portals
Portal-rmakers

Portal People eaters

Portals-R-Ls
The company

13
17
19
4
15
3
15
11
&

wianda's world of Wigs 14

Winging Portals
WP Experts

Previous Mext
e =

1z
16

,-J'}Expand = Collapse

Customer Mame Customer # « Account Owner

Marko Wiksten
Michael Ticknor
John Smith
Camilo Rojas
Markno Wilisten
Gary Someaone
Michael Ticknor
John Smith
Carnilo Rojas
Gary Someone
Marko Wiksten
Chris Heltzel
Michael Ticknor
Carnilo Rojas
Marko Wiksten
Chris Heltzel
Marko Wiksten
Chris Heltzel
Chris Heltzel
Gary Someane

.;G.Exgand = Collapse

Back

Back

Portalizing Domino Applications for WebSphere Portal

Figure 3-24 Close-up of “clipping” using the Web Clipping portlet

Clicking a highlighted document will cause it to be displayed within the portlet
context, as shown in Figure 3-25.

Wieb Clipping Custormer View

\Customer Profile
Customer |After portal
MName

Customer |7

MNumber

CuUstomer One Mew Orchard Road
Address arrmonk, NY 10504
of 325000
Emplovees

Account Marko Yiksten (1004
Ohwner

b sdditional Information

Back
Figure 3-25 Resuilt of clicking a highlighted link in the Web Clipped portlet

The navigation row of the “clipped” view also functions. If you click the Next
navigation icon, the screen will show the remaining items in the view, as shown in
Figure 3-26.

Wweb Clipping Custormer Wiew

F Back

i Previous g Mext _}Expand = Collapse %Search

Customers-By Customer Name

Customer Name Customer # « Account Owner
WP Experts 16 Gary Someone
L Previous g, Mext ,-J'},Expand = Collapse %Search

F Back

Figure 3-26 Result of clicking the navigation Next

Chapter 3. Using existing portlets 97

3.5 Integrate using Lotus Notes portlets

Using the Lotus Notes portlets available in WebSphere Portal Extend is another
example of the simplicity of using prepackaged portlets. This technique
configures a Web-enabled view in your Domino application to the portal
environment through direct and efficient configuration screens. The view is
displayed in your portal context and no external Web browser session will open.

3.5.1 Lotus Notes portlets

98

There are a number of prepackaged Lotus Notes portlets available in
WebSphere Portal Extend. In the beta and soon to be released version 5 of
WebSphere Portal Extend, the number of portlets drops to two. This is because
the two portlets will include the configurations of all Lotus Notes portlets. The
collaborative feature of Lotus Notes portlets is of particular use to quickly
integrate existing Domino applications into the WebSphere Portal environment.
Table 3-9 lists a number of useful portlets, and although this is not an exhaustive
list, it provides a good understanding of the use of these portlets. The Redpaper,
“WebSphere Portal Collaboration Services,” REDP0319,provides a specialized
look into these collaboration portlets.

In this section we describe the use of NotesViewPortlet as it can be used to show
any view from any Domino database.

Table 3-9 Collaborative portlets provided in WebSphere Portal Extend

Portlet Name Portlet Description

iNotesMailPortlet Provides iframe-based access to iNotes™-enabled
iNotesCalendarPortlet Domino servers and mail files. It includes access to the
iNotesContactsPortlet Welcome, Mail, Calendar, To Do List, Contacts, and
iNotesNotebookPortlet Notebook iNotes functions.

iNotesToDoPortlet

MyNotesMailPortlet Displays users’ mail, calendar, and to-dos from their
MyNotesCalendarPortlet traditional Lotus Domino mail file.

MyNotesToDoPortlet The “my” name designates the fact that these portlets

autodetect a user’s malil file settings—and thus do not
need to be configured individually for each user.

NotesMailPortlet Displays any view in a traditional Domino mail database.

NotesDiscussionPortlet Displays a Notes database built with the Domino
Discussion database template.

NotesTeamroomPortlet Displays a Notes database built with the Domino
Teamroom database template.

Portalizing Domino Applications for WebSphere Portal

Portlet Name Portlet Description

NotesViewPortlet Displays any view in any Domino database.

In-line Quickplace Portlet Displays a QuickPlace® inside an iframe.

QuickplacePortlet Launches a designated QuickPlace in a separate
browser window.
This portlet is also included in WebSphere Portal Enable.

SametimePortlet Launches the Sametime Connect Java client.
This portlet is also included in WebSphere Portal Enable.

Portlet listing

We used the portlet setting in our example technique. This portlet is designed to
allow you to display any Notes database view in a portlet window. It is the most
flexible of all the Notes portlets, as it is not limited to databases with specific
templates, such as the NotesDiscussion portlet.

Lotus Notes View Portlet | Name used in the documentation (for example, InfoCenter)

Lotus Notes View Portlet | Title in portlet selector (Edit Layout and Content”)

NotesViewPortlet Name in portlet selector (installation)

3.5.2 Considerations

The Lotus Notes View portlet can be used to implement the basic Display portal
pattern. However, when a highly customized interface or a requirement with
additional functionality is needed, the Lotus Notes View portlet may not be a
good choice.

Applicable portlet patterns | Display

Development time Insignificant

Developer skill set WebSphere Portal administration skills are needed.
Domino developer skills would be useful but not required.

Range of applications Moderate
Handle rich text Display
Performance Limited
Session Management No
Clustering No

Chapter 3. Using existing portlets 99

Scalability No

Requires single sign-on Depending on the application, the Lotus Notes View
portlet can be configured to use single sign-on.

Required software Each portlet may have its own software requirements.
versions The Lotus Notes portlets generally require:
Client requirements:

Notes client versions supported - 4.67, 5.01, 5.05 (for
Notes Calendar portlets only), 5.09, 6.0

Web browser versions supported: Netscape Navigator
4.7 and later releases, including Netscape Navigator
6.2, Microsoft Internet Explorer 4.01 and later
releases, excluding Microsoft Internet Explorer 6.x.

JavaScript and Java applets must be enabled.

Server requirements:

Lotus Notes portlets require network access to the
Domino servers that host the Notes databases that
are the sources of portlet information. The HTTP
service must be running on the Domino server.

Lotus Notes portlets work on the following versions of
Domino: 4.67,5.01, 5.05 (for Notes Calendar portlets
only), 5.09, 6.0

3.5.3 Implementation details

This section describes how to use the Lotus Notes View portlet to display within
the portal context view information from one of the example databases. To fully
explain this implementation, we provide complete details concerning:

» Initial setup
» Configuration options

» Results

Initial setup

Begin by accessing the Lotus Notes View portlet. Deploy the Notes View portlet
and add it to a page. Figure 3-27 shows the Domino portlets page before
configuration.

100 Portalizing Domino Applications for WebSphere Portal

2 IBM WebSphere Portal - Microsoft Internet Explorer i IEII!I

|File Edit View Favorites Tools Help

1. Link Portlet

2. Web Page Portlet Please customize your Notes data source information,

3. Web Clipper
Portlets

4. Domino Portlets

5. XML Portlets

6. Integrated
Portlets -
4| | >

Figure 3-27 Domino portlets page before configuration

Configuration options
This portlet has two configuration screens that must be completed. Figure 3-28
on page 102 shows the first configuration screen.

Chapter 3. Using existing portlets 101

Lotus Mo i stomer wiew of the Customer database

Faortlet title:

|Lotus Notes Wiew: Custamer view of the Customner database

Source
Server
Iitsotest—dom.cam.itso.ibm.com

Database filename:
[apps/CUSTOMER WSF

Database:
Administration Reguests (R5) ﬂ

bookmark.nsf

Catalog (RE)

Doming LOAF Schemsa

Domino Server.Planner Sample DB
Comino Web Administrator (RS}

Domino Web Server Configuration (R5.00

Daormino Web Server Log ﬂ
Wiewr

ICustUmers\By Customer Mame
ContactsRSShbyMame -

Customer Contacts\By Custormer Mame

Customer ContactshBy Custormer Mumber

Customer Contacts\By Mame

CustomerContactsPortletIntegrated

CustomerPortletIntegrated

CustomershBy Account Owner

CustomersiBy Customer Mame ;I

Wiew categony:

Category was not found or could not be retrieved.

Protocols
' HTTP
" HTTPS (SSL)

(¢ Detect protocol automatically

o114 | Mext I Cancel I

Figure 3-28 Lotus Notes View portlet edit mode: Page one

Click Next on the bottom of the first edit screen to go to the second screen. If you
click OK on the first edit screen instead, you will exit the edit view and be left with

102 Portalizing Domino Applications for WebSphere Portal

the default settings for much of the portlet’s configuration. Clicking Cancel will
exit the edit screens without saving any configuration changes. Details for the
edit screens follow.

» Edit screen 1 options (Figure 3-28):

— The first configuration setting to make is to name the portlet. This name
will show at the top of the portlet window in the portal.

— The next few options are basic options selecting the server, database, and
the view for the portlet. After selecting a server, select the check mark, and
the portlet populates the database list. The check box next to the database
list then populates the view list once you have chosen a database, and so
forth.

Note: There is some support for spelling in these configuration fields.
For example, the database name does not have to end in “.nsf”.

If you don’t see your servers in the server list, or the databases/views to
choose, then it is possible that the access rights are not properly set in
your environment. Verify that you have enabled all the correct Domino
settings (LDAP, HTTP, DIIOP, and so on).

— The protocol that is used for the portlet can also be selected on this
screen. If Detect protocol automatically is selected, the portal will first try
HTTP. If that is unavailable, it will try HTTPS.

After completion of the first edit screen, go on to Edit screen 2, which is shown in
Figure 3-29.

Chapter 3. Using existing portlets 103

Lotus Motes W stomer of the Custormner database

Style
Show:

Rows per screen: |15

I alternating row colors

[Icon for creating new docurments

View docurnents in:
' Latus MNotes, if available

' Browser

Columns
Column for showing people awareness:
(Column must contain names)

|<None> _'..I
Column for launching documents:
|<None> ..'..I

Columns to hide:
(Ctriclick to select multiple colum

Custamer Mame
Customer #
Account Owner

Direction for default sort column:
= Ascending
C Descending

OK I Previous I Cancel I

Figure 3-29 Lotus Notes View portlet edit mode: Page two

Click OK on the bottom of this edit screen to complete the configuration and
return to display mode. If you click Previous on this edit screen instead, you will
return to the first edit screen. Clicking Cancel will exit the edit screens without
saving any configuration changes. Details for the second edit screen follow.

» Edit screen 2 options (Figure 3-29):

— Choose the number of rows to appear in your portlet. The default setting
is 15.

104 Portalizing Domino Applications for WebSphere Portal

Choose whether or not to alternate row colors to better highlight the row
divisions. The default setting is Yes.

You can choose to display the icons to create new documents. If you check
this option, you then have to enter which Notes form is used for creating
new documents. The default setting is No.

Choose how documents the user wishes to view are launched—either in
the Lotus Notes client, or in another Web browser window. The default
setting is to use the browser.

Restriction: The option to view documents in the Notes client only
works with Internet Explorer browsers, as it functions via a small
ActiveX control which launches the Notes client and passes the
database and document details to it. Non-IE browser users will view
documents within their browser via Domino HTTP.

Choose whether categorized views are expanded or collapsed when
opening. The default is expanded. If a view category is not selected this
item is not displayed.

Choose several options for the view columns:

¢ Select which column will be enabled for people awareness, so that
names will be highlighted if the people are online, and contact option
menus will be presented. Collaboration portlets need to be installed on
the server for this option to work.

¢ Specify which column you want to use to launch the document selected
via document action menus.

¢ Select which columns (if any) you want to hide from the view as it is
presented by the portlet.

Finally, you must choose the direction for default sorting: either Ascending
or Descending. The default is Ascending.

Configuration values used in our example are listed in Table 3-10.

Table 3-10 Configuration values for the Lotus Notes View portlet example

Field Inserted value

Portlet title Lotus Notes View: Customers view
of the Customers database

Server (location of the Domino server) itsotest-dom.cam.itso.ibm.com

Database filename (including filepath if not in apps/Customer.nsf
the Domino Data directory)

Chapter 3. Using existing portlets 105

Field Inserted value

View Customers\By Customer Name
View Category We left this blank for our example
Protocol (HTTP/HTTPS/detect protocol Detect protocol automatically

automatically)

Which column you want to use to launch the Customer Name
document selected via document action menus

Results

After configuring the Lotus Notes View portlet, the result of the Domino portlets
page is shown in Figure 3-30.

1BM WebSphere Portal - Microsoft Internet Explorer ' A =lo|x|
| File Edit Wiew Favorites Tools Help | J’
Address I@ http: ffitsotest-wps.cam.itso.ibm. compwpsfmyportalf_s, 1552015/ .cmdfad) . arfsa.Portlet Saveaction) . pmyj-f .o/ 703, ceI2812,f D,I'J . Go

1. Link Portlet tus < vie Customers database
2. Web Page Portlet Server: itsotest-dom.cam.itso.ibm.com E4
gb:ﬁ;s{:lipper [lcustorner Mamme Customer # [Account .Owner |
4. Domino Portists E after portal 7 Mfarko Ull-fsten

@ AnyPartal Inc g Michael Ticknor
5 Bl Pl E Company & 2 John Srith
gbm?tgramd [Doe Inc. 3 Camilo Rojas

E Domino Portalizers 9 Marko Wiksten

[Fire Portals Co 10 Gary Sormeone

[IBM Corparation 1 Michael Ticknor

@ ITs0 5 John Srnith

[Joe's Pizza 13 Camilo Rojas

[Keyboards Inc 17 Gary Sormeone

E My Bank.com 19 Marko Wiksten

B MyCompanyPortal 4 Chris Heltzel

E Meo Portals 15 Michael Ticknor

@ Portal-rmakers 3 Camilo Rojas

[E Portal People eaters 15 Marko Wiksten

Figure 3-30 Result of modifying the Lotus Notes View portlet

If you click a highlighted link inside the portlet, you are able to open a document
(if access allows) into a new Web browser session and out of the portal context,
as shown in Figure 3-31.

106 Portalizing Domino Applications for WebSphere Portal

3 http://itsotest-dom.cam.itso.ibm.com,apps/Customer.ns ;IQILI
File Edit View Favorites Tools Help | :"
Address I@ http:,f,l’itsotest-dom.cam.itso.ibm.com,l’apps,l’Customer.nsf,l’Customers%SCB\,j Go | Links **
EE -
‘Customel' Profile
Customer After portal
Marne
Customer 7 |
Mumber
Customer One New Orchard Road
Address Armonk, NY 10504
of Emplovees |33_'7'000
Account Marko Viksten (100)
Cramner J
P Additional Information 5
|:Ej Applet started l_l 2 Fo Internet 2

Figure 3-31 Result of clicking the first highlighted link in the Lotus Notes View portlet

For column titles with a highlighted link, you can order the listing based on that
column. The configured server always shows up below the portlet window’s title
region (itsotest-dom.cam.itso.ibom.com). If the portlet allows for launching the
Notes client or a Web browser, the launch rocket icon is present below the title
region. The arrows to the left of the server name are for navigation if more than
one screen is available. If you have rights to create documents in the respective
Domino database, which is “author” at minimum, then a “Create new document”
icon also shows up next to the launch rocket icon.

3.6 Integrate using XML helper and RSS portlets

One way to better integrate Domino with the prepackaged portlets from

WebSphere Portal is to modify your existing Domino data to use the RSS and the
XML/XSL helper portlets.

eXtensible Markup Language

Examples in this option utilize eXtensible Markup Language (XML). XML is a set
of rules for defining tags that break documents into parts. XML is useful because
you can create tags. While these tags follow certain general principles, the
meaning can be very flexible. Domino has supported XML since 1999. Document
Type Definitions (DTDs) are repositories of these tags that make up a document.
Domino uses a DTD to document the XML that Domino produces. It is also

Chapter 3. Using existing portlets 107

relatively easy to get XML data from Domino. You might already have a view that
can be used, or you may have to create one. You can pass the tags that XML
uses through view columns.

eXtensible Stylesheet Language: Transformations
eXtensible Stylesheet Language: Transformations (XSLT) is a language

designed to transform XML into another format. It also can be used to transform
XML into HTML.

RSS portlet

The Rich Site Summary (RSS) news format is a simple, common format for
delivering news to portals and other Web sites. The RSS Portlet renders XML
data that conforms to the RSS DTD. However, it can be easily configured to
render any XML data using any XSLT stylesheet.

XML/XSL helper portlet

An alternative to configuring the RSS portlet is to go get the XML from Domino
and format it for presentation. This set of methods produces portlets by simply
modifying your Domino application to serve up XML to the XML/XSL helper
portlet. The style sheet used to render the view creates an HTML table out of the
Domino XML (DXL) resulting from a ReadViewEntries request to the Domino
database. Each <viewentry> template creates a new row in the table. Each
<entrydata> template creates a new cell in the row. For simplicity, the entrydata
template assumes that it has a text child element. This can be accomplished by
passing the PreFormat option to ReadViewEntries.

3.6.1 Considerations

The RSS portlet only allows a single, static URL to be specified when the portlet
is configured. The XML/XSL helper portlet utilizes the same technology. As an
effective integration technique, these portlets are considerably reduced because
of this specified static URL.

Applicable portlet Link, Display - Display portal patterns using a very small
patterns data set can be implemented using this technique.
Development time Moderate

Developer skill set WebSphere Portal administration skills are needed. Domino

developer skills with experience with JavaScript, XML, and
XSLT are needed.

Range of applications Moderate

108 Portalizing Domino Applications for WebSphere Portal

Handle rich text If a connection is made to the Domino HTTP server directly
(out of the portlet context) then Rich Text is shown,
otherwise no.

Performance Limited
Session Management No
Clustering No
Scalability No

Requires single sign-on | Depending on the application, the RSS portlet or copies can
be configured to use single sign-on.

Required software Standard HTML browsers with JavaScript support are
versions required. Netscape 5 and above and Internet Explorer 4 and
above are supported.

3.6.2 Implementation details

This section describes how we configured a portlet page with Domino view data
using copies of the RSS portlet, added elements to a Domino design to enhance
the presentation, and configured our modified RSS portlets to display this data.
To fully explain this implementation, we provide complete details concerning:

» Domino enhancements
» Portal configuration options

» Results

Domino enhancements

To see the design elements in detail, access the accompanying Domino
databases. For the first RSS portlet, Customer Contacts RSS Portlet, we
generated a new view, ContactsRSSbyName in the customer database. We had
XML with a hardcoded URL link to a view column, which is presented in our
portlet. This column code formula is shown in Figure 3-32.

Chapter 3. Using existing portlets 109

@ ﬁCustomers—Design—Views |ContactsHSShyName—Viewﬂ deslgner‘
Contact Hame - hidde:

Doe, Jane <itermn > <title>Doe, Janetitlar<linkshitp ffitsotest-dom: 8085/ apps/CUSTOMER.MSF/ Cants
Daoe, John <item> ctitle>Doe, Johngfitler dink>hitp/fitsote st-dom:8088/apps/CUS TOMER.NEF/ Canta
Good, Wilbur B <itermy titler Good, Wilbur B.¢ftitler<linkehttp:fitsotest-dorm:8088/apps/CUSTOMER. NSF)
Fojas, Camilo <items ditle>Rojas, Camilotitle> <link>httpeffitsotest-dom:3088/apps/CUSTOMER MSF/C
Traber, Oliver <temr title> Trabert, Olivergftitle <link>http:dfitsote st-dom:8088/apps/CUSTOMER. MNEFT

“Worey, Wanda <item s <title»Worley, Wandagiitier<linkshttp fitsotest-dorm:8088/apps/CUSTOMER. NSF)

<] |

| Untitled [Column] : Column Value

l=

Digplay) Simple Function) Field 8 Farmula

title:= @ Subset(contacthlameFormat 1);

host="http://its otest-dom:B088";

description:=EImplode{

(@SubseticustomerMNarme; 11 @Subset{contact Job Title; 13" phone, * + @Subset(contactPhone: 1)))
db:=@ReplaceSubstring{@SubsetiE DbMName:-11""

link:=hogt+ " + db + " + @ Subset{@ViewTitle-1) + " + @Texd{@DocumentniguelD) + "?OpenDocument";

"giternz<titles” + title + "giitler links" + link + "¢/link»*<description?" + description + "</descriptions </itern>"

Figure 3-32 ContactsRSSbyName view

We added a view template, $$ViewTemplate for ContactsRSSbyName form in
the database. This form incorporates XML as well as an embedded view
containing the ContactsRSSbyName view. This is shown in Figure 3-33.

m Custormers - Dezign - Forms | $$viewTemplate for ContactsRSShbyName - Form ﬂ

<?xml version="1.0"2>

<rss version="0.91":>

<channel>

<title>Cutomers Contacts in RSS Format<fitle>
<description>Customers Contacts in RSS Format</description>

<jtem><titte>Doe, Jane<ftitle><link>hitp /fits otest-dom:8088/apps/CUSTOMER NSF/ContactsRS ShyMName/898970B52B0A57
<jtem><titte>Doe, John<ftitle><link>http:/fitsotest-dom:8088/apps/CUSTOMER NSF/Contacts RSShyNameADZDBESCES4FE(
<jtem><titte>Good, Wilbur B.<ftitle><link>hitp:ffitsotest-dom:8088/apps/CUSTOMER NSF/ContactsRS ShyMName/33F1B3EFI
<jtem><titte>Raojas, Camilofitie><link>http:ffitsotest-dom:8088/apps/CUSTOMER NSF/ContactsRS ShyName/3ICAEICEFAR

</channel»
<frss>

Figure 3-33 Creation of a $$ViewTemplate for the ContactsRSSbyName view

For the Customer Contacts RSS Portlet portlet, we styled the sheet with the
generic XSLT that is included with WebSphere Portal.

110 Portalizing Domino Applications for WebSphere Portal

For the Customers XML-XSLT portlet, we used the CustomersByName view
shown in Figure 3-35 on page 112.

Q _ﬁCustomers—Design—Views |Cust0mersIBy CustomerName—\-"iewj des.fgﬂer

Customer # A|Accounl Owner |hidden 4
fter portal 7 tarko Viksten After partal (717

AryFartal Inc il Wichael Ticknor AnyPortal Inc (38
Company & 2 Jahn Smith Compary A (22
Cioe Inc. 3 Carnilo Fojas Cioe Inc. (333
Damino Paortalizers 9 tarko Viksten Doming Poralizers (3)]3
Fire Portals Cao 10 Gary Someone Fire Portals Co (10)]10
|BM Carporation 1 Michael Ticknor |EM Corporation (131
T30 5 John Smith TS0 (55
Joe's Pizza 13 Camilo Fojas Jog's Pizza (1313
Keyvboards Inc 17 Gary Someone Keyhoards Inc (1717
by Bank.com 19 hdarko Wiksten bty Biank.com (1919
ey CompanyFortal 4 Chriz Heltzel by ComparyPartal (494
MNeo Portals 18 hichael Ticknor MNeo Portals (18)18
Foral-makers 3 Camnilo Fojas Fortal-makers (3)]3
Foral Feople eaters 15 Marko Viksten Foral Feople eaters (15)1
Forals-F-Us i Chris Heltzel Fortals-F-Us (1131
The compary G Marko Viksten The company (5[5
‘Wanda's World of Wigs 14 Chris Heltzel Wanda's World of Wigs (1
YWinging Portals 12 Chris Heltzel Winging Porals 12312
WWF Experts 16 Gary Someone WF Experts (1616

<l | B

Figure 3-34 CustomersByName view in the Customers database

We wanted to present the view in our own style. We generated an XSLT
stylesheet, naming the stylesheet Customers.XSL and placing it as a form in the
Customers database. Figure 3-35 on page 112 shows this stylesheet.

Chapter 3. Using existing portlets 111

_ﬁ Custormers - Dezign - Farms | Customers XS0 - Form j

CGlWariables: [Server Mame T)7 Server Pot T Server Protocal T | Quen Sting T

URLGEMERATE: [DIRECTORYURL T/ DBURL T)

<?¥ml version='1l.0'?>

<¥sl:stylesheet wersion='1.0'

¥mwlns:xsl='http://uvw. w3 .org/ 1999/ 8L/ Transform' >

<xsl:template match='wviewentries':>

<table horder="0"><tr><td>This is

CustomersEyName ?ReadViewEntries</cd>

<ftrr<ftablex

<table cellspacing="1" cellpadding="4" bhorder="0" widch="100%">
<xsl:apply-templates/ >

</teblex
</H=litenplates
<!'—— Template: wviewentry
Description: Creates a new row in the table for the entry.
Adds & link to the entry based on UNID. —3>

<¥sl:template match='viewentry'>
<xsl:varishle name="pos" select="[Fposition”/>
<xsl:ielement name="tr":
<!—— ALlternate bgocolor of the rows ——>
<xsl:if test="§pos mod Z"r<xsliattribute
name="class">upsTableS3hdRow<,/xs]l:attributes></x=sl:if>
<xsl:iapply-tewplates/ >
</xslielement:
</xsl:tenmplates>

<!—— Template: entrydata

Description:Reads the walue out of a text child element. —->
“¥sl:template match="entrydaca’ >

<Hsl:variakhle name ="col™ select="[colunnnumber ™, >

“tdx

<xslichoose>
<®3l:when tesc="§col = 0"
<a href="<Computed Yalue>
Customershylame/ { .. /funid} ?Openlocument ™
target=" blank"s<xsl:valus-of select="./ /text"/></ax
</x3l:vhen>
<xsl:when test="Scol &£gt: O
<xzlivaluse-of select="./text"/>
</ usl:vhen>
</x=l:chooses

</ tdx
<fxslitemplates
<!—— Default template does nothing —->

<xzl:template match='E*|node(]'/>
</x=listyleshest>

Figure 3-35 Customers.XSL stylesheet form in the Customers database

For more information on using XSLT and XML inside Domino, see the Lotus
Domino Designer® 6 Help database or the IBM Redbook Lotus Domino
Designer 6: A Developer's Handbook, SG24-6854.

112 Portalizing Domino Applications for WebSphere Portal

Portal configuration options
To construct portlets, in the portal environment click Portal Administration —
Manage Portlets. This page is shown in Figure 3-36.

3 1BM Websphere Portal - Microsoft Internet Explorer : =|O] x|
L
ol

|F\Ie Edit View Favorites Tools Help

| Address I@j http:ffitsotest-wps, cam.itso ibm, comfwps/myportal].cmd/ChangeExpandstate), expf L64) mid/nullf exps//truef def ftrue) scrfHomef _s, 155/ 167 # 164 j Go

-

My Favorites -

v Activate, rename, copy, configure and delete portlets ?
Install Portlets .
- @ Show all portlets Portlets:
Portlet Applications
Access Control List Active - . ;i
Activate/Deactivate
Manage Portlets search for portlets AccountsCEh Beonive ﬂ R ctste/Deactiva
Rename
Web Clipping l—_[ACL Browser Aective
Mame contains = ACLErowser portlet Active .
Manage Web Eocknarks Acrive [y copy
Services Choose Skins Betive [Madify parameters
Web Services Sz Content Organizer Aetive
 ni Credential Vault Active 7 show Info
[Active portlets cEv T : 3
ile Viewer Aenive X Delete
» Inactive portlets Cust Contacts Portlet Rotive i} e
» ' Activefinactive portlets
¥ o

=
< | >

& [T @memet
Figure 3-36 The Manage Portlets page under Portal Administration

Navigating down the Portlets scroll bar you find the RSS Portlet entry shown in
Figure 3-37.

Activate, rename, copy, configure and delete portlets

% Show all portlets Partlets:
ickplacePortlet Active ;I N N

s Quic # Activate/Deactivate

St ol e il QuickIlacePortlet Active

- Beminder Active ﬂ Rename
|Hame contains - RES Chris Inactive e
RES Mike opY
rtlet Active @Modify parameters
Show: ametime Contact List
© acti ey ZametimePortlet Active) ,@Show info
v O Sametime WIHPortlet Active % Delete

 Inactive portlets ServletInvoker Active LI

& active/finactive portlets
o

Figure 3-37 Copying the RSS Portlet
Highlight this entry and click the Copy icon from the actions on the right side of

the page. The script prompt dialog box pops up and requests the name of the
new “copied” portlet. Figure 3-38 shows this prompt.

Chapter 3. Using existing portlets 113

Explorer User Prompt

x|
Script Prarnpt:

Pleaze provide a name for the copy: c |
arice

Figure 3-38 Prompt for name of the copied portlet

Enter a name for the copy and click OK; we entered Customer Contacts RSS
Portlet. Clicking the OK button adds the portlet to the Portlets area. Scroll
through the available portlets and find your newly copied portlet. You will notice
that it is Inactive. Highlight this entry and click the Modify Parameters icon from
the actions on the right side of the page. The configuration page for this new
portlet is displayed, as shown in Figure 3-39.

114 Portalizing Domino Applications for WebSphere Portal

Configure parameters and titles ?

HSaue | hal cancel

Portlet Narme: Customer Contacts RSS Portlet
Edit Parareters:

Parameter ¥Yalue

[T stylesheetaml I/WEB—INF/st/wmI/rss.xsl X Delate
[T stylesheet.html J/WEB-INF/xsl/htmnl/rss x5l
[url Ihttp:ffitsotest—dom:SDSSIapps/CL
[T itemDisplayed |1EIDDD
| | & add

Edit Locale Specific Titles:

= Simplified Chinese RSS portlet

= English Customer Contacts - Using RES
" Hebrew otoe RES

= Paolish Portlet RSS

= Italian Partlet per RSS

= Brazilian Portuguese Portlet RSS

" Czech Portlet RSS

 French Paortlet RSS

= Turkish RES Portal Uygulamacid
German Portlet fir RES

" Traditional Chinese RSE Portlet

= Spanish Portlet RSS

{© Japanese RSS fi— L2 -

" Korean RSE Portlet

E‘ save | 2] cancel

Figure 3-39 Configuration screen for the Customer Contact RSS portlet

Click Save to save the settings and exit the configuration screen. Click Cancel to

exit the configuration page without saving any information. There are two
sections on this configuration page, Edit Parameters and Edit Locale Specific
Titles. The Edit Parameters section is shown in Figure 3-40.

Chapter 3. Using existing portlets 115

116

Edit Parameters:

[T stylesheet.wml
[T stylesheet.html
[~ url

[T itemDisplaved

Portlet Marme: Custormer Contacts RSS Portlet

|.-"'I.I'I.l'EE--INF,-’st,-’wmI,-’rss.xsl X Delete

|,-’WEE--INF.-"><5I.-"htmI.-"rss.xsl

|h1:t|:|:,-’.-"itsu::test-du:um:SDSSKapps.-"CL

{10000

| & Add

Figure 3-40 Edit Parameters section

Detalils for the parameters shown are:

» Edit Parameters:

— Adding a parameter: To add a parameter, enter the parameter name in the
text box below Parameter. To add the corresponding value, enter the value
in the text box below Value and then click Add.

— Deleting a parameter: To delete parameters, mark the checkboxes to the
left of each parameter you would like to delete. When finished, click
Delete. A confirmation dialog appears. Click OK to delete the parameter.
Click Cancel to keep the parameter.

— Our configuration values are listed in Table 3-11.

Table 3-11 Configuration values for the Lotus Notes View portlet example

Field

Inserted value

stylesheet wml (using the WP
built-in default)

/WEB-INF/xsl/wml/rss.xsl| (default)

stylesheet html (using the WP
built-in default)

/WEB-INF/xsl/html/rss.xs| (default)

URL (this is the view that we
generated in Domino)

http://itsotest-dom:8088/apps/CUSTOMER.NSF
/ContactsRSSbyName?openview&count=9999

itemDisplayed

10000 (records to show)

» Edit Locale Specific Titles:

— To set local titles, click a locale in the Edit Locale Specific Titles area. Click
the Set title for selected locale icon to display the title page as shown in
Figure 3-41 on page 117. After entering your title, click OK. Click Close to
exit this page without saving any information.

Portalizing Domino Applications for WebSphere Portal

Set title for selected locale

oK | Close

Locale: Title;

English |Cust|:|rner Contacts RES Portlet]

oK | Close

Figure 3-41 Setting the title for selected locale

— Click OK on the bottom of this edit screen to complete the configuration
and return to display mode. If you click Previous on this edit screen
instead, you will return to the first edit screen. Clicking Cancel will exit the
edit screens without saving any configuration changes.

After saving the modifications to the Customer Contacts RSS Portlet, activate the
portlet. Highlight the portlet and click the Active/Deactivate icon from the actions
on the right side of the page. This activates the inactive portlet.

Follow similar instructions for the second portlet in this example, the Customers
XML-XSLT portlet. Again highlight the RSS portlet in the Portlets area and click
Copy. Type in the new name and clicking OK. Highlight this inactive portlet and
click Modify Parameters. In the lab we entered the values shown in Table 3-12
into the parameter list, and our title in the English locale.

Table 3-12 Configuration values for the Lotus Notes View portlet example

Field Inserted value
stylesheet wml (this is the customer.xsl http://itsotest-dom:8088/apps/CUSTOME
form we built in Domino) R.NSF/customers.xsl?readform

stylesheet html (this is the customer.xsl http://itsotest-dom:8088/apps/CUSTOME

form we built in Domino) R.NSF/customers.xs|?readform
URL (this is generating XML from the http://itsotest-dom:8088/apps/CUSTOME
customersbyname view from Domino) R.NSF/customersbyname?readviewentri

es&count=1000

itemDisplayed 8 (records to show)

The result of our actions is shown in Figure 3-42.

Chapter 3. Using existing portlets 117

118

Configure parameters and titles

H save | Cancel

Portlet Mame: Customers XML-®SLT

Edit Parameters:

Parameter ¥alue

[T stylesheet.wml
[T stylesheet.html
I url

|'V1ER.NSchustomers.xsl?readform X Delete

|'V1ER.NSchustomers.xsl?readform

|me?readviewentries&cnunt=1000|

[T itemDisplayed E

| | & Add
Edit Locale Specific Titles:

Locale BT (5 set tite for selected locale

" Simplified Chinese RSS portlet
" English Customers KML-®SLT
' Hebrew oo RES
€ Palish Portlet RSS
" Italian Fartlet per RSS
(" Brazilian Portuguese Portlet RES
' Czech Fortlet RES
French Fortlet RSS
" Turkish RSS Portal Uygulamacid
€ German Fortlet fiir RSS
' Traditional Chinese RES Portlet
" Spanish Fartlet RSS
" Japanese RSS A—k L2k
 Korean RSS Portlet

Results
We have created a page and placed the Customer Contacts RSS portlet and the
Customers XML-XSLT portlet on this page and have activated the page.

Figure 3-43 on page 119 shows the XML portlets page.

Figure 3-42 Configuration screen for Customers XML-XSLT portlet

After saving the modifications to the Customers XML-XSLT portlet, activate the
portlet. Highlight the portlet and click the Active/Deactivate icon from the actions
on the right side of the page. This will activate the inactive portlet.

Portalizing Domino Applications for WebSphere Portal

j 1BM WebSphere Portal - Microsoft Internet Explorer : gl il

Fle Edit “iew Favorites Tools Help |:a"

@Bﬂ[k - Q - @ @ :h|;) Search '*ir_;(FavnritEs eMedia @ =

&
- e
Address @ http:ffitsotest-wps cam.itso.ibm. comfwpsmyportal! .cmdfcsf. ce[155/ s 1684) _s. 155/1854 :

1. Link Portlet

omer Contacts - 10 R
2. Web Page Portlet Cutomers Contacts in RSS Format This is CustomersByMame?ReadViewEntries
3. Web Clipper i
et D, e After portal 7 Chris Heltzel
Doe Inc.: Buyer phone, 617-555-5555 AnvPartal Inc 8 Michael Ticknar
4. Domino Portlets Dioe, John
Doe Inc. President and CEC: phone, 617-555-5555 Company A 2 John Smith
S. XML Portlets Good, wilbur B. . .
6. Integrated Portals-R-Us: Infrastructure Managen phane, 972-555-5555 Doe Inc. 3 Camila Rojas
Portlets Roias, Camila Cornino Portalizers 9 Carnilo Rojas
IBM Corparation: Manager, Operations: phone, 617-555-5555
Trabert, Cliver Fire Portals Co 10 Gary Someone
WP Experts: Prezident: phaone, . . .
Waorley, Wanda IBM Corporation 1 Michael Ticknor
Wanda's World of Wigs: President: phane, 617-555-5555 ITso 5 John Srmith
Joe's Pizza 13 Camilo Rojas
Kevboards Inc 17 Gary Someane
My Bank.com 19 Chris Heltzel
MyCompanyPortal 4 Chris Heltzel
Meo Portals 12 Michael Ticknor
Portal-rakers 3 John Smith

Portal People eaters 15 John Smith

Portals-R-Us 11 Chris Heltzel
The company & Gary Someoneg

wisnda's World of Wigs 14 Chris Heltzel

o

winging Portals 12 Chris Heltzel
WP Ezperts 16 Gary Someoneg

E
4

|@ ’_’_’_|° Inkernet
Figure 3-43 XML portlet page

Clicking the first entry in the Customer Contacts - Using RSS portlet results in the
screen shown in Figure 3-44.

Chapter 3. Using existing portlets 119

120

/ fitsotest-dom:8088 /apps/CUSTOMER.NSF /ContactsRSSbyName, 89897 068260A6 TEDSS. P IEIILI
File Edit ‘iew Favorites Tools Help |~{."

Address I@ http: ffitsotest-dom: 8088 apps/CUSTOMER MSF f{ContactsRSSbyhame/ 39897 0B32B0A6 TEDES 25602 4004F 261 47 OpenDocument j Go

M Edit e

|Custome1‘ Contact

Contact Name |Tane Doe

Contact 1002
Employer

Contact Job [Buyer
Title

Contact Phone (617-555-5555

Contact 55 Cambridge Parloway
Address Cambridge, MA 02142

P 4 dditienal Information

=
|@ Done ’_ ’_ ’_ q Lacal intranet v
Figure 3-44 Resuilt of clicking a highlighted link in the RSS portlet

Notice that clicking on the document link brought up a new browser window. If
you close this window and click the first entry in the Customers XML-XSLT
portlet, again, a new browser window is opened. The result is shown in
Figure 3-45.

a http:/ /itsotest-dom:8088, apps,;/CUSTOMER.NSF /CustomersbyName/F94EE3BBOE 7 339F885256D 5% IEI Iil |

File Edit View Favorites Tools Help ‘http:,l’,l’itsotest-dom:SDSSIaDDSICUSTOMER.NSF,l’CustomersbyName;’F
Address Ig] http: fitsotest-dom: 8088/ apps/CUSTOMER. NSF/Customer sbyhame/FO4EE3BB0E 7 339F 8852560 20006 1 SEEB?OpenDocument j GO

F)ﬁEdit -~ H

|Cust.0me1‘ Profile

Customer Neo Portals
IMarme

Customer 18
Humber

Custormer Koln, Germany
Address

of Employees |3
Account Michael Ticknor (333)

Crwner

P s dditional Information

[
@ Applet started l_l_l_ q Local intranet 4
Figure 3-45 Clicking on a highlighted link in the XML/XSL portlet

Portalizing Domino Applications for WebSphere Portal

3.7 Integrate using multiple portlets

One of the advantages of using WebSphere Portal is the single point of access of
the portal page. Activities in portlets on the page may or may not be associated
with one another. This section deals with using two types of portlets to access
and display Domino data on the same portal page. Choosing an item on one
portlet triggers events on other portlets.

By combining the Web Clipping and Web Page portlets with some custom
JavaScript and Domino development, it is possible to create a basic portal
application which implements the integrated portlet pattern without custom Java

or JSP development.

3.7.1 Considerations

The main advantage of this integration technique is that it is relatively quick and
easy to implement. Its main limitation that the developer is tied to the features
provided by the Web Clipping and Web Page portlets being used.

Applicable portlet patterns

Integrated

Development time

Moderate

Developer skill set

WebSphere Portal administration skills are needed.
Domino developer skills, with experience with JavaScript,
XML, and XSLT are needed.

Range of applications Moderate
Handle rich text No
Performance Limited
Session Management No
Clustering No
Scalability No

Requires single sign-on

The Web Clipping portlet has extensive firewall, security,
and authentication configurations. Web Page portlets can
be configured to use single sign-on.

Required software
versions

Standard HTML browsers with JavaScript support are
required. Netscape 5 and above and Internet Explorer 4
and above are supported.

Chapter 3. Using existing portlets 121

Implementation details

We describe how to use this technique to generate a portlet page with a “Web
clipped” Domino view and display corresponding related information in three
Web page portlets located on the same page. We discuss the Domino
enhancements that are made, followed by the WebSphere Portal configurations
that have to be generated. Ultimately, we show you the results of our integration.
To fully explain this implementation, we provide complete details concerning:

» Domino enhancements
» Portal configuration options
» Results

Domino enhancements

We didn’t have the necessary elements in our databases, so we had to create
them. In this section, we do not discuss in detail how to create these elements in
Domino, just their implementation.

First we create a Subform to generate the URL for us. This Subform, shown in
Figure 3-46, will be added to other forms.

er... $$viewTempla.. Sales Re.. Blank Page - Fo... |.Java8c:ri... ﬂ des’gﬂer

CGIVariables:l‘_ Server_MName T, Server Part T |7 Server_—Pr-:tcu:c-I T||r (e Shing T| 1=
URLGENERATE: [DIRECTORYURL T]F DBURL T|F WIEWURL T

Query_Sting variabes: [IFRAMENSME T |7 WIEWCATEGORY T WIEWNAME T|
<zerpk languagesjavascripty
function setFramet ame(] {

M pulls iframename= parameter from Query_String

war newFrameMName = "<Computed Yalues";

if [newFrameMame 1=""11

} zelf.name = newFrameh) ame;

E’a’establishes fully qualified LIRL for current db & wiew
war directonlRL = '<Computed Value>":

war dbURL = '<Computed Yalus>"

war viewllRL = < Computed Value>';

</zeripts

-

Ifigdré 3-46 'JavaScript Subform in the customer database
This Subform uses the iframename, viewcategory, and viewname to generate the

URL. We will be clipping a view, so we will generate this view element and the
accompanying view template form. Figure 3-47 shows the view.

122 Portalizing Domino Applications for WebSphere Portal

E Salez Reparting - Desigh - Views | CustomerPortletintagrated - Wiew j

designer

Customer Name

| Customer Name

fter poral

[Afte

AnyFartal Inc
Cornparry A

Doe Inc.

Daomina Poralizers
Fire Fartals Co
|Bk Corporation
TS0

Joe's Pizza
Keyboards Inc

tly Bank.com

by ComparyFaortal
Meo FPortals
Fortal-makers
Fortal Feople eaters
Portals-R-Us

The comparry

YWinging Partals
WWF Experts

Wanda's World of Wig [<a href="javascriptviewlink Clicked(' 7V 3FCER257 32 36EE085256D20006T5E25", '14; "»We

[<a& href="javascriptviewlink Clicked(' CF71DCE49871D648525601F0070E1BE". '8"; ">Amy
[Com
[Doy
[Da
[<a& href="javascriptviewlinkClicked('151E292E26B0ECERE5256024007164EY", "10%: ">Fire
[IBh
[TS(
[Jo
[Key
[
[MyC
[M:
[Part
[<a& href="javascriptviewlink Clicked('03BEFD43CAC419418526602000615C37", '118%: ">Pc
[<a href="javascriptviewlink Clicked('D16F77996F57DECEEE25602D00615621", 117 "»Pal
[<a& href="javascriptviewlinkClicked('3A0607FCEDBE 7 E4DE525602000615BED, '6%; "> T1

[y
[<& href="javascriptviewlinkClicked('8D7EEREE2 C925E5066525601FOOPEEIRE", "B ">WF

Figure 3-47 CustomerPortletintegrated view in the Customers database

The Customer Name view column has a JavaScript link included.

Next we generate the Web view template form for this view. Figure 3-48 shows
this view template.

Chapter 3. Using existing portlets 123

s CustomerPortletintearated - View | FviewTermplate for CustormerPortlet] ﬂ des.fg.HEI

I
CGI Variables: |r Server_Mame T ”r Server_Port T ”r Server_Protocal T||r Guem Sting T|

URLGEMERATE: [DIRECTORYURL T] DBURL TJf WIEWURL T)

Queny_Sting varishes: [T IFRAMENAME T |7 VIEWCATEGORY T | VIEwWNAME T
<goniph languagesjavazcnpts
function setFrameM ame(] {

A pull iframenames= parameter from Guen_Sting

war newFrarmehlame = "<Computed Yalue>";

if [newFramem ame 1= """ §

| zelf. name = newFramer ame:

t

/festablishes fully qualified URL for current db & wiew
var directorplIRL = <« Computed Values';

wvar dbURL =<« Computed Yalue>":

var viewlFL = '<Computed Yalue>';

</zcripty

<script languages=javascripts
function viewLinkClicked{documentlNID, custormerhurm) {

war linkStr

war targetFramesir;

linkStr = viewlJBL + documentUIMNID + "PopenDocurment;

targetFrameStr = "profiledisplay;

window.open(linkStr, targetFrameStr);

linkSir = dblURL +
"DISPLAYWIEMWCATEGORY?OpenForméviewname=customercontactsportletinte grate d &vie
weategory=" + customerlum;

targetFrameSt = "contactdisplay";

window.open(linkStr, targetFrameStr);

linkStr = directoryRL +
"sales.nsiDISFLAYYIEWCATEGORY Y OpenForméviewname=sabycustomernum dviewcate
gory=" + customer™um;

targetFrameStr = "salesactivities";

window.open(link3tr, targetFrameStr);
¥
<fscripty
Customer Name |Custc
[«a hret="|avascriptviewlinkClicked ('8 3C06EAIF3AAERDOBR2EEDZ000R1 53R, 17 " Aftar 7
[<a href="javascriptviewlinkClicked ('CEF71 DCE49671 DE48525601 FOO7OET5E", '8Y; "»AnyFr &
[<a href="javascriptviewlinkClicked('551 31 BRIF43ACEBERE 2560200615823, '27; "* Comp: 2
[«a hret="javascriptviewlinkClicked (' 462EEDEDESSED ?FBAE26EDT1FO07A6247", '37; ">Doe | 3

Eigure 3_-48 $$ViewTemplate for CustomerPortletintegrated view

This view template embeds the view CustomerPortletintegrated, and also
incorporates the JavaScript Subform. The viewLinkClicked JavaScript function
performs the placement and opening of the Web page portlets. We will display a
blank form when the Web page portlets on the portlet page are assessed initially.
We create the blank form in the Customer database. Figure 3-49 shows the blank
form.

124 Portalizing Domino Applications for WebSphere Portal

b mCustomers—Design—Forms Blank Page - Form X des’gﬂe"
| =

CGI Variables: |“ Server_Mame T||r Server_Port T||r Server_Pratocol T||r Cuery_Stiing T|
URLGEMERATE: [DIRECTORYURL T) DBURL T WIEWURL T
Query_Sting varislbes: [IFRAMENSME T |7 VIEWCATEGORY T WIEWNAME T)

<schpt language=javascripts
furiction setFrameM ame() {
/¢ pullz iframename= parameter from Query_Sting
var newFrameMarme = "<Computed Yalue>";
if [newFrameMame =" {
zelf.name = newFrameM ame;

}

}
/establizhes fully qualified URL for current db & view
war directonlRL = ¢ Computed Walue>';
var dbURL = < Camputed Yalue>'.
var viewlRL = <Computed Walue>":
<Jeoripty
<gcnipt language=javascript:
zetFrameM ame(];
<Jsoripty

-

This form includes the JavaScript Subform. This form will be shown in each of the
three Web Page portlets when we access the portal page initially. We need to
generate the views and forms to provide content for these portlets. The portlets
will show the customer profile, the customer contact, and any relevant sales
activities associated with this customer. We generate the view
CustomerContactsPortletintegrated. This view is shown in Figure 3-50.

Figure 3-49 Initial blank form

@ m Custormers - Desiagn - Yiews l CustormerContactsPortletintegrated - Yiew j des’gﬂe"
‘m Contact Name |Ph|:|ne # |hidden 4 |
|v 1
Rojaz. Camilo E17-555-5555 Camilo Fojaz
1001
Trabert, Oliver Olivver Trabert
* 1002
Doe, Jane E17-555-5505 Jane Doe
Doe, John E17-A55-5505 John Doe
* 1234567
Wwhorley, wanda E17-555-5555 W anda Worley
=500
Good, Wwilbur B. 972-555-5655 *wilbur B. Good
KV i

Figure 3-50 Customer Contacts portlet integrated view

Next, we generate the view template form for this view. We build a form to display
the view called DisplayViewCategory. Figure 3-51 on page 126 shows this form.

Chapter 3. Using existing portlets 125

126

Q mCustomers—Design—Forms | DizplayWiewCategory - Form ﬂ deslgner
CGlWariables: [T Server_Mame T | Server_Pot T][Server_Protocol T | Queny_Sting T ﬂ
URLGEMERATE: [DIRECTORYURL T] DBURL T WIEWURL T

Query_Sting varialbes: [IFRAMENAME T |7 WIEWCATEGORY T VIEWMAME T
<zcript languagesjavascripts
function setFrameM ame(] §

/¢ pulls iframename= parameter from Duery_String

var newFrameMame = "<Computed Value>";

if [mewFrameM ame 1= """ {

} zelf.name = newFrameM ame;

Afestablizhes fully qualified URL for current db & view
war directoryURL = '<Computed Value>"

var dbURL = '<Computed Value>"

var viewlURL = <Computed Value>';

</zcripty

Customer Name | Customer # -

'BICOREAIF3IAAERDNBE2EED2D00615C3E" '7; ">After 7
'CEF71DCE49571 0648525601 FOO7OETSE", "8"; "»AnyPc §
'b5191B59F43ACEBERR256D2000615623", '2"; "»Compi 2
'462ERDEDESBED?FBE525601FO07962AT", '37; ">Doe 13

[¢a href="javascriptviewlinkClicked
[¢a href="javascriptviewlinkClicked
[¢a href="javascriptviewlinkClicked
[¢a href="javascriptviewlinkClicked

[

Figure 3-51 DisplayViewCategory form for th%ustomers database

The JavaScript Subform has been placed in this form, along with an embedded
view that is passed with the viewname. For the Sales database, we generate a
similar DisplayViewCategory form. This is shown in Figure 3-52.

ms DizplayWiewCategors - Farm I Display\r"iewCategory-ForrE‘ des;gﬂer
CGEI Yaniables: |r Sewel_NamE’r_Sewer_F'ort T Server_Protocol T||r Cuery Shing T| |-
URLGEMERATE: [DIRECTORYURL T DBEURL T)7 WIEWURL T

Query_Sting varabes: [IFRAMENAME T WIEWCATEGORY T VIEWNAME T

{zcrpt language=javascrpt:
function setFrameM amel] §
A4 pullz iframename= parameter from Clueny_String
war newFrameiame = "¢Computed Yalue»";
if [mewFramet ame 1= """ {
} zelf.name = newFrarmet ame;

f’a’establishes fully qualified URL for curent db & view
war directonllBL =< Computed Yalues';

war dbURL = '<Cormputed Walue>'

war viewlIRL =<« Computed Walue>'

_<£script>
Date Salez Person Customer Activity Contact Mad
* 051242003
Heltzel, Chris Wanda's Warld Phone Call Wanda'orley MNo
of Wigs
Heltzel, Chris W Experts Sales Pitch Oliver Trabert Mo

Figure 3-52 DisplayViewCategory form for the Sales database

The JavaScript Subform has been placed in this database as well as the form.
We do not have to generate any special views in this database.

Portalizing Domino Applications for WebSphere Portal

Configuration options

We now have to construct our portlets. We start with the Web Clipper portlet. In
the portal environment, we click Portal Administration — Web Clipping. This
page is shown in Figure 3-53.

3 IBM WebSphere Portal - Microsolt Internet Explorer i 5 - ety |E| |£|
File Edit View Favortes Tools Help | ﬂ'

s . —~ e
@ Back ~ (&g - \ﬂ \g | | ps) search % /Favorltes @Mecha {-‘? | = e = é% 3

Address I@ http:;’.l’itsotest-wps.cam.\tso.ibm.cnm,iwps,l’myportal,l’.cmd,l’ChangeExpandState,l"exp,l’171,l’.miid,l’null,l’.exps,l’FaIse,l’.deF,l’true,l’.scr;’lj Go

" Add, edit, and delete Web clippers
Install Portlets Web clippers:
Portlet Applications
Custoners o add

Manage Portlets John Doed @

L Web Clipping Customer View Edit
Wweb Clipping FRing

Delete

Manage Weh X Dele
Services

Web Services

L

< I
éihttp Hitsotest-wps, cam.itso.| b, cor comwpsimyportall_s, 155/1577LaunchType=EditLayout&CompositionID: l_’_’_ 4 Internet
Figure 3-53 Web clipping through Portal Administration

Following the same format as in 3.4, “Integrate using the Web Clipping portlet” on
page 79, we click the Add icon and proceed with clipping the
customerportletintegrated view in the customer database. Table 3-13 shows the
configuration values for this example.

Table 3-13 Configuration values for the Customers “clipped” view

Field Inserted value

Name and default local title Customers

Description (none)

URL to clip http://itsotest-dom.cam.itso.ibm.com:8088/apps/CUS

TOMER.NSF/CustomerPortletintegrated?OpenView

Connection timeout (seconds) | 5

All other fields default

Since our view has JavaScript embedded in a column, we click the Modify
security options icon and uncheck the checkbox next to Remove JavaScript from

Chapter 3. Using existing portlets 127

clipped content. We click Done on this page and Next on the main configuration
page. We now have to select the elements from the URL that we want to keep, as
shown in Figure 3-54.

Clip content ?
o Mext | Cancel
7 By pointing and clicking, choose the content vou would like to clip, Select "Praviaw”
ta open or update the Web Clipping Preview window with a preview of the content far
vour Web clipper. When you are satisfied with the content of your Web clipper, z2lact
"MHest",
Follow links I MNever ,I | - ClearF * Preview
Customer Name Customer # | Account Owner
After portal 7 Wilesten, Marko
AnyPortal Inc g Ticknor, Michael
Company A z Zmith, John
Coe Ine. 3 Rojas, Camilo
Domino Portalizers] Viksten, Markao
Fire Portals Co 10 Someone, Gary
IBEM Carporation 1 Ticknor, Michael
ITso 5 =mith, John
Joe's Pizza 13 Raojas, Camilo
keyboards Inc 17 Someone, Gary
My Bank com 19 Viksten, Markao
My CompanyPortal 4 Heltzel, Chris
Meo Portals 18 Ticknor, Michael
Portal-makers 3 Rojas, Camilo
Portal People eaters 15 Viksten, Markao
Portals-R-Us 11 Heltzel, Chris
The company i1 Viksten, Markao
wranda's world of Wwigs 14 Heltzel, Chris
Wwinging Portals 1z Heltzel, Chris
WP Experts 15 Someone, Gary
Follow links m |— CIearF * Preview
o Next | Cancel

Egure 3-54 “Clipping” from the URL

We highlight our “clip” and click Next. A preview is shown, and we click Done to
save it. We have created the portlet. We put this portlet on a page and also add
three Web Page portlets. We will place the “clipped” portlet and one Web page
portlet in one row and the other two portlets on the second row. Figure 3-55 on
page 129 shows a close-up of this portlet page.

128 Portalizing Domino Applications for WebSphere Portal

Custormners Web Page
Please customize your portlet to specify a Web
page.

Customer Name Customer # | Account Owner

After portal 7 Wiksten, Marko
AnyPortal Inc g Ticknar, Michael
Company & 2 =mith, John
Doe Inc. 3 Rojas, Camilo
Domino Portalizers 9 Wiksten, Marko
Fire Portals Co 10 Someone, Gary
IBM Corporation 1 Ticknar, Michael
ITso 5 =mith, John
Joe's Pizza 13 Rojas, Camilo
Kevboards Inc 17 Someone, Gary
My Bank.com 19 Wiksten, Marko
MyCompanyPortal 4 Heltzel, Chris Wweb Page
Heo Portals 18 Ticknor, Michael Please customize your portlet to specify a Web
Portal-rnakers 3 Rojas, Camilo page.
Portal People eaters 15 Wiksten, Marko
Portals-R-Us 11 Heltzel, Chris
The company] Wiksten, Marko
Wanda's World of Wigs 14 Heltzel, Chris
Wwinging Portals 1z Heltzel, Chris
WP Experts 16 Sormeoneg, Gary
Web Page
Please custornize your portlet to specify a web page.

Figure 3-55 Web Page portlets need to be configured-

We now configure the three Web Page portlets. We followed the steps described
in 3.3, “Integrate using the Web Page portlet” on page 74 to do this. The
configuration values for the Web Page portlet in row one, Customer Profile, are
listed in Table 3-14.

Table 3-14 Configuration values for the “Customer Profile” Web Page portlet
Field

Inserted value

Portlet title Customer Profile

URL (This URL opens the blank form in
the customer database. It also names this
iframename as profiledisplay.)

http://itsotest-dom:8088/apps/customer.n
sf/Blank%20Page?OpenForm&iframena
me=profiledisplay

Portlet width

Fit to column

Portlet height

200

The configuration values for the first Web Page portlet in row two, Customer

Contacts, are listed in Table 3-15.

Chapter 3. Using existing portlets 129

130

Table 3-15 Configuration values for the “Customer Contacts” Web Page portlet

Field

Inserted value

Portlet title

Customer Contacts

URL (This URL opens the blank form in
the customer database. It also names this
iframename as contactdisplay.)

http://itsotest-dom:8088/apps/customer.n
sf/Blank%20Page?OpenForm&iframena
me=contactdisplay

Portlet width

Fit to column

Portlet height

200

And finally, the configuration values for the second Web Page portlet in row two,
Customer Sales Activities, are listed in Table 3-16.

Table 3-16 Configuration values for the Customer Sales Activities Web Page portlet

Field

Inserted value

Portlet title

Customer Sales Activities

URL (This URL opens the blank form in
the customer database. It also names this
iframename as salesactivities.)

http://itsotest-dom:8088/apps/customer.n
sf/Blank%20Page?OpenForm&iframena
me=salesactivities

Portlet width

Fit to column

Portlet height

200

Results

After configuring the portlets, we created a page and placed and configured the
four portlets, and we have activated them. Figure 3-56 on page 131 shows the

resulting portal page.

Portalizing Domino Applications for WebSphere Portal

5 1BM WebSphere Portal - Microsoft Internet Explorer =10 EI

55 E Yo Eveies odb BCh | &

@Eack - - D @ :h‘psaarch *Favnrltas @) ects @| B- :_\’, = _J ‘,L%

Address |@ http: ffitsotest-wps, cam.itso.ibm, comfwps fmyportalf.cmd/cs/ . ce 155/ .5/1888/ _s. 155/ 1888
WebSphere.

2. web Page Portlet

3. Web Clipper

Portlets Customer Name Customer # « Account Owner
< Eomine CordEEs After portal 7 viksten, Marko
5. XML Portlets AnvPortal Inc g Ticknor, Michael
6. Integrated Cormpany A z Srnith, John
Portlets Doe Inc. 3 Rojas, Camilo
Domino Portalizers 9 Yiksten, Marka
Fire Portals Co 10 Someone, Gary
1BM Corporation 1 Ticknor, Michael
1ITso S Smith, John
Joe's Pizza 13 Rojas, Camila
Kewboards Inc 17 Someone, Gary
My Bank.com 19 Yiksten, Marka
MyCarnpanyPortal <4 Heltzel, Chris
MNeo Portals 18 Ticknor, Michael
Portal-makers 3 Rajas, Camilo
Portal People eaters 15 Viksten, Marko
Portals-R-Us 11 Heltzel, Chris
The company [Viksten, Marka
wWanda's World of Wigs 14 Heltzel, Chris
Winging Portals 1z Heltzel, Chris
WP Experts 16 Someone, Gary

|
[&] [| |@ unknown zone (Mixed)

Figure 3-56 The integrated portlets page

The portal page has three portlets that are blank because there is not any
information to show yet. In reality, the three portlets are displaying what we want,
a blank view from the Domino database. If we click the first highlighted link in the
Customers portlet (upper left portlet in Figure 3-56), the resulting screen is
shown in Figure 3-57.

Chapter 3. Using existing portlets 131

Custorner Profile

Customers

[# Eat (=
Customer Name Customer # « Account Owner |Customel‘ Profile
After portal 7 Viksten, Marko
AnvPortal Inc g Ticknar, Michael Customer | After I)Ol'tﬂl
Company A 2 =mith, John T atme 1
Doe Inc 3 Rojas, Camilo
Domino Portalizers 9 Viksten, Marko Customer
Fire Portals Co 10 Someone, Gary Mumber
IBM Corporation 1 Ticknor, Michael Customer |[One New Orchard
= s Smith, John Address [Road [
Joe's Pizza 13 Rojas, Camilo
Kevboards Inc 17 Someone, Gary
My Bank.com 19 Viksten, Marko
My CompanyPortal 4 Heltzel, Chris
Meo Portals 18 Ticknar, Michael
Portal-rnakers 3 Rojas, Camilo
Portal People eaters 15 Viksten, Marko
Portals-R-Us 11 Heltzel, Chris
The company] Viksten, Marko
wanda's World of Wigs 14 Heltzel, Chris Customner Sales A
Winging Portals 1z Heltzel, Chris
WP Experts 16 Someone, Gary

No documents found

Customer Contacts

No documents found

Figure 3-57 Clicking on After Portal link

Notice that two of the remaining three portlets show “No documents found.” This
is because there are, in fact, no documents for this entry. A customer profile does
exist, as noted in the Customer Profile portlet (upper right portlet in Figure 3-57).
Also note that there is a scroll bar even though we have room in that portlet to
display more of the document. This is due to our setting of the length in the
configuration settings for that portlet. If we click the Fire Portals Co name in the
Customers portlet, the screen that results is shown in Figure 3-58. Now the
remaining three portlets show relative information. These three remaining
portlets are iFrame portlets. All other portlets remain the same even though the
document in the Customer Profile portlet is now editable.

132 Portalizing Domino Applications for WebSphere Portal

Note: You must have the appropriate access to edit the document (at least
Author access).

[Eat =

Customer Name Customer # « Account Owner
‘Customel' Profile
After portal 7 viksten, Marko
AnvPortal Inc 8 Ticknar, Michael Customer |Fire Portals Co
Compsny & H Srith, John Mame
Doe Ine. 3 Rojas, Camilo
Domine Portalizers 9 Viksten, Marko Customer |10
Fire Portals Co 10 Someone, Gary Nurnber
IBM Corporstion 1 Ticknor, Michas| Customer |One Tara Diive
[Ts0 5 Srith, John Address Aflanta. Gia =l
Joe's Pizza 13 Rojas, Camilo
Kevboards Inc 17 Someone, Gary
My Bank.com 19 wiksten, Marko
MyCompsnyPortal 4 Heltzel, Chris
Neo Portals 13 Ticknor, Michael
Portsl-makers 3 Rojas, Camilo
Ports| Peopls satsrs 15 wiksten, Marko
Portals-R-Us 11 Heltzel, Chris
The company 6 viksten, Marko
Wanda's World of Wigs 14 Heltzel, Chris
Winging Portals 12 Heltzel, Chris
WP Experts 16 Someone, Gary Date Activity Sales Person Contact Made Sale?
05/12/2003 Sales Heltzel, Chris Oliver Mo
Pitch Trabert
05/02/2002 Phone Helizel, Chris Oliver Mo
Call Trabert
Contact Name FPhone #
Trabert, Oliver
4] |

Figure 3-58 Clicking Fire Portals Co in Customers portlet launches content in other
portlets.

If we click the first highlighted document link in the Customer Contacts portlet
(lower left portlet), with the portal context and all other portlet contexts remaining
the same, the resulting screen displays the contact information, as shown in
Figure 3-59.

Chapter 3. Using existing portlets 133

134

Customer Name Customer # « Account Owner

By S j
|Customel‘ Profile

After portal H viksten, Marko
AnyPartal Ing 8 Ticknar, Michael Customer IFirg Fortals Co
Company & z smith, John Mame
Doe Inc. 3 Rojas, Camilo
Domino Portalizers 9 viksten, Marko Custorner [10
Fire Portals Co 10 Someons, Gary Mumber
IEM Corporation 1 Ticknar, Michael |cusmmEr [one Tara prive -
IT50 5 Smith, Jahn 4 | _,l_l
Joe's Pizza 13 Rojas, Camilo
Keyboards Inc 17 Somesne, Gary
My Bank.com 19 viksten, Marko
MyCompanyFortal 4 Heltzsl, Chris
Meo Portals 18 Ticknor, Michael
Portal-makers 3 Rojas, Camilo
Portsl People satsrs 15 viksten, Marka
Portals-R-Us 11 Heltzel, Chris
The company 6 viksten, Marka
wanda's world of Wigs 14 Heltzel, Chris
Winging Portals 12 Heltzsl, Chris
WP Experts 16 Someone, Gary Date Activity Sales Person Contact Made Sale?
05/12/2003 Sales Heltzel, Chns Oliver Mo
Pitch Trabert
05/02/2003 Phone Helizel, Chns Oliver Mo
Call Trabert
[4] Batt
‘Customel Contact 3l |

Contact Mame |Oliver Trabert

Contact 1001
Employer

Contact Tob [President
Title

M anbont Tis nn o

Figure 3-59 Result of clicking on link in the Customer Contact portlet

Finally, if we click the first highlighted document link in the Customer Sales
Activities portlet (lower right portlet), the resulting screen is shown in Figure 3-60.

Portalizing Domino Applications for WebSphere Portal

After portal 7
AnyPortal Inc 8
Company & z
Doe Ine, 3
Domino Portalizers 9
Fire Portals Co in
1BM Corporation 1
ITs0 5
Joe's Pizza 13
Keybosrds Inc 17
My Bank.com 19
MyCampanyPaortal 4
Meo Portals is
Partal-makers 3
Portal Peaple saters 15
Portals-R-Us i1
The company 6
wanda's World of Wigs 14
winging Portals 1z
WP Experts 16

Customer Name Customer # « Account Owner

viksten, Marko
Ticknor, Michael
Smith, John
Rojas, Camila
viksten, Marko
Someone, Gary
Ticknor, Michael
Srith, John
Rojas, Camila
Someone, Gary
viksten, Marko
Heltzel, Chris
Ticknor, Michael
Rojas, Camila
vilsten, Marko
Heltzel, Chris
viksten, Marko
Heltzel, Chris
Heltzel, Chris
Someone, Gary

[4] Bat

‘Customer Profile

Customer Fire Portals Co
Iatme

Customer 10

TMumber

Customer ‘Oue Tara Drive
Address Aflanta. Ga

[4] Bat

Sales Activity

Actraty Date |05/12/2003

Activity Type |Sales Pitch

MEchl - Customner (1001
Customer |Oliver Trabert
‘Customer Contact Contact
Contact Mame |Oliver Trabert
Contact 1001
Employer
Contact JTob [President
Title
A e =

Figure 3-60 Result of clicking on the first highlighted document link in the Customer

Sales Activity portlet

Again, this demonstrates that all portlet contexts stay intact and the document is
displayed in the Customer Sales Activities portlet context. Finally, we can click
the Edit button in the three remaining portlets. This is shown in Figure 3-61 on

page 136.

Chapter 3. Using existing portlets

135

stomer Profile
By S j
Customer Name Customer # ."-_ccount Owner |Customel‘ Profile
after portal 7 Viksten, Marko
AnyPortal Inc 8 Ticknar, Michael Customer IFirg Fortals Co
Company & 2 Srnith, John M ame
Doe Inc. 3 Rajas, Carnilo
Doming Portalizers 9 viksten, Marko Custorner [10
Fire Portals Co 10 Someons, Gary Mumber
IBM Corgoration 1 Ticknar, Michael |cusmmEr [one Tara prive -
TS0 5 Srnith, Jahn J 5 _,l_l
Joe's Pizza 13 Rojas, Camilo
Kevhoards Inc 17 Sameons, Gary
My Bank.com 19 Wiksten, Marko
MyCompanyPaortal 4 Heltzel, Chris
Meo Portals is Ticknor, Michael
Portal-rakers 3 Rajas, Carnilo
Portal People eaters 15 Wiksten, Marko
Portals-R-Us 11 Heltzel, Chris
The company 3 Viksten, Marko
Wanda's World of Wigs 14 Heltzel, Chris Cus Sales
Winging Portals 1z Heltzel, Chris %Sm j
WP Experts 16 Sameons, Gary
Sales Activity
Activity [05/12/2003
Date

| Sales Pitch |

= \Activity
Type
Customer |—Se|gm— =] -
q | 3

: %S

Customer Contact

Contact |[Oliver Trabert

MName

Contact |-Select =l
[Employer

Contact ||President -
4 | »

Figure 3-61 Three documents in “edit” mode on the same portlet page

The main advantage of using this technique is that all three documents have
been put into “Edit” mode inside their respective portlet contexts.

3.8 Reference material

The following Web sites and redbooks are helpful when exploring the integration

of Lotus Domino and WebSphere:

» Domino and WebSphere Together, Second Edition, SG24-5955

» [IBM Lotus Domino Developer Domain
http://www.lotus.com/1dd

» IBM WebSphere Developer Domain - Portal Zone
http://wilson.boulder.ibm.com/wsdd/zones/portal/

» IBM WebSphere Portlet Catalog
http://www.ibm.com/software/Webservers/portal/portlet/catalog/

136 Portalizing Domino Applications for WebSphere Portal

http://www.lotus.com/ldd
http://wilson.boulder.ibm.com/wsdd/zones/portal/
http://www.ibm.com/software/Webservers/portal/portlet/catalog/

Using custom Domino JSP
tag libraries

This chapter describes how to integrate Lotus Domino applications into a
WebSphere Portal using the custom Domino JSP Tag libraries, which were
introduced in release 6 of the product. We tried our examples with both R5 and
Domino 6 databases, and both of them worked well. Be aware that IBM does not
support the tag libraries on R5.

We begin the chapter by reviewing several pertinent technologies: J2EE, JSP,
and Tag libraries. Next, we introduce the tools needed to accomplish a
successful integration. As we describe how we integrated our sample application,
we point out some common pitfalls along the way, and how they can be
overcome.

Attention: The Lotus Domino JSP Tag libraries in the WebSphere Portal are
not formally supported by IBM at this time. This is because there are some
tags that require HTML headers on the JSP files. These tags include nocache
and others that insert JavaScript libraries that are dynamically generated;
because portlets serve fragments of HTML code, you should first test these
tags in a controlled WebSphere Application Server environment to assess the
viability of including them in your portal applications.

© Copyright IBM Corp. 2003. All rights reserved. 137

4.1 Overview of the Domino custom JSP Tag option

In the previous chapter we reviewed some simple methods of integrating Lotus
Domino applications with WebSphere Portal, and found limitations in those
methods that need to be lifted for real world implementations. Some of the
limitations are addressed in this chapter as we explore the benefits available from
technologies like J2EE and tools like WebSphere Studio Application Developer.

One of the most common situations when integrating Lotus Domino applications
is that you are faced with a growing number of J2EE applications that should
interact with Lotus Domino applications. A basic knowledge of the capabilities
J2EE brings to a Lotus Domino developer is important in the current
marketplace.

Combining J2EE technology with Lotus Domino in a portal environment helps
overcome several challenges, like the ones outlined in the first chapter. For
example, with J2EE there is access to transactional services and personalization
services that will extend your current Lotus Domino application.

Exposing your current Lotus Domino applications through WebSphere Portal will
lift some of the weight that Lotus Domino has to handle as a Web application
server.

Integrating Lotus Domino applications with JSP Tag libraries yields shorter
development time than that for a custom Java development option. The
technology comes with some limitations, especially regarding performance.
These limitations are discussed as we explore each integration technique.

You will probably choose this integration option if the functionality of prepackaged
portlets isn’t enough to fulfill your integration needs, and if there is an underlying
motivation to understand what Java technologies bring to Lotus Domino when
developing WebSphere Portal applications.

4.2 Technologies involved

The integration techniques described in this chapter rely on several technologies;
this section is a brief introduction to them. It begins with a look at J2EE and a
description of some of its components, then provides a closer look at JavaServer
Pages (JSP) technology and custom JSP Tag libraries.

138 Portalizing Domino Applications for WebSphere Portal

4.2.1 J2EE overview

The benefits of Java 2 Enterprise Edition (J2EE)and its basic architecture and
components are described in this section.

J2EE is a set of synchronized standards and practices that when used together
enable solutions for developing, deploying, and managing multi-tier distributed
server-centric applications. It is based on the Java 2 Standard Edition (J2SE,
formerly called Java Runtime Environment or JRE), which has been
complemented with enterprise standards that provide a scalable, robust, secure,
and stable platform to build enterprise solutions. It enables developers to extend
existing solutions by creating applications quickly, with reduced complexity, cost,
and facilities.

A platform for enterprise solutions

Java 2 Enterprise Edition defines a set of standard technologies for developing
multi-tier, distributed enterprise applications. J2EE lowers the risk for developers
and customers since it's based on a standard and modular architecture. It also
can simplify enterprise applications by taking advantage of a complete set of
services to help avoid the most common pitfalls of application development, and
automatically handling many details of your application without complex
programming.

J2EE takes advantage of characteristics such as the “write once, run anywhere”
paradigm, which enables Java programs to run on different platforms without
requiring rewriting of the entire application. Also, it takes advantage of other well
known technologies, like JDBC and CORBA, for interaction with existing
enterprise information systems. It is based on a robust security implementation
that will protect the data as it is exposed to public networks. Furthermore, J2EE
includes a complete set of standards, compliance tests, and documented best
practices that assure the stability and portability of applications across different
platforms.

Benefits of developing with J2EE
J2EE provides the Lotus Domino developer with the following benefits:

» J2EE will build enterprise solutions quickly and get robust solutions to market
faster.

J2EE is based on containers which provide a clear separation of business
components and enterprise services, which focuses developers on writing
business logic rather than spending precious time on developing
infrastructure code. For example, the Enterprise JavaBeans (EJB)
components (implemented by J2EE) handle distributed communication,
threading, scaling, transaction management, messaging infrastructure, and
lots of others requirements of modern applications. Similarly, Java Servlets

Chapter 4. Using custom Domino JSP tag libraries 139

and JavaServer Pages (JSP) simplify Web development by providing a
flexible infrastructure for component communication, and session
management in Web applications that is integrated with the Web server.

» Standards.

J2EE is a set of technologies that many vendors can implement and extend.
Vendors like IBM with it's WebSphere Application Server, are free to extend
on implementations but not on standards or APIs. Sun Microsystems provides
a complete J2EE Compatibility Test Suite (CTS) to grant J2EE
interoperability. The J2EE CTS helps ensure compatibility among the
application vendors, which helps in ensuring portability of the applications and
components written on J2EE. J2EE brings the “write once, run anywhere”
paradigm to the server.

Open Network

feclipse
-

Tool
Integration

Open Programming Model
Platform Neutral

The

Open Web Services ~#iiimens Foundation Open Standards

/Taache so P

Figure 4-1 IBM WebSphere commitments on Open Standards

» Separation of tiers.

J2EE brings to the Lotus Domino developer the capacity to separate the
business logic from the presentation layer. By doing this the developer builds
components that are loosely coupled, providing openness to your
development environment and reusability to your software.

Portalizing Domino Applications for WebSphere Portal

» Extended connectivity.

J2EE will enable your applications to connect to external applications through
technologies and standards (like the Java Connector Architecture and Java
Messaging Service) that let you easily expose current business logic to Web
applications, and that can serve different clients (Web browsers, cell phones,
pervasive devices, voice systems), offering the basis of a multichannel
e-business infrastructure. J2EE also offers CORBA support for external
systems through remote method calls.

J2EE offers a platform with faster solution development time, freedom of choice,
code reuse and extended connectivity. J2EE helps developers and customers to
reduce Total Cost of Ownership (TCO), time to market, and take advantage of
the evolving standards communities, while avoiding locking into a single provider
for the infrastructure needed to build an e-business platform.

Technologies included in J2EE
Some of the technologies in the J2EE platform are:

» JavaServer Pages (JSPs)

» Java Servlets

» Enterprise JavaBeans (EJBs)

» J2EE Connector Architecture

» Java Management Extensions (JMX)

» Java API for XML Registries (JAXR)

» Java API for XML-Based RPC (JAX-RPC)
» Java Message Service (JMS)

» Java Naming and Directory Interface (JNDI)
» Java Transaction API (JTA)

» CORBA

» JDBC data access API

For updated standards and levels for each standard, check with the J2EE official
Web site.

J2EE focus on portlet development for Domino developers

One of the main advantages and strengths that J2EE brings from a design point
of view is the separation of the tiers or layers that compose an e-business
application. Unlike a Lotus Domino application where all the data, business logic,
and presentation objects are packed on a single .NSF file, in the J2EE design

Chapter 4. Using custom Domino JSP tag libraries 141

pattern there are several separate containers which represent different logical
tiers, as depicted Figure 4-2. A brief explanation of these tiers follows.

Client Tier | Presentation - Business Logic
Applet ' Construction Logic Tier | Tier
Container : HTTP :
1 ssL 1
Applet N (1
——r————_'- Web Container RW'“-L IOP (r EJB Container

J2SE

Application
I:’IE‘.Iient
Container.

JSP Page @

Enterpnse
Beadn

HTTP
IS Coc Jvace e
EEcFiMi RS20 S Ml g=2S
bGP maTm xg= MeTw
wTE =& moLg B9 m»d
SJF 8 9 208 mS €
7] > T o JAF . ‘T

JDBC

Application
eii

lient

J2SE

RMI-IOP

Figure 4-2 J2EE design

Database tier

Viewing the figure from right to left, the first tier is the Database tier. This tier is
not included in J2EE and is accessed directly by a technology called JDBC,
which provides access to the application data stored on relational databases.
From a J2EE developer point of view this tier is basically a provider of data
access and storage.

EJB container tier

Next is the EJB container tier, which is a J2EE runtime component. You would
place business logic here by using Java components called Enterprise Java
Beans (EJB), which actually are designed to provide seamless access to
relational databases and enterprise information systems (EIS) with transactional
integrity. Along with the data storage and access facilities, you can embed the
business logic of your application in these components since they offer high
performance and availability mechanisms that can be accessed from different
channels of communication, not just through the Web.

142 Portalizing Domino Applications for WebSphere Portal

Web container tier

The next tier is the Web container (also a J2EE runtime component), which is
designed to construct presentation components and control presentation logic. It
is based on technologies that offer a high performance, extendible presentation
framework to build upon, like Servlets and JavaServer Pages. The Web container
is also the host of other technologies, such as Web Services and XML-XSLT
applications, that enable your applications to extend to other channels of
interaction.

Client tier

The final layer is the client tier, which is represented by two types of client. The
most commonly used is the thin client Web browser, which basically understands
and renders the HTML or XHTML broadcast from the Web container into Web
pages. Inside the browser you can have a Java component called Applets, which
as shown in the diagram can only access the J2SE basic services. Also there is
another type of client, called the J2EE Client container, because J2EE allows a
client-server configuration. This fat client has access to several J2EE services; it
is used when the use of external devices and usability issues arise that the Web
Browser is unable to attend.

Additional thoughts on J2EE

The Web container and the EJB container are the two main blocks that construct
a J2EE application server. The WebSphere Portal allows the construction of
Portlet applications that will reside on the Web container, so our focus remains
on this container as we explore the JSP - Domino custom JSP tag libraries option
of portalizing Lotus Domino applications.

The Portlet components extend the Servlet component, and can present its
information using JSP pages. And since JSP development is part of the Lotus
Domino development environment, it seems natural to understand and unleash
the power of JSPs in the portal environment.

First, let’s take a closer look to the JavaServer Pages (JSP) component.

4.2.2 JavaServer Pages

A JavaServer Page, or JSP, is a simple but very powerful component of J2EE. It
allows you to easily create content for Web applications while maintaining the
ability to include information, generated on the fly, that can be computed by Java
code or extracted from other third party systems like, in our case, Lotus Domino
applications.

The JSP allows the developer to mix the robust advantages of the Java language
and the visual facilities of HTML editors like WebSphere Studio.

Chapter 4. Using custom Domino JSP tag libraries 143

144

Definition of a JSP

A JSP is a standard file that is written basically in HTML, which can include
special tags to let developers include dynamic content for Web applications.
From a Java point of view it extends the Servlet component used in most J2EE
Web applications. The JSP files end with a .JSP extension.

The following code snippet contains the code of a simple JSP file.

Example 4-1 JSP sample snippet

<htm1>
<body>
<% out.printin(“Hello World !!?); %>
</body>
</html>

As you can see, this snippet looks much like a standard HTML file, with some
special tags that contain Java code inside. The output of this JSP will be a Hello
World !! message on the Web browser.

The JSP file is stored on the file system in a text format and it is compiled when
the first request is made through a Web browser. Figure 4-3 illustrates the steps
a JSP goes through during that first request.

J2ZEE Application Server

Yi'eb Container

1. The Weh Browser
makes a reguest. / JSP File
2. The Weh Container
generates the code for

the serviet.

code

3. The Weh Container
compiles the servlet
code and generates a
servlet that will serve
future requests.

Campiled

4. The output of the Serdet

generated code is
served to the Weh
Browser.

Figure 4-3 Process of serving the first JSP request

Portalizing Domino Applications for WebSphere Portal

As you can see, the JSP is compiled at runtime into a Servlet, and any
subsequent request is served by the compiled Servlet. Most J2EE application
servers, like WebSphere Application Server, can check on a preset schedule
whether the original JSP has changed; if there is a change, the JSP file is
recompiled.

There are several elements in a JSP file, one of which will help us include JSP
Tag libraries. The elements included in a JSP file are briefly described in the
following section.

Elements of a JSP

The JSP files can embed Java code through the use of special tags. These tags
can be grouped into four main categories. In this section we describe the
importance and use of each.

Directives

The JSP Directives are elements that give the J2EE Application Server global
information on the JSP file. The syntax of the JSP Directive is:

[

<%0 directive attribute="value” %>

The attribute and value pair are optional. Table 4-1 identifies some of the
directives.

Table 4-1 JSP Directives

Directive Description Available attributes
page Defines information that affects the autoFlush
global definition of the JSP file. The buffer
attributes are not required since they contentType
are set by default. errorPage
extends
info
import
isErrorPage
isThreadSafe
language
session
include This directive let’s the developerinclude | file
files in the JSP at compile time.
taglib Lets the JSP include custom tag uri
libraries on the JSP. prefix

We used the taglib directive in our JSP examples to include the custom Domino
JSP tags.

Chapter 4. Using custom Domino JSP tag libraries 145

For further information on the JSP directives and attributes refer to the
references at the end of this chapter.

Declarations

Declarations are used when a JSP developer wants to include methods or define
variables on the Servlet class generated by the J2EE Web Container.

Example 4-2 is a sample of a String variable declaration inside a JSP file.

Example 4-2 Sample variable declaration inside a JSP file

<html>
<body>
<%! String myString=new String(“My String”);%>
</body>
</htm1>

Example 4-3 shows the declaration of a method inside a JSP file.

Example 4-3 Sample method declaration inside a JSP file

<html>
<body>
<%! public getMyString() { return myString;)%>
</body>
</html>

Expressions

Expressions are used to display dynamic Java content on the Web browser.
These are some of the most commonly used elements in JSP files. The
expression tags are replaced by the evaluation of the Java code; this evaluation
is performed at runtime.

The syntax of an expression is:

<%= expression%>

The expression evaluated must successfully return a String class or a class that
can be casted into a String.

Example 4-4 is a sample of a JSP expression.

Example 4-4 Sample JSP expression

<html>
<body>
<%=this.getMyString()%>

146 Portalizing Domino Applications for WebSphere Portal

</body>
</html>

Scriptlets

Scriptlets are general purpose Java tags within which a developer can embed
normal Java code.

The syntax of the scriptlets is:

<% javaCode %>
Example 4-5 is an example of a JSP Scriptlet.

Example 4-5 Sample JSP scriptlet

<htm1>
<body>
<% out.printin(“Hello World !!?); %>
</body>
</html>

Implicit objects in JSP files

Working with JSP files, you will be able to reference—without declaring—several
Java objects. These objects have exactly the same characteristics as if they
where being called from a Servlet component. Table 4-2 outlines the most
important objects.

Table 4-2 Some important implicit objects in JSP files

Object name | Description

session This object represents the javax.servlet.http.HttpSession object and is
most commonly used to store data that’s related to the user, through
the user interaction with the application. One of the most important
uses of this object is to replace the stateless nature of HTTP by
providing a temporary stateful storage of the information the user
generates though his interaction with the Web application.

request This object represents the javax.servlet.http.HttpServietRequest
interface and is primarily used to allow the user to access the request
parameters through the getParameter(String) method. Also this
object is used frequently to pass attributes from one request to the
target JSP file. It also exposes through different methods the
requesting user and device information that is trying to access the
JSP file.

Chapter 4. Using custom Domino JSP tag libraries 147

148

Object name | Description

response This object represents the javax.servlet.http.HttpServietResponse
and is responsible for passing information back to the requesting
client. It is commonly used to write information to the output stream,
although the out object takes care of that.

out This object represents a JspWriter which is derived from the

java.io.Writer and provides the client the ability to stream information
back to the requesting client. One of the most common methods used
by this object is the out.printin(String) method, which prints the String

parameter directly on the output generated by the JSP file.

For further information on JSP implicit objects, check the references at the end of
this chapter.

Providing a stateful interaction through a stateless protocol
The nature of the HTTP protocol is stateless, meaning it basically accepts a
request through a TCP/IP port and responds with a bytestream of characters that
are rendered on the Web browser. To compensate for this shortcoming, the J2EE
technology includes objects that can be used by our JSPs which are implicit on
their use and solve the stateless characteristics of the HTTP protocol. In the
previous section we discussed an implicit object called session. This object
represents the javax.servlet.HttpSession class; its purpose is to maintain a
temporary storage area that can be used by our applications to keep the context
of who is interacting with our application and with what characteristics this
interaction is taking place.

As shown in Figure 4-4 on page 149, there are two techniques used to enable
this interaction. The first is to maintain a Session ID on a cookie inside the
browser. This cookie contains the ID code that the Web container can use to look
up the session data in which the current user is working. The second approach is
rewriting the URL, which appends the Session ID to the URL to maintain the
session-browser relationship. This approach is not supported by our portal
infrastructure since we could have a session for each portlet.

Portalizing Domino Applications for WebSphere Portal

J2EE Application Server

Session management techniques

- Session id stored in cookies Web Container
- URL rewriting
Cookie . HttpSession

Web Browser HTTP Request

HTTP is slateless
by design

This design compensates
the shortcomings of HTTP
and store the session info-

rmation on the server. HitpSession
Is in charge of managing a temporary

storage area for the user interactions
with the web application.

Figure 4-4 Stateful interactions using Java components

The use of the session object inside our JSPs will enable us to maintain
portlet-specific information through the user interaction with the portal. To
illustrate this, imagine you have a portlet that extracts user information, but then
you change to another WebSphere Portal place or page to interact with other
portlets. When you come back to the original portlet it would be useful to still get
the same information as you had before. This can be accomplished using the
session object.

JSP limitations
The JSP technology has one main limitation that should be taken into account:
the size of the Java bytestream is limited to 64k.

4.3 Software and tools used

As we discuss the examples, we refer to several tools available to developers.
Some of them are:

Lotus Domino Designer 6

WebSphere Studio Application Developer 5
WebSphere Portal Toolkit for WebSphere Studio
Lotus Domino Toolkit for WebSphere Studio

vyvyyy

Chapter 4. Using custom Domino JSP tag libraries 149

Since we discussed the Lotus Domino Designer in previous chapters, we will
focus on reviewing the other tools available in this chapter.

4.3.1 WebSphere Studio Application Developer 5

WebSphere Studio Application Developer is one of the WebSphere Studio family
of products that has been developed based on the Eclipse Workbench.

The Eclipse Workbench is an open source development platform, designed by
IBM and released to the open source community. It is an open, portable,
universal tooling platform that provides frameworks, services and tools for
building tools.

In essence the workbench provides the tool infrastructure. With this infrastructure
in place, the tool builders are able to focus on the actual building of their tools.
The workbench has been designed for maximum flexibility to support the
development of tools for new technologies that may emerge in the future.

Development tools written for the workbench should support a role-based
development model, in which the outcomes of the developers’ work will be
consistent. The developers should not have to be concerned with how different
individual tools may be treating their files.

The WebSphere Studio family of products is an integrated platform (IDE) for
developing, testing, debugging, and deploying J2EE applications. It provides
support for each phase of the application development life cycle.
WebSphere Studio Application Developer 5 includes the following tools:

» Web development tools

» Jakarta Struts development tools

» Enterprise Java Beans development tools

» Relational database tools

» XML tools

» Java development tools

» Web services development tools

» Team collaboration tools

» Integrated debugger for JSPs, Servlets, EJBs and Java code

» Server tools for testing and development

» Performance profiling tools

» Plug-in development tools

150 Portalizing Domino Applications for WebSphere Portal

» Integration with automated build tools like ANT
» Unit test tools like JUnit

The WebSphere Studio Application Developer has many features to assist the
developer; some are illustrated in Figure 4-5. Within the framework there are
development perspectives that let you invoke the tools without losing the
reference to the working object. In addition, the framework is extendable,
allowing you to plug in other tools like WebSphere Portal Toolkit for WebSphere
Studio and Lotus Domino Toolkit for WebSphere Studio.

Non-IBM Partner Products and Developer Specific Plug-ins
Offerings & Rational, Merant, Serena, Instantiations....
Extensions User Experience, Mobile Internet...
[
—— WebSphere ——
IBM
Sﬁ;;alj;:fd Portal Business VoiceXML | Commerce | .. Many more to Come
Extensions Server Integrator Server Sevgr
Plugin Plugin Plugin Plugin
WS Studio Enterprise Developer Versata
IBM WS Studio Appl. Dev. Integration Edition Logic WebSphere
WebSphere Studio Developer
AD Tools . . Business Studio for ="
Portfolio | WS Studio Application Developer Logic iSeries
i U Automation
i WS Studio Site Developer
WebSphere Studio Workbench
Common Services , Common Framework
Open Tools Resource management Team programming model Widget toolkit Editing Framework
glatfgrm Project model Debugging Ul Framework Builders, Markers, Help
ervices

Extensibility framework

Infrastructure, Software Configuration Management, Windows/Linux

Figure 4-5 WebSphere Studio internal structure

As the figure shows, the WebSphere Studio tool is constructed of building blocks.
The cornerstone of the structure is the Eclipse Framework, and on top of it IBM
WebSphere Studio Workbench is the basic framework on which several flavors of
the WebSphere Studio products are supported.

The first item in the WebSphere Studio portfolio is WebSphere Studio Site
Developer, which provides support for creating Web applications and Web

Chapter 4. Using custom Domino JSP tag libraries 151

services projects and utilizes the broad number of services provided by the
WebSphere Studio Workbench.

Next is WebSphere Studio Application Developer, which gives the developer a
full J2EE environment for developing enterprise applications.

On top of it, the WebSphere Studio Application Developer Integration Edition
delivers a full environment for developing JCA adapters and enterprise services
provided by the WebSphere Application Server Enterprise Edition.

Finally, the top of the line tool is the WebSphere Studio Enterprise Developer,
which gives the traditional Cobol, CICS® developer an environment for
developing legacy applications, along with the new EGL language, which helps
develop enterprise applications on a 4GL environment.

The WebSphere Studio family comes with excellent tools to visually build JSP
interfaces and construct visually the logic of Web applications using the Jakarta
Struts framework. The Struts framework and how it fits in the Portal environment
is discussed in the next chapter.

+ (WEB-INF
T} Testlsp.jsp

&b web - IBM WebSphere Studio Application Dexeloper =10] x|
File Edit Toolbar Insert J5P Format Table Frame Page Tools Mavigste Search Project Profile Run Window Help
|F-lE8a || &-|=m]a-] ¢ ||B 7uAsfFETETE AL
EE=gm -~ 5 G Al s]n-
12 %5 J2EE Navigator -] Welcome l{-"/TE?tJSP,]sp Xl & Web Browser
EG. il Test1SP.jsp - TestISP.jsp Hd = Sfandard ~
) =-TaF TestProject __g

l.ﬂ \wieb Deployment Descrip
2 B Java Source Websphal‘e SOflwal’e

= Z# web Content
G5 META-INF sorsars o0 ’ oot
G5 theme “ lcome To WebSphere Studio Application Developer
srtosn

[websphere_logo.gif
_L.___,_..Jﬂ Visual development environment

JZEE Navig... |Server Con...

Development perspectives

52 Outline o
[& DOCTYREHTML
B HTML
[+ HEAD
=) BODY
[SR=13 i T
® M6 [DET | SOUTeE | FTeview
= Hf' ONT ET.a:‘-I!sIIIII:ms) ¥ _%, - X
5 | 1 | Description | Resource [InFolder [Location
Outline |Wehb St... ‘Ath’thtﬂ *I | Tasks ‘Llnks |Th4_lnhna\l ‘Sty\es ‘Cdnrs ‘Sarvers Consale

‘U items: 0 tasks, O errors, 0 warnings, Semfos

Extended development framework

Figure 4-6 Snapshot of WebSphere Studio Application Developer

Portalizing Domino Applications for WebSphere Portal

For more information on WebSphere Studio Application Developer 5 refer to the
references at the end of this chapter.

4.3.2 WebSphere Portal Toolkit for WebSphere Studio 4.2.5

The WebSphere Portal Toolkit is designed to help you develop portlet
applications for WebSphere Portal Version 4.2 and later versions. Everyplace®
Toolkit is designed to help you develop mobile e-business applications for
WebSphere Everyplace Access Version 4.2 and later versions, in addition to
aiding portlet application development. Portal Toolkit or Everyplace Toolkit
provides the following tools for use in developing your portlet applications:

» Portlet project

» Portlet application examples

» Portlet perspective

» New portlet application wizard

» portlet.xml editor

» Portal configuration

» Exporting to the Web Archive (WAR) file

Chapter 4. Using custom Domino JSP tag libraries 153

4p Portlet - IBM WebSphere Studio Applicati (=]
File Edit MNavigate Search Project Rum Wwindow Help

jr-gaa|sa|a-0]A-|o]¢]|%-

E { %5/ J2EE Mavigator g Pnrtlect :

?? ; Define the Portlet Project

@ Create a sample portlet application project. @ bh webSphers =

Project name: ICUStUmErJSPPUI’UEtS

V¥ Use default g. Mavigatar)

et project [acation: IC:lIEM\REdhnnancL|mentatinnWSnDWnrkspacelCustnme*"'"" GE... |

es and move
arking with
Enterprise application praject: o Mew Existing
JZEE Mavigator | Serve MNew project namme: I CustumerEAR|
o] . You can
@ Gallery ¥ Use default
ﬂ Image Mews project location: IC:\IBM\.RadbookDocumentatmn\ tkspac SErEAR e | -
- webart .
il Multimedi B Perspective As, ..,
il Multimedia
i : | Cust 1SPPortlet up For
i Sé Shyle Shest Context root: I ustamet. ortlets -
he =
| B
w v x

= Back | MNext = | Finish I Cancel J | Location

Gallery JLibrary | Sutling Tasks |Links | Thurmbnail | Styles | Calors | Servers

Figure 4-7 WebSphere Portal Toolkit for WebSphere Studio

For the latest information on the toolkit, and for downloadable upgrades and
fixes, check the following Web site:
http://www.ibm.com/websphere/portal/toolkit

4.3.3 Lotus Domino Toolkit for WebSphere Studio 1.0

The Lotus Domino Toolkit for WebSphere Studio is a plug-in for WebSphere
Studio 5. Currently the Lotus Domino Toolkit for WebSphere Studio ships with
Lotus Domino Designer 6.0.2. It allows you to add Domino 6 custom tags to Java
server pages, providing a simple way to blend Domino and J2EE applications.
JSP tags are XML tags embedded in a JSP providing data access, data input,
and process control. The tags abstract the Domino objects for Java (Domino
Java API) and provide quick development turnaround for building J2EE
applications that use Domino data and services.

The toolkit provides a dedicated pane in WebSphere Studio where you open the
Domino database you wish to work with. The pane displays the views, columns,
forms, fields, and Domino server agents in the database, and provides two quick
ways of putting Domino tags into your page. You can:

154 Portalizing Domino Applications for WebSphere Portal

http://www.ibm.com/websphere/portal/toolkit

» Right-click an item and choose Add to Web Page from the Context menu
» Drag and drop an item directly into the page
Either of these operations will paste a tag representation of the item into the

editor at the current cursor position. Of course, if you prefer, you can add the tags
manually in the editor.

@- Web - IBM WebSphere Studio Application Developer

o =10l x|
File Edit Toolar Insert 15P Format Table Frame Page Tools Mavigate Search Project Profile Run Window Help
J 5 - 1 [|@e [K&[A- 6 M-[®] 2[%-
ﬁ = @ v x @*DuminUSampIE.jsp Xl
L i StDmEI’ﬂSF(dﬁdmi”@WSdEmﬂ) DominoSample. jsp - DominoSample. jsp * EQDY Standard +
Farms
B oEw
[ZZ] views -
[&= custamer ContactsiBy Custame Customer View
= - Customer Contacks\By Name | C
== customerPortletIntegrated -')'
- Customers\By Account Owner | €] 7
- CustomersiBy Customer Numbe
=[5 customerContactsPortletintegr.
- {al er [ame |
EI Customer Contacks\By Custanme
[0 Server Agents
4| | 3
JZEE Mavigator ‘Servar Configuration lDDITIiI'ID
B Outline x I
ER=TT =]
| Bl td
| Bt
B+ bd
=+ kd
4 Fant:
=+ dominoviewloop Design ISnurce | Preview
=< b - E =
O id + Tasks (0items) g R
4 bd | (@ 1 ! | Description Resource | In Folder | Location
CR=]
L bd |6
=
KT) |
Library | Outline JWeb St... Attributes 4 * Iﬁasks Links: |Thumbnail ‘Stylas |Cnlors | Servers

Figure 4-8 Lotus Domino Toolkit for WebSphere Studio 1.0

How it fits in to the Lotus technology strategy

To understand the Lotus technology strategy, and how it applies to Domino
applications and their development, envision a multi-lane superhighway with a
Lotus Domino lane, a WebSphere lane, and a next generation lane. The Lotus
Domino lane continues as far as the eye can see and runs parallel to the
WebSphere lane, which also continues as far as the eye can see. The next
generation lane merges with the other two lanes at a point in the future.

In the Lotus Domino lane, the Domino collaborative application development and
deployment environment enables you to develop applications quickly and to take
them off-line, bringing people, processes, and data together to facilitate both

Chapter 4. Using custom Domino JSP tag libraries 155

productivity in e-business and quick decision-making. Lotus will continue the
current Domino application development model and data store (NSF) and in the
future, will enhance it to meet customer and developer requirements. As is the
IBM tradition, Lotus Notes and Domino customers will benefit from
comprehensive support for the foreseeable future. Additionally, Lotus Domino will
increase its support of the Java 2 Platform, Enterprise Edition (J2EE) and
infrastructure standards, such as Java Server Page (JSP) tags, Java APIs, LDAP,
and RDB integration to assist developers interested in working in both the
Domino and WebSphere lanes of the superhighway.

In the WebSphere lane, the J2EE specification is leveraged as the application
development platform. J2EE provides a specific architecture for building,
deploying, and managing applications in multiple tiers, often broken into
presentation, logic, and data. This architecture is designed to provide scalability,
flexibility, and manageability. While J2EE is a rich application development
platform, it has very few features to support collaboration, so it benefits from
having Lotus Domino to provide rich collaborative capabilities. Applications
designed to use the Lotus Domino and WebSphere lanes blend powerful
collaborative features with significant transactional scalability to deliver
end-to-end e-business solutions.

4.4 Integration techniques

In this section we explain how to implement the four portlets that comprise the
Sales Workplace described in 2.3, “Case study: A simple sales tracking
application” on page 47.

We show you how we constructed four portlets from scratch using the Portal
Toolkit wizards. These portlets will include JSP pages where we will place the
Domino custom JSP tags that allow us to access the Lotus Domino applications.
Finally, when all four portlets are working on their own, we show you how we
added some extended functionality, first people awareness to be able to
collaborate with the people involved on the documents, and next to integrate our
portlet at the portal level through Click to Action.

The structure of the portlet page is shown in Figure 4-9.

156 Portalizing Domino Applications for WebSphere Portal

aIBM WebSphere Portal - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help

GBack - = - (D 7t | Qzearch [GFavorkes reda (H | B-a= >

Links RedbuukIBM WebSphere Portal aLu:al IEM WebSphere Portal @Dummu Tag Lib

ner List portlet

Customer List

Select one of the customers to view its details.

Address @ hittp:ffwsdema. ibm. com/wpsjmyportalj. cmd/adf. ar/ 1079970044301/ ce/1001/.pj501 #1001

Customer Details

mila! | Edit Layout | N

‘ Customer Name ‘IBM

Iz
| Customer Name |Customer Numberl Account Dwner

Number [3

[tem s

||§| B Lopez, Camilo

‘Custumer Address ‘6 Cambridge Center, Cambridge

||Tl1 KB Enterprises ||E 2 ||E| s Peterson, Michael | |

| Account Duner [(432)

& Tech Enterprises E‘Custumer Contacts

Date Created |5/3/03

‘ Comments

‘IBM is the most important IT Company.

’WF Customer Sales Activity

Back I

nEr rtlet
Customer Contacts

| contact Name [Phone Number

[camilo Lopez 123321 \

Customer &

Custome Sals Activities

Date ‘ Activity | Sales Person | Contact |Made Sale?
[saturday, May 10, 2003 4:27:43 FM GMT-05:00 Sales Pitch |8 Lapez, Camilo 8 Camilo Lopez/ibm [ves
|
Back
|
@] pone ’_’_’_ 9 Intemet 4
Figure 4-9 Domino custom JSP tags portlets

Now lets take a closer look at what each of the portlets will do.

» Customer List:

The purpose of this portlet is to display the contents of the view Customer By
Name from the customer.nsf Domino database. Later on, we will enable this
portlet to handle people awareness and click to action functionality. When we
finish the enablement of our portlet it will look like the one displayed in

Figure 4-10.

Chapter 4. Using custom Domino JSP tag libraries 157

Customer List portlet

Customer List

Select one of the customers to view its details,

| Customer Name |[:ustumer Numher| Account Owner

||§| IBM |E§| 3 |E1 H Lopez, Camilo

||El KB Enterprises ||§1 z |@ ® Peterson, Michael

||El Tech Enterprises |E“ A P o ciinson, Mar
Customer Contacts

& YourCo FE

CustoMier Sales Activity

Figure 4-10 Customer List portlet

» Customer Detail

The Customer Detail portlet, when first invoked, will display a form with a
drop-down list containing the customers from the database. After a customer
is selected, the portlet will display the details about the customer. When we
finish the enablement of our portlet it will look like the one displayed in the
Figure 4-11.

Cusomter Details partlet -0

Customer Details

Cusomter Details portlet

Customer Details [Customer Name [IEM Corpaoration
|I3ustumer Number ‘1
[Customer Address (One New Orchard Road

Flease select a customer:

Account Owner ‘l Michael Ticknor {333)
-Select a customer- 'I — = = = -
_’ | Date created [5/8/03
P [comments [IBM is the greatest IT company.

Figure 4-11 Customer Detail portlet

» Customer Contacts

The Customer Contacts portlet behaves similarly to the Customer Detail
portlet. When initially viewed it will display a list of customers, and after a
selection is made the portlet will display all the contacts for the specified
customer. When we finish the enablement of our portlet it will look like the one
displayed in Figure 4-12.

158 Portalizing Domino Applications for WebSphere Portal

Custorner Contacts portlet =0 Customer Contacts portlet -0
Customer Contacts Customer Contacts

Please select a customer: E ~
| Contact Name Phone Number

i-Se!ecta custamer- = ’ l Camilo Lopez |123321
View Contacts | S

Figure 4-12 Customer Contacts portlet

» Customer Sales Activities

The Customer Sales Activities portlet initially displays a list of customers, and
after a customer is selected, a list of past activities will be displayed. This list
of activities is a view that is filtered by customer. When we finish the
enablement of our portlet it will look like the one displayed in Figure 4-13.

Customer Sales Activity portlet
Customer Sales Activity

Please select a customer:

I-Selec:t a customer- 'I

View Sales Activity |

Customner Sales Activity portlet
Customer Sales Activities

Date Activity Sales Person Contact I Made
| Sale?
Saturday, May 10, 2003 \Sales 1 . _ I
4:27:43 PM GMT-05:00 Pitch B Lopez, Camilo @ Camilo Lopez/fibm |Yes

Back

Figure 4-13 Customer Sales Activities portlet

4.5 Integration using Domino custom JSP Tag libraries

We used the Domino custom JSP Tag libraries technology to create the core
portlets that will integrate Domino components. The details of the implementation
are in this section.

Chapter 4. Using custom Domino JSP tag libraries 159

4.5.1 Overview

This integration technique introduces the Portal toolkit’s ability to produce portlet
projects easily and shows how, in conjunction with the Lotus Domino toolkit for
WebSphere Studio, it incorporate the Domino custom JSP tags into standard
JSP pages to extract Domino data.

First we review some basic required concepts on the portlet class and the
abilities of the portlet to do event-based integration. Further information on the
portlet class, APIs, and related objects is discussed on the following chapter.

Domino custom JSP tag libraries

One of the JSP directives mentioned previously was the taglib directive. As we
explained, the JSP tag library is a collection of custom JSP tags that encapsulate
Java code through the simple use of tags. The library defines declarative,
modular functionality that can be reused by any JSP page. The tags are defined
in an XML format file known as the Tag Library Descriptor file or TLD. This
descriptor tells the JSP parser-compiler what Java classes and methods should
be interpreted. Grouping these tags in libraries gives the JSP developer a simple
but powerful tool to incorporate Java code in the application without getting into
the details of Java. These JSP tag libraries can be used extensively on your JSP
pages to include Lotus Domino elements into your J2EE/Portal applications.

This option brings to the developer who is not a Java expert, or who is not
knowledgeable on handling Lotus Domino Java back-end objects, the ability to
enable a Web application to incorporate complex Lotus Domino interactions by
simply adding a custom Domino JSP tag to the JSP. And since the WebSphere
Portal framework is based on a J2EE environment that allows the inclusion of
JSP files, the developer can expose Lotus Domino applications to the portal
infrastructure with the use of custom Domino JSP tags.

Note: As explained in the following section, there are some performance
considerations to take into account when using this option.

There are two Domino JSP tag libraries. Both comply with the standard
specifications of JSP 1.1 and Java Servlet 2.2 developed by Sun Microsystems,
which are supported by the WebSphere Portal infrastructure. The Lotus Domino
tag libraries are:

domtags.tid Collaboration tags for accessing standard, back-end objects in
the Domino data repository

domutil.tid Utility tags for performing tasks that are common to all J2EE
Web containers

160 Portalizing Domino Applications for WebSphere Portal

Types of Domino JSP tags
The Domino JSP tags can be grouped into four types:

» Data access tags

» Data input tags

» Process control tags

» Ultility tags

In this section we describe some useful Domino JSP tags. They are the most
pertinent for developing portlets that extract information from Lotus Domino
applications, but they are just a subset of all the tags available. Refer to the Lotus
Domino Designer on-line help for comprehensive information about all the
available tags.

Data access tags

The data access tags allow the user to gain access to several of the most
important objects in the Lotus Domino object hierarchy. Table 4-3 gives a brief
overview of the tags that were useful for our portalizing project.

Table 4-3 Data access tags

Tag name

Description

session

Defines the environment that the core collaboration tags run in. Use the
session tag when multiple core tags are included on the same JavaServer
page. This initializes and tears down the Domino session one time only,
providing improved performance. This tag is not required if there is only
one core tag on the page; the user and password attributes of the core tag
implement the session for you. However, if you are using a CORBA
session, this tag must be used, since the host attribute cannot be specified
on the top-level tags. If one or more of the core tags reside in the same
database, you can further improve the efficiency of the page by using the
db tag instead of this tag to wrap them.

Chapter 4. Using custom Domino JSP tag libraries 161

162

Tag name

Description

database

Provides a database context for all enclosed tags. If you are including
several core tags that are running off the same database in a page, you
can wrap them in this tag to increase scalability. This tag is not required if
there is only one core tag on the page; the dbserver and dbname
attributes of that core tag implement the db tag for you. Do not use this tag
to wrap two core tags that reside in different databases; use the session
tag instead.

To loop over all the documents in a database, use the docloop tag nested
inside the db tag.

If you do not supply values for the user and password attributes, the
database identifies the user as an Anonymous user. The database's ACL
must have an “Anonymous” entry with at least Reader level privileges to
the database for the tag to access the database successfully.

document

Enables an author to create or edit a document. The body of this tag is
always evaluated. You can use the item, setitem, and formula tags within
the body of this tag. To display the document, use the item and formula
tags within the body. To edit the document, use the setitem tag within the
body. If you set the value of an item using the setitem tag within the body
of this tag, you must save your changes also within the body of this tag.
You can save your changes by either:

- Specifying an ID attribute, and calling <id>.save() in a scriptlet
- Using the savenow tag

view

Displays the summary information of a subset of documents in a
database. You can use the key and ftsearch attributes to further qualify the
subset.

ftsearch

Performs a full text search of a database. The result is a list of documents
that fit the search criteria. Use the docloop or page tags to sequence over
the resulting documents and the item or formula tags to display the
summary data.

item

In the context of a form, document, or docloop tag, displays the value of
an item in the current document. You can set the tag's readonly format
using the format attribute. The body of the item tag is not evaluated. To
provide update access to an item, use the input tag in the context of a form
tag.

viewitem

Displays the value of an item in the current row of a view. The body of this
tag is not evaluated.

unid

Displays the unique ID of the current document. The body of this tag is not
evaluated.

Portalizing Domino Applications for WebSphere Portal

Tag name | Description

viewloop lterates over the results of a view, evaluating the body once per ViewEntry
object in the result. If no results are returned, displays nothing. To create
custom text to display when no objects are returned, use the novalues tag.
You can access the items of an object using the viewitem tag.

docloop lterates through the items returned by a view, ftsearch, db, responses, or

page tag as documents. The body of this command is output once per
iteration, which means once per document in the result set. When a result
contains no objects, the body of this tag is not evaluated. Use the novalues
tag to create custom text to display when a result contains no objects. Use
the item tag to access the items in a document.

Note: If you use this tag within the context of the view tag, there will be a
performance hit. The viewloop tag is a good alternative to use for views; it
evaluates the body once per entry in the view, instead of loading a
document for each entry in the view.

Data input tags

Data input tags allow the input of information from a JSP file to the Lotus Domino
application. There are constraints on the use of these tags because of
restrictions of the WebSphere Portal on the management of URIs and JavaScript
inside a portlet, so they are not covered in detail in this chapter. Let’s take a look
at why data input tags won’t instantly work with our portlet infrastructure like the
other tags do.

When you create a JSP and insert the Data Input tags, for example
<Domino:form>, <Domino:input> and <Domino:savedoc> tags, you will see a lot
of JavaScript code generated on the HTML page that will basically generate
action URLSs that process the input form. Example 4-6 shows some JavaScript
code generated by the Data Input tags.

Example 4-6 JavaScript code generated by Data Input tags

function selfNavigate() {
var actionURL = location.pathname;
var argName;
var first = true;
for (argName in DominoArgs) {
var argValue = DominoArgs[argName];
if (argValue !'= null) {

if (first) {

actionURL += '?';
first = false;
} else {
actionURL += '&';
}

Chapter 4. Using custom Domino JSP tag libraries 163

if (typeof argValue == 'object') {

for (index = 0; index < argValue.length; index++) {

if(index > 0)
actionURL += '&';

actionURL += argName + '=' + argValue[index];
} else {
actionURL += argName + '=' + argValue;

}
}
}

if (DominoForm != null) {
DominoForm.action = actionURL;
DominoForm.performSubmit () ;

} else {

location.replace(actionURL);

}

This code appends to the portal URL the command and arguments. That is not
the usual way information will be passed on the portal. Also, if there are two
portlets accessing these data input tags, then you would have conflicts. Be
careful when adding data input tags since they can be tricky on a portlet
infrastructure. We did not use any of these tags in our examples.

Process control tags

These tags allow the JSP to query the state or properties of the Domino
application, and based on the result, modify the presentation of our portlet.

Table 4-4 Process control tags

Tag hame

Description

ifcategoryentry

Conditional tag. In the context of a viewloop tag, if the current
ViewEntry object is a category, meaning it displays in the category
column of a hierarchical or categorized view, the body of this tag is
displayed. This tag can be used to edit the indentation or display
properties of category entries to distinguish them from the other
entry types, represented by the ifdocumententry, iftotalentry, and
ifconflictentry tags.

ifdocumententry

Conditional tag. In the context of a viewloop tag, if the current
ViewEntry object represents a document in a hierarchical or
categorized view, the body of this tag displays.

164 Portalizing Domino Applications for WebSphere Portal

Tag name

Description

ifdocauthor

Conditional tag. Restricts generation of the JSP page to only those
users who have author access to the current document.

Users have author access to a document if they have:
- Editor, designer, or manager access to a database
- Author access to the database and their name is contained in an
authors field on the form (or authors item in the document), if the
form or document has one.

Note: If the user attempting to access the JSP page does not have
at least reader access to the database (if they have only depositor

access, for instance), an exception is thrown. To avoid this, if a user
might have depositor level access, wrap the document or form tag

with an ifreader tag.

nodocument

Displays an alternate message if there is no document associated
with the unid attribute being passed to the form tag. If the requested
document does not exist, displays the body of this tag. To localize

the text that displays, use the msg tag in the tag body.

runagent

Runs a specified back-end agent on the server. You can specify
agents that run on the server, such as agents that send mail or
create a folder. You cannot specify an agent that displays
information in the browser to the user. For example, you cannot run
an agent that contains a LotusScript print statement using this tag.
If you want to capture data using this tag to run an agent, you must
write the agent's results to a document and access the document to
recover the data.

To use this tag to run an agent, set up the basics tab of the Agent
Properties box for the agent as follows:

1. In the Trigger section, select the On event radio button.

2. Choose Action menu selection in the drop-down box.

3. In the Target drop-down box, choose None.

ifdbrole

Conditional tag. In the context of a db tag, restricts generation of the
JSP page to only those users included in a custom ACL role. To
allow for programmatic determination of access control, the
standard access level names (author, editor, and so forth) can be
used as role names.

Chapter 4. Using custom Domino JSP tag libraries 165

166

Utility tags

The utility tags allow you to control the flow of the presentation logic on the
portlet based on Domino conditions and expressions.

Table 4-5 Utility tags

Tag name

Description

if

The body of this tag conditionally executes depending on a specified
condition. One condition can be specified per tag and can be passed in
by including a condition tag in the body of the if tag or as one of the if tag
attributes.

Note: Only one condition can be specified; if more than one is specified,
an exception is thrown.

Note: If you do include a condition tag in the body of this tag, the body of
this tag must always be evaluated. If the condition fails, the evaluated
body is discarded. You should not include code that has side-effects in
an if tag that is being used in conjunction with a condition tag.

else

Used after an if or elseif tag; this tag executes only if none of the
preceding if or elseif tags were executed.

elseif

Conditionally executes its body if the corresponding if tag did not execute
and the condition for the elseif tag is true.

Note: If you include a condition tag in the body of this tag, the body of
this tag must always be evaluated. If the condition fails, the evaluated
body is discarded. You should not include code with side-effects in this
tag if it is being used in conjunction with a condition tag.

condition

Specifies the condition of an if or elseif tag.

The body of the tag must be a string that represents a Boolean value, for
example: true, false, 0, 1, yes, or no. This tag has no attributes.

Note: If this tag is used in the context of the if tag, the body of the if tag
must always be evaluated. If the condition fails, the evaluated body is
discarded. You should not include code with side-effects in an if or elseif
tag being used in conjunction with a condition tag.

switch

Enables the JSP author to incorporate control flow. Each case or default
tag contained in the body of this tag is processed in turn and the first
match that is found is evaluated.

You cannot provide more than one value for this tag. If you supply a value
attribute, do not include a switchvalue tag in the tag body.

case

Provides processing instructions to a switch tag when a match is made.
If the case tag's value attribute matches the switch tag's value attribute,
the body of the case tag is evaluated.

Portalizing Domino Applications for WebSphere Portal

Tag name Description

format Formats a value. You can pass in a value to format or format the tag

body. You can also provide an ID name to save the formatted body or
value as a variable.

browsertag | Identifies the capabilities associated with the current (or specified)

browser. Either returns the value of the capability or conditionally
evaluates the body of the tag based on whether or not the browser
supports the passed capability. For capability variables consult the Lotus
Domino 6 Designer documentation.

Custom Domino JSP tag issues

There are a number of issues related to the incorporation of the JSP tag libraries
from Lotus Domino into WebSphere Portal and WebSphere Application Server.

>

In the WebSphere Application Server, including a form into a page using a
<jsp:include> tag renders the validatehref attribute on the form useless. This
attribute can be defined by the following tags:

— form

— deletedoc

— docnavimg
— savedoc

— saveclosedoc

4.5.2 Considerations

There are a few issues to consider when using Lotus Domino JSP tag libraries to
expose Lotus Domino applications to the WebSphere Portal. They are:

>

Custom Domino JSP tags aren’t supported on WebSphere Portal, so you
should perform extensive testing on the functionality required.

On each request that the JSP executes with embedded custom Domino JSP
tag libraries to a remote server, a different session connection through DIIOP
with the Lotus Domino server is created, which can impose a significant
overhead. This is especially important when the application will be accessed
by a large number of users.

The experience we had in the lab is that it takes an average of one second to
display a portlet with Domino JSP tags. Considering a Portal page with four
embedded portlets, it would take approximately four seconds to render, and
that is for only one user.

In the next chapter we review a sample Java implementation for handling
Domino sessions to make our Lotus Domino applications perform well under
heavy load, using a session management pool. We show that using the

Chapter 4. Using custom Domino JSP tag libraries 167

session pool will reduce, by more than half, the overhead imposed by the
current implementation of the custom Domino JSP tags. In the next chapter
we also discuss the DIIOP task in the Lotus Domino server.

The exposure of rich text fields on our portlets isn’t straightforward. To
properly address this issue we have to consider two possible scenarios:

— If the rich text was filled from the Lotus Notes client, then we must create a
reverse proxy to receive the HTML produced by the Lotus Domino server
and then include it on the portal, taking care to make any link portal
friendly.

We discuss this scenario further in the next chapter, where we review
some methods of handling rich text fields.

— If the rich text field will be used only from the portal, we recommend
storing the information in a neutral XML format so it can be encoded and
decoded with the use of XSLT stylesheets.

Some data input custom Domino JSP tags aren’t portal friendly since they
insert JavaScript code and URL links or actions that are absolute and not
relative to the WebSphere Portal URI structure.

We have views with just a few documents in our examples; in real
implementations we need pagination on our views. Pagination made with
custom Domino JSP tags also carries URL links that are not portal friendly, so
we have to implement our own Java pagination components. In the next
chapter we explore a JSP-Java Hybrid alternative.

4.5.3 Implementation example

We start the implementation of this technique by creating a portlet project and
creating the four basic portlets that expose the Lotus Domino application using
custom Domino JSP tag libraries.

Building the portiet project with WebSphere Studio

First, we build a portlet application structure fit to handle the portlets that will
communicate to our Lotus Domino application. To do this we use several of the
tools introduced in previous sections. We performed the following steps to build
the portlet project:

1.
2.
3.

Open WebSphere Studio Application Developer.
Switch to the Portlet perspective

Select File — New — Portlet Application Project. A Create a Portlet Project
dialog is displayed, as shown in Figure 4-14.

168 Portalizing Domino Applications for WebSphere Portal

=§= Portlet - IBM WebSphere Studio Application Developer

: 1o x|
Fil= Edit MNavigate Search Project Run Window Help

&l |lA-1B]lA-]®] 9| -
11

Create a Portlet Project

Define the Portlet Project

Create a sample portlet application project, @

Project name: | CustomerJSPPortlet

[v Use default

[evw project location: IC:\IEM\RedbooKDDcumentat\onWSADWorkspace\CustumerJSPPar Browse..

Enterprise application project: i pew O Existing

Mew project name: I CustomerEAR

JZEE Mavigator | Server F7 Use defaut

Y Mewproject location: | C:\IBM\RedbookDocumentation'SaDW orkspaceiCustomerEAR. Browse. ..
{ﬁ} Gallery I _I
Image Context roat: ICustomerJSPPort\eH

- webart

il Multimedia

82 style Sheet

< Back Mext > | Finish I Cancel

%7 Tasks (0 items)
| C| ! | Drescription

¥ aP v x
|Locatian |

| Reesource | In Faolder

Gallery]L\brary |Outline Tasks J Links. |Thumbnai\ |Styles |COIors | Servers

Figure 4-14 Creating the Portal project

Name the project CustomerJSPPortlet.

Click Next and select the Basic portlet. The Basic portlet will build all the
structure needed to hold our portlet.

Click Next and create the portlet application with parameters like those shown

in Figure 4-15. Note that the wizard creates an initial portlet. This portlet will
be the Customer List portlet.

Chapter 4. Using custom Domino JSP tag libraries 169

Create a Portlet Project

Basic Portlet Parameters

Enter the properties of the basic portlet, @

Portlet application name: I Custarmet Infarmation application

Portlet name: | Custarnat List portlet

Concrete portlet application name: I Custarmet Infarmation application

Concrete portlet name: I Custarnat List portlet

Default locale: I &n j I English

Concrete portlet title; I Cuskomer List porklet

Portlet class name: I CustomerList]

Markups: ¥ bl [chtrl [l [VoicexML

< Back I fext = | Einish | Cancel

Figure 4-15 Parameters for creating the portlet project

7. Click Finish.
Now let’s inspect what the creation wizard built.

The newly created portlet project appears in the J2EE Navigator view in the left.
Within the project are two important folders: Web Content and Java Source.

In the Web Content folder there is a JSP directory, and inside it there is a JSP
created for every state the portlet can acquire (view.jsp, help.jsp, configure.jsp,
and edit.jsp). Since our portlet will only be accessed in View mode, we remove all
but the view.jsp file, including the HTML folder and its contents that holds the
same JSPs when an HTML consumer client consults the portlet.

Now we take a look at the Java Source folder. It contains a default generated
portlet package. This package contains two Java files: a CustomerList.java
file,which is our portlet; and a CustomerListBean.java file, which is a helper Java
Bean. Since our objective is interacting with Domino directly from our JSP pages,
we remove the CustomerListBean.java file to clean up the package and make it
easier to understand.

170 Portalizing Domino Applications for WebSphere Portal

Several errors are displayed on the tasks view after the removal of the helper
bean. To correct them we open the CustomerList.java file which contains our
Portlet code and perform the following tasks:

» Inside the portlet class are methods referring to each of the portlet states, like
doView(), doHelp, doConfigure(), and doEdit() methods. Since we are
working only with the view state, we remove the doHelp(), doConfigure, and
doEdit() methods from the class.

» Inside the doView() method there is a reference to the helper JavaBean class
we deleted. We erase the code that references the helper Bean, and on the
remaining line, modify it to point to the directory structure that we will create
next. It should look like Example 4-7 after the modifications.

Example 4-7 CustomerList portlet redirection

getPortletConfig().getContext().
include("/jsp/CustomerList/View."+getJspExtension(request), request, response);

» Save the CustomerList.class portlet file.

The file should look like the one illustrated in Figure 4-16.

& Portiet - IBM WebSphere Studio Application Developer A - = =lofx
file Edit Source Refactor Navigate Search Project Run Window Help
|- B8 [|A-BEHEEFC(A-[e] s [%-[BEE §
7 |1 %5 22€E Navigatar > x ||]welcome X
28 || -5 CostomerJ5pPortiet package portlet; |
: e Deployment Descriptor P
|| =2 Java Source .
H - portlet % Customerlist — A sample portlst bssed on Portletidspter
: [CustomerList.java S
i 4@ web Content %
G jsp import java.io. x;
Ble view.jsp
B3 META-INF import org apache.jetspeed. portlet.®:
5 WEB-INF .
: Libraries public class Custonerlist extends Portlstidapter {
5 CustomerJ5FPortil£AR public void init(PortletConfig portletConfig) throws UnavailsbleException {
super.init{portletConfig):
public vwoid doView(PortletRequest request. PortletResponse response) throws PortletEzmception. ICEzception {
J2EE Navigator | Server Configuration s Invoke the JSP to render
= P — getPortletConfig() . getContext() . include(" isprCustomerlist-Viev. "+getJspExtension(request). request, response):
{51} Gallery X +
¥ Image
@ webart private String getJspExtension(PortletRequest request) {
i Mukimedia # Return "jsv’ for Voice JSP. otherwise return "jsp’
82 Sty Shest return requsst.getClient() . getMarkupNans() squals(*w=nl") ? "jsv" : "jsp":
= +
I
i} »
| Tasks (1 item) i v x
|_[<[t [pescription [Resource [InFolder [Location [
|| & Ercken Link - portlet CustomerListBean View jsp Customer J5PPartietfWeb C... line 3
)
Gallry |Lbrary | Outine | [Tasks ks | Thumbral Styles | colors Servers
Writable Insert 33:1

Figure 4-16 Editing the CustomerList.class portlet

Chapter 4. Using custom Domino JSP tag libraries 171

» Now let’s go back to the JSP folder inside the Web Content folder. There is a
warning sign beside the View.jsp file, so we open the file and do the following:

— Go to the Source tab.
— Just leave the <%@page contentType="text/html" %> line.

— Since we are going to have several portlets in our Web application, we
create under the JSP directory the structure to hold our 4 portlets. This is
done by adding the /jsp/CustomerDetails, /jsp/CustomerDetails,
/jsp/CustomerContacts and /jsp/CustomerSalesActivity folders, like the
ones displayed in the Figure 4-17 on page 172. Then we move the
/isp/View.jsp file to the CustomerList folder.

tﬁ: Portlet - IBM WebSphere Studio Applicatio

File Edit Mavigate Search Project Run i

1B R

Wweb Deployment Descriptar
-2 Java Source
E-H3 portlet

e @ Cuskomerlist. java
I:I@ ‘Web Content

qB isp

{= CuskomerDetails
{= CuskorerLisk
3}9 View. jsp
: (2= CustomerSaleshctivity
= META-INF
—I-{= WEB-INF

o [H] ibm-web-esxt.xmi

i'fj portlet, xml
8] web.xml
- ffy Libraries

JZEE Mavigator |Server Configuration

Figure 4-17 JSP directory structure

This completes the creation of the skeleton for our portlets. Next, we are going to
add the Domino capabilities that are included in the Lotus Domino Toolkit for
WebSphere Studio.

172 Portalizing Domino Applications for WebSphere Portal

Adding Lotus Domino JSP tags to our portlets

To enable our project to include the JSP tag libraries, we performed the following
steps:

1. Right-click the CustomerJSPPortlet project and select Properties.

2. In the Properties window, select the Web option; in the Available Web Project
features field, select Include Domino Custom Tags Library, as shown in

Figure 4-18.
&P Properties for CustomerJSPPortlet x|
- Infa Web
- BeanInfo Path
- Diewice Emulator Preference ‘Web Project Type: JZEE Web Project
-~ External Tools Bulders Conkesxt Rook: I JCustomerJSPPartlet
- Jawa Build Path N
- Jawador Location
- Java JAR Dependencies 12EE Level: IF__El
- J5P Fragrenk
- Links alidation/Refackoring Description:
-~ Project References J2EE Level 1.2 includes a Servlet Specification level of 2.2 and & 5P ;l
- Server Preference Specification level of 1.1, Features such as Servlet Filbers and Life
- Struts Cvcle Event Listeners cannot be be used if this level is chosen.
- Applications developed For this 12EE level 1.2 bypically target & Was
- Validakion
VErsian 4.x server,
- \eh LI
- \web Content Settings
- \web Library Projects —
Available Web Project Features: Description:
[Add struts suppart Seleck this Feature to have -
[create a default .cvsignore il dec-lmgo Custom Tags library
[create a default €55 file itz i §aly eyEet
Include Comino Cuskormn Tags Library
Oinclude Tag Libraries For accessing J¢
Inchude Tag Libraries For database ac ™
1 L4 LI
Restare Defaulks | Apply |
[6]4 I Cancel |

Figure 4-18 Including Domino custom JSP tags on the Web project

3. Click the Apply button and then OK.

New files were added to our Web project: two Domino custom tag libraries on
the WEB-INF directory, and three JAR files on the WEB-INF/Iib folder. This
result is shown in Figure 4-19.

Chapter 4. Using custom Domino JSP tag libraries 173

=-Z= \WEB-INF
i3 classes
2= lb
domtags. jar
MCS0. jar

i e [B] Motes.jar
-] domtags.tid

co [domutil kid
“o[H] ibm-web-bnd. i
i [ihmemsh-sek i

Figure 4-19 Inserting Domino custom tag libraries

4. Switch to the Web perspective.

5. Select the Domino view. If you don’t see the Domino view, you don’t have the
Lotus Domino Toolkit for WebSphere Studio installed.

6. Right-click the white canvas and select New Database connection.

Web - IBM WebSphere Studio Application Developer

File Edit Toolbar Insert JSP Format FPage Tools Mavigate Search
: zE |
|- R & &-||&]]8-]

&5 Doming

L -

ﬁ}' Mevw database conneckion

el | B

J2EE Mavigator |Server Configuratian |Domino JNavigator

Figure 4-20 Connecting to the Domino database

7. When prompted for connectivity information, fill in the appropriate values for
the Domino server and point to the customer.nsf database you are using in
your project. Click Finish. You will be prompted for a password. Enter it and
click OK.

174 Portalizing Domino Applications for WebSphere Portal

tﬁ: Web - IBM WebSphere Studio Application Developer

File Edit Mavigate Search Project Profile Run window Help

|f-g8a||G-||S|cmBa26|B suaasfFs

Jin]
i
|||||
i)
il
)
iR

ﬁ m';' Crarning
i
=
@ Domino Database Connection
Leave blank user name for anonymous connection
Inkermet Mame of Doming Server: I itsotest-dom
Lser; I clopez
Path I appsfcustomer . nsk
Location I clopez@itsotest-dom/apps/customer . nsf
Creating conneckion. ..
= il x
&3 Password required. x| s I B
Password required
User I clopez
Password ||
JZEE Mavi
2=/ Outlir Ok I Cancel | =
An outling T T SVATSOE.

Figure 4-21 Connecting to Domino databases through Domino toolkit

When the connection is complete, a list of all the forms and views that are on
the database is displayed, as illustrated in Figure 4-22 on page 176. On this
initial portlet you will be including the Customers/By Customer Name view on
your JSP.

Chapter 4. Using custom Domino JSP tag libraries 175

#W‘Eh - I6M WebSphere Studio Application Developer

File Edit Mavigate Search Project Profile Run ‘Window Help
Y -IEB&[[%- [] I
o v X

nsf {clopez@itsotest-dom)

Customer

Customer Conkack

Additional Information

JawvaScripk - Generate URL
4ViewTemplate For CustomerPortletIntegrated
EBlank Page

DisplayYiewCategory

$$viewTemplake for ContacksRSsbyName
Customersiew . X501

R55.R5S

R33.5LS

Customersyiew, $5L.old

Cuskomers, 550

m Customer Name | customerMame
Customer # | customerMumber
B Aocount Owner | ownertlame

m hidden 4 | $1

-5 CustomersiBy Account Owner | CustomersByOwner

[CustomersiBy Customer Number | CustomersByNumber

I:I' Customer Conkacks|By Mame | ContacksByMame

-] Customer Contacts|By Customer MName | ContactsByCustomer
[]- Customer Conkacts|By Customer Mumnber | ContacksByCuskamerriung
[

[

[

]- CustomerPortletIntegrated

v [E CustomerCantactsPortletIntegrated

7 =] ContactsRSSbyMame | ContactsRSShytlame |

-) Server Agents l
|

Figure 4-22 Reviewing the Customer database

8. Change from the Domino view to the J2EE Navigator view and open the
View.jsp file in design mode.

9. Go back to the Domino view and drag the Customers/By Customer Name
view to the View.jsp.

& web - IBM WebSphere Studiaap,

File Edit Toolbar Insert JSP Format Table Frame Page Tools Mavigate Search Project Profile Run

[EREIER] I

m @ - X lf_-?}CustomerForm.jsp |d ‘Web Bro
+] Cuskomer Contacks\By Name | ContacksByMame -

CustomerList. jsp - CustomerList. jsp *
[+ J CustomerPortletIntegrated
CuskomersiBy Account Qwner | CustomersByCwner

ion Developer

Customer List

m Customer # | customerMumber
& Customer Mame | customerMame |

& Account Owner | ownerMameFormat i
Lol R LA _>|_I

|J2EE Mavigataor |Server Configuration lDomino]Navigator

Attributes [EODY] X

Figure 4-23 Adding the Customers/Customer By Name view to View.jsp

176 Portalizing Domino Applications for WebSphere Portal

10.Add the simple label “Customer List” with Heading 3 format.
11.Delete the hidden (fourth) column since this is a control column.

12.0n the JSP file select the top row of the table to be a header row. To do so,
right click the selected row and select Attributes, and in the Attributes view
change from Data to Head like shown in Figure 4-24 on page 177.

t& Web - IBM WebSphere Studio Application Developer

File Edit Toolbar Inmsert 15P Formst Table Frame Page Tools Mavigate Search Project Profile Run ‘Window Help

[&-Bas[E- B4 -+«mmroe(lalrluasgeEzss=pikel]

@ Dromino @ - X ?’/CustnmEanrm.jsp I ‘web Browser
¢ BE| Customer ContactsiBy Mame | ContactsByName | | custamerList. jsp - CustomerList jsp *

5 custamerPortletintegrated
EI Customers|By Account Owner | CustomersByOwner J

=] Custamers|By Customer Number | CustamersByhumbe CuStomer LiSt

Customer # | customerNumber
Customer Name | customerMame

-
m Account Owner | ownerMameFormat =
| | »

JZEE Mavigatar |Servar Canfiguration IDomino J Mavigator

EEEEIE

Attribubes [td] x

Table |Row Cell I

Celltype: (" Header ' Data
Alignment S

Harizonkal: I(Auta) 'l

Vertical: LAuko) i

“width: I i
Figure 4-24 Changing the table to include headers

13.Your new JSP file should look similar to Figure 4-25.

: x|
Wigw, jsp - Untitled

Customer List

Figure 4-25 Initial portlet JSP

14.Two errors are displayed on the tasks view. To resolve them, take a look at the
source code for the JSP.

Change to the source tab and you will notice that there are no JSP Tag library
definitions on the JSP, so add them as well as the WPS library.

Chapter 4. Using custom Domino JSP tag libraries 177

15.Include at the beginning of the JSP the following lines:
<%@ taglib uri="/WEB-INF/domutil.t1d" prefix="util" %>

@ taglib uri="/WEB-INF/domtags.t1d" prefix="Domino" %>

<%@ taglib uri="/WEB-INF/t1d/portlet.t1d" prefix="portletAPI" %>

<portletAPI:init/>

0,
<%

These includes insert the custom Domino libraries so that they can be
referenced inside your code. The last line initializes the portlet tag library;
there isn’'t any need to initialize the Domino libraries.

16.Also notice that in the source code there is a predefined <Domino:view> tag
that will connect to the Domino server, establish a session, and extract the
information required. Modify the user attribute in the tag to *webuser, so that
rather than being hard coded, it is extracted from the single sign-on
information that Domino and WebSphere Portal have. Delete the password
attribute. Also, change the viewname to its alias, since spaces in the view
name sometimes can have problems. It is also a best practice to use an alias
instead of view name, as view names can change. The tag should look
something like:

<Domino:view viewname="CustomersByName" dbserver="CN=itsotest-dom/0=itsopor
tal" dbname="apps/customer.nsf" user="*webuser" host="itsotest-dom">

17.Save the /jsp/CustomerList/View. jsp file.

We have now a working portlet that displays basic information extracted from our
Lotus Domino database.

Tip: The <Domino:view> tag currently has a *webuser as the username, and
no password specified. This option lets the portlet establish the connection to
the Lotus Domino database with the same identity as the one used to log into
the portal. Also notice that when the *webuser is used, no password is
specified.

As a prerequisite to use the same identity, single sign-on (SSO) must be
enabled.

Deploying our initial application
Use the following steps to deploy the application.

1. At the WebSphere Studio Application Developer tool, change to the J2EE
Navigator view.

178 Portalizing Domino Applications for WebSphere Portal

2. Right-click the CustomerJSPPortlet project and select Export. A wizard

3.

comes up. Select the WAR file export and basically export the project to your
hard disk.

Install the portlet into WebSphere Portal
a. Log into the WebSphere Portal with an administrative user, and select the

Portal Administration place.

It should open right away to the Install Portlets window. Select the newly
created .WAR file.

v Lacal install

Install Portlets ™ Next

Portlet Applications
Specify the location of the file,
Manage Portlets

faan Directory:
vieb Clipping
| Browse. .
Manage Web I
Services
web Services & Next

Global Settings

Figure 4-26 Installing the Customer List portlet

Click Next. Once it recognizes your portlet, click Install. When the
installation is finished, a “Portlets successfully installed” message is
displayed.

73 1BM webSphere Portal - Microsoft Internet Explorer =18}

| Ble Bt vew Favortes ook bel

i

Back - DA A Qsearch GFavortes AHstory | By G 1 - 2] H MYWAY - Edit [Booge [+] abavins = are
Links &]5earch the Web with Lycos] IBM Business Transformation &]18M Internal Help &7 16M Standard Saftware Installer
o ss|@ http:,)ps. cam.itso.iom. rkalf_s. 155165/ cmdfadf.arf 1196607218/ ,¢/107/.ce/ 120/ p/107#120 j PG

enter | Portal-Domin

= Lacal install
Install Portlets s Next

Portlet Applications
specify the location of the file,
Manage Partlets
web Clipping Birectory:
Browse..
Manage Web
Services

' Portlets successfully installed.
web Services

- = Next

Figure 4-27 Successful installation of the portlet

4. Grant access to the portlet.

Now that the portlet is installed to the portal, grant access to the users. Go to
the Security/Access Control List in the Portal Administration place. Select the
required users or groups and grant them at least View access. This is
illustrated in Figure 4-28.

Chapter 4. Using custom Domino JSP tag libraries 179

Assign permissions for groups, portists, places, pages, web modules for a group or user
Install Portiets [%] Save | 3] Reset

Portlet Applieations

Select a group or user to assign permissions Q Assign edit to allow users to personalize resources. Assign manage to allow users to edit and delets resources for all users. Add delegate|
Manage Portlets € Selected users and graups allow users to assign aces or others. For additional information on this topic ac e help icon above

web Clipping Getgoups @ wpsadmins permissions for portists whose name contains Customer List portlet.
Manage Web andusers
Services n e

' Special aroups Select Al c o

[l suthenticated users =l Custorner List portiet v v el

S Select the objects for the permissions: select Al clo|c| o m)
partlets -

€ wpsadmins permissions for portlets whoss name contains Customer List partlet.

Enable Tracing

Manage Users € Madified since
Manage Groups yyyy mm dd

Acsess Contral List],

Credential Vault
. [Elsave | [&] reset

Figure 4-28 Granting access to the Customer List portlet

5. Add the portlet to the page.

a. Go to the Work with Pages place and select Edit Page Composition.
Select the place and page where you will install the portlets.

b. Modify the number of columns to two, and in the first column click the Add
Content button. This directs you to a portlet search page.

c. Search by Customer List and your portlet should come up. Select it and
click OK.

d. Finally, click Done. Figure 4-29 on page 180 shows the result of adding the
portlet into a page.

I | Help | Log off

Place: Portal-Cromino Redboolk Page: JSP Domino

.4 Done

& Use the contrals below to build your desired page layout and content

Select number of columns;: Select a skin:

(@] l:l [l:l o l:l Theme default skin 'I
Page layout:
Add content... Add content. .

| Customer List portlet

Done

Figure 4-29 Adding the Customer List portlet to the page

6. Preview the portlet.

180 Portalizing Domino Applications for WebSphere Portal

Log into the portal with a user name that has access to the Lotus Domino
database and select the page where you added the portlet. You should be
able to view the portlet running.

Customer List portlet

Customer List

Customer Name Customer # Acoount Owner

Doz Inc. 002 Gary Somnecns
1B Cerporation 1 Michael Ticknor
Porals-R-Us 2 s Jehn Smith
Wanck's Workd of Wigs 1224557 Chriz Heftzel
WP Experts 0 Gary Someacns

Figure 4-30 Initial portlet with Domino functionality accessed through JSP tags

Figure 4-30 shows an example of a basic view being displayed in a portlet.

The Customer Details portlet

We now describe how to construct the Customer Details portlet. This portlet
initially displays a JSP with a drop-down list of the customers available. After a
customer is selected, it reloads and displays the customer information details.

Customer detail portlet Java code
1. Open the Web Project from the Portlet perspective.

2. Copy the CustomerList.java file and paste it to the same package. When
prompted to rename the file, rename it CustomerDetails. java.

3. Open the CustomerDetails.java file and modify its doView() method to target
the CustomerDetails folder.

4. Replace the doView() method to include the code in Example 4-8.

Example 4-8 Customer Detail portlet doView() method

// We are checking if the uidDoc attribute is on the session, initially it will
// be null but once a customer is selected the uidDoc will be populated.
if(request.getPortletSession().getAttribute("uidDoc") != null){
// Creating a URI for the details button when a customer is selected.
PortletURI detailURI = response.createURI();
// We are creating the details action
DefaultPortletAction detailAction = new DefaultPortletAction("details");
detailURI.addAction(detailAction);
// We are storing the URI in the request objects
request.setAttribute("details", detailURI.toString());
// Now we are creating the return URI for the back button

Chapter 4. Using custom Domino JSP tag libraries 181

182

PortletURI returnURI = response.createReturnURI();

// We are storing the return URI in the request as well

request.setAttribute("CD_back", returnURI.toString());

// We are redirecting to the CustomerDetails.jsp file

getPortletConfig().getContext().include(
"/jsp/CustomerDetails/CustomerDetails."+getJspExtension(request),
request, response);

} else {

// If no customer is selected perform this code.

PortletURI detailURI = response.createURI();

DefaultPortletAction detailAction = new DefaultPortletAction("details");

detailURI.addAction(detailAction);

request.setAttribute("details", detailURI.toString());

// We are redirecting to the View.jsp file

getPortletConfig().getContext().include(
"/jsp/CustomerDetails/View."+getJspExtension(request), request,
response) ;

This code selects whether you want to display the initial selection JSP or the
customer details JSP, based on the uidDoc attribute stored in the session.
Notice that we need a new JSP called CustomerDetail.jsp to display the
customer details; we will do this later. In the code, before including the target
JSP, actions are created. These will respond to users’ interactions through
forms and buttons.

As we saw in the introduction to this integration technique, this portlet will
start with a JSP that displays a drop-down list where the user selects the
customer. When the user clicks the View Details button it will activate an
action called details. If you inspect the code you will find that this action URl is
going to be stored as an attribute on the request object.

The inclusion of both JSP files will help make our portlet work as a standalone
portlet if needed. (In the next section we describe how to enable the click to
action communication between portlets, but for now they will work
independently.)

. For the Customer Details portlet we introduce a new option that is in the

portlet structure, the actions. The actions let the presenting JSP send
information to the portlet class to perform the required business logic. In our
portlet the View.jsp will send a details action to the CustomerDetails portlet
and as a result the portlet will redirect the request to the CustomerDetails.jsp
page, and pass to it the Ul of the document. Figure 4-31 illustrates the
action’s interactions in the Customer Details portlet.

Portalizing Domino Applications for WebSphere Portal

Cusomter Details portlet

Customer Details

Customer Name |IBM Corporation

Customer Number |1 Customer Details portlet

\Customer Address [One New Orchard Road
Account Owner |Michael Ticknor {333) ‘\
| Date Created [5/8/03 .
Comments |IBM is the greatest IT company. dOVIEW()

Fy

actionPerformed()

Cusomter Details portlet - =0 | ¥ Details Action
Customer Details :“
Please select a customer:

-Select a customer- -
View Details

Figure 4-31 Action interaction in the Customer Details portlet

6.

Now we will implement action listening capabilities to our portlet. To do this we
will first implement an interface called ActionListener. The declaration of our
portlet will look something like the following:

public class CustomerDetails extends PortletAdapter implements ActionListener {
Import into the CustomerDetails.java portlet the

org.apache. jetspeed.portiet.event.*; package by adding the following line
at the beginning of the class:

import org.apache.jetspeed.portiet.event.*;

Now that our portlet will listen to requests made through our JSP pages, we
have to implement a new method called ActionPerformed. Add the following
method at the end of your portlet class:

Example 4-9 Action Performed method of the Customer Details

public void actionPerformed(ActionEvent event) throws PortletException{

DefaultPortletAction action=(DefaultPortletAction)event.getAction();
PortletRequest request=event.getRequest();
if(action!=null){
if(action.getName().equals("details")) {
request.getPortletSession().setAttribute(
"uidDoc",request.getParameter("uid"));

Chapter 4. Using custom Domino JSP tag libraries 183

This code basically captures the uid parameter from the request and stores it
as an attribute called uidDoc in the session object.

Tip: Storing information on the Portlet session object will enable the user to
switch between pages and places, and when the user comes back to this page
the portlet will still be displaying the information previously selected.

If you store the information on the Portlet request object, the result of the
portlet will only be available if the user changes pages and later comes back.

Now lets take care of the JSPs. First we copy and modify the existing View.jsp
file, and after that we create the new CustomerDetail.jsp
View.jsp

1. Copy the View.jsp file from the /jsp/CustomerList folder to the
/jsp/CustomerDetails folder.

Open the newly copied View.jsp file in Source mode.
Delete the code inside and including the <Domino:view> tags.
Modify the label from Customer List to Customer Details.

o~ DN

Insert the following code in the JSP file:

Example 4-10 Customer Detail portlet, View.jsp fragment initial contents

<l-- Text to indicate to the user that a customer selection is needed -->
<P>Please select a customer:
<l-- Creating a form with an encoded name for the portal, so if there -->
<!l-- are two forms with the same name, there won’t be any conflicts. -->
<l-- Also notice that the details action is extracted from the request. -->
<form name="<portletAPI:encodeNamespace value='CD_form' />"
action="<%=(String)request.getAttribute("details") %"
method="post">

<SELECT size="1" name="uid">

<!-- Connecting to the Domino server and extracting the view -->

<l-- The *webuser is used to enable single sign on. -->

<Domino:view viewname='CustomersByName'
dbserver='CN=itsotest-dom/0O=itsoportal’
dbname="apps/customer.nsf’
user="'*webuser'
host="itsotest-dom'>

<option value="" selected>-Select a customer-</option>

<!-- Now we are looping through the view creating options for the -->

184 Portalizing Domino Applications for WebSphere Portal

<l-- different customers -->
<Domino:viewloop>
<OPTION value="<Domino:unid/>">
<Domino:viewitem name="Customer Name"/>
</OPTION>
</Domino:viewloop>
</Domino:view>

</SELECT></P>

<!-- Standard submit HTML button -->

<P><INPUT type="submit" name="Details" value="View Details'"></P>
</form>

This code will insert a text message instructing the user to select an available
customer from the list. Followed by a <form> tag that will use the POST
method to submit the information to WebSphere Portal, the action on this form
will trigger the action event details.

Next, a custom JSP tag for a Domino view is placed. This opens a session
with the Lotus Domino server, and a select HTML field will loop using the
<Domino:viewloop>./

Inside the loop we extract two pieces of information: the universal ID of the
customer document using the <Domino:unid/>, and the column information
corresponding to the Customer Name.

CustomerDetails.jsp

1.
2.

Right click the /jsp/CustomerDetails folder and select New — JSP File.

Name the new JSP file CustomerDetails.jsp, and select the checkbox to
specify this JSP is a fragment. Click Next.

3. Click on the Add Tag Library button.
4. Select all three tld libraries displayed. Add prefixes to the three libraries:

Domino to the domtags.tld library, util to the domutil.tld library, and portletAPI
to the portlet.tid, as shown in Figure 4-32. Click OK, then Finish to create the
JSP.

The prefixes are needed so you can associate each tag with a JSP tag library.

Chapter 4. Using custom Domino JSP tag libraries 185

4P select a Tag Library

x|

Select a Tag Library

Select one or mare entries by checking them from the list below, @
Taqg Libraries:

URI Taq Librar Prefix Import... I

[e ThF fdomtags tid i Conlent/WEB-INF/do, .

[H] JWEB-TNF/domutil. Hd wieb ContentWEE-INF/do. .. kil

[H] JWEB-TINFJtid partlet. tid e Cantent'WEB-IMFHd. .. portletAPT

& Show recommended URT choices (one choice for each resource).

€ Shaw all walid URT choices.

Prefix: | darmning

LRI: IWEB-INFfdamtags.tld
Description: Latus Domino tag library
Source: TLD

Location: ‘Web Content/\WEE-INFidomtags.tid

Available Custam Tags:

Tag | Description il

action tag For initiating a server side action

attachmentlist list the: attachments of a document

attachments display the Quickplace control in IE ar Input type = file in Metscape

authors Returns a Formatted list of the authors of the current docurnent

checkbox Implements special input behavior For checkboxes

irfated Returns the Formatted creation date of the current document J _>er

Figure 4-32 Insert Tag Libraries to the new CustomerDetails.jsp file

5. In the Source view, insert the following code beneath the Tag Library

definitions:

Example 4-11 CustomerDetails.jsp fragment initial code

<H3>Customer Details</H3>
<p>

<!-- Connecting to the Domino Server and extracting a document with the UID-->
<Domino:document

dbname="apps/customer.nsf’
dbserver='CN=itsotest-dom/0O=itsoportal’
host="'itsotest-dom'
user="'*webuser'
schema="'Customer'
unid="'<%=(String)request.getSession().getAttribute("uidDoc")%>"'>

<table border="1">

<tr>

<TH>Customer Name</TH>

<!-- Here we are extracting the customerName item from the document-->
<td><Domino:item name="customerName" /></td>
</tr>

<tr>
<TH>Customer Number</TH>

186 Portalizing Domino Applications for WebSphere Portal

<!-- Here we are extracting the customerNumber item from the document-->

<td><Domino:item name="customerNumber" /></td>
</tr>
<TR>
<TH>Customer Address</TH>
<l-- Here we are extracting the customerAddress item from
the document-->
<TD><Domino:item name="customerAddress" /></TD>

</TR>
<tr>
<TH>Account Owner</TH>
<td>
<l-- Here we are extracting the ownerName and ownerNumber-->
<!-- item from the document-->
<Domino:item name="ownerName"/>
(<Domino:item name="ownerNumber" />)
</td>
</tr>
<TR>

<TH>Date Created</TH>

<!-- Here we are extracting the DateCreated item and formating it-->

<TD><Domino:item name="DateCreated" format="DATE=SHORT"/></TD>
</TR>
<tr>
<TH>Comments</TH>
<!-- Here we are extracting the Comments item.
It is a rich text field.-->
<td><Domino:item name="Comments" /></td>
</tr></table>
</Domino:document>
</P>
<p>
<!-- We are inserting a back button with the returnURI
created in the portlet-->
<INPUT type="submit" name="Back" value="Back"
onClick="window.location.href="
<%= (String)request.getAttribute("CD_back")%>'">
</P>

This code opens a connection with the Lotus Domino server and extracts the
document that has the UID corresponding to the uidDoc attribute we stored

on the session object.

To extract the field information from the Domino document, we use the

<Domino:item> tag.
6. Save the file.

Chapter 4. Using custom Domino JSP tag libraries

187

Update the deployment descriptors
. Open the web.xml file located in the /WEB-INF folder.

. Go to the Servlets tab.
. Click the Add button.
. Select the CustomerDetails class.

1
2
3
4
5. Add a URL mapping; set it to /CustomerDetails/*.
6. Save and close the web.xml file.

7. Open the portlet.xml file located in the same folder.

8. Click the Add portlet button.

9. Select the CustomerDetails servlet, which is not used, and click OK.
1

0.Change the display name to Customer Details portlet andits ID to
CustomerDetails.

11.Click the Concrete Portlet Application folder.

12.Click the Add Concrete Portlet button.

13.Click the CustomerDetails portlet, which is not used, and click OK.
14.Change its Display Name and Title to Customer Details portlet.
15.Add a description if needed.

16.Save the portlet.xml file.

Deploy the portlet
1. Export the project from the J2EE Navigator view by right-clicking over the
project and selecting Export.

2. Now we can test the new portlet we have just created. We follow the same
steps as the deployment of the previous portlet, except instead of using the
install wizard we go to the Portlet Applications page and perform an update to
the existing .WAR file.

The resulting portlet will look similar to Figure 4-33.

188 Portalizing Domino Applications for WebSphere Portal

Cusomter Details portlet
Customer Details

Cusomter Details portlet =0

Customer Details -
Customer Name |IBM Corporation

Customer Number |1
Flease select a customer;
Customer Address |One New Orchard Road

-Select a custormer- - Account Owner |Michael Ticknor (333)
ﬁ Date Created 5/8/03
view Details Comments 1BM is the greatest IT cormpany.

Figure 4-33 Customer Detail initial portlet

Customer Contacts portlet

Now we describe how to build the third portlet, which is the Customer Contacts
portlet. This portlet displays an initial page with a drop-down list where the user
selects the customer to query. After a customer is selected, the portlet performs
a full text search on the Contacts By Customer view in the customer.nsf
database. Finally, it displays the result of the search in the portlet. Since the
behavior of this portlet is similar to that of the Customer Detail, we will reuse
some of the functionality already created.

CustomerContacts.java file
1. Copy the CustomerDetails.java portlet class and paste it in the same portlet
package, but with a name of CustomerContacts.java.

2. Open the newly copied CustomerContacts.java file.

3. From the doView() and actionPerformed() methods, since the lookup will be
by customer name, change the attribute from uidDoc to customerNameAttr.

4. Change the name of the action from details to contacts; this will be done in
the doView() and actionPerformed() methods.

5. In the actionPerformed() method, modify the request.getParameter()
parameter from uid to customerName.

6. Look for the returnURI object created and change the name of the URI stored
as an attribute on the request to CC_back.

7. Finally, modify the redirection directory on the doView() methods to point to
the /jsp/CustomerContacts folder and CustomerContacts JSP file.

The doView() and actionPerformed() methods should look like Example 4-12.

Note: Modify just the doView() and actionPerformed() methods; leave the
getdspExtension() unmodified.

Chapter 4. Using custom Domino JSP tag libraries 189

Example 4-12 Customer Contacts portlet initial doView() and actionPerformed() methods

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, IOException {
if(request.getPortletSession().getAttribute("customerNameAttr") != null){

PortletURI detailURI = response.createURI();

DefaultPortletAction detailAction = new
DefaultPortletAction("contacts");

detailURI.addAction(detailAction);

request.setAttribute("contacts", detailURI.toString());

PortletURI returnURI = response.createReturnURI();

request.setAttribute("CC_back", returnURI.toString());

getPortletConfig().getContext().include(
"/jsp/CustomerContacts/CustomerContacts."+getJspExtension(request),
request, response);

} else {

PortletURI detailURI = response.createURI();

DefaultPortletAction detailAction =new DefaultPortletAction("contacts");

detailURI.addAction(detailAction);

request.setAttribute("contacts", detailURI.toString());

getPortletConfig().getContext().include(
"/jsp/CustomerContacts/View."+getJspExtension(request), request,
response) ;

}

public void actionPerformed(ActionEvent event) throws PortletException {
DefaultPortletAction action=(DefaultPortletAction)event.getAction();
PortletRequest request=event.getRequest();
if(action!=null){
if(action.getName().equals("contacts")) {
request.getPortletSession().setAttribute(
"customerNameAttr",request.getParameter("customerName"));

The changes to the CustomerContacts.java file are highlighted in bold in
Example 4-12 on page 190. Now that the CustomerContacts.java file is set, we
will continue with the JSP files.

View.jsp file

1. Copy the CustomerDetails.jsp and View.jsp files from the
/ijsp/CustomerDetails folder and paste them on the /jsp/CustomerContacts
folder.

2. Rename the newly pasted CustomerDetails.jsp file to CustomerContacts.jsp.

190 Portalizing Domino Applications for WebSphere Portal

3. Open the just pasted View.jsp file.

4. Modify the page header from Customer Details to Customer Contacts.

5. Modify the form tag, action attribute from details to contacts, which is the

name of the action we created on our CustomerContacts portlet.
Modify the Select HTML field name from uid to customerName.

7. Modify the <Domino:viewitem> tag, name attribute so that it extracts the

Employer instead of the Customer Name.

Change the Select HTML field value from <Domino:unid/> to
<Domino:viewitem name="Employer"/>.

On the <Domino:view> tag, modify the attribute viewname to point to the view
ContactsByCustomer.

10.Just after the <Domino:viewloop> insert a <Domino:ifcategoryentry> and

close the </Domino:ifcategoryentry> tag just before the </Domino:viewloop>
tag.

This will filter the view and present only the category entries.

11.Modify the View Details button at the end so that it displays View Contacts.

12.Save and Close the View.jsp file.

CustomerContacts.jsp file

1.
2.
3.

Open the /jsp/CustomerContacts/CustomerContacts.jsp file.
Modify the label from Customer Details to Customer Contacts.

Erase the code in between and including the <Domino:document> tag, since
we are going to display a view instead of a document.

Insert the JSP code shown in Example 4-13 where the <Domino:document>
tag resided.

Example 4-13 CustomerContacts.jsp fragment initial contents

<%! String SearchString="";%>
<% SearchString="FIELD customerName contains "

+request.getSession().getAttribute("customerNameAttr") ;%>

<Domino:view

viewname="'ContactsByCustomer'
dbserver='CN=itsotest-dom/0=itsoportal’
dbname="apps/customer.nsf’
user="'*webuser'
host="itsotest-dom'
ftsearch="'<%=SearchString%>'>

<table border="1">
<tr>

<TH>Contact Name</TH>

Chapter 4. Using custom Domino JSP tag libraries 191

192

<TH>Phone Number</TH>
</tr>
<Domino:viewloop id="myviewloop">
<tr>
<Domino:ifdocumententry>
<%
if(myviewloop.getDocument().getItemValueString("customerName").equals(request.g
etSession().getAttribute("customerNameAttr"))) {%>
<td>
<Domino:viewitem col="2"/>
</td>
<td>
<Domino:viewitem col="3"/>
</td>
<% } %
</Domino:ifdocumententry>
</tr>
</Domino:viewloop>
</table>
</Domino:view>

You will find that the <Domino:view> tag has a new attribute: ftsearch. This
attribute lets us do a full text search based on a field as displayed in the
example, where we will search based on a field called CustomerName.

Note: Use of the ftsearch attribute of the <Domino:view> tag requires that
the referenced view be full text indexed prior to the search request.

Also you will find that the <Domino:viewloop> tag has an attribute called
name. This allows us to define a Domino Java object and use it inside our
JSP code. In this JSP we query each of the returned elements to make sure
the full text search returned the exact documents that we were looking for.
Other tags can have the ID attribute that will convert a JSP tag into a Domino
Java object that can be referenced in the code. Information on the
construction of portlets with these Domino Java objects is in the next chapter.

Also note that the <Domino:viewitem> tag is extracting information by the
column number attribute; you can also use the name attribute to extract the
column value by referencing the column name, like in the previous portlet’s
View.jsp file.

Finally, we introduced another JSP tag called <Domino:ifdocumententry>,
which basically filters out the categorization entries from the view.

5. Modify at the end of the JSP file the Back button so that it references the
CC_back URI created on the CustomerContacts.java portlet.

Portalizing Domino Applications for WebSphere Portal

Update the deployment descriptors
. Open the web.xml file located on the /WEB-INF folder.

. Go to the Servlets tab.
. Click the Add button.
. Select the CustomerContacts class.

1
2
3
4
5. Add a URL mapping; set it to /CustomerContacts/*.
6. Save and close the web.xml file.

7. Open the portlet.xml file located on the same folder.

8. Select the Add portlet.

9. Select the CustomerContacts servlet, which is not used, and clickt OK.
1

0.Change the display name to Customer Contacts portlet andits ID to
CustomerContacts.

11.Select the Concrete Portlet Application folder.

12.Click the Add Concrete Portlet button.

13.Select the CustomerContacts portlet, which is not used, and click OK.
14.Change its Display Name and Title to Customer Contacts portlet.
15.Add a description if needed.

16.Save the portlet.xml file.

Deploy the portlet

Now we are all set with our third portlet, just deploy it as we did with our previous
portlet and you should see something like shown in Example 4-34 on page 193.

C -
Custorn Ml tacts portiet IR BT o Customer Contacts portlet s]
Customer Contacts Customer Contacts
Please select a customer: Contact Name [Phone Number
"m ’ Camilo Rojas |617-555-5555
View Contacts

Figure 4-34 Customer Contacts initial portlet

Customer Sales Activities portlet

The Customer Sales Activities portlet displays information just like the two
portlets already described, with a JSP file containing a drop-down list of the
customers, but this time with sales activities. A difference from previous portlets
is that it will access an independent sales database. After a customer is selected,

Chapter 4. Using custom Domino JSP tag libraries 193

the portlet loads a Domino view that will filter and display the documents and not
the category entries.

CustomerSalesActivities.java

1.

Create the portlet class by copying the CustomerContacts.java class that
resides on the portlet package.

Paste the file in the same package and rename it
CustomerSalesActivities.java.

3. Open the newly pasted CustomerSalesActivities.java file.

4. In the doView() method, rename the DefaultPortletAction from contacts to

activities.

On the same method, rename the key that is used to store the action URI on
the request object from contacts to activities.

. Continuing on the same method, modify the folder for the include sentences

from /jsp/CustomerContacts to /jsp/CustomerSalesActivity. Also modify the
reference to the file /jsp/CustomerContacts/CustomerContacts.jsp to
/isp/CustomerSalesActivity/CustomerSalesActivities.jsp.

Now on the actionPerformed() method modify the action name comparison
from contacts to activities.

Both the doView() and actionPerformed() methods should look like
Example 4-14.

Example 4-14 Customer Sales Activities portlet initial doView() and actionPerformed()
methods

public void doView(PortletRequest request, PortletResponse response) throws

PortletException, IOException {
if(request.getPortletSession().getAttribute("customerNameAttr") != null){
PortletURI detailURI = response.createURI();
DefaultPortietAction detailAction =
new DefaultPortletAction("activities");
detailURI.addAction(detailAction);
request.setAttribute("activities", detailURI.toString());
PortletURI returnURI = response.createReturnURI();
request.setAttribute("CSA_back", returnURI.toString());
getPortletConfig().getContext().include(
"/jsp/CustomerSalesActivity/CustomerSalesActivities."+
getJspExtension(request), request, response);
} else {
PortletURI detailURI = response.createURI();
DefaultPortletAction detailAction = new
DefaultPortletAction("activities");
detailURI.addAction(detailAction);
request.setAttribute("activities", detailURI.toString());

194 Portalizing Domino Applications for WebSphere Portal

getPortletConfig().getContext().include(
"/jsp/CustomerSalesActivity/View."+
getJspExtension(request), request, response);
}
}
public void actionPerformed(ActionEvent event) throws PortletException {
DefaultPortletAction action=(DefaultPortletAction)event.getAction();
PortletRequest request=event.getRequest();
if(action!=null){
if(action.getName().equals("activities")) {
request.getPortletSession().setAttribute(
"customerNameAttr",request.getParameter("customerName"));

You can see the changes in bold in Example 4-14. Also notice that there is no
change on the customerName parameter and customerNameAttr. This is
because our search on the view will be done by the customer name. In addition,
this will help the Click to Action broker to associate both actions as similar; this is
explained in detail later in this chapter.

View.jsp file
1. Copy the View.jsp file from the /jsp/CustomerContacts folder and paste it in
the /jsp/CustomerSalesActivity folder.

2. Open the file and inspect it in the source view.

3. Modify the page header from Customer Contacts to Customer Sales
Activities.

4. In the form tag, modify the action attribute to reference from contacts to
activities.

5. In the <Domino:view> tag, modify the attribute viewname to saByCustomer
and the database to apps/sales.nsf.

6. In the option HTML tag, modify the value and name so that the
<Domino:viewitem> name attribute is Customer.

7. Finally, on the button at the bottom of the JSP, change the value to View Sales
Activities.

CustomerSalesActivities.jsp file

1. Copy the CustomerContacts.jsp file in the /jsp/CustomerContacts folder to the
/jsp/CustomerSalesActivity folder and rename it
CustomerSalesActivities.jsp.

2. Modify the file so that it has code similar to that shown in Example 4-15.

Chapter 4. Using custom Domino JSP tag libraries 195

Example 4-15 CustomerSalesActivities.jsp initial contents

<%@ taglib uri="/WEB-INF/domtags.t1d" prefix="Domino" %>
<%@ taglib uri="/WEB-INF/domutil.t1d" prefix="util" %>
<%@ taglib uri="/WEB-INF/t1d/portlet.t1d" prefix="portletAPI" %>
<portletAPI:init/>
<H3>Customer Sales Activities</H3>
<p>
<%! String SearchString="";%>
<% SearchString="FIELD CustomerName contains
"+request.getSession().getAttribute("customerNameAttr") ;%>
<Domino:view
viewname="saByCustomer'
dbserver='CN=itsotest-dom/0O=itsoportal’
dbname="apps/sales.nsf’
user="'*webuser'
host="itsotest-dom'
ftsearch="'<%=SearchString%>'>
<table border="1">
<tr>
<TH>Date</TH>
<TH>Activity</TH>
<TH>Sales Person</TH>
<TH>Contact</TH>
<TH>Made Sale?</TH>
</tr>
<Domino:viewloop id="myviewloop">
<tr>
<Domino:ifdocumententry>
<%
if(myviewloop.getDocument().getItemValueString("CustomerName").equals(request.g
etSession().getAttribute("customerNameAttr"))) {%>
<td>
<Domino:viewitem col="2"/>
</td>
<td>
<Domino:viewitem col="3"/>
</td>
<td>
<Domino:viewitem col="4"/>
</td>
<td>
<Domino:viewitem col="5"/>
</td>
<td>
<Domino:viewitem col="6"/>
</td>
<% } %>

</Domino:ifdocumententry>

196 Portalizing Domino Applications for WebSphere Portal

</tr>
</Domino:viewloop>
</table>
</Domino:view>
</P>
<p>
<INPUT type="submit" name="Back" value="Back"
onClick="window.location.href="
<%=(String)portletRequest.getAttribute("CSA back")%>'">
</P>
<p></pP>

This is a very interesting JSP since first it points to and extracts information from
the Sales database, which could be unrelated to the Customers database. But as
we discuss in the Click to Action topic later in this chapter, we will connect these
two applications at the portal level.

Also, if you inspect the <Domino:viewloop> tag, you will see that there is a name
attribute again. This name attribute represents a Domino Java object and is later
used in the same JSP file in a scriptlet code to filter out activities not related to
our customer.

Update the deployment descriptors
. Open the web.xml file located on the /WEB-INF folder.

. Go to the Servlets tab.
. Click the Add button.

. Select the CustomerSalesActivities class.

1
2
3
4
5. Add a URL mapping and set it to /CustomerSalesActivities/*.
6. Save and close the web.xml file.

7. Open the portlet.xml file located in the same folder.

8. Click Add portlet.

9. Select the CustomerSalesActivities servlet, which is not used, and click OK.
1

0.Change the display name to Customer Sales Activities portlet andits ID
to CustomerSalesActivities.

11.Select on the Concrete Portlet Application folder.

12.Click the Add Concrete Portlet button.

13.Select the CustomerSalesActivities portlet, which is not used, and click OK.
14.Change its Display Name and Title to Customer Sales Activities portlet.
15.Add a description if needed.

Chapter 4. Using custom Domino JSP tag libraries 197

16.Save the portlet.xml file.

Deploy the portlet

Deploy the portlet in the same manner that you used for the previous ones. The
new portlet should appear something like Figure 4-35.

Customer Sales Activity portlet
Customer Sales Activity

Please select a customer:
|-Se|ect a custormner- =

View Sales Activity

Customer Sales Activities portlet

Customer Sales Activities

Sales
Person
Sunday, May 11, 2003 Sales Ticknor, |Bob

8:01:18 PM EDT Pitch Michael Smith

. ‘
Date Activity |contact | glade ‘

Mo

|

|

Figure 4-35 Customer Sales Activities initial portlet

We have now finished the first phase of our portlet building. We constructed four
portlets from different Domino databases that extract information based on the
user input.

Next we explore techniques to enhance this initial transformation. In 4.6,
“Integration via Click to Action” on page 199 we describe a technique to enable
our portlets to communicate between each other, even between heterogeneous
Domino databases.

4.5.4 Conclusions to the custom Domino tags integration technique

The inclusion of JSP tags from different services lets us add value to our portlets.
We showed how to include custom Domino JSP tags. Some of the benefits of
this option are:

» The developer doesn’t have to know Java programming in depth to build
portlets that extract information from Domino.

» The developer doesn’t have to know Domino object model in depth to access
data in Domino.

198 Portalizing Domino Applications for WebSphere Portal

» JavaServer Pages (JSP) are a J2EE technology that can offer simplicity as a
programming model and the robust characteristics of Java.

» IBM has the tools necessary to develop portlets that integrate Domino
applications, including collaboration features.

4.6 Integration via Click to Action

This important topic is included in the current chapter since the invocation is
done through JSP tags. But as we explain later in this section, Click to Action
incorporates other technologies as well, including Web services, WSDL, portlet
descriptors, and others. We explain these technologies as we go through the
implementation of Click to Action.

4.6.1 Click to Action

Click to Action (sometimes referred as Click2Action or C2A) provides a
framework for inter-portlet communication that simplifies users’ interactions with
portlets on a portal page. With a simple click, a user can transfer data from a
source portlet to one or more target portlets, causing the target to react to the
action and display a new view with the results.

The Click to Action framework includes a runtime that automatically matches
sources with compatible targets (based on type information) and inserts clickable
icons associated with sources on portlet pages. When the user clicks an icon
next to a particular source, they are presented with a pop-up menu containing the
list of targets for the action. After the user selects a specific target, the Click to
Action runtime delivers the data to the target in the form of the corresponding
portlet action. The portlet does not need to distinguish between an action
initiated by user interaction with its own page segment and action initiated using
the Click to Action route. This keeps the programming effort to a minimum,
allowing Click to Action portlets to follow the normal portlet programming model.

Features of the Click to Action model

Click to Action provides an easy, menu-driven method to transfer compatible data
between portlets, eliminating manual data entry from one portlet to another and
avoiding the learning normally necessary to discover actions on target portlets
which are compatible with sources on the current page. Click to Action includes
these additional benefits:

» Broadcast source data to all matching actions on the page.

A user can specify the target of an action or broadcast the action to all portlets
on the page. This feature is available in the source portlet when the broadcast
attribute is specified for the <c2a:encodeProperty/> tag.

Chapter 4. Using custom Domino JSP tag libraries 199

» Chained propagation of data transfer.

Sending data to one portlet can cause that portlet to send data to another
portlet, which can in turn transmit data. This feature supports the
synchronization of multiple portlet views in a single request-response cycle.
For example, transferring the order ID to the Order Details portlet also triggers
the transfer of the tracking ID for the order to the tracking details portlet, which
in turn triggers the transfer of the customer name associated with the order to
the customer details portlet, causing all three to display information pertaining
to the same order.

This feature can be enabled by specifying output parameters in the target
portlet's WSDL. When the target receives data from a source, this can cause
the transfer of one or more output parameters declared in the WSDL file. As
pictures in Figure 4-36, the propagation of information can chain a series of
events leading to a complete flow of interactions.

" o

Figure 4-36 Click to Action chained propagation

» Scatter multiple related sources to targets on the page with a single click.

In addition to directing the data transfer to a particular portlet, you can
broadcast the information that is sent to all the listener portlets. As a result of
this broadcast, all portlets on the page display information related to the
transferred information. This scatter feature, combined with the chained data
transfer feature, results in the synchronization of all the information on the
page through a single user click.

» Simple enablement for portlet development.

— For a portlet to be a source of data, programmers can use a custom JSP
tag library to flag sharable data on their output pages. The tags require a
data type to be specified, as well as a specific value corresponding to an
instance of this type.

— For a portlet to be a target, programmers describe a subset of their portlet
actions, including type information for the action parameters. The format
for the action description is WSDL, with some custom extensions.

Concepts and design of Click to Action

Click to Action allows end-user triggered information interchange between
independently developed portlets. Each portlet needs to provide information

200 Portalizing Domino Applications for WebSphere Portal

about data objects that it could share with other portlets, either as a producer or a
consumer. Each sharable data object is identified with an XML type. The Click to
Action broker is a runtime entity that processes information about sharable data
objects on a page and matches producers of the data with consumers using type
matching. Based on the match information, the broker generates a special icon
next to sources of data, which is used to display the pop-up menu of matching
actions. When the end-user chooses an action from the menu, it is intercepted by
the broker, which then transfers the data value to the chosen target.

Source portlets (portlets that contribute data objects that can be shared with
other portlets) use a set of custom JSP tags to specify the type and value of the
data being contributed. At the point where such a tag occurs, the Click to Action
broker inserts the markup that can display the pop-up menu of action choices for
the user. Advanced options on the tags allow the programmer to indicate whether
a broadcast action is to be added to the menu, and allow the scattering of a set of
data values (rather than a single data value) to all portlets.

Target portlets (portlets that accept data from other portlets) declare a set of
actions which can be invoked on the portlet. The actions are implemented by the
portlet as normal portlet actions. The actions are declared using WSDL, with a
custom binding extension that specifies the mapping from the abstract action
declaration to the actual action implementation. Associated with each action is a
single input parameter described by an XML type and one or more output
parameters, each described by an XML type. The input parameter's type is used
for matching the action to sources, and its value is filled in when the end-user
triggers the action using Click to Action. The output parameters, if specified, are
used to automatically trigger other compatible actions (ones which can consume
the same type) on other portlets every time the action executes (this may be
used to trigger chains of related actions). The choice of WSDL for declaring the
actions was influenced by two considerations:

» The need for a standard format rather than a custom format

» The ability in WSDL to plug in descriptions of different types of implementing
entities, providing a future growth path for the Click to Action technology

Another interesting aspect of the design is the use of normal portlet actions to
deliver data from other portlets. This approach allows the reuse of actions which
are used to interact with the portlet directly, and in many cases allows
pre-existing portlets to be made into Click to Action targets simply by declaring all
or part of their actions using WSDL.

Figure 4-37 is a high-level diagram of the Click to Action sequence of events that
takes place.

Chapter 4. Using custom Domino JSP tag libraries 201

3 Process

JSP tag
4 If actions match generate
Menu code

C2A Event Broker

B User chooses option
on the menu

5 Return
response

T Send
request

Target WiebSphere Portal Core

Portlet

Vrapper

8 Process
action

Figure 4-37 Click to Action sequence diagram

The Click to Action runtime is composed of a generic wrapper portlet, which is
used to wrap each portlet enabled for Click to Action, and a broker component.
These components also interface with the WebSphere Portal core runtime. The
purpose of the wrapper is to intercept calls to the application portlet and interface
with the broker appropriately to transparently register actions supported by the
portlet, transfer data from source to target portlets, and so forth. The broker
centrally maintains a repository of actions on each portlet along with the
parameter type information, performs source and target matches at runtime
using this information, and generates additional markup to allow users to trigger
data transfers across portlets. The WebSphere Portal core runtime performs the
functions of generating the portal pages, receiving browser requests, invoking
callbacks on portlets, and so forth. Finally, JSPs associated with source portlets
use custom tags to declare sharable sources of data, and target portlets provide
a WSDL file declaring portlet actions which may be invoked by the Click to Action
runtime.

The Click to Action flow is designed to account for the portlet event processing
model, which is described in Portlet events. The portal programming model
involves an event phase and a render phase in each request-response cycle.
During the event phase, an action may be delivered on one portlet. If Click to
Action is used, this may result in other actions being triggered on other portlets.
The event phase is followed by the render phase, in which each portlet is asked
to return markup, which is then aggregated in a single page. The markup may

202 Portalizing Domino Applications for WebSphere Portal

embed actions that can be invoked by the user. The page is then returned to the
client (such as a browser).

A typical request-response flow involving Click to Action is illustrated in
Figure 4-37. This comprises the following steps:

1. During portlet initialization, the wrapper processes any action WSDL file
associated with the application portlet and registers the actions with the
broker.

2. During the render phase of a request cycle, JSPs associated with Click to
Action source portlets are processed.

3. The custom Click to Action tags result in calls to the Click to Action event
broker, which determines matching actions on the page based on type
information.

4. The Click to Action broker generates additional code to display the Click to
Action icon used to invoke the pop-up menu.

5. After all render phase portlet callbacks have been completed, the portal
assembles the response page and returns it to the client.

6. The end user can click on the Click to Action icon for a source to view a menu
of compatible actions on the page and select one.

7. A new request is generated, containing the chosen source and action
information, and is sent to the portal.

8. The portal core runtime delivers the action to the target portlet. This is
intercepted by the wrapper, which may interact with the broker to further
process the request before delivering the action to the target.

While all portlet actions are intercepted by the wrapper, actions which are
invoked through direct interaction with the portlet (as opposed to interaction
through Click to Action) are passed through transparently to the portlet.

4.6.2 Considerations

We can integrate portlets that expose Domino data through the WebSphere
Portal Click to Action Broker.

4.6.3 Implementation of the technique

As we mentioned in the introduction to this topic, the Click to Action technology
included on the WebSphere Portal enables communication between portlets. In
our case, it was used to extract information from our example Sales and
Customer Lotus Domino applications.

Chapter 4. Using custom Domino JSP tag libraries 203

204

In this section we describe how to enable the portlets with Click to Action
capabilities. We focus first on the Customer List portlet, which is the source
portlet, and then on enabling the target portlets, which are the remaining portlets
(Customer Details, Customer Contacts and Customer Sales Activities) on the

page.

Preparing the portlet project

Use the following steps to prepare the portlet project before starting the
enablement of the portlets.

Open the WebSphere Studio Application Developer tool and the Web
perspective.

1.

Open the CustomerJSPPortlet project.

2. Right-click the /WEB-INF/tld folder and select Import.
3.
4. Select the Directory button and browse to the WPS-HOME\c2a\tld directory,

On the Import dialog, select File System and click Next.

where WPS-HOME is the WebSphere Portal installation directory.
Select the c2a.tld file and click Finish.
Figure 4-38 shows the import parameters we used.

Portalizing Domino Applications for WebSphere Portal

6. Right-click the /WEB-INF/Iib folder and select import.
7. On the Import dialog, select File System and click Next.

File system

Import resources from the local File system. D
A
Directory: IC:\WebSphEre\PortalServercha\tld j E[owse”.l
[|

Filter Types... Select Al Deselect Al
Select the destination For imported resources:
Folder: I CustomerJSPPortlet[Web Content\WEB-INFIHd Browse, .. I
Options: R e |

r Qwerwrite existing resources without warning
™ Create complete Folder structure

¥ Create selected Folders only I

< Back P Finish Cancel
I il | o |

Figure 4-38 Importing the Click to Action tag library

8. Select the Directory button and browse to the WPS-HOME\c2a\lib directory,

9.

The portlet project is now ready to support Click to Action functionality.

Enabling the source portlet (Customer List)
The process of enabling the source portlet is very simple.

First, you have to know what parameters are to be transmitted to the target

where WPS-HOME is the WebSphere Portal installation directory.

Select the pbportlet.jar file and click Finish.

portlets. The parameter transmitted should be the same one expected on the
action of the target portlet. The target portlet parameters and actions expected
are outlined in Table 4-6.

Chapter 4. Using custom Domino JSP tag libraries

205

Table 4-6 Click to Action target portlet parameters and actions

Portlet name Parameter Action
Customer Details uid details
Customer Contacts customerName contacts
Customer Sales Activities customerName activities

Use the following steps to start working on the portlet:
1. Open the /jsp/CustomerList/View.jsp file.

2. At the very beginning of the View.jsp file insert the following tag library import
statement:

<%0 taglib uri="/WEB-INF/t1d/c2a.t1d" prefix="C2A" %>

3. Add an attribute to the existing <Domino:viewloop> tag. This attribute is
named id and we give it a value "myviewloop". The tag should look like this:

<Domino:viewloop id="myviewloop">

This is done so that you can extract information from the looping documents
using the Domino Java objects API.

4. On the table row displaying the resulting loop, before the <Domino:viewitem
col="1"/> tag, insert the following tags:

<!-- Note the namespace we chose is arbitrary -->
<C2A:encodeProperty namespace="http://www.ibm.com/customer"
type="CustomerIDType"
value="'<%=myviewloop.getDocument().getUniversalID()%>'/>

<C2A:encodeProperty namespace="http://www.ibm.com/customer"
type="CustomerNameType" broadcast="true”
value="'<%=myviewloop.getDocument().getItemValueString("customerName")%>"/>

There are several things to note about the two lines inserted.

First, notice that both tags are Click to Action JSP custom tags, and they have
several attributes. Table 4-7 is a description of the purpose of the available
Click to Action encode property attributes.

Table 4-7 Click to Action encode property JSP tag attributes

Attribute Description

type Specifies the type of data sent by the source portlet.
Required. The data type is defined in the WSDL, which will
be defined when we enable the target portlets. The Click to
Action runtime uses type and namespace attributes to match
source data to actions on targets.

206 Portalizing Domino Applications for WebSphere Portal

Attribute

Description

namespace

Specifies the namespace for the type. Required. This
attribute is used to group related types in a single domain.

value

Specifies the data to be sent by the source portlet. Required.
The Click to Action runtime sends the value of the user's
selections to the target actions.

broadcast

Indicates whether the source data can be broadcast to all
target portlets with matching actions. False is the default
setting. Optional. If the value is true, the generated menu
displays an additional item to broadcast the source to all
matching targets.

generateMarkupWhen
Nested

Indicates that this tag should generate markup even when
nested within the <c2a:encodeProperties/> tag. This attribute
is optional; the default is false. If this tag is not nested, the
attribute is ignored. For our initial example this attribute was
not used.

Also, notice that inside the value attribute you are inserting a Java scriptlet
which will get the parameters required to feed the target portlets.

Since there are two portlets that will require the same customerName
parameter, just one tag is required.

5. Save and Close the View.jsp file.

Note: When you save the View.jsp file, a JspTranslate error is reported by
WebSphere Studio. Ignore this message since at run time the correct
classes will be available.

You are now done enabling the source portlet.

Enabling the target portlets
Create a folder to contain the WSDL descriptor files for your target portlets with

these steps:

1. Right-click the Web Content folder on your CustomerJSPPortlet project.

2. Select New — Folder.

3. Name the folder wsd1 and click Finish.

Target portlets requirements
There are some requirements that the target portlet class must follow:

» Portlet actions must use the DefaultPortletAction object for action processing.

Chapter 4. Using custom Domino JSP tag libraries 207

» Portlet actions must accept a single basic parameter. This parameter appears
in the PortletRequest object.

» The action must also be invocable at any time. That is, there should not be a
case where the action is not invocable when the portlet is in a certain state.
This is because the set of actions associated with a target portlet is statically
declared; the C2A broker assumes that the same set is available in each
request cycle.

Fortunately, we developed our portlets following these restrictions. Go through
them and you will find that the actions defined are appropriate, and each action
requires only one parameter.

Enabling the Customer Details portlet
You do not have to modify any Java code to enable the target portlets; the task is

basically a definition process that comprises the creation of a WSDL descriptor
file and the modification of the deployment descriptors.

First, create the WSDL file with these steps:

1. Right-click the /wsdl folder and select New — Other.

Select Simple and File in the dialog, then click Next.

Name the file CustomerDetails.wsdT.

Click Finish.

Copy the code in Example 4-16 into the newly created file.

o > 0N

Example 4-16 Click to Action CustomerDetails.wsdl

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="CustomerDetail_Service"
targetNamespace="http://www.ibm.com/customer"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:portlet="http://www.ibm.com/wps/c2a"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tns="http://www.ibm.com/customer"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<xsd:simpleType name="CustomerIDType">
<xsd:restriction base="xsd:string">
</xsd:restriction>
</xsd:simpleType>
</types>
<message name="customerDetailsRequest">
<part name="custid" type="tns:CustomerIDType"/>
</message>
<portType name="CustomerDetail Service">
<operation name="customerDetails">

208 Portalizing Domino Applications for WebSphere Portal

<input message="tns:customerDetailsRequest"/>
</operation>
</portType>
<binding name="CustomerBinding" type="tns:CustomerDetail Service">
<portlet:binding/>
<operation name="customerDetails">
<portlet:action name="details" caption="Customer Details"
description="Get details for specified Customer"/>
<input>
<portlet:param name="uid" partname="custid"/>
</input>
</operation>
</binding>
</definitions>

The WSDL file describes how the target portiet exposes its services. Note
that in the definitions open tag we specify the namespace we are using as
http://www.ibm.com/customer, which is the same as the one defined in the
source portlet click to action <C2A:encodeProperty> JSP tag.

We define a simple type called CustomerIDType, which is a simple xsd string
type. Notice also that in the source portlet’s first click to action
<C2A:encodeProperty> JSP tag we are referencing this type.

Also notice in the binding area that we are referencing an action with the
same name, "details" that our portlet uses. It will store the value in a
parameter called "uid" that will feed the portlets actionPerformed() method.

Note: When you save the CustomerDetails.wsdl file, several errors are
reported by WebSphere Studio. Ignore these messages since they are
corrected at run time.

Use the following steps to modify the deployment descriptors, beginning with the
web.xml file.

1.
2.

Open in the /WEB-INF folder the web.xml file in Source mode.

Look for the <servlet-class> of the CustomerDetails servlet (portlet) and
modify the class from portlet.CustomerDetails to the
com.ibm.wps.pb.wrapper.PortletWrapper class.

3. Switch to the Servlet tab.

4. Select the CustomerDetails servlet, add an initialization parameter called

c2a-application-portlet-class, and add a value of
portlet.CustomerDetails. It should look like Figure 4-39.

Chapter 4. Using custom Domino JSP tag libraries 209

Details

Dekails of the selected servlet or 15P

Servlet class: | com.ibrn.wps. pb.wrapper, Partleb\Wrapper | Browse. ..

Display name: | CustomerDetails |

Description: | |

URL Mappings
The following URLs are mapped to this servlet:

C%? ICustornerDetails/™*

Initialization

The Following initilization parameters are configured For this servlet:

Mame Walue

cZ2a-application-portlet-class portlet, Customer Detail -
Remove

Figure 4-39 Click to Action setting up the web.xml file

You can see that the Servlet class contains the previously modified class. This
class is a wrapper that will load the class described by the
c2a-application-portlet-class initialization parameter.

Next, modify the portlet.xml file:

1. Open the portlet.xml file.

2. Select the CustomerDetails concrete portlet.

3. Create a New setting parameter with a name c2a-action-descriptor and a
value of /wsd1/CustomerDetails.wsdl.

4. Save and Close the portlet.xml file.

Enabling the Customer Contacts portlet
Create the WSDL file using the following steps:

1. Right-click the /wsdl folder and select New — Other.
2. Select Simple and File in the dialog, then click Next.
3. Name the file CustomerContacts.wsdl.

4. Click Finish.

210 Portalizing Domino Applications for WebSphere Portal

5. Copy the code in Example 4-17 into the newly created file.

Example 4-17 Click to Action CustomerContacts.wsd/

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="CustomerContacts_Service"
targetNamespace="http://www.ibm.com/customer"
xmins="http://schemas.xmlsoap.org/wsdl/"
xmins:portlet="http://www.ibm.com/wps/c2a"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tns="http://www.ibm.com/customer"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<xsd:simpleType name="CustomerNameType">
<xsd:restriction base="xsd:string">
</xsd:restriction>
</xsd:simpleType>
</types>
<message name="customerContactsRequest">
<part name="custName" type="tns:CustomerNameType"/>
</message>
<portType name="CustomerContacts_Service">
<operation name="customerContacts">
<input message="tns:customerContactsRequest"/>
</operation>
</portType>
<binding name="CustomerContactsBinding" type="tns:CustomerContacts_Service">
<portlet:binding/>
<operation name="customerContacts">
<portlet:action name="contacts" caption="Customer Contacts"
description="Get contacts for a specified Customer"/>
<input>
<portlet:param name="customerName" partname="custName"/>
</input>
</operation>
</binding>
</definitions>

The WSDL file describes how the target portlet exposes its services. Note in
the definitions open tag we are describing the same namespace,
"http://www.ibm.com/customer" that we defined in the source portlet click to
action <C2A:encodeProperty> JSP tag.

We are defining a simple type called "CustomerNameType" which is a simple
xsd string type. Notice also that in the source portlet, in the second click to
action <C2A:encodeProperty> JSP tag, we are referencing this type.

» In the binding area, notice that we are referencing an action with the same
name "contacts" that one our portlest uses. It will store the value in a

Chapter 4. Using custom Domino JSP tag libraries 211

parameter called "customerName" that will feed our CustomerContacts
portlet’s actionPerformed() method.

Note: When you save the CustomerContacts.wsdl file, several additional
errors are reported by WebSphere Studio. Ignore these messages since
they will be corrected at run time.

Next, modify the deployment descriptors, starting with the web.xml file.
1. Open in the /WEB-INF folder the web.xml file in Source mode.

2. Look for the <servlet-class> of the CustomerContacts servlet (portlet) and
modify the class from portlet.CustomerContacts to the
com.ibm.wps.pb.wrapper.PortletWrapper class.

3. Switch to the Servlet tab.

4. Select the CustomerContacts servlet and add an initialization parameter on
the left called c2a-application-portiet-class and add a value of
portlet.CustomerContacts.

Now, modify the portlet.xml file:

1. Open the portlet.xml file.

2. Select the CustomerContacts concrete portlet.

3. Create a New setting parameter with a name c2a-action-descriptor and a
value of /wsd1/CustomerContacts.wsdl.

4. Save and close the portlet.xml file.

Enabling the Customer Sales Activities portlet
Create the WSDL file using the following steps:

1. Right-click the /wsdl folder and select New — Other.
Select Simple and File in the dialog, then click Next.
Name the file CustomerSalesActivities.wsdl.
Click Finish.

Copy the following code into the newly created file:

o M~ 0D

Example 4-18 Click to Action CustomerContacts.wsdl

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="CustomerSalesActivity Service"
targetNamespace="http://www.ibm.com/customer"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:portlet="http://www.ibm.com/wps/c2a"
xmlns:soap="http://schemas.xmlsoap.org/wsd1/soap/"

212 Portalizing Domino Applications for WebSphere Portal

xmins:tns="http://www.ibm.com/customer"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<xsd:simpleType name="CustomerNameType">
<xsd:restriction base="xsd:string">
</xsd:restriction>
</xsd:simpleType>
</types>
<message name="customerSalesActivityRequest">
<part name="custName" type="tns:CustomerNameType"/>
</message>
<portType name="CustomerSalesActivity_Service">
<operation name="customerSalesActivity">
<input message="tns:customerSalesActivityRequest"/>
</operation>
</portType>
<binding name="CustomerSalesActivityBinding"
type="tns:CustomerSalesActivity Service">
<portlet:binding/>
<operation name="customerSalesActivity">
<portlet:action name="activities" caption="Customer Sales Activity"
description="Get sales activities for a specified Customer"/>
<input>
<portlet:param name="customerName" partname="custName"/>
</input>
</operation>
</binding>
</definitions>

The WSDL file describes how the target portlet exposes its services. Note in
the definitions opening tag we are describing the same namespace that we
defined in the source portlet click to action <C2A:encodeProperty> JSP tag,
"http://www.ibm.com/customer".

We are defining the simple type "CustomerNameType" which is a simple xsd
string type. Notice also that in the source portlet, in the second click to action
<C2A:encodeProperty> JSP tag, we are referencing this type.

» Also notice in the binding area that we are referencing an action with a name
"activities" like the one our portlet uses. It will store the value on a
parameter called "customerName" which will feed our portlet’s
actionPerformed() method.

Note: When you save the CustomerSalesActivities.wsdl file, several
additional errors are reported by WebSphere Studio. Ignore these
messages since they will be corrected at run time.

Chapter 4. Using custom Domino JSP tag libraries 213

Modify the deployment descriptors, beginning with the web.xml file:
1. Open in the /WEB-INF folder the web.xml file in Source mode.

2. Look for the <servlet-class> of the CustomerSalesActivities servlet (portlet)
and modify the class from portlet.CustomerSalesActivities to the
com.ibm.wps.pb.wrapper.PortletWrapper class.

Switch to the Servlet tab.
Select the CustomerSalesActivities servlet and add an Initialization parameter
on the left called c2a-application-portlet-class and add a value of
portlet.CustomerSalesActivities.

Next, modify the portlet.xml file:

1. Open the portlet.xml file.

2. Select the CustomerSalesActivities portlet.

3. Create a New setting parameter with a name c2a-action-descriptor and a
value of /wsd1/CustomerSalesActivities.wsdl.

4. Save and close the portlet.xml file.

Deploy the portlet

Now that all the settings are complete for your Click to Action portlets, deploy
them just as you did in the previous exercises. You should see a page like the
one depicted in Figure 4-40.

Z} 18M WehSphere Portal - Microsoft Internet Explorer

fle Edt View Favorites Tools Help

gack - b - @) [0 A | Dsearch [GiFavortes {veda (B | Gy~ G =1 | lnks @)Redbook M Websphere Portal &)Local 18M webSphere Portal

er
Customer Name Customer # Account Owner Flease select s customer:
& 1BM 3 Lapez, Carnila

1B KB Enterprises 2 Peterson, Michasl -Selsct a customer- =
BB Tech Enterprises 4 wiilkinson, Mary

% & YourCo Smith, Gary View Details
tomer Sales
ustomer Contacts
Customer Sales Activities portlst
Customer Sales Activities
Contact Name |Phone Number [Date [Activity [Sales Person| Contact [Made Gale?
Camilo Lopez 123321 [Saturday, May 10, 2003 9:06:46 AM GMT-05:00 [Sales Pitch [Lopez, Camilo [Camilo Lopez/ibm [ves
Back

Figure 4-40 Click to Action enabled JSP tags portlets

214 Portalizing Domino Applications for WebSphere Portal

The portlets are enabled with Click to Action, and the customers.nsf database
with the sales.nsf database are integrated seamlessly at the portal interface
level.

In the next section we describe how to add some finishing touches, specifically
by adding people awareness to the portlets. But before we do that, let’s take a
look at some common pitfalls that developers run into when developing portlets
that are Click to Action enabled.

Common pitfalls

» Be aware of the Namespace definition of the WSDL file; your Namespace
should be unique and match the one described on the
<C2A:encodeProperty> tag. Your namespace should be inside the definitions
tag of the WSDL file in the attributes targetNamespace and xmins:tns. Do not
modify any other namespace.

» Remember that your portlets should implement the ActionListener interface to
have the action called.

» The action inside your target portlet class should be a DefaultPortletAction.

» In WebSphere Portal 4.2, Click to Action is limited to Portlets that reside on
the same page.

4.7 Integration via people awareness

This integration technique will add value to your portlets by exploiting the people
awareness services provided by WebSphere Portal. This integration technique
adds real-time collaboration among the people involved in the application.

4.7.1 People awareness

If you extend the portal to offer people awareness features, portal users will see
references to people in collaborative portlets. These references to individuals
and groups are links that let portal users see and contact others with whom they
might want to work. Wherever people links appear, portal users can display a
menu of actions for contacting and working with the individuals and groups
named by the link. If you have enabled Lotus Sametime to work with the portal,
people links include the online status indicator that shows whether a person is
active, away, offline, or in a Do Not Disturb state.

Chapter 4. Using custom Domino JSP tag libraries 215

People links

When portal users click the name of (or the icon for) a person or group, a menu
appears that provides actions linking them to other portal users. The actions that
are visible on people link menus depend on the following factors:

>

>

Whether Lotus companion products for advanced collaboration are installed
and enabled to work with your portal (for example, Lotus Sametime and Lotus
Discovery Server).

The online status (Active, Away, Do Not Disturb, Offline) of the person or
group.

Whether the link applies to an individual person or to a public group.

The complete set of actions that users might see from people links depends on
which Lotus companion products for advanced collaboration are installed and
enabled to work with the portal.

»

See a person's online status

Appearing only if Lotus Sametime is enabled, the Sametime status icon
indicates whether a person is active, away, offline, or does not want to be
disturbed.

Chat

Appearing only if Lotus Sametime is enabled, this action is not available if the
person is offline.

Send E-mail
Show Profile

Appearing only if Lotus Discovery Server is enabled, this action displays the
person's profile of business card information, contact information, affinities,
current job, and background.

Find Documents Authored By

Appearing only if Lotus Discovery Server is enabled, this action launches
Knowledge Map Search of all documents that the person has authored.

Add to Sametime List

Appearing only if Lotus Sametime is enabled, this action displays a window in
which you can add the person to your Sametime List, either as an individual
entry or as a member of a new or existing personal group.

Online presence

If you have enabled Lotus Sametime to work with the portal, portal users can see
each other's online presence in their person links according to the status options
they have set in their Sametime client:

216 Portalizing Domino Applications for WebSphere Portal

» | am active.
» | am away or not using the computer now.
» Do not disturb me.

» | am offline.

Tip: Portal users can select Options — Preferences — Status in their
Sametime Connect clients to customize the messages that appear for each
online state and to control the period of time in which keyboard or mouse
inactivity automatically switches their status from Active to Away.

In this section we describe how to use this integration technique to add some of
the collaborative services included with WebSphere Portal. Before we begin, we
first review what the Collaborative Components are.

Collaborative Components

Collaborative Components or Collaborative Services are a set of JSP tags and
Java objects that enable the inclusion of Lotus collaborative functionality to new
or existing portlets.

These components allow the seamless interaction of the Lotus family of products
with the Java-based portlets that run on WebSphere Portal. These methods of
interaction do not replace the product-specific APIs, but facilitate the integration
of such products within the portal infrastructure.

The Collaborative Components provide standardized access to applications,
through an easy to use API that is optimized for a collaborative portal, and a
consistent security model across all Lotus Software family of products.

This API is written in Java and isn’t platform-specific, so it provides a
multiplatform solution, with no dependence on Ul-specific implementation.
Therefore, these components are very useful tools for writing pervasive portlets.
The services are the following:
» Infrastructure objects

— CSEnvironment

— CSCredentials

— CSFactory
» Java Service objects

— CSBaseService. This service is the base class for the other Java Service
objects.

Chapter 4. Using custom Domino JSP tag libraries 217

DominoService

QuickplaceService

PeopleService

DiscoveryServerService
» JSP custom tags

— People tags

— Menu tags

Further information on usage and services is available from the WebSphere
Portal Infocenter.

Note: The Lotus Notes productivity portlets that are installed with Portal are
not implemented with the DominoService object. Therefore, do not refer to
those portlets as examples. Instead, refer to the samples that are installed
with the Collaborative Components enterprise application (cs.ear).

The Java Collaboration Components API is explained in the next chapter
because it requires further Java knowledge. For now, our discussion
concentrates on the People tags components, which work with JSP Tag libraries.

PeopleService tags
The PeopleService tag library contains the following necessary tags:

people

» Displays person menu links according to the following factors:
— Portlet context (that is, where the portlet resides)
— The permission level of the specified user

— The Lotus Software products for advanced collaboration that are installed
and enabled in the portal environment.

» Added to a person's name string returned by the PeopleService object, the
person tag generates the HTML that renders the person link menu that
provides the following basic action for collaborating with the named person:

— Send e-mail

» If Sametime is installed and enabled to work with the Portal, then the person
tag also provides online status for the person link and the following additional
actions on the person menu:

— Chat
— Share

218 Portalizing Domino Applications for WebSphere Portal

— Available tools
— Add to Sametime List

» If Discovery Server is installed and enabled to work with the Portal, then the
person tag provides the following additional actions on the person menu:

— Show expertise profile
— Find documents authored by

peopleinit
Determines whether Sametime or Discovery Server, or both, are enabled to
work with a portal and generates the correct HTML and JavaScript for
initializing Sametime or enabling Discovery Server, or both. Establishes the
server connections between the Portal, the Sametime server, and the
Discovery Server, and provides automatic log-in to all servers.

Both the people and peopleinit tags generate HTML and require Java and
JavaScript on the client that are compatible with the WebSphere Portal.

4.7.2 Implementation of the technique

Now that your portlets are Click to Action enabled, the next step is to implement

people awareness by including one the PeopleService tags which is available on
WebSphere Portal. People awareness services are available at the JSP level and
are incredibly easy to use.

The enablement consists basically of two steps on each JSP you want to enable:
» Insert a JSP taglib directive on the JSP.

» Place the people tag around the names in the JSP of which you want to be
aware.

Enabling the CustomerList portlet

The CustomerList portlet consists only of one JSP file. Follow these steps to
enable the portlet:

1. Open the /jsp/CustomerList/View.jsp file.
2. Copy the following line at the beginning of the file:
<%@ taglib uri="/WEB-INF/t1d/people.t1d" prefix="peopleservice" %>

3. Inthe JSP file, in the results file of the display table, insert in the third column,
surrounding the <Domino:viewitem col="3"/> tag, the peopleservice tags as
follows:

<peopleservice:person><Domino:viewitem col="3"/></peopleservice:person>

Chapter 4. Using custom Domino JSP tag libraries 219

Important: Be careful when inserting the peopleservice tags: do not
include a line break or space between the tags and the name.

4. Save and close the View.jsp file.

Note: You can ignore the errors displayed in the tasks view since they will
find the reference once deployed on the WebSphere Portal.

Enabling the CustomerDetails portlet

The CustomerDetails portlet is composed of two JSPs. The View.jsp file doesn’t
display any names, so you do not need to enable people awareness on this file.
The CustomerDetails.jsp file displays people names, so you need to enable this
JSP.

1. Open the /jsp/CustomerDetails/CustomerDetails.jsp file.
2. Copy the following line at the beginning of the file:
<%@ taglib uri="/WEB-INF/t1d/people.t1d" prefix="peopleservice" %>

3. In the JSP file on the results table there is a row called Account Owner.
Enabile this field by including the following peopleservice tags:

<peopleservice:person><Domino:item

name="ownerName"/></peopleservice:person>

Important: Be careful when inserting the peopleservice tags: do not
include a line break or space between the tags and the name.

4. Save and close the CustomerDetails.jsp file.

Note: You can ignore the errors displayed in the tasks view since they will
find the reference once deployed on the WebSphere Portal.

Enabling the CustomerContacts portlet

The CustomerContacts portlet is composed of two JSPs. The View.jsp file
doesn’t display any names, so there is no need to enable people awareness in
this file. The CustomerContacts.jsp file displays people names, so you need to
enable this JSP using the following steps:

1. Open the /jsp/CustomerContacts/CustomerContacts.jsp file.
2. Copy the following line at the beginning of the file:
<%@ taglib uri="/WEB-INF/t1d/people.t1d" prefix="peopleservice" %>

220 Portalizing Domino Applications for WebSphere Portal

In the JSP file on the results table there is a column called Contact Name.
Enabile this field by including the peopleservice tags as follows:

<peopleservice:person><Domino:viewitem col="2"/></peopleservice:person>

Important: Be careful when inserting the peopleservice tags: do not
include a line break or space between the tags and the name.

Save and close the CustomerContacts.jsp file.

Note: You can ignore the errors displayed in the tasks view since they will
find the reference once deployed on the WebSphere Portal.

Enabling our CustomerSalesActivities portlet

The CustomerSalesActivities portlet is composed of two JSPs. The View.jsp file
doesn’t display any names, so there is no need to enable people awareness in
this file. The CustomerSalesActivities.jsp file displays people names, so you
need to enable this JSP using the following steps:

1.
2.

Open the /jsp/CustomerSalesActivity/CustomerSalesActivities.jsp file.
Copy the following line at the beginning of the file
<%@ taglib uri="/WEB-INF/t1d/people.t1d" prefix="peopleservice" %>

In the JSP file on the results table there are two columns called Sales Person
and Contact Name. Enable these fields by including the peopleservice tags
as follows:

<peopleservice:person><Domino:viewitem col="4"/></peopleservice:person>
</td>
<td>

<peopleservice:person><Domino:viewitem col="5"/></peopleservice:person>

Important: Be careful when inserting the peopleservice tags: do not
include a line break or space between the tags and the name.

Save and close the CustomerSalesActivities.jsp file.

Note: You can ignore the errors displayed in the tasks view since they will
find the reference once deployed on the WebSphere Portal.

Chapter 4. Using custom Domino JSP tag libraries 221

All of your portlets are now enabled, and they can be deployed in the WebSphere
Portal just as you did previously. You should see your portlets working as shown
in Figure 4-41.

2} 16M websphere Portal - Microsoft Internet Explorer

Fle Edt Wiew Favorites Tools Help ‘
Eoack - o - @ [A] 4| @ocarch Garavortes @vedin (3| B G 5] 7| inks ElRedbook M webSphers Portal {&]Locel 1 Websphers Portsl
Ageress [{€] bttp: itsotest-wps.cam itso o, comfwpsfmyportal)_s. 1551843/, codarf.ar 202066 107/ . 603/ cef 2504/, p/Za044# 2504 =] @a

Customer List Customer Details

Customer Name Customer # Account Owner [customer Name [IBM Corporation
Doe Inc. 1002 # Gary Someone [customer Number [t
IBM Corporation 1 & Michael Ticknor [Customer Address [One New Orchard Road
Portals-R-Us 500 + John Smith | Account bwner [michael Ticknor (353)
Wanda's World of Wigs 1234567 M Chris Heltzel | Date created [s/z/03
WP Experts 1001 o Gary [[IBM is the areatest IT company.

"

Customer Contacts -
Customer Sales
Contact Name |Phone Number

® Camilo Rojas |617-555-5555 [Date [activity | Sales Person [cContact [Made Sale?
|Monday, May 12, 2003 4:27:53 PM EOT [Sales Pitch |8 Ticknar, Michael 8 Bob Smith [No |
Back
|
TR g

Figuré 44 1 Wéustomer Information portlets with people awareness

4.8 Reference Material

The following references are helpful when exploring J2EE:

» Sun Microsystems J2EE Web site
http://java.sun.com/j2ee/

» Sun Microsystems JSP Web site
http://java.sun.com/jsp

» Introduction to JavaServer Pages - developerWorks®

http://www-105.1ibm.com/developerworks/education.nsf/java-onlinecourse-bytit
1e/882707E838C672A185256770004BDE72?0penDocument

» Using JSPs and custom tags within VisualAge for Java and WebSphere
Studio - developerWorks

http://www7b.software.ibm.com/wsdd/1ibrary/tutorials/vajwebsph353/Part-1/JS
P11Part-I.html&origin=cmp

» Domino and WebSphere Together, Second Edition, SG24-5955

Portalizing Domino Applications for WebSphere Portal

http://java.sun.com/j2ee/
http://java.sun.com/jsp

»

http://www.redbooks.ibm.com/redbooks/sg245955
WebSphere Studio Application Developer Programming Guide, SG24-6585
http://www.redbooks.ibm.com/redbooks/sg246585

For WebSphere Portal information relevant to this chapter, consult the following:

»

WebSphere Portal 4.2.1 Infocenter
http://publib.boulder.ibm.com/pvc/wp/42/index.html
Guide to WebSphere Portal

ftp://ftp.software.ibm.com/software/websphere/portal/pdf/Guide-to-Websphere
-Portal.pdf

WebSphere Portal Product Documentation
http://www7b.software.ibm.com/wsdd/zones/portal/proddoc.html
WebSphere Portal for Multiplatforms - Library
http://www-3.ibm.com/software/genservers/portal/library/

Access Integration Patterns using IBM WebSphere Portal, SG246267
http://www.redbooks.ibm.com/redbooks/sg246267

Portlet Development Guide

http://www7b.software.ibm.com/wsdd/zones/portal/portlet/portietdevelopmentg
uide.html

Portlet Best Practices Guide

http://www7b.software.ibm.com/wsdd/zones/portal/portiet/portletcodingguide]l
ines.html

When working with the Lotus Domino JSP tag libraries, the following reference is
helpful:

»

Lotus Domino Designer 6 Help

There is a chapter on the JSP Tag libraries that has further explanations to
the tags covered on this chapter.

Chapter 4. Using custom Domino JSP tag libraries 223

http://www.redbooks.ibm.com/redbooks/sg245955
http://www.redbooks.ibm.com/redbooks/sg246585
http://publib.boulder.ibm.com/pvc/wp/42/index
http://www7b.software.ibm.com/wsdd/zones/portal/proddoc.html
http://www-3.ibm.com/software/genservers/portal/library/
http://www.redbooks.ibm.com/redbooks/sg246267

224 Portalizing Domino Applications for WebSphere Portal

Portlet development using
Java: Technology review

This chapter describes a method of integrating Domino applications using Java
as a programming language. When you develop your own portlets in Java, you
are able to overcome the limitations that are inherent in the other options
described in this redbook.

Domino development and J2EE development generally employ different skill
sets. Therefore, when planning this chapter and the next, we considered
questions like: What does a Domino developer need to learn to get started with
J2EE-based programming, and what unique perspective can the Domino
developer bring to the J2EE world? The opposite point of view was also
considered: What does a J2EE developer need to know about Domino and how
to access data in Domino?

This chapter answers these questions by providing a very detailed review of
basic portal concepts, with specific reference to Java technology; as well as an
in-depth discussion Java development techniques.

Also in this chapter are some guidelines for portlet development in general, but
concentrating on topics pertinent to Domino portlet developers.

© Copyright IBM Corp. 2003. All rights reserved. 225

5.1 Overview

Use Java to portalize Domino applications when you need fully customizable
portlets. Advantages of this approach are that Java offers: a rich class library,
multithreading, code reuse, platform-independent applications, integration with
3rd party Java applications, object-oriented language features, advanced
architecture, inheritance and design patterns, just to mention a few.

Java is the base programming language, ultimately used by all portlets running
on WebSphere Portal. You are not limited by the functionality or the user
interactions provided by portlet builders or existing portlets, or by any scalability
limitations. When you create your own Java programs, you can deal with any
issues that might come up.

You can develop portlets which are very fast and scalable in accessing Domino.
To build such effective, scalable portlets, you should be aware of issues like
session management, object pooling, how Domino Objects are handled, memory
management, and so on. These issues are discussed in this chapter.

The disadvantages of developing in Java are that extensive Java programming
skills and portlet programming skills are required, and in many cases the
development time can be a lot longer than that of other integration techniques. In
addition, a fair understanding of Domino objects structure is required.

5.1.1 Technologies involved
The technologies discussed in this chapter are the following:
» Portlet
» Portlet API
» Domino Java architecture and Domino Java API
» How to handle Rich Text fields
» Collaborative Components API
» Object Pooling
» Logging
» Struts framework

In the following chapter, we put this information to use by providing examples of
adding functionality to portlets using these techniques.

226 Portalizing Domino Applications for WebSphere Portal

5.2 Technical introduction to portlets

A portlet is a server-side application that runs in the context of the WebSphere
Portal. It inherits from the javax.servlet.http.HttpServlet class, and as such, is
treated as a servlet by the application server.

The portlet is executed inside a Web container managed by the application
server. In the Portlet API, this container is referred to as the Portlet container.

It is not possible to directly execute the portlet functionality by addressing the
portlet via HTTP. Though a portlet may provide dual functionality as both a
servlet and a portlet, it is certainly a best practice to keep these Controller
functions separate. A portlet is visible on a portal page as a single small window;
each portal page may have many. The portlet is the content inside the window,
not the window itself. The window is defined by the selected skin.

More in-depth information about portlets is in IBM Websphere Portal V4
Developer's Handbook, SG24-6897.

5.2.1 Basic portlet terms

In order to fully understand some of the introductory topics, it is necessary to
define a few of the most basic terms used when discussing portlets. (Additional
information about basic portlet topics is in 1.3.1, “Introduction to portlets” on

page 9.)

Portlet window

This is the window that surrounds the portlet, including the title bar and any
border images.

State

This is the current state of the portlet window. Valid states are Normal,
Minimized, and Maximized.

Mode

This defines the current condition of the portlet. The modes that are available for
any particular user depend on the permissions for that user, the device they are
using to access the portlet and the configuration and implementation of the
portlet. The supported modes are View, Edit, Configure, and Help.

5.2.2 Model-view-controller (MVC) design pattern

To help you understand the role of a portlet and to help prepare you to develop
effective and well-designed portlets, a review of the Model View Control (MVC)

Chapter 5. Portlet development using Java: Technology review 227

architecture is necessary. Several benefits of the portlet architecture are
available to you only if you employ a good MVC design.

The Model View Control architecture is concerned with separation of
responsibilities. The objective, no matter how it is applied or to what type of
application, is to separate a system into tiers. Each tier should be small,
identifiable, self-contained, and reusable. These tiers are identified by the role
they play in the system. Each role in that system may have several classes
working in conjunction to achieve the goal of that role. This section covers the
three roles of MVC: Model, View and Control.

Though the MVC architecture was originally applied to Java Swing applications, it
has gained popularity and widespread acceptance throughout the J2EE
community.

The correct portlet design is broken down into three distinct parts: the model, the
view, and the controller (MVC). This design follows classical object-oriented
design patterns where each part is self-contained and modular, easing
maintenance, extensions, and advancements.

The model is the data to which the portlet provides an interface. Common data
models are XML documents, database tables, and even other Web applications.
The Java classes accessing the data model should have no knowledge of the
form that the data is in, the idea being that the model can be changed without
affecting the rest of the portlet application.

The view is the interface to the data model, presenting it in some usable format.
The view accesses the data to be rendered through the model interfaces and
thus should not care what format the model takes. It should also not understand
the relationships between data models or represent any of the business logic for
manipulating the data. Like the data model, the view should be independent and
interchangeable, allowing other views to be substituted without affecting the
business logic or the model. The typical embodiment of the view is through a
series of Java Server Pages (JSPs), but can also be through other rendering
techniques such as using XSL stylesheets to format XML documents.

The controller is the glue that ties the model to the view and defines the
interaction pattern in the portlet. The controller handles user requests from the
view and passes control to the appropriate model objects to complete the
requested action. The results of the action are then rendered back to the user by
the controller using appropriate view objects and perhaps model objects that
represent the data results of the completed action.

The controller resides in the portlet Java classes themselves. It knows the data
model only through the model interfaces and it knows the view only in that it
dispatches the view to render the data. Therefore, the controller logic can be just

228 Portalizing Domino Applications for WebSphere Portal

as easily replaced as the view and the model. Typical controller implementations
utilize intrinsic functions in the portlet API for coordinating action sequences
around user input, model data calculations, and result rendering.

As you design your portlets, it is extremely important to hold true to the MVC
design principles. Portlets typically evolve over time and are largely reused as the
foundation for new portlets. The ability to adapt a portlet to a new back-end data
provider, or add markup support for mobile devices, or enhance the portlet to
include user personalization, requires that each part of the portlet be
self-contained and extensible.

5.2.3 Portlet API overview

The WebSphere Portal is based on a portlet container that provides a runtime
environment in which portlets are instantiated, used, and finally destroyed.
Portlets rely on the portal infrastructure to access user profile information,
participate in window and action events, communicate with other portlets, access
remote content, lookup credentials, and to store persistent data. The Portlet API
provides standard interfaces for these functions. The portlet container is not a
stand-alone container like the servlet container. Instead, it is implemented as a
thin layer on top of the servlet container and reuses the functionality provided by
the servlet container.

IBM is working with other companies to standardize the Portlet API, making
portlets interoperable between portal servers that implement the specification.
The Portlet API offered in WebSphere Portal Version 4.2 is the first step toward
the Portlet API standardization. For more information about the portlet
specification, see:

http://jcp.org/jsr/detail/168.jsp

5.2.4 Portlets and the Serviet API

The abstract Portlet class is the central abstraction of the Portlet API. The Portlet
class extends HTTPServlet, of the Servlet API. All portlets extend this abstract
class indirectly, and inherit from HttpServlet, as shown in Figure 5-1.

Chapter 5. Portlet development using Java: Technology review 229

http://jcp.org/jsr/detail/168.jsp

+--javax.servlet.http.HttpServlet

|
+--org.apache. jetspeed.portlet.Portlet

\
+--org.apache.jetspeed.portlet.PortletAdapter

|
+--com.myCompany .myApplication.myPortlet

Figure 5-1 Portlet object inheritance structure

Therefore, portlets are a special type of servlet, with properties that allow them to
easily plug in to and run in the portal server. Unlike servlets, portlets cannot send
redirects or errors to browsers directly, forward requests, or write arbitrary
markup to the output stream. The portlet container relies on the J2EE
architecture implemented by WebSphere Application Server. As a result, portlets
are packaged similar to J2EE Web applications and are deployed like servlets.

Generally, portlets are administered more dynamically than servlets. For
example, the following changes can be applied without having to start and restart
the portal server:

» Portlet applications consisting of several portlets can be installed and
removed using the portal administration user interface.

» The settings of a portlet can be changed by an administrator with appropriate
access rights.

» Portlets can be created and deleted dynamically by administration portlets.
For example, the clipping portlet can be used to create new portlet instances
whenever an administrator creates a new clipping.

The portlet container relies on the J2EE architecture implemented by
WebSphere Application Server. As a result, portlets are packaged in WAR files
similar to J2EE Web applications and are deployed like servlets. Like other
servlets, a portlet is defined to the application server using the servlet
deployment descriptor (web.xml). This file defines the portlet's class file and
read-only initialization parameters.

The initialization parameters are set by the portlet developer and can be read by
the portlet using the PortletConfig object. The servlet deployment descriptor can
contain multiple Web applications, each defined by the <servlet> element. In
addition, each servlet definition can point to the same portlet class file, thus
creating different PortletConfig objects with different initialization parameters for
each portlet class instance.

230 Portalizing Domino Applications for WebSphere Portal

5.2.5 Portlet concepts

The following figure shows different variations of a portlet as it is created, placed
on a page, and accessed by users. Notice that the first two steps involve the use
of persistent data, but for the third step, the data is available only for the duration
of the session.

BN =71 PoriletSettings .
— | CONCTElE
@ Portlet
Portlet
PortletSettings Concrete
Portlet
PortletData
a User
S Portlet
| _________m8n| T QG&G\ Instance
Concrete Concrete
Portlet Portlet
Instance Instance = |
Portlet [
Instance |

Figure 5-2 Portlet life cycle

1. The portal administrator uses the administrative interface to deploy a new
portlet application WAR file or install a copy of a portlet. Either action creates
a concrete portlet, which is a portlet parameterized by a single PortletSettings
object. There can be many concrete portlets for each portlet. PortletSettings
are read/write accessible and persistent. The PortletSettings contain
configuration parameters initially defined in the portlet deployment descriptor.

The use of concrete portlets allows many instances of a portlet to run with
different configurations, without creating extra portlet class instances. During
the lifecycle of a single portlet, many concrete portlets can be created and
destroyed. There is no object that explicitly represents the concrete portlet.
The same concrete portlet can be shared across many users.

2. The portlet is placed on a page by a user or an administrator. This creates a
concrete portlet instance, which is a concrete portlet parameterized by a
single PortletData object. There can be many concrete portlet instances per
concrete portlet. PortletData stores persistent information for a portlet that

Chapter 5. Portlet development using Java: Technology review 231

has been added to a page. For example, a user can edit a stock quotes portlet
and save a list of stock symbols for the companies to track.

3. The scope of the PortletData depends on the scope of the page that the
concrete portlet is on.

a. If an administrator puts a concrete portlet on a group page, then the
PortletData object contains data stored for the group of users. This holds
true for a group of users who have view access to the page. However, if
users have edit access to the portlet on a group page, then a new concrete
portlet instance is created for each user that edits the portlet. In this case,
PortletData contains data for each user that edits the portlet.

b. If a concrete portlet is put on a user's page, the PortletData contains data
for that user.

When a user accesses a page that contains a portlet, that creates a user portlet
instance. When a user logs into the portal, the portal server creates a
PortletSession for each of the user's portlets. A concrete portlet instance
parameterized by a PortletSession is known as a user portlet instance. There
can be many user portlet instances per concrete portlet instance.

A user portlet instance is a concrete portlet instance parameterized by a single
PortletSession. There can be many user portlet instances per concrete portlet
instance. The PortletSession stores transient information related to a single use
of the portlet.

5.2.6 Portlet applications

Portlet applications provide the means to package a group of related portlets that
share the same context. The context contains all resources, for example, images,
properties files, and classes. All portlets must be packaged as part of a portlet
application.

Concrete portlet application

A concrete portlet application is a portlet application parameterized with a single
PortletApplicationSettings object. For each portlet application, there may be
many concrete portlet applications. PortletApplicationSettings are read/write
accessible and persistent. There is no object that explicitly represents the
concrete portlet application.

232 Portalizing Domino Applications for WebSphere Portal

Concrete
Portlet

Application A
Porltlet_ PorfletApplicationSettings | —
Application ~ jj————————>" l
T

=

PortletApplicationSettings Concrete
— Portlet
Application B
|______#G6]
[______n~e]

Figure 5-3 Concrete portlet applications

A concrete portlet application contains at least one concrete portlet from the
portlet application, but it is not required to contain all of them.

Portlet applications provide no code on their own but form a logical group of
portlets. Beside this more logical gain, portlets of the same portlet application
can also exchange messages.

5.2.7 Basic elements of the Portlet API

This section describes the basic elements of the Portlet API. Figure 5-4 shows a
map of many of the common objects in the Portlet API.

Chapter 5. Portlet development using Java: Technology review 233

e« Portlet

extended by —> PortletAdapter

e semice()! — PortletResponse
e createlRI) — PortletURI

» semice()! — PortletRequest
e getPortletSettings() — PortletSettings
e getPortletdpplicationSettings —» Portlet&pplicationSettings

s gethode() —> Partlet.Mode
o getClient() — Client
e getDatall —> FPortletData

o getWindow() —> PortletVyindow
o getWindowState() — Portlet\VWindow State

e getPortletSession() —» PortletSession
s getlzer(] —> Lizer

o getPortletConfigl) — PortletCanfig
o getContext() —» PortletContext
e qgetlogl) — Fortletlog

s getService() —> PortletService

! Port letREequest and Port letResponse are passed by helper methods of Portlet®dapter, such as doliewd.

Figure 5-4 Portletﬁ common objects

Portlet class

The abstract Portlet class is the central abstraction of the Portlet API. All portlets
extend this abstract class by extending one of its subclasses, such as
PortletAdapter, that provide methods helpful for the developer.

Portlet life cycle
The portlet container calls the following methods of the abstract portlet during the
portlet's life cycle:
> init()
The portlet is constructed, after portal initialization, and then initialized with
the init() method. The portal always instantiates only a single instance of the

portlet, and this instance is shared among all users, exactly the same way a
servlet is shared among all users of an application server.

» initConcrete()

After constructing the portlet and before the portlet is accessed for the first
time, the concrete portlet is initialized with the PortletSettings.

234 Portalizing Domino Applications for WebSphere Portal

> service()

The portal calls the service() method when the portlet is required to render it's
content. During the life cycle of the portlet, the service() method is typically
called many times. For each portlet on the page, the service() method is not
called in a guaranteed order and may even be called in a different order for
each request.

» destroyConcrete()

The concrete portlet is taken out of service with the destroyConcrete()
method. This can happen when an administrator deletes a concrete portlet
during runtime on the portal server.

» destroy()

When the portal is terminating, portlets are taken out of service, then
destroyed with the destroy() method. Finally, the portlet is garbage collected
and finalized.

Wrapper classes

Portlets do not extend the abstract Portlet class directly, but rather extend
PortletAdapter or any other helper class that in turn extends Portlet. Extending
one of these classes helps protect your portlet from changes in the abstract
Portlet class. Moreover, it saves you the work of having to implement all of the
methods of the Portlet interface, even if your portlet does not need to use them
all. Using the PortletAdapter class, you only have to overwrite the methods you
really need.

In its service() method, the PortletAdapter class invokes methods corresponding
to the portlet mode. Portlets that extend this class can overwrite the doView(),
doEdit(), and doHelp() methods without having to test the mode or write a
specific service() method.

5.2.8 Frequently used objects

The following objects are most often used by a portlet:
» PortletRequest

» PortletResponse

» PortletSession

Each of these objects is an extension of its counterpart in the Servlet API.

Chapter 5. Portlet development using Java: Technology review 235

HttpSession HttpRequest HttpResponse

: ﬁ +

PortletSession PortletRequest PortletResponse

Figure 5-5 Portlet objects and their counterparts in the Servlet API

PortletRequest

The PortletRequest object is passed to the portlet through the login(),
beginPage(), endPage(), and service() methods, providing the portlet with
request-specific data and the opportunity to access further important information
as listed below.

Attributes

Attributes are name/value pairs associated with a request. Attributes are
available only for the scope of the request. The portlet can get, set, and remove
attributes during one request. In the following example we are adding, getting,
and removing an attribute.

portletRequest.setAttribute (“key”, objectToStore);
portletRequest.getAttribute(“key”);
portletRequest.removeAttribute(“key™);

Parameters

Parameters are name/value pairs sent by the client in the URI query string as
part of a request. Often the parameters are posted from a form. Parameters are
available for the scope of a specific request. The portlet can get but not set
parameters from a request. Notice that it differs from the attribute, since you can
only get the parameters that are sent from the client, and the attributes can be
set and modified at the Java code, so use the attributes when you are trying to
send special attributes to the redirected JSP page. The extraction of a parameter
would be similar to the following:

portletRequest.getParameter(“name0fTheHTMLfield”);

Client

The Client object encapsulates request-dependent information about the user
agent of a specific request. Information from the Client includes the manufacturer
of the user agent or the type of markup that the client supports. The Client is

236 Portalizing Domino Applications for WebSphere Portal

extracted from the PortletRequest using the getClient() method. The following
information can be obtained from the Client:

» User agent

The portlet can get the String sent by the user agent to identify itself to the
portal. The following code will return the user agent information:

portletRequest.getClient().getUserAgent();
» Markup name

The portlet can get the String that indicates the markup language that the
client supports, for example, "wml".

portletRequest.getClient().getMarkupName();
» MIME type

The portlet can get the String that indicates the MIME types supported by the
client (for example, text/vnd.wap.wml). If the portlet supports multiple types of
devices, it should get the markup name rather than the MIME type.

portletRequest.getClient().getMimeType();
» Capabilities

The Capability object contains more detailed information than the markup
type about what the client can support, such as the level of HTML, JavaScript,
or WML tables.

portletRequest.getClient().isCapableOf(Capability);

User data

The PortletData object represents data for a concrete portlet instance that is
saved to persistent store. For example, a user can set a portlet e-mail application
to check for new mail every 30 minutes. This preference is stored for the instance
in the PortletData object.This is an excellent tool for storing user-portlet
information without having to mind the persistence infrastructure.

portletRequest.getData().setAttribute(“key”, serializedObject);
portletRequest.getData().store();
portletRequest.getData().removeAttribute (“key”);
portletRequest.getData().removeAllAttributes();

Session

The PortletSession represents user-specific, transient data for more than one
request. In contrast with the request, which does not retain data after the request
is completely processed, session attributes can be remembered and saved over
more than one request.

portletRequest.getPortletSession().setAttribute(“key”,object);
portletRequest.getPortletSession().getAttribute(“key”);

Chapter 5. Portlet development using Java: Technology review 237

portletRequest.getPortletSession().removeAttribute(“key”);

Portlet settings

The PortletSettings object represents the configuration for a concrete portlet that
is saved to persistent store. For example, an administrator can set to which host
and port a Stock portlet should connect to get live data. This preference is stored
for the concrete portlet in the PortletSettings object.

portletRequest.getPortletSettings().setAttribute(“key”,object);
portletRequest.getPortletSettings().store();
portletRequest.getPortletSettings().getAttribute(“key”);
portletRequest.getPortletSettings().removeAttribute(“key”);

Mode
Portlet.Mode provides the current or previous mode of the portlet.

portletRequest.getMode();
//Will return a Portlet.Mode static value

PortletWindow

The PortletWindow object represents the state of the current portlet window. The
portlet can access this object to determine if the portlet is currently maximized,
minimized, or rendered in its normal view.

ModeModifier

This object can be used in a portlet action to set the portlet mode to its current,
previous, or requested mode before the portlet is rendered. For example, a
portlet in edit mode could process a user action and return the portlet to edit
mode for more input before returning to view mode.

portletRequest.setModeModifier(Portlet.ModeModifier);

PortletResponse

The response object encapsulates information to be returned from the server to
the client. PortletResponse is passed via the beginPage(), endPage(), and
service() methods and can be used by the portlet to return portlet output using a
Java PrintWriter. The response also includes methods for creating the PortletURI
object or qualifying portlet markup with the portlet's namespace.

Use one of the following methods to create the PortletURI:

createURI()
Creates a PortletURI object pointing to the calling portlet with the current mode.

portletResponse.createURI();

238 Portalizing Domino Applications for WebSphere Portal

createURI(PortletWindow.State state)

Creates a PortletURI object pointing to the calling portlet with the current mode
and given portlet window state.

portletResponse.createURI(PortletWindow.State);

createReturnURI()

Creates a portletURI pointing at the caller of the portlet. For example,
createReturnURI() can used to create a back button in an edit mode.

Each portlet runs in its own unique namespace. The encodeNamespace()
method is used by portlets to bring attributes in the portlet output to avoid name
clashes with other portlets. Attributes can include parameter names, global
variables, or JavaScript function names.

portletResponse.createReturnURI();

PortletSession

The PortletSession holds user-specific data for the concrete portlet instance of
the portlet, creating a portlet user instance. Concrete portlet instances differ from
each other only by the data stored in their PortletData. Portlet user instances
differ from each other only by the transient data stored in their PortletSession.
Any persistent data must be stored using PortletData. Information stored in a
portlet’s instance variables is shared between all concrete portlet instances and
even between all concrete portlets—with read and write access. Make sure you
do not use instance attributes for user-specific data.

On the other hand, you have to be cautious about what the portlet adds to the
session, especially if the portlet ever runs in a cluster environment where the
session is being serialized to a shared database. Everything being stored in the
session must be serializable, too.

Like the HttpSession, a PortletSession is not available on an anonymous page.
However, in cases where an administrator places a portlet on an unauthenticated
page, such as the Welcome page shipped with WebSphere Portal, the portlet
should provide code to handle it.

During login, a PortletSession is automatically created for each portlet on a page.
To get a PortletSession, the getSession() method (available from the
PortletRequest) has to be used. The method returns the current session or, if
there is no current session and the given parameter “create” is true, it creates
one and returns it. For an example inspect the Portlet Request object.

Chapter 5. Portlet development using Java: Technology review 239

5.2.9 Configuration objects

The following objects are used by the portlet to retrieve and store data,
depending on how the data is used:

» PortletConfig

» PortletSettings

» PortletApplicationSettings
» PortletData

PortletConfig

PortletConfig provides the non-concrete portlet with its initial configuration. The
configuration holds information about the portlet class. This information is valid
for every concrete portlet derived from the portlet.

A portlet’s configuration is initially read from its servlet deployment descriptor.
This information is set by the portlet developer. The configuration is read-only
and cannot be changed by the portlet.

The PortletConfig is passed to the portlet in the init() method of the abstract
Portlet and is used to access portlet-specific configuration parameters using
getlnitParameters(). PortletConfig parameters are name/value pairs available for
the complete life cycle of the non-concrete portlet. Non-concrete portlet
parameters are defined by the <init-param> tag in the servlet deployment
descriptor.

getPortletConfig().getInitParameter (“parameterName™);
getPortletConfig().getContext().send(“string”,PortletMessage);
getPortletConfig().supports(Portlet.Mode);
getPortletConfig().supports(PortletWindow.State);

PortletSettings

The PortletSettings object provides the concrete portlet with its dynamic
configuration. The configuration holds information about the concrete portlet.
This information is valid for every concrete portlet instance of the concrete
portlet.

A concrete portlet's configuration is initially read from the portlet deployment
descriptor. The configuration is read-only and can be written by the portlet only
when the portlet is in configure mode. This information is normally maintained by
the portal administrator and may be changed while the portal server is running.
The portlet can get, set, and remove attributes during one request. To commit the
changes, the store() method has to be called.

240 Portalizing Domino Applications for WebSphere Portal

The PortletSettings object can be accessed with the getPortletSettings() method,
available from the PortletRequest. Often, it is used to access portlet-specific
configuration parameters using getAttribute(). Attributes are name/value pairs
available for the complete life cycle of a concrete portlet. Concrete portlet
attributes are defined by the <config-param> tag in the portlet deployment
descriptor.

portletRequest.getPortletSettings().setAttribute(“key”,object);
portletRequest.getPortletSettings().store();
portletRequest.getPortletSettings().getAttribute(“key”);
portletRequest.getPortletSettings().removeAttribute(“key”);

PortletApplicationSettings

The PortletApplicationSettings object provides the concrete portlet application
with its dynamic configuration. The configuration holds information about the
portlet application that is shared across all concrete portlets included in the
application.

A concrete portlet application's configuration is initially read from the portlet
deployment descriptor. The configuration is read-only and can be written by the
portlet only when the portlet is in configure mode. This information is normally
maintained by the portal administrator and may be changed while the portal
server is running. A portlet in the application can get, set, and remove attributes
during one request. To commit the changes, the store() method has to be called.

The PortletApplicationSettings can be accessed with the getApplicationSettings()
method, available from the PortletSettings object. It is used to access
portlet-specific configuration parameters using getAttribute(). Attributes are
name/value pairs available for the complete life cycle of a concrete portlet
application. Concrete portlet application attributes are defined by the
<context-param> tag in the portlet deployment descriptor.

portletRequest.getPortletSettings().getApplicationSettings().setAttribute(*
key”,object);
portletRequest.getPortletSettings().getApplicationSettings().store();
portletRequest.getPortletSettings().getApplicationSettings().getAttribute(*
key”) ;
portletRequest.getPortletSettings().getApplicationSettings().removeAttribut
e(“key”);

PortletData

PortletData holds data for the concrete portlet instance. For each occurrence on
a page there is a concrete portlet instance. The PortletData contains persistent
information about the concrete portlet instance, while the PortletSession contains
only the transient data of the user portlet instance.

Chapter 5. Portlet development using Java: Technology review 241

There is one concrete portlet instance for each occurrence of a portlet on a page.
A page can be owned by either a single user (personal page) or by a single group
of users (group page). PortletData contains user-specific data on a personal
page and group-specific data on a group page.

The PortletData object stores attributes as name/value pairs. The portlet can get,
set, and remove attributes during one request. To commit the changes, the
store() method has to be called. The data is read-only and can be written by the
portlet only when the portlet is in edit mode.

portletRequest.getData().setAttribute(“key”, serializedObject);
portletRequest.getData().store();
portletRequest.getData().removeAttribute (“key™);

portletRequest.getData().removeAllAttributes();

5.2.10 Miscellaneous objects

The following miscellaneous objects are used by portlets:
» PortletContext

» PortletWindow

» User

PortletContext

The PortletContext interface defines a portlet's view of the portlet container within
which each portlet is running. PortletContext also allows a portlet to access
resources available to it. For example, using the context, a portlet can access the
portlet log, access context parameters common to all portlets within the portlet
application, obtain URL references to resources, or access portlet services.

The most important information related to the PortletContext is described in the
following paragraphs.

InitParameters

Parameters are name/value pairs available to all portlets within the Web
application. These are defined in the Web deployment descriptor under the
<context-param> element. For example, if a group of portlets share a context
parameter called “Webmaster” that contains the portal site's administrator e-mail,
each portlet could get that value and provide a “mailto” link in their help.

Attributes

Attributes are name/value pairs available to all portlets within the Web
application. The portlet can get, set, and remove attributes. Attributes of the
context are stored on a single machine and are not distributed in a cluster.

242 Portalizing Domino Applications for WebSphere Portal

getPortletConfig().getContext().setAttribute(“key”, object);
getPortletConfig().getContext().getAttribute (“key”);
getPortletConfig().getContext().removeAttribute(“key”);

Localized text

The getText() method is used by the portlet to access resource bundles within a
given locale.

getPortletConfig().getContext().getText (“bundle”, “key”, “locale”);

Resources

It is through the PortletContext that a portlet can load or include resources
located in the portlet's application scope. Available methods are include() and
getResourceAsStream(). The include() method is typically used to invoke JSPs
for output.

getPortletConfig().getContext().include(“JSP”,request,response);
getPortletConfig().getContext().getResourceAsStream(“path”);

Messaging

Through messaging it is possible to communicate between portlets and share
data or send notifications. A message is sent by using the send() method. For
more information, see Portlet messaging.

getPortletConfig().getContext().send(“portletName”, PortletMessage);

Portlet services

The PortletService object allows portlets to use pluggable services via dynamic
discovery.

getPortletConfig().getContext().getService(service);

PortletWindow

The PortletWindow object represents the window that encloses a portlet. For
example, on an HTML page, the portlet window can typically be rendered as a
table cell. The portlet window can send events on manipulation of its various
window controls, like when the user clicks minimize or close. The portlet, in turn,
can interrogate the window about its current state. For example, a portlet may
render its content differently depending on whether its window is maximized or
not. The PortletWindow is available using the getWindow() method of the
PortletRequest object.

PortletWindow.getWindowState();
PortletWindow.setWindowState (PortletWindow.State);

Chapter 5. Portlet development using Java: Technology review 243

User

The User class represents the users of the portal. The User class contains
methods for accessing attributes that make up the user profile, such as the user's
full name or the username. The User class abstracts the underlying physical
implementation of the one or more data stores which actually hold the user
information.

In WebSphere Portal, the User class is part of the com.ibm.wps.puma package.
This class and several others represent the portal server's API to the user
subsystem in Member Services. To obtain the Javadoc for this API, locate the
document titled “Javadoc for the WebSphere Portal User and Group objects” on
the software support site:

http://www.ibm.com/software/support

The classes in the com.ibm.wps.puma package provide the only API available to
access attributes of the user. In subsequent releases of WebSphere Portal, a
new API will become available to access the new features of the user subsystem.
In that time frame, the com.ibm.wps.puma package will be maintained for a time
for backward compatibility, but will no longer be enhanced to accommodate new
function.

Note: The getUser() method is located at the PortletRequest and PortletSession.
The portletsession.getUser() method is deprecated and, in subsequent releases,
will only return null.

getFamilyName();
getFullName();
getGivenName();

portletRequest.getUser().
).
).
).getID();
).
).
).

portletRequest.getUser(
portletRequest.getUser(
portletRequest.getUser(

r(

portletRequest.getUse getlLastLoginTime();
portletRequest.getUser().getNickName();
portletRequest.getUser().getUserID();

5.2.11 Poritlet events

Portlet events contain information about an event to which a portlet might need to
respond. For example, when a user clicks a link or button, this generates an
action event. To receive notification of the event, the portlet must have an event
listener implemented within the portlet class.

» Action events: Generated when an HTTP request is received by the portlet
container that is associated with an action, such as when the user clicks a
link.

» Message events: Generated when another portlet within the portlet
application sends a message.

244 Portalizing Domino Applications for WebSphere Portal

http://www.ibm.com/software/support

» Window events: Generated when the user changes the state of the portlet
window.

A portlet has a different processing and rendering sequence than a servlet. A
servlet does all of its processing in the service() method. A portlet, on the other
hand, uses a two-phase processing that is split between an action processing
and service. This split is necessary to accommodate communication between
portlets before rendering output in the service stage. The action processing is
guaranteed to complete before a portlet is called to render.

During action processing, the portlet implements an ActionListener interface. The
ActionListener interface provides the actionPerformed() method, to which an
ActionEvent object is passed. When a user clicks on a link or a submit button, an
ActionEvent can be generated. The portlet action can be obtained from the
ActionEvent, which describes the triggering event. When the actionPerformed()
method is invoked, a response object is not available because this is not a
rendering step. All state changes should be handled during action processing.

Portlets should use the service phase only to render portlet output. The service()
method is not only called following the actionPerformed() processing when a user
clicks on a link or button in a portlet, but is also called when the portal page is
refreshed. Thus, given a page with two portlets, A and B, when the user clicks on
a link in portlet A, actionPerformed() and doView() is called for portlet A, but only
the doView() method is called for portlet B. Once the content generation phase
has started, no further events will be delivered. For example, messages cannot
be sent from within the beginPage(), service(), and endPage() methods. The
resulting message event would not be delivered and is essentially discarded.

The event listener is implemented directly in the portlet class. The listener can
access the PortletRequest from the event and respond using the PortletRequest
or PortletSession attributes.

Action events

An ActionEvent is sent to the portlet when an HTTP request is received that is
associated with a portlet action. To receive action events, the portlet class must
implement the ActionListener interface and a portlet action. A portlet action can
be one of the following types:

» Simple portlet action String
» PortletAction object

These actions are explained in the following paragraphs.

Chapter 5. Portlet development using Java: Technology review 245

Simple portlet action String

Actions created as simple actions can be executed multiple times, enabling a
user's back button to work. Links created with simple portlet actions are
represented in the URL rather than in the session. Therefore, portlets with simple
actions can be placed on an anonymous page where no session exists. Simple
portlet actions are associated with action events using the getActionString()
method.

PortletURI.addAction(String simpleAction);
String ActionEvent.getActionString();

Simple portlet actions are not available in the Portlet API prior to WebSphere
Portal Version 4.2. A portlet can determine if the portal server it is running on
supports simple actions or not by checking the Portlet API version. The version of
the Portlet API on servers that support simple actions has changed from 1.1 to
1.2. Here is example code which illustrates how to check for simple action
support:

if ((portletContext.getMajorVersion() <= 1) &&
(portletContext.getMinorVersion() <= 1))
{

// cannot use simple actions
} else {
// simple action support is present on this server

}

PortletAction object

The PortletAction object has been deprecated in favor of simple portlet action
strings. It is maintained in the Portlet API to support existing portlets that use
PortletActions.

Window events

A WindowEvent is sent by the portlet container whenever a user clicks on one of
the control buttons that change the window's state, such as maximize, minimize
or restore. A WindowEvent can be used, for example, to display more information
when the user maximizes the portlet than would be shown in its normal state. To
receive window events, the WindowListener interface must be implemented at
the portlet class.

The Portlet API provides a WindowAdapter class that implements empty
methods of the WindowListener. By extending WindowAdapter, the portlet
developer needs to implement only those callback methods needed by the
portlet. Without the WindowAdapter, you must implement all callback methods,
even if the method is empty.

246 Portalizing Domino Applications for WebSphere Portal

Message events

Message events can be sent from one portlet to others if the recipient portlets
are members of the same portlet application and are placed on the same page
as the sending portlet. Additionally, a DefaultPortletMessage can cross portlet
application boundaries and may be sent to all portlets on a page. A
MessageEvent can be sent actively to other portlets only when the portlet is in
the event processing cycle of the portlet container, otherwise an exception is
thrown. There are two different types of messages:

» Single addressed messages: Messages sent to a specific portlet by
specifying the portlet name on the send() method

» Broadcast messages: Messages sent to all portlets on the page

Message events are useful when changes in one portlet should be reflected in
another one. An object with the type PortletMessage has to be implemented and
is passed via the MessageEvent. The portlet receiving the message must
implement the MessagelListener interface and an object with the type
PortletMessage.

5.3 Accessing Domino data from portlets using Java
and CORBA

You can access data residing in a Domino server from a portlet using Java
language, where CORBA serves as a middleware distributed environment for a
Domino Object Model (DOM) back-end classes. In practice, you will implement
this through the set of Java interfaces contained in the lotus.domino package.

Overview

Figure 5-6 on page 248 illustrates the components of portlet integration to
Domino.

Chapter 5. Portlet development using Java: Technology review 247

Domino Server WebSphere Application Server

-530 configuration -850 configuration

WebSphere Portal

Demine Object Model envirenment .
Jawva Envirenment

—zess'ijon -Paortlet AP
-database -Java Domine AP
Databasze s SwiEw PROTOCOLS FPerlet and &0 on..

-document

-zl Dl OPACORBA,

and a0 ch.. Jocal

-remote

ﬁ HTTP

-Configuration for DICP and
HTTF

Figure 5-6 Overview of integration from portlet to Domino data

» You have to enable single sign-on (SSO) between the Domino server and the
Websphere Application server. Details about implementing SSO are in the
Lotus Domino Administrator 6 Help database.

» The Domino environment consists of Domino Object Model, such as session,
database, views, documents. Protocols (DIIOP and HTTP) are used in
implementing physical connection between Domino and the Portlet. You need
to configure your Domino server to use DIIOP.

» In the Portal, you have a Java environment to develop portlets using Portlet
API, and Domino Java API for accessing Domino Objects and rendering
Domino data to the portlet.

We describe these components in more detail in this section to make this
integration technique clear.

Important: The set of Java interfaces contained in the lotus.domino package
will implement integration from the portlet to Domino.

Java

Java is one of the most important and commonly used programming languages,
and as we have already mentioned, portlets are built with Java language.

248 Portalizing Domino Applications for WebSphere Portal

Domino offers you the option to write your applications in Java. Domino 6.0 and
later supports Java programs written in JDK 1.3 and SDK 2.0. (These tools are
discussed in more detail in 6.1, “Software and tools used” on page 306.

CORBA

CORBA, or Common Object Request Broker Architecture, is an open standard
defined by the Object Management Group (OMG). CORBA serves as
middleware for a distributed computing environment whereby clients can invoke
methods on remote APlIs residing on other computers. CORBA uses Internet
Inter-ORB Protocol (IIOP) for communication over a TCP/IP network.

CORBA/IIOP support enables developers to create portlets that can be remotely
invoked in Domino services. In addition, it enables information to be processed
efficiently over networks within an open standards-based framework and to
distribute work effectively between clients and servers, ultimately lowering the
cost of ownership.

Advantages to using CORBA are:
» You can use Domino Object Model (DOM) back-end classes.
» The client does not have to deal with issues such as networking or security.

» CORBA allows many different portlets to use the same objects (not copies of
the objects). The latest version of the object is always used.

DIIOP

DIIOP, or Domino Internet Inter-ORB, is the Domino task that allows external
CORBA programs to attach to, and manipulate Domino databases. Most notably
this allows Java programs, or portlets to connect to Domino. The remote methods
use CORBA classes included in the file NCSO.jar/NCSOW.jar shipped with
Domino and require that the DIIOP task is running on the server where the
session object is to be obtained.

Attention: Portlets can use DIIOP to access objects located in Domino.

Local or remote access to Domino

Domino supports both local and remote access using virtually identical object
models. Both options are available through the identical set of Java interfaces
contained in the lotus.domino package. The only difference is the .jar file you put
in your portlet development environment: notes.jar for local access, or ncso.jar for
remote access. Ncso.jar is for all Java environments except WebSphere; there
you should use ncsow.jar. All of these files are shipped with Domino server.

Chapter 5. Portlet development using Java: Technology review 249

The coding is the same whether your objects are on the same machine (local) as
your Portlet Java code (or JSP), or on some other machine on the network
(remote). This is a big win in terms of development simplicity.

Keep in mind the following issues related to thread management:

» When using the local Domino classes from any Java program, you're
essentially calling through a thin layer of Java code into the Domino back-end
code, which is implemented in C++. The Java wrapper classes use a standard
Java-to-C calling mechanism, known as Java Native Interface (JNI), to access
the real Domino classes in the product's .dlls (or whatever the
platform-specific equivalent of a .dll is). The Domino code is loaded “in
process” in the Java Virtual Machine (JVM), which is great from the point of
view of performance: You're getting the best possible speed out of the
hook-up between the Java and C code—everything is right there in the
computer's memory. On local use you need to manage threads, and initialize
and terminate them properly.

» If you use the remote object library for Domino (the CORBA classes), you
aren't accessing any Domino C/C++ code from within the JVM's process
space, and there aren't any special requirements for thread initialization or
termination. You can instantiate a Session object (or any object in the Domino
hierarchy) and keep it around for re-use later. This is a real advantage,
although there is a performance hit by having all calls remote across a
network.

Even if you're using the CORBA classes to communicate with a Domino
server on the same machine as your WebSphere program, you still pay for
having all method invocations processed remotely. Extra time is used for:
marshalling the arguments, formatting data according to the IIOP wire
protocol specification, transmitting the call, de-marshalling the parameters,
finding the remote object to invoke, and so on. The bytes may not actually go
out over the network, but they have to travel through your network adapter
card and be processed on both ends of the conversation as if there were a
network cable in between.

In a real-life production portal environment you probably will never face an actual
case where you have installed WebSphere Portal server together with Domino
Server on the same machine. However, this may be the case in a very small
production environment or in a testing and development environment. From a
performance point of view it's not ever recommend to install them on the same
machine.

To summarize:

» Local access has much faster access to Domino calls, but does things more
repetitively.

250 Portalizing Domino Applications for WebSphere Portal

» Remote access is a “cleaner” architecture, requiring fewer actual calls.

Mechanism of the CORBA sessions for Domino

When CORBA is used to access the Domino server, the objects that are
instantiated in your portlet code do not contain any functional methods in the
same way as local objects do.

The portlet is the client, and the CORBA objects are the Session, Database,
View, and Documents that the portlet creates at various times.

When CORBA objects are created, what you actually get is a stub to manipulate
on the client. A second object—the real one if you like—is created on the server
and linked with your stub. This stub contains all the same methods that the real
object contains, but instead of the same functional code, they simply contain
code to serialize the method call over the network so that the actual method is
executed on the server by the real object.

WebSphere Portal server Domino

Fortlet

e

t‘&'ﬂf:',‘,'!fi‘r’ﬂ..d Tinp sersom ta don 1 . -BBETICh
STUB OF OpJECT — | CBJECT -database

SeNhNolHVhlsnm Rﬂealst S.LLD Man - ey

;::ﬁ:v[:‘:‘uﬁ::::-?}‘um:sa;ss -document

FaprerlTRL: hitpeTeeatest-dam cum e f —arcl

and 2o cn..

Figure 5-7 Mechanism of CORBA, stub of object versus real object

For example, the Session instance hangs around until you recycle it, or until the
connection to Domino times out. All Domino objects created using this Session
likewise resides on the remote Domino machine. Any method invocations you
make are sent over the network to the server and executed there. What look like
local Java object instances are really just instances of proxy objects, whose only
job is to communicate with the real objects over on the Domino server. Recycling
is a really important issue when you are using Domino Java API. For more
information, see “Recycling Domino objects” on page 257.

Enabling Domino server for DIIOP connection

DIIOP can be loaded manually at the server console by typing 1oad diiop, or it
can be started automatically by including it in the line in notes.ini which starts
with ServerTasks=. It can also be started through the Domino Administrator client
on the Server tab.

Chapter 5. Portlet development using Java: Technology review 251

DIIOP needs some slight configuration changes in the server document to
ensure that it can bind to the port specified (63148 by default) on the local host
machine. The DIIOP settings are shown in Figure 5-8.

The fully qualified host name of the server in the server document must also be

resolvable to the machine's IP address. You may need to add a line in the hosts

file of the server's operating system (/etc/hosts on most UNIX/Linux machines, or
c:\winnt\system32\etc\drivers\hosts on Windows).

Wwieh I Directu:-tyl hot ail I DIIOF'I Remaota Debug Managerl

TCRIP port humber: F3148
TCHIP port status: Enabled
Enforce server access Mo
zetings:

Authentication options:

Mame & passyword: Yes
Anonymous: Yes
S5L port number: 63149
S5L port status: Dizabled
Authentication options:
Client cerificate: [,
Mare & passwaord: Mo
Ananymaous: ez

Figure 5-8 DIIOP settings in the server document

You have to also specify access control for the DIIOP. This can be done on the
Security tab of the server document. Enter the required user names to the fields
shown in Figure 5-9.

Run restricted administrators
Javal)avazcriptCOM:
Run unrestricted administrators

JavallavascriptfiCO:

Figure 59 Setting up ACL for DIIOP in server document

More information about how to configuring DIIOP for Domino is found in the
Lotus Domino Administrator 6 Help database.

When loaded at the Domino server, the DIIOP task creates a file named
DIIOP_IOR.TXT in the HTML directory, under the Domino directory. The file
should be in ASCII format. DIIOP provides to the client an IOR number that is
basically readable, but may make no immediate sense. The starting signature is
"IOR:". IOR numbers presents information about the Domino server; you can

252 Portalizing Domino Applications for WebSphere Portal

also use this IOR number to create a session to Domino instead of using the
server name.

DIIOP appears to need DNS for name resolution. This was more apparent on the
iSeries™ and zSeries® machines. When using a Host file or no known name
resolution, loading DIIOP may respond that it is starting on host.domain.root,
then end with the error "Cannot determine hostname or host ip address." If
this happens, fix your DNS resolution and try again.

DIIOP-related console commands

The Tell commands defined in Table 5-1 relate to DIIOP tasks. You can issue
them from the Domino Server console.

Table 5-1 DIIOP-related console commands

Command Result

Tell DIIOP Provide a list of the configuration data that DIIOP is using from the Domino Directory.
Dump Config Using dump, the configuration is written to the file diiopcfg.txt in the server's data.
Tell DIIOP Provide a list of the configuration data that DIIOP is using from the Domino Directory.
Show Config Using show, the configuration is displayed on the server console.

Tell DIIOP This command determines the amount of information the DIIOP will log about it's
Log=n operation. Valid values for n are as follows:

0 Show Errors & Warnings only

1 Also show informational messages

2 Also show session init/term messages

3 Also show session statistics

4 Also show transaction messages

The setting of this command is saved in the NOTES.INI variable DIIOPLogLevel. Any
change that is made to the DIIOP log level will be used the next time the server is

restarted.
Tell DIIOP Use this command to reload the configuration data that DIIOP is using from the Domino
Refresh Directory and from notes.ini.

By default DIIOP incorporates changes from the Domino Directory every 3 minutes, or
as often as specified in the NOTES.INI parameter DIIOPConfigUpdatelnterval.

The Refresh command will force DIIOP to look for changes in the configuration and
apply them immediately.

Chapter 5. Portlet development using Java: Technology review 253

Command Result

Tell DIIOP Show all the current active users known to the DIIOP task. This list is similar to the
Show Users server console command show tasks but it includes more information.
Appending D to this tell command means the list of current users will also include the

or . . .
databases the user has open, along with a count of objects that are in use.

Tell DIIOP Example: tell diiop show users d

Show Users D UserName ClientHost IdleTime ConnectTime Sessionld

Anonymous 9.95.74.178 0:00 0:00 SN00048DE22
perf/userl.nsf

Objects in use: Databases: 1 Views: O Documents: 0 Items: O Others: 0
Users: 1, NetworkConnections: 1 IOP Show Users D

DIIOP debugging methods

If you are have problems while working with DIIOP, there is a set of debug
parameters which might help you to solve them.

» DIIOP_DEBUG=1 sets the server to report verbose information about DIIOP.
You can also debug in certain sections inside of the debug task like this:

diiop_debug_connmgr=1
diiop_debug_cookie=1
diiop_debug_cwbase=1
diiop_debug leaks=1
diiop_debug_objmgr=1
diiop_debug_refdata=1
diiop_debug_sslcert=1
diiop_debug userobj=1
» Other debug parameters you might find useful when working with CORBA
are:
DEBUG_ORB_01=1
DEBUG_ORB_SOCKETS=1
DEBUG_ORB_PARAMS=1
DEBUG_ORB_THREADS=1
DEBUG_ORB_SHRED=1
DEBUG_ORB_SERVER=1
DEBUG_TCP ALL=1

DIIOP transactions

Another good way to administer DIIOP is to look at transactions the server may
already have done with DIIOP. This is done by typing SH STAT DIIOP from the
server console. The server will display the following for each type of transaction:

— Total number of NRPC transactions (Count)
— Minimum duration of the transaction (Min)

254 Portalizing Domino Applications for WebSphere Portal

— Maximum duration of the transaction (Max)
— Total time to perform all transactions (Total)
— Average time to perform the transaction (Avg)

All times are reported in milliseconds. This command identifies transactions
that require excessive amounts of time. An example of the output from this
command is in Figure 5-10.

{8} itsotest-domé /itsodom6: Lotus Domino Server

> sh stat diiop
DIIOP.Objects .Database.Current = B
DIIOP.Objects ..Database.Peak = 2
DITOP.Objects .Database.Total = 2
DIIOP.0Objects .DocumentCollection.Current = B
DIIOP.Objects .DocumentCollection.Peak = B
DIIOP.Objects .DocumentCollection.Total = @
DITOP.Objects .Document .Current = B
DIIOP.Objects .Document .Peak = 8
DIIOP.Objects .Document.Total = B
DIIOP.Objects.Iltem.Current = A
DIIOP.Objects.Iltem.Peak = B
DIIOP.Objects.ltem.Total = B
DIIOP.Objects .OTHER.Current = B
DITOP.Objects . OTHER.Peak = 1
DIIOP.Objects .OTHER.Total = 1
DIIOP.Objects.8ession.Current = @
DIIOP.Objects .8ession.Peak = 3
DITOP.Objects .Session.Total = 3
DIIOP.0Objects .ViewEntryCollection.Current = @
DIIOP.Objects .ViewEntryCollection.Peak = @ |
DIIOP.Objects .ViewEntryCollection.Total = @
DIIOP.Objects . ViewMavigator.Current = 8
DIIOP.Objects .ViewNavigator.Peak = 8
DIIOP.Objects .ViewNavigator.Total = @
DIIOP.Objects View.Current = B8
DIIOP.Objects .View.Peak = B
DIIOP.Objects . View.Total = B
DIIOP.Requests .HITP.Current = @
DITOP.Requests . HTTP.Peak = 8
DIIOP.Requests .HTTP.Total = 8

. =~ TTOD

TTTAD Dorceecn S S |

Figure 5-10 DIIOP transaction information

5.4 Domino objects for Java API

Java Domino classes are created by modifying some of the LotusScript
Extension (LSX) architecture to include a Java “adapter” to compose the new
Java Domino classes. The Java Domino classes have similar functions to some
of the LotusScript Domino back-end objects. You can use these classes from any
Java program. Internally, Java Notes classes execute the same C++ code as the
LotusScript Domino back-end objects, only the language syntax is different.

Domino objects architecture

The Domino objects class architecture is based on a conceptual containment
model, where the containment model defines an object's scope. A container

Chapter 5. Portlet development using Java: Technology review 255

object is always used to access objects it contains. For example, you use a
Session object to get Database objects, and a Database object to create
Document objects. In Java, you cannot create lotus.domino objects using the
“new” modifier. All lotus.domino objects must be created with lotus.domino
methods that flow from the root Session object. This is illustrated in Figure 5-11.

Since one Domino object may be contained by several others, a full object
diagram is beyond the scope of this document. Complete details about all
Domino objects is in the documentation for Domino Toolkit for Java. However,
some of the key containment relationships are as shown in Figure 5-11.

[Session |—|Database |-—{ACL I ACLEntry |
—+ Document ltem |
—{ DocumentCollection :—[:: RichTextltem |
—{Form |
—{ View ViewColumn |
L Agent | ViewEntry |

Figure 5-11 Domino Object Model

In practice, you will implement Notes API to your portlet code, adding a
NCSO.jar/NCSOW.jar file (for remote connection) or NOTES.jar (for local
connection) to the library. These files can be found in the Domino Toolkit for Java
or on the Domino server.

Type import lotus.domino.*; into your portlet code, and you are able to use
Notes API classes in your code.

All Domino classes have methods and properties.

Methods

Method names are written with the first character in lower case (for example,
getFirstDocument). Of course, there are exceptions (such as FTSearch). One of
the most important methods every Domino object has is recycle. The recycle
method unconditionally destroys an object and returns its memory to the system.

Properties

To access properties in Java, you also have to use methods. In Java, properties
are implemented through methods, known as accessors, which use the following

256 Portalizing Domino Applications for WebSphere Portal

naming convention: The name of a method used to get the value of a
non-boolean property is the name of the property prefixed with get.

Recycling Domino objects

The recycle method unconditionally destroys an object and returns its memory to
the system. All lotus.domino classes contain the following method:

public void recycle()
Session contains the following method, where the vector contains the Domino

Objects to be recycled. This method effectively batches recycle operations and is
especially efficient for remote (IIOP) calls.

public void recycle(java.util.Vector objects)

You recycle an object by calling the recycle method, for example doc.recycle();
where doc is the object to be recycled.

Important: Java has no knowledge of the heavyweight back-end Domino
objects, only the lightweight Java objects representing them. Garbage
collection has no effect on Domino objects unless you first explicitly recycle
them.

If your system appears to have memory problems, try to recycle, but adhere to
the following guidelines:

» Recycle an object only if it is no longer needed.

» Recycle an object in the same thread in which it is created.

» Recycling a parent recycles all the children.

» In Session, call recycle only after all threads exit (local).

» Loops enumerating documents or items are good candidates for recycling.

Important: In a remote (IIOP) environment, recycle releases resources on the
server. Although a client-side cache exists, the Java object can no longer
communicate with its remote counterpart.

In a remote (IIOP) environment, recycle can be called from any thread on any
object. Results are undefined if you attempt to use a recycled object. No error is
guaranteed.

Commonly used Domino classes

Here we have gathered some information about the most commonly used
Domino classes, which you may need in your Domino portlet developing work.

Chapter 5. Portlet development using Java: Technology review 257

Complete details about the Domino Java API are in Domino Toolkit for Java
product documentation.

Session class

Session class is the root of the Domino Objects containment hierarchy, providing
access to the other Domino objects, and representing the Domino environment
of the current Java program.

Important: You must always define at least session to Domino to get any
further.

For stand-alone applications, like portlets, use one of the
NotesFactory.createSession() methods.

For a local session, the Session object represents the machine on which the
code is running. A reference to the current server, such as a null server
parameter, means the local Notes/Domino environment. You can access servers
connected to the local environment by specifying their names.

For a remote (IIOP) session, the Session object represents the Domino server
handling the remote requests. A reference to the current server, such as a null
server parameter, means that Domino server. You cannot access other servers.

You have different ways to do that; several are illustrated in the following
examples. More samples are in the Domino Toolkit for Java documentation.

Example 5-1 Creating session to Domino using servername

session = NotesFactory.createSession("<servername>","<username>","<password>")

Example 5-2 Creating session to Domino using IOR

session = NotesFactory.createSessionWithIOR("<IOR>","<username>","<password>")

Session class has properties like Addresbooks, NotesVersion, Platform, or
UserName.

Some of the most useful methods are getDatabase, getDbDirectory,
getEnvirnomentalValue, and recycle.

Database class

Database class represents a Domino database. A database must be open before
you can use all the properties and methods in the corresponding database
object. In most cases, the class library automatically opens a database for you.

258 Portalizing Domino Applications for WebSphere Portal

Use isOpen properties to do the proper checking and add handling for the
exceptions.

Notes throws an exception when you attempt to perform an operation for which
the user does not have appropriate access. The NotesException class is
discussed later in this section.

The properties and methods that you can successfully use on a Database object
are determined by the user's access level to the database, as specified in the
database access control list. The ACL determines if the user can open a
database, add documents to it, remove documents from it, modify the ACL, and
S0 on.

The user's access level to the server on which the database resides is
determined by the Server document in the Domino Directory.

Example 5-3 Using the isOpen method

Database db = session.getDatabase("servername", "names");
if (!'db.isOpen())
getPortletLog().debug("Database does not exist on server");
else
getPortletlLog().debug("Title of the database is : \"" +
db.getTitle()+ "\"") ;

The Database class has properties like getACL, Agents, Views, and Forms, just
to mention a few.

The Database class includes methods like createDocument, getDocumentByID,
getView, and replicate, among others.

View class

The View class represents a view or folder of a database and provides access to
documents within it.

You access a view or folder through the Database object that contains it, in one of
the following ways:

» To access a view or folder when you know its name or alias, use getView.

» To access all the views and folders in a database, use getViews.

Returned is a View object or a vector of View objects that represent public views

and folders in the database. To access a view or folder when you have a view
entry, use getParent in ViewEntry.

Chapter 5. Portlet development using Java: Technology review 259

A View object provides access to ViewEntry, ViewEntryCollection, and
ViewNavigator objects:

» A ViewEntry object represents a row in the view and can be a document,
category, or total. A document entry provides a handle to the associated
Document object.

» A ViewEntryCollection object provides access to selected or all document
ViewEntry objects. (Excluded are category and total ViewEntry objects.)

» A ViewNavigator object provides methods for navigating through selected or
all ViewEntry and Document objects.

A View object provides access to ViewColumn objects, which contain information
on each column in the view.

The code in Example 5-4 finds the "($All)" hidden view in a database, gets the
first document in the view, and finally gets an item value from the document.

Example 5-4 Accessing the views of the database.

Database db = session.getDatabase ("servername", "names");
View view = db.getView("($A11)");
Document doc = view.getFirstDocument();
getPortletLog().debug((doc.getItemValueString("Subject"));

The View class has properties that include aliases, columns, iscalendar, and
Rowlines, among others.

Some of the View class methods are FTSearch, getdocumentByKey,
getFirstDocument, and getChild.

Document class
The Document class represents a document in a database.

To create a new Document object, use createDocument in Database.

To access existing documents, do one of the following:
> To get all the documents in a database, use getAllDocuments in Database.
» To get a document based on its position in a view, use a View object.

» To get a document based on its position in a response hierarchy, use a View
object. To get all documents that are responses to a particular document, use
getResponses in Document. To get a response document's parent document,
use getParentDocumentUNID in Document followed by getDocumentByUNID
in Database.

260 Portalizing Domino Applications for WebSphere Portal

» To get all the documents that match a full-text search query, use FTSearch in
Database or FTSearch in View.

» To get all the documents in a database that meet search criteria, where the
criteria are defined using the formula language, use search in Database.

» To get a document based on its Note ID or UNID, use getDocumentByID or
getDocumentByUNID in Database.

Once you have a view, you can navigate to a specific document using methods in
the View class.

Once you have a collection of documents, you can navigate to a specific
document using methods in the DocumentCollection class.

Important: After you create, modify, or delete a document, you must save the
changes by calling the save method. If you don't call save before the program
finishes, all of your changes to a Document are lost.

If you create and save a new document without adding any items to it, the
document is saved with one item "$UpdatedBy". This item contains the name of
the creator of the document.

The code in Example 5-5 first creates a new document and then sets values for
two fields in the document. Finally, the code saves the document.

Example 5-5 Use of Document class

Document doc = db.createDocument();
doc.replaceltemValue("Form", "Main Topic");
doc.replaceltemValue("Subject", "New building");
doc.save(true,true);

Item class
The Item class represents a discrete value or set of values in a document.

The client interface displays items in a document through fields on a form. When
a field on a form and an item in a document have the same name, the field
displays the item (for example, the Subject field displays the Subject item).

All items in a document are accessible programmatically, regardless of what form
is used to display the document in the user interface.

To create a new Item object:

» To create a new ltem object from scratch, use replaceltemValue in Document.
The method appendltemValue also creates an item, but creates another item

Chapter 5. Portlet development using Java: Technology review 261

of the same name if the specified item exists. Use replaceltemValue unless
your intent is to create another item with the same name (not recommended).

» To create a new Item object from one that already exists, use
copyltemToDocument, copyltem, or replaceltemValue in Document.

You must call save on the document if you want the modified document to be
saved to disk. The document won't display the new item in the user interface
unless there is a field of the same name on the form used to display the
document.

Explicitly call setSummary and specify true if you want the value to be displayed
in a view or folder.

To access Item objects:

» To access an item when you know its name, use getFirstlitem in Document.
» To access all the items in a document, use getltems in Document.
Document has methods to access items without creating an Item object. You
need to know the name of the item.

» To get an item's value, use getltemValue.

» To create a new item or set an item's value, use replaceltemValue.

» To check for the existence of a particular item in a document, use hasltem.
» To delete an item from a document, use removeltem.

RichTextltem inherits the properties and methods of Item and has additional
properties and methods you can use to manipulate rich text.

After you create or modify an item, you must save the changes by calling the
parent document's save method.

If you don't call save before the program finishes, all of your changes to an ltem
object are lost.

The code in Example 5-6 first creates a document, creates a text item without
specifying data type and then one with a data type. isSummary(True) specifies
that the item can be shown in a view. Finally, the document is saved.

Example 5-6 Using Item class in code

Document doc = db.createDocument();
// Create text item with implied data type
doc.replaceltemValue("Subject", "Creating items ...");
// Create text item explicitly specifying data type
Item textItem = doc.replaceltemValue("textItem", null);

262 Portalizing Domino Applications for WebSphere Portal

textItem.setValueString("Finland");
textItem.setSummary (true);

// Save the document
doc.save(true, true);

Item class includes properties such as isAuthors, Lastmodified, Reader, and
ValueString.

Some of the ltem class methods are copyltemToDocument, getMIMEERntity,
parseXML, and transformXML.

ACL class

ACL class represents the access control list (ACL) of a database. Every
Database object contains an ACL object representing the access control list of
that database. To get it, use getACL in Database, as shown in Example 5-7.
getFirstEntry() returns an ACL entry object.

Example 5-7 Example using ACL class

Database db = session.getDatabase("servername", "names");
if ('db.isOpen())
getPortletLog().debug("Database does not exist on server");
else
getPortletLog().debug("Title of the database is : \"" +
db.getTitle()+ "\"") ;
ACL acl = db.getACL();
ACLEntry entry = acl.getFirstEntry();
do {
getPortletLog().debug(entry.getName()); }
while ((entry = acl.getNextEntry(entry)) != null);

The Database class has three methods you can use to access and modify an
ACL without getting an ACL object: queryAccess, grantAccess, and
revokeAccess. However, using these methods at the same time that an ACL
object is in use may produce errors.

ACL class properties include Roles, InternetLevel, and UniformAccess.

Among the ACL classes are methods like addRole, createACLEntry,
RemoveACLEntry, and save.

NotesException class

The NotesException class extends java.lang.Exception to include exception
handling for Domino. The NotesError class defines public static final variables for
Domino error codes.

Chapter 5. Portlet development using Java: Technology review 263

To catch a Domino exception, specify the parameter of the catch clause as type
NotesException. The NotesException class contains the following public
variables:

» NotesException.id, of type int, contains the error code.
» NotesException.text, of type String, contains the error text.

The following code example demonstrates how to catch a Domino exception. The
code prints the error code and error text if a Domino exception is thrown.

Example 5-8 Using NotesExcpetion

public Collection testViews()
throws NotesException
ArrayList views = new ArrayList();
try {
View view = db.getView(“ViewName””);
Document doc = view.getFirstDocument();
while (doc != null) {
String systemName =doc.getItemValueString("FieldOne");
String showName =doc.getItemValueString("FieldTwo");
doc = view.getNextDocument (doc);
}
} catch (NotesException e) {
Log.error(this.getClass(),"Could not get the Tist of views.
NotesException occured: id = "
+ e.id+ ", text = "+ e.text,e);

}

5.5 Domino Rich Text

Domino Rich Text fields can contain formatted text, collapsible sections,
embedded objects, file attachments, and pictures. Rich text is widely used in
Domino applications, so it is important to be able to display it in a Portlet.

In Chapter 1, “Introduction to portalizing Domino applications” we introduced the
concept of Portlet patterns. We outlined that in a Portal environment there are
two main ways to display content:

» Following the Display pattern by opening content in a new browser window.

» Embedding content inside of the Portlet. This can be achieved with the
Integrated Portlet pattern.

In this section we discuss both optionswith respect to Domino rich text display.

264 Portalizing Domino Applications for WebSphere Portal

Using the Portlet Display pattern
Following the Display pattern and opening content in a new browser window has
the following requirements for the Domino application:

» You need a Web-enabled form.

You also need to consider that:
» Content is displayed outside of the Portlet

» The browser directly communicates with the Domino HTTP server. This might
involve firewall issues.

Using iFrames

An alternative to opening a new browser window is the use of an iFrame Portlet.
This approach still follows the Display pattern, but has a more seamless
integration with the Portal. But you need to be aware of the following limitations of
iFrame Portlets:

» iFrame Portlets are not real Portlets.
» They do not support Portlet cooperation.
» They can’t use Portal themes.

» iFrame Portlets can’t keep their state. Consider the workplace example that
was introduced in “Case study objective: Sales Workplace” on page 50. There
we have two Portlets. One is displaying a customer search Portlet and the
other the customer details. If we search for a customer and select the link, the
details Portlet displays the customer details information. If we now change the
place to do some other work and later come back to our Sales Workplace, the
details Portlet does not display anything anymore. It is displaying its default
page, which is blank. This example shows the state problem that iFrame
Portlets have: they are acting outside of the Portal context and therefore can
not keep the state of the user’s actions.

Embedding content into a Portlet
In this section we discuss integration methods that follow the Integrated pattern.

What options do we have to embed rich text inside of a Portlet?

One option is to display rich text as plain text only. This is useful, for example, for
displaying abstracts. To accomplish this we can use:
» The ltem’s getText method in Java

» The richtext tag from the Domino JSP tag library

Chapter 5. Portlet development using Java: Technology review 265

266

Note: The Domino 6 Tag library has a <Domino:richtext> tag to display rich
text, but formatting is displayed only if the rich text was created using the
RichText Java applet or the Microsoft rich text control.

In this case the rich text is saved as MIME (Multipurpose Internet Mail
Extensions) inside of a Rich Text field. Programmatically you can access these
items as Item, RichTextltem, or MIMEEntity objects.

Using the richtext tag to display rich text that was created with a Notes client
will show plain text only. That means all formatting, images, sections, and
URLs are lost.

To keep all the formatting and features of Domino Rich Text we have to take a
different approach. Domino Rich Text is a very complex structure that can be
programmatically accessed by using the Domino backend classes for Java.

Nevertheless the only way to convert Rich Text into HTML is to use the Domino
HTTP task.

Displaying rich text using HTTP
The following steps outline how you can get the HTML representation of the

Domino Rich Text. This approach has to be implemented in Java. Figure 5-12
illustrates the process.

Portalizing Domino Applications for WebSphere Portal

Portal

Portlet

* Images

« collapsible sections

* URL’s, document links
s etc.

¥/ This is a Rich Text Field
E«q embedded in a Portlet, containing:

Tsend HTML to Browser

IBM HTTP

Trendered Page

HTTP connection
HTML for RTF

Figure 5-12 Embedding Domino rich text inside?a Pbrtlet

3.

Parse the HTML for the rich text field that you want to display.

. Open a URL connection to retrieve the HTML for an entire Domino document.

To find the HTML that corresponds to the rich text field, it is best practice to
indicate the start and end of the field by adding an HTML comment around

the field on the Domino form.

Pass the resulting HTML to the JSP page for display.

After you have implemented this solution you will find that the formatting of the
text is now displayed correcily, but that all Images are broken. The reason for this

is that the HTML you retrieved from the Domino HTTP included relative URL

references only. Since you are now displaying the captured HTML relative to the

Portal server's HTTP task, the URLs can’t be resolved.

You can solve this problem in either of the following ways:

» The IBM HTTP plug-in can be used as a reverse proxy to Domino 6 servers.

For this communication to occur, the appropriate WebSphere Application

Server 4.0.3 or later plug-in must be installed on the front-end server. These
plug-ins recognize HTTP requests for Domino applications and pass them

along to the Domino server. Other HTTP requests are handled by the

front-end server itself.

Chapter 5. Portlet development using Java: Technology review

267

» Parse the Domino HTML and make all URL references absolute to the
Domino HTTP server. Using regular expressions can help to implement this
process.

Either of these techniques will solve the image URL problem and display the
images correctly.

URL rewriting

The second option (URL rewriting) has the disadvantage that the user’s browser
will need to be able to communicate with the Portal server HTTP and the Domino
server HTTP as well. This communication pattern might be prevented by firewall
rules, as illustrated in Figure 5-13.

Portal

Portlet

This is a Rich Text Field
embedded in a Portlet, containing: ‘

* Images
* collapsible sections
* URL's, document links

Firewall
send HTML to Biowser

IBM HTTP

ATrendered Page

HTTP connection
e .
m Domlno HTTP

HTML for RTF

Image references
relates back
to Domino HTTP

Figure 5-13 Potential firewall issues

Since the image reference is referring back to the Domino server’'s HTTP task,
the browser needs to be able to access the Domino HTTP server to display the
image.

This also implies that the user needs to have access rights to the Domino server
and database in which the image resides.

The URL challenge

But we still have an even bigger challenge ahead of us. Specifically, all the URLs
in the HTML produced by Domino HTTP server are not Portal compliant. That

268 Portalizing Domino Applications for WebSphere Portal

means that if a user clicks on a link inside of the Rich Text, the called URL will
take over the entire browser URL. As a result, the Portal interface is lost.

The workaround for this problem is illustrated in Figure 5-14.

Portal
Portlet :
This is a Rich Text Field
: embedded in a Portlet, containing:
"' + Images

+ collapsible sections
+ URL’s, document links
* etc.

Tsend HTML to Browser

IBM HTTP

T rewritten HTML
Portlet

H B HTTP connection . :
sibilvattish, Ll Domino HTTP
L » FECIEEOON HTML for RTF

Figure 5-14 Rich Text display with reverse proxy and URL re-writing

» Implement a reverse proxy in Java that handles, for example, the display of
resources with relative URLs.

» Parse the captured HTML using regular expressions and rewrite URLs into
Action URls.

» By implementing an action listener, you can then respond to the Action URIs
and allow the user to navigate links in the HTML. This ensures that all
following pages will be displayed inside the Portlet as well.

The discussion shows that Domino rich text integration into Portlets is a complex
and potentially challenging procedure.

IBM is currently working on a solution that will allow easy Domino rich text

integration. Third party vendors like CONET have also implemented solutions for
seamless rich text embedding in their products.

Chapter 5. Portlet development using Java: Technology review 269

5.6 Lotus Collaborative Components API

Lotus Collaborative Components are building blocks (APls and JSP tag libraries)
for integrating the functionality of Lotus Domino, Lotus Sametime, Lotus
QuickPlace, and Lotus Discovery Server into the portal. The IBM redpaper
WebSphere Portal 4.12 Collaboration Services, REDP 0319 discusses this topic
in more depth.

The Collaborative Components can be divided into Java Classes and Methods
(cs.jar) and JSP, JavaScript tag libraries (people.tld and menu.tld). JSP tag
libraries were discussed in Chapter 4, “Using custom Domino JSP tag libraries”.
This section covers only the core API of the Collaborative Components.

Collaborative Components are implemented in Java and include no
platform-specific code, so they can be used on any J2EE-compliant server.

Overview of key objects

The CS.jar, Collaboration Service package contains all the Java implementations
of the collaborative components. There are classes and methods for leveraging
Domino, QuickPlace, Sametime, and Discovery Server.

For more detailed information about these classes, see the documentation
provided as a Javadoc within the Collaborative Components enterprise
application: the cs.ear file.

Some key objects are the following:

» CSEnvironment: Initializes the server environment and retrieves credentials
for the logged-in user.

» CSCredentials: Represents the authentication information for the logged-in
user. CSFactory uses these credentials to authenticate against the worker
servers (Sametime, QuickPlace, and so forth).

» CSFactory: Constructs the Java service objects and generates a connection
to the appropriate worker server.

The CSFactory object instantiates these service objects. The developer is
responsible for calling the cleanup() member function on each object before
they go out of scope. This cleanup function releases any resources a service
object holds.

» DominoService: Provides standardized access to all versions of Domino
from R4.67.

— Viewlnfo: Represents information about a view in a Domino database.
— Columninfo: Contains information about the columns in a Notes view.

270 Portalizing Domino Applications for WebSphere Portal

— Rowilnfo: Represents data from one row in a Notes view.

— CalendarDaylInfo: Encapsulates all the calendar entries for a particular
day.

— EntryInfo: Contains information about a single calendar entry.
QPService: Provides the ability to create a QuickPlace.

PeopleService: Provides Sametime awareness (users logged onto
Sametime) plus the ability to obtain information about a specified person,
such as their e-mail address.

DiscoveryServerService: Provides the ability to discover, search for, and
retrieve Categories, People, Places, and Documents from a Discovery Server.

How to get started

1.

Set up a development environment.

At a minimum you must install the Collaborative Components jar files on your
development machine and make them available to WebSphere Studio
Application Developer. The required jar files are:

cs.jar

— commres.jar

— kdsapi.jar

— kdsw.jar

— ncsow.jar

— stcommsrvrtk.jar

The simplest way to accomplish this task is to load the cs.ear file into
WebSphere Studio Application Developer. This provides the additional benefit
of installing the tag libraries and the sample programs that come with the
Collaborative Components package. To install cs.ear on your machine,
choose the Import option from the WebSphere Studio Application Developer
file menu and select EAR File as the import source. On the EAR Import
screen enter a new project name and enterprise application project name.
When you are finished, your screen should look similar to the one in

Figure 5-15 on page 272.

Chapter 5. Portlet development using Java: Technology review 271

5 JZEE Mavigator - X
-5 o5 -
-] Web Deplayment Descriptor

(% lava Source

EI@ Wweb Content

== config

C5CacheManager, properties
CSEnvironment. properties

-z images
H-{= jawascript
= menu
[
[

]Qf,'r META-IMNF

H-{= rls

-z peopleawareness

Bl caapver biml

@& pa_addtostlist, jsp L

4 pa_stlinks.js

Q‘J peopleamareness_service.js

[—]--@f‘; WEB-INF

@ classes

=z lib

: - COMMmres, jar

- 5. jar

- kdsapi.jar

‘Bl kDS jar

Bl nCsow.jar
‘E) steommsrvrtk.jar

[=]-{=- tid

] menu.td

b [K] people.tid
GA_ihea suck biod e J’

Figure 5-15 Structure of portlet after cs.ear file has been imported

2. Configure the properties file according to your Domino servers.

In the project you just created, expand the folder <project name>/Web
Content/config. Edit the CSEnvironment.properties file and enter the host
names for the Discovery Server, Domino Directory, and QuickPlace servers.

Example 5-9 CSEnvironment.properties file example in config folder

lfdtgsdssdaddadadasddasdssddadtadsgsdsadsadsgsdiagsagaadiad
SAMETIME properties

Only valid property is enabled. Other values configured

through hostAddress.xml
lidigzdssdadaadadasddasdapddadtadtadsdsadsadsgsgiaRaagaadiad

CS_SERVER_SAMETIME.enabled=true
iidddddsddssddsssdsgsditsdddssdigsddssdatsdidsdigaddasdadid
QUICKPLACE properties

enabled indicates whether or not QP creation is allowed.
lfddsddssdadaaddadasdpdasdssddsdtadtsdsdadsadsddsdaatagaaiad

272 Portalizing Domino Applications for WebSphere Portal

CS_SERVER_QUICKPLACE.enabled=true
CS_SERVER_QUICKPLACE_1.hostname=my.server.com
CS_SERVER_QUICKPLACE_l.version=3.0

lggdaddsddsddszddaddsdsddsddsddsdsadtsdssdaddsddaddsdaadsddaadisd
DISCOVERY SERVER properties
lfdtgsdssdadaaddadasdadasdssddasdtadtsdsdadsadsdaadaatagaaiiad

CS_SERVER_DISCOVERY_SERVER.enabled=true
CS_SERVER DISCOVERY_SERVER 1.hostname=my.server.com
CS_SERVER_DISCOVERY_SERVER_1.version=2.0

igsdssdasdadaaddadsdssgsdgtddadtadsdsdddaaddadaadadaaiii
DOMINO DIRECTORY properties

(LDAP server)

Only valid property is hostname. Leave enabled flag as true.
lggdsddsddsddszddaddsdsddsddsddsdtadtsdssdgddsddsddsdaadadddadiad

CS_SERVER_DOMINO_DIRECTORY.enabled=true
CS_SERVER_DOMINO_DIRECTORY_1.hostname=my.server.com
idddddddsddssddsssdsgsditsddsgaddsddsdansdidgadisdisadanid
#

LDAP server performance properties

(LDAP server)

Leave enabled flag as true, if using WMM.

Setting this flag to false will improve performance

while using Domino as the primary (and only) LDAP server

in the Portal.
idddtdddaddgaddgsadsadatssddsdigaadtsdasdidgsdigsdaasdaddd

CS_PERF_PROP_USEWMM.enabled=true

5.7 Domino 6 new features for DIIOP

In this section we mention some of the DIIOP-related new features of Domino 6.
A complete discussion of all new Domino 6 features is in the Lotus Domino
Administrator 6 Help database.

» New DIIOP task

DIIOP has been substantially rewritten to improve its performance and
scalability. The new task now uses the same code for network operations as
some of the other server tasks, for example POP3, LDAP, and IMAP.
Consequently, DIIOP now also takes advantage of the same thread pooling
algorithms, and will use 1/0 completion ports on the supported platforms.

Chapter 5. Portlet development using Java: Technology review 273

» HTTP Support for diiop_ior.txt

DIIOP now has limited support for the HTTP protocol. As part of the
NotesFactory.createSession(hostname,...) method that is available for
creating sessions to the Domino server, the HTTP protocol was being used to
deliver the Initial Object Reference to the client program. Traditionally, this
request was handled by the HTTP task. This meant that the HTTP task had to
be configured and running to use the Domino classes in any substantial way.

With this release, DIIOP has enough HTTP support to handle the request for
the Initial Object Reference. So, if HTTP is not desired on the Domino server,
a Java program can do the following to create a Session to the Domino
server:

Session s = NotesFactory.createSession("<hostname:63148>", "<username>",
"<password>");

where :63148 is the syntax that is used to specify the port number of the task
that you want to issue the HTTP request for Initial Object Reference.

5.8 Object pooling

Pooling Domino objects like sessions and views can help to significantly improve
performance in a Portal environment. In a typical workplace we usually have
more than one Domino Portlet on a page. In addition, it is usual for many users to
have access to the same content. These circumstances can lead to
limited-resource problems.

Limited resources can cause performance bottlenecks when there are not
enough resources to meet clients' demands. For example, DIIOP sessions to
Domino servers require non-trivial amounts of time to create and destroy. Often,
in high-throughput scenarios, Portlets must wait for a session object to become
available, creating a bottleneck in the flow of the application.

With object pooling, many Portlets can share a limited resource such as a
session, using it only when they need it. In this way, the performance cost of
creating and destroying the session is reduced.

Implementing an Object Pool can have the following advantages:

» More scalable, resourceful

You can share Domino objects between multiple Portlets and reuse objects
for users in the same user group.

274 Portalizing Domino Applications for WebSphere Portal

» Enables load balancing

DIIOP can’t be used to access a cluster of Domino servers. A pool manager
can manage sessions to multiple Domino servers at a time and allow load
balancing and fail-over.

» Thread safe

The Pool Manager is completely thread safe, meaning that it can be accessed
safely from any number of threads—a situation that is common for Portlets.

» Helps with DIIOP session time-out

DIIOP session time-out occurs when a session is idle longer than the DIIOP
session time-out setting. By default this is 60 minutes. After this time the
session and all it's associated objects become invalid.

» Keeps Domino server healthy

It is good practice not to use remote Sessions for long periods of time.
Recycling remote Session objects and all associated objects can help to keep
the Domino server healthy, but Session recycling is tricky to manage.

» Ease of use

You do not have to consider the possible state of a Domino object; you simply
use the object. For example, if you want to retrieve data from a view, you do
not need to know whether a session and database connection have been
previously established, you can just retrieve our data.

Object pool

An object pool is a set of limited resources, such as sessions, that can be
reserved for use by clients and then returned to the pool (for probable reuse)
when the object is no longer needed. Reserving and returning pooled objects
avoids the overhead of separately creating and destroying an object each time a
client requests it. Multiple object pools can be used. For example, one object pool
might contain session connection objects, and another pool might contain
database or view objects.

Virtual and physical objects
Without object pooling, whenever a Portlet requests an object, a physical object
is created, and is destroyed when no longer needed.

By contrast, when a Portlet uses object pooling, the request for a poolable object
generates a virtual object instead. The virtual object supports all the methods of
the requested object, but the Portlet sees only the virtual object.

When a Portlet calls an interface method from the virtual object, the virtual
object's implementation requests a physical object from the pool and delegates

Chapter 5. Portlet development using Java: Technology review 275

276

the request to the physical object. When the request is complete, the Portlet
returns the physical object to the Object Pool Manager for use by other virtual
objects.

Client

In the context of object pooling, a client is the Portlet code that calls the Pool
Manager. The Portlet requests objects, and the Object Pool Manager fulfills the
requests or relays an error back to the calling Portlet.

Object Pool Manager

The Object Pool Manager is a service used by one or more Portlets. In response
to clients' requests for objects, the Object Pool Manager controls one or more
pools (for example, sessions and views) by reserving and releasing the objects in
the pool. The Object Pool Manager performs the following tasks:

» Queues virtual objects' requests for physical objects.

» Marks physical objects as either free or reserved.

» Attempts to create physical objects when necessary.

» Destroys physical objects in a pool, based on idle time or usage limits.

Portalizing Domino Applications for WebSphere Portal

Object pooling process

Object Pooling Process

1. Method call

2. Reserve Object 3. Delegate Method

Virtual Object

Object Pool
Manager .~ Physical
Object

Figure 5-16 Object pooling process

The object pooling process, illustrated in Figure 5-16, is as follows:
1. The Portlet calls an interface method on the virtual object.

2. The virtual object's implementation reserves a matching physical object from

a named pool.

3. The method call is delegated to the physical object.
4. When the method call is completed, the physical object is returned to the

appropriate pool for use by other virtual objects.

The Object Pool Manager uses a timer thread that periodically releases unused

physical objects after a time-out.

Chapter 5. Portlet development using Java: Technology review

277

How the Object Pool Manager works

As illustrated in Figure 5-17, when a Portlet makes a request to reserve an
object, the Object Pool Manager processes the request through the following
possible phases:

» Matching a pooled object

» Creating a pooled object

» Replacing a pooled object
» Queuing a request

» Returning a FAILURE state

Details about these phases follow the figure.

et object request Portlet

Is there a
match?

Return Ohbject

e Ohject

hlo Wes Return Failure

gz the
creation
uccessful

ree space in
the poal?

ad # Create the ohjsct

Find an ohject with
Yes—m lifetime almost | Recycle old object
expired

QAueue reguest

¥

3 { Failure —

Figure 5-17 Pool Manager process flow

Reached
timeout?

Matching a Pooled Object
A client makes a request of a virtual object. It communicates with the Object Pool
Manager to bind the virtual object to a matching physical object. The virtual

278 Portalizing Domino Applications for WebSphere Portal

object then repeats the client's request, making this same request of the
matched physical object.

If a match is found, the Object Pool Manager reserves the matching physical
object and sends it back to the requesting client. If no matching object is found,
then the Object Pool Manager proceeds to the next phase of processing
logic—attempting to create a physical object.

Creating a Pooled Object

If no matching object is found, the Object Pool Manager checks its MaxPoolSize
setting before trying to create a physical object. MaxPoolSize determines the
maximum number of objects a pool can contain.

If the number of objects in the pool is less than MaxPoolSize, then the pool is
allowed to grow. As a result, the Object Pool Manager calls the CreateObject()
method. A successful call returns a physical object to the requesting client. An
unsuccessful call indicates that a critical resource is unavailable. For example, if
an application requests a session but the Domino server is down, then the call to
CreateObiject() would fail, and a FAILURE state would be returned immediately

Replacing a Pooled Object

If an object pool is at the limit set by MaxPoolSize, then the pool is considered
full. As a result, instead of trying to create an object, the Object Pool Manager
attempts to recycle an almost expired object and create a new one that matches
the one requested.

Only unreserved objects can be replaced, so the Object Pool Manager first
checks whether any objects are free. Assuming there are unreserved objects, the
Object Pool Manager next calls the StealObject() method to determine which
object to replace.

The Object Pool Manager calls the ReleaseObject() method to destroy the
object to be replaced. As a result, the pool now contains one slot to fill, and the
CreateObject() method is immediately called.

Queuing a Request

The fourth phase of processing occurs under the following conditions: if no
matches are found, if the pool is full, and if none of the objects is free to be
replaced. Under these conditions, the Object Pool Manager queues the request.
The request waits until an object is returned to the pool. Pooled objects are
returned to their originating pool when a client is done using them.

If the waiting period is within a maximum allowable idle time, then the request
processing starts over from the beginning, with an attempt to match the newly

Chapter 5. Portlet development using Java: Technology review 279

returned object. The maximum allowable idle time is configurable through the
MaxWait variable in the registry.

Returning a FAILURE State

If the request is queued for longer than the MaxWait time, then the request finally
fails. Frequent request failures may indicate a need for the server administrator to
review an object pool's configuration settings.

Maintenance features of the Pool Manager

In addition to processing object requests, the Pool Manager is also responsible
for maintenance of the Object Pool. The Pool Manager prevents session
time-outs and destroys physical objects in the pool, based on idle time or usage
limits.

What the Pool Manager can do for you

In the context of Domino Portlet development you can use the Pool Manager to
manage, for example, DIIOP sessions and associated view objects. The following
scenarios illustrate the advantages of using the Pool Manager:

» One user, multiple Portlets

In this case pooling session objects will help you to reduce the access time to
a page since the session object is created only once and then shared by all
Portlets.

» User group, multiple Portlets

This shows the efficiency of the Pool Manager best. Besides sharing sessions
for users of the same group, we can share view objects as well.

On Portal places you will find that this is a common scenario. Users having
access to a Place usually have the same access rights to the underlying
Domino applications as well.

» One user one Portlet

In this case we do not have any advantage, aside from the fact that
implementing the Object Pool once is going to reduce coding time for Domino
Portlets in the future.

You can see that implementing a Pool Manager has a lot of advantages over
handling Domino objects manually. It especially helps to avoid problems like
session time-out and DIIOP memory leaks. It also ensures thread-safe access to
view objects, and allows object sharing and the implementation of load-balancing
to ensure high performing and scalable environments.

280 Portalizing Domino Applications for WebSphere Portal

Taking the Pool Manager to the next level

So far we have used the Pool Manager only to manage physical Domino objects.
Earlier in this chapter we introduced the Model-View-Controller design pattern. If
you want to implement your Portlets in this manner, you should consider
transforming the physical Domino objects into abstract objects. You then can use
these abstract objects to render the output on the JSP pages.

Introduction to Queries

If you look at a Portlet you see that most of the time it displays information in a
view-like manner. The data can be the result of displaying a view or a search
result. In many cases you will also find navigation that enables the user to
navigate through the data.

A representation for this can be seen as a Query object.

The query is a collection that is used on the JSP page to display the result of an
executed Query Definition.

To create a Query Definition the Portlet specifies the server name, database, and
view name. It can set page size and maximum result size. It also defines the
columns to be included in the results.

The Query Definition is then submitted to the Pool Manager that executes it and
sends back the resulting Query object. This is then passed to the JSP for
rendering. The Pool Manager also returns a query ID. This can be used in
subsequent calls to the same query to retrieve, for instance, following pages
without having to execute the query again.

Caching query results is also possible and another way in increasing Portlet
performance. In addition, you can envision the reuse of queries between users in
the same user group.

Access to Domino documents

From the query object, the next logical step is to allow access to Domino
documents. This can be implemented using the Pool Manager as well. If you
have access to a Domino document it is also easily possible to implement write
access.

Summary of object pooling

Abstracting Domino objects though the use of virtual objects is an elegant
approach to implement the Model-View-Designer design pattern. It also helps in
building better performing Domino Portlets.

You can find further information on creating object pools from the Jakarta
“Commons Pool” project at

Chapter 5. Portlet development using Java: Technology review 281

http://jakarta.apache.org/commons/pool/

This project provides an Object-pooling API, with three major features:

» A generic object pool interface that clients and implementors can use to
provide easily interchangeable pooling implementations.

» A toolkit for creating modular object pools.
» Several general purpose pool implementations.

We can think of many ways to extend the concept of query objects even further.
Consider, for example, a Compound Query that was able to aggregate the results
of multiple underlying query objects. This would allow you to build views across

multiple Domino views and databases.

The discussion of this topic is out of the scope of this redbook. Third-party
vendors like CONET have implemented very sophisticated data management
concept in their products. For example, their Domino Warehouse Model allows
for combining of data from multiple Domino databases, as well as append,
merge, and mix of Domino data.

5.9 Logging from portlets

Testing provides quality assurance and confidence in an application. Logging, on
the other hand, equips the developer with detailed context for application failures.
Logging and testing should not be confused; they are complementary
techniques. When logging is wisely used, it can prove to be a valuable tool, and it
is one of the key issues to consider in portlet development work.

Inserting log statements into your portlet code is a low-tech method for
debugging it. However, some people argue that log statements pollute source
code and decrease legibility. In the Java language, where a preprocessor is not
available, log statements increase the size of the code and reduce its speed,
even when logging is turned off. Given that a reasonably sized application may
contain thousands of log statements, speed is of particular importance.

In this section we introduce two different mechanism to do logging. First we
describe how the WebSphere Portal server itself can handle portlet logging.
Then we explain how to build your own flexible mechanism to log from portlets.

WebSphere Portal-based log

WebSphere Portal uses the Logging Toolkit for Java (JLog) to help operate,
maintain, and troubleshoot the portal and portlets. JLog creates detailed log and
debug files while working in the background, thereby reducing the use of system
resources.

282 Portalizing Domino Applications for WebSphere Portal

http://jakarta.apache.org/commons/pool/

JLog supports the logging of messages as errors and status information, and the
logging of debugging messages called traces. These traces are useful for fixing
problems; however, to save system resources, they are switched off by default.

Message and trace logging

Portlets can write message and trace information to log files, which are
maintained in the wps_root/app/web/WEB-INF/log/ directory. The log files help
the portal administrator investigate portlet errors and special conditions and help
the portlet developer test and debug portlets. The Portlet AP| provides the
PortletLog class, which has methods to write message and trace information to
the logs:

» debug() writes trace information to PortletTraces.log
» info() writes informational messages to Portlet.log
» error() writes error messages to Portlet.log
» warn() writes warning messages to Portlet.log
If you access the portlet log multiple times in a method, it is a good idea to assign
the log reference to a variable, for example:
private PortletLog myLogRef = getPortletLog();
Since logging operations are expensive, PortletLog provides methods to

determine if logging is enabled for a given level. Your portlets should write to the
log of a given level only if the log is tracking messages on that level. For example:

if(getPortletlLog().isDebugEnabled())
{

myLogRef.debug("Warning, Portlet Resources are low!");

}

Location of log files

The log files created by JLog are located in the directory
wps_root/app/web/WEB-INF/log, and they are updated if an error occurs.

Each component of WebSphere Portal uses its own log file. These can be found
when you log into the portal as administrator and select Portal Administrator —
Portal Settings — Enable tracing. The most useful traces to switch on for portlet
developers are traces that start with “Portlet,” for example, PortletTraceLogger.

To enable the creation of these messages for uses such as debugging during
portlet development, you need to change the configuration files.

All configuration files ending with TraceLogger.properties contain the key
isLogging which is set to false. To activate the logging of debug messages for the

Chapter 5. Portlet development using Java: Technology review 283

284

relevant WebSphere Portal component, set this key to true. Any changes you
make to the configuration files become active only after restarting the application
server.

Example 5-10 Example code using logging

public void init (PortletConfig portletConfig) throws UnavailableException
{
super.init(portletConfig);
if (getPortletLog().isDebugEnabled()) {
getPortletLog().debug("HelloWorld: init called");

}

// The default Hello String is obtained from the portlet configuration
parameters

defaultString = portletConfig.getAttribute("defaultHelloString");

}

Creating your own logging mechanism with log4j

The portal’s standard way to log from portlets can be hard to use, since all the
important portlet logging is put in the same big file. It can be a time consuming
and frustrating task to find out which entry came in from which portlet, as they all
share the same log file.

With log4j (log for Java) you can build your own logging mechanism individually
for each portlet. With log4j it is possible to enable logging at runtime without
modifying the application binary. Furthermore, the log4j package is designed so
that these statements can remain in shipped code without incurring a heavy
performance cost.

Implementing this tailored logging is easy: you import the log4j.jar file into your
project, add some coding, and set parameters, and you have a working logging
mechanism. In the integration techniques section we give an example.

The target of the log output can be a file, an OutputStream, a java.io.Writer, a
remote log4j server, a remote UNIX Syslog daemon, or even an NT Event logger,
among many other output targets.

Tip: Logging behavior can be controlled by editing a configuration file, without
touching the application binary.

One of the distinctive features of log4j is the notion of inheritance in loggers.
Using a logger hierarchy, it is possible to control which log statements are output
at arbitrarily fine granularity, and to do so with great ease. This helps reduce the
volume of logged output and minimize the cost of logging.

Portalizing Domino Applications for WebSphere Portal

Inserting log requests into the application code requires a fair amount of planning
and effort. Observation shows that approximately 4 percent of code is dedicated
to logging. Consequently, even moderately sized applications will have
thousands of logging statements embedded within their code. Given their
number, it becomes imperative to manage these log statements without the need
to modify them manually.

The log4j environment is fully configurable programmatically. However, it is far
more flexible to configure log4j using configuration files. Currently, configuration
files can be written in XML or in Java properties (key=value) format.

Basics of log4j
The use of log4j revolves around 3 main concepts:

1. Public class Logger. Logger is responsible for handling the majority of log
operations.

2. Public interface Appender. Appender is responsible for controlling the output
of log operations.

3. Public abstract class Layout. Layout is responsible for formatting the output
for Appender.

Logger
The logger is the core component of the logging process. In log4j, there are 5

normal levels of logger available, not including custom Levels.
As identified in the log4j API, the levels are the following:

» Static Level DEBUG: The DEBUG Level designates fine-grained informational
events that are most useful to debug an application.

» Static Level INFO: The INFO level designates informational messages that
highlight the progress of the application at a coarse-grained level.

» Static Level WARN: The WARN level designates potentially harmful
situations.

» Static Level ERROR: The ERROR level designates error events that might
still allow the application to continue running.

» Static Level FATAL: The FATAL level designates very severe error events that
will presumably lead the application to abort.
In addition, there are two special levels of logging available:

» Static Level ALL: The ALL Level has the lowest possible rank and is intended
to turn on all logging.

» Static Level OFF: The OFF Level has the highest possible rank and is
intended to turn off logging.

Chapter 5. Portlet development using Java: Technology review 285

The preceding descriptions are from the log4j API at:

http://jakarta.apache.org/log4j/docs/api/index.html

The behavior of loggers is hierarchical. Figure 5-18 illustrates this.

Will Output Messages Of Level
INFO JERROR| WARN | FATAL

Logyger Level

ALL
OFF

Figure 5-18 Log4j logging levels

A logger will only output messages that are of a level greater than or equal to it. If
the level of a logger is not set it will inherit the level of the closest ancestor.

Appender

The public interface Appender controls how the logging is output. The Appenders
are described in the log4j API. There are 10 established appenders, and you can
also implement the Appender interface to create your own ways of outputting log
statements. The list of appenders is found on the Apache Web site at:

http://jakarta.apache.org/log4j/docs/api/index.html
We used FileAppender to append log events to a file.

Layout

The Appender must have an associated Layout so it knows how to format the
output. There are three types of Layout available:

1. HTMLLayout formats the output as a HTML table.

2. PatternLayout formats the output based on a conversion pattern specified, or
if none is specified, the default conversion pattern.

3. SimpleLayout formats the output in a very simple manner: it prints the Level,
then a dash '-' and then the log message.

We provide examples of using log4j in the next chapter.

Note: In addition to log4j, there are other technologies to accomplish this type
of logging.

286 Portalizing Domino Applications for WebSphere Portal

http://jakarta.apache.org/log4j/docs/api/index.html
http://jakarta.apache.org/log4j/docs/api/index.html

5.10 Struts Portal framework

Web applications have been evolving into complex interactions between the user
and back-end systems. Without the right tools these applications can be complex
to write and extremely difficult to maintain. The Struts framework has become a
de facto standard in the industry for authoring Web applications. Because of this,
enterprises want to use this framework on WebSphere Portal, both for migrating
existing applications and for developing new ones. In this section we discuss
adding support for Struts applications in the Portal server.

Why use the Struts framework

The Jakarta Struts framework is intended to provide a portlet application
developer with two main advantages:

» A controlled logic to your portlet applications

As you have realized by now, the development of portlet applications requires
the developer to coordinate several technologies to work together. In our
examples we have seen that all requests are sent to the portlet class doView()
method, and depending on the request and state of the portlets, it redirects to
the appropriate JSP pages for rendering.

This is accomplished with a redirection map embedded in the portlet class.
Basically, it’s a tightly coupled application, since any change on the control
logic would require recompiling and making sure that your application doesn’t
loose its integrity. The Struts framework solves this problem, especially in big
and complex portlet applications, since it takes out the control logic map from
the portlet class and places it on a flexible deployment descriptor, giving you a
loosely coupled structure. Also, this map can be edited with graphical tools
like the ones included in WebSphere Studio, Struts tools.

So the developer should consider Struts Portal framework if he is placing
control logic into the portlet applications and requires a flexible and
manageable control logic for the portlet.

» A strong foundation for portlet development

The Struts framework incorporates proven development patterns, like the
MVC model 2, that will make your portlet application perform and scale
appropriately. So if you are considering introducing a hybrid approach in the
development of your portlets, and you want to provide a strong structure,
Struts can give you exactly what you need.

The Struts framework will add some development components that have to be
well understood and properly used in order to exploit its full advantages. So if
your portlet application will just expose the Domino control logic of your
applications, it would be appropriate to reconsider using this framework.

Chapter 5. Portlet development using Java: Technology review 287

Also bear in mind that the standard Struts framework is accommodated to work

in the WebSphere Portal infrastructure through the Struts Portal framework, so in
this section we discuss the considerations for incorporating the Struts technology
into your portlet application.

Struts defined

Struts is a Jakarta open source project that provides a framework based on the
Model-View-Controller (MVC) pattern, which allows developers to efficiently
implement their Web applications, keeping the business logic and presentation
aspects separate. The developer community has embraced Struts, and the initial
release is continually being enhanced. In addition to enhancements to the base
Struts functionality, there are numerous extensions and tools available, for
example, the Struts editor in WebSphere Studio. In the Portal environment, the
ability to use Struts is a logical extension. The portlets on a Portal page can be
essentially thought of as servlet applications in their own right. Thus, for many of
the same reasons one would use Struts to implement a Web application, one
would also like to be able to use Struts in a portlet.

Basics elements of Struts
A Struts application is basically made up of the following elements:
» Actions
The Actions represent processing that occurs prior to going to another page.
» Pages
These are usually JSPs, but sometimes are HTML pages.
» Action Form Beans

ActionForms are Beans associated with Actions, supplying the data to fill or
collect various fields on a page.

The application writer creates these objects and, in the configuration file
struts-config.xml, defines the relationships between these objects and the
transitions that occur. The configuration of an ActionMapping associates a path
with an Action and with ActionForms, and can list one or more destination pages
following execution of the Action. As a result of executing the Action, an
ActionForward object is returned which contains the path to the next request.
Typically, the returned path is to a page, but it is also possible that the path is to
another Action. Figure 5-19 depicts the normal structure of a Struts application.

288 Portalizing Domino Applications for WebSphere Portal

Web

Web Server Enterprise
Browser Server

- WebSphere Application Server

| Action Servlet '/ actlun /,, —*| Business
Logic

L

o — / \ A 3

a —— L i .I i
T — - / '- | !/
Al -\..:..3 M"-\ IIII |II I|II In'
- . ! Vol !
:I ‘\M ; ¥ ! ¥ i

Form Bean

JavaServer
Page ‘4— @

View and Controller Model

Figure 5-19 Struts structure

Struts 1.1

The design of Struts has evolved into a more modular implementation in version
1.1. There are two main new feature in Struts 1.1:

» The addition of the Request Processor

The processing of a request has been moved out of the Action Servlet into the
RequestProcessor class. The Request Processor is split into numerous
process methods that can be overridden in a derived class to control the
processing. The new modular implementation facilitates the support of Struts
in the Portal server by allowing Request Processor methods to be extended
as necessary. The modular implementation limits the number of changes
necessary to the base Struts itself.

» Enhanced sub-application support

Struts allows configurations that are prefixed, which allows different
configurations based on prefixes. Portal server makes use of the prefixes to
support Portal server’s modes and device support.

Struts in a Portal server

A Struts application in Portal server is similar to the servlet-based Struts
application. A WAR file that contains the Struts jars, the JSPs, actions, and
configuration is built. The WAR file in Portal server has some additional
requirements. There are some additional jar files, and a portlet descriptor file.

There are also some necessary changes to the Web deployment descriptor and
the Struts configuration.

Chapter 5. Portlet development using Java: Technology review 289

290

To support existing Struts applications and offer a migration path to the Portal
server for existing Struts applications, several differences between Struts
servlet-based applications and portlets exist, specifically:

»

The portlet itself is a servlet and has its own processing and servlet mapping.
The portlet servlet must be configured as the main servlet rather than the
Struts Action Servlet.

Portlet action processing (for example, handling of user events like selecting
links or submitting forms) is done in a step prior to rendering the display view.
During this processing the response object is not available.

Display view rendering is done separately from action processing, and may

be done multiple times without intervening actions. This occurs because all

portlets on a page are essentially asked to refresh, or re-render, themselves
when the entire Portal server page is refreshed.

URIs under Portal server have a special format. A special APl is used to
generate the URI and add the desired information to be passed to the portlet.
If portlet URIs were not used, control would not get passed to the correct
portlet. Thus, the portlet URIs must be used to get control passed to the
correct portlet, with the additional path information needed by the Struts
application made available. The Struts tags have been modified to
automatically provide this needed functionality.

Portal server does not support forwards or redirects. Either alternatives have
to be used, or the functionality emulated.

The differences enumerated result in the following conclusions with regard to
supporting Struts applications as portlets:

»

The portlet’s servlet mapping has to be used. Routing of Struts actions back
to the Struts application processing has to be done using portlet URIs. The
way the Struts mapping is configured is described later in this section.

The processing of Struts Actions must occur during portlet action processing,
and the information necessary to render a display view must be stored away
so it is available during the later view rendering phase, which may occur
multiple times without intervening actions.

The Struts application paths, both to Actions and to pages, must be sent and
retrieved in a different way.

Forwards to pages (for example, JSPs) are done with include operations
rather than with forward operations. Forwards to other Actions can be handled
by recursively executing the Struts Action processing. Redirects are treated in
the same way as a forward.

Portalizing Domino Applications for WebSphere Portal

Two-phase processing

A portlet has a different processing and rendering design than a servlet. A servlet
does all of its processing in the service method. A portlet, on the other hand,
uses two-phase processing that is split between an action processing and
service. The reason that a Portal server needs this split is because portlets may
need to communicate with other portlets before the rendering stage. The action
processing is guaranteed to complete before a portlet is asked for a rendering.

The processing of events by a portlet is handled in a separate, earlier step from
the rendering step. The typical action handling is achieved by implementing the
ActionListener interface. The ActionListener interface provides the
actionPerformed method, to which an ActionEvent object is passed. When a user
clicks on a link or a submit button, an ActionEvent can be generated. The
PortletAction can be obtained from the ActionEvent, which describes the
triggering event. When the actionPerformed method is invoked, a response
object is not available because this is not a rendering step.

The rendering step is handled in a separate method, the service method, which
calls the doView method in the PortletAdapter. The doView method is not only
called following the actionPerformed processing when a user clicks on a link or
button in a portlet, but is also called when the portal page is refreshed. Thus,
given a page with two portlets, A and B, when the user clicks on a link in portlet
A, actionPerformed and doView is called for portlet A, but only the doView
method is called for portlet B.

The two-phase processing causes some significant challenges as it relates to
Struts applications.

» The methods called during Struts processing expect both a request and
response to work with.

The first issue of the lack of a response object during actionPerformed
processing can be handled by creating a pseudo response. The response
object used prior to actually invoking the JSP is not heavily used. However,
during action processing within a Struts application, it is not unusual for an
application to report an error using the sendError method.

» The Struts rendering of the page is usually immediately preceded by action
processing; they are essentially part of one step.

The second issue is the fact that the rendering step is separate from the event
handling step. Note that some of the information that was available during the
processing of the actionPerformed method, namely the request parameters,

is no longer available when the doView method is invoked. Additionally, since
doView can be called when the portlet page is refreshed (without a new event
occurring for that portlet), all information required to render the page must be
available every time doView is called. Since normal Struts processing allows

Chapter 5. Portlet development using Java: Technology review 291

the updating of the response object during almost all steps, including during
action processing, there are clearly situations where the two-phase model
would cause problems in the application. However, a typical well-behaved
Struts application does not write directly to the response object and instead
forwards to a JSP. It is assumed that the JSPs do not themselves need
access to the original event information, request parameters, which initially
led to the current rendering. Instead, it is assumed that the Action processing
stores information in a bean, from which the JSP extracts the information. As
long as those beans are available during the rendering, the rendering can be
repeated. Since those beans, most notably the ActionForm, are usually stored
in the original request attributes, the request attributes from the original
request processing must be saved and made available when doView is
invoked.

No response object

The typical well-behaved Struts application has no need to access the response
object during the Action processing. The lone exception encountered is the need
to report an error through the sendError method. When an application checks
and finds some state information invalid, it is common to use response.sendError
to generate an error page. Failing to support this would break a large number of
legacy Struts applications. The Struts portlet framework intercepts the calls to
sendError and saves the error information for display at a later time. During the
later view rendering phase, this error information is found, and the error
information displayed instead of displaying other content for the portlet.

The Struts URL paths

Struts Action mappings are defined in terms of paths. Also, the name and
location of page objects (for example, JSPs) are defined via paths as well. Thus,
although portlets have their own form of URI, it is still necessary to be able to
associate the Struts path with an action sent to a portlet and to retrieve that
Struts path when the portlet action is handled. It is not unusual to pass
parameters on such a path via the query string on the HTTP URL. It is also
important to realize that often the actions containing these paths are generated
from tags provided by Struts. The most obvious examples of these are the tags
for the HTML elements LINK and FORM. Obviously, in order to support such tags
when the Struts Application is executed in a portlet, they have to be modified to
create a portletURI with the required additional information.

The Struts tags that create links have been modified to pass the created paths
directly through to the Portal server as a parameter on the portlet URI. This
allows a portlet URI to be created that will cause the interaction with the portlet.

292 Portalizing Domino Applications for WebSphere Portal

Forwards and redirects

As mentioned earlier, the Struts Action objects return an ActionForward object,
which contains a path to be either forwarded or redirected to. Portal server does
not support forward operations because the response object has already been
committed. If the path is not an action, the page is included instead. If the path is
an action, then a forward to the Action is simulated. The include of a page uses
the PortletContext include method.

A forward for an Action is simulated by recursively sending the new Action URI
through the Struts base processing of an Action.

Note that not only can we have this issue of forwards in ActionForward objects
returned from Action objects, but also in tag handlers as well. In tag handlers, it is
possible to access the PageContext object and invoke the forward method as
well. An alternative method to the PageContext.forward is available via the
PortletApiUtils class, which provides a mechanism to emulate the forward
functionality.

It is important to understand that although you can write portlets using Struts,
there are some things that you can do in a Struts servlet that you cannot do in a
Struts portlet. For example, Struts provides support for things like redirects and
forwards to other servlets. These are provided because they are functions
generally available to servlets. However, these capabilities are not available in
portlets.

What not to do in an action
Following are two examples of what you shouldn’t do in an action:

» The typical use of the response object is to call sendError when an error
condition is detected. Portal server does not support writing to the response
object during the action processing. Therefore, a response object is not
available, as discussed previously. A pseudo response object is made
available during the processing in the Request Processor. If the Struts Action
writes to this response object, that text will be lost. The Action should return
an ActionForward object. This is important so the Request Processor goes
through the normal processing.

» The ForwardAction and IncludeAction, normally shipped with Struts, are
examples of what should not be done in a Struts application in Portal server.
These actions create a RequestDispatcher and try to forward or include the
path in the Action execute. The ForwardAction should return an
ActionForward so the RequestProcessor can process the Action. The Struts
portlet framework provides its own versions of ForwardAction and
IncludeAction to deal with this problem. It is hoped that the issue will be
corrected in the base Struts implementation sometime in the future. However,
as mentioned previously, the use of the sendError function on the response

Chapter 5. Portlet development using Java: Technology review 293

object is supported by the Struts portlet framework because the function is so
commonly used.

Roles support
Struts uses roles to determine access to an Action. Portal server does not
support roles at this time. The Struts portlet can be configured to use group
names as if they were role names, in addition to group names, to emulate
role-based access control. The following init parameter in the Web deployment
descriptor enables this support:

<init-param>

<param-name> UseGroupsForAccess</param-name>

<param-value>true</param-value>
</init-param>

Developing Struts applications with WebSphere Studio

The Struts application development tools that are provided by WebSphere Studio
make it easy for you to build and manage a Struts-based Web application.
WebSphere Studio provides the following features:

» Creation of a Struts project with the tag libraries and related resources
correctly referenced and ready to use.

» Wizards to develop and create Struts elements like form beans and action
classes, giving you a head start in Struts development.

» A specialized editor to create and modify the Struts XML configuration file.

» Struts support for validation and editing; for example, by helping you to use
Struts tag libraries.

» A visual assembly tool, which provides the following capabilities:

|

Helps architects to design the flow of a Struts-based Web application and
to communicate that design to other professionals

Embeds Struts code in several components

Provides quick access to resource-appropriate editors and wizards

Separates team responsibilities for greater productivity and focus

As shown in Figure 5-20, the editor will let you connect and visually include
Struts components seamlessly.

294 Portalizing Domino Applications for WebSphere Portal

B web - IBM WebSphere Studio Application Developer : - 1ol x|
Eile Edit Mavigate Search Project Profile Bun Window Help

[P0 = e I I B -— 20|
Jaﬁ N X 1% %

5 JZEE Mavigator v X] x}

B B

1@ CustomerEAR. -
o] CustamerIsPRortlst |
I @ StrutsTradeSample
[1aF Trade
=13 TradeTutarial
-] Web Deplaymer
{2 Java Source
148 wreb Content
-3 META-INF
{e= theme

sell \
liby
[] ibm-wet /
S b R . JEEN
T struts-oo E — [.

= @ skruks-oi index index.jsp Iugln hume portfolio portfolio.jsp account accounk.jsp

H 2] web.xm
account.jsp -
< | »
I
JEE ... |Server .. |C . ﬁ
Attributes x register.jsp register

\afkﬂ%l

No attributes are available.
qunte

updatenccnunt

=
4 »

%7 Tasks (12 items) U L o- x

E
CI I | Description T o J Resource | Ini Folder | Lacation -

A Broken Link - [Customer1SPPortlet(WEE-INF/Hdjpeople.tld CustomerContacts.jsp Customer 15PPartlet fieb C... line 1

[x) JspTranslate: Unable to open taglibrary WEB-INFjHdjpen... CustomerContacts. jsp Customer 15PPartlet ieb C... line 1 -

Tasks JLinks ‘Thumhnawl ‘Sty\es ‘CD‘DrS | Servers

- -

Gallery ‘Library |Outhns

Figure 5-20 WebSphere Studio Struts sample diagram

5.11 General portiet development guidelines

The following general portlet performance thoughts have been taken directly
from the Portlet Developer’s Best Practice and Coding Guidelines. We consider
performance crucial to any production portlet, therefore we have included a copy
of this information here.

Portlet coding guidelines

These guidelines are intended to help you produce best-of-breed portlets for the
WebSphere Portal environment.

Refrain from using instance variables. Portlets, like servlets, exist as a
singleton instance within the server's JVM. Therefore, a single memory image of
the portlet services all requests and must be thread-safe. Data stored in instance
variables will be accessible across requests and across users and can collide

Chapter 5. Portlet development using Java: Technology review 295

with other requests. Data must be passed to internal methods as parameters.
There are other means of storing data globally.

Pass data to the view (JSP) as a bean in the request object. Use the
PortletRequest object to pass data to the view for rendering. This way, when the
request is complete, the data falls out of scope and is cleaned up. Passing it as a
bean allows the JSP to simply refer to the data as properties on the bean using
intrinsic functions in the JSP syntax.

Use the portlet logging facility. Using the PortletTraceLogger installed with
WebSphere Portal for tracing and logging allows your portlet’s debug and trace
output to be stored with other portlet output in the portal log files. It also takes
care of the infrastructure around logging and tracing. The PortletLog object that
is the interface to the logging mechanism can be obtained from the portlet
context:

PortletLog log = getPortletConfig().getContext().getLog();

You should also verify that logging is enabled for attempting to log data,
especially if that requires additional logic or storage to build the log message.

Example 5-11 Using a log from portlet

if (log.isDebugEnabled()) {
String logMsg = new String("Time to retrieve data: " + elapsedTime);
log.debug(logMsg); }

Adopt good code documentation habits. While commenting of code is not
required for the functionality of the portlet, it is essential for its maintenance. In
addition to the fact that the responsibility for a portlet’s maintenance can change
hands over time, well-written portlets serve as models for other portlets, which
means that someone else must understand what you wrote. Well documented
code implies more than simply inserting comments, it implies good naming
practices for Java resources as well. The following are examples of guidelines to
follow:

» Insert JavaDoc-compliant prologues for all public classes, variables, and
methods. Be sure to document inputs and outputs.

» Include inline comments, but do not include them on the same line as Java
source. It is difficult to align and follow comments which are on the same line
as Java source.

» Use meaningful names for variables and methods. Variables x, y, z, while
easy to type, are not easy to follow through code. Capitalization conventions
and the use of underscores (‘_’) within resource names is a matter of
personal choice, but be consistent once your choice is made.

296 Portalizing Domino Applications for WebSphere Portal

Use the ContentAccessService to fetch external content, when necessary.
If it is necessary to fetch external content using an HTTP request, use the
ContentAccessService as it is intended to perform that function as expediently as
possible. It also prevents you from having to rewrite the same function and
introduce another maintenance point.

Cache portlet settings or portlet data. If portlet settings or data is complicated
and requires complex parsing to digest, it may be a good idea to cache the data
for quick retrieval later. Avoid using the PortletSession to store this data as it
causes “session bloat”. Alternatively, consider using the Application Server’s
Dynacache CommandCache to store this data. PortletSettings can be stored
keyed off the portlet’'s name. PortletData will have to be stored keyed off the
portlet name and user name. When updates to the cache are necessary, based
on updates to PortletData or PortletSettings, devise a means of communicating
updates to the data, such as through implementing the
PortletSettingsAttributesListener interface, or by using a “dirty bit” that can be
interrogated to see if updates have been made to the configuration, in which
case the cache can be invalidated and updated.

Note that the CommandCache is not currently cluster-aware, meaning that
cached content is not shared across horizontal nodes in a cluster. So, portlets
must be able to create the cache entry from scratch if the cache entry does not
exist.

Follow design guidelines for Struts portlets.

If you are developing portlets based on Struts, use the following additional
guidelines to ensure your implementation is the best it can be:

» Be sure to use the sample portlet applications that accompany the Struts
Portal Framework package to ensure Struts is working properly in your
environment before testing Struts support in your portlet.

» Make sure to review the documentation on the Struts Portal Framework for
application requirements and any restrictions. For existing Struts applications
refer to the section in the same document titled “Migrating an Existing Struts
Application”.

Portlet packaging guidelines

Make common functions available externally to portlets. If the portlet
contains common functions that are replicated across several portlets, consider
isolating them making them externally accessible by the portlets. The easiest
way to do this is build another JAR file of the common classes and place the JAR
file in a location that is in each portlet’s classpath, such as the AppServer/lib/app
directory. Another approach is to build a Portlet Service from the common

Chapter 5. Portlet development using Java: Technology review 297

functions which can then be accessed using the common PortletService
interface, retrieved using the PortletContext.getService() method.

Combine portlets with similar functions into a single portlet with multiple
configuration settings. If you find yourself developing several similar portlets,
such as a mortgage calculator portlet, car loan calculator portlet, and a home
equity loan calculator, it might make sense to actually develop a single portlet
that can behave differently based on configuration settings. The common portlet
code is specified as part of the portlet application’s abstract portlet definition. The
application’s various concrete portlet definitions have unique configuration
parameters (PortletSettings) that can be used to customize the behavior of the
common portlet code.

Data management

There are three primary areas where portlet configuration information is stored
and can be maintained: portlet settings, portlet data, and servlet configuration.

» Use portlet settings to store user-independent configuration data. This
data represents configuration parameters from the portlet’s portlet.xml file
(<config-param> elements under the concrete portlet definitions). It is only
writable in the portlet’s configure mode (doConfigure() method), but is
readable through the getPortletSettings() method on the portlet.

» Use portlet data to store user-dependent configuration data. This data
often represents personalized overrides to the portlet settings and is thus
stored according to user and portlet instance. This data is only writable from a
portlet’s edit mode (doEdit() method), but is readable through the
getPortletData() method on the PortletRequest object.

» Use servlet configuration for storing static initialization information for
a portlet. Examples of this information include the install directory or path
information. This data, taken from the portlet’s web.xml file, is read only and
accessible using the getServletConfig() method on the portlet.

General session management guidelines

Limit the use of the portlet session for storing portlet state information. The
Portlet Session is a convenient place to store global data that is user and portlet
specific and that spans portlet requests. However, there is considerable
overhead in managing the session, both in CPU cycles as well as heap
consumption. Since sessions may not expire for quite some time, the data
contained in the sessions will remain resident in active memory even after the
user is done with the portlet. Be very judicious about what is stored in the Portlet
Session.

298 Portalizing Domino Applications for WebSphere Portal

Tip: A good rule of thumb to use when determining if data should be stored in
the Portlet Session is if the data is user-specific and cannot be recreated by
any other means, such as portlet state information.

For example, parsed configuration data (from PortletSettings) should not be
stored in the Portlet Session since it can be recreated from the database at any
time.

Do not rely on portlet sessions if the portlet is to allow anonymous access.
If your portlet is to be used by unauthenticated users, such as on the Welcome
page, then the portlet should not rely on the portlet session at all. Portlet
sessions are bound to a user context. By default, for unauthenticated users, a
portlet session can be requested by a portlet, but it is a temporary session which
only lasts for the duration of the current request. Public session support exists,
where sessions are issued to unauthenticated users, but because there is no log
out action for an unauthenticated user, the session will not be invalidated until it
times out, which can lead to severe memory consumption issues.

There are other ways to preserve global data for anonymous access, such as:

» Storing data in a collection whose key is communicated back to the client
using a cookie.

» Storing data in the WebSphere Application Server’s dynacache facility, again
using a unique key which is communicated to the browser using a cookie.

» Storing the state information as a cookie itself.

» Storing non-sensitive data as hidden field elements within FORMs so that it
gets passed back on subsequent form submission. This has the added
advantage of binding state-aware data to the page requiring it.

Alternatively, consider limiting the function of the portlet for anonymous access.
You can check for the presence of a user object (PortletRequest.getUser()) to
see if a user has logged into the portal, in which case a portlet session should be
available.

Always request an existing portlet session. Always request a portlet session
using either PortletRequest.getPortletSession() or
PortletRequest.getPortletSession(false), which will only return a session if one
does not already exist. The portal server will establish a portlet session for a
portlet before it is invoked. This helps prevent the case where a temporary
session is generated for a portlet during anonymous (unauthenticated) access.

Prevent temporary sessions from being generated in the JSP: Add the JSP
page directive <% @ page session="false” %> to the JSP to prevent temporary
sessions from being created by the JSP compiler if none already exist. This will

Chapter 5. Portlet development using Java: Technology review 299

help guard against attempting to use the session to store global data if the
session will not exist past the current request. You will need to be sure the
portletSession exists before trying to use it.

Other general development guidelines

There are potentially many different types of browsers, or user agents, which
access WebSphere Portal besides a typical desktop browser, such as hand-held
devices (PDAs, or personal data assistants) and wireless phones. The
capabilities of these devices vary widely, as do their users’ attention spans and
interaction models. Therefore, the portlet’s design needs to take these facts into
consideration.

Information priority is different depending on the device it is viewed on.
Capabilities of desktop browsers are limitless. Users can download almost
anything quickly and randomly navigate through it. For handheld devices,
however, screen real estate and device memory is at a premium, not to mention
the relatively slow speed of a wireless connection versus a LAN connection. Also,
users of mobile and handheld devices need quick access to concise information
and cannot afford the time or effort it takes to navigate through several screens to
get to the desired information. Here are some more general guidelines for portlet
development:

All portlet strings should be fetched from resource bundles. All displayable
strings should be stored in resource bundles and fetched using the
ResourceBundle Class. The resource bundles should be organized by language
under the portlet's WEB-INF/classes directory.

For example, if a portlet supports English and Finnish Language, it would have
three resource bundles (default, English, and Finnish) and might be organized
under WEB-INF/classes as so:

WEB-INF/classes/nls/mystrings.properties
WEB-INF/classes/nls/mystrings_en.properties
WEB-INF/classes/nls/mystrings_fi.properties

Using the ResourceBundle class, you would refer to the properties file as
“nls.mystrings”. Java will automatically look for the appropriate properties file
based on the current locale

Organize portlet help files by language. As opposed to typical JSPs in the
portlet’s view, the portlet’s help JSP files can, and should be language
dependent. Since little else in the JSP will exist but help content, there isn't much
need in extracting strings from resource bundles. Translate the JSPs instead, and
organize them by language. When using the include() method on the portlet
context to dispatch a JSP, the method will search the directory structure for

300 Portalizing Domino Applications for WebSphere Portal

locale-specific subdirectories first. For example, if you include the JSP
“/\WEB-INF/helpjsps/html/myHelp.jsp”, and the current request locale is en_US,
then the method will look for the myView.jsp in the following directories, in order:

/WEB-INF/helpjsps/html/en_US/myHelp.jsp
/WEB-INF/helpjsps/html/en/myHelp.jsp
/WEB-INF/helpjsps/html/myHelp.jsp
/WEB-INF/helpjsps/myHelp.jsp

Note that the include() method will also look for a default myHelp.jsp if one does
not exist in the HTML subdirectory.

Use portlet messaging to communicate (send messages) to other portlets
on the same page. It is possible to send messages to a specific portlet or to all
portlets on a page. The message body may contain data that the receiving
portlets require. The message is sent from a portlet’s actionPerformed() method
and received by other portlet’'s messageReceived() methods, before those
portlet’s doView() is called as a result of the action, so there is an opportunity to
set data or state information before the receiving portlets are invoked. See the
section titled Developing portlets — Writing portlets — Portlet messaging in the
WebSphere Portal InfoCenter for more details.

Avoid the use the HttpSession to share data with other portlets/serviets.
The HttpSession is not common between nodes in a cluster, so any data store in
the HttpSession is only visible by J2EE resources in the same Application Server
instance. The PortletSession is derived from the HttpSession, and besides only
having visibility of the portlet instance, is also bound by the same restriction.
Persistent sessions can be turned on in the application server, which will serialize
the session to a database which can be shared across nodes in a cluster, but
that can cause performance issues for very large sessions. See Session
Management guidelines section for other ideas.

Avoid the use the HttpSession to share data with other portlets/servlets.
The HttpSession is not common between nodes in a cluster, so any data store in
the HttpSession is only visible by J2EE resources in the same Application Server
instance. The PortletSession is derived from the HttpSession, and besides only
having visibility of the portlet instance, is also bound by the same restriction.
Persistent sessions can be turned on in the application server, which will serialize
the session to a database which can be shared across nodes in a cluster, but
that can cause performance issues for very large sessions. See Session
Management section for other ideas.

Chapter 5. Portlet development using Java: Technology review 301

Performance considerations guidelines

Do not spawn threads. Since portlets are multi-threaded to begin with,
spawning child threads can create problems with synchronization or
multi-threaded access to the spawned threads. Threads should be used with
extreme caution, and when necessary, should be used briefly (no long running
threads, especially any that outlast a request).

Do not use threads to access J2EE resources. In certain Java Virtual Machine
(JVM) implementations, such as on zOS, there are a limited number of threads in
the process thread pool which are allocated for accessing J2EE resources, such
as JCA connectors. All such resources should be manipulated on the calling
thread to minimize the possibility of starving the thread pool.

Limit temporary storage. Temporary storage includes temporary variables
created within a block of code which are used then discarded. Temporary
variables are typically utilitarian in nature, such as Strings, integers, booleans,
Vectors, and such. However simple in nature, temporary variables take CPU
cycles to create and destroy and occupy space on the heap which must be
maintained by the garbage collector. The following is a list of simple guidelines
for reducing or optimizing temporary storage:

» Reuse temporary variables as much as possible
» Declare temporary variables outside loops

» Instead of String, use StringBuffers, which are optimized for parsing and
string assembly

» Declare collection classes (Vectors, Arrays) with an initial size that is the
average maximum size, to prevent growth and reallocation of space on the
heap.

Avoid synchronized methods. Synchronization causes a bottleneck through
your portlet, or a path that only allows one thread at a time to pass through.
Besides slowing the entire portal system, the possibility of a deadlock occurring
is also high, which could hang the portlet, or portal, for all users.

Avoid long-running loops. Simply put, portlets need to be fast. Long running
loops consume a large number of CPU cycles and cause the portal page to wait
for this one portlet to finish. If a long-running loop seems necessary, re-inspect
the design to see if it can be accomplished by some other means, such as
through block/notification logic, or breaking the large loop up into several shorter
ones.

Use JSPs instead of XML/XSLT. JSP are more efficient than XML/XSLT in
general. Since JSPs are compiled into servlets, they run much faster than having
to parse XML and apply XSL stylesheets on every request. Also, the portal
infrastructure is optimized around JSPs, allowing for easy expansion into other

302 Portalizing Domino Applications for WebSphere Portal

markups, languages, and even browser support by simply adding new directory
structures of JSPs. In general, XML parsing and XSLT processing is expensive.
XSL processing, for example, causes hundreds of transient String objects to be
created and destroyed, which is expensive in CPU cycles and heap
management. If XML/XSLT is a requirement, then make use of caching as much
as possible to reduce the amount of parsing and XSLT processing which must
take place.

Use caching as much as possible. If portlet output is static in nature or is valid
for some period of time before it is updated, the portlet should enable the “display
cache” by setting appropriate values for the <cache> elements in the portlet’s
portlet.xml file (note that caching must be enabled in a portlet before it is installed
or updated). A portlet’s caching settings can be set such that the output is never
cached (<expires> value of 0, the default), cached for some period of time
(<expires> value greater than 0, in seconds), or cached indefinitely (<expires>
value of —1). The cached entries can also be shared across all users of the same
portlet (<shared> value of YES) if the output is valid for any user.

Important: Using the cache vastly improves the performance of the portlet,
and thus of the page in general.

The portlet can also implement the getLastModified() method to control the
invalidation of the cached content, informing the portal which it should call the
portlet’s doView() method to refresh the output. Refer to the portlet development
section of the WebSphere Portal infoCenter for examples of how to use the
getLastModified() method.

Chapter 5. Portlet development using Java: Technology review 303

304 Portalizing Domino Applications for WebSphere Portal

Portlet development using
Java: Integration examples

In this chapter we show you how to put to use the Java integration techniques
introduced in the previous chapter. We do this by providing step-by-step
examples of adding functionality to the sample Sales Tracking application that we
first introduced in Chapter 2.

First we discuss hybrid techniques used in the two samples where we add
functionality for searching and pagination in portlets.

Then we discuss full Java integration techniques, from the simple
“HelloWorldFromDominoServer” portlet, to using JavaBeans in a portlet, and
creating an ACL browsing portlet for Domino. We also demonstrate how to use
logging (log4j) in a portlet and how to get started with Object pooling.

© Copyright IBM Corp. 2003. All rights reserved. 305

6.1 Software and tools used

We prepared the samples in this chapter using WebSphere Studio Application
Developer version 5, and Portal Toolkit version 4.2.5. Both were introduced in
earlier chapters. In addition, we used Domino Toolkit for Java version 2.1, which
is described in the following section.

6.1.1 Domino Toolkit for Java version 2.1

The Lotus Domino Toolkit for Java/CORBA, commonly referred to as “the
Java/CORBA toolkit,” is a comprehensive source of samples, documentation,
and software that helps you in your Java development work.

The overall goal of the Java/CORBA toolkit is to help you leverage the power of
Java, Domino, CORBA, Notes, and Portlets. This toolkit is suitable if you are
developing:

» Java programs, such as portlets, that use Domino Objects for Java to access
local and remote Domino data and services
» Java programs that access data in relational database management systems

» Java and C++ programs that use the Common Object Request Broker
Architecture (CORBA), the Internet Inter-Operability Protocol (IIOP), and the
Domino Interface Definition Language (IDL) to access remote Domino objects

It provides a range of sample code you can use to create your own Java
programs. However, it does not provide sample code based on portlets because
this toolkit was released before WebSphere Portal server existed. Nevertheless,
it is very helpful for portlet development work.

Important: Domino Toolkit for Java includes the Domino Objects for Java
libraries (Notes.jar and NCSO.jar) that let you develop local and remote Java
programs. NCSO.jar lets you develop remote Portlets without necessarily
having Domino or Notes installed.

You can download this toolkit from:
http://www-10.Totus.com/1dd/toolkits

6.1.2 Hybrid integration techniques

The hybrid integration techniques will start where the JSP option left off, and
introduce some additional functionality with Java components. The functionality

306 Portalizing Domino Applications for WebSphere Portal

http://www-10.lotus.com/ldd/toolkits

we add will focus on the Customer List portlet, where we incorporate the
following features:

» Search for customers
» Paging capabilities
We will end up with a portlet that can manage long views since it offers

positioning and filtering capabilities, while retaining the previous enhancements
like Click to Action and People awareness.

Figure 6-1 shows the different portlet modes in the Portal Ul and how the portlets

operate. The figure also includes the .java package and actions inside that Java
file.

Customer List hybrid portlet -0
Customer List

Currently searching by: ibm __Reset search 3 CustomerList ,java
Customer Name Customer # Account Dwner
@ 1BM Corporation 1 & Michael Ticknor

Reset Action

4){ Search Action I

Next Action

Customer List portlet

Customer List hybrid portlet

Customer List

Search: M

Previous Action

Customer Name Customer # Account Dwner

T after portal 7 @ Chris Hel
1% AnyPortal Inc 8 ;

& Company A 2

& % Doe Inc. 3 B Camilo Rojas
E B Domine Portalizers ¢ ® Camilo Rojas

Frevious 1 2 34 MNext

Search:

Customer Name Customer # Account Owner

T fire Portals Co 10 @ Gary Someone
T BIBM Corporation 1 # Michael Ticknor
EEITSO 5 ® John Srnith

T J0e's Pizza 13 @ Camilo Rojas
T Keyboards Inc 17 ® Gary Someone
Frevious 1 2 3 4 Next

Figure 6-1 Hybrid JSP: Java Customer List portlet

Chapter 6. Portlet development using Java: Integration examples 307

6.2 Search functionality

To add search functionality to your portlet you will rely on Domino’s excellent full
text search capability. To use this capability, you need to first have a full text index
of the Customers database. We assume you have enabled full text index in the
Domino database used in this example.

First, let’'s analyze the life cycle of the portlet. It will support the actions identified

in Table 6-1.

Table 6-1 Actions supported by the Customer List portlet with search

Action name

Description

search

This action responds when a user inserts a search string and clicks
the button. The actionPerformed() method inserts the search string
and adds it to the Session object. When rendering is being performed
by the JSP, it checks to find out if the parameter is in Session and
introduces an ftsearch attribute to the <Domino:view> custom tag.
And it presents the view filtered.

reset

This action responds when a search statement filtering the view is
present and the reset button is pressed. On the actionPerformed()
method it removes the search string attribute from the Session, so that
when it renders it again, there will be no filter present.

Use the following steps to add search functionality:

1. Open the WebSphere Studio Application Developer and open the
CustomerJSPProject created on the previous chapter.

We focus on 2 components: the CustomerList.java portlet class and the
/jsp/CustomerList/View.jsp file.

2. Open the CustomerList.java portlet class.

3. Insert the following action URIs in the doView() method:

PortletURI searchURI = response.createURI();

DefaultPortletAction searchAction = new DefaultPortletAction("search");
searchURI.addAction(searchAction);

request.setAttribute("search", searchURI.toString());

PortletURI resetURI = response.createURI();

DefaultPortletAction resetAction = new DefaultPortletAction("reset");
resetURI.addAction(resetAction);

request.setAttribute("reset", resetURI.toString());

4. Implement an ActionListener interface.

5. Add an empty actionPerformed() method.

308 Portalizing Domino Applications for WebSphere Portal

6. Include in the actionPerformed() method the following logic to handle each
event:

public void actionPerformed(ActionEvent event) throws PortletException {
DefaultPortletAction action=(DefaultPortletAction)event.getAction();
PortletRequest request=event.getRequest();
if(action!=null){
if(action.getName().equals("search")) {
request.getPortletSession().setAttribute(
"search",request.getParameter("search"));
}
if(action.getName().equals("reset")) {
request.getPortletSession().removeAttribute("search");

}

}

This code will create the new attribute when the search event is called and
remove it when the reset event is called.

7. Open the /jsp/CustomerList/View.jsp file.
Include the following code just below the Customer List label of the portlet:

<% String tempSearchString=null;
if(request.getSession().getAttribute("search") != null){
tempSearchString = "FIELD CustomerName contains "
+request.getSession().getAttribute("search"); %>
Currently searching by:
<%=request.getSession().getAttribute("search")%>
<INPUT type="button" name="reset" value="Reset search"
onClick="window.location.href="'
<%=(String)request.getAttribute("reset")%>"'">

<% } else { %
<form name="<portletAPI:encodeNamespace value="search"/>"
action='<%=(String)request.getAttribute("search")%>'
method="post">
Search: <INPUT type="text" name="search" value="">
<input type="submit" name="Search" value="Go !">
</form>
<% }%>

This scriptlet, based on the search attribute stored on the session, creates
either a form to perform the search (if there is no attribute) or a button to reset
the search and display the query.

9. To filter the Domino view add an attribute on the <Domino:view> tag with the
name ftsearch. The tag should be like the following:

<Domino:view
viewname="CustomersByName"

Chapter 6. Portlet development using Java: Integration examples 309

dbserver="<servername example:CN=itsotest-dom/0=itsoportal>"
dbname="<database name example :apps/customer.nsf>"
user="*webuser"

host="itsotest-dom"

ftsearch="<%=tempSearchString%>">

The portlet after you have enabled the search mechanism should look similar to

Figure 6-2.
Customer List hybrid portlet -0
Customer List Customer List hyb let . -0
search: [bm [8o] —. Customer List
i il Reset sear
CustomerName Customer # Account Dwner Currently searching by: ibm __Resst search |
& B Doe Inc. 1002 * Garv Someons L_l:_ush)mer Nam.e Customer # Account Owner
- IBM Corporation 1 ® Michael Ticknor
T IBM Corporation 1 ® Michael Ticknor == " ichael Ticknor
& & Portals-R-Us s00 .
T wanda's World of Wigs 1234567
& & WP Experts 1001

Figure 6-2 Customer List portlet with search capabilities

6.3 Paging through the view

Now let’s consider that you have added some extra customers to the
CustomerByName view and you can’t present them all since the presentation of
your portlet will be ruined. You can’t include the Domino custom JSP tags that
would handle the pagination because of the JavaScript code that gets inserted.
Instead, you can write some Java code to manage paging. Again, you will work
with the Customer List portlet.

At a high level, the process is: enable the portlet to accept two new actions,
called previous and next; define two required variables (number of rows per page
and counter for paging); and, on the actionPerformed() method handle the
previous and next actions by increasing or decreasing the counter.

Use the following detailed steps to implement this functionality:
1. Open the CustomerList.java portlet file.

2. Insert the following actions in the doView() method:

PortletURI previousURI = response.createURI();

DefaultPortletAction previousAction = new DefaultPortletAction("previous");
previousURI.addAction(previousAction);

request.setAttribute("pageNo", previousURI.toString());

310 Portalizing Domino Applications for WebSphere Portal

PortletURI nextURI = response.createURI();

DefaultPortletAction nextAction = new DefaultPortletAction("next");
nextURI.addAction(nextAction);

request.setAttribute("pageNo", nextURI.toString());

. Include the following code at the beginning of the doView() method:

if(request.getPortletSession().getAttribute("pageNo")==null){
request.getPortletSession().setAttribute("rows","5");
request.getPortletSession().setAttribute("pageNo","1");

}

This code will create two attributes on the initial rendering: number of rows
and a counter page. Both will be stored on the session.

. In the actionPerformed() method add the handlers of the two newly created
actions by inserting the following code:

if(action.getName().equals("previous")) {
request.getPortletSession().setAttribute(
"pageNo",""+String.valueOf (Integer.parselnt(
request.getPortletSession().getAttribute("pageNo").toString())-1));
}
if(action.getName().equals("next")) {
request.getPortletSession().setAttribute(
"pageNo",String.valueOf(Integer.parselnt(
request.getPortletSession().getAttribute("pageNo").toString())+1));

}

. Open the /jsp/CustomerList/View.jsp file and insert after the <Domino:view>
tag a new <Domino:page> tag which will be in charge of paging through the
view. Don’t forget to close the tag just before the </Domino:view> tag. The tag
inserted should be similar to the following:

<Domino:page

id="mypage"
start="'<%=(String)request.getSession().getAttribute("pageNo")%>"
rows="'<%=(String)request.getSession().getAttribute("rows")%>"'>

</Domino:page>
Just after you close the table that displays the customer view, insert the

following code that will insert the Previous and Next buttons and display the
page in which you are currently:

<table>
<tr>
<td>
<% if(mypage.getPage() > 1){%>
<a href="#" onClick="window.location.href="'
<%=(String)request.getAttribute("previous")%>"'">
Previous

Chapter 6. Portlet development using Java: Integration examples 311

<% } else {%>
Previous
<% } %
</td>
<td>
<% for(int i=1;i<=mypage.getPageCount();i++){
if(i==mypage.getPage()){
out.printin(""+i+" ");
} else {
out.printin(i+" ");
}
} %>
</td>
<td>
<% if(mypage.getPage() < mypage.getPageCount()){%>
<a href="#" onClick="window.location.href="
<%=(String)request.getAttribute("next")%>"">

Next

<% } else {%>
Next
<% } %>
</td>

</tr>
</table>

This code inserts three columns to the table. The first one will display the
previous link (which is aware of the position, so there won’t be any link on the
first page). The next column will display the different pages available and will
display in bold the current page. The final column will display the next link
(which is also aware of the position, avoiding presenting a link on the last

page).
Perform a standard deployment as described in previous examples.

Your Customer List portlet should look similar to the one in Figure 6-3.

312 Portalizing Domino Applications for WebSphere Portal

Customer List hybrid portlet

Customer List

Customer Name
& & After portal
& & AnyPortal Inc
B & Company A
5 Doe Inc.
& & Domine Portalizers

Previous 1 2 3 4 Next

Search: M

Customer # Account Owner
7 W Chris Heltzel

a * Michael Ticknor
2 * John Smith

3 B Camilo Rojas
9 @ Camilo Rojas

Figure 6-3 Customer List portlet enabled with search and paging

6.4 HelloWorldFromDominoServer portlet

Overview

This section guides you through the process of coding your first Java-based
portlet, the “HelloWorldFromDominoServer” portlet. This is the simplest portlet
you can write using the Domino Java API in portlet development. It has the
following functionalities:

» Creates a session to Domino server.

» Saves a session, so that it can be reused.

» Gets some basic data from the server, like Notes version, platform, server
name, and server URL.

» Once a portlet is refreshed, it uses the same session what was created at

first.

Implementation details and example

In order to create Portlet applications suitable for deployment in WebSphere
Studio Application Developer, you need to use the wizard. To manually construct
the necessary folder structure and deployment descriptors would be tedious and

utterly pointless

1. To start creating a new Portlet Application, launch WebSphere Studio
Application Developer and switch to the Portlet Perspective by selecting
Perspective — Open — Other — Portlet.

2. Start the Portlet Application wizard in one of the following ways:

a. Select File — New — Portlet Application Project.

b. Right-click the Portlet Perspective and select New — Portlet Application

Project from the context menu.

Chapter 6. Portlet development using Java: Integration examples 313

c. The wizard can also be started from any perspective by selecting File —
New — Other — Portlet development — Portlet application project.

When the wizard has started, you will see the screen shown in Figure 6-4.

Create a Portlet Project

Define the Portlet Project

Create a sample portlet application project,

e

Project name: I HelloWwarldFramDonming

¥ Use default
New project location; IC:'I,IBM'l,RedbookWSF\DWDrkspacP"' llawarldFramDaming 'ﬁwse...l

Enterprise application project: ©* Mew Existing

Mew project name: I HelloWorldFromDominoEAR.

¥ Use default
Mew praject lacation: IC:'I.IBM"' dbooki SADWorkspace\HelloWor oEAR B[Dwse...l

Contexk rook: I Hello\WorldFromDoming

< B Mext = | Einish I Cancel

Figure 6-4 First screen of the Portlet Application project wizard

3. The options in this dialog are the following:

— Project Name: This value will determine the name of the project created
by this wizard. The value entered here will be used throughout the
remainder of the wizard as the default value for other parameters.

To follow our example, for a Project name field type:
HelloWorTdFromDominoServer

— Use default location: This checkbox indicates that you would like the
entire contents of the application stored in the workspace. If you would like
the contents of the application stored somewhere else on the file system,
deselect this box.

If you deselect the Use Default Location check box, this field is enabled
and allows you to specify the file path where the application will be saved.

To follow our example, check to use the default location.

314 Portalizing Domino Applications for WebSphere Portal

— Enterprise Application project name: Though the Portal does not
recognize EAR files, the Portlet application in WebSphere Studio must be
contained in a Enterprise Application. When using the Portal debugging
environment, all portlet applications contained in an EAR file are deployed
together. You may choose an existing EAR file or enter a new one to be
created.

To follow our example, type: Hel1loWorldFromDominoEAR

— Context root: This value will be used in the application.xml and
.websettings files. It will not be the context root of the portlet application
when deployed. Since the EAR is not used to deploy the portlet application
into a full server, this value is only used when the ear is published to debug
Portal server connected to WebSphere Studio Application Developer.

To follow our example, type: Hel1loWorldFromDominoServer

4. Click Next. This will bring up another dialog box, where you can select the
type of portlet you would like to create inside the portlet application. The
second window is shown in Figure 6-5 on page 315.

If you select Finish in the first screen of the wizard, an empty portlet
application will be created. We don’t want to do this in our sample.

Create a Porklet Projeck \

Portlet Selection

Create a basic portlet application project. @

Portlet bype:

 Mone

" 15P portlet
' MYC portlet
' Servlet invoker portlet

(" #sL partlet

< Back I Mexk = I Einishy Zancel

Figure 6-5 Second screen of the Portlet application project wizard

Chapter 6. Portlet development using Java: Integration examples 315

Presently, there are six options when deciding which kind of portlet you want
included in the portlet application. You can only create a single portlet in an
application via the wizard. For this example, choose Basic portlet.

The six types of portlets that can be created are as follows:

None: This is the default option and will not create a portlet in the
application. If you choose this option, you will need to manually add
portlets to the application, as well as the deployment descriptors.

Basic portlet: This is by far the most common option and will create a
simple portlet in the portlet application. The portlet will extend from
PortletAdapter and contain meaningful implementations of all four do
methods. The implementations will adhere to the MVC approach. A bean
will also be created for you to encapsulate your business logic.

JSP portlet: This option assumes the entire application will be contained
in a JSP. The application will specify the com.ibm.wps.portlets. JSPPortlet
for deployment. This portlet simply forwards calls to a JSP. The JSP that is
called is specified in the config-param of the concrete portlet section in the
portlet xml. By default, the wizard will specify and create a view.jsp file for
you. You can choose a different name for the JSP in the third screen of the
wizard. In the source folder, the wizard will place a dummy.java file that
contains no code.

MVC portlet: This choice utilizes the MVCPortlet provided as part of the
com.ibm.wps.portlets package. This Portlet relays calls to Controller
classes dedicated to servicing a specific markup. As such, if you select
this type of portlet, a controller bean will be created for each markup you
choose to support. The third screen of the wizard requires that you enter
the base name of the controller classes. This name can be any value you
like but is defaulted to MyController. This option will also create complete
JSP structures for each markup.

Servlet invoker portlet: This option will deploy the com.ibm.wps.portlets.
ServletinvokerPortlet portlet and specify a URL as a parameter to the
config-param in the portlet deployment descriptor. If you choose this
option, the wizard requires you to provide a URL pointing to the servlet you
wish to serve. The Servletinvoker portlet simply uses the ContentAccess
Service to return unfiltered HTML. You must specify the URL you wish to
serve in the final screen of the wizard. The resulting folder structure will
contain a dummy.java file containing no code.

XSL portlet: This option makes use of the com.ibm.wps.portlets.xslt.
WpsXSLTPortlet. This portlet simply accepts an xml file and a style sheet
as parameters and uses these to create a presentation via the XSLT
transformation. These parameters must be supplied on the final window of
the wizard. If you do not yet have the requisite files, the wizard can use

316 Portalizing Domino Applications for WebSphere Portal

default sample xml and xsl files. The parameters can be adjusted in the
portlet.xml or at run time.

Create a Portlet Projeckt

Basic Portlet Parameters

Enter the properties of the basic portlet, '@

Portlet application name: I HellowWorldFromDomino application

Partlet name: | HelloWorldFromDomino portlet

Concrete partlet application name: I HelloworldFromDomino application

Concrete portlet name: I Hello\WarldFrarmDaoming portlet

Default locale: Ien j IEninsh

Concrete portlet title: | HelloworldFromDomino portlet

Portlet class name: I HelloWWarldFromDarminal

Markups: ¥ html ™ chtml [wml [woicexmML

< Back 1 [Ext =] Einish I Cancel |

Figure 6-6 Third screen of the Portlet application project wizard

. There are eight fields required in the final window of the wizard, shown in
Figure 6-6. By default, all fields have been completed for you. Most of these
fields are used to complete the portlet.xml deployment descriptor. For more
information on the portlet.xml and deployment descriptor see the previous
chapter. The fields and their meanings are as follows:

— Portlet application name: This name is used in the portlet.xml to specify
the abstract application name. This value will never be seen by the
administrator of the portlet or the end-user. Generally, there is no need to
change this value.

— Portlet name: This value is used to identify the abstract portlet. This name
will never been seen by the administrator or the end user. There is typically
no need to alter this value.

— Concrete portlet application name: This name is used in the portlet.xml
to specify the concrete application. The administrator will see this value in
the portal. If you intend to add more concrete applications to this portlet
application, you may want to change this value. Otherwise, there is no
need to adjust this value.

Chapter 6. Portlet development using Java: Integration examples 317

318

— Concrete portlet name: This name specifies this concrete portlet to be
deployed. The end user will see this value when they add the portlet to a
page. Generally, there is no need to adjust this value.

— Default locale: This value adds the default locale and the language block
to the portlet.xml.

— Concrete portlet title: This will complete the language block with the title.
The description, short-title and keywords elements are included in the
language block but left empty.

— Portlet class name: This name will be used as the name of the portlet
created for you. You should adjust this value to reflect the package name
you would like to use. Type HelloWorldFromDominoServer in order to follow
our sample. If you do not enter a package name, the wizard will place the
portlet in the default portlet package.

— Markups: These checkboxes indicate which markup languages you intend
to support. By selecting a value, a new folder will be created under the
JSP folder containing JSPs specifically for the markup.

6. Finally, click Finish and the wizard will create the necessary folder structure,
classes, JSPs, and deployment descriptors.

Developing the portlet

The wizard will create the skeleton of the portlet, which you can then use as a
foundation for your portlet development. Figure 6-7 on page 319 shows the result
of creating a basic portlet application with the wizard.

Portalizing Domino Applications for WebSphere Portal

=12 Hello\WarldFromDarning

----- ‘Weh Deplovment Descriptor
B2 Java Source

EH} portlet

------ [J] HellowarldFromDamine. java

------ [J] HellowarldFromDaominoBean. java
-2 Weh Content

B isp

El-{= html

@& Configure. jsp

BB Edit.js

©le Wiew.jsp
@9 Configure. jsp
- Edit jsp
-8 Help.jsp
@9 View, jsp
[E-{= META-INF
LB MANIFEST MF
== WEB-INF

El-Z= classes
E|{E,'p portlet

------ HellovwarldFromDomino. class

------ HellowarldFrombominoBean. class
7= lib
E-{= Hd

----- [H] ibreweb-ext. i
portlet, xml
----- waih,
-, Libraries

Figure 6-7 Skeleton of%portlet

The generated project contains the following folders and files by default:

» Java Source: This folder contains the Java files that make up the portlet
application. By default, the wizard assumes you will follow an MVC approach
and creates a simple Java bean for you. Whatever package name was
specified in the final screen of the wizard will be created. If a simple class
name was specified without a package, the wizard will place the portlet in a
package name portlet. In our example we did not build JavaBeans.

» Web Content: This folder contains everything needed to deploy the
application to the portal. Essentially, this folder will become the war file. It
contains two sub folders: jsp and WEB-INF.

» jsp: This folder will contain all the JSPs used by the application to create the
content of the portlet. For each markup you choose to support, a directory will
be created containing JSPs for each of the four modes a portlet may support.
It will also contain four JSP files for the modes under the root. In the event that
the portal is unable to match a client to a markup folder, it will use the default

Chapter 6. Portlet development using Java: Integration examples 319

JSPs contained in the root. To keep development simple and clean, you may
choose to delete the default JSPs and work only with the HTML JSPs. In our
example we did not build any JSPs.

» WEB-INF: This folder contains the compiled code and deployment
descriptors used by the Portal to install the application.

— classes: If your compiled portlet class files are not packaged into a jar file,
they are included in this directory. The complete package structure is
created in this folder.

— lib: This directory contains any jar files that your application makes use of
and which are not normally available in the Portal environment via the
classpath. Also, if you have packaged your compiled portlets into a jar, the
jar file is placed in this directory. Typically you will import the ncso.jar file to
here.

— tld: This is included to allow JSPs to compile and recognize the custom
tags available in the portal environment. This folder and file are not
required at deployment time since the tld is installed with Portal. To make
maintenance easier and more reliable, you may choose to delete this file
upon deployment.

— ibm-web-bnd.xmi: This file is not used by the portal environment but is
included with all Web applications created in WebSphere Studio.

— ibm-web-ext.xmi: This file is not used by the portal environment but is
included with all Web applications created in WebSphere Studio.

— portlet.xml: This is the deployment descriptor required by the Portal
server to install the portlet application. It must be located under the
WEB-INF folder or installation will fail.

— web.xml: This deployment descriptor is required by the application server
to install the Web application. It must be located under the WEB-INF folder
or installation will fail.

» .classpath: This file is used by WebSphere Studio to locate the jar files
containing the Portlet APlIs. It is required for your portlets to compile but is not
included in deployment.

» Libraries: This folder contains Java files needed in portlet development.

Modifying the skeleton

After the portlet wizard builds the skeleton of your portlet, you need to make the
following modifications to it.

1. Add the NCSO.jar file to portlet structure.

Choose the lib folder, then select File — Import — File Systems. Select
ncso.jar, and click Finish. Your workspace will look like Figure 6-8 on
page 321.

320 Portalizing Domino Applications for WebSphere Portal

-2 META-INF
¢ T8 MANIFEST.MF
=z WEB-INF

L—“_HE& classes
E{E- partlet

o (] portlet.tid
—[H] ibrr-web-bnd, xmi
(] ibrn-web-gsk, xmi
8] portlet.zml
(] woeh el

------ B _Hello'WorldFromDaring. class
------ HelloworidEy omDaominoBean,

Figure 6-8 Added ncso.jar

Modify Java code in the HelloWorldFromDomino class file.

Select Java Source — portlet — HelloWorldFromDomino. The wizard
generated a lot of code for basic use. Make the following modification to the

code:

a. Replace doView() method with this:

public void doView(PortletRequest request, PortletResponse response) throws
PortletException, I0Exception{
// Calling method getSession in viewmode
getSession(request,response);

}

b. Create getSession() method and place it after doView() method. The code
has been commented. Replace <servername>, <username> and

<password> fields wit

h those suitable for accessing your existing Domino

server. The user should have required access rights to the Domino server
as described in “Enabling Domino server for DIIOP connection” on

page 251.

Example 6-1 getSession() me

thod

private Session getSession(PortletRequest request, PortletResponse
response) throws PortletException,IOException {

// Check first if ses
Session diiopsession

sion already exist

(Session)request.getSession().getAttribute("diiopsession");

Chapter 6. Portlet development using Java: Integration examples 321

322

// Creating writer for output
PrintWriter writer = response.getWriter();

// Check if diiopsession already exists, if it is, use it, if not,
create one
if (diiopsession == null)
try{
// Creating diiop session for Domino
diiopsession =
NotesFactory.createSession("<servername>","<username>","<password>");

// Set session to attribute for reuse
request.getSession().setAttribute("diiopsession",
diiopsession);

// Sending Hellos first time
writer.printin("HelloWorldFromDominoServer!
You have
just created diiop session to Domino through
portlet!

ServerNotesVersion:" +
(String)diiopsession.getNotesVersion() + "
ServerPlatform:

+
(String)diiopsession.getPlatform() + "
ServerName: " +
(String)diiopsession.getServerName() + "
ServerURL: " +
(String)diiopsession.getURL());

}catch (NotesException e){
// Sending Hellos from exception
writer.printin("HelloFromDominoServer Portlet ran, but with
exception" + e.id + " msg:" + e.text);
telse{
// Sending Hellos from reused session

writer.printin("HelloFromDominoServer!

You~ve
successfully reused diiopsession, cool!");

}

return diiopsession;

}

Portalizing Domino Applications for WebSphere Portal

c. Inthe beginning of the code, declare the necessary imports like this:

Example 6-2 Add these imports in the beginning of the ACLBrowser.java file

package portlet;

//Domino Objects for JAVA API

import lotus.domino.*;

//Portlet API

import org.apache.jetspeed.portiet.*;
import org.apache.jetspeed.portlets.*;
//Jdava stuff

import java.io.*;

import java.io.PrintWriter;

The code is now ready to run at the Portal.
3. Export the portlet file.

To deploy the portlet application, the webApplication directory must be
packaged into a WAR file. To create a WAR file for deployment, select the
application and right-click it. From the context menu, select Export WAR. You
can also get this option from the menu by selecting File — Export and
selecting WAR File from the list of options.

Export Resources o a¥WAR File : -j. ‘

WAR Export

Export resources to a new or existing WaR file, %
A |

What resources do you want to export?

I HelloWorldFromDaming j

‘wthere do you want to export: resources to?

i HelloWorldFromDoming. war j Browse. ..

Options:
[~ Export solres fiies,

[~ Ovenarite existing files withaut warning

< Back. | ezt = | Einish I Cancel |

Figure 6-9 Exporting portlet from Application Developer

Chapter 6. Portlet development using Java: Integration examples 323

Export the WAR file. Name the file HelloWorldFromDomino.war. By default it
will be stored to root main drive (for instance, in windows c:\) You can specify
a more suitable folder if you wish.

4. Deploy the portlet and add it to the page.

HelloWorldFromDominoServer portlet in action

When you open the page for the first time, HelloWorldFromDominoServer portlet
should give you information about your server (NotesVersion, Platform, server
name, and server URL). Figure 6-10 illustrates this.

Jomino Redboo

Starter portlets | Portlet Builders

HelloFromDominoServer

Hybrid 1SP-Java portlets HelloworldFromDominoServer!

Java Domino Objects ServerMotesVersion:Release 5.0.10 |March 22, 2002
ServerPlatfarm: Windows/32
ServerMame: CH=itsotest-dom/O=itsoportal
ServerURL: hitp:/fitsotest-dom.cam.itso.ibm.com?OpenServer

Figure 6-10 HelloWorldFromDominoServer in action

Refresh the browser; the portlet is using session, and you will get a different
message from the portlet, as illustrated in Figure 6-11.

Welcome | | Edit Layout | 1

HelloFromDominoServer

Hybrid J5P-Java portlets HelloFromDominoServer!

. R ou we successfylly reused dilopsession, cooll
Java Domino Objects

Figure 6-11 HelloWorldFromDominoServer in action reusing a session

Congratulations, you have just finished your first full Java portlet integration with
Domino.

6.5 Using JavaBeans in the sample portlet

In the HelloWorldFromDominoServer portlet example, you wrote an output
directly to the portlet. A better way to accomplish the same thing is to create a
JSP for output and use JavaBeans to pass values to the JSP from Java code.

324 Portalizing Domino Applications for WebSphere Portal

Overview of JavaBeans

The JavaBeans component architecture extends “write once, run anywhere”
capability to reusable component development. In fact, the JavaBeans
architecture takes interoperability a major step forward: your code runs on every
OS and also within any application environment.

JavaBeans brings component technology to the Java platform. With the
JavaBeans API you can create reusable, platform-independent components.
Using JavaBeans-compliant application builder tools, you can combine these
components into applets, applications, or composite components. JavaBean
components are known as “Beans.”

The JavaBeans specification defines a set of standard component software APIs
for the Java platform. The specification was developed by Sun Microsystems.

Working through this example gives you the opportunity to extend your Java
programming skills from the HelloWorld sample to the use of JavaBeans. This
example also reinforces understanding of the MVC model as well: Model is the
JavaBean, View is the JSP file, and Controller is the Java file.

Implementation details and example
Starting from the same point as the previous HelloWorldFromDominoServer
exercise, open the project and proceed as follows:

1. Create a JavaBean class called PortletDominoBean. Do this by selecting
New — Other — Java — Class — Next; for name field type
PortletDominoBean, and click finish.

Chapter 6. Portlet development using Java: Integration examples 325

Java Class

Create a new Java class,

Source Folder: I ACLBrowser/source Brawse. ..

Package: I {default) Browse, .

[Enclosing type: I Brows

i o

Mame: I PortletDominoBean
Modifiers: % public default = private " protected
[abstract [Final I~ static
Superclass: Ijava.lang.Object Brawse. .. |
Interfaces: Add...

Which method stubs would you like to create?
[T public static woid main(Skring[] args)
[~ Constructars From superclass
[V Inherited abstract methods

< Back l [ides | Finish | Cancel

Figure 6-12 Creating a JavaBean

2. Rewrite the PortletDominoBean class as shown in example Example 6-3.

Example 6-3 Example of JavaBean

public class PortletDominoBean {
private String NotesVersion = "";

public void setNotesVersion(String s) {
NotesVersion = s;

}

public String getNotesVersion() {
return (NotesVersion);

}

3. Modify the portlet code to use the JavaBean. The modified code is shown in
Example 6-4 on page 327. Once you are able to getNotesVersion from the
session, you will add it to the bean.

326 Portalizing Domino Applications for WebSphere Portal

Example 6-4 Functionality in doView

if (diiopsession == null)
try{
// Creating diiop session for Domino
diiopsession =
NotesFactory.createSession("<servername>”,"<username>","<password>");

// Set session to attribute for reuse
request.getSession().setAttribute("diiopsession"”,
diiopsession);
//Make a bean
PortletDominoBean bean = new PortletDominoBean();
//Save name in bean
bean.setNotesVersion((String)diiopsession.getNotesVersion());
//Save bean in request
request.setAttribute("PortletDominoBean",bean);
//Invoke the JSP to render
getPortletConfig().getContext().include("/jsp/View.jsp
", request,response);

4. Create a JSP file to make the final Ul for the browser. Select New — JSP; in
the name field type View.jsp; and click Finish.

Chapter 6. Portlet development using Java: Integration examples 327

New ISP File

Specify a name and location For the new ISP file. @
Folder: I [ACLBrowser fwebapplication)jsp Browse, ., |
File: Mame: I View. jsp

Markup Language: IHTML j

[Create as 15P Fragmenkt
I Wse %L Style Synka

Code Generation Model: |Mone j

Descripkion:

Generate a new blank JSP page.

L Lo

J Mext = J Einish I Cancel

Figure 6-13 Creating a JSP file

5. Click Source from the designer and edit the view.jsp code. The modified code
is presented in Example 6-5.

Example 6-5 Using JavaBean in JSP

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML><HEAD>
<%@ page language="java"contentType="text/html; charset=WINDOWS-1252"%>
<META http-equiv="Content-Type"

content="text/html; charset=WINDOWS-1252">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>View.]jsp</TITLE>
</HEAD><BODY>
<jsp:useBean id="PortletDominoBean"class="portletjavacode.PortletDominoBean"
scope="request"/>
<h1>Notes version through java bean is
<%=PortletDominoBean.getNotesVersion()%></h1></BODY></HTML>

328 Portalizing Domino Applications for WebSphere Portal

The result of this example is identical to the previous one; therefore, we don’t
repeat the deployment. The only difference from the previous example is how the
data is stored.

6.6 Browsing Domino ACL portlet

The purpose of this example is to build a portlet which:
» Accesses the Domino server

» Creates a list of all databases on that server so the user can choose which
database ACL to browse

» Creates a listing of the ACL for the selected database

You will use a variety of techniques to create this portlet: JSPs, JavaBeans, data
handling mechanisms with Java (arrays and collections) and iterators to output
data. You will also add images and functionality from a JavaScript file to a portlet.
Figure 6-14 shows the portlet that is the end result of this example.

(XU (TER Notes/Domino

ACL browser portlet for Domino.

Datahase's on server

ACL Entry Access Level

-Default- no
CHN=itsotest-dom/O=itsoportal manager
OtherDomainServers reader

CN=wpshind/O=itsoportal manager

wpsadmins manager
CHN=portal admin/O=ttsoportal manager
Anonyrnos 10

Administrators manager
LocalDomainServers manager

CN=wpsadmin/O=ttsoportal manager

Figure 6-14 ACLBrowser portlet creates list of databases in Domino and lists ACL
entries.

Work through this example to extend your skills at Java programming using a mix
of Java, JavaBeans, JSP, JavaScript, and image and data handling in a portlet
context.

Implementation details and example

1. Start your development work by creating a new portlet; name it ACLBrowser.
(Use the same steps presented in 6.4, “HelloWorldFromDominoServer

Chapter 6. Portlet development using Java: Integration examples 329

portlet” on page 313 to do this.) Create and open the ACLBrowser.java file for
editing.

2. Insert/replace the code in the ACLBrowser.java file with that in Example 6-6.
(You can copy/paste it.) Modifications you make to the Java code will provide
the following functionalities:

— Initialize the portlet and create a session to Domino.

— Create an own entry list for holding values for ACLEntry and ACLLevel, put
it in ArrayList, and save it according to the “value” request. If “value” is
empty by default, load the ACL list for the names.nsf, otherwise, load the
list of the ACL entries for the selected database.

— Create an own entry list holding values for database names in server and
database path, put it in ArrayList, and save it to request.

— Create a JavaBean for sets and gets of value.

Example 6-6 ACLBrowser.java code

package portletjavacode;

//Domino Objects for JAVA API
import lotus.domino.*;
import lotus.domino.Database;

//Portlet API
import org.apache.jetspeed.portiet.*;
import org.apache.jetspeed.portlets.*;

//Java stuff

import java.io.*;

import java.io.PrintWriter;
import java.util.*;

import java.lang.String;

public class ACLBrowser extends AbstractPortlet {

public void init(PortletConfig portletConfig) throws UnavailableException {
// Initializing
super.init(portletConfig);

public void doView(PortletRequest request, PortletResponse response)
throws PortletException, IOException {
// Calling method getSessios in viewmode
getSession(request, response);

330 Portalizing Domino Applications for WebSphere Portal

private Session getSession(
PortletRequest request,
PortletResponse response)
throws PortletException, IOException {

// Check first if session already exist
Session diiopsession =
(Session) request.getSession().getAttribute("diiopsession");

// Creating writer for output
PrintWriter writer = response.getWriter();

// Check if diiopsession alredy exists,if it does not, create one
if (diiopsession == null)
try {
// Creating diiop session for Domino
diiopsession =
NotesFactory.createSession("<servername>","<username>","<password>");
// Set session to attribute for reuse
request.getSession().setAttribute("diiopsession", diiopsession);
//getACL(request,response,diiopsession);
} catch (NotesException e) {
writer.printIn("ACL browser portlet ran, but with exception"+
e.id+ " msg:"+ e.text);

}

//creating acllist
getACL(request, response, diiopsession);
return diiopsession;

}

//Method for getting ACL entries
private String getACL(PortletRequest request,PortletResponse
response,Session diiopsession)
throws PortletException, IOException {

try {
//Make a bean
PortletDominoBean bean = new PortletDominoBean();

//Read from request if database was selested from list
request.getSession().setAttribute("value",
request.getParameter("value"));
String dbtoview = request.getParameter("value");
if(dbtoview == null){
dbtoview = "names.nsf";

}

Database database = diiopsession.getDatabase("", dbtoview);

Chapter 6. Portlet development using Java: Integration examples 331

ACL acl = database.getACL();

ACLEntry entry = acl.getFirstEntry();
entry.getLevel();

//Save name in bean
bean.setACL((String) entry.getName());

/1117
ArrayList acllist = new ArrayList();

do {
String ACLEntry = entry.getName();
int ACLLevel = entry.getlLevel();
String lev = null;
//transforming the ACL levels in to text
switch (entry.getLevel()) {
case ACL.LEVEL NOACCESS :
lev = "no";
break;
case ACL.LEVEL_DEPOSITOR :
lev = "depositor";
break;
case ACL.LEVEL READER :
lev = "reader";
break;
case ACL.LEVEL_AUTHOR :
lev = "author";
break;
case ACL.LEVEL EDITOR :
lev = "editor";
break;
case ACL.LEVEL DESIGNER :
lev = "designer";
break;
case ACL.LEVEL MANAGER :
lev = "manager";
break;

}

//build the list
Ac1TestEntry NameAndLevel = new AclTestEntry(ACLEntry, lev);
acllist.add(NameAndLevel);

} while ((entry = acl.getNextEntry(entry)) != null);

//Save bean in request

request.setAttribute("DATA_ACL", acllist);

getDBList(request, response, dijopsession);
} catch (NotesException e) {

PrintWriter writer2 = response.getWriter();

332 Portalizing Domino Applications for WebSphere Portal

writer2.printin("Error making ACL: " + e.id + " msg:" + e.text);

}

return null;

}

private class AclEntry implements ACLEntry {
private String ACLEntry = null, ACLLevel = null;

public AclEntry(String ACLEntry, String ACLLevel) {
this.ACLEntry = ACLEntry;
this.ACLLevel = ACLLevel;

}

public String getACLEntry() {
return ACLEntry;

}

public String getACLLevel() {
return ACLLevel;

}
}

//method getting databaselist
private String getDBList(
PortletRequest request,
PortletResponse response,
Session diiopsession)
throws PortletException, IOException {

//lets check if databaselist has already created
Session prevdblist =

(Session) request.getSession().getAttribute("dblist");
if (prevdblist == null){

try {
//Make a bean

PortletDominoBean bean = new PortletDominoBean();

//
ArrayList dblist = new ArrayList();

DbDirectory dir = diiopsession.getDbDirectory(null);
String server = dir.getName();
if (server == "")
server = "Local";
Database db = dir.getFirstDatabase(DbDirectory.DATABASE);

Chapter 6. Portlet development using Java: Integration examples 333

//building the Tist of database
while (db != null) {
String dbfp = db.getFilePath();
String dbtitle = db.getTitle();
DBListTestEntry values = new DBListTestEntry(dbfp, dbtitle);
dblist.add(values);
db = dir.getNextDatabase();

}

dir.recycle();

request.setAttribute("DATA_DBLIST", dblist);
getPortletConfig().getContext().include("/jsp/View.jsp",request,
response) ;

} catch (NotesException e) {

PrintWriter writer2 = response.getWriter();

writer2.printin("Error making DBList: " + e.id + " msg:" + e.text);
}
}

return null;

}

private class DBListEntry implements DBListEntry {
private String DBFilePath = null, DBTitle = null;
public DBListEntry(String DBFilePath, String DBTitle) {
this.DBFilePath = DBFilePath;
this.DBTitle = DBTitle;

}

public String getDBFilePath() {
return DBFilePath;

}

public String getDBTitle() {
return DBTitle;

}

Remember to replace <servername>, <username> and <password> with the
correct values for your environment.

3. Save the file.

4. Create the three Java files in Examples 6-7, 6-8, and 6-9 to take care of
needed entries.

334 Portalizing Domino Applications for WebSphere Portal

Example 6-7 ACLEntry.java

package portletjavacode;

public interface ACLEntry

{
public abstract String getACLEntry();
public abstract String getACLLevel();

Example 6-8 DBListEntry.java file

package portletjavacode;

public interface DBListEntry

{
public abstract String getDBFilePath();
public abstract String getDBTitle();

Example 6-9 PC.java file

package portletjavacode;

public interface PC

{

public static final String DATA_ACL = "DATA_ACL";
public static final String DATA DBLIST = "DATA DBLIST";
public static final String PARAM_VALUE = "value";

}

5. Create the following JavaBean file.

Example 6-10 PortletDominoBean.java file

package portletjavacode;
public class PortletDominoBean {

private String ACL = "";
public void setACL(String s) {
ACL = s;
}
public String getACL() {
return (ACL);

}

}

6. Start to build the view.jsp for gathering output by first creating the view.jsp file.

Chapter 6. Portlet development using Java: Integration examples

335

7. Create a folder called images and place the file named logo.gif (the image you
want to add to the portlet) into the folder. Add the following lines to view.jsp to
retrieve the image.

%@ taglib uri="/WEB-INF/t1d/portlet.t1d" prefix="resources" %>
% String imagePath = portletResponse.encodeURL("/images/"); %>
img src="<%= imagePath %>Togo.gif" border="0" align="top">

8. Create a folder for JavaScript files called js. Create a JavaScript file, give it
the name Redbook. js, and save it to the js folder. Insert the following code in
the JavaScript file.

function SelectBoxActionSet(objForm, objSelect)

{

objForm.action = eval('objForm.' + objSelect + '.value')

}

9. Add the following lines to view.jsp to add js functionalities:

<script language="JavaScript" src="<portletAPI:encodeURI
path="/js"/>/Redbook.js"></script>

<form name="mobileview" id="frmGPResult"
onSubmit="SelectBoxActionSet(this, 'gpResult');"
method="post">

10.Add the following lines to view.jsp to retrieve a list of databases and ACLs, as
well as to get JavaScript SelectBoxActionSet method.

Example 6-11 Retrieving list of database

/1]
<%@ page import="java.util.Collection,

java.util.Iterator,

portletjavacode.ACLEntry,

portletjavacode.DBListEntry,

portletjavacode.PC"%>
<%0 taglib uri="/WEB-INF/t1d/portlet.t1d" prefix="portletAPI" %>
<portletAPI:init />
<jsp:useBean id="PortletDominoBean"class="portletjavacode.PortletDominoBean"
scope="request"/>

/11

336 Portalizing Domino Applications for WebSphere Portal

<select name="gpResult"
onChange="SelectBoxActionSet (document.mobileview, 'gpResult');

submit();">

Collection dblist2 = (Collection) request.getAttribute(PC.DATA DBLIST);

for (Iterator iterator = dblist2.iterator() ; iterator.hasNext() ;)

{
DBListEntry entry = (DBListEntry) iterator.next();

%>

<option value="<portletAPI:createURI >
<portletAPI:URIParameter name="<%= PC.PARAM_VALUE %>"
value="<%=entry.getDBFilePath()%>"/>
</portletAPI:createURI>"><%= entry.getDBTitle() %></option>

<

N

NN
\Y

</select>

// ACL List generated here:
<table border="0">
<tr><td>ACL Entry</td><td>Access Level</td></tr>
<%
Collection ACLs = (Collection) request.getAttribute(PC.DATA ACL);
for (Iterator iterator = ACLs.iterator() ; iterator.hasNext() ;)
{
ACLEntry entry = (ACLEntry) iterator.next();
%>
<tr><td> <%= entry.getACLEntry() %></td><td><%=
entry.getACLLevel ()

%></td></tr>

0,
<%

}

0
%>

11.Save all the open files, deploy the portlet, and add it to a page.

Chapter 6. Portlet development using Java: Integration examples

337

6.7 How to use log4j
Here is a simple example of how log4j can be used with the portlet.
Before working through the example, use the following steps to obtain log4j
functionalities:
1. Download the log4j distribution from:
http://jakarta.apache.org/lTog4j/docs/download.html
2. Extract the archived files to some suitable directory.

3. Import the file dist/lib/log4j-1.2.6.jar to your development environment. Select
File — Import — File System, browse to the log4j jar file, and import it to the
portlet WEB-INF/lib folder.

Example 6-12 is a very simple example of a program implementing a
SimpleLayout and FileAppender. It will write a log to the outputfile.txt file.

Example 6-12 Adding log4j to HelloWorldFromDomino portlet

///Import

import org.apache.log4j.Level;

import org.apache.log4j.Logger;
import org.apache.log4j.SimplelLayout;
import org.apache.log4j.FileAppender;

public class HelloWorldFromDomino extends AbstractPortlet {
static Logger logger = Logger.getLogger(HelloWorldFromDomino.class);
public void init(PortletConfig portletConfig) throws UnavailableException {

SimpleLayout Tayout = new SimpleLayout();
FiTleAppender appender = null;
try {
appender = new FileAppender(layout,"outputfile.txt",false);
} catch(Exception e) {}

logger.addAppender (appender) ;
logger.setLevel ((Level) Level.DEBUG);

logger.debug("Here is some DEBUG");
logger.info("Here is some INF0");
logger.warn("Here is some WARN");
logger.error("Here is some ERROR");
logger.fatal ("Here is some FATAL");

338 Portalizing Domino Applications for WebSphere Portal

http://jakarta.apache.org/log4j/docs/download.html

// Initializing
super.init(portletConfig);

}

public void doView(PortletRequest request, PortletResponse response) throws
PortletException,I0Exception{
// Calling method getSession in viewmode
logger.debug("We are now in doView!");
getSession(request,response);

private Session getSession(PortletRequest request, PortletResponse
response) throws PortletException,IOException {

// Check first if session already exist

logger.debug("Trying to create diiopsession!");

Session diiopsession =
(Session)request.getSession().getAttribute("diiopsession");

A more sophisticated way to do this is to put all logging settings in the
ResourceBundle property file, and also implement class name ahead of every
log. That way you are able to configure the settings in an external file (switch
logging off and on, set log level, and so forth etc.) and get more informative and
useful logs.

To do this, perform the following steps:

1. Create a properties file for log4j. Select File — New — Simple — File; name
the Tog4j.properties. This is illustrated in Figure 6-15.

Chapter 6. Portlet development using Java: Integration examples 339

File

I
Create a new file resource.

Enter or zelect the falder.

IH el orldFramD omino/zource/portletiavacode

e

#-129 DefaulEAR |
=128 Helloworld2

E‘ﬁ Hello\worldFromD aming J
EB soUrce

\.(Z= portletiavacode

--@ wehdpplication .ﬂ

i T PRI PN P

File name: ||Dg4|.pr0pert|es|

< Back 1 HE: ‘ Finizh | Cancel

Figure 6-15 Creating log4j.properties file

2. Open your log4j.properties file and copy the following code into the newly
created file.

Example 6-13 Configuration file for logging

Initialise root Togger level DEBUG and call it Al.
log4j.rootLogger=DEBUG, Al

Al is set to be a FileAppender.
log4j.appender.Al=org.apache.log4j.FileAppender

Al uses PatternLayout.
log4j.appender.Al.layout=org.apache.log4j.PatternLayout
log4j.appender.Al.layout.ConversionPattern=%d [%t] %-5p %c - %m%n
log4j.appender.Al.File=C:/OurOwnPortletLogFile.txt
log4j.appender.Al.append=true

3. Save the configuration file. Logging will be written to the
c:/OurOwnPortletLogFile.txt file. More possible configuration settings are
discussed on the Apache Web site’s log4j documents page.

4. Import the logging.jar file to your portlet. Logging.jar is a simple logging utility
with support for logging filters.

340 Portalizing Domino Applications for WebSphere Portal

The structure of your project should now resemble the one shown in
Figure 6-16.

[T T T 1ENryy CTar T T
ElE= souce
E{Ev portletiavacode
m Hel orldFromD ornino. [ava
logdj. properties
E-{= webdpplication
El-Z= WEB-INF
--E clazzes
B b
5 loadi-1.2.6.jar
logging.jar
e B] NCSOjar
= tid
----- [¥] ibm-web-brd.xmi
----- (] ibm-web-gst xmi
partlet.xml
----- web.xml

- [E] .classpath
=8 [

Figure 6-16 Structure of portlet in second logging sample

5. You can now start to put your log calls anywhere in the portlet code you want
to. Example 5-25 illustrates this.

Example 6-14 Another example of sophisticated portlet logging

//Import
import com.ibm.logging.Log;

public class HelloWorldFromDomino extends AbstractPortlet {

public void init(PortletConfig portletConfig) throws UnavailableException {
// Initializing
Log.debug(getClass(), "Initializing portlet");
super.init(portletConfig);

}

public void doView(PortletRequest request, PortletResponse response) throws
PortletException,IOException{
// Calling method getSessios in viewmode
Log.debug(getClass(), "Trying to get session..");
getSession(request,response);
Log.debug(getClass(), "Get session method ran..");

Chapter 6. Portlet development using Java: Integration examples 341

private Session getSession(PortletRequest request, PortletResponse
response) throws PortletException,IOException {

// Check first if session already exist

Log.debug(getClass(), "Trying to get session from session");

Session diiopsession =
(Session)request.getSession().getAttribute("diiopsession");

6.8 Session pooling

In this exercise you will create a very simple example of a Domino session pool,
based on the open source Jakarta Commons pool implementations.

The Jakarta Commons product has a pool component ready to extend. It is very
easy to use and will give the portlet developer excellent results. To obtain more
information on the Jakarta Commons pool, see the following Web site:

http://jakarta.apache.org/commons/pool/

To work through this example, download the Commons Pool code from the Web
page and unzip the file to a folder that we will reference as COMMONS_POOL_HOME.

Note: The example of this pool can be downloaded from the on-line resources
of this redbook. Refer to Appendix B, “Additional material” on page 421 for
instructions on downloading the example code.

At a high level, this example will:

» Create a Domino Session Pool factory

» Create a sample Java client which tests your pool

» Analyze the performance of your pool compared with a create-destroy
approach for Session Management

The detailed steps are in the following sections.

Domino Session Pool Factory Java class

Start by creating the Domino Session Pool Factory. You will extend the
BasePoolableObjectFactory class that comes with the Jakarta Commons pool,
and define in your factory how a Session is created and destroyed.

1. Open WebSphere Studio 5.
2. Switch to the Java perspective.

342 Portalizing Domino Applications for WebSphere Portal

http://jakarta.apache.org/commons/pool/

o o~ w

Select the File — New — Project menu.
Select Next.
Name the project DominoSessionPool and click Next.

In the Java Settings dialog in the Source tab, change the “Use the project as
source folder” to “Use source folders contained in the project,” then click
Create New Folder, enter src, and click OK. This is shown in Figure 6-17.

Java Settings —

Define the Java build settings.

[Source |ﬁ Projects I i]\ Libraries I 11 ©rder and Export I
€~ lUse the project as source Folder

% Use source Folders contained in the project

Create Mew Folder. .. i
Add Existing Folders. .. |

Ed |
Bemove

&k MNew Source Folder : : =l

Enter a path relative to {DominoSessionPool's

| sro
Build output: Folder:

I DominoSessionPool
[8]4 I Cancel

< Back | [k = | Einish I Cancel |

Figure 6-17 Creating DominoSessionPool project

. A new dialog confirms the creation of a new build output directory to

DominoSessionPool/bin. Click Yes.

Switch to the Libraries tab, and add the following external JARs:

a. Add NSCO.jar from the DOMINO_HOME\data\Domino\java directory.
b. Add Notes.jar from the DOMINO_HOME directory

c. Add commons-pool.jar from the
COMMONS_POOL_HOME\commons-pool-1.0.1 directory

The libraries tab should look like Figure 6-18 on page 344.

Chapter 6. Portlet development using Java: Integration examples 343

344

Java Settings

Define the Java build settings.

]

= ﬁourcel 15 Projects M Librariss | Tl oOrder and Export I
JARs and class Folders on the build path:

ﬁ};commons—pool.jar - CiikemplPoolCommonsicommons-pool-1.0, 1
ﬁ}xNCSOW.jar - CLotusiDominoyDataldominoljaya
ﬁhNotes.jar - CLotus\Doming

& JRE_LIE - C:\Program Files\IBM\wSaDvSieclipseijrailibrt. jar

Add J4Rs... |

Add variable. .. i
Advanced. .. '

Edit... |
Abtach Source. .. ’

Remove I

Build output Falder:

DominoSessionPoolfbin

Erowse. .. |

< Back I Mext = J

Finish ‘ Cancel I

Figure 6-18 Creating DominoSessionPool project: Adding Libraries

9. Click Finish.

10.Select the newly created DominoSessionPool project, right-click the src

folder, and select New — Package.

11.Name the package com.ibm.itso.sg247004.DominoSessionPool; click Finish.
12.Right-click the newly created package and select New — Class.

13.Name the class DominoSessionFactory and extend the
BasePoolableObjectFactory as shown in Figure 6-19. Click Finish.

Portalizing Domino Applications for WebSphere Portal

Java Class

Create a new Java class,

[e

Source Folder: I DominoSessionPaoalisre Erawse. ..
Package: | com.ibm, itso, 59247004, dominoSessionPool Browse. ..
r Enclosing type: I Erawse,
Mame: | DominoSessionFactary
Madifiers: & public C defale private 0 protected

[shstract [Final = | static
Superclass; I org. apache . commons, pool, BasePoolableObjectFactary
Interfaces: add...

Remoye

‘tthich method skubs would you like to create?
™ public static void main(String[] args)
W Constructars From superclass
¥ Inhericed abstrack methods

Finish] Cancel

Figure 6-19 Creatfng the DominoSessionFactory

14.The DominoSessionFactory should pop up. Add the following import
statement at the beginning of the class:

import lotus.domino.*;
15.Replace the make() method with the following code:

public Object makeObject() throws Exception {
System.out.printin("\t DomSessFact: Creating Domino Session...");
Session s = NotesFactory.createSession(
"<servername>","<username>","<password>");
System.out.printin("\t DomSessFact:
Domino Session successfully created !");
return s;

}
16.Add a destroyObject() method with the following code:

public void destroyObject(Object arg0) throws Exception {
System.out.printin("\t DomSessFact: Destroying Domino Session...");
Session s=(Session)arg0;
s.recycle();
super.destroyObject (arg0);

Chapter 6. Portlet development using Java: Integration examples 345

System.out.printin("\t DomSessFact: Domino Session destroyed
successfully "),

}
17.Save and close the DominoSessionFactory class.

Client Java class

You have now built a Domino session factory that will take care of basically
creating and destroying the code. For the client example you will create a simple
executable class that will use this factory and reuse an existing session
adequately.

Do this by performing the following steps:

1. Right click the com.ibm.its0.sg247004.DominoSessionPool package and
select New — Class.

2. Name this class Cl1ientPoolTester. Be sure you select the checkbox that
creates the main() method stub. Implement the Runnable interface as shown
in Figure 6-20.

Java Class

Create a new Java class.

Source Folder: I Domino SessionPoolfsrc Browse. ..

Package: 1 caom.ibm.itso, 5024 7004, dominoSessionPool Browse. ..

r Enclosing kype: I Brawse: .,

[o

Marne:! | ClientPoolTester
Modifiers: & public default ™ private | pratected
[~ ahstract [Final [~ | static

Superclass: I java.lang. Object

Interfaces: (1) java.lang.Runnable Add...

Remove |

‘hich method stubs would vou like to create?
¥ public static void main{Stringl] args)
[V Constructors From superclass
[V Inherited abstract methods

Finish | Cancel

Figure 6-20 Creating the ClientPoolTester class

346 Portalizing Domino Applications for WebSphere Portal

3. The ClientPoolTester class should open. Insert the following import
statements:

import org.apache.commons.pool.*;
import org.apache.commons.pool.impl.*;
import lotus.domino.*;

4. Add the following class variables to the class:

public ObjectPool pool; // The pool that will manage our sessions
public static String mode = "pooled"; //Can be pooled or not pooled
public static Tong totalTime = 0; // This will keep the timer

5. Modify the default constructor to the following code:

public ClientPoolTester() {
super();
PoolableObjectFactory factory = new DominoSessionFactory();
pool = new StackObjectPool(factory, 5);

}

As you can see, you are creating a factory based on your previously created
class and then you are creating an ObjectPool that will stack 5 Domino
Sessions.

6. Modify the run() method to contain the following code:

public void run() {
Session mySession = null;
try {
long timer = System.currentTimeMillis();
if (mode.equals("pooled")) {
// The session is borrowed from the pool
mySession = (Session) pool.borrowObject();
} else {
// A new session is created from scratch
mySession =
NotesFactory.createSession(
"<servername>", "<username>", "<password>");
}
// Now we will print some session information
System.out.printIn("Domino Server: " + mySession.getServerName());
Database db = mySession.getDatabase(
mySession.getServerName(), “names.nsf*);
View view=db.getView("People");
// We will full text search the People view and print results
System.out.printin("Found "+view.FTSearch(
"FIELD LastName contains Admin")+" number of persons
with an Admin Lastname...");
if (mode.equals("pooled")) {
// Now we will return the connection to the pool
pool.returnObject (mySession);

Chapter 6. Portlet development using Java: Integration examples 347

} else {
// Here we are recycling the session
mySession.recycle();
}
System.out.printIn("Running thread took:
+ (System.currentTimeMillis() - timer)
+ " millisecs\n");
// Keeping the timer on every run...
totalTime += System.currentTimeMillis() - timer;
} catch (NotesException e) {
Exception ex = e;
System.err.printin(e.getClass().getName() + ": " + e.text);
ex.printStackTrace();
} catch (Exception e) {
System.err.printin(e);
e.printStackTrace();

}

As you can see, this run() method basically can run in two modes using
pooled or non-pooled requests. If the mode equals pooled, the class will
borrow a Domino Session from the pool and connect it to the names.nsf
database and perform a full text index on the People view.

If the mode equals non pooled, it will create a session and after performing
the same tasks will recycle the session.

Important: You should create a Full Text Index for the names.nsf database, if
there isn’t one already, to run this example.

Also note that the totalTime variable is incremented by the execution of each
run() method.

7. Have the ClientPoolTester class implement the interface runnable so that you
can start several threads of this class and simulate a sample serialized
access load into the pool.

Modify the main() method to the following code:

public static void main(String[] args) {
try {
ClientPoolTester t = new ClientPoolTester();
// We will create 5 threads of this class
Thread nt = new Thread((Runnable) t);

Thread nt2 = new Thread((Runnable) t);
Thread nt3 = new Thread((Runnable) t);
Thread nt4 = new Thread((Runnable) t);

Thread nt5 = new Thread((Runnable) t);
// Now we will start each thread and put each thread to sleep

348 Portalizing Domino Applications for WebSphere Portal

// this will help stabilize the pool.
nt.start();
nt.sleep(400);
// This sleep emulates work and stabilizes pool for access
nt2.start();
nt2.sleep(100); //This sleep emulates work
nt3.start();
nt3.sleep(100); //This sleep emulates work
ntd.start();
nt4.sleep(100); //This sleep emulates work
nth.start();
nt5.sleep(100); //This sleep emulates work
// Finally wait for the thread to die
nt.join();
nt2.join();
nt3.join();
nt4.join();
nt5.join();
// Now we will close the pool and the session inside
t.pool.close();
// Print the total time to do the job.
System.out. pr-l nt'l n ("‘k***‘k*‘k‘k**‘k‘k**‘k‘k*‘k***‘k‘k*") ;
System.out.printin(" TOTAL TIME: " + totalTime);
System.out . pr-l nt] n (||************************||) ;

} catch (Exception e) {
System.err.printin(e);
e.printStackTrace();

}

The main() method basically creates five threads and starts each one of
them. Every thread will start the run() method, and finally, the total time it
takes to perform the five tasks is printed.

This approach to the Domino Session pool is extremely basic. There are other
important considerations, not covered by this example, that should be included in
an enterprise implementation. Among these considerations are:

» Managing the DIIOP time out.

Domino Sessions should be pinged frequently to avoid timing out of the
session and loosing the reference. In addition, you should recycle the session
after some time to avoid possible memory leaks.

» User management.

The credentials used to authenticate to the Domino server are fixed,
depending on each portlet use case. You could group different types of
sessions based on user profiles.

Chapter 6. Portlet development using Java: Integration examples 349

» Pooling other objects, like Domino Views.

The Domino Session can be an expensive object to instantiate, so the pool
will help make your portlet application perform better. There also are other
objects that can be expensive to instantiate, like the View object, so you might
consider pooling this object as well.

» Handling of orphan sessions.
» How the pool can grow in a controlled manner.

» Other standard pool management characteristics. Consult the Jakarta
Commons pool documentation for more information.

Analysis of the two approaches

In the lab, We ran the client in an Ethernet 100mbps network with the pool and
with the create-destroy approach.

Note: This isn’t a statistically valid analysis since we ran only 10 tests, and the
testing environment wasn’t a dedicated one. However, it does serve to
illustrate, anecdotally, the fact that pools improve the performance of your
application.

The results of the pooled approach are shown in Figure 6-21.

t#v Java - IBM Websphere studio Application Developer

File Edit Source Refactor Mavigate Search Project Profile Run Window Help

[o5 - | ESEREArr ey riclEEY:
ﬁ Consaole [<kerminated > C:\Program FilesiIEk 5 ecli £l bin javawm, e :

& DomSessFact : Creating Domino Session. .
fa DomSe=s=Fact: Domino Session successfully created |
Domino Server: CH=itsotest—dom<0=it=oportal
Found 1 number of persons with an Admin Lastname. . .
Funning thread took: 491 milisecs

Domino Server: CH=itsotest—dom<0=itsoportal
Found 1 number of persons with an Addmin Lastnans. . .
Funning thread took: 170 mnilisecs

-
)
&
72

| Domino Server: CH=itsotest—dom~0=itsoportal
Found 1 number of persons with an Admin Lastnamne. . .
Funning thread toclk: 170 milisecs

Domino Server: CH=itsotest-dom-O=itscportal
Found 1 number of persons with an Addmin Lastnamne. . .
| Running thread tock: 171 milisecs

Domino Server: CH=itsotest—dom-O=itsoportal
Found 1 number of persons with an Admin Lastnane. . .
Funning thread toock: 170 milisecs

DomSes=Fact: Destroving Domino Session. . .
DomSes=Fact : Domino Session destroyed successfuly |

TOTAL TIME: 1172

Figure 6-21 Results from the pooled approach

350 Portalizing Domino Applications for WebSphere Portal

The results of running the same client without using the pool are shown in

Figure 6-22.

&P 1ava - IBM WebSphere Studio Application Developer

File Edit Source Refactor

Mavigate Search Project Profile Run Window Help

7w

CE

L]

fry
T

Domino Server:
Found 1 number
Domino Server:
Found 1 number
Domino Server:
Funning thread

Found 1 number
Running thread

Domino Serwver:
Found 1 number
Funning thread

Domino Serwver:
Running thread

Found 1 number
Funning thread

|5 [HRE[%][5 % [|ddedn] 0 |K]
= [E] console [<terminated: C:4Program FilesyTe WS eclipseljreibintjavam. exe

CH=1it=sotest—don-U=1tsoportal

of persons with an Admin Lastname. . .

CH=1it=sotest—don-0U=1tsoportal

of persons with an Admin Lastname. . .

CH=1it=sotest—don-0U=1tsoportal
took: 1182 milisecs

of persons with an Admin Lastname. . .

tock: 1022 milisecs

CH=it=otest—don- 0=1itsoportal

of person= with an Admin La=tname. . .

tock: 1021 milisecs

CH=it=otest—don-0=it=cportal
toclk: 1021 milisecs

of persons= with an Admin Lastname. . .

took: 1032 milisecs

TOTAL TIME:

5288

Figure 6-22 Results from the non-pooled approach

We ran the test 10 times, and recorded the results shown in Table 6-2.

Table 6-2 Performance between pooled and non-pooled approaches

Run Pooled approach Non-pooled approach
(msecs) (msecs)
Test 1 1172 5288
Test 2 1262 5298
Test 3 1302 5318
Test 4 1833 5356
Test 5 1232 5347
Test 6 1234 5368
Test 7 1241 5347
Test 8 1222 5307
Test 9 1202 5306
Test 10 1272 5317
AVERAGE TIME 1297 5325

Chapter 6. Portlet development using Java: Integration examples

351

The performance improvements were impressive in our tests: we had a 411%
improvement when using the pooled approach. The test results are presented in
Figure 6-23.

Sample performance comparison
Pooled vs. Non-pooled tests

6000
5000
4000
3000
2000+
1000

B Pooled
B Non-pooled

Miliseconds

Figure 6-23 Performance comparison: Pooled and non-pooled

6.9 Reference material, links, Redbooks

>

352 Portalizing

The Lotus Domino Toolkit for Java/CORBA / Domino Java API
http://www-10.Totus.com/1dd/toolkits

CORBA

http://www.omg.orgb

WebSphere Portal InfoCenter
http://publib.boulder.ibm.com/pvc/wp/current/index.html
WebSphere EveryPlace Access InfoCenter

http://www-3.ibm.com/software/pervasive/products/1ibrary/ws everypla
ce_access.shtml

Portlet Development Guide

ftp://ftp.software.ibm.com/software/webserver/portal/V41PortletDevel
opmentGuide.pdf

Portlet Best Practices Guide

http://www7b.software.ibm.com/wsdd/zones/portal/portlet/portietcodin
gguidelines.html

Domino Applications for WebSphere Portal

http://www-10.lotus.com/ldd/toolkits
http://www.omg.orgb
http://publib.boulder.ibm.com/pvc/wp/current/index.html

Portlet API
http://www7b.software.ibm.com/wsdd/zones/portal/portiet/4.1lapi/
Portlet JSP Tag Library Syntax

http://www7b.software.ibm.com/wsdd/zones/portal/portiet/V4ljsptaglib
.html

Portal Zone
http://www7b.software.ibm.com/wsdd/zones/portal/

Portal Struts support

OpenSource: http://jakarta.apache.org/struts/index.html

Enablement package:
http://www-3.ibm.com/software/webservers/portal/portlet/catalog/action/Chan
gePage/.pg/74/.reqid/3?viewPage=detail&kNAVCODE=1WP10003N

Struts in WebSphere Portal 4.1:
http://www.ibm.com/support/docview.wss?rs=0&org=SW&doc=7002247

Log4j
http://jakarta.apache.org/log4j/docs/
Object Pooling
http://jakarta.apache.org/commons/pools
Click to Action

— Enablement package:

http://www-3.
ibm.com/software/webservers/portal/portlet/catalog/action/ChangePage/.
pg/74/.reqi d/1?viewPage=detail&kNAVCODE=1WP10003L

— Using Click to Action to Provide User-Controlled Integration of Portlets
http://www7b.software.ibm.com/wsdd/library/techarticles/0212_roy/roy.ht
mi

People Awareness

— IBM Redpaper: WebSphere Portal 4.12 Collaboration Services
http://w3.itso.ibm.com/redpieces/abstracts/redp0319.html

— Lotus Collaborative Services JavaDoc

http://www7b.software.ibm.com/wsdd/zones/portal/portlet/4.2api/collabora
tive/

Chapter 6. Portlet development using Java: Integration examples 353

http://www7b.software.ibm.com/wsdd/zones/portal/portlet/4.1api/
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/V41jsptaglib.html
http://www7b.software.ibm.com/wsdd/zones/portal/
http://jakarta.apache.org/struts/index.html
http://jakarta.apache.org/log4j/docs/
http://jakarta.apache.org/commons/pools
http://w3.itso.ibm.com/redpieces/abstracts/redp0319.html

354

Building a Portlet within the Model-View-Controller Paradigm using
WebSphere Portal

http://www7b.software.ibm.com/wsdd/library/techarticles/0210_kwong/kwong
html

WebSphere Portal Programming: Portal Aggregation for Pervasive Devices

http://www7b.software.ibm.com/wsdd/techjournal/0210 godwin/godwin.ht
ml

Hello World Portlet Revisited: Adding Globalization Support for
Multi-languages Using WebSphere Portal 4.1.2

http://www7b.software.ibm.com/wsdd/1ibrary/techarticles/0210_xu/xu.h
tml

WebSphere Portal V4 programming, Part 1: Portlet application programming
http://www-106.1bm.com/developerworks/Tibrary/i-portalv4/?n-dd-8222
WebSphere Portal V4 programming, Part 2: Portlet application programming
http://www-106.1bm.com/developerworks/library/i-portal2v4/?n-dd-8222
WebSphere Portal Programming: Pervasive Portlet Development

http://www7b.software.ibm.com/wsdd/techjournal/0207_wanderski/wanderski
.html

Portalizing Domino Applications for WebSphere Portal

http://www7b.software.ibm.com/wsdd/techjournal/0210_godwin/godwin.html
http://www7b.software.ibm.com/wsdd/library/techarticles/0210_xu/xu.html
http://www-106.ibm.com/developerworks/library/i-portalv4/?n-dd-8222
http://www-106.ibm.com/developerworks/library/i-portal2v4/?n-dd-8222

Portlet builders

Portlet building technologies, including the IBM Application Portlet Builder
Version 4.2 and those of various IBM Business Partners, promise to provide the
capability to rapidly create portlets that can access and manipulate Domino
applications without requiring in-depth J2EE programming knowledge. In this
chapter we take a look at five portlet building tools that are currently available.
We present detailed information on IBM Portlet Builder for Domino, Bowstreet
Portlet Factory for WebSphere, and Conet Portlet Factory for Domino. In addition
we briefly present the capabilities of Sofor Interactive Portlet Builder for Domino
and Aptrix Portlet Connector.

© Copyright IBM Corp. 2003. All rights reserved. 355

7.1 Overview of the portlet builders option

This chapter outlines the technologies available in the marketplace that bridge
the gap between the use of existing portlets and custom Java development
options. It focuses on the technology offerings from five vendors including IBM,
Bowstreet, Conet, Sofor, and Aptrix. All offer solutions that simplify the building of
custom portlets to expose Domino applications on the WebSphere Portal
platform. These builders utilize your Domino applications by querying and
aggregating Domino data and displaying that content within a portlet context.

This chapter differentiates these various offerings, as well as providing key
information about each portlet builder including features, pricing information, and
advantages as well as disadvantages.

Why choose this option
While using existing portlets to expose Domino data is by far the most expedient
option, it is only feasable when your portlet requirements match the functionality
provided by an existing portlet.

Custom portlet development using Java and JSPs provides a much richer set of
development options. There is no limit to what can be developed using the tools
and techniques available from these options. If your team has the right
development skills and enough time, custom portlet development is the way to

go.

However, there are often situations where the skill set of the development team
or the time allotted for development can prevent custom portlet development
using Java and JSP tags from being a viable option.

Portlet builder technologies offer a middle-ground approach to portlet
development. They offer significantly more development capabilities than the use
of existing portlets. In addition, they promise a shorter development time and
require less in-depth knowledge about custom portlet development than the
more advanced Java- and JSP-based options.

7.2 IBM Portlet Builder for Domino

Overview

IBM WebSphere Portal Application Integrator is available for use with
WebSphere Portal for no additional charge. The IBM WebSphere Portal
Application Integrator package includes IBM Portlet Builder for Domino and is
available for download from the WebSphere Portlet Catalog.

356 Portalizing Domino Applications for WebSphere Portal

IBM Portlet Builder for Domino provides developers, administrators, and power

users with the ability to easily create a portlet-based interface into an existing

Domino application. No Java or other development skills are required.

IBM Portlet Builder for Domino provides a highly configurable interface with a

Note: In addition to Domino, IBM WebSphere Portal Application Integrator

provides configurable portlets used to access many other back-end systems,

including:

PeopleSoft

SAP

Siebel

JDBC to relational databases
WebSphere Portal Content Publishing

vyVVyVYVvYyYy

much richer set of capabilities than the Domino portlets available out-of-the-box
with WebSphere Portal. The capabilities of IBM Portlet Builder for Domino
include:

>

>

»

Connects to any Domino database.

No changes to existing Domino databases required.
Click to Action enabled.

Presence awareness (using Sametime).

Offline browsing support.

Mobile support for browsers and devices capable of rendering HTML and
WML markup.

Attachment support.
Sortable columns.
View search.

Output WAR files are immediately available for re-deployment on another
WebSphere Portal server.

Select multiple views and forms in a Domino database to customize via
portlet builder.

Domino views are customized by selecting what columns to display.
Domino forms are customized by selecting what fields to display.
Domino views are selected by the users from a list at runtime.

View columns are resizable.

Chapter 7. Portlet builders

357

» Documents selected from a view are either rendered within the same portlet
(take over portlet, or render beside view) or through a separate document
viewer portlet.

» The Document viewer portlet can render the document either as customized
(through its associated form) or through an IFRAME (as the original
document from Domino).

» Documents can be updated and new ones created through either the iFRAME
viewer or the “data” viewer.

The advantages and disadvantages of using IBM Portlet Builder for Domino are
similar to those of our first option, using existing portlets. Specifically, if this tool
meets your application’s needs, it is much cheaper and faster than a custom
development effort. However, if your application has requirements not available
from IBM Portlet Builder for Domino, there is no way to extend this tool with
customized functionality.

IBM Portlet Builder for Domino uses IIOP over the HTTP transport to
communicate with each Domino server.

Implementation issues
» Applicable Portlet patterns

IBM Portlet Builder for Domino is well suited for the Display pattern. It is also
capable of implementing a simple Integrated pattern.

» Development time
Very low development time is required.
» Developer skill set

Basic portal configuration skills. No familiarity with Java or Portlet
development is required.

» Range of applications

The IBM Portlet Builder portlet is highly configurable, and provides many
more options that the Domino portlets currently shipping with WebSphere
portal. However, its range of applications is limited by the fixed set of
functionality and interface options. If these options do not meet your
application’s needs, there is currently no way to extend this interface.

» Rich text handling

If the form is integrated into the portlet content, rich text fields are rendered as
plain text.

Note that it is possible to configure an IBM Portal Builder portlet to open
documents using an IFRAME. Using this option, documents will be rendered

358 Portalizing Domino Applications for WebSphere Portal

using Domino server's HTTP engine and can therefore leverage all of the
Web-based rich text functionality provided by Domino.

Performance
» Session management

IBM Portlet Builder does not currently support session pooling.
» Clustering

IBM Portlet Builder does not natively support server fail-over in a clustered
Domino environment.

» Scalability
No data is currently available for IBM Portlet Builder scalability.
» Single sign-on support

Single sign-on is supported, but not required for IBM Portlet Builder for
Domino. Many authentication options are available, including:

— LTPA

Credentials Vault

Prompt for a user ID and password

Use an administrator-specified ID and password

Required software versions
» IBM/Lotus Domino R5 or 6

» WebSphere Portal v4.1, 4.2x
» WebSphere Portal Express v4.1, 4.2x

7.2.1 Implementation details
Installing IBM Portlet Builder for Domino
Note: Installation instructions may change from version to version. For the

most accurate installation instructions, use the documentation provided with
your version of Portlet Builder.

Download the installation package from the WebSphere Portlet Catalog and
expand the zip file to a temporary folder. The folder now contains the files needed
for installation. Use the following steps to install the Portlet Builder.

Chapter 7. Portlet builders 359

1. To install Portlet Builder for Domino, simply install the two WAR product files:
— BOBuilderPortlet. WAR
— DominoStruts. WAR

Figure 7-1 and Figure 7-2 illustrate this. For detailed instructions on installing
WAR files, see 2.4.1, “Install portlets” on page 54.

GBack ~ = -) at | Qhsearch [GelFavorites GMedia &4 | N S 2

Address I@ http: fiwsdema.ibm, comfwps/myportalf . crndfes) . cef155) . s/ 163 k)3
WebSphere.

Links @Redbook 16M WebSphere Portal b

e || Edit Layour | Mei Page | Editmy p
Wwelcome | Work with Pag Portal &Ad Fortal Domino Redbook | C io MMy Favarites .

- Lacal install ?

Install Portlets n Next
Portlet Applications

Specify the location of the file,
Manage Portlets

Wweb Clipping

Directory:
Manage Wweb

|C:\BOBuiIderPor‘tIet.war Browse... |
Services

Wweb Services n Next

'

Figure 7-1 Installing the BOBuilderPortlet. WAR for IBM Portlet Builder

$=Back + = - @ it | @Search [Fe] Favarites @Media @ | %v =1 b2
Address I@ http: fiwsdema.ibm, comfwps/myportalf . crndfes) . cef 155) .5/ 163 k)3

A\ U welcome ||, Edit Layout | Mew Page | Editmy profile | Help | Log off |8

Links @Redbook 1EM WebSphere Portal b

tio Foptal Doming Redbook | Cli io My Favorites -
- Lacal install ?
Install Portlets n Next

Portlet Applications

Specify the location of the file,
Manage Portlets

P Directory:
Wweb Clipping
Ci\DominoStruts war Browse...
Manage Web I —I
Services
Web Services el Next

'

Figure 7-2 Installing the DominoStruts. WAR for IBM Portlet Builder
2. After installing the WAR files, create a new page and add the Portlet Builder
for Domino Portlet to this page.

Figure 7-3 illustrates this. For detailed instructions on creating a page and
adding a portlet to the page, see 2.4.4, “Adding portlets to a page” on
page 58.

360 Portalizing Domino Applications for WebSphere Portal

IBM WebSphere Portal - Microsoft Internet Explorer
File Edit
R = | at | Qhsearch [GelFavorites GMedia &4 | N S 2

Address I@ http: fiwsdema.ibm, comfwpsimyportalf . crndfadf arfsa.smbj .o/ 102) cef 106] . pf 102 # 106

Wiews Favorites Tools Help

Links @Redbook IBM WebSphere Portal

Welcame ! | Edit Layout | Mew Page | Edit my profile | Help | Log off
Portal Administration | Portal Domino Redbook | © ctio My Favorites -

Place: Portal Domino Redbook Page: Portlet Builders ?

.4 Done

< Use the controls below to build your desired page layout and content

Select number of colurnns: Select a skin:

~ I:I el I:I s I:I Therne default skin ;I

Page layout:

Add content... | Add content... |

| Partlet Builder for Doming X x|

Done
Figure 7-3 Adding the Portlet Builder for Domino portlet to a page

Creating a new Portlet with Portlet Builder for Domino

Follow these steps to create and configure a portlet using IBM Portlet Builder for
Domino.

1. Open the page containing the Portlet Builder for Domino portlet, as shown in
Figure 7-4. Click the Create new portlet button.

IBM WebSphere Portal - Microsoft Internet Explorer
File Edit View Favorites Tools Help

GBack ~ = - &) 7t | Qhsearch [GfFavorites (PMedia &4 | BN S | Links {&]Redbook I6M WebSphere Portal

e | Help | Lo

My Favorites -

| Create new pomet |
A

i—'igure 7-4 Accessing the Portlet Builder for Domino portlet

Chapter 7. Portlet builders 361

2. Enter a Portlet name and specify your Domino server name, as shown in
Figure 7-5. When finished, click the Connect to server button.

IBM WebSphere Portal - Microsoft Internet Explorer

File Edit View Favorites Tools Help |

GBack ~ = - D at | Qhsearch [GelFavorites GMedia &4 | BN S | Links {&]Redbook I6M WebSphere Portal

Address @ http: fiwsdema.ibm, comfwps/myportalf . condfad arfsa.createf . c/402) . cef 1601 . pf 1401 #1601 j @GD

3

Fortal Adrnini 0 Portal Dormino Redbo 0
_LFFIFIEEX. EFFYER.

Portlet name: *

ICustomer List Builder

Domino Server Mame: *

|itsotest-d0m

[ad Con{i{)t to server

Domino Database Mame: *

* Retrieve forms and views

Cancel |

Figure 7-56 Configuring the Portlet Builder for Domino: Enter portlet name and server name

362 Portalizing Domino Applications for WebSphere Portal

3. Enter a valid Domino username and password with access rights to the
server and database you wish to access, as shown in Figure 7-6. When
finished, click OK.

IBM WebSphere Portal - Microsoft Internet Explorer - i |EI|5]

File Edit View Favorites Tools Help |

GBack + = -) at | Qhsearch [GelFavorites GMedia &4 | N S | Links {&]Redbook I6M WebSphere Portal

3

Fortal Adrnini

Portlet Builder for Dormino

QPlease login to the Domino server,

Domino Server Mame:
itsotest-dom

User narme:

IPor‘taI Adrmin

Password:

I********l

@ cancel |

Address @ http: fiwsdema.ibm, comfwps/myportalf . crndfad/ arfsa, doAction/.cf402] .cef 1601). p/ 1401 #1601 j @Go

Figure 7-6 Configuring the Portlet Builder for Domino: Enter username and password

Chapter 7. Portlet builders

363

4. Select the filename of the Domino database you wish to access, as shown in
Figure 7-7. When finished, click Retrieve forms and views.

M WebSphere Portal - Microsoft Internet Explorer

File Edit View Favorites Tools Help |
GBack + = -) at | Qhsearch [GelFavorites GMedia &4 | BN S | Links &]Redbook I6M WebSphere Portal 2
Address @ http: fiwsdema.ibm, comfwps/myportalf . condfad arfsa.okf.cf402) . cef 1601] pf1401 #1601 j @GD
me ! | EditLayout | MewPage | Editmy profile | Help | Logoff JH|

Fortal Administration [SPartaPBamine Redbaaks - io My Favorites -

Portlet Builder for Dormino

Portlet name: *

ICustomer List Builder

Domino Server Mame: *

|itsotest-d0m

* Connect to server

Domino Database Mame: *

ACust.nsf -
adming.nsf
AgentRunner.nsf

bookrmark.nsf

catalog.nsf
certsry.nsf

decsdoc.nsf LI
* Retrieve fn%s and views

Cancel |

Figure 7-7 Configuring the Portlet Builder for Domino: Select a database

5. Select the forms and views you would like to make available in this portlet, as
shown in Figure 7-8. If there are a large number of views and forms, you can
browse through the list, page by page, using the navigation buttons. When
finished, click Next.

364 Portalizing Domino Applications for WebSphere Portal

IBM WebSphere Portal osoft Internet Explorer
File Edit View Favorites Tools Help |

GBack ~ = -) at | Qhsearch [GeFavorites GMedia &4 | BN S 2
Address @ http: fiwsdema.ibm, comfwps/myportalf . crndfad/ arfsa. doAction/.cf402] .cef 1601). p/ 1401 #1601 j @Go
| Help | Log

th P tio { My Favarites

Build

Links @Redbook IBM WebSphere Portal

Portlet name: *

ICustomer List Builder

Domino Server Mame: *

|itsotest-d0m

¢* Connect to server

Domino Database Mame: *

adming.nsf

AgentRunner.nsf

bookrmark.nsf

catalog.nsf

certsry.nsf

cpa.nsf

CUSTOMER.MNSF

db.nsf

decsdoc.nsf LI

* Retrieve forms and views

Pick farms and views for your portlet: *

| Showing 1-10 of 20 4| 4 Page 1 of 2 || ¥

T ContactsRSSbyMame Wiew
[~ Custormer Contacts'By Customer Mame View
[~ Custorner Contacts\By Custorner Mumber Wiew
[~ Custorner Contacts\By Name View
[T CustomerContactsPortletintegrated View
[T CustornerPortletIntegrated View
[~ Custormners4By Sccount Owner View
¥ CustormersyBy Customer Name View
[~ CustormersiBy Customer Nurmber View
[T additional Infarmation Farm
Showing 1-10 af 20 4| 4 Page 1 of 2 [»] [¥]

_N%ﬂ Cancel | |
@ e

Figure 7-8 Configuring the Portlet Builder for Domino: Select the forms and views

Chapter 7. Portlet builders 365

366

6. You will be taken to the form and view options configuration page shown in
Figure 7-9.

From here you are able to:

— Configure the portlet settings for each form and view to be displayed.
— Specify the portlet authentication options.

— Specify the form display options.

<=3 IBM WebSphere Portal - Microsoft Internet Explorer : i i |EI|5]

File Edit Miew Favorites Tools Help |
GBack + = - D) at | Qhsearch [GelFavorites GMedia &4 | N S | Links & |Redbook I6M Websphere Portal 2
Address I@ http: fjwsdema. ibm. comfwps/myportalf . cmdfad/ arfsa.dodction/ .o /402] .cef 1601/ pf 1401 #1601 j @GD
Welcome | | Editkayout | Mew Page | Edit my profile [Helpo| Log off [
My Favorites -

~— —

Fortal Administration (SEOFSRDEMMINGRECb0E

Portlet Builder for Domino
< Listed below are forms and views you have selected for your portlet, To modify each form or view click on the edit {pencil} i

in the corresponding row. To change your selection of forms and views click on 'Edit view and form selection', Expand the Minimize
sections on authentication options and form display options to modify the behavior of yvour portlet at runtime.

Farms and views belonging to Customer List Builder

£Z Edit view and form selection

Showing 1-2 of 2 1« Fage 1 of 1 Ed|t Icon
L~
CustomersiBy Customer Name [ﬂ
Custamer Farmm ﬂ
Showing 1-2 of 2 | Page L of 1 »

+ Authentication options

+ Formn display options

Ok | Cancell

Figure 7-9 Configuring the Portlet Builder for Domino: Form and view options configuration page

7. From the form and view options configuration page, click the Customers\By
Customer Name view edit icon. You will be taken to the view configuration
page, as shown in Figure 7-10. Here, you are able to control what columns
are displayed, the column labels, if a column is searchable, and many other
options. On the configuration page you are also able to specify Click to Action
parameters and specify which columns are enabled for people awareness.

Now, configure the view to your liking and click Next.

Portalizing Domino Applications for WebSphere Portal

Help

GBack + = -) at | Qhsearch [GelFavorites Media &4 | N S

3

Links @Redbook IBM WebSphere Portal

Bddress I@ http: fiwsdema.ibm, comfwps/myportalf . crndfad/ arfsa. doAction/.cf402] .cef 1601). p/ 1401 #1601

Select markup to configure Ihtml ,I

Selected Display name Field behaviar
¥ customer NameICustomer Mame IRead only
¥ customer = ICustomer% IRead only

=l
=l
¥ account Owner |Account Guner |Readonly =]
=l
=l

M um Juio [Read anly
™ hidden 4 Ihidden 4 IRead anly
1-5of 5

| Hext | | Cancel |

detailz view. Click on the arrow in the Extra colurnn to zet field controls,

Summary Searchable Type

SIS

SIS

ClickZaction

Mamespace e Person E
Tz
Juro [ibm.comsupaifdemine | LIC =
| | |Cust0mer # = r
| | |Ac:c:0unt owner x| W
I I fuio =l
| | | hidden 4 =

& Personal data containz the following fields. Enable the desired fields by zelecting the appropriate box in the Selected col Each fizld can be
selected to appear in the surnrary view, to be searchable, have a label, and have a Click-To-Adtion value, Click bles portlets to
comrnunicate so that an action executed in one portlet results in updates to other portlets using the same dat elact: iz will appear in the

HEra

Y Y Yy

Figure 7-10 Configuring the Portlet Builder for Domino: Configuring the Customers\By Name view

8. You can now control the order in which the columns are displayed within the
portlet, using the interface shown in Figure 7-11. The buttons with up or down

triangles change the column order accordingly. Adjust the column order to
your liking and click Finish.

Chapter 7. Portlet builders

367

a IBM WebSphere Portal - Microsoft Internet Explorer -0

File Edit View Favorites Tools Help |

=Back « = - @ it | @Search [Fe] Favarites @Media @ | %v = »
Address Igl http: fiwsdema.ibm, comfwps/myportalf . crndfady arfsa.next . pmj-.cf402] .cef1601). p/ 1401 #1601 j 6>

Welcame ! | Edit Layout | Mew Page | Editmy

Links @Redbook IBM WebSphere Portal

Portal Administration [SPEESEEERMINGREdEa0E io My Favorites -

ortlet er for Do o
& vou have chosen the following fields for this portlet. Mow vou may order the fields to appear in the order you desire, T 1d new fields, click 'Back’ and
zelect new fields, To rermove fields, click 'Back’ and deselect fields,

Select markup to configure Ihtml ,I

Custormer Marme b |
Customer # M)

Account Cwner

In summary view

| Back | | I;Linish | | Cancel |
]
Figure 7-11 Configuring the Portlet Builder for Domino: Ordering the Customers\By Name columns

9. You are taken back to the form and view options configuration page. You can
configure another form or view by repeating steps seven and eight. You can
also expand the Authentication Options and Form Display Options sections,
as shown in Figure 7-12. The options available are as follows:

Authentication options

— Use single sign-on: The portlet will use the user’s LTPA token to
authenticate with Domino.

— Prompt for user ID and password: The portlet will prompt the user for their
Domino ID and password.

— Use this user ID and password: The portlet will always use the ID and
password specified here.

— Use existing credential vault slot: The portlet will authenticate using the ID
and password in the specified slot of the authenticated user’s credential
vault.

Form display options

— Use data form: The portlet will display forms using the Portlet Builder’s
simple data form interface, as configured for each form using steps seven
and eight. While these forms will be embedded seamless inside the
portlet, they have very limited functionality and display capabilities.

368 Portalizing Domino Applications for WebSphere Portal

— Use Inline frame: The portlet will display forms within an IFrame, using
Domino server’s native HTML rendering capabilities. If IFrames are
acceptable within your portlet, this will provide the quickest and easiest
way to implement full form functionality within your portlet. For some
functionality, such as for displaying rich text, using IFrames is the only
option.

Once you have finished configuring the portlet options, click OK.

al Administration

Portlet Builder for Dornino

Forms and views belonging to Customer List Builder

£Z Edit view and form selection

Showing 1-2 of 2 1 Page L of 1 »| ®

CustomersiyBy Customer Name View _ﬂ
I

Customer Form

Showing 1-2 of 2 | 4| Page 1 of 1 L]

=l authentication options

* Use single sign-on
" Prompt users for user ID and password
Specify slot name to create:

{~ Use this user D and password
Specify slot name to create:
User ID;

Password:

Confirm password:

" Use existing credential vault slot
Existing =lots:

|BOBIdr_Gr0up ;I

= Form display options

e l:‘ Use data form
o @ Use Inline Frame %

Width
300
Height
ISDD

OK | Cancell

3 Listed below are forms and views you have selected for your portlet, To modify each form or view click on the edit {pencil) icon in the corresponding row
selection'. Expand the sections on authentication options and form display options to modify the behavior of your portlet at runtime.,

Figure 7-12 Configuring the Portlet Builder for Domino: Authentication and form display options

Chapter 7. Portlet builders

369

10.You should now see your newly created portlet listed within the Portlet Builder
for Domino portlet, as shown in Figure 7-13. You can reconfigure this portlet
at any time.

IBM WebSphere Portal - Microsoft Internet Explorer

File Edit View Favorites Tools Help

GBack + = -) at | Qhsearch [GelFavorites GMedia &4 | BN S i

Address I@ http: fiwsdema.ibm, comfwps/myportalf . crndfad/ arfsa. doAction/.cf402] .cef 1601). p/ 1401 #1601

Links @Redbook IBM WebSphere Portal

Fortal &drnin
. N

Portlet Builder for Dormino ?
& Listed in the table below are the portlets that have been created using thiz portlet builder, To create a new por click "Create new let" belaw,
To create a portlet based on editing an existing portlet click on the portlet's narne in the table Tao rernow artlet, click the = ed rermove
icon in that portlet's row, Click the arrow export icon to view instructions for exporting the po

Portlets created using the Dormino portlet builder:
Portlet narme

Custorner List Builder F X =

A

Figure 7-13 Configuring the Portlet Builder for Domino: Completed portlet configuration

| Create new portlet |

11.Add the newly created portlet to one of your pages, as shown in Figure 7-14.
Steps describing how to add a portlet into a page are detailed in 2.4.4,
“Adding portlets to a page” on page 58.

WebSphere. Yy S N " Welcome | |, Edit Layout | New Page | Editmy profile | Help | Log off
ifelcome a tal Adrministration | Portal Domin £ etion My Favorites -
Edit My g it t i ge Bla Set Permiss i 0s ins | Organize My Favorites
Place: Portal Domino Redbook Page: Portlet Builders ?
g \
4 Done

< Use the controls below to build your desired page layout and content

Select number of colurnns: Select a skin:
e I:I i I:I el I:I Theme default skin ;I

Page layout:

Add content... | Add content... |

Paortlet Builder for Domina = (2 (%)

Custorner List Builder o - v (%)

|D0min0 portlet generated using the Domino Portlet Builder|

Done

Figure 7-14 Configuring the Portlet Builder for Domino: Adding the newly created portlet to a page

370 Portalizing Domino Applications for WebSphere Portal

7.2.2 Implementation example

Following steps 1 through 11 in the previous section, Figure 7-15 show the
Cutomers\By Name view from our Case Study application, as rendered by IBM
Porltet builder for Domino.

3 1BM WebSphere Portal - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

R = | at | Qhsearch [GelFavorites GhMedia 4 | B-Se >

Address I@ http: fiwsdema.ibm, comfwps/mypartalf . condfes) . cef 155).sf2104/ 116

Links @Redbook IBM WebSphere Portal @Local IBM WebSphere Portal

with Pages | Portal Administratio

Vie

|Cust0mers\By Customer Name;l

‘*\‘New

| 1-200f20 M 4| Page 1afz »| M

Customer MName Customer # Account Owner n
After portal 7 Marko Viksten = B @
anyPortal Inc g Michael Ticknor ﬁ _@ i]|
Company & z John Srnith * B (@
Coe Inc. 3 Carmilo Rojas x B @
Domino Portalizers 9 Marko Viksten ﬁ _@ i]
Fire Portals Co 10 Gary Someone *ﬁ _@ _ﬂ
IBEM Corporation 1 Michael Ticknor % BJ ,ﬂ
TS0 5 John Sraith = B @
Joe's Pizza 13 Carnilo Rojas * (B |l
Kevboards Inc 17 Gary Someone ﬁl EJ _ﬂ
My Bank.com 19 Marko Viksten = B (@
My CormpanyPortal 4 Chris Heltzel x| B (@
Meo Portals 18 Michael Ticknor ﬁ _@ ,ﬂ
Portal-rakers 3 Camilo Rojas ﬁ _@ _ﬂ
Portal People eaters 15 Marko Viksten ﬁ _@ ,ﬂ
Portals-R-Us 11 Chris Heltzel ﬁ _@ _ﬂ
The company 3] Marko Viksten ﬁ _@ ,ﬂ
Wanda's World of Wigs 14 Chris Heltzel ﬁ _@ _ﬂ
Winging Portals 1z Chris Heltzel ﬁ _@ ,ﬂ
WP Experts 16 Gary Someane ﬁ _@ _ﬂ
1-200f20 M| <] Page 1ofz [»] [¥]

Figure 7-15 The Customers/By Name view as rendered by IBM Portlet Builder for Domino

Chapter 7. Portlet builders 371

7.3 Bowstreet Portlet Factory for WebSphere

Overview

Bowstreet Portlet Factory for WebSphere is a framework and set of tools for
rapidly creating and maintaining customized portlets for the WebSphere Portal
environment. With Portlet Factory, developers build portlets by pulling together a
sequence of reusable software components called Builders. Developers
assemble Builders into models. These models are then executed at runtime to
dynamically generate application code. The code generated includes JSPs, Java
classes, XML documents, and all of the low-level artifacts required to create a
portlet application. Thus, developers can capture and automate the process of
building portlets instead of explicitly coding each portlet.

Bowstreet Portlet Factory for WebSphere comes with the Lotus Collaboration
Extension. This is a set of builders (that is, tools) that assist the developer in
building portlets to access Domino applications.

Bowstreet Portlet Factory is not targeted exclusively to Domino developers. In
addition to the Lotus Collaboration extension, it includes a large number of tools
for accessing relational databases, building stand-alone applications, and so
forth.

A key strength of this tool is that it does not completely insulate a developer from
the J2EE framework. If a specific task is not possible with the tools provided, a
Java developer can code a method or class in Java and include this code in the
Bowstreet development environment.

A detailed knowledge of Java and J2EE is not a requirement. However,
Bowstreet Portlet Factory is very J2EE-centric. A basic understanding of Java
and J2EE technologies will greatly increase a developer’s productivity with these
tools.

Bowstreet provides developers with:

» Ability to leverage existing Domino applications

» Ability to more easily create of custom portlets

» Robust personalization and customization capabilities

» Simplified portlet-to-portlet communication

» Categorization and search

» Many single sign-on options

» People awareness

372 Portalizing Domino Applications for WebSphere Portal

Bowstreet development tool

Bowstreet Portlet Factory has a WebSphere Studio plug-in, Bowstreet Designer,
used for creating, viewing, and running portlets. Bowstreet Designer plugs into
the Eclipse and WebSphere Workbench IDEs.

Portlets created with the Bowstreet Portlet Factory follow a standard J2EE
model-view-controller design. In order to simplify the task of writing custom
portlet Java and JSP code, Bowstreet introduces the developer to a few key
objects used to create a portlet application.

Builder

A builder is the core building block that automates design and development tasks
performed by developers. Simply put, a builder is a collection of Java classes and
XML documents that represent a specific pattern or high-level component of a
Web application. A builder provides a wizard-like Ul for gathering configuration
information from the developer, as well as the code for rendering the pattern or
context-aware elements within the Web application.

A simple builder might add a button to a JSP page, while another might render a
Domino view. Builders can analyze the application and perform tasks in the
context of what previous builders have created. For example, a “page navigation
control” builder could reference a set of JSP pages and create a set of
navigational controls relevant to the context of those pages. If a page changes,
then the navigational controls update automatically in a ripple effect that can
cascade through the entire application.

Model

A model is a sequenced collection of builders that generate the application
components representing the behavior, structure, data, and presentation of the
portlet application. Underneath the covers, a model is simply an XML file
containing a series of calls to builders.

Each model can be turned into a portlet, or can be run as a stand-alone J2EE
application.

Profile

A profile contains a set of inputs that vary the way a portlet behaves. Profile
settings can be edited after a portlet is deployed by clicking the configuration icon
for the portlet. A profile feeds values into builders based on user identity or other
contextual information (such as day of the week). Using profiles, you can
automatically generate different variations of a generic portlet (from the same
model) for different users or situations.

Configurable profiles are very easy to implement with Bowstreet Portlet Factory.

Chapter 7. Portlet builders 373

Regeneration

When a model is regenerated, each builder in the model executes in sequence
and creates pieces of your portlet, such as JSP pages or Java methods. During
regeneration, profiles can feed different inputs to builders based on the user or
situation, automatically creating custom portlets “on the fly.”

There is a negligible performance hit associated with regeneration; less than 1%
of the total processing resources in a typical “regen-enabled” execution
environment are spent performing regeneration. This is because generated
objects are cached at optimal levels of granularity, as are sessions. Furthermore,
it's possible to break a model into a hierarchy of components, whereby models
are selectively regenerated.

WebApp

The WebApp is a profile-specific instance of a portlet application that is
dynamically created by the factory regeneration engine. Each builder, when
called during regeneration, creates objects that get woven into the portlet
application, such as pages, buttons, variables, or methods. The regeneration
engine creates the WebApp by combining the regeneration of a model with a
unique instance of profile data. The WebApp objects are then processed by the
factory's execution engine to instantiate the executable J2EE application
sessions.

Bowstreet server components

Portlets created with Bowstreet Designer plug in to the WebSphere Portal and
application server. The Portlet Factory's Automation Engine leverages
WebSphere’s HTTP stack as well as all of the services from WebSphere
Application Server and WebSphere Portal, such as clustering, failover, J2EE
security, and session management.

Bowstreet Portlet Factory integrates with the WebSphere Portal via the
Bowstreet Portlet Adapter WAR. This is a standard WPS portlet WAR that
includes the portlet factory classes (JAR files). When a request comes in from
the portal, the Bowstreet Adapter Portlet class calls in to the portlet factory code
at the layer below the servlet layer (the WebAppRunner class). Note that this
WAR file is deployed into WebSphere Portal only once, eliminating the need to
re-deploy a WAR with every iteration or variation.

Figure 7-16 on page 375 illustrates the code execution architecture.

374 Portalizing Domino Applications for WebSphere Portal

WebSphere App Server

Request for Portal Page

WebSphere Portal

Bowstreet Portlet L Adapter WAR

Bowstreet Adapter Portlet

Model XML Files, Main Factory Controller (WebAppRunner)

imported HTML, T I
other files Factory Builders & Factory WebApp

lGengratlon Execution Engine
(First time only)
'

Generated WebApp objects, classes
and JSPs

Factory-supplied
execution libraries
(XML, Web services,
etc.)

Profile Data

Application objects

J2EE Components:
JDBC, EJB, JCA, JMS, JSP tag libraries,
commerce components, etc.

Figure 7-16 Bowstreet Portlet Factory for WebSphere code execution architecture

Implementation issues

>

Applicable portlet patterns

Bowstreet Portlet Factory is capable of implementing all four portlet patterns:
— Link

— Display

— Integrated

— Migrated

Development time

Moderate.

Development time can be significantly less than developing an application
from scratch using the JSP and Java options, especially once developers
become experienced with the Bowstreet development tools at their disposal.

Chapter 7. Portlet builders 375

376

Certain types of portlets require less time to create than others. For example,
view navigation, document display (without rich text), and click to action
functionality are significantly easier to develop with Bowstreet Portlet Factory.

Other functionality, such as document creation and editing, can be more
challenging, especially when input validation, input translation, computed
fields, or dynamic keyword values are involved.

» Developer skill set

In addition to learning the Bowstreet development tools and techniques, a
developer should have good understanding of Domino, HTML, and JavaScript
development. While not required, a solid understanding of Java, JSPs, and
portal technologies is very beneficial when using some of the more advanced
builder configuration options, or when implementing a task not easily
performed by an available builder.

» Range of applications

Bowstreet offers a powerful set of builders for developing a rich portal
interface with a high level of functionality. A great number of builders are
available and more are being made available with each release. High-level
builder functionality can be customized using a wide variety of configuration
settings and by adding lower-level builders to your model.

In the event that a builder is not available to provide specific functionality, it is
possible to write a custom builder, or add a builder that supports custom Java
code. Both of these options, of course, require Java development skills and
significantly more development time.

» Rich text handling

At the time of this writing, rich text fields cannot be viewed or edited using the
forms generated by Bowstreet Portlet Factory.

Note that it is possible to configure the Bowstreet Domino view builder to open
documents in a new browser window. Using this option, documents will be
rendered using Domino’s HTTP engine and can therefore leverage all of the
Web-based rich text functionality provided by Domino.

Performance

Bowstreet has done extensive performance testing on portlets created with the
Bowstreet Portlet Factory for WebSphere. The benchmark they made concludes
that the Bowstreet Portlet Factory provides all the benefits of rapid creation of
portlets without sacrificing performance. The portlets that the portlet factory
generates exhibit performance characteristics (throughput, response time, and
CPU utilization) that are highly comparable to traditional hand-coded portlets.
Contact Bowstreet to obtain detailed information about performance.

Portalizing Domino Applications for WebSphere Portal

Currently no metrics are available on performance related to portlets accessing
Domino data. As with all integration techniques, performance testing is
recommended before deploying a portal application using Bowstreet Portlet
Factory.

» Session management

Bowstreet Portlet Factory can implement session pooling for connecting to
Domino servers. This will significantly increase the scalability of Domino
portal applications.

Note that the session pooling option can be used only when “Use regen
credentials” is specified as the runtime credentials for connecting to Domino.

» Clustering

Bowstreet Portlet Factory does not natively support server fail-over in a
clustered Domino environment.

» Requires single sign-on

Bowstreet supports a wide range of single sign-on options. It can be
configured to use LPTA or the Credentials Vault. Also, by configuring a
Bowstreet portlet with a valid Domino username and password, it can allow
users to connect with Domino servers that do not support SSO.

Required software versions
» Lotus Domino 5.0.10 or later or 6.0 or later

» WebSphere Portal v4.1, 4.2 or WebSphere Portal Express 4.1
» Bowstreet Portlet Factory for WebSphere v5.6+
» Bowstreet Portlet Factory Lotus Collaboration Extension

Note: People Awareness requires WebSphere Portal Extend.

7.3.1 Implementation details
At a high level, development consists of three main steps:
1. Develop the model.
2. Test the model.
3. Deploy and test the model as a portlet.
Developing the model primarily involves adding and configuring builders. It may

also involve the development of custom builders, or the insertion of custom Java
code into a builder supporting this action.

Chapter 7. Portlet builders 377

378

Launching the Bowstreet Designer client

After installing and configuring a Bowstreet development environment, all
development is performed within the Bowstreet Designer. The Bowstreet
Designer client is contained within the WebSphere Studio Application Developer
client.

To launch the Bowstreet Designer, open the WebSphere Studio Application
Developer and select Bowstreet — New Model or Bowstreet — Open Model.

. % J2EE - Application Dey eloper

File Edit Perspective Phoject | Bowstreet Window Help
S-HE S &S DI - H e 2N
E ?8_: Navigator [ﬁ Mew Profile Set... -#ml l
m Elﬁ Basiciweb | ;
et Install Package. .. et i IBaSICWEb
P;H htion @ 33i0h [ime out: |
= . Designer Help
in F tibutgble
sses
% Configure Designer... AppinOs:
-wieh-| I"yb? Open Madel. .. Ertension I ime Type
ek
sl Partlet Wizard. ..
] .clazspath -
] websettings fb Open Profile Set...
- DefaullEAR S ——
Elﬁ P5 20030505 Create Package...
- oUMCE AT T “kt pargmeters:
= | AP Documentation
A webhpplichtion rriest Parameter Mame |
=] .claszpath ||
1 .websettings
----- 1= TestProject
I'_—'lﬁ TP
-z source
2= webdpplication
] .clazzpath |
COns...
websettings _I
General] Servlets| Security | Ervironment | References | Pages | Source
,E Outling * a Frop: :
[#-4E] Basicweb Praperty
iDescription
Dizplayt ame Basic\web
Distributable false

Figure 7-17 Launching the Bowstreet Designer from WebSphere Studio

Creating a new model
Use the following steps to create a new model:

1. After selecting Bowstreet — New Model, you are prompted to select the type
of model to create. For Domino Portlets, it is generally best to start with an
Empty model (Figure 7-18).

Portalizing Domino Applications for WebSphere Portal

Select New Model Type x|

Select a hase model to use as a starting paint for creating
yaur new maodel.
Available Base Models
Emoh e
Main_and_Page
Service_Call_Tester
User_|nfo

QK I Cancell Help |

Figure 7-18 Creating a new Bowstreet model: Selecting model type

2. When prompted, enter a model file name and file path. It is best to keep
related models in a common subdirectory.

{ & Save New Model ‘)
Look in: = models | | ﬁ‘(I fae =

domino

factary

Fedhook
test.model

File name: ftestModel oK |
Files of type: |Elowstreet Factory odels LI Cancel |

j:igure 7-19 Creating a new Bowstreet model: Saving .model file

Once you have created your model file, you are ready to begin adding and
configuring builders.

Adding the Domino View & Form builder

Bowstreet provides a great number of builders, each with a very wide range of
available configuration options. When building a Domino portlet, you will

generally start by adding the Domino View & Form builder and then refine this
builder’s functionality with other builders.

1. To add the Domino View & Form builder (or any other builder) select Model —
Add Builder Call.

Chapter 7. Portlet builders 379

{ % Bowstreet Fack:

File Edit Vie Frofile Package Help
Er | ﬁ,?'| s B Run Model "testiodel” cii+R S Y 3 R
£ testodel
- - @ Generate Model Ctrl+G
Builder Call Lisk: Dbfaults
o, gy @Generateml Models
Compile Model JSP Ctrl+d gl
| | | ;
{Q Froperties...
Copy Model URL to Clipboard
[&, Find and Replace... Ctrl+F
{ﬁ Delete Models...
i Print Model... Clrl+P
Fublish to LDDI
\

Figure 7-20 Adding a Bowstreet builder to a model file

2. From the Bowstreet Builder Palette window, select All - Domino View &
Form.

Note: The Domino View & Form builder type will only be available after you
have successfully installed the Lotus Collaboration Extension pack.

-"ﬁ Builder Palette % B
Category Name: Builder Type: Refresh
Favorites |Data view Porlet =
Most Recently Used gz}aau\;'er\:;z?]gm _I

Ciomino Wi
Collaboration able
Data Integration Dynamic Table Column
Flow Control EJB Call
Model Construction Errar Handler [
Page Contraols Event Daclaration
Page Modifiers Event Handler
WebSphere File Chooser
File Cependency
File Upload
Farm Submit Action
Formatted Text
Frame
Hidden Input
HThL hd
Organize== |
Builder Info . .. | ok I Cancel | Help |

Figure 7-21 Bowstreet Builder Palette window

3. After clicking OK, you will be given the Domino View & Form builder
configuration interface (Figures 7-18 and 7-19).

380 Portalizing Domino Applications for WebSphere Portal

{ & Builder Call Editor Dialog

Domino View & Form
Connectto a Domino Server and access view and document data. Displays a view of Domino data including options for paging, catege
and search. Creates pages, contrals, and helper methods to view, create, update, and delete Domino documents.

Properties +
Mame IMWiew
Host server] |MT2DDD.iSSI.ibm.com:SDSD =l
User name for regen] prsadmin
Passward for regen g [prewnaws
Get databases and views
Database name] |appsICUSTOMER.NSF =l
Runtime credentials] |Use regen credentials specified ahove + |
—Wiew display and layout - —_— _
Yiew name * i |Cust0merContacts‘tEly Mame =l
Rows to include 4 Il rows =
Main view page *a actorypagesidomino_portlet html J
Stylesheet URL 0 [factorpagesidomino_view.css J
Paged data display g
Initial category i E]
Show category selectar g ™
Show search button g
| T [»

= Apply | » Ok | # Cancel | 7 Help

Figure 7-22 Bowstreet Domino View & Form Builder: Configuration window part 1

Chapter 7. Portlet builders 381

Connectto a Domino Server and access view and document data. Displays a view of Domino data including options for paging, category,
and search. Creates pages, controls, and helper methods to view, create, update, and delete Domino documents.

Document and form support -

“ou can open documents directly in Doming or create pages from a Domino form. When you create pages, this builder adds
form fields along with contrals for create, edit, save, and delete to the htmnl pages provided. You can modify these pages or
create copies to move or hide controls and ta limitwhich fields are availahle in the forms.

Document support
Farm name
Mavigation control type

Document page type

Document view -
Enable document yiew

Document view page

Document view link

Document edit -
Enahle document edit

Document edit page

Add Edit column 1o view

Agentto run on save

Document create +

DlIqument delete +
A

:] ¢ Mone ¢ Open Domino window (% Create pages from Domino form

{ lcustorer Gontact =l

4 ¢ Link & Button

0 & Createfields based on Domino form Use fields fram imported HTML

g M

&

0 actorypagesidomino_documenthtml

3 [contact_Name =l

aM

] actorypagesidomino_document hitml
gLl
al El

i

= Apply

| - QK | # Cancel | # Help |

Figure 7-23 Bowstreet Domino View & Form Builder: Configuration window part 2

Note: It is important to verify that the HTTP and DIIOP tasks are running on
the targeted Domino Server. You should also verify that the user id &
password used has permissions to run Java agents on this server (see the
server document in the server's Domino Directory (names.nsf)), and that the
id has the appropriate access level to the database being accessed.

4. All settings for the Domino View & Form builder are controlled from this
window. The configuration options available include:

— Domino server, database, view, and form to use with this model

— Authentication method (passed ID and password, LTPA, credentials vault)

— Interface options:

¢ View options (search, category selection, and so forth)

¢ Document link method (no link, new window, create integrated form)

* Document viewing, creation, edit, and deletion options

Portalizing Domino Applications for WebSphere Portal

— Many other options

5. Once configuration is complete, click OK. You will be taken back to the model
and should notice that Java code has been generated based on the builder
you have configured.

[% Bowstreet Factory 5 Designer - testModel ' o =]
File Edit Yiew Model Profile Package Help

Owlv s ae LBEyddHad@d i

{E] testhlodel

Builder Call List: testModel Defaults - ﬁy Choose Profiles

|| WebApp -
=+] Event
* [§y

public Object
DocunentVievinEnter [VebApphccess
webkppAccess, String UNID)

{

Object returnValue = null;

cow. bowstreet, builders. vebapp. nethods, Conditi
onaliction conditiomalhcrion = new
com. bowstreet, builders. webapp. nethods, Conditi
onaldction() ;

if
(conditionalhction. evaluate (webhpphccess,
"I5_TRUE", "AUTO", UNID, null, mull)) {

con.bowstreet, builderutilities. PageAutonation
Runtime.assignwebApphccess, "selectedUNID”,
TNID, false):

returnValue =
wehApphccess. callMethod("view. getDocumentData
", new Object[] {
DataConverter. toftring(UNID) }):

b

return returnValue;

}

|

WebApp 1 Muda\XMLJ Relationships

Welcame |
Far Felp, cick Flb Topics on the Felp Men: T T

M start J_@ eHRIHDNGHE 5:29 A
| Lotus Domina Ser..J B 0:\Program F\\Es\‘..l (F|DADocuments an.J {Fneeded chtures”..l W701z6E - Applicatio... |[sBowstreet Fact... 8 bowstreet -not... R |

Figure 7-24 Java code generated from the Bowstreet Domino View & Form builder

It is possible to change the settings in the Domino View & Form builder
configuration window (or any other builder’'s configuration window) at any time
simply by double-clicking the builder name listed in the left-most window of the
model interface.

Testing a Bowstreet Model

It is possible to easily test this model directly from the Bowstreet Designer client.
To test a model simply click the Run Model icon in the top left corner of the
Bowstreet model interface.

Chapter 7. Portlet builders 383

3 http://mt2000.issl.ibm.com:9081 /bowstreets/webengine /b i | Ellll

File Edit View Favorites Toaols [http: 2000 issl.ibm, com: 9051 jhowstreetSjwebengine/testMods! - Micros
§=Back -~ = - &) at | Qhsearch [GelFavorites GMedia &4 | N S
Address I@ htkp: fimk2000,issl.ibm, com: 2081 fbowstreetS fwebengineftestModel j @Go | Links **
Search text:l Search |
Create new... |
Customer_MName Customer_ Account_Owner
bla bla Someone, Gary
CustMame 123 Unknaown
IBM 5 Unknaown
name nubmer Someaone, Gary
|&] pone l_l_ # Internet

Figure 7-25 Test run of a model based on the Bowstreet Domino View & Form builder

Running a model from the Bowstreet Designer makes it very easy iteratively to
add or configure a builder, and then quickly test the changes to confirm the
change had the intended effect.

This action will test most aspects of the application with a few exceptions, such
as Click to Action, which must be tested from within WebSphere Portal.

Deploying a Bowstreet Model as a Portlet

Turning a Bowstreet Model into a portlet is a fairly straightforward task. Simply
add and configure the WPS Portlet Adapter builder to your model. For
instructions on adding a builder to a model, see “Adding the Domino View &
Form builder” on page 379.

Figure 7-26 lists the configuration options for the WPS portlet adapter builder.

384 Portalizing Domino Applications for WebSphere Portal

{ & Builder Call Editor Dialog

I

WPS Portlet Adapter

Allows you to expose profile values for customization when the model is used as a portlet in the IBM WebSphere Partal Server.

Properties +

Marme "ICustomerContactS

Portlet Title ICustomerContacts

Fortlet Description I

Lser Help File I

Advanced +

rofile Sets

Specify how each Profile Set in this Model should be accessed when itis in a Portal.

SalesTrackinaps Show individual profile values in Configurg

Advanced Profile Table +

4| | ol
= Apply I » Ok | # Cancel | ? Help |

Figure 7-26 Bowstreet WPS Portlet Adapter builder configuration window

Once you have added this builder, you are ready to deploy your model as a
WebSphere Portlet. You should find this to be quite simple. All Bowstreet portlets
are actually concrete portlets referencing a single abstract portlet. The difference
between portlets is simply the model the concrete portlet references.

The easiest way to create a new concrete instance of a Bowstreet portlet is to
use the Bowstreet Portlet Creator portlet. This portlet works in much the same
way as the Web Clipping portlet configuration tool. It provides a simple interface
to create and configure each concrete Bowstreet portlet.

To use the Bowstreet Portlet Creator, log in to the WebSphere Portal where
Bowstreet Portlet Factory is installed. Open a page containing the Bowstreet
Portlet Creator portlet. If no page contains this portlet, simply create a new page
and add this portlet.

From within the Bowstreet Portlet Creator, you can create a portlet based on your
newly created model.

Chapter 7. Portlet builders 385

4} IBM wWebsphere Portal - Microsoft Internet Explorer

File Edit View Favorites Tools Help |

GBack ~ = - D at | Qhsearch [GelFavorites GMedia &4 | BN S

Address I@ http:ll’,fthDDD.issl.ibm.com,l’wps.l’myportal,l’.cmd,l’ad,l’.ar,l’1D?4884900,|’.c,|’40l,f.ceISZD,f.pISDI?Pj @Go

Bowstreet] vwelcorms | Wark with Pa ges | Portal Administration My Favorites hd
h N

Portle

ator | Test Page Demo App Bowstreet 2

Existing Bowstreet Portlets

Bowstreet Portlet

Select Portlet Model |Cust0merC0ntacts = Bowstreet Portlet Creatar
CustomerContacts - Bowstreetz
Portlet Name |Cust0merC0ntacts CustamerProfile - Bowstrest2
. CustomerProfileBowstreet
Portlet Title |Cust0mer Contacts Customers - Bowstreet?
Cutomers Bowstreet
Create Portlet | DominoDocurnentEdit

SalesActivities - Bowstreet2

|@ _’_| |° Inkernet 4
Figure 7-27 Bowstreet Portlet Creator portlet

After you have created your new portlet, simply add it to a page. It will look and
function in much the same way as it did in your test environment.

It is also possible to package a Bowstreet portlet as a WAR which can run on any
WebSphere Portal server, even if Bowstreet Portlet factory has not been
installed. This process requires that you be familiar with the Jakarta ANT
package, an open-source application used for building WAR files.

Implementing communication between Bowstreet models

When implementing Click to Action, one portlet (for example, model) is the event
listener and another portlet triggers this event.

Note: Because Bowstreet uses the standard WebSphere Portal Messaging
API (like Click to Action), it is possible to implement a non-Bowstreet portlet
that triggers a Bowstreet event listener. It is also possible to trigger an event in
a non-Bowstreet portlet.

Implementing a communication listener

In the Bowstreet model that will be an event listener, add and configure the WPS
Event Declaration and Event Handler builders.

386 Portalizing Domino Applications for WebSphere Portal

{ & Builder Call Editor Dialog
WPS Event Declaration

Defines an event and creates a methad far firing it. The method is named "fire=buildername=". Use the Event Handler Builder to
associate an action with an event.

Properties +

Event Type o K Default Portlet Me with Event Mame
Event Marne 4 ICustomerNameSelection

Ar its -

Specify any arguments this event will pass ta its event handler when fired.

Arguments Mame Diata Type
customeriame String

Advanced Profile Table +

4| |
= Apply | » Ok | # Cancel I ? Help |

Figure 7-28 Bowstreet WPS Event Declaration builder configuration window

{ & Builder Call Editor Dialog
Event Handler

Ferfarms an action when an event occurs, Can be used for handling system events, or with events defined using the Event
Declaration Builder.

Properties +
Marne IhandleCustomerNameEvent
Event Marne * 3 lcustomeriameSelection k|
Action 3 IﬂlterElyCustomerName J
Advanced Profile Table +

= Apply | » Ok |

Figure 7-29 Bowstreet Event Handler builder configuration window

In the Event Handler builder, you must specify an Action to be called when this
event is triggered. You can select an Action generated by the Domino View &

Chapter 7. Portlet builders 387

Form builder, or you can use parameters passed by the event trigger and chain a
series of Actions together by adding and configuring an Action List builder.

? ¥ Builder Call Editor Dialog |
Action List

Creates an ordered list of actions to be executed. Action lists can be nest

{ & Select Action |
Available Choices:
Properties + -4 Methads =
.1 DataSource_Pager
| DataSource_PagerRetriever
| RowDataviewPageNameSeguencer
+-| StateManager
_ -] wiew
Actians Arl L 0 DocurmentCresteonEnter
Assignmentlicategor=§Argumentsicustome | | e 0 DocurmentCresteonSubmit
jew.getviewData | B DocumentCreate_MextAction
| DocumentDeleteOnEnter
DataviewPace | 1 DocurnentEditonEnter
[DocumentEditonSubmit
-----] DocurnertEdit_Mestaction
----- 0 DocumentviewonEnter —
----- 0 coToDocurmentCreate
----- 0 GoToDocurmentDelste
----- 1 GoToDocurmentEdit
[} GoToDocurmentyiew

] GoToviewData =
[>|_I

L]

Marme *3 IﬂlterElyCustomerName

Arguments +

E I B = PP o Y Y O Y= PN T YRy

4]

Cancel | Help =
iiiAppIy_‘ w O | = Cancel | 2 Help |

Figure 7-30 Bowstreet Action List builder configuration window

Implementing a Click to Action trigger

To trigger a Click to Action event from a Bowstreet portlet, add and configure the
Link builder. Make sure the Action Type setting is set to “Link to an Action.”

388 Portalizing Domino Applications for WebSphere Portal

{ & Builder Call Editor Dialog

Link

Adds a link to a named tag or other location on a page or pages.

Properties +

MName

* —Page Location

Location Technigue ¢ On Mamed Tag ¢ Relative to Mamed Tag ¢ Advanced

"0On Mamed Tag" instructions: Choose a Page from your Model, and a named tag on that page.

Page i [j |DataViewPage ;I Tag i [j '|Cust0mer_Name

Link text i §|

Action Type Linkto an
Action o} IselectCustomer
Ar ts - —_ - B

Specify Name §Value pairs of inputs to actions {only applicable for actions that accept arguments).

Evaluate arguments [j " When the action is run & As the page is rendered
Input Mappings | Mame | Walue |

Figure 7-31 Bowstreet Link builder configuration window

You will also need to add and configure an Action List builder to define the action
called by the Link builder. The Action List builder can trigger one or more events,
and pass any number of required parameters, based on which link was selected.

{ & Builder Call Editor Dialog

Action List

Creates an ordered list of actions to be executed. Action lists can be nested.

Properties +

Marme 3 IselectCustomer

Arguments +

Actions ActionList

fireCustomerSelection(${ArgumentsiLUNID D

fireCustomerfameSelection{${ArgumentsicustomerMamel)

DataviewPage

Figure 7-32 Bowstreet Action List builder configuration window

Chapter 7. Portlet builders

389

7.3.2 Implementation example

390

With the assistance of a Bowstreet expert, we implemented the Sales Tracking
application case study introduced earlier. Within a day we had developed a fully
functional portal workspace, complete with a Click to Action interface between
portlets.

2} 1BM WebSphere Portal - Microsoft Internet Explorer A A=

File Edt View Favortes Tools Help |-
GBack + & - @ B A | @search [Favortes Dveda (# | - S

Search text: Search Customer Profile

Customer Name Custhame
Customer Name Customer Account Owner Customer Number 123
bla bla Someaone, Gary Customer Address address1,Cincinnai,OH 41143
Custiame 123 Unknawn # of Employees 124
BM 5 Unknain Account Qwner 12001
name nubmer Someone, Gary Comments
Dwner Ch=Michas! Ticknor/OU=Cincinnati/O=TBH
Date Created 05/07/2003 04:32:57 PM EDT
‘Last Modified 05/13/2003 04:47:56 PM EDT
Delete | Edi|

C - B ct2
Category: | CustName =] Update 7
Catsgary: | CustMame +| _Updste
Create new...

_-— N\ Entsr new Activity...
Employer ContactName Phone # Edit Delete ‘

fname Iname phone B X Date Sales Person Customer Activity Contact Made Sale? Edit
05/07/03 Do, John CustName FollowUp fnameIname Yes Edit
05/07/03 Doe, John CustName Sales Pitch fname Iname o Edit
05/07/03 Custame Edit
& [[| 4 internet
oot 12 BTG Y oo
|J 4 Lotus Bomino Ser...| B D:iprogram Fes!... | BResourca - appic..| sBowstreet Factor... | #fjcustomers.bmp -...| (Glbowstrest deseri.. || &M == |

Figure 7-33 Bowstreet implementation of Sales Tracking case study

We created four models to implement this portal workspace, one for each portlet:
1. Customers view

2. Customer profile

3. Customer contacts

4. Sales activities

With each model, we started with the Domino View and Form builder, which
generated a simple Notes view and form interface. We then configured the

Domino View and Form builder and added additional builders to refine the
interface and add functionality such as Click to Action.

Portalizing Domino Applications for WebSphere Portal

Bowstreet’s model-builder development technique requires some time to get
used to. However, with a little bit of effort it ultimately proved very effective in
developing our desired portal application. The ease with which we implemented
the challenging functionality of Click to Action across multiple portlets was
impressive.

There were a few spots where we added straight Java code. For example, we
used a custom Java method to grab values from the product view for use in
selection fields.

The following four tables summarize the builders used to generate our portal
application. Some of these builders required detailed configuration that has not
been captured in these tables.

Table 7-1 Customer profile

Builder Used Description

Domino View & Form Creates the base Domino form & view model:
Customers\by Customer number, Customer form

WPS Event Declaration | Defines a Click to Action event within this portlet for
triggering the action to open a customer profile document

Event Handler Maps the event to the action, opens a customer profile
document based on UNID

WPS Portlet Adapter Turns this model into a portlet!

Action List Opens the “blank” startup page

Data Field Modifier Hides the $$return field

Variable Declares a “customer Selected” variable and sets to false

Visibility Setter Hides the Domino view for this portlet

Action List Creates the action of opening a page by UNID

Page Declares the “blank” startup page

Visibility Setter Hides the “back” button from customer documents,
preventing the view from opening in this portlet

Domino View Declares the sales people\by employee number view

Data Field Modifier Modified employee_number field behavior in edit mode

Chapter 7. Portlet builders 391

Table 7-2 Customers

Builder used

Description

Domino View & Form

Creates the base Domino form & view model: Customers by
Name view, Customer form

WPS Event Declaration

Defines a Click to Action event within this portlet for
triggering the action to open a profile document by UNID

Link

Called when user selects a customer, triggers the action
list, which triggers three Click to Action events

WPS Portlet Adapter

Turns this model into a portlet

Data Column Modifier

Sales Activity Name view, Adjust the tables, alignment,
order, ordering and visibility of the view columns created by
initial port of the Domino view

WPS Event Declaration

Declares a Click to Action event to handle when a customer
name is selected

Action List

Triggers three Click to Action events, one in each of the
other three portlets

Table 7-3 Customer conta

cts

Builder used

Description

Domino View & Form

Creates the base Domino form & view model: Customer
Contacts\by Customer Name, Customer Contact form

WPS Portlet Adapter

Turns this model into a portlet

Data Column Modifier

Customer Contact form page: Adjust the labels, alignment,
order, sorting, and visibility of fields created by the initial
port of the form

Visibility Setter

Hide Employer column in view when employer category is
selected

Visibility Setter

Hide system-generated edit button in the view interface

Visibility Setter

Hide system-generated delete Button in the view interface.

Data Column Modifier

Customer Contacts\by Customer Name view, Adjust the
labels, alignment, order, ordering and visibility of the view
columns crated by initial port of the Domino view

Action List

Set up an action instructing the portlet how to filter
documents by a customer number

Portalizing Domino Applications for WebSphere Portal

Builder used

Description

WPS Event Declaration

Defines a Click to Action event within this portlet for
triggering the action to filter documents by customer name

Event Handler

Maps the event to the action, the event is triggered, the
action is executed.

Table 7-4 Sales activities

Builder used

Description

Domino View & Form

Creates the base Domino form & view model: Sales
Activity\by Customer view, Sales Activity form

WPS Portlet Adapter

Turns this model into a portlet

Data Column Modifier

Sales Activity Name view, Adjust the labels, alignment,
order, ordering, and visibility of the view columns created by
initial port of the Domino view

Data Column Modifier

Sales Activity formAdjust the labels, alignment, order,
ordering and visibility of the view columns created by initial
port of the form

Domino View Products by Name View, used to look up product name
values from the products database
Method Write a custom Java method to access the product name

values

Data Field Modifier

Creates drop-down list entries product selection fields

Variable

Creates a Java variable

Action List

Set up an action instructing the portlet how to filter
documents by a customer number

WPS Event Declaration

Defines an Click to Action event within this portlet for
triggering the action to filter documents by customer name

Event Handler

Maps the event to the action; when the event is triggered,
the action is executed

Data Page Formatter

Formats the date created field

Chapter 7. Portlet builders

393

7.4 CONET Portlet Factory for Domino

Overview

CONET’s Portlet Factory is a portlet generator for WebSphere Portal. It allows
you to easily portalize existing Domino applications. The development model
follows the Domino rapid application development approach, meaning that the
portlets are created similar to the way that Domino applications are built,
enabling Domino developers to build portlets without the need to know either
Java or the portal server APIs.

The key differentiator tbetween CONET Portlet factory and all other Domino
integration techniques is Portlet Factory’s performance and scalability. This is
achieved through its multi-tier, distributed and server-centric architecture. It
implements advanced data caching strategies using DB2 as its back end. This
guarantees high performance and scalability that is independent from the
Domino back-end servers.

The Portlet Factory tool is especially interesting if you have:

» Many custom Domino applications that you need to portalize
» Domino development expertise on staff

» The need for highly scalable Portlets

» The desire to use a rapid application development model that allows
prototyping

CONET components

CONET’s Portlet Factory is a true J2EE application implemented in a multi-tier
architecture. The components that make up the system are:

» Portlet Factory Repository

The Portlet Factory Repository is the development environment and storage
for the portlet definitions. The developers develop the portlets inside of the
portlet definition repository. This is a Domino database with a Notes client
front end.

394 Portalizing Domino Applications for WebSphere Portal

Name Location on server Domino Server DNS name

|l:olpolale_HH_PoIicie: policies\Corporate_HF_Policies.nst PF_Repository Server
Marketing_Policies policiesiMarketing_Policies. st FF_Repository_Server
=2 Building Blocks Operations_Policies policies\Operations_Policies nsf PF_Repusitury_Server
¥ R&D_Policies policies\R_and_D_Policies.nsf PF_Repository_Serer
» Selections Sales_Policies policieshS ales_Palicies. nsf PF_Repository_Server
¥ Layouts
¥ Gueries
&= Portlet Definitions
¥ by Keyword
¥ by Name
= Attachments
[i3, Setup & Administration

» Application Setup
¥ Delete Profile

Server demo
Database Portlet Factory
Path screenshats'pf.nst

*|=3|Joe User |7

Figure 7-34 Portlet Factory definition repository

Portlet creation is done in a five step process that involves the definition of
elements similar to the ones used to build Domino applications. Elements
used are, for example, selection formulas, views, and form layouts. All these
elements are defined by using the Notes @formula language in combination
with HTML. This is explained in more detail later in this section.

Portlet Factory portlets

The Portlet Factory portlet provides a framework for the portlets. The PF
portlets are generic portlets which use the portlet definitions from the PF
Definition Repository.

Portlet Factory service

The PF Service is the core component of the Portlet Factory system. It serves
incoming requests from Portlet Factory portlets.

Portlet Factory connector

The PF Connector is a distributed component that accesses Domino
databases on remote Domino servers. PF Connectors are deployed on every
Domino node where databases reside that should be served through the
portal.

Figure 7-35 gives an overview of the components.

Chapter 7. Portlet builders 395

WebSphere Portal |

/f:.
PORTLET 1) /
."f .,./ DOMINO Server 3
PO 3 Content ||'I I,"I
0 -/'/.' / e e
POI"I_jEt Fﬂcll_:lf)' / DOMING Sorvar 2
Service for Domino / J

pomiNe Server T

B

Portlet Factory Connector

Figure 7-35 CONET Portlet Factory architecture

396

The Portlet Factory service is the main component of the system. It is
implemented using Enterprise Java Beans. The Portlet Factory Service is
responsible for handling all Portlet requests for data and application transactions.
The Portlet Factory Service gathers information from the Portlet Definition
repository and then utilizes one or more Domino Connectors to interact with a

Domino application.

There are many tasks associated with fulfilling a request from a Portlet. The
Portlet Factory Service facilitates the entire process of gathering, organizing,
caching, and rendering the output for the Portlet, as well as the transactions with

the underlying Domino application. Transactions can involve write access to
Domino databases, Portlet cooperation, and agent execution on the back-end

Domino server.
To improve performance, the Portlet Factory Service implements caching.

Caching provides a significant performance increase in most situations. The
Portal Factory Service can cache results in memory or persistent to a DB/2

database.

Portalizing Domino Applications for WebSphere Portal

As already mentioned, the Portlet Factory Service is a Java Web application that
runs within WebSphere Application Server. The Portlet Factory Service receives
requests directly from a Portlet running on a WebSphere Portal server.

The Portlet communicates with the Portlet Factory Service via RMI over 1IOP.

Figure 7-36 gives an overview of the interaction of the different Portlet Factory
components.

WebSphere Portal Server

Portlet API

Portlet Factory

4
PF
Cache

Portlet

Portlet Request
lookup PF Ser

WebSphere Portal

Portlet Factory Service

Portlet Factory

calls

Connector
Credential Vault DB/2 n
- PF Cache
Get user
credentials n
(PF Data n
PF Contefit request
ntefit request PF Service request PF Connector 0
op (EAR) IR (JAR) n
Register Connecta n
" llop
Lotus Domine
Toolkit for Java C AP

Domino

HTTP user request

Browser

Figure 7-36 CONET Portlet Factory component architecture

In this figure, you see that Portlet Factory is not using HTTP or DIIOP to remotely
access Domino. CONET implemented a Domino Connector written in Java,
which uses the Notes Object Services locally to perform the requests on behalf
of the Factory Service.

The architecture was chosen to minimize the number of calls necessary to
transact with a Domino server. Portlet Factory’s remote connectors provide a
coarse-grained interface. It receives a detailed task description, performs this
task on the local server, and returns a result. Instead of dozens or hundreds of
remote DIIOP calls, there is just one. This improves performance and minimizes
network traffic.

It is important to point out that the Domino connector is based on WebSphere
and Domino standards. It builds on the Domino Java Toolkit and implements a
high-level bridge for the specific transaction needs of the Portlet Factory service.

Chapter 7. Portlet builders

397

The modular architecture of Portlet Factory allows it to be deployed in different
architectures, as shown in Figure 7-37.

Single Server
Configuration

Domino Hub
Configuration

Distributed Services
Configuration

Extended Distributed
Services Configuration

WebSphere Portal
WebSphere AppServer

Portlet Factory Service
Lotus Domino

Replication

=2 0 £

WebSphere Portal
WebSphere AppServer

Portlet Factory Service

PF Connector

=

Replication

= £ 8

WebSphere Portal

WebSphere
Portlet Factory Service

PF Connector

=

Replication

=2 X O

wp we

WAS
PFS

PFC PFC
3

Replication

=2 E3 £

Figure 7-37 Portlet Factory deployment options

Implementation issues
This section summarizes the functionalities of the CONET Portlet Factory.

» Applicable portlet patterns

Portlet Factory Portlets can be used to implement the entire range of Portlet
patterns that where outlined in Chapter 1.

» Development time

Portlet development with Portlet Factory is a very efficient process. The ease
of use of the @formula language makes Portlet development as fast as
building Domino applications. Portlet Factory implements a true rapid

application development model.

» Developer skill set

Portlet development can be done with basic Domino development skills. Even
junior Domino developers who know the @formula language and little HTML
can built Portlets.

398 Portalizing Domino Applications for WebSphere Portal

» Range of applications

Portlet Factory can be used to build any kind of Domino Portlets. It supports
read and write access to Domino applications as well as the execution of
agents. Portlet messaging and Click to Action are easy to implement.

The options for advanced database aggregation create a completely new way
to work with Domino databases.

Portlet Factory allows you to:
— Combine data from multiple Domino databases

e Append databases
* Merge databases
¢ Mix data sets

— Relate queries through primary/foreign key relationships:

¢ One to One: One row in Query X matches one row in Query Y
¢ One to Many: One row in Query X matches 0+ rows in Query Y
e Many to Many: 1+ rows in Query X matches 1+ rows in Query Y

— Data views can be n-level categorized

One drawback is that in the development process you are limited to the
functionalities provided by the @formula language. Currently the use of JSP
tag libraries or customized Java code is not supported. CONET has
announced that future versions of Portlet Factory will ship with a JSP Tag
library that will open the Portlet Factory functionality to JSP development.

» Rich text handling

Portlet Factory Portlets can display and edit Domino rich text. Rich text can be
embedded in Portlets with all embedded elements, for example images and
links, still working correctly. Therefore the Portlet Factory service implements
a reverse proxy and handles URL rewriting. We found that Portlet Factory is
currently the only tool that handles Domino rich text properly.

Performance

Portlet Factory performance is very good. Through it's multi-tier architecture and
the use of memory and DB2 caching it can handle high volume Domino
databases with high concurrent user access with good response times.

» Session management

Portlet Factory implements session management. Portlets can use either the
active user or a broker that acts on behalf of a group of users to authenticate
against the Domino backend.

» Clustering
The Portlet Factory connector can access clustered Domino servers.

Chapter 7. Portlet builders 399

400

In high availability and performance scenarios the Portlet Factory service can
be clustered as well.

» Scalability

The Portlet Factory has been tested for databases with more than 100,000
documents and 1000 concurrent users.

» Requires single sign-on
Portlet Factory supports the following SSO configurations:
— Active and passive credential vault

Required software versions

Portlet Factory is currently available in Version 2.0 and requires the following
software:

» WebSphere Portal 4.1/4.2
» WebSphere Application Server 4.0.4
» Domino 5.0.10 or later or Domino 6

Portlet creation methodology

CONET’s Portlet creation methodology is completely Domino-centric. Portlets
are created in a way similar to that used to build a Domino application.

The elements that define a Portlet are called “Building Blocks.”

To better understand the building block concept, let’s draw an analogy and
imagine a Notes view, for example your “All Documents” view in your mailbox.
You can ask yourself the question: What elements define this Notes view?
The answer is that the Notes view:

» Lives in a Domino database

» Has a selection formula

» Has layout information

Usually, a Notes view is created in the Domino Designer by defining these three
elements inside of a view design element.

Let’s compare this to a Portlet definition in Portlet Factory. Portlet Factory uses
Portlet building blocks. Portlet building blocks deal with information, for example,
about the database, selection formula, and the layout. So it uses the same three
basic elements that we would use to build a Notes view.

Figure 7-38 on page 401 shows a comparison of a Portlet and Notes view.

Portalizing Domino Applications for WebSphere Portal

Organizational Policies Edit |? 1 E&10

Topic Department Responsible Date
Marketing New Personnel Policy B2 Marketing Fratelli, Juliet 05/23/02
Complete infermation for SEroening naw hires, trainng g

and stats and = o)
CockieGutter Equal Opportunity poficies.
HR Corporate Guidlines Human Resource Miller, Erwin 05/07/02
Comorata policies for interdepantmeantal communication, S
cross-departmant hiring and transfers, and blanket = ‘J

and procadures which affect ai deptanments.

Sales Partnering Procedures [T " -

E}E&EE;EE?};EE}:’H Eﬁ:s @ New Memo @' Reply 1&") Forward Q Delete @ Folder

R&D Overtime Poli ! : 1 ;

WW? owme Wwho «|Date v|[Size | Subject

Fehicing o DAnER EEIETE al orociel VAT, - - : . B ———

Wi Al United Ailines 06/07/2002 17.304 Denver savings,

ot i Coomm s’ e nilsonreyes 06/07 /2002 931,512 & Re: Folien

S et B S Julio-Fernando 06/07/2002 14133 & Raiffeisen Bank
Soria

1 2345678 Next .
James Deters 06/07/2002 799 cell phone iz not
Anders Larsson 06/07/2002 7.918 Re: Incidentiil4

il James Deters 06/07/2002 2,456 Conference call

Figure 7-38 Portlet to Notes view comparison

To build a Portlet out of building blocks, Portlet factory allows you to combine
base elements like databases and selections into higher level elements called
“Queries” and “Portlet Definitions.”

Figure 7-39 on page 402 shows the containment hierarchy of the different
building block elements.

Chapter 7. Portlet builders 401

Database

Selection

Layouts

Definition Template defining e.g.
Header and Footer layout

Form
Template

Line
Template

Portlet

Definition I

Query

Figure 7-39 Element containment hierarchy

402

The Query element is essentially used to build views by summarizing one
database, one selection, and layout information. The top-most element is the
Portlet Definition. It can contain one or multiple Queries. This way, data from
multiple Domino databases can be mixed, merged or categorized.

Once you have created a Portlet definition, Portlet Factory is able to
automatically create a WebSphere Portal Portlet for you. With one click in the
Portlet Factory Ul, the tool creates a Portlet war file for you that can be deployed
in WebSphere Portal.

In addition to being able to define views, Portlet Factory also allows you to create
forms with read and write access, implement Portlet cooperation, and a lot more.

The key concept

The key concept to implement layouts and functionality with Portlet Factory is the
use of the @formula language. The Portlet Factory @formula language is a
superset of the Notes @formula language we all know from Domino
development.

The Portlet layout is defined by using HTML with embedded @formula language,
as illustrated in Example 7-1.

Portalizing Domino Applications for WebSphere Portal

Example 7-1 HTML with embedded @formula language

<table border=0 cellspacing=0 cellpadding=0 width=100%>
<tr><td> <@ fldTitle @> <@ @if(@Date(@modified)=@today; ‘ ';'"') @>

<@ fldAbstract @> </td>

<td><@ @Date(@Modified) @><td>

</tr></table>

You see that Portlet Factory uses the @formula language in the same way you
would use Java on a JSP page. As opening and closing tags for @formulas, you
have to use <@ and @>. @Formulas can be as simple as single fields or can be
more complex, for example @if conditional constructs.

Figure 7-40 is the Portlet output for the previous code example.

Holiday overview New 5/8/2002
Gives and Overview of all holidays 2002-2004

Figure 7-40 The output result for the previous code example

Portlet Factory allows you to use the entire Notes @formula language to build
Portlets. It also gives you additional @formulas that make sense in the Portlet
context.

7.5 Implementing the Sales Workplace example

In this section we walk you through the five step Portlet creation process to build
a Portlet with Portlet Factory. We highlight a few functionalities that we used to
implement searching and Portlet cooperation for our Sales Workplace Portlet.

1. Start the process by identifying your data source: the customer database.

Chapter 7. Portlet builders 403

Datahase I History'

Internal Marne: J‘Customeu
Comrment: r|J

Database: rCUSTIC)MEHNSFJ
Title: Customers
Internet Server rJ

Marne:

Part rJ

Connector Server " iteatest-dam
Marne:

Access by @ ReplicalD © Path
Replica-ID: 852560 1F: 00473427

Figure 7-41 Database definition

This is done by creating a database document that contains a reference to the
database that you want to portalize. Portlet Factory allows us to specify either
the path or the replica ID to a Domino database. In most cases the replica ID
will be used.

2. You need to select the information that is relevant from this database, so do a
select statement. Portlet Factory allows you to build selections based on
@formula statements or full-text selections. Remember: you are building a
definition similar to a Notes view. If you have access to the design of the
Domino database you can go ahead and copy and paste a view selection
formula from a view.

Selection I Historyl

Intermal Mame: T Customer_Profiles_Only
Corment; ™ shows customer profiles only
Selection Type = FullText Selection ™ Formula Selection

Selection Data

Farmula rForm="Cuxtomer'iJ

Figure 7-42 Selection definition
3. This step is used to define a layout. As mentioned previously, the layout is a

mixture of HTML and the @formula language. Portlet Factory layouts are
made up of different layout components. You find layouts for the overall Portlet

404 Portalizing Domino Applications for WebSphere Portal

layout—this is called Definition Template—as well as layout components for
the individual result set row. In this example you are going to focus on the
layout of the individual result set row. Portlet Factory names this a Layout
Template.

Lawout I Histony |

Internal Mame: J‘Customer_F'rofiIe_ListJ
Camment: " Defintion for the individual custormer rowlayout.h
Layout Twpe: J‘Tem|:|ateJ;|

Sorting

new g edit delete [’@ Default sorting

<oustomerMame>£ASCHTEXT

HTML

Template "<TABLE WIDTH="100%">
<TR>
<TD align = "left"WIDTH="530%"><@custarmerMame@> <TD>
<TD align = "left" WIDTH="25%"*<@customerbumber@><TO>
<TD align = "left"wIDTH='25%"><@employeeTatal @ <TD>

Sart By:

<TR>
ATABLE?

Figure 7-43 Layout definition

The layout also includes an option for sorting. As in a Domino view, you can
specify multiple sorted columns. Columns in the Portlet context refer to
columns of the table layout.

In this step you summarize all the previous steps. You take your database,
selection, and layout and put them into a query—the analogy of a Domino
view.

Chapter 7. Portlet builders 405

Basics I Layout' Clueries | Histuryl

Internal Marme: J‘Customeu
Carmment: " This iz the chstomerview far the Partlet

Marme shown inthe J‘Custur‘r‘nau

Web:
Data source

Databaze: rCustnmeu;[
Selection Tvpe: " FullText Selection % Formula Selection
Selectioniz): J‘Cl.Jstomer_F'rm‘iIes_ClnIy'J_-J

Figure 7-44 Query definition Basics tab

On the Basic tab of the Query, select the database and selection definition for
the Query. These are the elements defined in the previous steps.

Basics | Layuutl Queties | Historyi

Template: L Custormer_Profile_List =)

Form Template: © Customer_Profile | =)

Failure Text: Fi'l'here are no customer profiles available. 4
| P

Comment: 1

Figure 7-45 Query definition Layout tab

On the layout tab, choose the template for the data display of the individual
result set row as well as the Form template that is used to open the customer
profile once the user clicks on a customer name inside of the Portlet.

5. Finally, the query gets put into a Portlet definition. Portlet definitions can
contain more than one query. This is relevant if you want to merge data from
multiple Domino databases. In this example we just have one query.

406 Portalizing Domino Applications for WebSphere Portal

Basics I Layoutl XML' Historyl

Internal Marme: Jdli)ustomerJ

Adrmin Keswaord: r =

Comment: rJ

Title for Portlet: " Custorner Search
Dependent Queries: JdCustomeu;'

Figure 7-46 Portlet definition

6. This was the final step in the definition process. The Portlet is now ready for
creation. This is done by an automatic process that takes the Portlet definition
and renders a portlet out of it.

w Portlet Definiion. *= CreatePartlet 3 Update all €3 Update selected

Name Queries |Temp|ate Results |) ast change
Customer Cuztomer 10 OR/2F 2003 036 50 ARy

Figure 7-47 Automatic portlet creation

7. Once this process is finished you can deploy the Portlet to your Portal and
place it on the Sales Workplace. The result should look similar to Figure 7-48.

Custorner Directory

Plemze salect Customer

Narne 1B ad
Location:
Custormer #

| Compary | Location | Cormrpary

1 [BhtLlotus Cambridge 4726
2 IBMtTorali Rochester 555
| 3 |BMDBZ Bogota 9ETE
4 |BWEIGE Cologne 2453
5 |BhEISSL Dewer k14
| 1 2 nest 12 Locaiors found

Figure 7-48 The resulting Portlet
Search

In this section we highlight how we implemented the search and Portlet
cooperation.

Chapter 7. Portlet builders 407

408

To enable the search in the customer Portlet we added the code in Example 7-2
to the Portlet Definition Template.

Example 7-2 Customer search

<form “Search” action="<@@PortletViewAction@>" method="post">
<input name="<@@ContentSearchName@>" size="40">
<input type="submit" name="Search" value="Search">
</form>

In the layout definition, we created a basic HTML form with a search field. The
trick is to give the search field the special name <@ @ ContentSearchName @ >
and use the @formula <@ @ PortletViewAction@> to create an Action URI to
submit the form to the Portlets action listener. In the query definition we can
define what fields Portlet Factory should include in the search.

Portlet cooperation

Enabling Portlet cooperation is as straightforward as implementing searches. In
our example we want to implement the following Portlet cooperation:

» We search in the customer Portlet. Once we select a customer, the customer
detail Portlet displays the customer details information.

» The customer contacts show only the contact personnel of the selected
customer.

» The customer activity Portlet displays a view with the latest activities with that
customer.

Example 7-3 Portlet cooperation

<a href="<@@sendmultiplemessage (PF Customer Detail;0;@DocumentUniquelD;
PF_Contact-Person;1;<@CustomerNumber@>;PF Customer Activity;1;<@CustomerNumber@
>"><@CustomerName@>

These three actions are triggered with one line of @formula code. We build an
HTML link that embeds the @ sendmultiplemessage formula. This allows us to
send multiple specific messages to other Portlets and have them respond to it.

After a user clicks on a customer name link, the other three Portlets will respond
according to the defined behavior.

Summary

Building Portlets with CONET’s Portlet Factory is easy for Domino developers
who know the @formula language. The building process is straightforward and
similar to building forms and views with the Domino designer. Results can be
achieved fast and with minimum learning effort.

Portalizing Domino Applications for WebSphere Portal

We were especially impressed by the good performance and scalable
architecture of the tool.

However, we want to point out the following consideration with respect to the
development environment: The use of the Notes client as the development
environment makes coding difficult. We also found that a debugger would be a
useful enhancement.

7.6 Other portlet builders

7.6.1 Sofor Interactive Portlet Builder for Domino

Sofor Interactive Portlet Builder for Domino is a tool for bringing Lotus Domino
database views and documents into the portal. The portlet builder can connect to
any Domino database. No changes to existing databases are needed. All
customization is done in the edit mode of the portlet.

Portlet Builder portlets work in all browsers that are supported by WebSphere
Portal or WebSphere Everyplace Access. With WebSphere Everyplace Access,
off-line functionality is available as well: Domino database access through Portlet
Builder can be defined as off-line portlets, and can be used on a PDA even when
no connection to the portal is available.

Views are displayed in portlets, and the user is able to navigate through the view.
Clicking a line displays those fields of the document that have been configured to
be published in the portal. The portal also is used to authenticate users.

Views and document fields from any Lotus Domino database can be published in
a WebSphere portal, without any changes to the existing databases, through
configuration wizards with no programming.

All traffic from the portal to the Domino Server goes through the internal firewall.
Terminals never access Domino servers directly.

Chapter 7. Portlet builders 409

Sofor Portlet Sample - Customers

19 Iarko Viksten
Wy ompanyPortal 4 Chrizs Heltzel
Meo Portals 18 Iichael Ticknor
Portal-malers 3 Catnilo Fojas
Portal People eaters 15 Ilarkno Viksten
Portals-E-Us 11 Chris Heltzel
The company fi Ilarko Viksten
Wanda's World of Wiss 14 Chris Heltzel
Wingine Portals 12 Chris Heltzel
WP Esperts 16 Gary Someone

Figure 7-49 Sofor Interactive Portlet for Lotus Domino in our Scenario, retrieving data
from the customer database

Considerations

Sofor Interactive Portlet Builder for Domino could be used when you want an
easy, basic tool for exposing any Domino database views in a portal without
programming skills, or if your company has WebSphere Everyplace Access and
your mobile users need to access Domino views or documents.

The limitations of this solution are similar to those of using existing portlets,
described in Chapter 3. Specifically, you are limited to the functionality the Portlet
Builder offers. Also, the lack of session pooling might be an issue if your portal
has large numbers of portlets and users.

Implementation details
Sofor Portlet Builder can be downloaded from the IBM Portlet catalog at:

http://www-3.ibm.com/services/cwi/portal/_pagr/105/

Once you have installed and placed the portlet in a page, you need to configure it
in edit mode.

Table 7-5 Parameters for Sofor Interactive Portlet Builder for Domino

Parameter Description Example

Host Host name/IP address of the Domino | itsotest-dom
server

UserlD Web user ID. User must have wpsadmin
restricted Java/COM agent execution
rights.

Password Password of user above. password

410 Portalizing Domino Applications for WebSphere Portal

http://www-3.ibm.com/services/cwi/portal/_pagr/105/

Parameter Description Example

Database Database name (and path if needed). | apps/Customer.nsf

Title Title of portlet loaded in title bar. MyTitle

View Name or alias of used viewa/COM MyView
agent execution rights.

Columns Zero-based column number and title of | 0=My first column,2=My
selected columns. Multivalue second column
separator is comma ",".a/COM agent
execution rights.

Link column | Zero-based number of columnto show | 1
as link.

Fields Fieldname and title to show when field1=My first field,field2=My
document selected. field=title. second field
Multivalue separator is comma ",".

Click OK to finish your configuration changes and log off. During a test of the
portlet we faced an issue where all the configuration changes made in edit mode
did not become active until we logged off and the logged back in to the portal.

7.6.2 Aptrix Portlet Connector

Aptrix Portlet Connector is a WebSphere Portal application that can query and
aggregate data from multiple data sources, and display that content in a single
portlet. Portlet Connector uses the Aptrix Connect product (installed as
middleware on WebSphere Portal) to natively query data hosted on Domino
servers, relational databases, and “flat” data sources (HTML, ASCII text, and so
forth). Individual Aprtix Portlet Connector portlets can be installed that access
one or more data sources, and aggregate the content into a single portlet view.

Chapter 7. Portlet builders 411

412

Craative

Microsoft Inbemat Ewploser

[

Item
MPW Architecture

[lhustrakes how Aptri Multipl stform and
AptrixConnect fits within the BM and Websphere
application landscaps.

Multi-Platform Duerview

Lorem ipsum dolor sit amet, consectetuer sdipisang
elit, sed diam nonumemy nibh suismod tineidunt

HMulti-Flatform DPE Features

Honummy nibh suismed tincgdunt ut laorest dolore
magna diguam erat volutpat, Ut wisi enim ad minim
Veniafn, Quis Postred sxers tatich.

From Subject
& Andrew Curry RE: Course Dutline

® John Danks Task List 08 Sept 2002

* Katrina Pikes New EPS lego

* Tem Fargus Tonight - Tpm...

& Christian Fellows Cowrse Outhines (Draft)
Mandy Flinders RE: [guess...

* Tom Jehnson FWi Project Status Report

Downlosd
Q PREVEL
8 roF (90 kB)

& preevew

B For (220 mm)

L prevEw
8 por (200 kB)

Version

D01
2002/06/15

BRO0E
20020822

BROOS
2002/04/30

Paged | 21314 |5 | Hest

Recieved

size

08709 2002 3210
oefosfzo0z A00.0

08/09/2002
E/O9/ 2002
o7/oa/2002
07/09/2002

509,000

3020
ns.o
4050
305.0
2970

4 Aptriv Coll steral Library £ RO Salws Bevenue 400

Sales Revenue (§4)
2

Jul A Sep Oxt Wov Dec
Wac0r 2002 52003 Terget

% £ (=

To seply for Annusl Leawe, you will need to login
to the Leave Applicstion form.

Click the Login link in the Tocks Mavbar to login.
Then select Leave Apglication in the Tools Navbas

1. Stald enemnbers sther than casusl stadf membes =

I ihass dafined g ssalsn

Considerations
Aptrix Portlet Connector is a good choice if you are already using Aptrix Connect,

or if you are looking for a way to aggregate multiple data sources into one or
more portlets.

Implementation details
Aptrix Portlet Connector is very easy to configure. All configuration is performed
through the edit interface of each portlet. No Java skills are required, but if the

functionality does not meet your specific needs, it is not possible to customize the
portlets created with the Aptrix Portlet Connector.

Portalizing Domino Applications for WebSphere Portal

Figure 7-50 Example portal page created wth Aprtix Portlet Connector

e

(ErLET QuUEFY WA CTRANGN By |

wery!

[Diermares: Dovea
G Ovinas

e | E | oREm

o || ComelL

= |
5 : B T —

Figure 7-51 Aptrix Portlet Connector configuration interface

Aptrix Portlet Connector uses a proprietary Java socket server to communicate
directly with the Domino server, and thus does not require HTTP or IIOP to be
running on all back-end Domino servers.

It supports Domino 5 and 6 and WebSphere Portal v4.1 and v4.2.

Chapter 7. Portlet builders 413

414 Portalizing Domino Applications for WebSphere Portal

Data dictionary for case
study

This appendix contains the specific field names, field labels, and data types for
each document type in our fictional Sales Tracking application.

© Copyright IBM Corp. 2003. All rights reserved. 415

A.1 Product Form

Field name Label Data type Description
Form Text “Product”
ProductName Name Text Required
ProductNumber Number Number Identifier unique to this product
No white space in value
Required
ProductPrice Price Number Required
Not negative
Currency format
ProductDescription | Description Text
Comments Additional Information Rich text
A.2 Sales Person Form
Field name Label Data type Description
Form Text “Sales Person”
SName Name Authors Required
SNameFormat Hidden Text <Last Name>, <First Name>
SNumber Employee # Text Identifier unique to this employee
Required
No white space in value
SPhone Phone # Text
SRegion Region Text Drop-down list
Keywords hard coded
STitle Job Position Text Drop-down list
Keywords hard coded
Comments Additional Information | Rich text
Owner Owner Authors Authorized to edit
416 Portalizing Domino Applications for WebSphere Portal

DateCreated Date Created Date computed

DateModified Last Modified Date computed

$$Return Hidden Save success message on Web

A.3 Customer Form

Field Name Label Data type Description

Form Text “Customer”

CustomerName Customer Name Text Required

CustomerNumber Customer Number Text Identifier unique to this customer
No white space in value
Required

OwnerNumber Account Owner Text Drop-down list
Uses Sales People to populate keyword
values. Stores EmployeeNumber,
displays EmployeeName
(EmployeeNumber)
Required

OwnerNameFormat hidden Text Computed
<Last Name>, <First Name>
Formatted name value for OwnerNumber

CustomerAddress Address Text Multi-line, multi-value
Use TEXTAREA on Web

EmployeeTotal # of Employees Number Not negative
Integer only

Comments Additional Rich text

Information

Owner Owner Authors Authorized to edit

DateCreated Date Created Date Computed

DateModified Last Modified Date Computed

$$Return Hidden Save success message on Web

Appendix A. Data dictionary for case study 417

A.4 Customer Contact Form

Field name Label Data type Description

Form Text “Customer Contact”

ContactName Contact Name Text Required

ContactNameFormat | Hidden Text Computed
<Last Name>, <First Name>

CustomerNumber Employer Text — drop Uses Customers to populate keyword

down list values. Stores CustomerNumber,

displays
CustomerName (CustomerNumber)
Required

CustomerName Hidden Text - Value from CustomerName field in

computed Customer Record

ContactPhone Contact Phone Text

ContactAddress Contact Address Text—multiline | Use TEXTAREA on Web

ContactJobTitle Contact JobTitle Text

Comments Additional Rich Text

Information

Owner Owner Authors Authorized to edit

DateCreated Date Created Date Computed

DateModified Last Modified Date Computed

$$Return Hidden Save success message on Web

418 Portalizing Domino Applications for WebSphere Portal

A.5 Sales Activity Form

Field name

Label

Data type

Description

Form

Text

“Sales Activity”

AType

Activity Type

Text

Drop-down list
Hard coded keyword values
Required

ADate

Activity Date

Date/Time

Defaults to today

CustomerNumber

Customer

Text

Drop-down list

Uses Customers to populate keyword
values. Stores CustomerNumber,
displays Customer Name
(CustomerNumber)

Required

CustomerName

hidden

Text

Computed

ContactName

Customer Contact

Text

Drop-down list
Uses Customer Contacts to populate
keyword values

ContactNameFormat

Hidden

Text

Computed
Uses ContactName
<Last Name>, <First Name>

SNumber

Sales Person

Text

Drop-down list

Uses Sales People to populate keyword
values. Stores EmployeeNumber,
displays Employee Name
(EmployeeNumber)

Required

SNameFormat

Hidden

Text

Computed

Uses SNumber to lookup Sales Person
name

<Last Name>, <First Name>

MadeSale

Made a Sale?

Text

Radio button
Hard coded keyword values: Yes / No

Product1

Product

Text — Drop
down list

Uses Products to populate keyword
values. Stores ProductName
(ProductNumber)

Product2

Appendix A. Data dictionary for case study 419

Product3
Product1Q Quantity Number
Product2Q
Product3Q
Comments Additional Rich text
Information
Owner Owner Authors Authorized to edit
DateCreated Date Created Date Computed
DateModified Last Modified Date Computed
$$Return Hidden Save success message on Web

420 Portalizing Domino Applications for WebSphere Portal

Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material

The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247004

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-7004-00.

Using the Web material

The additional Web material that accompanies this redbook includes the
following files:

File name Description
DominoDbs.zip Zipped Domino databases

© Copyright IBM Corp. 2003. All rights reserved. 421

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Portlets.zip Zipped WAR files for Portlets created in this book.

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Portlets.zip file into this folder.

Deploy the portlets into your WebSphere Portal 4.2 server.

Unzip the contents of the DominoDbs.zip file into apps subdirectory of your
Domino Server’s data directory.

422 Portalizing Domino Applications for WebSphere Portal

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks”
on page 426. Note that some of the documents referenced here may be available
in softcopy only.

>

>

»

»

»

IBM Websphere Portal V4 Developer's Handbook, SG24-6897

WebSphere Portal 4.12 Collaboration Services, REDP-0319

Domino and WebSphere Together, Second Edition, SG24-5955
WebSphere Studio Application Developer Programming Guide, SG24-6585
Access Integration Patterns using IBM WebSphere Portal, SG24-6267

Other publications

These publications are also relevant as further information sources:

>

Building a Portlet within the Model-View-Controller Paradigm using
WebSphere Portal

http://www7b.software.ibm.com/wsdd/1ibrary/techarticles/0210_kwong/kwong.htm1

»

WebSphere Portal Programming: Portal Aggregation for Pervasive Devices
http://www7b.software.ibm.com/wsdd/techjournal/0210_godwin/godwin.html

Hello World Portlet Revisited: Adding Globalization Support for
Multi-languages Using WebSphere Portal 4.1.2

http://www7b.software.ibm.com/wsdd/1ibrary/techarticles/0210_xu/xu.html
WebSphere Portal V4 programming, Part 1: Portlet application programming
http://www-106.1bm.com/developerworks/1ibrary/i-portalv4/?n-dd-8222
WebSphere Portal V4 programming, Part 2: Portlet application programming
http://www-106.1ibm.com/developerworks/1ibrary/i-portal2v4/?n-dd-8222

© Copyright IBM Corp. 2003. All rights reserved. 423

http://www7b.software.ibm.com/wsdd/techjournal/0210_godwin/godwin.html
http://www7b.software.ibm.com/wsdd/library/techarticles/0210_xu/xu.html
http://www-106.ibm.com/developerworks/library/i-portalv4/?n-dd-8222
http://www-106.ibm.com/developerworks/library/i-portal2v4/?n-dd-8222
http://www7b.software.ibm.com/wsdd/library/techarticles/0210_kwong/kwong.html

» WebSphere Portal Programming: Pervasive Portlet Development
http://www7b.software.ibm.com/wsdd/techjournal/0207_wanderski/wanderski.html
» Lotus Collaborative Services JavaDoc
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/4.2api/collaborative/
» Introduction to JavaServer Pages

http://www-105.1bm.com/developerworks/education.nsf/java-onlinecours
e-bytitle/882707E838C672A185256770004BDE72?0penDocument

» Using JSPs and custom tags within VisualAge for Java and WebSphere
Studio

http://www7b.software.ibm.com/wsdd/1ibrary/tutorials/vajwebsph353/Pa
rt-1/JSP11Part-I.html&origin=cmp

» Guide to WebSphere Portal

ftp://ftp.software.ibm.com/software/websphere/portal/pdf/Guide-to-Websphere
-Portal.pdf

» WebSphere Portal Product Documentation
http://www7b.software.ibm.com/wsdd/zones/portal/proddoc.html

» WebSphere Portal for Multiplatforms - Library
http://www-3.ibm.com/software/genservers/portal/library/

» Portlet Development Guide

http://www7b.software.ibm.com/wsdd/zones/portal/portiet/portietdevel
opmentguide.html

» Portlet Best Practices Guide

http://www7b.software.ibm.com/wsdd/zones/portal/portlet/portietcodin
gguidelines.html

» Struts in WebSphere Portal 4.1
http://www.ibm.com/support/docview.wss?rs=0&org=SW&doc=7002247

» Using Click to Action to Provide User-Controlled Integration of Portlets

http://www7b.software.ibm.com/wsdd/1ibrary/techarticles/0212 roy/roy
.html

Online resources

These Web sites and URLs are also relevant as further information sources:
» IBM Lotus Domino Developer Domain
http://www.lotus.com/1dd

424 Portalizing Domino Applications for WebSphere Portal

http://www.lotus.com/ldd
http://www7b.software.ibm.com/wsdd/zones/portal/proddoc.html
http://www-3.ibm.com/software/genservers/portal/library/
http://www.ibm.com/support/docview.wss?rs=0&org=SW&doc=7002247
http://www7b.software.ibm.com/wsdd/library/techarticles/0212_roy/roy.html
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/portletdevelopmentguide.html
http://www7b.software.ibm.com/wsdd/techjournal/0207_wanderski/wanderski.html
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/4.2api/collaborative/
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/portletcodingguidelines.html
http://www7b.software.ibm.com/wsdd/library/tutorials/vajwebsph353/Part-I/JSP11Part-I.html&origin=cmp
http://www-105.ibm.com/developerworks/education.nsf/java-onlinecourse-bytitle/882707E838C672A185256770004BDE72?OpenDocument

IBM WebSphere Developer Domain - Portal Zone
http://wilson.boulder.ibm.com/wsdd/zones/portal/

IBM WebSphere Portlet Catalog
http://www.ibm.com/software/Webservers/portal/portlet/catalog/
The Lotus Domino Toolkit for Java/CORBA / Domino Java API
http://www-10.Totus.com/1dd/toolkits

CORBA

http://www.omg.orgb

WebSphere Portal InfoCenter
http://publib.boulder.ibm.com/pvc/wp/current/index.html
WebSphere EveryPlace Access InfoCenter

http://www-3.ibm.com/software/pervasive/products/1ibrary/ws everypla
ce_access.shtml

Portlet API
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/4.1lapi/
Sun Microsystems J2EE Web site

http://java.sun.com/j2ee/

Sun Microsystems JSP Web site

http://java.sun.com/jsp

WebSphere Portal 4.2.1 Infocenter
http://publib.boulder.ibm.com/pvc/wp/42/index.html

Portlet JSP Tag Library Syntax
http://www7b.software.ibm.com/wsdd/zones/portal/portliet/V4ljsptaglib.html
Portal Zone

http://www7b.software.ibm.com/wsdd/zones/portal/

Portal Struts support

http://jakarta.apache.org/struts/index.html

Struts enablement package
http://www-3.ibm.com/software/webservers/portal/portlet/catalog/action/Chan
ePage/.pg/74/.reqid/3?viewPage=detail&kNAVCODE=1WP10003N

Log4j
http://jakarta.apache.org/log4j/docs/

Related publications 425

http://wilson.boulder.ibm.com/wsdd/zones/portal/
http://java.sun.com/j2ee/
http://www.ibm.com/software/Webservers/portal/portlet/catalog/
http://java.sun.com/jsp
http://publib.boulder.ibm.com/pvc/wp/42/index.html
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/4.1api/
http://publib.boulder.ibm.com/pvc/wp/current/index.html
http://www.omg.orgb
http://www-10.lotus.com/ldd/toolkits
http://www7b.software.ibm.com/wsdd/zones/portal/portlet/V41jsptaglib.html
http://www7b.software.ibm.com/wsdd/zones/portal/
http://jakarta.apache.org/struts/index.html
http://jakarta.apache.org/log4j/docs/
http://www-3.ibm.com/software/pervasive/products/library/ws_everyplace_access.shtml

» Object pooling
http://jakarta.apache.org/commons/pools
» Click to Action Enablement package

http://www-3.ibm.com/software/webservers/portal/portlet/catalog/acti
on/ChangePage/.pg/74/ .reqid/12viewPage=detail&NAVCODE=1WP10003L

How to get IBM Redbooks

You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

426 Portalizing Domino Applications for WebSphere Portal

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://jakarta.apache.org/commons/pools
http://www-3.ibm.com/software/webservers/portal/portlet/catalog/action/ChangePage/.pg/74/.reqid/1?viewPage=detail&NAVCODE=1WP10003L

Index

Symbols
$$Return field 53
*webuser 178
.WAR file 323
@DbLookup 53
@Functions 53

A

Access Control portlet 54

Access integration 2

Accessing a Domino document 260

Accessing a Domino view 259

ACL 329

Action URIs 269

Aggregating informaion from multiple databases 23
Aptrix Portlet Connector 47, 411

Authentication 31

B
Basic portlet 169
Blended applications 154
Bowstreet Designer 373
Bowstreet Domino View & Form Builder 381
Bowstreet Portlet Factory
benefits 372
builder 373
Click to Action 386
code execution architecture 374
considerations 375
deploying 384
development environment 373
Domino form builder 379
Domino view builder 379
implementation example 390
Lotus Collaboration extension 372
model 373
opening the developer 378
overview 372
performance 376
profile 373
rich text 376
sample portlets 391

© Copyright IBM Corp. 2003. All rights reserved.

server components 374

skillset 372, 376

testing a model 383
Bowstreet Portlet Factory for WebSphere 46, 372
Brokered cooperation 12
Building the portlet project with WebSphere Studio
168

C
c2a.tld 204
Case Study
application details 51
application functionality 53
databases 47
document types 49
overview 47
portlets 51
relationships 51
sales workplace 50
use cases 52-53
user roles 52
Case study 47
Catching exceptions 264
Choosing an integration technique 38
Click to Action 12, 199
199
architecture 202
broadcasting 199
broker 200
chained propagation 199
concepts 200
enabling source portlets 205
enabling target portlets 207
encodeProperty 206
event broker 202
features 199
functionality 199
implementation 203
model 199
namespace 215
operating diagram 201
request-response flow 203
source 200

427

source portlets 200
target 200
target portlets 200
web.xml 210
Collaboration services 270
Collaborative Components 217
CSCredentials 270
CSEnvironment 270
CSFactory 270
DominoService 270
people tags 270
PeopleService 271
QPService 271
setting up the environment 271
Collaborative Components APl 270
Collaborative workplace 2
Column container 34
Combining data from multiple databases 25
Concrete portlet instance 231
Concrete portlets 231
Conet Portlet Factory
@formulas 402
architecture 396
benefits 394
caching 396
component interaction 397
components 394
considerations 398
creating portlets 400
data source 404
defining the layout 405
deployment architecture 398
Domino connector 397
implementation example 403
overview 394
performance 399
portlet cooperation 408
portlet elements 402
Portlet Factory connector 395
Portlet Factory service 395
rich text 399
scalability 394, 400
search 407
selection 404
skillset 398
Conet Portlet Factory for Domino 46, 394
Connecting to a Domino database 174, 357
Copying the RSS portlet 113
CORBA 139, 247, 249

accessing Domino 251
architecture 251
functionality 251
stub objects 251
Creating a new document 260
Creating a WSDL file 210
Credential vault 31
CSS 32
custom JSP tags 160

D
Data aggregation 28
Deployment descriptors 188
Design considerations 22
DIIOP 247, 249
configuration data 253
console commands 253
debugging 254
diiop_ior.txt 274
enabling on Domino server 251
IOR 252
logging 253
new features in Domino 6 273
session time-out 275
task, loading 253
task, refreshing 253
transactions 254
DIIOP task 168, 252
Displaying rich text data 265
Displaying rich text using HTTP 266
DNS 253
DOM 247
Domino 1, 64
accessing from portlets 247
applications 7
creating a subform 122
desing modifications 109
distributed environment 29
enabling DIIOP 251
functionality 6
history 6
hub configuration 29
infrastructure 29
infrastructure bottlenecks 30
integration options 35
integration techniques 37
Java classes 255
local access 249

428 Portalizing Domino Applications for WebSphere Portal

Portal integration benefits 8 data input 163

remote access 249 database 162
rich text 26, 264 docloop 163
scalability 7 document 162
server infrastructure 29 ftsearch 162, 192
single server 29 ifcategoryentry 164
Sofor Interactive Portlet Builder for Domino 409 ifdbrole 165
using credentials from Portal login 178 ifdocauthor 165
versions 6 ifdocumententry 164, 192
Workplace 6 implementation example 168
XML 110 integration techniques 156
XSLT 111 item 162
Domino application making a connection to a Domino database 174
choosing a design pattern 24 nodocument 165
Domino applications overview 138
characteristics 16 performance 168
example 47 process control 164
features 39 runagent 165
integration into the Portal 9 sample applications 156
migrating into the Portal 21 scalability 168
portalizing challenges 15 session 161
portalizing process 14 support 137
reusable components 22 technologies 138
transforming into the Portal 21 types 161
type of use 17 unid 162
types 17 utility tags 166
Domino classes 257 view 162, 192
ACL 263 viewitem 162
database 258 viewloop 163, 197
document 260 Domino Objects architecture 255
item 261 Domino toolkit for WebSphere Studio
NotesException 263 adding custom tags 154
session 257 exposing Domino objects 154
view 259 features 154
Domino Designer 122, 149, 154 Domino view tag 178, 192
Domino Directory 252 Domino viewloop tag 185, 197
Domino JSP tag issues 167
Domino JSP tag libraries 44, 137 E

overview 160
rich text 167
taglib 160

Domino JSP tags
adding a Domino view 176
adding to a portlet 172
customer contacts portlet 158
customer detail portlet 158
customer list portlet 157
customer sales activities portlet 159
data access 161

Eclipse 373
Embedding a view 123
Existing portlets
combining multiple portlets 121
Notes portlets 98
overview 63
QuickLinks 65
RSS portlet 107
skillset 64
Web clipping portlet 79

Index 429

Web page portlet 74
XML helper portlet 107

F
Full text search 308

H

Handling exceptions 264

Hide-when formulas 53

Horizontal portals
functionality 3

hosts file 253

HttpServietRequest 147

HttpServietResponse 148

HttpSession 147

|
IBM HTTP plug-in 267
IBM Portal Builder
Presence Awareness 357
IBM Portlet Builder
authentication options 368
Click to Action 357
Click to Action parameters 366
configuring a portlet 361
connecting to a Domino server 364
considerations 358
creating a new portlet 361
features 357
form display options 368
implementation details 359
implementation example 371
installing 359
performance 359
rich text 358
scalability 359
secleting views and forms 366
skill set 358
view configuration 366
IBM Portlet Builder for Domino 46, 356
features 357

IBM WebSphere Portal Application Integrator 356

connectivity 357

features 357
Identify project requirements 39
IFrame 43, 369
iFrame 74, 265

displaying rich text 265
IFRAME tag 43
Improving performance 274
Input translation formulas 53
Input validation 53
Integration project
considerations 41
functional requirements 39
identifying requirements 39
portlet pattern 39
preparation 38
selecting the integration technique 40
steps 38
training 38
using existing portlets 42
Integration technique
selecting 40
Integration techniques 37
described 42
Interportlet communication 12
IOR 252
iSeries 253

J
J2EE 138-139
application server 143
benefits 139
Client tier 143
combining with Domino 138
database tier 142
described 139
EJB container tier 142
overview 139
platform 139
portlets 141
separation of tiers 140
standards 140
technologies included 141
Web container tier 143
Jakarta 150, 287, 342
Jakarta Commons pool 342
Java 45, 248
local access to Domino 249
remote access to Domino 249
Java 2 Enterprise Edition
See J2EE
Java Connector Architecture 141
Java development option

430 Portalizing Domino Applications for WebSphere Portal

Browing Domino ACL example 329

creating a a session 313
Domino toolkit for Java 306
reusing a session 313
technologies involved 226
Java development options
portlets 226
Java Domino classes 255
Java Messaging Service 141
Java programs 139
JavaBean
creating 325
JavaBeans 325
JavaServer Pages
See JSP
JCA 141
JDBC 139, 357
JMS 141
JSP 143
adding a Domino view 177
adding tag library definitions 178
declarations 146
described 144
directives 145
elements 145
expressions 146
limitations 149
objects 147
processing 145
request 147
response 147
scriptlets 147
session 147
stateful interaction 147
tags 144
jsp include tag 167
JspWriter 148

L
Layout and functional aspects 23
Layout definition 23
Load balancing 30
load diiop command 251
Log4j
appender 286
elements 285
features 285
implementation example 338

layout 286
logger 285
Logging 282
implementaion example 338
JLog 282
log for java 284
log4j 284
message logging 283
sophisticated logging 284
WebSphere Portal log 282
Lotus Discovery Server 219, 270

Lotus Domino Toolkit for WebSphere Studio 154

Lotus QuickPlace 270
Lotus technology strategy 155
LTPA Token 31

M
MIMEEntity 266
Mobile support 357

Model-view-controller design pattern 227

MVC 227
controller 228
implementation example 325
model 228
view 228

N
NCSO.jar 256
NCSOW.jar 256
News portlet 25
Notes 64
Notes portlets 98
Notes view portlet 43, 99
configuration 101
considerations 99
edit options 103
performance 99
results 106
rich text 99
setup 100
skillset 99
specifying view options 104
NOTES.ja 256
NotesException class 263

o
Object Pooling

Index

431

benefits 274

benefits in portlet development 280

client 276

enhancing the pool manager 281

implementation example 342
load balancing 274

object pool 275

object pool manager 276

performance comparison 350

process 277-278

query objects 281

sharing resources 274

virtual objects 275
Offline browsing support 357
Opening a database 259

P
Page
adding a portlet 180
Page customization 33
Pages
containers 34
layout example 34
Pagination 24, 306, 310
Paging through the view 310
People Awareness 215
chat 216
finding documents 216
implementing 218-219
online presence 216
online status 216
people links 216
PeopleService tags 218
PeopleSoft 357
Performance 138, 359
Performance considerations 17
Personalization 23
Places
described 11
example 13
organizing pages 11
Portal 2
access to applications 2
architecture 31

architecture considerations 31

authentication 31
benefits 2
Click to Action 202

dedicated server for Domino 30
description 2
developing portlets using Java 45
functionality 2
horizontal 3
integration techniques 37
page 9, 11
page aggregation 31
page customization 33
page example 10
people awareness 215, 219
Sametime integration 24
scalability 17
search 24
server infrastructure 29
skins 32
styles 32
themes 32
users 244
Portal application 9
Portal infrastructure 29
Portalizing process 14
Portals
infrastructure 29
Portlet APl 229, 233
class 234
destroy() 235
destroyConcrete() 235
elements 233
init() 234
PortletResponse 235
PortletSession 235
service() 235
Portlet applications 232
Portlet Builders 46, 355
Conet Portlet Factory for Domino 394
Portlet builders
Aptrix Portlet Connector 411
Bowstreet Portlet Factory for WebSphere 372
IBM Portlet Builder for Domino 356
Portlet builders option
advantages 356
benefits 356
disadvantages 356
overview 356
skillset 356
Portlet cooperation 12
Portlet events 244
Portlet pattern examples 25

432 Portalizing Domino Applications for WebSphere Portal

Portlet patterns 19

advantages 40

disadvantages 40

selecting 39
Portlet perspective 168
portlet.xml 188, 320
PortletApplicationSettings object 241
PortletConfig object 240
PortletContext object 242
PortletData 232, 239, 241
PortletRequest 235
PortletRequest object 236
PortletResponse object 238
Portlets 227

accessing Domino data 247

action events 245

action listening 183

ActionListener 183

actions 182

adding Domino JSP tags 172

adding NCSO.jar 320

adding search functionality 308

adding to a page 180

administering 230

application integration 28

applications 10, 232

appllications 230

basic 169, 316

brokered cooperation 12

choosing the desing pattern 24

Click to Action 199

coding guidelines 295

communicating 199

concepts 231

concrete 231

concrete portlet application 232

concrete portlet instance 231

configuration 240

considerations 28

container 230

cooperation 12

data 232, 241

described 9

design considerations 22

design patterns 19

developing in Java 318

developing in WebSphere Studio 153

development guidelines 295
display 20

displaying information 20
displaying rich text 265
enabling people awareness 219
events 244

examples of design patterns 25
exchanging information 12
exporting as .WAR file 323
folder structure 319

granting access 179

improving performance 274
inJava 313

installing 179

integrated 21

integrating the application logic 21
interportlet communication 199
J2EE development 141

layout and functional aspects 23

life cycle 234
link 19
logging 282

message events 247
messaging 12

migrated 21
model-view-controller 227
modes 10, 171, 227

MVC 325

MVC portlet 316

object pooling 274

opening an application 20
packaging guidelines 297
pagination 310

performance 274

performance considerations 302
portlet APl 229

portlet.xml 188

preparing for Click to Action 204
previewing 181

rich text 26

running 11

scalability 274

session management guidelines 298
session specific data 231

states 10, 227

storing parameters 231
technical description 11, 227
Toolkit for WebSphere Studio 153
transactions 12

transferring data 12
transmitting information 199

Index

433

types 316 copying 113

Ul components 22 locale 115
use cases 19 parameters 116
use of persistent data 231 results 118
user portlet instance 231

web.xml 188 S

window 227

Sales Tracking application 47

Sametime 24, 215, 270

Sample application 47

SAP 357

Scalability 7,17, 138

Search 3, 13, 24, 26, 192, 306, 357, 407
Search functionality 308

window events 246
PortletSession 239
PortletSession object 239
PortletSettings 231
PortletSettings object 240
PortletWindow object 243

Security 8
Q Selecting the integration technique 40
QuickLinks portlet 42, 65 Selecting the portlet pattern 39
adding a link 69 Servlet APl 229
configuration 68 Session information 148
considerations 66 Siebel 357
deleting a link 69 Single Sign On 31, 178, 377, 400
example 70 Sofor Interactive Portlet Builder
functionality 66 considerations 410
implementation 67 implementation details 410
importing Internet Explorer favorites 69 overview 409
importing Netscape bookmarks 69 parameters 410
setup 68 Sofor Interactive Portlet Builder for Domino 47, 409
Struts 150, 287
R Action Form Bean 288
actions 288

recycle method 256

Recycling Domino Objects 257

Recycling guidelines 257

Redbooks Web site 426
Contact us xii

Reverse proxy 267

architecture 289

basic elements 288
benefits 287

description 288

in a Portal server 289

Rich Site Summary 43, 108 in a WebSphere Studio 294

Rich text 26, 167, 264, 358, 399 MVC 287
containing URLs 268 pages 288
created using a Notes client 266 process flow 289
created using RichText applet 266

displaying as plain text 266 T
reverse proxy 267 Tag Library Descriptor file 160
URL rewriting 268 TLD 160
using Domino HTTP to render 266 Types of Domino applications 17
RichTextltem 266
Row container 34 u

RSS portlet 107-108
activating 117
configuring 115

UDDI directory 54
URL rewriting 148, 268

434 Portalizing Domino Applications for WebSphere Portal

Using existing portlets option 63

Vv
Virtual objects 275

w
WAR 153
Web archive file (WAR) 54
Web Clipping portlet 43, 79, 121
administration portlet 79
authentication 89
caching 80
clipping types 86
configurin administration portlet 83
configuring 83
considerations 80
firewall options 87
national language support 84
overview 79
performance 81
results 95
rich text 81
runtime portlet 79
security 93
selecting content 94
setup 82
URL rewriting 91
URLtoclip 85
Web page portlet 43, 74, 121
benefits 74
configuration 76
considerations 74
disadvantages 74
embedding page in the Portal 74
functionality 74
implementation 75
performance 75
results 78
richtext 75
setup 75
Web Services portlet 54
web.xml 188, 320
WebSphere Portal 1-2, 64
architecture 4
Click to Action 202
connectivity 4
deploying an application 178
Domino integration 2, 6

Domino integration benefits 7-8
federated access 2
log 282
out-of-the-box portlets 63
page 11
people awareness 219
personalization 2
portal types 2
Sametime integration 24
services 4
Single Sign On 31
using Domino LDAP 34
WebSphere Portal Content Publishing 357
WebSphere Portal Toolkit for WebSphere Studio
153
WebSphere Portlet Catalog 359
WebSphere Studio
building a portlet project 168
creating a folder structure 172
creating a portlet project 314
deployment descriptors 188
exporting a project 179
including custom JSP tag libraries 173
looking at content of a Domino database 176
perspective 168
portlet project 170
Struts applications 294
Web Content folder 172
WebSphere Studio Application Developer 138, 150
tools 150
WML 357
Workplace 4
application integration 5
described 4
example 13
functionality 4
personalization 5,7
sales workplace example 50
Workspace
Domino integration 6
WSDL 199, 201

X

XML 107, 168

XML helper portlet 107
implementation example 109
performance 108
results 118

Index 435

rich text 108
skillset 108
XSLT style sheet 111

Z
zSeries 253

436 Portalizing Domino Applications for WebSphere Portal

R

Redbooks

Portalizing Domino Applications for WebSphere Portal

(0.5” spine)
0.475"<->0.875"
250 <-> 459 pages

Portalizing Domino

Applications
for WebSphere Portal Redbooks

Integrating existing This IBM Redbook describes how to integrate existing Domino applications
Domino applications into the IBM WebSphere Portal. We have coined the term iportalizingf to INTERNATIONAL

We begin by explaining why portal integration is so useful for any company SUPPORT
Portlet builders from that has a Domino environment, and the importance of integrating Domino ORGANIZATION
IBM. Bowstreet. and applications into the WebSphere Portal. We also explain some of the key
CON’ET i concepts of portals and Domino application integration, and outline some
recognized design patterns for Domino application integration.
. . A . . . - BUILDING TECHNICAL
Step-by-step Next, we preview the recognized integration options which are described in INFORMATION BASED ON

detail later in the book. We also introduce the sample Domino application we PRACTICAL EXPERIENCE

mtegr_atlon . used for our portalizing exercises throughout the book.
techniques applied The following chapt t detailed di i bout the integrati
: e following chapters present detailed discussions about the integration
to practical ontions currgntly gvailagle- g IBM Redbooks are developed by
scenarios p ’ the IBM International Technical
e Using existing portlets that ship with WebSphere Portal, including Support Organization. Experts
QuickLinks, Web page, Web Clipper, NotesView, XML/XSL Helper, and RSS from IBM, Customers and
portlet Partners from around the world
; ; A create timely technical
: gs!ng justom Dommo.JSP tag libraries information based on realistic
sing Java programming scenarios. Specific
e Using portlet builders, including software products from IBM, Bowstreet, recommendations are provided
CONET, and others to help you implement IT
For each of the integration options, we provide an overview of the technology, an solutions more effectively in

introduction to the software and tools used, and step-by-step examples of using your environment.
the techniques to portalize our sample Domino application.

This book is aimed at Domino application developers or anyone else who
wants to learn how to portalize Domino applications. For more information:

ibm.com/redbooks

SG24-7004-00 ISBN 0738499811

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Notices
	Trademarks

	Chapter 1. Introduction to portalizing Domino applications
	1.1 The portal vision
	1.2 Introduction to WebSphere Portal
	1.2.1 The workplaces idea
	1.2.2 What the workplace means for Domino applications
	1.2.3 Benefits of WebSphere Portal and Lotus Domino together

	1.3 Integrating Domino applications into portlets and workplaces
	1.3.1 Introduction to portlets
	1.3.2 Portlet applications
	1.3.3 Introduction to places
	1.3.4 The portalizing process
	1.3.5 The portalizing challenge
	1.3.6 Domino applications
	1.3.7 Portlet patterns
	1.3.8 Considerations for the portlet design
	1.3.9 Considerations

	1.4 Portal architecture considerations
	1.4.1 Page aggregation concept
	1.4.2 Themes and styles
	1.4.3 Page customization
	1.4.4 Using Domino LDAP with WebSphere Portal

	1.5 Summary

	Chapter 2. Integration techniques
	2.1 Choosing an integration technique
	2.1.1 Step 1: Pre-project preparation and training
	2.1.2 Step 2: Identify project requirements and considerations
	2.1.3 Step 3: Select the appropriate portlet pattern
	2.1.4 Step 4: Select the appropriate integration technique

	2.2 Integration techniques and development options
	2.2.1 Using existing portlets
	2.2.2 Domino JSP tag libraries
	2.2.3 Developing Domino portlets using Java
	2.2.4 Portlet builders

	2.3 Case study: A simple sales tracking application
	2.4 Deploying the case study portlets
	2.4.1 Install portlets
	2.4.2 Creating a place
	2.4.3 Creating a page
	2.4.4 Adding portlets to a page

	Chapter 3. Using existing portlets
	3.1 Overview
	3.1.1 Technologies involved
	3.1.2 Software and tools used
	3.1.3 Integration techniques

	3.2 Integrate using the QuickLinks portlet
	3.2.1 Considerations
	3.2.2 Implementation details

	3.3 Integrate using the Web Page portlet
	3.3.1 Considerations
	3.3.2 Implementation details

	3.4 Integrate using the Web Clipping portlet
	3.4.1 Considerations
	3.4.2 Implementation details

	3.5 Integrate using Lotus Notes portlets
	3.5.1 Lotus Notes portlets
	3.5.2 Considerations
	3.5.3 Implementation details

	3.6 Integrate using XML helper and RSS portlets
	3.6.1 Considerations
	3.6.2 Implementation details

	3.7 Integrate using multiple portlets
	3.7.1 Considerations

	3.8 Reference material

	Chapter 4. Using custom Domino JSP tag libraries
	4.1 Overview of the Domino custom JSP Tag option
	4.2 Technologies involved
	4.2.1 J2EE overview
	4.2.2 JavaServer Pages

	4.3 Software and tools used
	4.3.1 WebSphere Studio Application Developer 5
	4.3.2 WebSphere Portal Toolkit for WebSphere Studio 4.2.5
	4.3.3 Lotus Domino Toolkit for WebSphere Studio 1.0

	4.4 Integration techniques
	4.5 Integration using Domino custom JSP Tag libraries
	4.5.1 Overview
	4.5.2 Considerations
	4.5.3 Implementation example
	4.5.4 Conclusions to the custom Domino tags integration technique

	4.6 Integration via Click to Action
	4.6.1 Click to Action
	4.6.2 Considerations
	4.6.3 Implementation of the technique

	4.7 Integration via people awareness
	4.7.1 People awareness
	4.7.2 Implementation of the technique

	4.8 Reference Material

	Chapter 5. Portlet development using Java: Technology review
	5.1 Overview
	5.1.1 Technologies involved

	5.2 Technical introduction to portlets
	5.2.1 Basic portlet terms
	5.2.2 Model-view-controller (MVC) design pattern
	5.2.3 Portlet API overview
	5.2.4 Portlets and the Servlet API
	5.2.5 Portlet concepts
	5.2.6 Portlet applications
	5.2.7 Basic elements of the Portlet API
	5.2.8 Frequently used objects
	5.2.9 Configuration objects
	5.2.10 Miscellaneous objects
	5.2.11 Portlet events

	5.3 Accessing Domino data from portlets using Java and CORBA
	5.4 Domino objects for Java API
	5.5 Domino Rich Text
	5.6 Lotus Collaborative Components API
	5.7 Domino 6 new features for DIIOP
	5.8 Object pooling
	5.9 Logging from portlets
	5.10 Struts Portal framework
	5.11 General portlet development guidelines

	Chapter 6. Portlet development using Java: Integration examples
	6.1 Software and tools used
	6.1.1 Domino Toolkit for Java version 2.1
	6.1.2 Hybrid integration techniques

	6.2 Search functionality
	6.3 Paging through the view
	6.4 HelloWorldFromDominoServer portlet
	6.5 Using JavaBeans in the sample portlet
	6.6 Browsing Domino ACL portlet
	6.7 How to use log4j
	6.8 Session pooling
	6.9 Reference material, links, Redbooks

	Chapter 7. Portlet builders
	7.1 Overview of the portlet builders option
	7.2 IBM Portlet Builder for Domino
	7.2.1 Implementation details
	7.2.2 Implementation example

	7.3 Bowstreet Portlet Factory for WebSphere
	7.3.1 Implementation details
	7.3.2 Implementation example

	7.4 CONET Portlet Factory for Domino
	7.5 Implementing the Sales Workplace example
	7.6 Other portlet builders
	7.6.1 Sofor Interactive Portlet Builder for Domino
	7.6.2 Aptrix Portlet Connector

	Appendix A. Data dictionary for case study
	A.1 Product Form
	A.2 Sales Person Form
	A.3 Customer Form
	A.4 Customer Contact Form
	A.5 Sales Activity Form

	Appendix B. Additional material
	Locating the Web material
	Using the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

