

ibm.com/redbooks

eClient 101
Customization and Integration

Wei-Dong Jackie Zhu
Mike Grasselt

Lijing Zhang
Alan Mayer

Basic introduction to installing and
using eClient

eClient customization and
integration with sample codes

Special topics on information
mining, Siebel and single
sign-on integration

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

eClient 101 Customization and Integration

October 2003

International Technical Support Organization

SG24-6964-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2003)

This edition applies to Version 8, Release 2 of IBM DB2 Content Manager for Multiplatforms
(product number 5724-B19) and Version 8 Release 2 of IBM DB2 Information Integrator for
Content for Multiplatforms (product number 5724-B43).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiv
Become a published author . xv
Comments welcome. xv

Part 1. Getting started with eClient . 1

Chapter 1. Introducing Content Manager . 3
1.1 Introduction . 4
1.2 Content Manager Version 8 . 4
1.3 Information Integrator for Content Version 8 . 6

1.3.1 Information access . 7
1.3.2 Services . 8

1.4 Information Mining Service . 9
1.4.1 Features . 10
1.4.2 Concepts . 11
1.4.3 Architecture . 11

1.5 Content Manager Version 8 eClient . 13

Chapter 2. Installing eClient . 17
2.1 Installation overview . 18

2.1.1 Topology . 18
2.1.2 Prerequisites . 18

2.2 Installing Information Integrator for Content Version 8 (EIP). 19
2.2.1 Hardware and software requirements . 19
2.2.2 Installing EIP . 22
2.2.3 Post-installation. 31
2.2.4 Configuring EIP . 32
2.2.5 Verifying installation . 33

2.3 Installing and configuring the Information Structuring Tool on WebSphere
Application Server . 36

2.4 Installing Content Manager Version 8 eClient . 41
2.4.1 Preparing for installation . 42
2.4.2 Installing eClient . 42
2.4.3 Configuring eClient . 46
2.4.4 Verifying eClient installation . 50

© Copyright IBM Corp. 2003. All rights reserved. iii

Chapter 3. Installing eClient in a WebSphere Network Deployment
environment. 51

3.1 Introduction . 52
3.1.1 Introducing the scenario . 52
3.1.2 What is WebSphere Network Deployment? 53

3.2 Installing HTTP Web server . 54
3.3 Installing WebSphere Network Deployment . 55

3.3.1 Installing WebSphere Application Server . 56
3.3.2 Installing WebSphere Network Deployment 57
3.3.3 Verification . 59

3.4 Configuring WebSphere Network Deployment . 60
3.5 Installing EIP . 64
3.6 Installing eClient . 66
3.7 Creating eClient cluster server . 68

3.7.1 Creating eClient cluster server . 69
3.7.2 Viewing cluster topology . 72
3.7.3 Starting the eClient cluster server . 73

3.8 Configuring HTTP Web server . 73
3.9 Monitoring workload balance. 74

3.9.1 Enabling performance monitoring for eClient 74
3.9.2 Monitoring workload balance . 75

Chapter 4. Using eClient . 79
4.1 Logging on to eClient . 80
4.2 Searching for documents . 81

4.2.1 Search results . 83
4.3 Displaying documents . 85
4.4 Importing documents. 90
4.5 Creating folders . 91
4.6 Document routing . 93

4.6.1 Adding documents to a workflow process. 94

Part 2. Preparing for eClient customization and integration . 99

Chapter 5. eClient architecture . 101
5.1 Introducing J2EE . 102

5.1.1 What is a servlet? . 104
5.1.2 What is a JavaServer Page (JSP)?. 106

5.2 Understanding eClient architecture . 109
5.2.1 Overview . 109
5.2.2 Inspecting eClient control flow . 110

5.3 Customization and integration. 113
5.3.1 Overview . 113
5.3.2 eClient JSPs . 114

iv eClient 101 Customization and Integration

5.3.3 Customizing eClient graphics . 120

Chapter 6. Creating applications with EIP . 123
6.1 Programming interface overview. 124
6.2 Taking an API test drive . 128

6.2.1 Setting up sample data . 128
6.2.2 Using Content Manager connector . 131
6.2.3 Using DB2 connector . 135
6.2.4 Using federated connector to access DB2 137
6.2.5 Using federated connector to search across content servers 143
6.2.6 Working with Information Mining Service . 155
6.2.7 Working with controller servlet . 162
6.2.8 Working with viewer toolkit . 176

Chapter 7. Setting up an eClient development environment. 181
7.1 Development environment options . 182
7.2 Using simple editor and command-line utilities . 183
7.3 Configuring Studio Application Developer for use with eClient 184
7.4 Deploying customized eClient to another system 202

Part 3. Customizing eClient . 205

Chapter 8. Design and implementation considerations 207
8.1 Design considerations . 208

8.1.1 Considerations for incorporating future upgrades of eClient. 208
8.1.2 Considerations for working with different EIP back-end servers. . . 209
8.1.3 EIP back-end access vs direct access to back-end servers 209
8.1.4 Maximum length of a URL. 210
8.1.5 Variations in Web browsers . 210

8.2 General programming tips. 210
8.2.1 Accessing configuration data using properties files 210
8.2.2 Using cookies to maintain session status . 211
8.2.3 Invoking code on the server from JavaScript 212

Chapter 9. Customizing look and feel using style sheets 213
9.1 What is Cascading Style Sheets (CSS)? . 214
9.2 Simple CSS example . 214

9.2.1 Changing entry field text color. 217
9.2.2 Using background image . 218

9.3 Using CSS for eClient . 218
9.4 Changing background image on eClient . 220

Chapter 10. Customizing the edit attributes window 225
10.1 Overview . 226

 Contents v

10.2 Configuring and using customization . 228
10.3 Edit attributes customization overview . 232

10.3.1 Understanding IDMEditAttributes.jsp . 232
10.3.2 Modifying IDMEditAttributes.jsp . 234
10.3.3 IDMEditAttributes.jsp code change details 236

Chapter 11. Adding custom functions to the search results window . . 239
11.1 Overview . 240
11.2 Adding custom entries to combo box . 241
11.3 Installing sample code. 243
11.4 Adding your own custom function . 247
11.5 Using sample code . 249

11.5.1 Export documents option . 250
11.5.2 View document with plug-in option . 254

11.6 Process selected documents option . 255

Chapter 12. Using EIP custom privileges . 263
12.1 Overview . 264
12.2 Defining custom privileges . 264
12.3 Checking for privileges in a JSP . 268

12.3.1 Installing sample code. 269
12.3.2 Checking custom privileges . 270
12.3.3 Source file XYZPrivsData.java . 270
12.3.4 Source file XYZPrivsMethods.java . 271

Part 4. Integrating eClient . 279

Chapter 13. Enabling metadata-based content retrieval 281
13.1 Using categories and summaries in eClient searches 282

13.1.1 Introducing the scenario . 282
13.1.2 Creating the data model . 283
13.1.3 Loading the data . 286
13.1.4 Searching with eClient . 290
13.1.5 Customizing eClient . 294

13.2 Creating categories and summaries during document import. 296
13.2.1 Changing eClient import behavior. 296
13.2.2 Implementing custom servlet . 299
13.2.3 Running new eClient import . 304

13.3 Searching for related items . 306
13.3.1 Adding new search results action . 307
13.3.2 Changing JSPs . 309
13.3.3 Implementing custom servlet . 310
13.3.4 Running new action. 314

13.4 Organizing existing items in Content Manager 318

vi eClient 101 Customization and Integration

13.4.1 Extending item type. 319
13.4.2 Running OrganizeItems application . 320

Chapter 14. Invoking eClient from another application 325
14.1 Overview . 326
14.2 Servlet source code. 326
14.3 Configuring and using the servlet . 332
14.4 Servlet URL syntax and source. 338

14.4.1 Servlet parameters . 338
14.4.2 Sample URLs . 340

14.5 Invoking the servlet from an application . 343

Chapter 15. Siebel Integration . 347
15.1 Introduction . 348
15.2 Installing Siebel Integration for Content Manager 348

15.2.1 Installing Siebel Web templates . 349
15.3 Configuring eClient . 349

15.3.1 Configuring eClient application server in WebSphere. 349
15.3.2 Configuring integration properties file . 350
15.3.3 Configuring browser . 352

15.4 Configuring Siebel . 353
15.4.1 Configuring business component . 354
15.4.2 Displaying external content within an applet 356
15.4.3 Configuring Siebel application. 365

15.5 Setting up Content Manager and EIP . 374
15.5.1 Creating attributes in Content Manager . 374
15.5.2 Creating item type in Content Manager . 376
15.5.3 Populating unstructured data in Content Manager 378
15.5.4 Preparing EIP server. 379
15.5.5 Creating EIP federated entity . 380
15.5.6 Creating EIP federated search template . 384

15.6 Verification. 388

Chapter 16. Integrating with e-mail server . 391
16.1 Identifying e-mail server . 392
16.2 Configuring eClient to enable the e-mail feature 393
16.3 E-mailing documents as attachment . 393

Chapter 17. Single sign-on . 397
17.1 Introduction . 398

17.1.1 Introducing the scenario . 398
17.2 Installing and configuring Directory Server V5.1 399

17.2.1 Installing Directory Server V5.1. 399
17.2.2 Creating administrator DN and password 402

 Contents vii

17.2.3 Configuring database . 402
17.2.4 Creating a suffix . 404
17.2.5 Registering the LDAP server. 404
17.2.6 Creating LDAP user . 406

17.3 Configuring Content Manager V8.2 for LDAP . 410
17.3.1 Generating the properties file . 411
17.3.2 Installing properties file . 413
17.3.3 Installing user exit . 414

17.4 Configuring Content Manager V8.2 for SSO . 414
17.4.1 Enabling single sign-on . 414
17.4.2 Creating new privilege set. 416

17.5 Importing LDAP users into Content Manager V8.2 418
17.6 Configuring WebSphere Application Server V5.0 421

17.6.1 Configuring LTPA . 421
17.6.2 Generating LTPA keys . 423
17.6.3 Configuring LDAP user registries . 424
17.6.4 Enabling LTPA authentication. 426
17.6.5 Verifying WebSphere security configuration 427

17.7 Verification. 429

Part 5. Troubleshooting, debugging, and performance. 431

Chapter 18. Troubleshooting and debugging . 433
18.1 Isolating problems . 434
18.2 Tracing eClient . 434

18.2.1 Configuring IDM.properties file . 434
18.2.2 Sample log file. 435

18.3 Tracing EIP Java API . 436
18.3.1 Configuring log manager. 436
18.3.2 Sample log file. 439

18.4 Additional trace information. 440
18.5 Debugging your application. 440

18.5.1 Debugging Java code using stdout . 440
18.5.2 Debugging JavaScript code . 441

18.6 Typical problems . 441
18.7 Support channels . 448

18.7.1 Official support Web site . 448
18.7.2 Forums . 448

Chapter 19. Performance tuning . 449
19.1 Introduction . 450
19.2 Tuning recommendations . 451
19.3 Maintenance and monitoring for performance. 455

viii eClient 101 Customization and Integration

Part 6. Appendixes . 457

Appendix A. Calculating memory needed for an image 459
Introduction. 460
Calculate memory usage for applet viewer . 460
Calculate memory usage for mid-tier conversion . 462

Appendix B. Additional material . 465
Locating the Web material . 465
Using the Web material . 465

System requirements for downloading the Web material 466
How to use the Web material . 466

Glossary . 467

Abbreviations and acronyms . 487

Related publications . 489
IBM Redbooks . 489
Other publications . 489
Online resources . 490
How to get IBM Redbooks . 490

Index . 491

 Contents ix

x eClient 101 Customization and Integration

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2003. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) ™
ibm.com®
iSeries™
AIX®
ClearCase®
DB2 Universal Database™
DB2®
ImagePlus®

IBM®
Lotus Notes®
Lotus®
Micro Channel®
OS/390®
PAL®
QBIC®
Redbooks™

SecureWay®
SP2®
ThinkPad®
Tivoli®
VideoCharger™
WebSphere®

The following terms are trademarks of other companies:

Pentium is a trademark of Intel Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

xii eClient 101 Customization and Integration

Preface

This IBM Redbook provides a basic introduction to IBM DB2® Content Manager
Version 8 eClient. By providing helpful, easy-to-understand sample codes and
step-by-step instructions, this redbook will help you in your next eClient
integration and customization project.

In Part 1, we introduce the Content Manager family of products, which includes
Content Manager, Information Integrator for Content (formerly known as EIP - the
term is still used throughout this redbook for easy reference), Information Mining
Service of EIP, and eClient. We also provide detailed step-by-step instructions on
installing eClient, installing eClient in a WebSphere® Network Deployment
environment, and using eClient.

In Part 2, to prepare for eClient customization and integration, we introduce
J2EE, servlets, and JSPs. We cover the eClient architecture and inspect a basic
eClient control flow. We also provide the essential information required to start
creating applications with EIP. We include sample codes to demonstrate the
usages of APIs. In addition, we provide step-by-step instructions on setting up an
eClient development environment and discuss design and implementation
considerations.

Part 3 is about customizing eClient. We provide sample codes for changing the
look and feel, customizing the edit attributes window, adding customized
functions in the search results window, and using EIP privileges for access
control. By demonstrating some of the customization with the sample codes, you
should have a better understanding of what and how you can customize eClient
for your business needs.

Part 4 covers integrating eClient. We cover e-mail integration and special topics
on Information Mining Service, Siebel integration, and single sign-on integration.
The installation, setup, configuration, and integration are presented with detailed
step-by-step instructions. In the Information Mining Service chapter, we provide
detailed sample codes for enabling metadata-based data retrieval. Even if you
are not using Information Mining Service, we highly recommend that you read
the chapter for more in-depth knowledge of eClient customization from the
sample codes.

In Part 5, to assist in troubleshooting and debugging eClient applications, we
provide tips and recommendations on how to troubleshoot problems, with a list of
typical problems and their resolutions. In addition, we give a brief introduction on
performance tuning for eClient.

© Copyright IBM Corp. 2003. All rights reserved. xiii

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Wei-Dong Jackie Zhu is a Project Leader in Content Management for the
International Technical Support Organization at the Almaden Research Center in
San Jose, California. She has more than 10 years of software development
experience in document search systems, image workflow processing, and digital
media distribution. She holds a Master of Science degree in Computer Science
from the University of Southern California.

Mike Grasselt has been with the IBM Germany Development Lab in Boeblingen
since 1997 working on OS/390®, Java projects, and education. He is a technical
lead for the Information Mining feature of Information Integrator for Content.

Lijing Zhang is a software engineer in IBM US. He has worked for IBM since
2001 in the Content Management field. His areas of expertise include Content
Manager, Information Integrator for Content, and VideoCharger™. He is a
co-author of Content Manager V8 Certification Study Guide.

Alan Mayer is an I/T Architect in IBM Global Services in US. He has 10 years of
experience implementing Content Manager for various clients. His areas of
expertise include application development and document imaging.

Thanks to the following people for their contributions to this project:

Andy Smith
David B Victor
Ken Nelson
Jerald Schoudt
Shailesh Gupta
Charlie Jin
Gordon Campell
Randy Richardt
An Phan
Mel Zimowski
Michael J. Mitchell
Fay Wong
IBM Software Development, Support, and Services

xiv eClient 101 Customization and Integration

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xvi eClient 101 Customization and Integration

Part 1 Getting started
with eClient

This part helps you to get started with eClient. We introduce the overall Content
Manager family of products, and provide detailed step-by-step instructions on
how to install eClient, how to install eClient in a WebSphere Network Deployment
environment, and how to use eClient.

Part 1

© Copyright IBM Corp. 2003. All rights reserved. 1

2 eClient 101 Customization and Integration

Chapter 1. Introducing Content
Manager

This chapter introduces the Content Manager product, which includes the
following components:

� IBM DB2 Content Manager Version 8 (Content Manager)
� IBM DB2 Information Integrator for Content Version 8 (also known as EIP)
� Information Mining Service of EIP
� IBM DB2 Content Manager Version 8 eClient

1

© Copyright IBM Corp. 2003. All rights reserved. 3

1.1 Introduction
The Content Manager portfolio provides a foundation for managing, accessing
and integrating critical business information on demand. It enables you to
integrate all types of content - document, image, rich media - across diverse
business processes and applications, including Siebel, PeopleSoft and SAP.

Content Manager Version 8 integrates with existing hardware and software
investments, enabling customers to leverage a common infrastructure, achieve a
lower cost of ownership, and deliver new, powerful information and services to
customers, partners, and employees where and when needed.

The IBM DB2 Content Manager Version 8 portfolio includes the following main
product categories:

� IBM DB2 Content Manager Version 8 (Content Manager)

� IBM DB2 Information Integrator for Content Version 8 (Information Integrator
for Content)

� IBM DB2 Content Manager Version 8 OnDemand

� IBM DB2 Content Manager Version 8 CommonStore

� IBM DB2 Records Manager

In this redbook, we focus on the IBM DB2 Content Manager Version 8 eClient,
the Web client of IBM DB2 Content Manager Version 8 for Multiplatforms. Before
we go into the details of eClient, we provide a quick overview of Content
Manager, EIP, Information Mining Service of EIP, and Content Manager eClient.

1.2 Content Manager Version 8
IBM DB2 Content Manager Version 8 (Content Manager) is the centerpiece of
the IBM DB2 Content Manager portfolio for Enterprise Content Management. It is
used to store and manage unstructured data.

A Content Manager system mainly consists of a single Library Server and one or
more Resource Managers, formerly known as the Object Server.

The Library Server is essentially a database application with stored procedures
that manages user profiles, access controls, document routing rules and data
model definition. The Library Server stores and manages index information
(metadata) for the unstructured data stored in the Resource Managers. There is
only one Library Server for a Content Manager system.

4 eClient 101 Customization and Integration

There may be one or more Resource Managers in a Content Manager system.
This is where the unstructured data objects are physically stored. Resource
Manager is essentially a Web application running on IBM WebSphere Application
Server. Figure 1-1 shows how the Library Server and Resource Managers build
the infrastructure of a Content Manager system.

Figure 1-1 Content Manager infrastructure

If you have video and audio files and want to have streaming capability, you may
choose to store them in a Content Manager VideoCharger server. While it is
integrated with Content Manager server, the VideoCharger server is considered
an extension of Resource Manager.

There are three types of Content Manager clients that can be used to manage
and retrieve documents stored in Content Manager server: eClient, window
client, and customized client. The focus of this redbook is on eClient.

To demonstrate how a Content Manager system works, let us examine the steps
that need to be taken by the Library Server, the Resource Manager and the
eClient to perform a search for a document and the delivery of the document for
an end user.

1. Using a Web browser, a user tries to log on to an eClient server by submitting
a user ID and a password.

2. The Library Server receives the logon request and validates the user
information.

eClient_Server

WebSphere
Application Server

Stored
procedures

Library Serverr

DB2

Resource
Manager

WebSphere
Application Server

DB2

Library Server

 Chapter 1. Introducing Content Manager 5

3. If the user is authorized to access the system, the Library Server grants the
right and the user logs on to the eClient server.

4. The user searches for some documents; this translates to a search request to
the eClient.

5. The Library Server receives the request and performs a search. The
document access control list and user’s privilege set are evaluated to
determine if the user has permission to access the documents.

6. The Library Server returns a hit list from the search. The hit list only contains
the documents that the user has access to.

7. The user clicks one of the result entries in the eClient; this translates to a
document retrieval request.

8. The Library Server receives the retrieval request. It returns a security token
and the Resource Manager location information (where the document
resides) to the eClient. A unique token is dynamically generated by the
Library Server for each client request and will remain valid for a set length of
time.

Up to this point, the communications are between the eClient and the Library
Server only. Resource Manager has not been in the picture yet.

9. eClient receives the security token from the Library Server and the
information about where the document is located. It uses the security token to
directly contact the Resource Manager where the document is stored.

10.The Resource Manager receives the retrieval request from the eClient. It
validates the security token. If the security token is validated, the Resource
Manager directly delivers the documents to the eClient.

The document does not flow through the Library Server.

11.The document displays in the Web browser; the user views the document.

1.3 Information Integrator for Content Version 8
IBM DB2 Information Integrator for Content Version 8 (Information Integrator for
Content), formerly Enterprise Information Portal, provides a single point of
access to unstructured and structured content stored on one or more content
servers.

Information Integrator for Content is a framework that consists of two parts:

� Information access
� Services

6 eClient 101 Customization and Integration

In the following section, we briefly describe these two parts. For a complete list of
features, refer to Chapter 1 in Managing Information Integrator for Content,
SC27-1346-01.

1.3.1 Information access
To access the information stored in content servers, an application can either use
one of the content server connectors or a federated connector, as illustrated
Figure 1-2 on page 8.

Content server connectors provide the communication interface among the
applications, the content servers, and the administration database. A connector
can be implemented for arbitrary content servers. Information Integrator for
Content Version 8 provides connector implementations for content servers such
as DB2 or Content Manager Version 8.

The federated connector has the same interface as all other connectors but it
does not have a physical store and it is configured with any number of supported
connectors to become the single point of access for multiple content servers. You
can use it to search, retrieve, and update data objects in the content servers;
however, you need to call the content server connector directly to create and
delete data objects.

To allow federated access, a schema mapping between the federated content
server and each participating content server is required. The schema mapping
handles the difference between how the data is physically stored and how the
user wants to process the data in an application. This applies to attributes as well
as user IDs and passwords. In an application, the persistent data objects are
represented by the Dynamic Data Objects (DDO). A DDO is a server-neutral and
self-describing data object for transferring data into and out of a content server. A
DDO has a single persistent ID (PID), an object type, and a set of data items.

 Chapter 1. Introducing Content Manager 7

Figure 1-2 Information access overview

Figure 1-2 illustrates the information access using connectors and the mapping
of native attributes to the federated attributes. Federated attributes can be
grouped to a federated entity and then be used to define a search template.
Defining search templates is a convenient way to predefine queries and control
the access to those queries. To search, you simply retrieve a search template
from the administration database, input the search values for the federated
attributes and perform a search. If the template contains federated attributes that
are mapped to the native attributes of different content servers, the search runs
simultaneously across these servers.

The programming interface is available for C++ and Java. Java applications can
also use the client/server implementation, which is based on Remote Method
Invocation (RMI).

1.3.2 Services
Information Integrator for Content services provide added values for information
access and programming interfaces that are aligned with the information access
interfaces.

federated entity

DB2
connector

Content Manager
connector

...

DB2DB2 Content ManagerContent Manager
...

native attributes:
db2_na

native attributes:
cm_na1, cm_na2

native attributes: db2_na cm_na1 cm_na2

federated attributes: fa1 fa2

Search template
Federated Federated
connectorconnector

Information Integrator for ContentInformation Integrator for Content

Content serverContent server

Application (Java, C++)Application (Java, C++)

8 eClient 101 Customization and Integration

Currently Information Integrator for Content provides two services:

� Information Mining Service

This service allows you to automatically analyze and organize documents on
content servers. Because nearly 80 percent of your business data is
unstructured, you cannot do this manually. Information Mining provides tools
such as automatic categorization, summarization and information extraction.
If the analysis results get stored together with the original document, you can,
for example, restrict searches to certain categories and display a summary for
each search result. You can find a description of the Information Mining
service features in 1.4, “Information Mining Service” on page 9.

� Workflow

You can use the workflow service to control the flow and performance of work
in your business. When users work with the results of federated searches,
they often must make decisions on what actions to perform. You can
determine in advance how you want users to perform the work. The actual
documents can reside on any of the supported content servers. You can
automate the workflow by setting up profiles and rules.

1.4 Information Mining Service
Industry studies show that employees, in general, spend 30 percent of their time
just looking for the information they need to do their jobs. What is more, most of
this information is unstructured and is buried within reports, e-mail, mail, or faxes.
One way to use these documents efficiently is to organize the information within
the documents and create metadata for documents. The metadata of a
document includes names, institutions, or places mentioned in a document or
category a document belongs to. Users can use the metadata to narrow their
searches of documents to certain topics or terms.

The Information Mining Service of Information Integrator for Content provides
text analysis components to extract metadata automatically, thus making mining
economically viable. The complete interpretation of only factual knowledge
stated in unrestricted natural language is still out of reach using current
technology. However, tools that apply pattern recognition techniques and
heuristics are capable of extracting valuable information from arbitrary free-text.
Extracting information ranges from identifying important terms, such as names,
institutions, or places mentioned in a document, to summarizing a document.

In the following section, we briefly describe the features, concepts and
architecture of the Information Mining Service. For a detailed description, go to
the Information Center and select Enterprise Information Portal ->
Administration -> Managing information mining.

 Chapter 1. Introducing Content Manager 9

1.4.1 Features
The Information Mining Service provides the following mechanisms for the
automatic creation of metadata:

� Categorization assigns one or more categories to a document based on a
user-defined taxonomy (category tree). Users can store topic information
along with documents. This helps users to organize document collection and
allow topic-based search and navigation. The categorization component
contains a Web application that provides a graphical user interface for the
creation and maintenance of taxonomies called the Information Structuring
Tool.

� Summarization extracts the most important sentences of a document. Users
can read this information before deciding whether to read the entire document
or not. Users can specify the length of the intended summary and directly
influence the balance between the complexity of the extracted metadata and
the amount of information in documents.

� Language identification determines the language a document is written in.
This is useful if the document processing needs to be restricted to documents
of a certain language. It is a required pre-processing step before applying
other services.

� Information extraction recognizes significant vocabulary items, such as
names, terms, and expressions, in text documents automatically. The
extracted terms can, for example, be used in automatically created queries to
find related documents.

� Clustering divides up a set of documents into similar groups or clusters. This
is another way to organize document collection but unlike categorization, the
structure is not predefined. Clusters are derived from the document collection
automatically.

With the provided infrastructure, documents returned by a federated search or
the IBM Web Crawler can directly be accessed and analyzed. You can also write
applications that analyze documents from any arbitrary source.

The contained document filter extracts the textual content from a wide range of
document formats, such as PDF and HTML; this is a required pre-processing
step before running any of the analyses mentioned earlier.

In addition, the service can store the created metadata in the Information
Integrator for Content (EIP) database, but it is always a good practice to store this
information along with the document in the content server. This way, you can use
the metadata in a federated search, for example to search for documents that
belong to a certain category.

10 eClient 101 Customization and Integration

1.4.2 Concepts
The library and its catalogs represent the main concepts in the Information
Mining Service.

The library is a conceptual view of the Information Mining related content of the
EIP database. The library contains a set of catalogs.

A catalog is a container for:

� A taxonomy, which is a hierarchical tree structure of categories.

� A collection of training documents that is assigned to the categories to define
typical content for these categories.

� A categorization model based on the document training results that can be
used to automatically assign categories to documents. This model is
generated using the Information Structuring Tool where a taxonomy can be
created and trained. The model serves as input to the categorization service.

� The document metadata if you decide to store it in the EIP database.

1.4.3 Architecture
Figure 1-3 on page 12 provides an overview of the Information Mining Service
architecture.

 Chapter 1. Introducing Content Manager 11

Figure 1-3 Information Mining Service architecture

The following layers make up the Information Mining Service architecture:

� Java Service API: This layer exposes the Information Mining functionality
and metadata persistency as a consistent Java API. It provides access to the
analysis functions such as clustering, categorization and summarization. The
categorization training is only available with the Information Structuring Tool.
The API also allows you to store metadata in the EIP database.

� Non-visual JavaBeans: This layer provides ready-to-use components based
on the JavaBeans specification. The beans can be connected to the
information access beans in EIP, for example to analyze the documents
returned by a search with the federated connector. The beans also support
the documents returned by the IBM Web Crawler of EIP.

� Samples: This level consists of sample code using the non-visual JavaBeans
that illustrates the usage of the JavaBeans API.

Samples

Information
Structuring
Tool Server

Information
Structuring

Tool GUI

Collection-level Information
Minning functions

Categor-
ization
training

Clustering

Data
store

engine

Document-level Information Mining functions

Categor-
ization

Summari-
zation

Information
extraction

language
identifi-
cation

Service API

Non-visual Java beans

Data access via:

Default content provider

Crawler service

EIP
federated
connector

Web
Crawler

EIP
Database

12 eClient 101 Customization and Integration

� Information Structuring Tool: A Web application for creating and
maintaining taxonomies.

For detailed scenarios on how to use the Information Mining Service, refer to
Chapter 13, “Enabling metadata-based content retrieval” on page 281.

1.5 Content Manager Version 8 eClient
The Content Manager Version 8 eClient (eClient) is a Web application that allows
users to manage documents, search for documents and retrieve documents from
content servers. The following are a few sample content servers that the eClient
can have access to:

� IBM Content Manager for Multiplatforms
� IBM Content Manager OnDemand
� IBM Content Manager ImagePlus® for OS/390

The eClient application server is deployed and runs in WebSphere Application
Server. It consists of JavaServer Pages (JSPs), servlets, a viewer applet,
Cascading Style Sheets, property files, etc. The eClient is built on top of the EIP
Java APIs. You can customize the eClient to meet the needs of your organization.
For details on the eClient architecture, see Chapter 5, “eClient architecture” on
page 101.

With the eClient, you can connect to the Information Integrator for Content
federated server, which allows you to perform searches across a variety of
content servers simultaneously. You can also choose to connect directly to
individual content server. Figure 1-4 on page 14 shows the eClient infrastructure.

 Chapter 1. Introducing Content Manager 13

Figure 1-4 eClient infrastructure diagram

The eClient Version 8 provides many new features and significant enhancements
over the previous versions. Prior to Version 8.1, users primarily use the eClient to
perform document searches and retrievals. Since Version 8.1, eClient offers
document manipulation features. These include:

� Importing and deleting documents

� Check-in and check-out support for documents

� Re-indexing documents

� Changing document attributes

� Folder operation (for example, creating folders, adding documents to folders,
removing documents from folders)

� e-clipboard to support folder operations

� Versioning support

� Support for Content Manager document and folder note logs

All of the above features are available when connecting to Content Manager
Version 8 servers. When connecting to other content servers or previous

OnDemand Relational ContentManagerOther

Connectors

Content ServersContent Servers

Information Integrator for Content

IBM Websphere
Application Server

Web Server
Plugin

IBM HTTP ServerHTTP

eClient Application Server

OnDemand
Server

Federated
connector

EIP
SysAdmin

eClient_Server

Other
Content
Server

Other
Content
Server

DB2
Server

Content
Manager

14 eClient 101 Customization and Integration

versions of Content Manager servers, only some of the mentioned features may
be available.

Direct object retrieving is another key feature introduced in eClient Version 8.
With this retrieving method, the objects are retrieved directly to the end user from
Content Manager Version 8 servers. It bypasses the eClient server when
retrieving objects and therefore enhances performance. To take advantage of the
this great feature, you must:

� Set directRetrieveEnabled=true in the IDM.properties file to enable it.
� Use either launch or viewer applet for the MIME type in the

IDMadminDefaults.properties file.

Viewer applet is another important new feature introduced in eClient Version 8. It
is built on top of EIP Java Viewer Toolkit. When you retrieve a document from a
content server and choose to display it in a viewer applet, you can manipulate
annotations attached to the document.

eClient Version 8 also supports the Advanced Workflow in EIP Version 8 and the
document routing feature in Content Manager Version 8. When connecting to
Content Manager Version 8 servers, you can also usethe WebSphere Single
Sign-on feature.

The federated folder concept is introduced in eClient Version 8.2. A federated
folder is similar to a folder in Content Manager. It may contain documents and
folders. Entities contained in the federated folders could be from native content
servers or from other federated folders.

Other new features and feature enhancements are provided in eClient Version
8.2. One important enhancement is the eClient performance, which has been
improved dramatically.

 Chapter 1. Introducing Content Manager 15

16 eClient 101 Customization and Integration

Chapter 2. Installing eClient

This chapter provides detailed procedures for installing, configuring, and
verifying IBM DB2 Content Manager Version 8 eClient, and IBM DB2 Information
Integrator for Content Version 8 (EIP) on the Windows platform. Before starting
your installation, first read Chapter 1, “Introducing Content Manager” on page 3
and optionally read Chapter 5, “eClient architecture” on page 101. They will help
you understand the Content Manager product portfolio and the eClient
architecture for a successful installation.

This chapter covers the following topics:

� Installation overview

� Installing Information Integrator for Content Version 8 (EIP)

� Installing and configuring the Information Structuring Tool on WebSphere
Application Server

� Installing Content Manager Version 8 eClient

2

Note: The intent of this chapter is to lead you through a simple, first time
installation. For a more complex installation scenario, read Chapter 3,
“Installing eClient in a WebSphere Network Deployment environment” on
page 51.

© Copyright IBM Corp. 2003. All rights reserved. 17

2.1 Installation overview
In this installation overview section, we briefly discuss installation options for IBM
DB2 Content Manager Version 8 (Content Manager), IBM DB2 Information
Integrator for Content Version 8 (Information Integrator for Content, also known
as EIP) and IBM DB2 Content Manager Version 8 eClient (eClient), and the
eClient prerequisites.

We used the following products while preparing this chapter:

� Windows 2000 Server + Service Pack 3
� DB2 Universal Database™ V8.0 + Fix Pack 1
� WebSphere Application Server V5.0
� IBM HTTP Web Server V3.26
� Content Manager V8.2
� EIP V8.2
� eClient V8.2

2.1.1 Topology
There are many ways to configure Content Manager, EIP, and the eClient
system.

For a development environment, you may install all three products on the same
machine. Developers can have full control of their own system.

In a production environment, you may consider installing each product on a
separate machine. In this scenario, EIP connectors (either local or remote
connector) must be installed on the eClient machine.

To achieve the best performance, you may have a cluster of eClient servers. In
this setup, multiple eClient application servers run on multiple machines in a
WebSphere Application Server Network Deployment environment. This
configuration provides workload management that avoids a single point of failure.
For information on installing eClient in a WebSphere Application Server Network
Deployment environment, read Chapter 3, “Installing eClient in a WebSphere
Network Deployment environment” on page 51.

2.1.2 Prerequisites
Since eClient is a Web application, you must install WebSphere Application
Server on the same machine as eClient. A Web server is essential to run eClient
on the Internet or intranet. It is not necessary to install the Web server on the
same machine where eClient is installed.

18 eClient 101 Customization and Integration

In order to connect to different back-end servers such as Content Manager, EIP
connectors (and minimal EIP components) must be installed.

You can find a complete list of prerequisites for eClient installation in Chapter 2,
“Requirements” in IBM Content Manager for Multiplatforms/IBM Information
Integrator for Content: Installing, Configuring, and Managing eClient,
SC27-1350.

For our scenario, we have installed DB2 V8.1, DB2 TIE V8.1, WebSphere
Application Server V5.1, HTTP Web Server V3.26 and Content Manager server
V8.2 on the same machine.

2.2 Installing Information Integrator for Content Version 8 (EIP)
This section provides instructions for installing, configuring and verifying
Information Integrator for Content Version 8 (EIP) on a Windows platform. We
assume you have already installed Content Manager Version 8 on your machine.
If you have not done so, please refer to IBM Content Manager for Multiplatforms:
Planning and Installing Your Content Manager System, GC27-1332 for more
details.

2.2.1 Hardware and software requirements
When you follow the procedures provided in the following section to install EIP on
Windows, your should have the appropriate hardware and software.

Basic hardware requirement
The following is a list of basic hardware requirements for your EIP installation. In
order to follow our scenario, we assume you will install everything in one
machine.

� Processor: Intel Pentium® 800 MHz or equivalent

� RAM: minimum 512 MB, 1024 MB recommended

� Disk storage: 1 GB swap space, 400 MB install space, 10 MB temporary
space

Basic software requirement
The following is a list of basic software requirements for your EIP installation. In
order to follow our scenario, we assume you will install everything in one
machine.

� Operating system: Microsoft® Windows NT 4.0 Server with Service Pack 6 or
later, Windows 2000 Server, or Windows XP

� Network communication: TCP/IP installed with Windows

 Chapter 2. Installing eClient 19

� IBM DB2 Universal Database Version 8.1 with DB2 Application Development
Client

� Microsoft Visual C++ Version 6.0

� Java Development Kit, Version 1.3

� JDBC driver 1.3 (Java only)

� ODBC 3.0 (C++ only)

� Internet Explorer Version 5.0 or later

Software prerequisites verification
Use Table 2-1 as a quick reference to verify that your machine has the
prerequisite software and the appropriate versions.

Table 2-1 Basic software prerequisite verification

Prerequisite How to check Example value

1) Windows NT Service Pack
6

2) Windows 2000 Server
Service Pack 2

Winver 1) Version 4.0 (Build 1381: Service Pack
6)
2) Version 5.0 (Build 2195: Service Pack
2)

Java Development Kit V1.3 java -fullversion Version needs to read 1.3.1 (for example,
if you are using the version from
WebSphere Application Server, it will
read: java full version “J2RE 1.3.1
IBM Windows 32 build cn131w-20020403
ORB130“).

UDB EE V7.2 with Fix Pack 7
or higher

From the DB2 command
window: db2level

Level needs to read “SQL07025” or
greater with Fix Pack level of “WR21306”
or greater.

DB2 UDB Enterprise Server
Edition Version 8.1 with Fix
Pack 1

From the DB2 command
window: db2level

Level needs to read 1 SQL08010 or DB2
V8.1.1.27. The Fix Pack information
needs to read “FixPak 1” and list the Fix
Pack level (for example, “s021124” is the
Fix Pack that had been available since
November 24, 2002).

DB2 Text Information
Extender with Fix Pack 1

From the DB2 command
prompt: db2text start

1. CTE0185
2. CTE0001 Operation completed
successfully

20 eClient 101 Customization and Integration

For installing and updating prerequisites, refer to Chapter 4, “Installing and
updating prerequisite programs for Windows” in IBM Content Manager for
Multiplatforms: Planning and Installing Information Integrator for Content,
GC27-1345.

There are two different kind of connectors in EIP, local connector or remote
connector. If you choose to install local connectors on the same machine where
eClient will be installed, eClient can directly connect to a back-end server such
as the Content Manager server. If you choose not to use the local connectors,
you must install remote connectors. In this case, an RMI server will be required

Net Search Extender
(required if you use DB2
Version 8.1)

From the DB2 command
window, start the text
search program:
db2text start
Then type:
db2textlevel

CTE0350 Instance “DB2” uses DB2 Net
Search Extender code release “tx9_8”
with level identifier “ tx9_26a”

Tivoli® Storage Manager API
Client Version 4.2.1

c:\tsm\api\samprun\dapis
mp

API Library Version = 4.2.1.0

Tivoli Storage Manager
Server Version 4.2.1

Log on to the TSM server
administration Web page
http://<hostname>:1580,
Where <hostname> is the
name of the TSM server.

The version appears on the Web page. It
should say Version 4, Release 2, Level
1.0

1) WebSphere Application
Server AE 4.0.3
2) WebSphere Application
Server AES 4.0.3

Check the product.xml file
located in
x:\WebSphere \AppServer
\propers \com
\ibm\websphere.

<version>4.0.3</version>

Microsoft Visual C++
Compiler Version 6.0

Select Start -> Programs. 1) Microsoft Visual C++ 6.0
2) Microsoft Visual Studio 6.0

Microsoft Visual Studio .NET
Professional

At the command line, type
cl

Microsoft 32-bit C/C++ Optimizing
Compiler Version 13.00.94966 for
80x86 Copyright (C)Microsoft
Corporation 1984-2001.
All rights reserved.

Prerequisite How to check Example value

Important: EIP connectors are prerequisites of eClient. The eClient
installation process will fail if they are not installed.

 Chapter 2. Installing eClient 21

for connecting eClient to the Content Manager server. However, at the time of
writing, RMI server is not available for Content Manager Version 8.

2.2.2 Installing EIP
Complete the following steps to install Information Integrator for Content Version
8 (EIP):

1. Log on to the machine as a system administrator user.

2. Insert the EIP V8.2 CD into the CD-ROM drive.

3. On the EIP installation LaunchPad window, click Install.

4. Review the IBM software license agreement and click Accept.

5. On the next window, click Next to continue.

6. On the Select Machine Type window, select Development Workstation as
shown in Figure 2-1 on page 23 and click Next.

Note: For the best practice, we recommend that you create a user, such as
admin, and assign it to an administrator group. Then, you should log in as
user admin to install all products, including DB2, WebSphere Application
Server, Content Manager, EIP, and eClient.

22 eClient 101 Customization and Integration

Figure 2-1 Select machine type

When you select the Development Workstation option, you will have all
components to choose for installation. If you select the Server option, the
Connector toolkit and sample components are removed from the Component
Selection window. If you choose the Desktop Client option, the
Administration, Connector toolkit and sample components are removed from
Component Selection window. Also, the Information Mining server and IBM
Web Crawler subcomponents are removed from Features components.

7. On the Select Destination window, enter the installation directory, in our
scenario, c:\cmbroot, click Next.

8. On the Component Selection window, select the components and the
subcomponents as shown in Table 2-2 and Figure 2-2 on page 24. Click
Next.

Table 2-2 Select components to install

Component Subcomponent

Administration Administration database
Administration client

 Chapter 2. Installing eClient 23

The Feature component is optional for EIP installation. We select it in this
redbook because we will show you how to integrate Information Mining Service
with eClient in a later chapter.

There are two subcomponents for Information Mining Service under the Feature
component: the Information Mining Service server and the Information Mining
Service client. The Information Mining Service server component includes the
Information Mining Service client component.

Figure 2-2 Select components to install

Local connectors Content Manager V8 connector
Federated connector
Relational database connector

Feature Information mining server

Connector toolkits and samples Content Manager V8 connector
Federated connector
Relational database connector

Information center

Component Subcomponent

24 eClient 101 Customization and Integration

9. On the Specify RMI Host Name and Port Number window, specify the host
name and port number as shown in Table 2-3 and Figure 2-3. Click Next.

Table 2-3 Specify RMI host name and port number

Figure 2-3 Specify RMI host name and port number

There are two different RMI servers. One is used to connect to the EIP
administration database to content servers. The other one is used to connect
to the workflow and/or Information Mining Service server. The two RMI
servers can be on different machines or on the same machine. If you decide
to use local connectors to directly connect to the back-end server, RMI
servers are not used.

The default port numbers are 1919 and 1920. Use the following commands to
see a list of ports currently in use:

– Windows: netstat -an

RMI type Host name Port number

IBM DB2 Information
Integrator for Content
Version 8 administration
database

EIP_RMIserver (EIPserver
for our scenario)

1919

Workflow and/or
Information mining server

IM_RMIserver (EIPserver
for our scenario)

1920

 Chapter 2. Installing eClient 25

– AIX®, Linux, and Solaris: netstat -an | grep LISTEN

If you have conflicts with existing applications and services, you should
change the port number. Otherwise, take the default value on the System
Configuration window. Click Next.

10.Specify the location of your system configuration files on the System
Configuration window. The default is Local, as shown in Figure 2-4.

Note that the server configuration file can reside on the local machine, an
HTTP server, or a remote server.

For our scenario, we take the default location. Click Next.

Figure 2-4 Specify the location for your system configuration

11.On the next window, you may configure to use LDAP. For our scenario, we do
not configure the LDAP feature during installation. Click Next.

12.Enter the values in Table 2-4 on the Identify Administration Database window.
See Figure 2-5 on page 27. Click Next.

Table 2-4 Define IBM DB2 Information Integrator for Content Version 8 database

Field Value

Database name EIPDB

Schema name icmadmin

26 eClient 101 Customization and Integration

Figure 2-5 Identify EIP Administration Database

You enter EIP database information on this window. If you want to share the
same database for EIP, Content Manager and Information Mining Service,
you must enable unicode. It is required by Information Mining Service.

In a production environment, we recommend separated databases for EIP
and Content Manager. In our scenario, the EIP database is EIPDB, and the
Content Manager database is ICMNLSDB.

User icmadmin must be in the DBA group. By default, it is in the Windows
administrator group. User icmconct is used to connect to the EIP database if a
user is defined as an EIP user but not as a database user.

13.If you share the same database for Content Manager and EIP, you will
receive the message shown in Figure 2-6 on page 28. Click OK.

Database administration ID icmadmin

Password password

Database connection ID icmconct

Field Value

 Chapter 2. Installing eClient 27

Figure 2-6 Warning message for database sharing

14.If you are creating a new database for EIP, you will see the Select
Administration Database Options as the next window. Enter the location
where you want to have the database (C drive or D drive) and click Next.

15.On the Configure Federated Server Connection window, enter the values in
Table 2-5 and click Next. See Figure 2-7 on page 29.

Table 2-5 Configure federated server connection

Note: Unicode is enabled and the field is grayed out because Information
Mining Service feature is selected.

Field Value

Database name EIPDB

Schema name icmadmin

Authentication type Server

Password password

28 eClient 101 Customization and Integration

Figure 2-7 Configure federated server connection

On completion of the EIP installation, the information in this window will be
saved as a database entry in the $CMCOMMON\cmbds.ini file. By default, it
is in the c:\Program Files\IBM\Cmgmt\ directory.

When you log on to eClient or the EIP administration client, the entries in the
file cmbds.ini will be used to populate the EIP server list. Example 2-1 shows
database EIPDB entry in this file.

Example 2-1 Sample entries in cmbds.ini file

FEDSERVER=EIPDB
FEDSERVERREPTYPE=DB2
FEDSCHEMA=ICMADMIN
FEDSSO=FALSE
FEDDBAUTH=SERVER
FEDREMOTE=FALSE
FEDHOSTNAME=
FEDPORT=
FEDREMOTEDB=
FEDNODENAME=
FEDOSTYPE=

Database connection user ID icmconct and its password in Figure 2-7 will be
encrypted and saved in the $CMCOMMON\cmbfedenv.ini file. If you define a
new user user1 in the EIP administration client and it is not defined as the

 Chapter 2. Installing eClient 29

database user in the EIPDB database, when the new user user1 logs on to
the EIPDB server, user icmconct and its password in the cmnfedenv.ini file will
actually be used to connect to the EIPDB database.

16.The next window is the Configure Content Manager V8 Server Connection
window. Enter the values in Table 2-6 and click Next.

Table 2-6 Configure Content Manager server connection

On completion of the EIP installation, the information in this window will be
saved as a database entry in the $CMCOMMON\cmbicmsrvs.ini file. By
default, it is in the c:\Program Files\IBM\Cmgmt\ directory.

When you log on to eClient or the Content Manager administration client, the
entries in the cmbicmsrvs.ini file will be used to populate the Content
Manager server list. Example 2-2 shows the database ICMNLSDB entry in
this file.

Example 2-2 Sample content in cmbicmsrvs.ini file

ICMSERVER=EIPDB
ICMSERVERREPTYPE=DB2
ICMSCHEMA=ICMADMIN
ICMSSO=FALSE
ICMDBAUTH=SERVER
ICMREMOTE=FALSE
ICMHOSTNAME=
ICMPORT=
ICMREMOTEDB=
ICMNODENAME=
ICMOSTYPE=

17.Review your installation option and click Next to start copying files.

18.Select Yes, I want to restart my computer now when the installation is
completed.

Field Value

Database name EIPDB

Schema name icmadmin

Authentication type Server

Password password

Restriction: Notice that EIPDB is entered as the database name even if you
are configuring Content Manager V8 Server Connection. This is a temporary
restriction at the time of writing and is documented in the EIP Readme file.

30 eClient 101 Customization and Integration

2.2.3 Post-installation
Since you selected the Information Mining feature during the EIP installation, you
must enter EIPDB as the database name in step 16 on page 30 when you
configured Content Manager Version 8 server connection.

If you have a separate Content Manager Version 8 database that you want EIP to
connect to (in our scenario, it is icmnlsdb), you can run the EIP installation
program again and select only the ICMconnector. During this second
installation, you can specify a different database name in the Configure Content
Manager Version 8 Server Connection window. This second installation will
update the necessary configuration files.

Alternatively, you may add another database entry for DB2 Content Manager
server manually in the $CMCOMMON\cmbicmsrvs.ini file.

For our scenario, the EIPDB database entry has been added in the C:\Program
Files\ibm\Cmgmt\cmbicmsrvs.ini file after the installation. See Example 2-2 on
page 30. We have to add a database entry for icmnlsdb in the file. After adding
the second entry, the cmbicmsrvs.ini file should look similar to Example 2-3.

Example 2-3 Revised cmbicmsrvs.ini file

ICMSERVER=EIPDB
ICMSERVERREPTYPE=DB2
ICMSCHEMA=ICMADMIN
ICMSSO=FALSE
ICMDBAUTH=SERVER
ICMREMOTE=FALSE
ICMHOSTNAME=
ICMPORT=
ICMREMOTEDB=
ICMNODENAME=
ICMOSTYPE=
ICMSERVER=ICMNLSDB
ICMSERVERREPTYPE=DB2
ICMSCHEMA=ICMADMIN
ICMSSO=FALSE
ICMDBAUTH=SERVER
ICMREMOTE=FALSE
ICMHOSTNAME=
ICMPORT=
ICMREMOTEDB=
ICMNODENAME=
ICMOSTYPE=

If icmnlsdb is a remote database, you have to catalog it on the EIP server
machine.

 Chapter 2. Installing eClient 31

2.2.4 Configuring EIP
Information Integrator for Content Version 8 (EIP) has many configuration files.
We discuss two important ones in this section. If the contents of these two files
are inaccurate, you will not be able to connect to the content server.

cmbcs.ini file
This file indicates how EIP connects to different content servers. The options are
either through local connectors or through remote connectors. The sample
content of cmbcs.ini file is shown in Example 2-4.

Example 2-4 Sample content in cmbcs.ini file

FED=local
JDBC=local
DB2=local
DJ=local
DL=remote
ICM=local
TS=remote
QBIC=remote
IP=remote
DES=remote
DD=remote
OD=remote
IC=remote
V4=remote

For the rest of this redbook, we use local connector to connect to Content
Manager server V8.2 and EIP federated database server V8.2.

cmbclient.ini file
If you choose the remote connector for any back-end server in the cmbcs.ini file,
such as the OnDemand (OD) server in Example 2-4, the cmbclient.ini file
becomes essential. In this case, EIP relies on the RMI server to connect to the
OnDemand server, and RMI server information is defined in the cmbclient.ini file.

The cmbclient.ini file defines where the RMI server is running and what is the
port number for the RMI server. Example 2-5 shows the sample content of
cmbclient.ini file in our scenario. Note that in our scenario, the cmbclient.ini file is
irrelevant because we use the local connectors.

Example 2-5 Sample content in cmbclient.ini file

To point to an RMI server uncomment the lines below
and update the host and port number of the RMI server.
RemoteHost=EIPserver

32 eClient 101 Customization and Integration

RemotePort=1919

To start the EIP RMI server, select Start -> Programs -> Enterprise
Information Portal for Multiplatforms 8.2 -> Start RMI Server.

2.2.5 Verifying installation
After you have installed EIP components on the machine, you should verify the
connections to the content servers before installing eClient.

Verifying connections to Content Manager server V8.2
1. Open an EIP Development window by selecting Start -> Programs ->

Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window. All the necessary environment variables are set properly in this
window in order to compile and run EIP Java sample codes.

2. Run the command cd C:\CMBROOT\samples\java\icm.

3. Run the command javac SConnectDisconnectICM.java.

Note this command is case sensitive.

4. Run the java SConnectDisconnectICM icmnlsdb icmadmin password
command.

Note this command is case sensitive. In this command, icmnlsdb is the
Content Manager Library Server name for our scenario, and icmadmin and
password are the valid user ID and password in the Library Server. After
executing the command, you should have output similar to Example 2-6.

Example 2-6 Sample output of SConnectDisconnectICM.java

===
IBM Information Integrator for Content v8.2
Sample Program: SConnectDisconnectICM

Note: Since you installed EIP Information Mining Service components, you
can choose to connect to the Information Mining Service through a remote
connector. In this case, you have to define Information Mining Service RMI
server information in the cmbsvclient.ini file.

For our scenario, the local connector is used to connect to the Information
Mining Service.

To start the Information Mining Service RMI server, select Start -> Programs
-> Enterprise Information Portal for Multiplatforms 8.2 -> Start RMI
Server.

 Chapter 2. Installing eClient 33

 Database: icmnlsdb
 UserName: icmadmin
===
Connecting to datastore (Database 'icmnlsdb', UserName 'icmadmin')...
Connected to datastore (Database 'icmnlsdb', UserName 'icmadmin').
Disconnecting from datastore & destroying reference...
Disconnected from datastore & destroying reference.

==
Sample program completed.
==

5. If the sample code failed to connect to the Content Manager server, you
should check the Java error in the command window as well as the log file
dklog.log. The dklog.log is the EIP log file; you can find it in the current
working directory. In our scenario, the log file is in the
C:\CMBROOT\SAMPLES\java\icm directory.

You should also check the cmbcs.ini and cmbclient.ini files and ensure that
the contents are accurate. If you use remote connectors for any content
server, make sure that RMI server is running.

Verifying connections to EIP federated database server V8.2
1. Open an EIP Development window by selecting Start -> Programs ->

Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window. All the necessary environment variables are set properly in this
window in order to compile and run EIP Java sample codes.

2. Run the command cd C:\CMBROOT\samples\java\fed.

3. Run the command javac TConnectFed.java.

Note this command is case sensitive.

4. Run the command java SConnectDisconnectICM eipdb icmadmin password.

Note this command is case sensitive. eipdb is the EIP database server name
for our scenario, and icmadmin and password are the valid user ID and
password. After executing the command, you should see output similar to
Example 2-7.

Example 2-7 Sample output of TConnectFed.java

C:\CMBROOT\SAMPLES\java\fed>java TConnectFed eipdb icmadmin password
 *** connecting to datastore : eipdb
 *** datastore connected ***
user icmadmin dsName eipdb
datastore disconnected
user icmadmin dsName eipdb

34 eClient 101 Customization and Integration

5. If the sample code failed to connect to the EIP server, you should check the
Java error in the command window as well as the log file dklog.log. The
dklog.log is the EIP log file; you can find it in the current working directory. In
our scenario, the log file is in C:\CMBROOT\SAMPLES\java\fed.

You should also check the cmbcs.ini and cmbclient.ini files and ensure that
the contents are accurate. If you use remote connectors for any content
server, make sure that RMI server is running.

Verifying installation of the Information Mining Service
1. Open the Windows Services window and find the entry DB2EXT - DB2

service.

2. Open an EIP Development window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window. All the necessary environment variables are set properly in this
window in order to compile and run EIP Java sample codes.

3. If the DB2EXT - DB2 service is not started in Window Services window, run
the command db2text start in the EIP Development window.

4. Run the command cd C:\CMBROOT\ikf\bin\tools in the EIP Development
window.

5. Run the command run eipdb icmadmin password in the EIP Development
window. eipdb is the EIP database for our scenario. You should have output
similar to Example 2-8.

Example 2-8 Sample output of the Information Mining Service installation verification

connected to eipdb as icmadmin
catalog created
document filter finished
language identifier finished (en)
searching (waiting up to 6 minutes for index update)
result retrieved (PID1)
catalog deleted
cleanup finished

If the sample code failed, check the Java error on the command window as well
as in the log file dklog.log. The dklog.log file is the EIP log file; you can find it in
the current working directory. You might also check the Library Server log file. By
default, the file is C:\ICMSERVER.LOG.

 Chapter 2. Installing eClient 35

2.3 Installing and configuring the Information Structuring Tool on
WebSphere Application Server

The Information Structuring Tool (IST) is a Web application that is required for the
Information Mining Service. If you are going to work with the Information Mining
integration described in later chapters of this redbook, IST is required.

Complete the following steps to install and configure the Information Structuring
Tool in the WebSphere Application Server V5.0 environment:

1. Start the WebSphere Application Server:

a. Open a command window.

b. Run the command cd C:\WebSphere\AppServer\bin.

c. Run the command startServer server1.

2. Identify <Cell>, <Node> and <AppServer> in WebSphere Application Server:

a. Open Windows Explorer.

b. Expand the directory structure
C:\WebSphere\AppServer\config\cells\EIPserver\nodes\EIPserver\servers
\server1.

The cells directory contains available cells in WebSphere Application
Server. In our scenario, EIPserver is the cell. The nodes directory contains
a list of nodes in WebSphere Application Server. In our scenario,
EIPserver is also the node. The servers directory contains a list of server
on a node.

3. Set up a shared library in WebSphere Application Server with the necessary
environment settings:

a. Open the C:\CMBROOT\ikf\IST\bin\SetupIMEnv.cmd file in a file editor.

b. Verify that all directories in this file match your installation directories,
including, for example, WebSphere Application Server, EIP, and DB2. If
necessary, make changes and save the file.

a. Open a command window.

b. Run the command cd C:\WebSphere\AppServer\bin.

c. Run the command C:\CMBROOT\ikf\IST\bin\SetupIMEnv <Cell> <Node>
<AppServer>

Recommendation: To successfully execute Information Mining sample codes
in this redbook, you should have at least 1 GB physical memory and 2 GB
virtual memory.

36 eClient 101 Customization and Integration

Where <Cell> is the name of the WebSphere Application Server
administrative cell, <Node> is the name of WebSphere Application Server
node where the Information Structuring Tool is installed, and <AppServer>
is the application server (on <Node>) where the Information Structuring
Tool is installed.

In our scenario, we use the command

C:\CMBROOT\ikf\IST\bin\SetupIMEnv EIPserver EIPserver server1

The output is shown in Example 2-9.

Example 2-9 Sample output of SetupINEnv command

C:\WebSphere\AppServer\bin>C:\CMBROOT\ikf\IST\bin\SetupIMEnv EIPserver
EIPserver server1
WASX7209I: Connected to process "server1" on node EIPserver using SOAP
connector; The type of process is: UnManagedProcess
SetupIMEnv completed successfully.

4. Deploy the Information Structuring Tool via the WebSphere Application
Server Administrative Console:

a. Launch a WebSphere Application Server Administrative Console by
selecting Start -> Programs -> IBM WebSphere -> Application Server
v5.0 -> Administrative Console.

b. In the Navigation pane on the left, select Applications -> Install New
Application.

c. Set the values of the fields as in Table 2-7. Click Next.

Table 2-7 Deploying the Information Structuring Tool

d. On the next window, select Default virtual host name for web modules
for the Virtual Host field.

e. Click Next four times until you are in the Install New Application, Step 4:
Summary window.

f. Click Finish. The WebSphere Application Server starts to install the
Information Structuring Tool and the output is shown in Example 2-10 on
page 38.

Note: The <Cell>, <Node> and <AppServer> are all case sensitive.

Field Value

Local path C:\CMBROOT\ikf\IST\IST.war

Context root /webApps/IST (it must end in /IST)

 Chapter 2. Installing eClient 37

Example 2-10 Sample output of installing Information Structuring Tool

Installing...

If there are EJB's in the application, the EJB Deploy process may take several
minutes. Please do not save the configuration until the process is complete.

Check the SystemOut.log on the Deployment Manager or Server where the
application is deployed for specific information about the EJB Deploy process
as it occurs.

ADMA5005I: Application IST_war configured in WebSphere repository

ADMA5001I: Application binaries saved in
C:\WebSphere\AppServer\wstemp\db2admin\workspace\cells\EIPserver\applications\I
ST_war.ear\IST_war.ear

ADMA5011I: Cleanup of temp dir for app IST_war done.

ADMA5013I: Application IST_war installed successfully.

Application IST_war installed successfully.

g. On the WebSphere Application Server menu bar, click Save. Click Save
again in the Save window.

h. In the Navigation pane on the left, select Applications -> Enterprise
Applications and select IST_war.

i. On the Configuration tab, set the values of the fields as in Table 2-8 and
leave the rest of fields at the defaults.

Table 2-8 Configuring enterprise application IST_war

j. Click Apply.

k. Select Libraries under Additional Properties at the bottom of the window.

l. Click Add.

m. Select InformationMiningEnvironment from the Library Name
drop-down list.

n. Click OK.

o. On the WebSphere Application Server menu bar, click Save. Click Save
again in the Save window.

Field Value

Enable Distribution False

Reload Enabled False

38 eClient 101 Customization and Integration

5. In the Navigation pane on the left, select Environment -> Update Web
Server Plugin.

6. Click OK to update the Web server plug-in.

7. Stop the WebSphere Application Server:

a. Open a command window.

b. Run the command cd C:\WebSphere\AppServer\bin.

c. Run the command stopServer server1.

8. Run the command C:\CMBROOT\ikf\IST\bin\ISTconfig.cmd:

a. Open the C:\CMBROOT\ikf\IST\bin\ISTconfig.cmd file in a file editor.

b. Verify that all directories in this file match your installation directories,
including, for example, WebSphere Application Server, EIP and DB2. If
necessary, make changes and save the file.

c. Open a command window.

d. Run the command cd C:\CMBROOT\ikf\IST\bin to switch to the IST source
directory.

e. Run the command ISTconfig <WAS_HOME> <Node>

If <WAS_HOME> contains spaces, use quotes around it. If you are prompted
whether files should be replaced, enter YES.

In our scenario, we use the command:

ISTconfig C:\WebSphere\AppServer EIPserver

Example 2-11 shows the command output.

Example 2-11 Sample output of ISTconfig command

C:\CMBROOT\ikf\IST\bin>ISTconfig C:\WebSphere\AppServer EIPserver
Configuring IST found under
 C:\WebSphere\AppServer\installedApps\EIPserver\IST_war.ear\IST.war...
Overwrite
C:\WebSphere\AppServer\installedApps\EIPserver\IST_war.ear\IST.war\applets.
jar (Yes/No/All)? y
C:\CMBROOT\ikf\IST\applets.jar
1 File(s) copied
Overwrite
C:\WebSphere\AppServer\installedApps\EIPserver\IST_war.ear\IST.war\clientUp
load.jar (Yes/No/All)? y
C:\CMBROOT\ikf\IST\clientUpload.jar
1 File(s) copied

Note: <Node> is case sensitive.

 Chapter 2. Installing eClient 39

Overwrite
C:\WebSphere\AppServer\installedApps\EIPserver\IST_war.ear\IST.war\clientTr
ee.jar (Yes/No/All)? y
C:\CMBROOT\ikf\IST\clientTree.jar
1 File(s) copied
IST configuration completed successfully.

9. By default, the IST uses icmnlsdb as the EIP database. Because we use
EIPDB as the EIP database in our scenario, we need to change the
appropriate parameter:

a. Switch to the directory where the IST configuration has been deployed:
<WAS_HOME>\config\cells\<Node>\applications\IST_war.ear\deployment
s\IST_war\IST.war\WEB-INF>.

In our scenario, it is
C:\WebSphere\AppServer\config\cells\EIPserver\applications\IST_war.ear
\deployments\IST_war\IST.war\WEB-INF.

b. Open the file web.xml. Be sure to back up the file before making changes.

c. Replace icmnlsdb with EIPDB.

d. Save the file.

10.Restart the WebSphere Application Server.

11.To launch the Information Structuring Tool:

a. Open a browser.

b. Enter the URL http://localhost/<WebPath>/login.html.

In our scenario, since we use /webApps/IST as the <WebPath>, the URL is
http://localhost/webApps/IST/login.html.

c. Enter icmadmin and password to log in.

d. The Information Structuring Tool home page is displayed.

40 eClient 101 Customization and Integration

2.4 Installing Content Manager Version 8 eClient
This section provides instructions for installing, configuring and verifying IBM
DB2 Content Manager Version 8 eClient on a Windows platform.

If you have already installed Content Manager and Information Integrator for
Content on your machine, your machine should have all the prerequisites
required for installing eClient. For eClient hardware and software requirements,
refer to Chapter 2, “Requirements” in IBM Content Manager for Multiplatforms /
IBM Information Integrator for Content: Installing, Configuring, and Managing
eClient, SC27-1350.

Tip: If you receive the error message:

Your current security settings prohibit running ActiveX controls on this
page. As a result, the page may not display correctly.

while launching the Information Structuring Tool, most likely you do not have
Java plug-in installed on your browser. Do the following:

1. Go to http://java.sun.com/products/plugin and download the Java
plug-in, for example, Version 1.4.1_02.

2. Close all browsers.

3. Install the Java plug-in.

4. Open a browser and launch the Information Structuring Tool.

If you receive the error message Loading Java Applet Failed in the browser
status bar while launching the Information Structuring Tool, make sure that
you are not using a SOCKS proxy server. To turn off the SOCKS proxy server
in Internet Explorer:

1. Select Tools -> Internet options from menu bar.

2. Open the Connections tab.

3. Click the LAN Settings button.

4. Unselect Use a proxy server.

5. Close all browsers.

6. Open a browser and launch the Information Structuring Tool.

 Chapter 2. Installing eClient 41

2.4.1 Preparing for installation
The eClient installation procedure will automatically deploy the eClient
application server in WebSphere Application Server. In order to ensure
successful deployment, make sure WebSphere Application Server is in the
proper status at the time of installation depending on the version of the
WebSphere Application Server you are using:

� If you are using WebSphere Application Server AES V4.05, stop any
WebSphere Application Server server that is running.

� If you are using WebSphere Application Server AE V4.05, the WebSphere
Application Server administration server (AE) service in a Windows Control
Panel must be running.

� If you are using WebSphere Application Server V5.0, the WebSphere
Application Server administration server (server1) must be started.

2.4.2 Installing eClient
Complete the following steps to install eClient:

1. Log on to the machine as a system administrator user.

2. Make sure that your WebSphere Application Server is in the proper status.
For more details, see 2.4.1, “Preparing for installation” on page 42.

If the WebSphere Application Server has an incorrect status, eClient
installation process may not be able to successfully deploy the eClient
application server.

3. Insert the eClient V8.2 CD into the CD-ROM drive.

4. On the eClient installation LaunchPad window, click Install.

5. Click Next on the Welcome window.

6. Select a language and click Next.

7. Enter the installation directory. This is C:\CMeClient for our scenario. Click
Next.

Note: It is best practice to create a user, such as admin, and assign it to the
system administrator group on the machine right after the operating system is
installed. Then, you should log in as user admin to install all products,
including DB2, WebSphere Application Server, Content Manager, EIP, and
eClient.

42 eClient 101 Customization and Integration

8. If you have not installed EIP connectors, you will received error message and
the installation process is stopped. See 2.2.2, “Installing EIP” on page 22 for
connector installation instruction.

9. After reviewing installation options, click Next to start copying files.

10.Select Content Manager Version 8.2 as shown in Figure 2-8 and click Next.

Depending on what you select on this window, the installation will display
different windows for you to configure various content servers. For our
scenario, we will connect to the Content Manager V8.2 server.

Figure 2-8 Select server to connect

11.On the next window, shown in Figure 2-9 on page 44, enter the location of the
cmbicmsrvs.ini file. The default location is C:\Program
Files\IBM\CMgmt\cmbicmsrvs.ini on your local machine.

Note the server configuration file can reside on the local machine, an HTTP
server, remote server, or LDAP server. eClient uses the cmbicmsrvs.ini file to
populate the Content Manager server list on the logon window.

Click Next.

 Chapter 2. Installing eClient 43

Figure 2-9 Specify the location for cmbicmsrvs.ini file

12.If you want the installation process to deploy the eClient application server,
click Next in the window shown in Figure 2-10 on page 45. If you prefer to
manually deploy it later, click Cancel.

In order to successfully deploy eClient application server, your WebSphere
Application Server must be in the proper status. Find details in 2.4.1,
“Preparing for installation” on page 42.

44 eClient 101 Customization and Integration

Figure 2-10 Automatically deploy in WebSphere Application Server

13.On the next window, enter the WebSphere Application Server administrator
user name and password if you have enabled the security feature in
WebSphere Application Server. Otherwise, you do not have to enter data on
this window.

Click Next to deploy the eClient Web application server. Be patient, since it
may take few minutes.

14.After the eClient application server is deployed successfully, the next window
displays important information:

a. To start WebSphere Advanced Single Server with the integrated eClient
application installed, run startIDMAES.bat which is located in the eClient
save directory.

If you are using WebSphere Application Server AES V4.05 or WebSphere
Application Server V5.0, startIDMAES.bat is the command to start the
eClient application server. If you are using WebSphere Application Server
AE V4.05, you need to start WebSphere Application Server in the
Windows Services window.

In our scenario, we use WebSphere Application Server V5.0. The
startIDMAES.bat file is in C:\CMeClient\Save directory.

 Chapter 2. Installing eClient 45

b. To launch the eClient application, the URL is
http://<hostname>/eClient82/IDMInit. This leads you to the eClient
logon window.

15.Click Next.

16.Click Finish.

2.4.3 Configuring eClient
We discuss two of the eClient configuration files in the following sections:
IDM.properties and IDMadminDefaults.properties. These two files control which
features are available to end users and how documents are retrieved and
displayed in eClient. In addition, we cover enabling the viewer applet.

IDM.properties file
The IDM.properties file is in the C:\CMeClient directory. This file controls what
features are enabled or disabled for eClient. Changes made in the file take effect
the next time the eClient property daemon checks the properties. If you have
disabled the property daemon, you must restart the eClient application server to
make the changes effective.

For example, to have the following four menu options on your eClient home page:

� Search
� Import
� Worklists
� Create Folder

you must set the parameters in the IDM.properties file as in Example 2-12. By
default, the search capability is assigned to everybody.

Example 2-12 Enabling importing, worklist and creating folder capability

workFlowEnabled=true
importSupported=true
CreateFolderEnabled=true

For a list of sample parameters in the IDM.properties file, see Table 2-9 on
page 47.

46 eClient 101 Customization and Integration

Table 2-9 Parameter description in IDM.properties file

Parameter Description

TraceLevel 0 = tracing off.
1 = exceptions and errors.
2 = level 1 with general info, method entry/exit points.
3 = level 2 with API calls.
4 = level 3 with EIP non-visual bean tracing.
5 = performance tracing.

WorkingDir Logging, tracing, and data conversion directory.

CacheDir Storage area for document caching.

ImageURL Path for the JSP images

MaxResults Maximum search results displayed per screen.
Default is 10.

TotalMaxResults Maximum search results retrieved from the server per
search criteria.
Default is -1 for all hits.

cmbCC2MimeURL Location of the cmbcc2mime.ini file consisting of the
content classes associated with a MIME type.

CsIniURL Location of the cmbcs.ini configuration file for the EIP
connectors.

ClientIniURL Location of the cmbclient.ini file that defines the RMI
server.

cmbsvclient Location of the cmbsvclient.ini file that defines the
workflow RMI server.

ICMServersURL Location of the CM V8 server initialization file.

ConnectionType 0 = local, 1 = remote, 2 = dynamic.

max_import_file_size Maximum file size allowed during import.
Default is 2 MB.

workFlowEnabled Enable/disable the workflow functionality.
Default is false.

checkInOutEnabled Enable/disable check in/out capabilities.
Default is false.

reIndexEnabled Enable/disable reindexing of documents.
Default is false.

emailEnabled Enable/disable email support.
Default is false.

 Chapter 2. Installing eClient 47

IDMadminDefaults.properties file
The IDMadminDefaults.properties file controls how eClient displays objects
retrieved from content servers. For each supported MIME type, you can specify
one of three options:

� Applet: Use the new eClient applet viewer.

� Don’t launch: Force a file conversion on the eClient application server to a
rendered type that can be handled by the browser.

� Launch: Launch the third-party application as viewer.

If you choose launch for a MIME type, you can select which application you use
to view the retrieved objects. This is controlled by the file extensions in the
IDMadminDefaults.properties file. In a Windows operating system, a MIME type
is associated with a file extension and an application. Example 2-13 on page 49
shows a sample IDMadminDefaults.properties file.

viewerAppletEnabled Enable/disable Applet Viewer.
Default is false.

importSupported Enable/disable import.
Default is false.

CreateFolderEnabled Enable/disable create folders.
Default is false.

directRetrieveEnabled Enable/disable direct retrieve from V8 Resource
Manager.
Default is true.

displayServerType Display the server type with the server name on the logon
page.

preferred_scale Set the preferred scale for the document. A scale of 1.0
represents the actual size of 100%.

enhance_mode Disable/enable image enhanced mode for the document
viewer. This value does not apply to the viewer applet

enable_search_arguments Repopulate search values on search jsps

SortChildAttributeValues Disable/enable sorting of child attribute values within an
item.

createFedFolderEnabled Specifies if creation of federated folders is enabled.

ICMDisplayOrderEnabled Specifies if attribute columns in search results page will
be aligned by the order defined in ICM servers.

Parameter Description

48 eClient 101 Customization and Integration

Example 2-13 Sample IDMadminDefaults.properties file

application/pdf=launch
text/plain=don't launch
image/tiff=applet
image/gif=don't launch
image/jpeg=don't launch
text/html=launch
video/x-ibm-ivs=launch

Format: [MIME_TYPE].extension={ preferred extension for the document type }

application/pdf.extension=pdf
application/vnd.ibm.modcap.extension=mda
audio/basic.extension=wav
audio/mpeg.extension=mp3
image/gif.extension=gif
image/jpeg.extension=jpg
image/tiff.extension=tif
text/html.extension=htm
text/plain.extension=txt
text/xml.extension= xml
video/x-ibm-ivs.extension=ivs

Enable viewer applet
Using a viewer applet enables users to perform actions such as annotation
editing, rotation, zooming, and printing on retrieved documents. Enabling a
viewer applet may improve performance if users frequently view large
documents, view many documents per login session, or frequently manipulate
the retrieved documents.

To enable the viewer applet, set the viewerAppletEnabled parameter to true, and
use the IDMadminDefaults.properties file to set the display option to applet, as
described in “IDMadminDefaults.properties file” on page 48.

A Java plug-in is also required to run the viewer applet. The plug-in might not be
installed on the viewing machine. For Windows, specify the location from which
the plug-in is automatically installed by Microsoft Internet Explorer or Netscape
Navigator in the plugin_exe and plugin_page parameters, respectively. The
default values for these parameters point to a JavaSoft Web site. You can change
these default values for performance reasons, or to prevent your users from
retrieving this plug-in from outside your firewall. For AIX and Solaris, you should
install the Java plug-in Version 1.3.1 prior to running the eClient.

 Chapter 2. Installing eClient 49

2.4.4 Verifying eClient installation
After you have installed eClient, configured the eClient application server and the
Web server plug-in, you can access eClient via
http://<hostname>/eClient82/IDMInit.

1. Start the eClient application server by running
C:\CMeClient\Save\startIDMServer.bat.

Remember that we are using WebSphere Application Server V5.0. If you are
using WebSphere Application Server AES V4.05, use the same command to
start the eClient application server. If you are using WebSphere Application
Server AE V4.05, you must have the WebSphere Application Server
administration service running and start the eClient application server in the
WebSphere Application Server Administration Console.

2. Open a browser.

3. Enter http://<hostname>/eClient82/IDMInit. If you do not have Web server
or the Web server plug-in is not configured properly, you can alternatively use
http://<hostname>:9080/eClient82/IDMInit (assuming eClient is using port
9080). In this case, the HTTP request from the browser bypasses Web server
and goes directly to the eClient application server.

4. You should see the eClient logon window as shown in Figure 2-11.

Figure 2-11 eClient logon window

This concludes the eClient installation verification.

50 eClient 101 Customization and Integration

Chapter 3. Installing eClient in a
WebSphere Network
Deployment environment

This chapter provides detailed procedures for installing and configuring eClient in
a WebSphere Application Server Network Deployment environment on the
Windows platform. Before starting your installation, read Chapter 1, “Introducing
Content Manager” on page 3 and optionally read Chapter 5, “eClient
architecture” on page 101. They will help you understand Content Manager
product portfolio and the eClient architecture for a successful installation.

This chapter covers the following topics:

� Installing HTTP Web server
� Installing WebSphere Network Deployment
� Configuring WebSphere Network Deployment
� Installing EIP
� Installing eClient
� Creating eClient cluster server
� Configuring HTTP Web server
� Monitoring workload balance

3

© Copyright IBM Corp. 2003. All rights reserved. 51

3.1 Introduction
If a small group of users needs to access the eClient server, a single Web server
(HTTP server) and a single WebSphere Application Server are used. The simple
installation and configuration discussed in Chapter 2, “Installing eClient” on
page 17 should serve well.

If a large group of users needs to access the eClient server, an eClient server
with a single HTTP server and a single WebSphere Application Server do not
have enough process power to serve everyone. In this case, you may need a
cluster of HTTP server, or a cluster of WebSphere Application Server, or both,
depending on where the bottleneck is. Optionally, you may also consider having
multiple Resource Managers for the Content Manager system.

3.1.1 Introducing the scenario
In this chapter, we show you how to install and configure a system with one
HTTP server and a cluster of eClient servers with two members. If you follow all
the procedures in this chapter, upon completion of the chapter, you should have
a system similar to the one shown in Figure 3-1 on page 53.

Note: This chapter focuses on a more complex eClient installation. For a
simple, first-time installation, read Chapter 2, “Installing eClient” on page 17.

52 eClient 101 Customization and Integration

Figure 3-1 Scenario diagram

The configuration consists of the following:

� An HTTP Web server on machine cm01 with the proper Web server plug-in
file for the eClient cluster server in the WebSphere Network Deployment.

� A WebSphere Application Server Network Deployment environment on
machine cm02 with two node in the cell. One node is on machine cm02 and
the other one is on machine cm04.

� An eClient cluster server created in the WebSphere Network Deployment
environment. It has two cluster members. One is on node cm02 and the other
is on node cm04.

� A Content Manager server that has been preinstalled and preconfigured on
machine cm03. Since the Content Manager configuration is outside the scope
of this redbook, we do not cover it here.

3.1.2 What is WebSphere Network Deployment?
In this chapter, we use WebSphere Application Server Network Deployment to
implement the cluster application server for eClient.

WebSphere Application Server Network Deployment is designed to add
non-programming enhancements to the features provided in the base
WebSphere Application Server configuration. These enhancements allow you to
run applications on multiple servers and on multiple physical nodes.

cm04 node

cm02
Network Deployment

cm01

HTTP/
Request

II
NN
TT
EE
RR
NN
EE
TT

HTTP
Server

Cluster server

eClient_Server

eClient_Server

ContentContent
ManagerManager
ServerServerWeb

server
plugin

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 53

Network Deployment provides scalability, performance, availability and
centralized management for IBM WebSphere Application Server Enterprise. A
Network Deployment environment consists of multiple WebSphere Application
Server V5.0 nodes grouped into a single administrative domain.

IBM WebSphere Application Server Network Deployment provides three types of
workload management (WLM):

� Web server WLM: Use the Load Balancer feature from Edge Components as
an IP sprayer to distribute HTTP requests across Web servers.

� Web server plug-in WLM: Distribute servlet requests across Web containers.

� Enterprise Java Services (EJS) WLM: Distributes EJB requests across EJB
containers.

Along with the workload management feature, the Webpshere Application Server
Network Deployment also provides failover support. The application may
continue to process client requests when one of the servers is stopped or
restarted.

3.2 Installing HTTP Web server
To demonstrate the concept clearly, we install the HTTP Web server on a
different machine other than where the WebSphere Application Server and
Network Deployment are installed. The HTTP Web server and its plug-in are
installed on machine cm01 for our scenario.

Complete the following steps to install HTTP Web server on the Windows
platform:

1. Log on as an administrator user to the machine where the HTTP server is
installed.

2. Insert the IBM WebSphere Application Server V5 CD into the CD-ROM drive.
This CD-ROM also contains the IBM HTTP Server and its plug-in.

3. Open a Windows Explorer, and switch to the \NT directory on the CD.

4. Double-click LaunchPad.bat to start the install.

5. Select a language for the LaunchPad and click OK.

6. Review the Readme file and installation guide.

7. Click Install the product.

8. Select a language to be used for the installation and click OK.

9. On the Welcome window, click Next to continue.

54 eClient 101 Customization and Integration

10.Accept the license agreement and click Next.

11.The installation will verify that your system has the required prerequisites.

12.Select Custom for the installation type and click Next to continue.

13.On the next window, a list of features to install is displayed. Since we will
install and run only HTTP Web server on this machine (cm01), select the
following entries from the list:

– IBM HTTP Server Version 1.3.26
– Web Server Plugin for IBM HTTP Server

14.Select Next to continue.

15.Enter the directories to be used for the IBM HTTP Server and Web server
plug-in installation. In our scenario, it is C:\IBMHttpServer. The WebSphere
installation directory is used to hold the Web server plug-in and the
installation log files.

16.Click Next to continue.

17.If you choose to install the HTTP server as a Windows service, you are
prompted to provide a user ID and password for starting and stopping the
HTTP Server service.

18.Click Next.

19.Review the information in the Summary window.

20.Click Next to begin copying the files.

21.Register the product.

22.Click Finish to complete the installation.

Verification
To verify if the installation has completed successfully, follow these steps:

1. Start IBM HTTP Administration 1.3.26 and IBM HTTP Server 1.3.26 services
in the Windows Control Panel.

2. Open a browser and enter http://localhost.

3. If the IBM HTTP Server home page is displayed, your installation is
successful.

3.3 Installing WebSphere Network Deployment
A Network Deployment configuration includes support for multiple nodes, each
with a node agent process and several application servers, all coordinated within
an administrative cell by the Deployment Manager process. Clusters of

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 55

load-balanced application servers can be configured within a Network
Deployment cell.

The configuration and application binaries of all components in the cell are
managed by the Deployment Manager and synchronized out to local copies on
each of the nodes.

A cell is a group of nodes in a single administrative domain. Each node is
identified by a logical name for configuration purposes. The configuration and
application binaries of all nodes in the cell are centralized in a cell master
configuration repository. This centralized repository is managed by the
Deployment Manager process and synchronized out to local copies held on each
of the nodes.

3.3.1 Installing WebSphere Application Server
A Network Deployment environment consists of multiple WebSphere Application
Server V5 nodes grouped into a single administrative domain. On each node in
the cell, you need to install WebSphere Application Server.

Follow the normal installation procedure (the same instruction that is used if the
Network Deployment configuration is not involved) to install WebSphere
Application Server on each node. This should be done for each node in the cell
before you start installing the WebSphere Application Server Network
Deployment.

Since the system will be quite complicated after everything is installed and
configured, you should consider doing verification after each installation. This
helps you to isolate and catch any problems in the early stages.

Follow these steps to verify the WebSphere installation:

1. Open a command window.

2. Run the command cd C:\WebSphere\ApServer\bin.

3. Run the command serverStatus -all to check the server’s running status.

4. Run the command startServer server1 to start it if server1 is not running.

5. Open a browser and enter http://localhost/snoop.

6. If you fail to display the servlet page, you should refer to the WebSphere
troubleshooting procedure to fix the problem.

For our scenario, we have two nodes in the cell. One of them resides on machine
cm02. The other one is on cm04.

56 eClient 101 Customization and Integration

3.3.2 Installing WebSphere Network Deployment
You may install WebSphere Application Server Network Deployment on separate
machines or on the same machine where one of your nodes in the cell resides.

For our demonstration, we chose the latter option. We will install the WebSphere
Application Server Network Deployment on the machine cm02 that has one of
the two nodes in the cell.

Complete the following steps to install WebSphere Network Deployment on a
Windows platform:

1. Log on as an administrator user to the machine where you will install the
WebSphere Network Deployment.

2. Insert the Network Deployment CD. Note that the Network Deployment CD is
not included in the Content Manager package. You need to purchase it
separately.

3. Start the installation by clicking LaunchPad.bat in the \NT directory.

4. Select a language for the LaunchPad and click OK.

5. Review the Readme file and the installation guide.

6. Click Install the product.

7. Select a language to be used for the installation, and select OK.

8. Click Next on the Welcome window.

9. The License Agreement window appears. After reading the License
Agreement, accept the agreement and click Next.

10.If you have installed a previous version of WebSphere Application Server, you
have the opportunity to select alternate ports. For our scenario, the default
port number is used. Click Next to continue.

11.Once the installation wizard confirms that all prerequisites have been met, or
you elect to ignore the missing prerequisites, the wizard continues.

If you are missing any prerequisite, a list of what is missing appears. You
should stop at this point and bring the system up to the required level. If you
choose to continue, the installation wizard continues.

12.The features that are available for installation are displayed on the next
window. See Figure 3-2 on page 58. Take the default and click Next.

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 57

Figure 3-2 Select WebSphere Network Deployment installation components

13.Enter the installation directory, such as C:\WebSphere\DeploymentManager,
verify that you have enough free space on your hard disk, and click Next.

14.On the next window, enter a WebSphere Application Server node name,
network host name, and cell name for your installation. See Figure 3-3 on
page 59.

The node name must be unique in the cell. If you select a name that is not
unique, the install continues, but you will have problems later when you
attempt to add the node to the cell.

58 eClient 101 Customization and Integration

Figure 3-3 Enter a WebSphere Application Server node name

15.Click Next.

16.You may choose to run WebSphere Application Server Network Deployment
as a service on your Windows system. If you choose to do so, enter a user ID
and password to start the Deployment Manager service.

17.if the user who is doing the installation does not have adequate access
privileges, you may receive the warning “INST0056E: The user name and
password specified cannot be validated due to insufficient privileges
of the current user. The privileges have been given, but will not
take effect until the next login”. Click OK to continue.

18.Review your installation option and click Next to start installation process.

19.Click Next to register the product.

20.Click Finish to complete the installation.

3.3.3 Verification
After the installation completes, First Steps is launched automatically. From this
window, you can view the InfoCenter, start and stop the Deployment Manager,
run the installation verification tests, and access the Administrative Console.

Click Verify Installation in the First Steps window. First Steps launches the
verification program. If everything is successfully installed, you will see the
messages shown in Example 3-1 on page 60.

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 59

Example 3-1 Output of verification program

OS: Windows 2000
locale: en_US
hostname: WASND
cmd.exe /c "C:\WebSphere\DeploymentManager\bin\ivt"
IVTL0095I: defaulting to host CM02 and port 9090
IVTL0010I: Connecting to the WebSphere Application Server CM02 on port: 9090

IVTL0020I: Could not connect to Application Server, waiting for server to start
IVTL0025I: Attempting to start the Application Server
osName = Windows 2000
IVTL0030I: Running cmd.exe /c "C:\WebSphere\DeploymentManager\bin\startManager"
>ADMU0116I: Tool information is being logged in file
> C:\WebSphere\DeploymentManager\logs\dmgr\startServer.log
>ADMU3100I: Reading configuration for server: dmgr
>ADMU3200I: Server launched. Waiting for initialization status.
>ADMU3000I: Server dmgr open for e-business; process id is 1828
IVTL0070I: IVT Verification Succeeded

IVTL0080I: Installation Verification is complete

If you encounter any problem starting the server during the verification, check the
installation log files. You may find the log files in the <WAS_ND_HOME>\logs
directory, for example C:\WebSphere\\DeploymentManage\logs.

3.4 Configuring WebSphere Network Deployment
You have just gone through the process of installing Network Deployment. This
gives you a cell framework; however, there are no nodes in the cell yet. In order
for a node to be managed by the Deployment Manager, it must be added to the
cell.

Complete the following steps to configure the WebSphere Application Server
Network Deployment environment:

1. On the Deployment Manager node (which is machine cm02 in our case), start
the Deployment Manager:

a. Open a command window.

b. Run the command cd <WAS_ND_HOME>\bin.

For our scenario, run cd C:\WebSphere\DeploymentManager\bin.

c. Run the command startManager.

2. On each of the WebSphere Application Server nodes (on machines cm02 and
cm04), stop all the servers.

60 eClient 101 Customization and Integration

a. Open a command window.

b. Run the command cd <WAS_HOME>\bin.

For our scenario, run cd C:\WebSphere\AppServer\bin.

c. Run the command serverStatus -all to check the running status for all
application servers. See a sample output in Example 3-2.

Example 3-2 Output of command serverStatus -all

C:\WebSphere\AppServer\bin>serverstatus -all
ADMU0116I: Tool information is being logged in file C:\Program
 Files\WebSphere\AppServer\logs\serverStatus.log
ADMU0500I: Retrieving server status for all servers
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1
ADMU0509I: The Application Server "server1" cannot be reached. It appears to be
 stopped.

d. If you have a new WebSphere Application Server installation on the node,
you should only have one server, server1. If server1 is running, stop it by
executing the command stopServer server1.

3. On each of the WebSphere Application Server nodes (on machines cm02 and
cm04), add the node to the cell with the following commands in the same
command window as in step 2:

addNode <DM_hostname> 8879 -includeapps

Note that the addNode command is run on the machine where the application
server resides, not the machine where the Network Deployment resides. The
<DM_hostname> is the host name of the Network Deployment machine and the
port (8879) is the SOAP connector port for the Deployment Manager.

In our case, we run the command:

addNode cm02 8879 -includeapps

on both cm02 and cm04, because we have application servers on both
machines, although we have also chosen to install the Network Deployment
on machine cm02.

When the addNode command is completed, you should see messages similar
to Example 3-3.

Example 3-3 Sample output of command addNode

C:\WebSphere\AppServer\bin>addnode cm02 8879 -includeapps
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\logs\addNode.log
ADMU0001I: Begin federation of node cm04 with Deployment Manager at cm02:8879.
ADMU0009I: Successfully connected to Deployment Manager Server: cm02:8879

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 61

ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1
ADMU2010I: Stopping all server processes for node cm04
ADMU0512I: Server server1 cannot be reached. It appears to be stopped.
ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: cm04
ADMU0014I: Adding node cm04 configuration to cell: cm02Network
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: cm04
ADMU0020I: Reading configuration for Node Agent process: nodeagent
ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
 1532
ADMU0523I: Creating Queue Manager for node cm04 on server jmsserver
ADMU0525I: Details of Queue Manager creation may be seen in the file:
 createMQ.cm04_jmsserver.log
ADMU9990I:
ADMU0300I: Congratulations! Your node cm04 has been successfully incorporated
 into the cm02Network cell.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0302I: Any cell-level documents from the standalone cm04 configuration have
 not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the cm02Network Deployment Manager with
 values from the old cell-level documents.
ADMU9990I:
ADMU0003I: Node cm04 has been successfully federated.

4. On each node in the cell (on machine cm02 and cm04), start the node agent.
The node agent is started automatically during the addNode process in step
3, but subsequently must be started manually by doing the following on the
WebSphere Application Server machine:

a. Open a command window.

b. Run the command cd <WAS_HOME>\bin.

For our scenario, run cd C:\WebSphere\AppServer\bin.

c. Run the command startnode.

A node agent is required to be running on the node in order for the
Deployment Manager to communicate with the node. When the command is
completed, you should see messages similar to Example 3-4.

Example 3-4 Sample output of command startnode

C:\WebSphere\AppServer\bin>startNode
ADMU0116I: Tool information is being logged in file

62 eClient 101 Customization and Integration

 C:\WebSphere\AppServer\logs\nodeagent\startServer.log
ADMU3100I: Reading configuration for server: nodeagent
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server nodeagent open for e-business; process id is 764

5. On the Deployment Manager node (machine cm02), stop and restart the
Deployment Manager (the IBM WebSphere Application Server V5 - dmgr
service in the Windows Services panel).

6. On the Deployment Manager node (machine cm02), launch a Network
Deployment Administrative Console by selecting Start -> Programs -> IBM
WebSphere -> Application Server v5.0 -> Network Deployment ->
Administrative Console.

7. In the Network Deployment Administrative Console, select System
Administration -> Nodes in the Navigation pane on the left.

8. Check the status of the new node (cm02 and cm04) and make sure they are
synchronized. If not, select the new node that is not synchronized and click
the Synchronize button. See Figure 3-4 on page 64.

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 63

Figure 3-4 Node status in WebSphere Administrative Console

9. In the Network Deployment Administrative Console, select System
Administration -> Node Agents in the Navigation pane on the left. In the
Node agents pane on the right, it displays the node agent status for each
node.

3.5 Installing EIP
To install and configure the eClient server in a WebSphere Application Server
Network Deployment environment, you need to install minimal Information
Integrator for Content (EIP) components on each node in the cell. The EIP
components are part of the eClient prerequisites.

Follow the same steps in 2.2, “Installing Information Integrator for Content
Version 8 (EIP)” on page 19 to install EIP. However, for step 8, 12, 13, 14 and 16,
you must substitute the input values with the ones provided below.

64 eClient 101 Customization and Integration

In our scenario, we installed the EIP on machines cm02 and cm04. The
installation steps are identical for both of them.

For step 8 on page 23, on the Component Selection window, select the
components and subcomponents in Table 3-1.

Table 3-1 Select components to install

For our scenario, we chose not to install EIP administration database and
administration client on either cm02 or cm04. We have the EIP server running on
a separate machine (cm03).

Step 12 on page 26, step 13 on page 27 and step 14 on page 28 do not apply in
this installation because we chose not to install EIP administration database and
administration client on either cm02 or cm04.

For step 16 on page 30, on the Configure Content Manager V8 Server
Connection window, enter the values in Table 3-2.

Table 3-2 Configure Content Manager server connection

icmnlsdb is the Library Server name on machine cm03. You need to catalog the
databases icmnlsdb and EIPDB on both the cm02 and cm04 machines. (EIPDB
is the EIP administration database on machine cm03.)

Component Subcomponent

Local connectors Content Manager V8 connector
Federated connector
Relational database connector

Connector toolkits and samples Content Manager V8 connector
Federated connector
Relational database connector

Field Value

Database name icmnlsdb

Schema name icmadmin

Authentication type Server

Password password

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 65

3.6 Installing eClient
We set up the WebSphere Application Server Network Deployment environment
and installed EIP components (on cm02 and cm04). Now, we show you how to
install the eClient server on each node in the cell. You must make the eClient
components and its environment available on every node before you create the
eClient cluster server.

Follow the same steps in 2.4, “Installing Content Manager Version 8 eClient” on
page 41 to install the eClient.

In our scenario, we will install the eClient on the machine cm02 first. The eClient
installation process automatically deploys the eClient application server in
WebSphere. It can be verified in one of the following ways:

� In the Windows file system

a. Open Windows Explorer.

a. Go to the directory where the eClient is installed. In our example, this is
C:\CMeClient.

a. Expand the installedApp subdirectory. A directory tree structure appears
as shown in Figure 3-5.

Figure 3-5 eClient is deployed automatically on machine cm02

� The WebSphere Administrative Console

66 eClient 101 Customization and Integration

a. On the Deployment Manager node (machine cm02), launch the Network
Deployment Administrative Console. Click Start -> Programs -> IBM
WebSphere --> Application Server v5.0 -> Network Deployment ->
Administrative Console.

b. In the Network Deployment Administrative Console, select Servers ->
Application Servers in the Navigation pane on the left.

c. A list of servers is displayed in the Nodes window on the right.
eClient_Server is one of the servers on node cm02. See Figure 3-6.

d. Select server eClient_Server and click Start to start the eClient server.

Figure 3-6 eClient_Server on node cm02

After the verification, we install eClient on machine cm04. The installation must
be completed successfully. However, the eClient installation process does not
automatically deploy the eClient application server in WebSphere this time,
because the server eClient_Server exists in the WebSphere Network
Deployment environment. This is the result of the previous eClient installation on

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 67

cm02. The application server name must be unique in the WebSphere
environment.

Verification
Before creating an eClient cluster server, you should test if the standard eClient
installation completed successfully on machine cm02. This may be done with the
following steps:

1. On the Deployment Manager node (machine cm02), launch the Network
Deployment Administrative Console. Click Start -> Programs -> IBM
WebSphere -> Application Server v5.0 -> Network Deployment
Administrative Console.

2. In the Network Deployment Administrative Console, select Servers ->
Application Servers in the Navigation pane on the left.

3. A list of servers appears in the Nodes window on the right. eClient_Server is
one of the servers on node cm02. See Figure 3-6 on page 67.

4. Select server eClient_Server and click Start to start the eClient server.

5. Follow the steps in 3.8, “Configuring HTTP Web server” on page 73 to
regenerate the Web server plug-in.

6. Open a browser on any machine and enter http://cm01/eClient82/IDMInit.
This should lead you to the eClient logon window.

7. If eClient does not work on cm02, you may consider removing the eClient
application server. Then, manually deploy it again in the following steps:

a. Open a command window.

b. Run the command cd c:\CmeClient\Save.

c. Run the command idmwas.bat [userid] [password] to deploy it again.

To verify the eClient installation on machine cm04, check to make sure the
C:\CMeClient directory and its subdirectory have been created.

3.7 Creating eClient cluster server
Up to this point, you have all the necessary components to create the eClient
cluster server. The WebSphere Application Server and Network Deployment
environment have been configured. EIP and eClient have been installed on each
node in the cell. The eClient has been deployed on node cm02, but not on node

Tip: It is not a failure that the eClient server is not automatically deployed in
Webpshere on node cm04.

68 eClient 101 Customization and Integration

cm04. On node cm02, the directory C:\CmeClient\installedApp\
IBM_eClient_82.ear has been created and populated. On node cm04, the
directory C:\CmeClient\installedApp\ IBM_eClient_82.ear does not exist.

3.7.1 Creating eClient cluster server
Complete the following steps to create an eClient cluster server:

1. On the Deployment Manager node (machine cm02), launch the Network
Deployment Administrative Console. Click Start -> Programs -> IBM
WebSphere -> Application Server v5.0 -> Network Deployment
Administrative Console.

2. In the Network Deployment Administrative Console, select Servers ->
Clusters in the Navigation pane on the left. The Server Cluster window is
displayed on the right.

3. Click the New button to add a new cluster server.

4. Set the values of the fields in Table 3-3. See Figure 3-7 on page 70.

Table 3-3 Enter basic cluster information

The field Prefer local indicates if a request to an EJB should be routed to an
EJB on the local node if available. The field Internal replication domain
indicates if you want to use memory-to-memory replication for persistent
session management and that a replication domain should be created.

The field Server weight determines how workload is distributed among the
cluster members. For example, if all cluster members have identical weights,
work will be distributed among the cluster members equally. Servers with
higher weight values are given more work. A rule of thumb formula for
determining routing preference would be:

% routed to Server1 = weight1 /(weight1+weight2+...+weight n)

Field Value

Cluster name eClient

Prefer local False

Internal replication domain False

Existing server Select an existing server to add to this
cluster, and select
cm02Network/CM02/eClient_Server
from the server list.

Weight 5

Create replication entry in this server False

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 69

where there are n cluster members in the cluster.

Figure 3-7 Basic cluster information

5. Click Next to go to the next window.

6. Set the values for the fields in Table 3-4. See Figure 3-8 on page 71.

Table 3-4 More cluster server information

Field Value

Name eClient_Server_cm04

Server Node cm04

Weight 5

70 eClient 101 Customization and Integration

Figure 3-8 More cluster server information

7. Click the Apply button to add the new cluster member.

8. If you plan to have more cluster members in the cluster server, repeat step 6
and step 7 for each additional cluster member.

9. After adding all cluster members, click Next.

10.Review the cluster summary information, then click Finish.

11.Click Save in the top-right corner to apply changes to the master
configuration.

Select Generate Unique Http Ports True

Create Replication Entry in this Server False

Field Value

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 71

12.Select Synchronize changes with Nodes and click Save.

At the beginning of 3.7, “Creating eClient cluster server” on page 68, the
directory C:\CmeClient\installedApp\ IBM_eClient_82.ear did not exist on
machine cm04. After you created the eClient cluster server, the directory is
created and populated with the proper data.

3.7.2 Viewing cluster topology
The WebSphere Administrative Console provides a graphical view of the existing
clusters and their members. To see the view:

1. Select Servers ->Cluster Topology in the Navigation pane on the left.

2. On the right-hand side, expand the cluster server eClient all to way to the leaf
of the tree. The cluster server should have two nodes. One is on cm02.
Another one is on cm04. See Figure 3-9.

Figure 3-9 Cluster topology

72 eClient 101 Customization and Integration

3.7.3 Starting the eClient cluster server
You can start your eClient cluster server in the WebSphere Administrative
Console:

1. Select Servers ->Clusters in Navigation pane on the left.

2. Select entry eClient in the Server Cluster window on the right.

3. Click Start to start the cluster server. This starts all cluster members. For our
scenario, both server eClient_Server on node cm02 and eClient_Server_04
on node cm04 are started.

4. Select Servers ->Application Servers in the Navigation pane on the left.
The Application Servers window on the right shows the running status for all
servers.

3.8 Configuring HTTP Web server
Since many changes have been made in the WebSphere Application Server
Network Deployment environment, you must regenerate the Web server plug-in
file and deploy it to the Web server.

1. On the Deployment Manager node (machine cm02), launch a Network
Deployment Administrative Console by selecting Start -> Programs -> IBM
WebSphere -> Application Server v5.0 -> Network Deployment
Administrative Console.

2. Select Environment -> Update Web Server Plugin in the Navigation pane
on the left.

3. Click OK to re-generate the Web server plug-in. The plug-in file is
c:\WebSphere\DeploymentManager\config\cells\plugin-cfg.xml and it is on
machine cm02.

4. Copy the new generated Web server plug-in file to the Web server machine,
which is the machine cm01 for our scenario. The file must be copied to the
c:\WebSphere\appServer\config\cells\ directory. You should back up the
original plug-in file plugin-cfg.xml before replacing the old plug-in file with the
new one.

5. Since the WebSphere directory structure is different on machines cm01 and
cm02, you must modify the new generated Web server plug-in file.

a. Open the file c:\WebSphere\appServer\config\cells\plugin-cfg.xml on
machine cm01 in a file editor.

b. Replace c:\WebSphere\DeploymentManager with
c:\WebSphere\appServer in all occurrences.

c. Save the changes.

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 73

6. Stop and restart HTTP Web server on cm01 to make the new plug-in file
effective.

3.9 Monitoring workload balance
Up to now, you have installed and configured the following environment:

� The HTTP Web server on machine cm01 with the proper Web server plug-in
file for the eClient cluster server in the WebSphere Network Deployment. It is
started.

� The WebSphere Application Server Network Deployment on machine cm02
with two nodes in the cell. One node is on machine cm02 and the other one is
on machine cm04. The Deployment Manager on machine cm02 and the node
agent on each node are started.

� The cluster server eClient has been created in the WebSphere Network
Deployment environment. It has two cluster members. One is on node cm02
and the other is on node cm04. The cluster server has been started.

� A Content Manager server has been preinstalled and preconfigured on
machine cm03 and is running. Since the Content Manager configuration is
beyond the scope of this redbook, we do not cover it here.

In this section, we test the entire system and see how the workload is distributed
between nodes cm02 and cm04 in the cell.

3.9.1 Enabling performance monitoring for eClient
Complete the following steps to enable performance monitoring:

1. On the Deployment Manager node (machine cm02), launch a Network
Deployment Administrative Console by selecting Start -> Programs -> IBM
WebSphere -> Application Server v5.0 -> Network Deployment
Administrative Console.

2. Select Servers -> Application Servers in the Navigation pane on the left.

3. Select one of the eClient cluster servers, for example eClient_Server. This
opens its configuration window.

4. Scroll down and select the entry Performance Monitoring Service.

5. Set the values for the fields in Table 3-5 on page 75.

74 eClient 101 Customization and Integration

Table 3-5 Enabling performance monitoring

6. Click OK.

7. Click Save to apply the changes to the master configuration.

8. Select Synchronize changes with Nodes and click Save.

9. Repeat steps 2 to 8 for the server eClient_Server_cm04.

10.Select Servers ->Application Servers in the Navigation pane on the left.

11.Select both eClient_Server and eClient_Server_cm04 and click Stop.

12.Select both eClient_Server and eClient_Server_cm04 and click Start.

3.9.2 Monitoring workload balance
In this section, we use Tivoli Performance Viewer to monitor how the eClient
workload is distributed between the cluster member eClient_Server on node
cm02 and eClient_Server_cm04 on node cm04.

1. Start a Tivoli Performance Viewer on the cm02 machine by selecting Start ->
Programs -> IBM WebSphere -> Application Server v5.0 -> Tivoli
Performance Viewer.

2. If any of your servers in WebSphere Application Server is not running or their
performance monitoring feature is disabled, you will receive a PMON3009W
warning. Click OK on the warning window.

3. In the Navigation pane on the left, expand Viewer -> cm04 ->
eClient_Server_cm04 -> Web Applications ->
IBM_eClient_82#eClient82.war -> Servlets -> IDMInit, and highlight
IDMInit.

4. In the Navigation pane on the left, expand Viewer -> cm02 -> eClient_Server
-> Web Applications -> IBM_eClient_82#eClient82.war -> Servlets ->
IDMInit, hold the Ctrl key and select IDMInit.

5. This highlights the IDMInit from both cm02 and cm04. Notice that on the
bottom half of the right-hand pane, there are eight monitoring parameter
entries: four from cm02 and another four from cm04.

6. Select only two Total Requests entries on the bottom half of the right-hand
window. The Total Requests entry keeps track of how many hits to IDMInit
servlet were generated on each node. De-select the rest of the entries.

Field Value

Startup True

Initial specification level Standard

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 75

7. Select Setting ->Clear Buffer from the menu bar. It clears entries in the top
half of the pane on the right. As time passes, new entries are displayed in the
top pane. Pay attention to the two Total Requests columns: one is for cm02,
the other for cm04. Both of them should have zero counts currently. See
Figure 3-10.

Figure 3-10 Initial status in Tivoli Performance Viewer

8. Open a browser on any machine and enter http://cm01/eClient82/IDMInit.
This brings up the eClient logon window.

9. In Tivoli Performance Viewer on the cm02 machine, the count in one of the
Total Requests column becomes 1, as shown in Figure 3-11 on page 77.

76 eClient 101 Customization and Integration

Figure 3-11 After one hit to eClient cluster server

10.Open a browser on another machine and enter
http://cm01/eClient82/IDMInit.

11.In Tivoli Performance Viewer on the cm02 machine, the count in the other
Total Requests column also becomes 1. See Figure 3-12 on page 78.

12.If you open a new browser on the third machine and enter the same URL, the
value in first Total Requests column becomes 2. As you can see, the
WebSphere Network Deployment uses the round-robin fashion to manage the
workload among the cluster members.

Chapter 3. Installing eClient in a WebSphere Network Deployment environment 77

Figure 3-12 After two hits to eClient cluster server

78 eClient 101 Customization and Integration

Chapter 4. Using eClient

This chapter provides a high-level description of how to use the out-of-the box
eClient application. This chapter gets you up to speed with eClient so that in later
chapters you can customize and integrate your project.

This chapter covers the following topics:

� Logging on to eClient
� Searching for documents
� Displaying documents
� Importing documents
� Creating folders
� Document routing

4

© Copyright IBM Corp. 2003. All rights reserved. 79

4.1 Logging on to eClient
By means of a Web browser, eClient provides the ability for users to log on,
search, and display documents stored in one or more EIP back-end repositories.
In the examples provided in this chapter, we use Content Manager Version 8 as
the back-end datastore.

To log on to the eClient, do the following:

1. Open a Web browser and enter the following URL:

http://<hostname>/eClient82/IDMInit

This invokes the IDMInit servlet on the Web server, which initializes the
application and calls the IDMLogon2.jsp to display the logon window shown in
Figure 4-1.

Figure 4-1 eClient logon window

2. Enter the user ID and password. Select the server you want to log on to. Click
Logon.

The eClient validates your logon information and displays the main eClient
window, shown in Figure 4-2 on page 81, that allows you to perform various
tasks.

80 eClient 101 Customization and Integration

4.2 Searching for documents
After you log on to the eClient, the main eClient window shown in Figure 4-2 is
displayed.

Figure 4-2 Main eClient window

Note that on your system, all of the functions should be available. You can enable
or disable some of the functions by changing the values in the IDM.properties
file. The IDM.properties file is normally located in c:\Program
Files\IBM\CMeClient. The following lines in the properties file control which
options are available on the main eClient window:

importEnabled=true
createFolderSupported=true
workFlowEnabled=true

After changing the values in IDM.properties, you must stop and restart the
WebSphere application.

To perform a search, do the following:

1. Click Search in the main eClient window. Figure 4-3 on page 82, which allows
you to select an item type to search, appears.

 Chapter 4. Using eClient 81

Figure 4-3 Search - Item type list input window

2. Select an item type, such as NOINDEX. Figure 4-4, with the attributes for the
item type selected, appears.

Figure 4-4 Search - Document attributes input window

This search window allows you to specify the search criteria for one or more
of the attributes. The (?, *) by the attribute name indicates that wildcard can
be used for specific attributes. The ? is a single character wildcard and the * is
a multi-character wildcard. The Advanced option adds advanced search
operators such as LIKE, BETWEEN.

82 eClient 101 Customization and Integration

3. Enter your search criteria and click Search to view the search results similar
to Figure 4-5.

4.2.1 Search results
After performing a search, the search results window shown in Figure 4-5 is
displayed.

Figure 4-5 Search - Search results window

A list of documents that met the search criteria is displayed in the window. The
ItemType (NOINDEX) is displayed in the tab across the top of the window. A
check box, document icon, and document attributes are displayed for each
document.

To view a document, click the document icon and the document will be displayed
in another window.

 Chapter 4. Using eClient 83

There are many things you can do with a document besides view it. The options
available are listed in the drop-down box at the top of the search results window
shown in Figure 4-6.

Figure 4-6 Search - Search results drop-down box

There are a number of different options in the drop-down box. These options are
actions you can apply to selected (check-marked) documents, as follows:

Open This option opens the document.

E-mail document This option allows you to E-mail one or more
documents to other users.

Edit item attributes This option allows the user to re-index a document.

Import item This option allows you to import a new document
into the system.

Copy items to e-clipboard This option allows you to add documents to a virtual
clipboard. This is useful for adding documents to a
folder using the eClient.

View e-clipboard contentsThis option allows you to view the content in the
e-clipboard.

Clear e-clipboard This option allows you to clear all content in the
e-clipboard.

View version information This option allows you to view version history, if any,
for the document.

84 eClient 101 Customization and Integration

Start process This option, which is not shown in Figure 4-6 on
page 84, allows you to start the document in a
workflow

Process information This option shows you the current workflow status of
the document.

To add your own custom functions in the drop-down box, refer to Chapter 11,
“Adding custom functions to the search results window” on page 239.

4.3 Displaying documents
In order to display a document, click the document icon in the search results
window, or select one or more documents and select Open from the drop-down
box at the top of the search results window.

Each document has an associated MIME type that is used to control how the
document should be viewed. For example, if you are viewing a Microsoft Word
document, then Word should be used to display the document. If the file is a TIFF
file, then an image viewer is used.

There are two viewers for TIFF documents included with the eClient: the basic
viewer and the applet viewer. We discuss each in the following sections.

Basic viewer
The basic viewer is the default viewer. With this viewer, the eClient server
converts a TIFF file to a GIF file first and then sends it down to the browser. This
viewer gives you basic image manipulation functions such as change page,
zoom, scroll, and rotate.

An example of the basic viewer displaying a document is shown in Figure 4-7 on
page 86.

 Chapter 4. Using eClient 85

Figure 4-7 Default image viewer

The toolbar on the basic viewer window provides the basic image manipulation
functions and also the document attributes access and printing functions.

Applet viewer
The applet viewer has more functionality than the basic viewer. Instead of having
the eClient server converting a TIFF file to a GIF for viewing, the applet viewer
displays TIFF files and other file formats on the client. When a user requests a
rotate, the rotation of the document is done on the client machine; unlike the
basic viewer, it does not go back to the server to perform the action.

The applet viewer also supports image annotations such as sticky notes,
highlights, stamps, and text overlays.

To enable the applet viewer, you must modify the following two files:

� IDM.properties
� IDMadminDefaults.properties

For the IDM.properties file, set viewerAppletEnabled parameter to true as
follows:

viewerAppletEnabled=true

86 eClient 101 Customization and Integration

For the IDMadminDefaults.properties file (located in the c:\program
files\IBM\CMeClient directory), specify which viewer to use for which MIME type.
Example 4-1 shows a sample of the file.

Example 4-1 Sample IDMadminDefaults.properties file

To indicate that a mimeType should be converted to a viewable
format specify "don't launch".
Use don't launch to have the image rendered on the mid-tier
application server
##
example: application/vnd.modcap=don't launch
##
Format: [MIME_TYPE]={ launch | applet | don't launch }

application/afp=launch
application/pdf=launch
application/vnd.ibm.modcap=don't launch
application/x-rtsp=launch
audio/basic=launch
audio/mpeg=launch
image/gif=don't launch
image/jpeg=don't launch
image/tiff=applet
text/html=launch
text/plain=don't launch
text/xml=launch
video/mpeg=launch
video/quicktime=launch
video/x-ibm-ivs=launch

As shown in Example 4-1, to view TIFF files with the applet viewer, set the
image/tiff MIME type to applet:

image/tiff=applet

Stop and restart WebSphere to make the change effective. The next time you
display a TIFF file from the eClient, the applet viewer is used. Figure 4-8 on
page 88 is an example.

 Chapter 4. Using eClient 87

Figure 4-8 Applet viewer

TIFF plug-in viewer
If you installed a TIFF plug-in for your browser, you need to modify the
IDMadminDefaults.properties file before using it. Set the image/tiff MIME type to
launch in the file:

image/tiff=launch

With this setup, the eClient sends the TIFF file to the browser and the application
tool that is configured on your browser is used to display the file.

For example, you can download a free TIFF plug-in from
http://www.alternatiff.com, install it in your Internet Explorer, modify the line
above in the IDMadminDefaults.properties file, restart WebSphere, and display a
TIFF document that looks similar to Figure 4-9 on page 89.

88 eClient 101 Customization and Integration

http://www.alternatiff.com

Figure 4-9 TIFF document displayed with AlternaTIFF plug-in

Displaying office documents
By default, office documents such as Microsoft Word documents are “launched”
in the browser. Figure 4-10 is an example of what a Word document looks like
when viewed from the eClient.

Figure 4-10 Displaying Microsoft Word document in eClient

 Chapter 4. Using eClient 89

4.4 Importing documents
You can import documents from a file system using the eClient. From the main
eClient window, use the Import option to achieve this. If the Import option is not
available, set the importSupported parameter to true in the IDM.properties file. If
the entry does not exist, add it to the file:

importSupported=true

Stop and restart WebSphere to make the change effective.

To import documents, do the following:

1. From the main eClient window, click Import. A window similar to Figure 4-11
appears.

Figure 4-11 Import - Import input window

2. Select an item type from the drop-down box for the document you want to
import.

3. Enter the index values and select the file type of the document you are
importing. You can click Browse to find a file on your local or network drive to
import. When ready, click Import.

After importing the document, a window similar to Figure 4-12 appears.

90 eClient 101 Customization and Integration

Figure 4-12 Import - Import complete window

4. Click OK to complete the import, or you can add the document to a folder. If
you want to add it to a folder, select Add to new folder and click OK.

5. Select an item type for the folder and enter the folder attributes.

4.5 Creating folders
This section shows you how to create a folder and add documents to it using the
eClient. The main eClient window should have a Create Folder option on it. If
your eClient does not have this option, set the CreateFolderEnabled parameter to
true in the IDM.properties file as follows:

CreateFolderEnabled=true

Restart WebSphere to make the change effective.

To create a folder and put documents in the folder, do the following:

1. From the main eClient window, click Create Folder. A window that asks you
for the item type and attributes for the folder appears.

2. Select an item type and specify the correct attribute values.

 Chapter 4. Using eClient 91

3. After the folder is created, use the search function to locate the documents
you want to add to the folder.

4. From the search results window, select the document and then use Copy
items to e-clipboard in the search results drop-down box to add the
documents to the e-clipboard, as shown in Figure 4-13.

Figure 4-13 Folders - Copy selected documents to e-clipboard

5. Use the search function to find the new folder you created.

6. Check the box next to the folder and click Paste items from e-clipboard to
folder from the search results drop-down box, as shown in Figure 4-14 on
page 93.

92 eClient 101 Customization and Integration

Figure 4-14 Folders - Paste items from e-clipboard

The documents are now contained in the folder you just created.

4.6 Document routing
The Content Manager Version 8 System Administration client allows you to
define a simple workflow for document routing. A Node is a single step in a
workflow, a process links different nodes into a workflow process, and a worklist
is used to gather work items from one or more nodes into a list of documents that
a user can view. For more information on building workflow nodes, processes,
and worklists, refer to IBM Content Manager for Multiplatforms: System
Administration Guide, SC27-1335.

The workflow you create with the Content Manager System Administration client
application can be accessed from both the Content Manager Windows (thick)
client and from the eClient.

Note that the eClient and Content Manager support both the Document Routing
and Advanced Workflow functions. In June 2003, the Content Manager lab
announced that the Advanced Workflow function would likely undergo significant
changes in the future. If you plan to use Advanced Workflow, check with your
Content Manager representative to get the latest recommendations before
pursuing this path.

 Chapter 4. Using eClient 93

4.6.1 Adding documents to a workflow process
To add a document to a workflow, do the following:

1. Perform a document search.

2. Select one or more documents from the search results set.

3. Select Process document from the search results drop-down box
(Figure 4-15).

Figure 4-15 Document routing - Start document in a workflow process

4. Select Start Process. A window similar to Figure 4-16 on page 95, that
allows users to select which process to start for the selected documents,
appears.

94 eClient 101 Customization and Integration

Figure 4-16 Document routing - Select process for document

5. A list of workflow processes is displayed in the process drop-down box.Select
the correct process and the priority. Click Next.

After adding the document to a workflow, the document is inserted into the first
node of the workflow. To access the document in the workflow nodes, use a
worklist. A worklist can include documents from a single node or multiple nodes,
and can prioritize the documents from different nodes.

A worklist can be accessed from the main eClient window as shown in
Figure 4-17 on page 96.

 Chapter 4. Using eClient 95

Figure 4-17 Main eClient window with access to worklists

If your eClient does not show the Worklists option, check the IDM.properties file
and make sure that the workFlowEnabled parameter is set to true as follows:

workFlowEnabled=true

After changing the IDM.properties file, restart WebSphere to make the change
effective.

To work with worklists, do the following:

1. From the main eClient window, click Worklists. A window similar to
Figure 4-18 on page 97 appears.

96 eClient 101 Customization and Integration

Figure 4-18 Worklist - Worklist selection window

2. Select the worklist you want to work with. In our sample workflow, the Review
with Customer worklist displays documents in the first node. Click Review
with Customer to obtain a list of documents in the worklist. A window
appears that shows a list of workflow actions that can be performed on a
document in the worklist (see Figure 4-19).

Figure 4-19 Worklist - Action options

 Chapter 4. Using eClient 97

3. Select the document you want to process, and select an action you want to
perform on the document from the drop-down box to process the document.

From the default example we provided, there are several actions you can perform
for the selected documents:

Continue Moves the document to the next step in the process.

Suspend Removes the document from the worklist for a specified
time.

Change Process Moves the document to a different workflow process.

Change Priority Changes the priority of the document.

Remove from Process Removes the document from the workflow process.

Sometimes, you need to wait for several days before you can continue
processing a particular document. In this case, you may want to use the Suspend
action on the document. You need to enter additional information if you suspend
any documents. See Figure 4-20 for input required.

Figure 4-20 Worklist - Suspend document input window

98 eClient 101 Customization and Integration

Part 2 Preparing for
eClient
customization
and integrationd integration

This part prepares you for eClient customization and integration. We include an
eClient architectural overview and an inspection of a basic eClient control flow.
We also demonstrate the usage of APIs with many sample codes, and provide
step-by-step instructions on setting up a development environment for eClient
customization and integration. In addition, we provide design and implementation
considerations for eClient application customization and integration.

Part 2

© Copyright IBM Corp. 2003. All rights reserved. 99

100 eClient 101 Customization and Integration

Chapter 5. eClient architecture

eClient architecture is based on the J2EE standard. This chapter describes the
standard and the appropriate technologies used in eClient. We also describe the
eClient application structure, and provide a detailed explanation of one core
function and an introduction to the customization and the integration of eClient.

5

© Copyright IBM Corp. 2003. All rights reserved. 101

5.1 Introducing J2EE
J2EE stands for Java 2 Platform, Enterprise Edition. It defines a standard that
applies to all aspects of architecture and developing multi-tier server-based
applications.

J2EE applications are made up of components where each component is a
self-contained functional software unit. A component has its related classes and
files and communicates with other components.

Four types of components are defined:

� Application clients: Java programs that execute on a client machine and
access other J2EE components.

� Applets: Java components that execute on a client machine within a browser.

� Web components: Servlets and JavaServer Pages (JSP) components that
run on the server and provide the controller and view functionality.

� Enterprise JavaBeans (EJBs): Components that run on the server for
business logic and database access.

J2EE components are written in the Java programming language and are
compiled in the same way as any Java program. In addition, J2EE components
are assembled into a J2EE application, verified to be compliant with the J2EE
specification, and deployed to the J2EE server, where they are managed and
run.

To manage and run the components of a J2EE application, the J2EE server
defines four types of containers:

� Application client container, a stand-alone Java runtime environment
� Applet container, provided by the browser
� Web component container, provided by the J2EE application server
� Enterprise JavaBeans container, provided by the J2EE application server

The components use the services provided by the container either by
implementing interfaces or by calling certain APIs as defined in the J2EE
specification. J2EE components never interact with other J2EE components
directly; the interaction takes place using services provided by the containers.

Figure 5-1 on page 103 shows the components running in their containers.

102 eClient 101 Customization and Integration

Figure 5-1 J2EE components running in containers

J2EE applications benefit from the services and the scalability provided by the
J2EE servers. Because standard protocols are used, the interoperability with
other systems is ensured.

The WebSphere Studio Application Developer is an integrated development
environment for developing J2EE components as well as assembling and testing
J2EE applications. The WebSphere Application Server is a J2EE-compliant
server. It comes with the Application Assembly Tool, which can also be used to
assemble J2EE applications from existing components.

In the following section, we provide a short introduction to servlets and
JavaServer Pages (JSP) because the eClient is based on these technologies.
You need to change the JSPs and provide new servlets for the eClient
customization and integration.

If you are new to J2EE and need more information, the following steps should
help you to quickly learn everything about J2EE:

1. Download IBM WebSphere Studio Application Developer and IBM
WebSphere Application Server from:

http://www.software.ibm.com/wsdd

2. To learn the J2EE concepts and get sample codes, go to:

http://java.sun.com/j2ee/tutorial

DatabaseDatabase

Servlet JSP Page

Web ContainerWeb Container

J2EE ServerJ2EE Server

Enterprise
Bean

Enterprise
Bean

EJB ContainerEJB Container

Browser

Applet ContainerApplet Container

Browser

Applet ContainerApplet Container

Client Machine

Application
Client

Container

 Chapter 5. eClient architecture 103

http://www.software.ibm.com/wsdd
http://java.sun.com/j2ee/tutorial

Implement, assemble and run the sample applications with the downloaded
products.

3. To learn about J2EE in a class, enroll in the course “Servlet and JSP
Development for WebSphere using WebSphere Studio Application Developer
V5.0” (course code WF311). The course catalog can be found at:

http://www.ibm.com/services/learning/us/catalog/websphere/all.html

5.1.1 What is a servlet?
A servlet is a Java programming language class used to extend the capabilities
of servers. Commonly, servlets are used to extend the applications hosted by
Web servers (HTTP servers). They are accessed via a request-response
programming model. Figure 5-2 shows how this works with the WebSphere
Application Server.

Figure 5-2 Servlet requests and responses in WebSphere Application Server

The client sends a request to the HTTP server that has a plug-in installed that
uses a configuration file to determine whether the request should be handled by
the HTTP server or the application server. Using the standard HTTP or the
secure HTTPS, the request is forwarded to the application server, which calls a
servlet to process the request. The response is returned to the client.

Embedded
HTTP server

Application ServerApplication Server

Web container

Servlet

Servlet

Servlet

Web
browser
client

HTTP server

plug-in

104 eClient 101 Customization and Integration

http://www.ibm.com/services/learning/us/catalog/websphere/all.html.

The life cycle of a servlet is controlled by the Web container in which the servlet
has been deployed. When a request is mapped to a servlet, the container
performs the following steps:

1. If an instance of the servlet does not exist, the Web container:

a. Loads the servlet class.

b. Creates an instance of the servlet class.

c. Initializes the servlet instance by calling the init method.

2. Invokes the service method, for example doGet or doPost depending on the
HTTP request, and passes a request and response object.

If the container needs to remove the servlet, it finalizes the servlet by calling the
destroy method of the servlet.

To implement a servlet, you just need to extend the class HttpServlet, overwrite a
service method and send a response to the client. Parameters specified in the
request can be retrieved from the request object. This is shown in Example 5-1.

Example 5-1 Implementation of servlet HelloServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 String name = req.getParameter("name");
 Writer clientWriter = resp.getWriter();
 clientWriter.write("<HTML><BODY>");
 clientWriter.write("Hello " + name + "!");
 clientWriter.write("</BODY></HTML>");
 }
}

After a J2EE application has been created that contains the servlet and the
application has been deployed in the application server, you can use a browser to
send a request to the servlet. Figure 5-3 on page 106 shows the URL that results
in a request to the servlet and the response page returned by the servlet.

 Chapter 5. eClient architecture 105

Figure 5-3 Output of the sample servlet

In a servlet, you can also call other servlets and share information with these
servlets by storing the information in either the servlet context, session or
request object. Each of the three objects has a different scope in the application:

� The servlet context object relates to a group of servlets or JavaServer Pages
(a Web application) and is therefore visible to all servlets and JavaServer
Pages of this group.

� The session object represents a short-term relationship established between
the client browser and the application server. For each client, a new session is
created.

� The request object corresponds to the current client request and is visible
until the response has been sent to the client.

5.1.2 What is a JavaServer Page (JSP)?
The servlet in Example 5-1 on page 105 plays two different roles. In its first role,
it is responsible for the request processing. This is done by collecting information
and sending a response to the client. In the second role, it is responsible for the
result page layout. This is done with certain HTML tags that are sent to the client.

The problem with this approach is that although the page layout has nothing to
do with the request processing, both are tightly coupled in the servlet. If you just
want to change the HTML page, you need to change the code that also deals
with request processing. The HTML page cannot be changed after the servlet
has been compiled and you cannot separate the development of the HTML page
from the development of the request processing.

JavaServer Pages (JSP) is a technology that lets you mix regular, static HTML
with dynamically generated HTML on the server where the dynamic content can
be generated by Java code. JSPs can be called from servlets and have access to

106 eClient 101 Customization and Integration

the servlet context, the session and the request object, where the data to be
displayed has been stored by the servlet. It enables the separation of the HTML
code from the business logic.

This design approach is also known as Model-View-Controller (MVC). A
controller (the servlet) determines the user request, parses input parameters and
invokes the model (the business logic, for example JavaBeans). The view (a JSP)
is a “window” into the model and usually presents the result data. This is
illustrated in Figure 5-4.

Figure 5-4 Model-View-Controller with J2EE

JSP files have an extension of .jsp and can contain any combination of JSP tags
and HTML tags. Along with servlets, JSP files belong to the Web component of a
J2EE application. Example 5-2 shows a JSP that displays a message retrieved
from the request object with the JSP useBean tag.

Example 5-2 Implementation of JavaServer Page HelloResponse.jsp

<HTML>
<BODY>
<jsp:useBean id="message" class="java.lang.String" scope="request">
</jsp:useBean>
 <%=message%>
</BODY>
</HTML>

The servlet that calls this JSP has to store the message to be displayed in the
request object as shown in Example 5-3.

Example 5-3 Implementation of servlet HelloResponse.java with a call to JSP

import javax.servlet.*;
import javax.servlet.http.*;

Servlet
Web
browser
client

Business beans

Result beans

JSP

Model

View

Controller

 Chapter 5. eClient architecture 107

import java.io.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 String name = req.getParameter("name");
 req.setAttribute("message", "Hello " + name + "!");

 req.getRequestDispatcher("/HelloResponse.jsp").forward(req, resp);
 }
}

After a J2EE application has been created that contains the servlet and JSP file
and the application has been deployed in the application server, you can again
use a browser to send a request to the servlet. Figure 5-5 shows the URL that
results in a request to the servlet and the response page that is now created by
the JSP.

Figure 5-5 Output of JSP HelloResponse.jsp

Because the page layout is separated from the servlet, you can now change the
layout and the servlet independently. For example, the servlet does not need to
be changed if you just want to change the text color. You can also have multiple
JSPs, for example, to serve different output devices.

Of course, the page generated by a JSP can again contain links or forms that
invoke servlets.

To avoid Java code and reuse functions in JSPs, you can define custom JSP tags
for the functions you need. Custom JSP tags are grouped in a tag library, which is
an XML file that defines each tag with its parameters and the name of the Java
class that implements the tag behavior. The appropriate Java class has to
implement one of the interfaces in package java.servlet.jsp.tagext.

108 eClient 101 Customization and Integration

5.2 Understanding eClient architecture
In the following section, we provide an overview of the eClient application
structure and describe a typical control flow for an eClient function.

5.2.1 Overview
The eClient is a J2EE application. It consists of one Web application, eClient82,
which contains several servlets and JSPs. Figure 5-6 shows the structure of the
application as it appear in the Application Assembly Tool that comes with
WebSphere Application Server.

Figure 5-6 eClient structure in the Application Assembly Tool

The servlets are listed in the Web component category in the left window in
Figure 5-6. The right window lists the resource files of the Web application, which
are the JSP files. A complete list of the JSPs and their purpose is provided in
5.3.2, “eClient JSPs” on page 114.

The Web application also defines two custom JSP tag libraries (cmb.tld, cme.tld)
that are used in the JSPs. They provide JSP tags for iteration and flow control.

 Chapter 5. eClient architecture 109

In addition to servlets and JSPs, the Web application also defines a security
constraint that is mapped to the user role AccessEclient defined in the J2EE
application. If the application is deployed in WebSphere Application Server and
security is enabled, the user role can be mapped to real user IDs to restrict the
access to the client.

The eClient uses configuration properties that you can edit in the IDM.properties
file. The IDM.properties file resides in the root directory where the eClient is
installed. Most aspects of managing the eClient application are controlled by the
parameters in this file. The parameters are described in the Information Center.
Select eClient -> Managing your eClient application -> Setting and changing
your configuration parameters.

5.2.2 Inspecting eClient control flow
Understanding the control flow of the eClient is the key to eClient customization
and integration.

In the following section, we describe the control flow of the search function. We
illustrate the eClient architecture to help you understand how the
Model-View-Controller design is implemented. With the provided code snippets,
this is also a reusable example of how to determine the control flow of an
arbitrary eClient function.

Figure 5-7 on page 111 gives an overview of the search control flow and is
followed by a detailed description of each step.

110 eClient 101 Customization and Integration

Figure 5-7 eClient search control flow

After logon, the eClient home page is generated by the IDMActionPage.jsp. If you
click the search link, the IDMItemTypeListFrame.jsp is called:

<a href="<%= webAppName %>/IDMItemTypeListFrame.jsp" ...

The IDMItemTypeListFrame.jsp generates a frame set where the content for the
frame that displays the item types list is created by a call to the
IDMItemTypeList.jsp:

<frame name="ItemTypeList" title="<%= title %>" noresize src="<%=
webAppName %>/IDMItemTypeList.jsp?<%= key %>">

The item type list is built according to the connector that is used to log on. For the
federated connector, a list of search templates needs to be created. If the
Content Manager connector is used, you expect a list of item types. Before
creating the list, the connector type is checked using a custom JSP tag:

<cme:if condition="<%=
connection.getDsType().equalsIgnoreCase(cvb.CMB_DSTYPE_FED) %>">

IDMSearch
servlet

IDMItemTypeListFrame.jsp

IDMItemTypeList.jsp

IDMActionPage.jsp

Logon

IDMSearchTemplate.jspIDMBasicSearch.jsp

IDMSearchFrame.jsp

IDMSearchResults.jsp

IDMUtilityBean

ItemTable.jsp

Search results
page

eClient home
page

search link

Search
template list
page
Template links

Item type list
page

Item type links

 Chapter 5. eClient architecture 111

If the federated connector is used (cvb.CMB_DSTYPE_FED), a list of search
templates is generated. Each search template name is a link to the
IDMSearchTemplate.jsp where the template name is specified as a parameter:

<a href="<%= webAppName %>/IDMSearchTemplate.jsp?<%= key %>&entityName=<%=
java.net.URLEncoder.encode(searchtemplate) %>" ...

If the Content Manager connector is used, item types are listed. There is a link to
IDMBasicSearch.jsp with the item type name as a parameter:

<a href="<%= webAppName %>/IDMBasicSearch.jsp?<%= key %>&entityName=<%=
com.ibm.idm.util.URLUTF8Encoder.encode(name) %>" ...

The IDMSearchTemplate.jsp is called when you click a search template; or if you
have a list of item types, the IDMBasicSearch.jsp is called if you click one. Both
JSPs create a HTML form for the search values. According to the specified form
action, the IDMSearch servlet is called in both cases when you submit the form:

<FORM NAME="searchCriteria" action="<%= webAppName %>/IDMSearch"
Method="Get">

The servlet performs the search, and according to the IDM.properties file, it calls
the IDMSearchFrame.jsp to display the results:

Output.IDMSearch=/IDMSearchFrame.jsp

The IDMSearchFrame.jsp generates a frame set where the content for the frame
that displays the search results is created by a call to the IDMSearchResults.jsp:

<frame noresize title="ResultsBottom" name="ResultsBottom" src="<%=
webAppName %>/IDMSearchResults.jsp ...

As with most JSPs, the IDMSearchResults.jsp retrieves the IDMUtilityBean
object from the session because the servlet has stored the search results in this
object:

<jsp:useBean id="cub" scope="session"
class="com.ibm.idm.beans.IDMUtilityBean">

The IDMSearchResults.jsp then retrieves the results from this object:

CMBSearchResults results = cub.getSearchResults(srKey);

To create the result table, the IDMSearchResults.jsp calls another JSP that
generates just the HTML fragment for the table, and it includes this table in the
page. To share the search results object with the other JSP, it is first stored in the
request object:

request.setAttribute("results",results);

112 eClient 101 Customization and Integration

The ItemTable.jsp is then called to create the table, which is included in the
current page:

dispatcher =
application.getRequestDispatcher("/pageComponents/ItemTable.jsp");
dispatcher.include(request, response);

In the ItemTable.jsp, the search results object is first retrieved from the request:

CMBSearchResults results = (CMBSearchResults)
request.getAttribute("results");

The items are then retrieved from the search results object:

items = results.getItems();

Finally, the attribute values of each item are set in the appropriate column of a
table row:

<TD class='" + rowType + "' align='left' " + colWidth + " nowrap>" +
item.getAttrValue(colName) + "</TD>"

The table is returned to the client as part of the result page.

5.3 Customization and integration
In the following section, we give an overview about the possibilities for adapting
the eClient according to your business needs.

5.3.1 Overview
You can customize the eClient by:

� Changing the JSPs. The JSPs are located in the directory where you
installed the eClient. To customize the look and feel of the eClient, you can
modify these JSPs or substitute JSPs of your own. The complete list of JSPs
can be found in 5.3.2, “eClient JSPs” on page 114. An example can be found
in Chapter 10, “Customizing the edit attributes window” on page 225.

� Customizing eClient graphics. You can replace the artwork with your own to
customize the graphics for your eClient. You can set the font, colors, and
background colors of the eClient in the eclient81.css Cascading Style Sheet
file. An introduction is provided in 5.3.3, “Customizing eClient graphics” on
page 120.

� Customizing eClient help. As part of customizing the eClient for your users,
you can provide customized online help or add your own. The help files are
written in Hypertext Markup Language (HTML) and reside in the directory
where the eClient is installed. You can change the style sheet as well as the

 Chapter 5. eClient architecture 113

graphic for the background, bkgrd.gif, located in the icons directory. If you add
your own help topics, you must modify the JSP for the pages or panels from
which you want to display the new help topics.

� Customizing the viewer applet. The applet is used to display the content of
a document. Because it is based on the generic document viewer of the
viewer toolkit (see 6.1, “Programming interface overview” on page 124) you
can customize the viewer applet by modifying the default configuration file,
CMBViewerConfiguration.properties, located in the cmbview81.jar. It is
documented in the Information Center; select Enterprise Information Portal
-> Programming -> Working with the Java document viewer toolkit ->
Customizing the generic document viewer.

� Adding new servlets. You can integrate new functionality into the eClient by
adding new servlets to the application. A servlet can either be added to the
control flow by changing the IDM.properties file (see 13.2, “Creating
categories and summaries during document import” on page 296 for an
example) or with a link that points to the servlet (see. 13.3, “Searching for
related items” on page 306).

You can integrate the eClient with third-party software. To read about Siebel
integration, refer to Chapter 15, “Siebel Integration” on page 347.

5.3.2 eClient JSPs
In this section, we provide a complete list of the available JSPs with a short
description. You can modify these JSPs or substitute JSPs of your own to
customize eClient.

eClient JSPs are divided into the following categories:

� Application control flow as in Table 5-2 on page 116
� Items as in Table 5-2 on page 116
� Search as in Table 5-3 on page 117
� Folders as in Table 5-4 on page 118
� Annotations as in Table 5-5 on page 118
� Workflow as in Table 5-6 on page 118
� Document routing as in Table 5-7 on page 119

Table 5-1 eClient JSPs that are related to the application control flow

JSP file Purpose

ErrorPage.jsp Displays when an error is encountered.

IDMActionPage.jsp Opens the eClient home page, where your
user can start to use the eClient functions.

114 eClient 101 Customization and Integration

IDMBlank.jsp Displays a blank page.

IDMChangePassword.jsp Displayed when the user wants to change
the password.

IDMCloseSelfWindow.jsp JSP that will close itself, used in
IDM.properties as the out page.

IDMCloseWindow.jsp Closes a window.

IDMLogon.jsp Displays when the user first accesses the
eClient and for logging on to the server.
This page displays the banner graphic
(banner.gif). To customize the banner, you
can supply a different graphic and call it
from this page.

IDMLogon2.jsp Displays the Logon page.

IDMLogonNewPassword.jsp Displays the Change Password page,
where your users can change their
passwords.

IDMMessageBox.jsp Displays a message box.

IDMNoteLog.jsp Displays the window where a user can
view or add to the Notelog from a Content
Manager Version 8 server.

IDMPrintControl.jsp Allows the user to print HTML-based
content from their browser.

IDMPrintFrameset.jsp Displays the print options.

IDMQueryBuilder.jsp Displays the query builder.

IDMUserIDMapping.jsp Provides user with a logon window to
modify stored user ID and password
mapped into the EIP administrative
database for a federated server.

IDMProcessing.jsp Displays the “Processing” or “Please
Wait”graphic when there is an ongoing
process.

IDMProgressIndicator.jsp Displays the progress indicator.

SessionErrorPage.jsp Pops up an alert telling the user that the
session has expired.

JSP file Purpose

 Chapter 5. eClient architecture 115

Table 5-2 eClient JSPs that are related to items

JSP file Purpose

IDMAddedItem.jsp Confirms that an item has been added to
a folder or worklist.

IDMAddItemToFolder.jsp Allows a document or folder to be added to
a folder.

IDMDeleteItem.jsp Allows an item to be deleted from the
database.

IDMDeletedItem.jsp Verifies that an item was deleted.

IDMClipboard.jsp Allows items to be viewed in the clipboard.

IDMEditAttributes.jsp Displays the item attributes and allows for
updating the attributes. Used to change
how an item is indexed.

IDMEmail.jsp Displayed when the user wants to create
an e-mail message with an object
attached.

IDMItemTypeList.jsp Displays the list of item types or search
templates. This JSP is a part of the
IDMItemTypeListFrame.jsp frameset.

IDMItemTypeListFrame.jsp Displays the frameset that contains
IDMItemTypeList.jsp and
IDMItemTypeListTitlebar.jsp.

IDMItemTypeListTitlebar.jsp The title bar that displays the information
in the frameset for displaying the list of
item types or search templates.

IDMItemVersions.jsp Displays a list of all of the versions of an
item.

ItemTable.jsp Displays a collection of items.

ItemTableHeader.jsp Displays table headers for a collection of
items.

ItemTabs.jsp Displays item type tabs for a collection of
items.

mail.jsp Enables e-mailing of a document.

SRItemTableHeader.jsp Enables ICM display order.

116 eClient 101 Customization and Integration

Table 5-3 eClient JSP that are related to search

JSP file Purpose

IDMAdvancedSearch.jsp Displays the advanced search page in a
frame controlled by IDMSearchFrame.jsp.

IDMBasicSearch.jsp Displays the basic search page in a frame
controlled by IDMSearchFrame.

IDMSearchFrame.jsp Displays the main search page frameset.

IDMSearching.jsp Displays the processing indicator on a
search results page.

IDMSearchResults.jsp Displays the search results.

IDMSearchTemplate.jsp Displays the page that contains the list of
valid search templates or item types that a
user can use for searching.

IDMSearchToolbar.jsp Displays the toolbar for the search.

IDMViewApplet.jsp Opens the HTML page embedded with the
viewer applet.

IDMViewFrames.jsp Displays the View page; when the entire
item is sent to the browser, this page
writes the item to the browser.

IDMViewPage.jsp Displays the pane containing the current
page of the selected item in the View
page; this page is displayed in the lower
frame of IDMViewFrame using the current
settings for size, rotations, and other
parameters.

IDMViewToolbar.jsp When an item type is viewed, displays the
toolbar in the upper frame of
IDMViewFrame.

IDMResultsFrameBottom.jsp Displays the bottom frameset of the
search results.

Heading.jsp Displays heading of the search result
page.

 Chapter 5. eClient architecture 117

Table 5-4 eClient JSPs that are related to folders

Table 5-5 eClient JSPs that are related to annotations

Table 5-6 eClient JSPs that are related to workflow

JSP file Purpose

IDMAddItem.jsp Displays the Import Document, Create
Folder, and Create Federated Folder
pages.

IDMFolderContents.jsp Displays the contents in a folder. This is
within a worklist or search results. This is
displayed within the same frame as the
worklist of search results.

IDMFolderDeleteItem.jsp Displayed when the user wants to remove
an item from a folder.

JSP file Purpose

IDMODAnnotationsBB.jsp Displays the bottom area of the
OnDemand annotations interface.

IDMODAnnotationsBS.jsp Displays the frame for the search area of
the OnDemand annotations interface.

IDMODAnnotationsBT.jsp Displays the top area of the OnDemand
annotations interface.

IDMODAnnotationsEntry.jsp Displays a framed interface made up of
several frames.

IDMODAnnotationsFrame.jsp Displays the View Annotations page; this
file contains the frameset for the page.

IDMODAnnotationsList.jsp Displays the list of annotations for the
selected document in a frame of
IDMODAnnotationsFrame.

IDMODAnnotationsView.jsp Displays the annotation content for the
selected annotation within the OnDemand
annotations interface.

JSP file Purpose

IDMWorkLists.jsp Lists worklists that the user can retrieve.

IDMWorkItems.jsp Displays work items in a worklist.

IDMWorkflowCheckIn.jsp Checks in work items.

118 eClient 101 Customization and Integration

Table 5-7 eClient JSPs that are related to document routing

IDMWorkflowFrames.jsp Contains IDMWorkFlowToolbar.jsp and
IDMWorkItems.jsp.

IDMWorkflowNotifications.jsp Displays work notifications.

IDMWorkflowStartOnMultiple.jsp Starts workflow for multiple items.

IDMWorkflowToolbar.jsp Toolbar for IDMWorkItems.jsp.

IDMWorkflowUserVariables.jsp Displays the process information.

IDMWorkflowChange.jsp Moves selected item from current
workflow to another workflow.

IDMWorkflowInfo.jsp Displays the workflow or document routing
information.

DMWorkflowPriority.jsp Allows user to change the priority of a
workflow item.

IDMWorkflowStart.jsp Starts an item on an EIP workflow or
Content Manager document routing
process.

IDMWorkflowStrings.jsp Displays workflow variables for the work
item. Each item on an EIP workflow has up
to five variables that can be displayed or
edited.

IDMWorkflowSuspend.jsp Allows the user to suspend the workflow
on a chosen document for a specified
time.

IDMWorkflowDelNotif.jsp Deletes a workflow notification list.

IDMWorking.jsp Displays a processing indicator for
workflow.

WFPageHeading.jsp Displays the column headers for the
worklist.

JSP file Purpose

IDMDocRoutingConfirmWindow.jsp Opens a window and displays a page that
confirms an item has been put on a
document routing process.

JSP file Purpose

 Chapter 5. eClient architecture 119

5.3.3 Customizing eClient graphics
All of the graphics (including the icons) that are used by the JSPs and the help
are located in the
CMeClient\installedApp\IBM_eClient_82.ear\eclient82.war\icons directory.

The most common graphics to change are the background graphics. Four
different background graphics are used in the eClient and each is specified with
an individual CSS class. Replacing these background graphics with files of the
same name will change the background of those pages that use the related CSS
class. Consult Table 5-8 to determine which files and class to modify. All of the
backgrounds can be specified to use the same graphic, or not use any graphics,
but four different classes and backgrounds are used by default to provide
flexibility within the interface.

Table 5-8 CSS classes and background graphics

IDMDocRoutingGetWork.jsp Internal JSP that retrieves items from a
document routing process or workflow and
populates a worklist.

IDMDocRoutingInfo.jsp Displays the document routing information
for an individual item from the search
results.

IDMDocRoutingSelectUser.jsp Displays a window to select a user to
assign the work to from a worklist.

IDMDocRoutingSetOwner.jsp Set the owner for a document routing
process.

JSP file Purpose

CSS class or
element

Background graphic Description

BODYLOGON icons/logon_bk.jpg Used for the Logon and Change
Password pages within the eClient.

BODYHOME icons/home_bk.jpg Used for the Home page within the
eClient. This is the first page that is
displayed after the Logon page.

BODYMINI icons/mini_bk.jpg Used for framed pages within the
eClient. The Basic Search, Advanced
Search, and Search Template viewer
pages use this class.

120 eClient 101 Customization and Integration

You can replace the art work with your own to customize the graphics for your
eClient. You can set the font, the colors, and the background colors of the eClient
in the eclient81.css Cascading Style Sheet file. If the default location for the icons
or graphics are changed, the CSS style that specifies a background image may
also need to be modified.

The usage of style sheets is discussed in Chapter 9, “Customizing look and feel
using style sheets” on page 213.

BODYDIALOG icons/dialog_bk.jpg Used for windows within the eClient.
The import, edit attributes, e-mail and
many other windows use this class.

BODY N/A Used for all other pages in the
eClient. The BODY element does not
by default specify a background
graphic, but specifies the background
color as white.

CSS class or
element

Background graphic Description

 Chapter 5. eClient architecture 121

122 eClient 101 Customization and Integration

Chapter 6. Creating applications with EIP

This chapter provides the essential information required to start creating
applications with Information Integrator for Content (formerly known as EIP and
is still referred to as EIP in this redbook). We cover the programming interface
and go through an API test drive to help you get up and running as quickly as
possible.

This chapter includes the following:

� Using Content Manager connector
� Using DB2 connector
� Using federated connector to access DB2
� Using federated connector to search across content servers
� Working with Information Mining Service
� Working with controller servlet
� Working with viewer toolkit

This is far from being a programming guide. For a complete programming guide,
refer to the Information Center. Select Enterprise Information Portal ->
Administration -> Managing information mining.

6

© Copyright IBM Corp. 2003. All rights reserved. 123

6.1 Programming interface overview
The application programming interfaces (APIs) are a set of classes that access
and manipulate either local or remote data according to the architecture
described in 1.3, “Information Integrator for Content Version 8” on page 6.

The APIs support:

� A common object model for data access

� Multiple searches and updates across a heterogeneous combination of
content servers

� A flexible mechanism for using a combination of search engines such as the
Content Manager text search feature

� Workflow capability

� Text analysis capability (Information Mining Service)

� Document viewing capability

� Administration functions

� Client/server implementation for Java applications

You can choose from the following interfaces:

� C++ classes
� Java classes
� JavaBeans
� Controller servlet and JSP tag library

Because we focus on the APIs that can directly be used in J2EE applications
such as eClient, the C++ API is not discussed in detail; however, the C++ classes
are aligned with the Java classes and can therefore be used in a similar way.

The Java APIs can reside on both the EIP server and the client (both provide the
same interface). The client API communicates with the server to access data
through the network via Java RMI (Remote Method Invocation). Communication
between the client and the server is performed by classes; it is not necessary to
add additional programs.

Java classes consist of the following packages:

� server
� client
� cs
� common

124 eClient 101 Customization and Integration

The client and server classes provide the same APIs, but have different
implementations.

The server package is com.ibm.mm.sdk.server. The classes in the server
package communicate directly with the federated or back-end content server.

The client package is com.ibm.mm.sdk.client. The classes in the client package
communicate with the classes in the server package via RMI.

The common classes are shared by both the client and server.

Sometimes, an application does not know where the content resides. For
example, an application can have content residing on the client at one time and
on the server at another time. The cs package connects the client and server
dynamically depending on .ini file settings.

The client application must import the client package, the dynamic application
must import the cs package, and the server application must import the server
package.

Although the same API is provided for the client and server, the client package
has an additional exception item because it communicates with the server
package.

The EIP JavaBeans can be divided into:

� Non-visual Java beans

You can use the non-visual beans to build Java and Web client applications
that require a customized user interface. The non-visual beans support the
standard bean programming model by providing default constructors,
properties, events and a serializable interface. You can use the non-visual
beans in builder tools that support introspection.

� Visual Java beans

The visual beans are customizable, Swing-based, graphical user interface
components. Use the visual beans to build Java applications for Windows.
You can place them within windows and dialogs of Java-based applications.
Because the visual beans are built using the non-visual beans (as a data
model), you must use them in conjunction with the non-visual beans when
building an application.

The sample applications discussed in the following sections show how to create
applications with the Java APIs and the JavaBeans.

An example of visual and non-visual JavaBeans is the viewer toolkit, which
allows you to integrate document viewing capabilities in your application. It
consists of a generic document viewer, a document viewer bean and a document

 Chapter 6. Creating applications with EIP 125

services bean. Depending on the application architecture, you choose one of the
three components. This is illustrated in Figure 6-1.

Figure 6-1 Viewer toolkit overview

The generic document viewer provides a graphical user interface to view the
content of a document on a client. To parse the different document formats and
render the content, streaming document services are used. The actual
processing is done by a set of document engines. The generic document viewer
allows you to customize the look and feel of many properties. It handles all page
and document navigation, page viewing operations such as rotating, zooming
and scaling, and annotations editing. The generic document viewer can be used
in Java applets or stand-alone client applications.

The document viewer bean is based upon the generic document viewer but it can
also launch external viewers to view documents. The viewer to be launched for a
certain MIME type is specified in the EIP Administration Client. The document
viewer bean can only be used in stand-alone client applications.

The document services bean performs server-side document conversions, such
as in the case of a Web-based application. It can convert documents from
content types that are not handled by the Web browser (documents that require a
plug-in or native application launch) to content types that are handled by the Web
browser natively, such as HTML, GIF, JPEG, or for which plug-ins are readily
available, such as PDF. Like the generic document viewer, the document
services bean calls the streaming document services to parse and render the

document engines

CMBGenericDocViewer

CMBStreamingDocServices

CMBDocumentViewer CMBDocumentServices

CMBDataManagement

Servlets
and JSPs

Java
Applications

Java Applets
or

Applications

126 eClient 101 Customization and Integration

documents. The document services bean can be used in servlets and JSPs. You
can find a sample implementation in 6.2.8, “Working with viewer toolkit” on
page 176.

EIP provides a servlet with pluggable actions that can be used when building
Web applications. This servlet acts as a controller of a Model-View-Controller
design Web application. It performs actions and initializes the beans (the model),
which are then accessed in the JSPs (the views) either directly or indirectly by
using JSP tags. This is illustrated in Figure 6-2.

Figure 6-2 Controller servlet overview

Actions performed for typical application tasks include:

� Log on and log off.
� Search.
� Create, retrieve, modify, and delete documents.
� Create folders, and add documents to or remove documents from folders.
� Launch documents and document pages for viewing.

In addition, the servlet performs common tasks before and after the action, such
as management of the connection to the content server. After every action, a
JSP is invoked to format the results and send them back to the browser.

You can customize the servlet to add new actions and associate JSPs with the
actions. This is shown in 6.2.7, “Working with controller servlet” on page 162.

The JSP tag library enables an application to dynamically create HTML files in
JSPs without the use of Java code. The tag library consists of an XML file
(taglib.tld) that defines each tag with its parameters and the name of the Java
class that implements the tag behavior. The tag library supports the creation of
HTML files with functions such as:

� Iterate through available data sources.
� Iterate through items in search results.

Browser

EIP
Sample JSPs

EIP
Controller Servlet

logon action

 search action

logoff action

...

EIP
JavaBeans

 Chapter 6. Creating applications with EIP 127

� Iterate through attributes of an item.
� Iterate through available search templates.
� Iterate through search criteria of a search template.
� Iterate through available entities.

6.2 Taking an API test drive
The best way to understand an API is to implement a simple application. The
following samples help you to get some simple codes up and running as quickly
as possible.

We first describe how you load the sample databases that come with Content
Manager and EIP. We then discuss sample applications that work with these
databases and demonstrate the usage of:

1. The connectors
2. The Information Mining Service
3. The controller servlet
4. The document viewer toolkit

Because we want to demonstrate the programming interfaces that can directly be
used in J2EE applications such as the eClient, all sample applications use the
Java programming language and the appropriate APIs.

6.2.1 Setting up sample data
Before we start to build applications that manage content, we first need to load
data to the content servers.

The content servers used here are DB2 and Content Manager. In addition, we
need Information Integrator for Content (EIP), and, of course, the eClient.

In the following section, we assume that Content Manager and EIP do not share
the same database. The database names are:

� Content Manager: ICMNLSDB
� EIP: EIPDB

To load the sample data for Content Manager:

1. Select Start -> Programs -> IBM Content Manager for Multiplatforms V8.2
-> First Steps.

2. In the First Steps window, select Load Sample Data to start the creation of
the sample data.

128 eClient 101 Customization and Integration

3. Use the System Administration Client to verify that the sample item types
starting with XYZ_ have ben created in database ICMNLSDB. To list the item
types, expand category ICMNLSDB, then Data Modeling, and click Item
Types as shown in Figure 6-3.

Figure 6-3 Content Manager Version 8 sample item types

To load sample data for DB2, we use a press article database that comes with
the sample data for EIP:

1. Select Start -> Programs -> Enterprise Information Portal for
Multiplatforms 8.2 -> EIP First Steps.

2. In the First Steps window, select Load Sample Data to start the creation of
the sample data.

3. Use the System Administration Client to verify that the sample database
EIPSAMPL contains the search templates SearchXYZClaimForms and
SearchLongBySource as shown in Figure 6-4 on page 130.

 Chapter 6. Creating applications with EIP 129

Figure 6-4 Information Integrator for Content Version 8 sample search templates

The structure of the sample databases is shown in Figure 6-5 on page 131.

The Content Manager database, ICMNLSDB, contains various item types. You
can use the Content Manager connector to access the appropriate items. See
6.2.2, “Using Content Manager connector” on page 131.

The DB2 database, IBMPRESS, contains one table. You can use the DB2
connector to access the appropriate rows. See 6.2.3, “Using DB2 connector” on
page 135.

In the sample administration database, EIPSAMPL, the columns of a DB2 table,
also known as native attributes, are mapped to federated attributes. Two of the
federated attributes became search criteria in a search template. This means you
can use the federated connector to access the DB2 data. See 6.2.4, “Using
federated connector to access DB2” on page 137.

Of course, you can also map the Content Manager attributes to federated
attributes and use them together with the existing federated attributes in a
federated entity to search across content servers. See 6.2.5, “Using federated
connector to search across content servers” on page 143.

130 eClient 101 Customization and Integration

Figure 6-5 Sample databases structure

6.2.2 Using Content Manager connector
In this section, we demonstrate how to use a Content Manager connector
through a sample Java application.

Java application
The sample application InformationAccessICM.java shows how to use the
Content Manager connector to access the data stored in a Content Manager
server.

The main class of the connector is DKDatastoreICM. You first have to call its
connect method:

DKDatastoreICM dsICM = new DKDatastoreICM();
dsICM.connect(database,userName,password,"");

columns (native attributes):
LANGUAGE
CONTENT
SOURCE
ID
PUBLICATION DATE

IBMPRESS

schema
mapping

administration
databases

content server
databases

criteria
mapping

ICMNLSDB

attributes (native attributes):
XYZ_ClaimNumber
XYZ_ClaimLName

item types (native entities):
XYZ_ClaimForm
XYZ_InsPolicy
XYZ_AdjReport
XYZ_PolReport
XYZ_AutoPhoto

attributes (native attributes):
XYZ_ClaimNumber
XYZ_AdjustLName

tables (native entities):
LONG_ARTICLES

EIPDBEIPSAMPL

federated attributes:
fed_primkey
fed_source
fed_content
fed_language

search templates:
SearchLongBySource
 criteria: source
 criteria: anykey

federated entities:
fed_long_article

 Chapter 6. Creating applications with EIP 131

To be able to find objects in the datastore, the connector provides an XML-based
query language that conforms to XQuery Path Expressions (XQPE), a subset of
the W3C XML Query working draft. For details on query syntax, refer to the
Information Center; select Enterprise Information Portal -> Programming ->
Working with Content Manager Version 8.2 -> Understanding the query
language. In this sample, we search for all items that belong either to item type
XYZ_ClaimForm or XYZ_AdjReport.

The execute method of class DKDatastoreICM evaluates the query string
command by executing it against the datastore and returning all results in a
collection. You can also specify query options, for example to limit the number of
returned results or the data that is retrieved for each result. The method returns a
cursor that can be used to fetch the results:

String query = "(/XYZ_ClaimForm | /XYZ_AdjReport)";
DKNVPair options[] = new DKNVPair[3];
options[0] = new DKNVPair(DKConstant.DK_CM_PARM_MAX_RESULTS, "0");
options[1] = new DKNVPair(DKConstant.DK_CM_PARM_RETRIEVE,
new Integer(DKConstant.DK_CM_CONTENT_ATTRONLY));
options[2] = new DKNVPair(DKConstant.DK_CM_PARM_END, null);
dkResultSetCursor cursor = dsICM.execute(query,
DKConstantICM.DK_CM_XQPE_QL_TYPE, options);

A call to the fetchNext method of the cursor returns a Dynamic Data Object
(DDO) of type DKDDO. The complete result set has been retrieved if the method
returns null:

DKDDO ddo;
while((ddo = cursor.fetchNext())!=null) {
...
}

Each DDO represents a persistent data object in the Content Manager server.
You can use it to retrieve and update the appropriate object data. You can also
delete the object in the server.

To run the sample:

1. Select Start -> Programs -> Enterprise Information Portal for
Multiplatforms 8.2 -> Development Window to open a command window
that has the required environment settings.

2. Change to the directory where you stored the redbook samples.

3. To compile the sample, run javac InformationAccessICM.java.

4. To run the sample, enter java InformationAccessICM.

132 eClient 101 Customization and Integration

Please note that the sample uses default values for the database (icmnlsdb), the
user ID (icmadmin) and the password (password). To overwrite the defaults,
specify these values on the command line as follows:

java InformationAccessICM <icmnlsdb> <icmadmin> <password>

Replace <icmnlsdb>, <icmadmin>, and <password> with your own values.

For each resulting data object, its Persistent Identifier (PID) is displayed. The
output of the sample is shown in Figure 6-6.

Figure 6-6 Output of sample InformationAccessICM.java

eClient
You can also use the eClient to access the sample data through the Content
Manager connector. On the logon page, specify ICMNLSDB(CM8) for the server as
shown in Figure 6-7.

Figure 6-7 eClient logon with the Content Manager connector

 Chapter 6. Creating applications with EIP 133

After you click the Search link on the welcome page, the available item types are
listed on the Item Type List page as shown in Figure 6-8. The item type
description is displayed for each item type in the list rather than just the item type
name. To search for the same items as in the sample application above, select
one of the item types, Auto Claim Form or Adjuster Report.

Figure 6-8 List of available item types

Figure 6-9 shows the search form that comes up if you select item type Auto
Claim Form. To get all items of this type, specify the wildcard character in one of
the fields and click the Search button. Because we search for Auto Claim Form
items only, three results are returned as shown in Figure 6-10 on page 135. If
you also want to see the other three results that we have seen in the sample
application, you need to search for Adjuster Report items.

Figure 6-9 Basic search page

134 eClient 101 Customization and Integration

Figure 6-10 Search results page

6.2.3 Using DB2 connector
In this section, we demonstrate how to use a DB2 connector to access data
through a sample Java application.

Java application
The sample application InformationAccessDB2.java shows how to use the DB2
connector to access the data, stored in a DB2 server. In our example, the
database is IBMPRESS.

The main class of the connector is DKDatastoreDB2. You first have to call its
connect method:

DKDatastoreDB2 dsDB2 = new DKDatastoreDB2();
dsDB2.connect(database,userName,password,"");

To find objects in the datastore, you can use SQL. In this sample, we search for
all items where the source attribute is set to IBMPRESS.

The execute method of class DKDatastoreDB2 evaluates the query string
command by executing it against the datastore and returning all results in a
collection. You can also specify query options, for example to limit the number of
returned results or the data that is retrieved for each result. The method returns a
cursor that can be used to fetch the results:

String query = "SELECT SOURCE,ID FROM ICMADMIN.LONG_ARTICLES WHERE SOURCE =
'ibmpress'";
DKNVPair options[] = new DKNVPair[2];

 Chapter 6. Creating applications with EIP 135

options[0] = new DKNVPair(DKConstantDB2.DK_CM_PARM_MAX_RESULTS,"100");
options[1] = new DKNVPair(DKConstantDB2.DK_CM_PARM_END,null);
dkResultSetCursor cursor = dsDB2.execute(query,
DKConstantDB2.DK_CM_SQL_QL_TYPE, options);

The cardinality method returns the number of search results. Each call to the
fetchNext method of the cursor returns a Dynamic Data Object (DDO) of type
DKDDO:

int resultCount = cursor.cardinality();
while(resultCount-- > 0) {
DKDDO ddo = cursor.fetchNext();
...
}

A DDO represents a persistent data object in the DB2 server. You can use it to
retrieve and update the appropriate object data. You can also delete the object in
the server.

To run the sample:

1. Select Start -> Programs -> Enterprise Information Portal for
Multiplatforms 8.2 -> Development Window to open a command window
that has the required environment settings.

2. Change to the directory where you stored the redbook samples.

3. To compile the sample, run javac InformationAccessDB2.java.

4. To run the sample, enter java InformationAccessDB2.

For each resulting data object, its Persistent Identifier (PID) is displayed. The
output of the sample is shown in Figure 6-11 on page 137.

136 eClient 101 Customization and Integration

Figure 6-11 Output of sample InformationAccessDB2.java

eClient
The DB2 connector is not available in the eClient. Hence, direct access to DB2
databases is not possible.

6.2.4 Using federated connector to access DB2
In this section, we demonstrate how to use the federated connector to access
DB2 through sample Java applications and eClient.

Java application
The native attributes of the database IBMPRESS are mapped to the federated
attributes in the sample administration database EIPSAMPL. The federated
connector can be used to access the DB2 server using a federated query string.
This is shown in the sample InformationAccessFedDB2.java.

Because there is also a search template (SearchLongBySource) where each of
the federated attributes is a search criteria, the search template APIs can also be
used. This is shown in the sample InformationAccessFedDB2Beans.java.

We also show how you can use the search template in the eClient.

Let’s start with the federated query string sample.

 Chapter 6. Creating applications with EIP 137

The main class of the federated connector is DKDatastoreFed. You first have to
call its connect method:

DKDatastoreFed dsFed = new DKDatastoreFed();
dsFed.connect(database,userName,password,"");

To find objects in the datastore, you can use a federated query string. This is a
content server neutral query. It is documented in the Information Center. Select
Enterprise Information Portal -> Programming -> Working with a federated
content server and federated searching -> Running federated queries.

In this sample, we perform the same search as in 6.2.3, “Using DB2 connector”
on page 135, but this time we use the federated attributes mapped to the DB2
native attributes.

A convenient way to execute the query string is to use the execute method of
class DKFederatedQuery. The query is translated into a native query against the
DB2 server. The translation information is obtained from the schema mapping.
The datastore returns all results in a collection. You can also specify query
options, for example to limit the number of returned results or the data that is
retrieved for each result. The execute method returns a cursor that can be used
to fetch the results:

String query = "PARAMETRIC_SEARCH = (ENTITY = fed_long_article,
MAX_RESULTS=0, COND = ((fed_source == 'ibmpress')));
OPTION = (CONTENT = YES)";
DKFederatedQuery fedQuery = new DKFederatedQuery(dsFed, query);
fedQuery.execute(null);
dkResultSetCursor cursor = fedQuery.resultSetCursor();

The cardinality method returns the number of search results. Each call to the
fetchNext method of the cursor returns a Dynamic Data Object (DDO) of type
DKDDO:

int resultCount = cursor.cardinality();
while(resultCount-- > 0) {
DKDDO ddo = cursor.fetchNext();
...
}

A DDO represents a persistent data object in the DB2 server. You can use it to
retrieve and update the appropriate object data. You can also delete the object in
the server.

To run the sample:

1. Select Start -> Programs -> Enterprise Information Portal for
Multiplatforms 8.2 -> Development Window to open a command window
that has the required environment settings.

138 eClient 101 Customization and Integration

2. Change to the directory where you stored the redbook samples.

3. To compile the sample, run javac InformationAccessFedDB2.java.

4. To run the sample, enter: java InformationAccessFedDB2.

For each resulting data object, its Persistent Identifier (PID) is displayed. The
PIDs now also contain the name of the federated entity. The output of the sample
is shown in Figure 6-12.

Figure 6-12 Output of sample InformationAccessFedDB2.java

The federated query string cannot be used in the eClient.

In the samples above, we create our queries manually. EIP, however, provides a
convenient way to predefine a federated query using search templates. With a
search template, you just have to provide the search values for certain search
criteria and run the query. You do not have to deal with federated attributes and
create a query string.

Creating an application that uses search templates is simple if you use the
JavaBeans API. This is shown in the sample
InformationAccessFedDB2Beans.java.

 Chapter 6. Creating applications with EIP 139

Using the JavaBeans API, a connection is established with an object of type
CMBConnection:

CMBConnection connection = new CMBConnection();
connection.setServerName(database);
connection.setUserid(userName);
connection.setPassword(password);
connection.connect();

In this sample, we perform the same search as in the previous two samples but
instead of using a query string, we use a search template.

The template can be retrieved by name. A search value and an operator need to
be specified for each of the required search criteria. You can also specify query
options, for example to limit the number of returned results or to run the query
asynchronously. The runQueryWithCursor method returns a cursor that can be
used to fetch the results:

CMBSchemaManagement schema = connection.getSchemaManagement();
CMBSearchTemplate searchTemplate = schema.getSearchTemplate(templateName);
String[] searchValues = { "ibmpress" };
searchTemplate.setSearchCriterion("source",
CMBBaseConstant.CMB_OP_EQUAL, searchValues);
searchTemplate.setAsynchSearch(false);
searchTemplate.setMaxResults(100);
CMBResultSetCursor cursor = searchTemplate.runQueryWithCursor();

The getResultCount method returns the number of search results. Each call to
the fetchNext method of the cursor returns a CMBItem object:

int resultCount = cursor.getResultCount();
while(resultCount-- > 0) {
CMBItem item = cursor.fetchNext();
...
}

An item represents a persistent data object in the content server (which is DB2 in
this case). You can use it to retrieve and update the appropriate object data. You
can also delete the object in the server.

To run the sample:

1. Select Start -> Programs -> Enterprise Information Portal for
Multiplatforms 8.2 -> Development Window to open a command window
that has the required environment settings.

2. Change to the directory where you stored the redbook samples.

3. To compile the sample, run javac InformationAccessFedDB2Beans.java.

4. To run the sample, enter java InformationAccessFedDB2Beans.

140 eClient 101 Customization and Integration

For each resulting item, its Persistent Identifier (PID) is displayed. The output of
the sample is shown in Figure 6-13.

Figure 6-13 Output of sample InformationAccessFedDB2Beans.java

eClient
You can also use the eClient to search with this template. On the logon page,
specify EIPSAMPL (FED) for the server as shown in Figure 6-14.

Figure 6-14 eClient logon with federated connector

The available search templates are listed on the Search Template List page as
shown in Figure 6-15 on page 142. To search for the same items as in the
sample application above, select the search template SearchLongBySource.

 Chapter 6. Creating applications with EIP 141

Figure 6-15 List of available search templates

In the search form, make sure the search value for the source criteria is ibmpress
(lowercase) and no value is specified for the anykey criteria as shown in
Figure 6-16. Click the Search button and you will get a result list as in
Figure 6-17 on page 143. Because such a result list does not really help you to
find a certain document, we will discuss how you can organize the data and
enhance the result list in 13.1, “Using categories and summaries in eClient
searches” on page 282.

Figure 6-16 Template search page

142 eClient 101 Customization and Integration

Figure 6-17 Search template result page

6.2.5 Using federated connector to search across content servers
In the examples before, we use EIP to access a single content server; however,
one of the key features of EIP is the ability to search across multiple content
servers.

This can be done using a federated query that uses federated attributes that are
mapped to native attributes of different content servers.

System configuration
Figure 6-18 on page 144 shows how you can define a federated entity that allows
cross-server search using the sample databases.

 Chapter 6. Creating applications with EIP 143

Figure 6-18 Cross-server search definitions

Three of the federated attributes of the entity are mapped to native attributes in
the DB2 database IBMPRESS. The other two federated attributes are mapped to
native attributes in the Content Manager database. The federated entity can then
directly be used in a federated query string. Figure 6-18 shows also a search
template that uses this entity to allow a cross-server search.

The only purpose of the federated entity described above is to retrieve
documents from multiple content servers simultaneously. Beyond this purpose, it
is hard to find a scenario where you have attributes of insurance documents and
press articles in one entity. Imagine a federated entity that has an author attribute
that is mapped to two native attributes, an author attribute in a DB2 database,
and an originator attribute in Content Manager. Such a federated entity adds
another dimension to the retrieval from multiple servers, because this way you
bring two similar concepts together in one federated view.

In the following section, we configure the federated connector according to
Figure 6-18 and run some searches.

search templates:
SearchCrossServer
 criteria: articleSource
 criteria: anyKey
 criteria: adjustmentReportLastName
 criteria: claimFormLastName

columns (native attributes):
LANGUAGE
CONTENT
SOURCE
ID
PUBLICATION DATE

IBMPRESS
content server
databasesICMNLSDB

attributes (native attributes):
XYZ_ClaimNumber
XYZ_ClaimLName

attributes (native attributes):
XYZ_ClaimNumber
XYZ_AdjustLName

tables (native entities):
LONG_ARTICLES

EIPSAMPL

federated attributes:
fed_claimFormLastName
fed_adjustmentReportLastName
fed_primaryKey
fed_articleSource
fed_articleContent

federated entities:
fed_crossServerEntity criteria

mapping

schema
mapping

schema
mapping

item types (native entities):
XYZ_ClaimForm
XYZ_InsPolicy
XYZ_AdjReport
XYZ_PolReport
XYZ_AutoPhoto

144 eClient 101 Customization and Integration

Follow these steps to configure the connector:

1. Log on to the System Administration Client, using server type Enterprise
Information Portal and server EIPSAMPL.

Figure 6-19 Configuring EIPSAMPL in System Administration Client

2. In the tree view for database EIPSAMPL, right-click Servers and select New
-> Content Manager v8.

3. In the New Server window, enter ICMNLSDB as the server name and click OK.
The new server should appear in the list of servers on the right-hand side,
along with IBMPRESS and XYZSAMPL.

4. In the menu bar, select Tools -> Server Inventory Viewer.

5. In the Server Inventory Viewer, select View -> Refresh Server ->
ICMNLSDB. Some lines for server ICMNLSDB will appear in the viewer.
Close the viewer.

6. Back in the tree view for EIPSAMPL, right-click Federated Entities and select
New -> Nonwizard.

7. In the New Federated Entity window, enter the name fed_crossServerEntity
and click Add.

8. In the New Federated Attribute window, enter the name
fed_claimFormLastName. Do not change any other value and click Apply. In
the same way, add the following attributes:

– fed_adjustmentReportLastName
– fed_primaryKey
– fed_articleSource
– fed_articleContent (You must specify type Clob a length of 102400 for

this attribute in the New Federated Attribute window)

Click Cancel to close that window.

 Chapter 6. Creating applications with EIP 145

9. Back in the Federated Entity window, click Map Federated Entity....

10.In the Federated Entity Mapping window, select server ICMNLSDB and the
native entity XYZ_ClaimForm. Now select the federated attribute
fed_claimFormLastName and the native attribute XYZ_ClaimLName.
Finally, click Add to create the mapping. Now the window looks similar to
Figure 6-20.

Figure 6-20 First federated entity mapping

In the same way, create the mappings for the remaining federated attributes
according to Table 6-1. After this is done, your Federated Entity Mapping
window should look similar to Figure 6-21 on page 147.

Table 6-1 Required mappings

Federated
attribute

Native attribute Native Entity Server

fed_claimFormLast
Name

XYZ_ClaimLName XYZ_ClaimForm ICMNLSDB

fed_adjustmentRe
portLastName

XYZ_AdjustLName XYZ_AdjReport ICMNLSDB

fed_primaryKey ID ICMADMIN.LONG
_ARTICLES

IBMPRESS

146 eClient 101 Customization and Integration

Figure 6-21 Federated Entity Mapping window

11.Click OK to close this window and again click OK to close the New Federated
Entity window.

12.Back in the tree view for database EIPSAMPL, right-click Search Templates
and select New -> Nonwizard.

13.Enter the name SearchCrossServer. Select the user ICMADMIN and click
Add to move it to the list of selected users. Select the federated entity
fed_crossServerEntity and click Add... to create template criteria.

14.In the New Template Criteria window, enter the name claimFormLastName,
select the federated attribute fed_claimFormLastName, select the default
operator like, specify % as the default value and make sure the Display in the
results only box is not checked. Now the window looks like Figure 6-22 on
page 148.

fed_articleSource SOURCE ICMADMIN.LONG
_ARTICLES

IBMPRESS

fed_articleContent CONTENT ICMADMIN.LONG
_ARTICLES

IBMPRESS

Federated
attribute

Native attribute Native Entity Server

 Chapter 6. Creating applications with EIP 147

Figure 6-22 The first template criteria

Click Apply to add the new criteria. In the same way create the remaining
template criteria according to Table 6-2. After this is done, close this window,
by clicking Cancel.

Table 6-2 Required template criteria

15.Back in the new Search Template window, select Search using any criteria
(OR) at the bottom of the window. The window should now look like
Figure 6-23 on page 149.

Criteria name Federated attribute Default
operat
or

Default
value

Display in
the results
only

claimFormLastName fed_claimFormLastNa
me

like % not
checked

adjustmentReportLast
Name

fed_adjustmentReport
LastName

like % not
checked

articleSource fed_articleSource equals
(=)

ibmpress not
checked

anykey fed_primaryKey checked

148 eClient 101 Customization and Integration

Figure 6-23 New search template window

16.Click OK to close the window. The new search template appears in the list of
available templates.

The federated connector is now configured according to Figure 6-18 on
page 144.

Java application
To execute the cross-server search, the federated entity can directly be used in a
federated query string. This is shown in the sample InformationAccessFed.java.

The sample InformationAccessFedBeans.java shows how to search with the
search template.

Let’s start with the federated query string sample. Note that we can follow the
same procedure as in 6.2.4, “Using federated connector to access DB2” on
page 137, as the federated query string is server agnostic.

 Chapter 6. Creating applications with EIP 149

The main class of the federated connector is DKDatastoreFed. You first have to
call its connect method:

DKDatastoreFed dsFed = new DKDatastoreFed();
dsFed.connect(database,userName,password,"");

To find objects in the datastore, you can use a federated query string. This is a
content server neutral query.

A convenient way to execute the query string is to use the execute method of
class DKFederatedQuery. The query is translated into native queries against the
DB2 server and the Content Manager server. The translation information is
obtained from the schema mapping. The results of the native queries are merged
into a federated collection. You can specify query options, for example to limit the
number of returned results or the data that is retrieved for each result. The
execute method returns a cursor that can be used to fetch the results:

String query = "PARAMETRIC_SEARCH = (ENTITY = fed_crossServerEntity,
MAX_RESULTS = 0, COND = ((fed_claimFormLastName LIKE '%') OR
(fed_adjustmentReportLastName LIKE '%') OR (fed_articleSource LIKE
'%ibmpress%'))); OPTION = (CONTENT = YES)";
DKFederatedQuery fedQuery = new DKFederatedQuery(dsFed, query);
fedQuery.execute(null);
dkResultSetCursor cursor = fedQuery.resultSetCursor();

A call to the fetchNext method of the cursor returns a Dynamic Data Object
(DDO) of type DKDDO. The complete result set has been retrieved if the method
returns null:

DKDDO ddo;
while((ddo = cursor.fetchNext())!=null) {
...
}

A DDO represents a persistent data object either in the DB2 server or the
Content Manager server. You can use it to retrieve and update the appropriate
object data. You can also delete the object in the server.

To run the sample:

1. Select Start -> Programs -> Enterprise Information Portal for
Multiplatforms 8.2 -> Development Window to open a command window
that has the required environment settings.

2. Change to the directory where you stored the redbook samples.

3. To compile the sample, run javac InformationAccessFed.java.

4. To run the sample, enter java InformationAccessFed.

150 eClient 101 Customization and Integration

For each resulting data object, its Persistent Identifier (PID) is displayed. The
output of the sample is shown in Figure 6-24. As you can see, we get results
from both content servers.

Figure 6-24 Output of sample InformationAccessFed.java

The federated query string cannot be used in the eClient.

The sample InformationAccessFedDB2Beans.java performs the same search
with the search template and the JavaBeans API.

Using the JavaBeans API a connection is established with an object of type
CMBConnection:

CMBConnection connection = new CMBConnection();
connection.setServerName(database);
connection.setUserid(userName);
connection.setPassword(password);
connection.connect();

The template can be retrieved by name. A search value and an operator need to
be specified for each of the required search criteria. You can also specify query
options, for example to limit the number of returned results or to run the query
asynchronously. The runQuery method does not return the result collection

 Chapter 6. Creating applications with EIP 151

directly, but an object of type CMBSearchResults collect all the files and can be
used to fetch the following results:

CMBSchemaManagement schema = connection.getSchemaManagement();
CMBSearchTemplate searchTemplate = schema.getSearchTemplate(templateName);
String[] searchValues = { "ibmpress" };
searchTemplate.setSearchCriterion("articleSource",
CMBBaseConstant.CMB_OP_EQUAL, searchValues);
searchValues = new String[] { "%" };
searchTemplate.setSearchCriterion("claimFormLastName",
CMBBaseConstant.CMB_OP_LIKE, searchValues);
searchTemplate.setSearchCriterion("adjustmentReportLastName",
CMBBaseConstant.CMB_OP_LIKE, searchValues);
searchTemplate.setMaxResults(100);
searchTemplate.setAsynchSearch(false);
searchTemplate.runQuery();
CMBSearchResults result = new CMBSearchResults();
result.setConnection(connection);
result.newResults(searchTemplate.getResults());

The getResultCount method returns the number of search results. Each call to
the fetchNext method of the cursor returns a CMBItem object:

int resultCount = cursor.getResultCount();
while(resultCount-- > 0) {
CMBItem item = cursor.fetchNext();
...
}

An item represents a persistent data object in either the DB2 server or the
Content Manager server. You can use it to retrieve and update the appropriate
object data. You can also delete the object in the server.

To run the sample:

1. Select Start -> Programs -> Enterprise Information Portal for
Multiplatforms 8.2 -> Development Window to open a command window
that has the required environment settings.

2. Change to the directory where you stored the redbook samples.

3. To compile the sample, run javac InformationAccessFedBeans.java.

4. To run the sample, enter java InformationAccessFedBeans.

For each resulting item, its Persistent Identifier (PID) is displayed. The output of
the sample is shown in Figure 6-25 on page 153. Again, we get results from both
content servers.

152 eClient 101 Customization and Integration

Figure 6-25 Output of sample InformationAccessFedBeans.java

eClient
The eClient is also able to search with this template. On the logon page, specify
EIPSAMPL (FED) for the server, as shown in Figure 6-26.

Figure 6-26 eClient logon with federated connector

The available search templates are listed on the Search Template List page as
shown in Figure 6-27 on page 154. Select the search template
SearchCrossServer.

 Chapter 6. Creating applications with EIP 153

Figure 6-27 List of available search templates

In the search form, leave all default values and just click the Search button. You
get a result list similar to Figure 6-28.

Figure 6-28 Template Search window

154 eClient 101 Customization and Integration

Figure 6-29 Search Template result window

6.2.6 Working with Information Mining Service
As discussed in 1.4, “Information Mining Service” on page 9, this feature of EIP
provides functions for automatic text analysis. The analysis results, such as
important terms, categories, and summaries can be used to organize the data.
For example, you can structure your document collection by adding category
information to each document, finding related documents by creating queries
containing important terms, and providing a short summary for each document in
result lists.

In the following sample, we analyze each article in the sample database
IBMPRESS to find out to which topic (category) the article belongs. We then add
another analysis step that creates a summary of each article.

If you want to know how you use this type of analysis to organize your data in
Content Manager and restrict a search to a certain document topic, refer to 13.1,
“Using categories and summaries in eClient searches” on page 282.

Running the categorization sample
Before you can start to determine the category for an article, you first need to:

1. Define the set of available categories, a taxonomy.

 Chapter 6. Creating applications with EIP 155

2. Assign typical text documents (training documents) to each category of the
taxonomy.

3. Train the taxonomy to create a categorization model, which is then used by
the categorizer to automatically determine the category of new documents.

You use the Information Structuring Tool (IST) of the Information Mining Service
to define and train a taxonomy. The tool allows you to manually create each
category and assign documents to it. It also provides the ability to upload a
directory where each directory becomes a category and the documents in each
directory are the training documents for the respective category.

To create and train the taxonomy for the sample:

1. Open your browser, enter http://localhost/webApps/IST/login.html, and
log on with the user name icmadmin.

2. In the left-hand frame, right-click Library and select New catalog. Name this
new catalog “Sample”. The catalog will hold the taxonomy and the
categorization model once the taxonomy has been trained. The root category
of the taxonomy is already created and is also named Sample.

3. Expand the tree for catalog Sample (displayed with a book icon). Select the
root category Sample of this catalog, and an empty Training Document List is
displayed.

4. To create some categories and appropriate training documents from a
directory, select Add Document, click Browse, go to directory
C:\cmbroot\ikf\firststeps and select the directory IBM Press Releases. Click
Open, then click Submit to begin the file upload process.

5. When the upload process is finished, close the window. Expand the root
category Sample to see the whole taxonomy in the left-hand pane of your IST
window. If you click a category, the assigned training documents will be listed
as shown in Figure 6-30 on page 157.

Tip: Before continuing, you should make sure the DB2EXT service has been
started. To start it, open a command window and run db2text start.

156 eClient 101 Customization and Integration

Figure 6-30 Information Structuring Tool training documents

6. Select the catalog Sample (displayed with a book icon), click the Training tab
and select Start Training.

7. The message “The catalog is up-to-date, no training is required”
shows that the training is finished.

Based on the training documents that are assigned to each category, a
categorization model has been created that can now be used to analyze an
arbitrary text and assign one of the four categories as shown in Figure 6-30.

To analyze all articles of the sample database IBMPRESS, we perform a
federated search using the search template SearchLongBySource defined in
database EIPSAMPL. We then conduct the text analysis on each search result
item and simply print the results.

 Chapter 6. Creating applications with EIP 157

The sample Categorization.java can be found in the samples directory for the
Information Mining Service:
C:\cmbroot\samples\java\beans\infomining\categorization.

The sample application is implemented using the JavaBeans API. Figure 6-31
shows the beans and how they are connected to define the required event flow.

Figure 6-31 Categorization sample JavaBean event flow

The query bean and search results bean need a connection to the EIPSAMPL
database because this is where the federated entity and the search template
SearchLongBySource is defined. The beans of the Information Mining Service
need to get connected to the EIP administration database. The categorization
beans, for example, needs to look up the categorization model from this
database.

The search results bean populates the result list and fires a result event, which
contains the result items, to the adapter bean, which retrieves the items and
extracts the text from the item parts. The adapter then initiates a text analysis
request against the language identification bean. Language identification is a
required analysis before you can run categorization because categorization is
language specific. The categorization bean reads the taxonomy and

CMBSearchReplytEvent

CMBTextAnalysisRequestEvent

CMBStoreRecordRequestEvent

CMBStorteRecordReplyEvent

CMBResultEvent

CMBResultEvent

CMBInfoMiningAdapter

CMBLanguageIdentificationService

CMBCategorization Service

CMBCatalogService

CMBSerchResults

CMBQueryService

onCMBSearchRequest()

CMBInfoMiningAdapter

Categorization sample

connect()

CMBTextAnalysisRequestEvent

CMBConnectionReplyEvent

CMBConnection (eipdb) CMBConnection (eipsampl)

CMBConnectionReplyEvent

158 eClient 101 Customization and Integration

categorization model from the catalog we just configured and uses this
information to determine the category for each item. The category and the
language get stored in the item but it is transient only.

The categorization bean then invokes the catalog bean to store the analysis
results in the EIP administration database. This is optional and is only required if
you do not want to store the results on a content server.

Finally the adapter bean converts the reply event back to a search result event,
where each contained item is now enriched with the category and the language.
The sample prints both results together with the Persistent Identifier of the item.

The event flow for the text analysis is defined with the following code snippet:

queryService.addCMBSearchReplyListener(searchResults);
searchResults.addCMBResultListener(adapter1);
adapter1.addCMBTextAnalysisRequestListener(languageIdentificationService);
languageIdentificationService.addCMBTextAnalysisRequestListener(categorizat
ionService);
categorizationService.addCMBStoreRecordRequestListener(catalogService);
catalogService.addCMBStoreRecordReplyListener(adapter2);
adapter2.addCMBResultListener(this);

The search template can be retrieved by name (SearchLongBySource). A value
needs to be specified for the search criteria (source). To start the search, a
search request is created with the template and fired against the query bean:

CMBSearchTemplate searchTemplate =
schema.getSearchTemplate(SEARCH_TEMPLATE);
String[] searchValues = { SEARCH_VALUE };
searchTemplate.setSearchCriterion(SEARCH_CRITERION,
CMBBaseConstant.CMB_OP_EQUAL, searchValues);
CMBSearchRequestEvent searchRequest = new CMBSearchRequestEvent(this,
CMBSearchRequestEvent.CMB_REQUEST_SEARCH_SYNCH, searchTemplate);
queryService.onCMBSearchRequest(searchRequest);

The category information of a result item can be obtained from the record object
contained in the item as shown in the following code snippet.

CMBRecord currentRecord = currentItem.getInfoMiningRecord();
System.out.println("\n\nPID : " + currentRecord.getPID());
System.out.println("Categories : " +
currentRecord.getValue("IKF_CATEGORIES"));

To compile and run the categorization sample:

1. Open the EIP development window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window.

 Chapter 6. Creating applications with EIP 159

2. Change to the sample directory
C:\cmbroot\samples\java\beans\infomining\categorization.

3. To compile the sample, enter compile.

4. Enter run to start the sample. You are prompted for the database names, user
IDs and the catalog name. You should be able to go with the defaults except
for the EIP database. Enter EIPDB. Use the same DB name - case sensitive -
as in IST web.xml.

In the search result list, the Persistent Identifier of each item is displayed along
with the category information for this item as shown in Figure 6-32.

Figure 6-32 Categorization sample output

Adding summarization
Adding a new analysis step to the application, such as summarization, means
you need to add a new bean, the summarization bean, to the event flow as
shown in Figure 6-33 on page 161.

160 eClient 101 Customization and Integration

Figure 6-33 Adding summarization to the beans event flow

The implementation involves editing the Categorization.java file as follows:

1. Add a new import statement for the summarizer bean:

import com.ibm.mm.beans.infomining.CMBSummarizationService;

2. In the constructor, create an object reference and an object:

CMBSummarizationService summarizationService = new
CMBSummarizationService();

3. Add the summarizer bean to the connection flow:

eipConnection.addCMBConnectionReplyListener(summarizationService);

4. Currently the language identification bean is configured to send analysis
request events to the categorization bean. Change the appropriate line so
that the event is now sent to the summarization bean. Add a new line for the
summarization bean so that it sends request events to the categorization
service. Both lines should now look as follows:

languageIdentificationService.addCMBTextAnalysisRequestListener(summarizati
onService);
summarizationService.addCMBTextAnalysisRequestListener(categorizationServic
e);

5. Add this line to make sure the summarization bean can send exception
events:

summarizationService.addCMBExceptionListener(this);

6. In the onCMBResult method, add this line to print the summary for each item:

System.out.println("Summary: " + currentRecord.getValue("IKF_SUMMARY"));

The complete sample is also provided with the redbook samples.

CMBInfoMiningAdapter CMBInfoMiningAdapter

CMBLanguageIdentificationServiceCMBLanguageIdentificationService

CMBSummarizationServiceCMBSummarizationService

CMBCategorizationServiceCMBCategorizationService

CMBTextAnalysisRequestEvent

CMBTextAnalysisRequestEvent

CMBTextAnalysisRequestEvent

 Chapter 6. Creating applications with EIP 161

After you have recompiled and run the application again, the results should look
similar to Figure 6-34. In addition to the category information, a summary is
printed for each item.

Figure 6-34 Changed categorization sample output

A scenario that uses the Information Mining Service to implement a
category-based search in Content Manager with the eClient is shown in 13.1,
“Using categories and summaries in eClient searches” on page 282. In 13.2,
“Creating categories and summaries during document import” on page 296, we
demonstrate how to create an application with the Information Mining Service
Java API instead of JavaBeans.

6.2.7 Working with controller servlet
The following section shows how to install, use and extend the controller servlet.

Installing the servlet
To install the servlet, complete the steps in the Information Center. Select
Enterprise Information Portal -> Planning and Install -> Configuring
Enterprise Information Portal components -> Configuring the Web
Application Server for the EIP tag library and servlet. (Please read the
comments below first.)

It describes how to build the Web application archive (eip.war) file and the
enterprise archive (eip.ear) file. Furthermore, it describes how to install the
application in WebSphere Application Server.

162 eClient 101 Customization and Integration

To install the application on the eClient server, make sure you specify the right
server (eClient_Server) in step 3 of the installation process in the WebSphere
Application Server Administrative Console. Restart the eClient server after
installation. Also, do not forget to update the Web server plug-in after installation.
To do that, select Environment -> Update Web Server Plugin in the
WebSphere Application Server Administrative Console and click the OK button.

After installing the servlet, you need to complete the environment setup for the
application server (eClient_Server) by extending its classpath and native library
path:

1. Open the WebSphere Application Server Administrative Console and click
Environment -> Shared Libraries.

2. In the scope fields, specify the name of your node and eClient_Server as the
server. Click Apply. Library eClientLib appears in the list. Click eClientLib to
open the configuration window.

Important:

1. Other than described in the Information Center, start the Application
Assembly Tool by selecting Start -> Programs -> IBM WebSphere ->
Application Server v5.0 -> Application Assembly Tool.

� To avoid duplicates in the CLASSPATH and to speed up the installation
process in WebSphere Application Server, we recommend that you not
add all the JAR files listed the information Center when adding the JAR
files to the WAR file. You just need:
– cmbservlets81.jar
– cmbtag81.jar

2. When adding the tag library, you cannot select tld as described because
there is no such directory. Select the file taglib.tld instead.

3. When defining an alias for the tag library, specify /taglib.tld (with a
leading slash) for the tag library location.

4. To avoid configuration problems, we also recommend that you install the
servlet on the eClient server (eClient_Server) rather than on an arbitrary
server as stated in the Information Center. The eClient server has most of
the required environment settings (classpath and native library path) to run
the servlet.

5. You need to follow the additional configuration steps below before
continuing.

 Chapter 6. Creating applications with EIP 163

3. Add the following four lines to the classpath (assuming EIP is installed in
C:\cmbroot):

C:/CMBROOT/lib/cmbcm81.jar
C:/CMBROOT/lib/essrv.jar
C:/CMBROOT/ikf/lib/ikf.jar
C:/CMBROOT/ikf/lib

4. Add the following line to the native library path (assuming EIP is installed in
C:\cmbroot):

C:/CMBROOT/ikf/bin

5. Click Apply and save the changes to the master configuration.

6. Restart the application server.

Preparing the EIP environment
To enable the EIP development console for servlet development, edit the file
C:\cmbroot\cmbenv81.bat (assuming EIP is installed in C:\cmbroot):

1. Change the value of variable WAS_HOME according to your WebSphere
Application Server installation.

2. Add the following line to the CLASSPATH definition:

set CLASSPATH=%CLASSPATH%;%JARDIR%\cmbservlets81.jar

Running the servlet
To perform a federated search using the controller servlet, do the following:

1. Open your browser, enter http://localhost/eip/jsp/main.html, and follow
the link to the servlet actions.

2. Click Logon and log on with:

userid: icmadmin
server: eipsampl
serverType: Fed

3. After you have successfully logged on, go back to the list of servlet actions
and click Search template. You get a list of available search templates as
shown in Figure 6-35 on page 165. Select the template
SearchLongBySource and click Next.

164 eClient 101 Customization and Integration

Figure 6-35 Search template list from controller servlet

4. In the search form, enter ibmpress (lowercase) as the search value for the
criteria search and do not specify a search value for the criteria anykey. The
search form should now look like Figure 6-36 on page 166. Click Submit to
initiate the search.

 Chapter 6. Creating applications with EIP 165

Figure 6-36 Search values for controller servlet

5. The search result list is shown in Figure 6-37 on page 167; however, it is not
very useful yet. Beside the fact that you cannot click a document to view its
content, it is also not possible to distinguish between the important and the
unimportant documents.

166 eClient 101 Customization and Integration

Figure 6-37 Search results from controller servlet

We show how to create new servlet actions and adapt the JSPs to make the
result list more useful in the following section.

Creating new servlet actions
All actions known to the servlet are defined in a properties file named
cmbservlet.properties. You can add, modify, or delete servlet actions by changing
this file. To add a new action you need to:

� Implement a class to perform the action. The class must extend
com.ibm.mm.servlets.CMBServletAction.

� Add the name of the class and the action name to the cmbservlet.properties
file.

Class CMBServletAction declares one abstract method:

public abstract void perform(ServletContext app, HttpSession session,
HttpServletRequest request, HttpServletResponse res, Hashtable params)
throws...

Each new action needs to implement this method. The method parameters
include the scope objects, the request and response object and a parameter
object that contains all parameters specified when calling a servlet action.

 Chapter 6. Creating applications with EIP 167

In this example, we implement a new action that simply returns the whole textual
content of a data object to the client. A second action creates and return a short
summary of the textual content. We use the Information Mining Service of EIP to
extract the textual content and create the summary. Because a data object is
identified by its Persistent Identifier (PID), the new actions have a parameter for
the PID. With a tiny change to the JSP that creates the search result page, we
then add links to this page that invoke the new actions on the servlet.

The required steps are:

1. Implement two new servlet actions.

2. Register the new servlet actions in the cmbservlet.properties file.

3. Change the search result JSP to add links to the page.

4. Update the .ear file with the changed application files.

The servlet action for the content retrieval is implemented in
NewRetrieveDocumentAction.java. The action that creates a summary is
implemented in NewSummarizeDocumentAction.java.

The implementation in NewRetrieveDocumentAction.java starts with a reconnect
because the implementation of the default logon action does not configure the
connection bean to connect to the Information Mining Service. Since we do not
want to implement a new logon action here, we simply reconnect. The
connection bean has been stored in the session object where it can be retrieved
by name. After disconnecting, we call the method setConnectToIKF to get a
connection to the service during the next connect. The service connection can
then be obtained using the getIKFService method:

connection = (CMBConnection)session.getAttribute("connection");
connection.disconnect();
connection.setConnectToIKF(true);
connection.connect();
...
DKIKFService ikfService = connection.getIKFService();

Since the action expects a parameter for the PID, we retrieve it from the
parameter object. The PID is used to create an item object and retrieve its
content from the server. The implementation assumes all items contain a content
object:

CMBItem item = new CMBItem((String)params.get("documentPid"));
CMBDataManagement dataManagement = connection.getDataManagement();
dataManagement.setDataObject(item);
dataManagement.retrieveItem();
CMBObject object = dataManagement.getContent(0);

168 eClient 101 Customization and Integration

The document filter of the Information Mining Service is used to extract the
textual content from the content object. The filter supports all important
document formats:

DKIKFDocumentFilter ikfFilter = new DKIKFDocumentFilter(ikfService);
DKIKFTextDocument ikfDocument =
ikfFilter.getTextDocument(object.getDataStream());
String content = ikfDocument.getContent();

Finally we send an HTML page with the content to the client. According to the
Model-View-Controller design, you would call a JSP to create the response page
for the client. To simplify the sample, we create the page directly:

PrintWriter out = res.getWriter();
out.println("<HTML><BODY><table border=1 width=400>");
out.println("<tr><td>" + content + "</td></tr>");
out.println("</table></BODY></HTML>");

The implementation for the second action (NewSummarizeDocumentAction.java)
looks similar; but it performs some text analysis on the extracted content before
returning to the client. First, the language identifier is called to determine the
language of the text. This information is required by the summarizer, which is
then called to create a summary:

DKIKFLanguageIdentificationResult langResult[] =
ikfLangIdentifier.analyze(ikfDocument);
...
String language = langResult[0].getLanguage();
ikfDocument.setLanguage(language);
summary = summarizer.analyze(ikfDocument).getSummary();

This time, the page returned to the client contains the summary:

out.println("<tr><td>" + summary + "</td></tr>");

To compile the new servlet actions:

1. Open an EIP development window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window.

2. Change to the directory where you stored the redbook samples.

3. Run the two commands:

javac NewRetrieveDocumentAction.java
javac NewSummarizeDocumentAction.java.

To register the new actions in the cmbservlet.properties file:

1. In the EIP development window, change to the directory where you stored the
redbook samples.

 Chapter 6. Creating applications with EIP 169

2. To get the current file, run:

jar xvf %CMBROOT%\lib\cmbservlets81.jar
com\ibm\mm\servlets\cmbservlet.properties

The file can be found in the directory com, which is created in the current
directory.

3. Edit the file and add the following lines to the action mapping list:

action.summarizeDocument.class=NewSummarizeDocumentAction
action.retrieveDocument.class=NewRetrieveDocumentAction

4. Save and close the file.

In the following steps, we describe the changes made in the JSP file
templateresults.jsp, which creates the search results window. You do not need to
complete these steps because the changed JSP file is provided with the redbook
samples for this chapter. As an exercise, you can compare it to the original
version that is located in directory %CMBROOT%\SAMPLES\jsp\servlets.

The following has been changed in the JSP file:

1. In the table definition (<table ...> ... </table>) for the results on the bottom of
the file, after line:

<td>Attributes</td>

we inserted the line:

<td>Summary</td>

This is the header of a new column in the table.

2. The following line:

<td><%= item.getPidString() %></td>

has been replaced with:

<td><a
href="CMBControlServlet?action=retrieveDocument&documentPid=<%=java.net.URL
Encoder.encode(item.getPidString())%>"><%=item.getPidString()%><
/td>

The created link calls the controller servlet and specifies two arguments, the
action (retrieveDocument) and the PID.

3. After the last occurrence of the tag:

</td>

we inserted the line:

<td><a
href="CMBControlServlet?action=summarizeDocument&documentPid=<%=java.net.UR
LEncoder.encode(item.getPidString())%>">click to summarize</td>

170 eClient 101 Customization and Integration

This creates a new column in the table where each row contains a link. The
created link calls the controller servlet and specifies two arguments, the
action (summarizeDocument) and the PID.

Finally we need to update the eip.ear file:

1. Open the ear file using the WebSphere Application Server Application
Assembly Tool and expand Web Modules -> eip.war -> Files. Class files,
JAR files and resource files appear.

2. Right-click Class Files and select Add Files. The Add Files window appears.

3. Click Browse. Select the directory that contains the redbook samples (must
appear in the File name field) and click Select.

4. From the upper-right box in the Add Files window, select the two class files
files of the new servlet actions and the com directory containing the
cmbservlet.properties file (hold down the Ctrl key):

– NewRetrieveDocumentAction.class
– NewSummarizeDocumentAction.class
– com

5. Click Add. The Add Files window should now look like Figure 6-38 on
page 172. Click OK and select Yes on the confirmation window to update the
cmbservlet.properties file.

 Chapter 6. Creating applications with EIP 171

Figure 6-38 Adding new servlet actions to the WAR file

6. Right-click Resource Files and select Add Files. The Add Files window
appears.

7. Click Browse. Select the directory that contains the redbook samples (must
appear in the File name field) and click Select.

8. From the upper-right box in the Add Files window, select the jsp directory that
contains the new JSP file.

9. Click Add. The Add Files window should now look like Figure 6-39 on
page 173. Click OK and select Yes on the confirmation window to update the
file.

172 eClient 101 Customization and Integration

Figure 6-39 Adding resource files to the war file

10.Select File -> Save to save the EAR file and then select File -> Close.

Use the WebSphere Application Server Administrative Console to uninstall the
old servlet and install the new version.

Now run the search template search again. Do you remember the previous result
list?

The new search result window looks like Figure 6-40 on page 174.

 Chapter 6. Creating applications with EIP 173

Figure 6-40 Enhanced search result of controller servlet

If you click the links in the new column on the right, a summary as shown in
Figure 6-41 is displayed for the appropriate result. This should give you a quick
idea of the content of the document.

Figure 6-41 Summary returned by new servlet action

If the summary of the document seems to be interesting, you can go back to the
result list and click the Persistent Identifier to read the complete text as shown in
Figure 6-42 on page 175.

174 eClient 101 Customization and Integration

Figure 6-42 Document content returned by new servlet action

The next step optionally is to precalculate the summary and store it together with
the original object in the content server. This would allow a fast lookup of all
summaries and you could create a result window that has the summaries already
included. We discuss how to implement this scenario using Content Manager
and the eClient in 13.1, “Using categories and summaries in eClient searches”
on page 282.

If you run the sample in 6.2.5, “Using federated connector to search across
content servers” on page 143, you can now run the same search with the
controller servlet. Just select the search template SearchCrossServer. Again
you get the results from both content servers, Content Manager and DB2. You
can use the new links to get a summary and the content of the press articles that
come from DB2. You cannot see the content of the documents that come from
Content Manager, because the documents in Content Manager are images and
the document filter used to extract the textual content cannot perform optical
character recognition (OCR). You need to add additional viewing capabilities to
see the content. We add that additional viewing capability in 6.2.8, “Working with
viewer toolkit” on page 176.

 Chapter 6. Creating applications with EIP 175

6.2.8 Working with viewer toolkit
In this sample, we show how to implement server-side document conversion to
allow viewing of documents that are not directly supported by the browser. It
demonstrates the usage of the document services bean, which is part of the EIP
viewer toolkit. An overview of the toolkit can be found in 6.1, “Programming
interface overview” on page 124.

This sample requires the extensions to the controller servlet described in 6.2.7,
“Working with controller servlet” on page 162. Please make sure the Web
application is working before continuing. It also requires the search template
SearchCrossServer created in 6.2.5, “Using federated connector to search
across content servers” on page 143.

Using the controller servlet and searching with search template
SearchCrossServer, you get results from DB2 and Content Manager as shown in
Figure 6-43. You can find the results that come from Content Manager by looking
at the displayed identifier. It contains the database name ICMNLSDB.

Figure 6-43 Search results from Content Manager and DB2

When you click the identifier, you get an empty window, such as shown in
Figure 6-44 on page 177; this is because the actual document is a TIFF image
and the document filter used to extract the textual content does not conduct
optical character recognition (OCR).

176 eClient 101 Customization and Integration

Figure 6-44 Empty content window for Content Manager document

We update the servlet action NewRetrieveDocumentAction, which is responsible
for returning the document content so that it uses the document services bean of
the viewer toolkit to return the content in a format the browser can display.

The updated servlet action is provided with the redbook samples. Open the file
NewRetrieveDocumentAction.java in the viewer directory.

The implementation has a special behavior if the retrieved data object is a TIFF
image. In this case, the document services bean is created and the data object is
loaded into a viewer document:

if(object.getMimeType().equals("image/tiff")) {
CMBDocumentServices documentServices = new CMBDocumentServices();
documentServices.setDataManagement(connection.getDataManagement());
CMBDocument document = documentServices.loadDocument(item);

The servlet output stream, which is retrieved from the response object, is
required to send binary data to the client. The MIME type needs to be specified
so that the browser knows how to display the binary data:

ServletOutputStream outStream = res.getOutputStream();
res.setStatus(HttpServletResponse.SC_OK);
res.setContentType(document.getWriteMimeType());

Finally, the rendered document is sent to the client. If the document has pages,
we return just the first page to keep the sample small:

if(document.getCanPaginate()) {
CMBPage page = document.getPages(0);
page.write(outStream);
}
else {
document.write(outStream);
}

For documents other than TIFF images, the implementation still extracts the
textual content with the document filter provided by the Information Mining
Service.

 Chapter 6. Creating applications with EIP 177

To compile the new action:

1. Open an EIP development window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window.

2. Change to the viewer directory contained in your redbook samples directory.

3. Run:

javac NewRetrieveDocumentAction.java

To update the eip.ear file:

1. Open the EAR file using the WebSphere Application Server Application
Assembly Tool and expand Web Modules -> eip.war -> Files. Class files,
JAR files and resource files appear.

2. Right-click Class Files and select Add Files. The Add Files window appears.

3. Click Browse. Select the viewer directory in your redbook samples directory
(viewer must appear in the File name field) and click Select.

4. From the upper-right box in the Add Files window, select
NewRetrieveDocumentAction.class and then click Add.

5. Click OK and select Yes in the confirmation window.

6. Select File -> Save to save the EAR file and then select File -> Close.

Use the WebSphere Application Server Administrative Console to uninstall the
old servlet and install the new version.

Now search again and click a Content Manager result. The document is
displayed in the browser as shown in Figure 6-45 on page 179.

178 eClient 101 Customization and Integration

Figure 6-45 Rendered content for a Content Manager document

If you want to see more samples regarding the viewer toolkit, launch
C:\cmbroot\samples\java\viewer\readme.html to get a list of samples that come
with EIP. This includes an applet sample and stand-alone application.

 Chapter 6. Creating applications with EIP 179

180 eClient 101 Customization and Integration

Chapter 7. Setting up an eClient
development environment

This chapter discusses different options for an eClient development environment.
It includes instructions on how to set up an eClient development environment,
and provides pointers on how to use the WebSphere Studio Application
Developer tools, including debugging your application.

This chapter covers the following topics:

� Development environment options
� Using simple editor and command-line utilities
� Configuring Studio Application Developer for use with eClient
� Deploying customized eClient to another system

7

© Copyright IBM Corp. 2003. All rights reserved. 181

7.1 Development environment options
There are many options for development tools that can be used to customize
eClient. It is as simple as using a generic text editor or as complicated as using
some J2EE software development tools. The following sections provide several
options for a development environment. We include some of the reasons to
choose one over another. A more detailed description of how to install, configure,
and use some of the options is provided in the following sections of this chapter:

� Simple text editor and command-line tools
� IBM WebSphere Studio Application Developer
� Eclipse Software Development Kit

Simple text editor and command-line tools
If you are making a small number of simple changes, there is no need to install
and configure a J2EE development system. You can simply modify the JSPs in
the WebSphere directories with Notepad or your favorite editor. WebSphere will
automatically recompile the JSP the next time the JSP is accessed. You can also
use the WebSphere Application Assembly Tool to package your custom eClient.
Many of the information mining examples in this redbook use this method. We
recommend using text editor and command-line tools to get a quick start in
development.

IBM WebSphere Studio Application Developer
IBM WebSphere Studio Application Developer Version 5.0 is the latest J2EE
development platform from IBM. It is flexible and powerful. For serious software
development, we recommend using WebSphere Studio Application Developer.
The eClient customization examples for this redbook are developed using
WebSphere Studio Application Developer, which can be downloaded (try or buy)
from:

http://www.ibm.com/software/awdtools/studioappdev

Eclipse Software Development Kit
The Eclipse Software Development Kit (Eclipse SDK) Version 2.1 is an open
source software development platform. The Eclipse organization was created by
a consortium of software development tool providers comprised of IBM and other
leading tool providers. Because it is free, we recommend using this if you do not
want to invest in any serious development tools.

The Eclipse SDK Version 2.1 can be downloaded from:

http://www.eclipse.org

182 eClient 101 Customization and Integration

http://www.eclipse.org
http://www.ibm.com/software/awdtools/studioappdev

7.2 Using simple editor and command-line utilities
If you are making simple changes to the application, this can be done by simply
using Notepad or your favorite source code editor to modify the JSP files in the
eClient. The JSP files are located in two main directories in your WebSphere
directory.

After installing the eClient, the JSPs and other components of the eClient are
stored as shown in Figure 7-1.

Figure 7-1 Standard location of eClient source files

You can edit these JSP files with an editor. The next time the JSP files are
accessed by eClient, they are re-compiled on the fly by WebSphere.

 Chapter 7. Setting up an eClient development environment 183

If there are compilation errors, you get an eClient error page. You need to check
the stdout file configured in WebSphere for the eClient application. The default
location for this file is
C:\Program Files\IBM\CMeClient\logs\eClient_Server_stdout.log.

To debug the Java code in your JSP, use the following to write debug messages
to the stdout file:

System.out.println(“test”)

The Application Assembly Tool can be used if you want to add your own servlets
to the eClient. This is described in Chapter 13, “Enabling metadata-based
content retrieval” on page 281.

7.3 Configuring Studio Application Developer for use
with eClient

This section describes how to set up your development environment using
WebSphere Studio Application Developer.

You can download a trial version or buy a version of WebSphere Studio
Application Developer Version 5.0 at:

http://www.ibm.com/software/awdtools/studioappdev

If you are not familiar with WebSphere Studio Application Developer, refer to the
redbook, WebSphere Studio Application Developer Version 5 Programming
Guide, SG24-6957 for detailed information. This redbook explains the
architecture of WebSphere Studio Application Developer and how to set up your
workbench and workspace preference. It covers WebSphere Studio Application
Developer basic tooling and team environment along with the development and
deployment of Web applications. This is where you can find out general
information you need to know about programming and debugging your
application in WebSphere Studio Application Developer.

System requirement
To use WebSphere Studio Application Developer, you need a workstation with at
least 1 GB of RAM and preferably a Pentium IV with 1.8 GHz processor or better.
While writing this redbook, we found that all of the software (DB2, Content
Manager V8.2 Library Server and Resource Manager, EIP V8.2, eClient V8.2,
WebSphere V5.0, and WebSphere Studio Application Developer V5.0) can run
concurrently on an IBM ThinkPad® T30 (Pentium IV, 1.8 GHz with 1 GB of RAM).
With this configuration, memory usage hovered between 1.8 GB and 2.5 GB.
This configuration is usable but we recommend that you use more memory, if

184 eClient 101 Customization and Integration

http://www.ibm.com/software/awdtools/studioappdev

possible. If you are using a machine with 1 GB of RAM, be sure to set your virtual
memory settings to provide a minimum of 1.0 GB of virtual memory and a
maximum of 2.0 GB or more.

While many WebSphere Studio Application Developer users install WebSphere
on their development system in addition to WebSphere Studio Application
Developer, the installation of WebSphere Application Server is not required
because WebSphere Studio Application Developer includes the installation of a
test environment that includes an HTTP server. In our scenario, we have
standard WebSphere Application Server V5.0 installed in addition to WebSphere
Studio Application Developer.

Installation notes
The following are some important notes on the installation of EIP and
WebSphere Studio Application Developer:

� For EIP installation on a development workstation:

In order to customize eClient, you must install the EIP development kit. This
option is available on one of the first pages in the standard EIP setup.exe
application.

� For WebSphere Studio Application Developer V5.0 installation on your
workstation:

When installing WebSphere Studio Application Developer, normally the
“typical” install works just fine. If you plan to deploy your application with a
version of WebSphere Application Server earlier than WebSphere Application
Server V5.0, you need to install an optional WebSphere Studio Application
Developer test environment for the version of WebSphere Application Server
you will deploy with.

If you download WebSphere Studio Application Developer from the Web, it
comes in 12 “parts.” Part 10 (Agent Controller), part 11 (ClearCase®), and
part 12 (Embedded MQ) are optional and are not required for eClient
development.

Set up eClient application in WebSphere Studio Application
Developer

Once you have EIP V8.2, eClient V8.2, and WebSphere Studio Application
Developer V5.0 installed and working (that is, you can log on with eClient,

Important: If you install and run all products in one machine and you have
only 1 GB of RAM, be sure to set the virtual memory to a minimum of 1.0 GB
and a maximum of 2.0 GB or more.

 Chapter 7. Setting up an eClient development environment 185

search, and display documents from your back-end server), follow these steps to
set up the eClient application in WebSphere Studio Application Developer:

1. Start WebSphere Studio Application Developer:

a. Select Start -> Programs -> IBM WebSphere Studio -> Application
Developer 5.0.

b. Enter a workspace location directory. The workspace is where WebSphere
Studio Application Developer stores all of the source files and
configuration information for your WebSphere Studio Application
Developer workspace. Do not use special characters in the directory, such
as c:\$user\data.

c. Check Use this workspace as the default and do not show this
window again as shown in Figure 7-2. Click OK to continue.

Figure 7-2 WebSphere Studio Application Developer - Set up workspace

2. Import the eClient.ear file into WebSphere Studio Application Developer:

a. Select File -> Import. For Import Type, select EAR file and click Next.

b. Use the Browse button to find the eclient82.ear file. By default, it is
c:\Program Files\IBM\cmeClient\eclient82.ear. See Figure 7-3 on
page 187.

c. Enter eClient as the project name and click Finish.

Important: The project name must match the name of the application in
the WebAppName field in the IDM.properties file. The IDM.properties
file is normally located in c:\Program Files\IBM\cmEClient.

186 eClient 101 Customization and Integration

Figure 7-3 WebSphere Studio Application Developer - Import eClient application

Note: This step may take from 5 to 10 minutes to complete. The import
process creates directories in your workspace directory and extracts eClient
source files from the EAR file to these directories. When using WebSphere
Studio Application Developer to modify eClient, you must edit this set of files
and not the files in the WebSphere directories.

3. Open the Web Perspective to view the project content:

a. Select Window -> Open Perspective -> Other....

b. From the displayed list, select the Web perspective. It should look similar
to Figure 7-4 on page 188.

 Chapter 7. Setting up an eClient development environment 187

Figure 7-4 WebSphere Studio Application Developer - Web perspective

You may notice several errors. This is normal until the rest of the setup steps
are complete.

The J2EE Navigator in the upper-left pane of the window (Figure 7-4) shows
the content of the application. This is where you find the JSPs and any
custom Java files that you add to your application. If you scroll down in the
J2EE Navigator window, you see the JSPs that are included with the eClient.
You can view and modify them from here.

This is where you work during development. You can access the various
source files from the J2EE Navigator window and can edit the source in the
editor. In the bottom-right pane, the Servers tab is where you start and stop
the WebSphere test environment for testing your custom application.

188 eClient 101 Customization and Integration

4. Turn off WebSphere Studio Application Developer validation:

a. From the J2EE Navigator window (Figure 7-5), right-click the eclient82
project and select Properties. Figure 7-6 on page 190 appears.

Figure 7-5 J2EE Navigator view

 Chapter 7. Setting up an eClient development environment 189

Figure 7-6 WebSphere Studio Application Developer eClient properties window

b. Select Validation in the Properties for eclient82 window (Figure 7-6).

c. Check Override validation preferences.

d. Uncheck Run validation automatically when you save changes if it is
checked.

e. Click Deselect All. Then click Apply and OK.

5. Delete unused help subdirectories.

This is optional but recommended. Performing this step saves a lot of time in
the next step when changing the project properties. To do this:

a. Open the J2EE Navigator pane and expand the eClient project.

b. Expand Web Content -> Help folder.

190 eClient 101 Customization and Integration

c. Select all of the directories except your preferred language (in our case, it
is en) and click the Delete key, or right-click and select Delete (see
Figure 7-7). To select multiple directory entries, hold down the Ctrl key
while selecting each directory. This may takes a couple of minutes to
complete.

After completing this step, the J2EE Navigator window should include only
one language. In our scenario, only the en (for English) directory still remains.

Figure 7-7 Deleting help folder from WebSphere Studio Application Developer

6. Specify the JAR files required by the eClient in the Properties page:

a. From the J2EE Navigator view, right-click the eclient82 project and select
Properties.

 Chapter 7. Setting up an eClient development environment 191

Figure 7-8 Adding JAR files to WebSphere Studio Application Developer properties

b. Select Java Build Path in the list in the left-hand pane. See Figure 7-8.

c. Select the Libraries tab on the right.

d. Click Add External JARS and add the following JAR files from
C:\CMBROOT\lib directory:

• cmb81.jar (Yes, the files are named 81 even though this is for 8.2.)
• cmbsdk81.jar
• cmbview81.jar
• log4j.jar (This is required only if you enable log4j logging.)
• cmblog4j81.jar (This is required only if you enable log4j logging.)

e. Click Add External JARS again and add the db2java.zip JAR file from the
C:\Program Files\sqllib\java12 directory.

f. Click OK at the bottom of the Properties window.

192 eClient 101 Customization and Integration

7. Configure a test environment in WebSphere Studio Application Developer:

When you execute an application in WebSphere Studio Application
Developer, do not run it in your normal WebSphere environment. WebSphere
Studio Application Developer creates a test environment in which you can run
your application. The test environment includes an HTTP server and
WebSphere Application Server environment. WebSphere Studio Application
Developer can support multiple test environments for different levels of
WebSphere Application Server, allowing you to test the application in the
same environment you will deploy your application to.

To create a WebSphere Studio Application Developer test environment,
perform the following steps:

a. Select File -> New -> Other. Select Server on the left, and Server and
Server Configuration on the right, then click Next.

 Chapter 7. Setting up an eClient development environment 193

Figure 7-9 Creating test environment server configuration

b. For the server name, enter eClient_Server. For the default folder, select
Servers. For the server type, expand WebSphere version 5.0, then
select Test Environment. See Figure 7-9. If you plan to use a WebSphere
Application Server version other than the default, select the version you
plan to deploy here.

c. Click Next to get to the HTTP server port number.

d. Optional for WebSphere Application Server V4.0 test environment: If you
would like to run your WebSphere Application Server version of the eClient
at the same time as your WebSphere Studio Application Developer
version of the eClient, you must ensure that the port numbers for your

194 eClient 101 Customization and Integration

WebSphere Studio Application Developer test environment are different
from the port numbers for WebSphere Application Server. If you are using
a WebSphere Application Server V5.0 test environment in WebSphere
Studio Application Developer, the defaults should work fine.

e. Click Finish.

f. Select Window -> Open Perspective -> Server.

g. Expand the Servers folder in the Server Configurations pane on the lower
left of the window, right-click eClient_Server and select Open.

h. From the right pane in the window, select the Paths tab in the
WebSphere-specific classpath section and perform the following:

Click Add External Folder.... Navigate to c:\program
files\IBM\WebSphere Studio\runtimes\base_v5\properties. Click OK.

i. Select the Paths tab in the lower classpath section (you may need to use
the scroll bar to scroll down the upper-right pane to get to this section),
and perform the following:

i. Click Add External JARS. Add the corresponding files from various
directories as specified in Table 7-1 on page 196. Click Open.

Important: You can run both the standard out-of-the box eClient and
your custom eClient on the same machine at the same time. This is
useful for comparing the functionality of your custom eClient with that of
the out-of-the box eClient.

If you use a WebSphere Application Server V5.0 test environment, the
setup automatically uses different ports.

If you use a WebSphere Application Server V4.0 test environment, you
must specify port numbers in your WebSphere Studio Application
Developer test environment that do not interfere with the port numbers
used by the standard HTTP server and WebSphere Application Server
on your development workstation. If you use the default port numbers,
you can still run both the WebSphere Application Server and
WebSphere Studio Application Developer versions of the eClient, but
you must have only one “environment” running at one time: either the
standard WebSphere Application Server and HTTP server or your
WebSphere Studio Application Developer test environment.

 Chapter 7. Setting up an eClient development environment 195

Table 7-1 External JARs needed to add to the class path

ii. For each of the directories below, click Add External Folder..., select
the directory, and click OK.

• C:\CMBROOT\lib
• C:\Program Files\IBM\CMeClient
• C:\Program Files\IBM\Cmgmt
• C:\Program Files\IBM\WebSphere Studio
• C:\Program Files\IBM\WebSphere Studio\runtimes\base_v5\lib

iii. Sort the entries in the lower Class Path entry field using the up and
down buttons until the sequence matches the windows on Figure 7-10
on page 197 and Figure 7-11 on page 197. The sequence is important
so that the correct files are pulled from the correct folders.

Directory Files

C:\CMBROOT\lib cmb81.jar
cmbfed81.jar
cmglog4j81.jar
cmbsdk81.jar
cmbservlets81.jar
cmbtag81.jar
cmbutil81.jar
cmbutilfed81.jar
cmbview81.jar
log4j.jar
xalan.jar
xerces.jar

C:\Program Files\sqllib\java12 db2java.zip

C:\Program Files\IBM\WebSphere
Studio\runtimes\base_v5\lib

bootstrap.jar
j2ee.jar
xerces.jar

196 eClient 101 Customization and Integration

Figure 7-10 WebSphere Studio Application Developer classpath configuration

Figure 7-11 WebSphere Studio Application Developer classpath configuration -
Continued

j. Optional: Change the ORB bootstrap port so that your custom WebSphere
Studio Application Developer eClient can run with your standard
WebSphere Application Server eClient. With the eClient_Server
Properties window still open, select the Ports tab and change the port for
the ORB bootstrap from the default of 2809 to 2810.

 Chapter 7. Setting up an eClient development environment 197

k. Press Ctrl+S to save the changes. Close the window by clicking the X on
the eClient_Server tab.

l. Right-click eClient_Server again, and select Add -> eClient.

8. Test the eClient environment in WebSphere Studio Application Developer:

a. Select Window -> Open Perspective -> Server.

b. Stop the WebSphere Application Server service highlighted in
Figure 7-12. With the service stopped, you cannot run the WebSphere
Application Server Administration Console. This is because you cannot
run the WebSphere Application Server Administration Console and the
WebSphere Studio Application Developer test environment at the same
time.

Figure 7-12 Stop WebSphere Application Server service

c. Start the WebSphere Studio Application Developer test environment.

In the Server Configuration pane, right-click eClient_Server in the right
pane, then select Control -> Start to start the test environment.

This causes WebSphere Studio Application Developer to start an HTTP
server and WebSphere Application Server environment for your project.
The Console window will open and you will see messages from the HTTP
Server and WebSphere Studio Application Developer initialization. After
about 15-30 seconds, it should display a message saying “Server
<server> open for e-business.”

d. To execute the eClient in your WebSphere Studio Application Developer
workspace, open a Web browser, and enter the following URL:

http://hostname/eClient82:9080/IDMInit

198 eClient 101 Customization and Integration

e. To execute the eClient in your standard WebSphere Application Server
environment, enter the following URL:

http://hostname/eClient82:8080/IDMInit

Notes:

� Both WebSphere Application Server and WebSphere Studio Application
Developer eClients use the same IDM.properties in c:\Program
Files\IBM\CMgmt and cmEClient.

� The first time you run the eClient, it may run slowly since the JSPs will be
compiled as they are used.

� If you are using a Content Manager V7.1 back-end and have 1 GB of RAM or
more, set the FRNADDRON environment variable.

Not doing so may result in the error FRN9255A in the WebSphere Studio
Application Developer Console when logging on to EIP with the eClient.

Use the following bat file to start WebSphere if you encounter this problem.

set FRNADDRON=YES
cd \Program Files\IBM\WebSphere Studio
wsappdev.exe

This completes the setup of WebSphere Studio Application Developer for the
eClient.

Test changes to JSP files
To test this, we make a simple change to a JSP file.

In WebSphere Studio Application Developer, open the Web perspective. Scroll
down in the J2EE Navigator window until you find IDMLogon2.jsp. This is the
JSP that builds the logon window for the eClient.

In the following example, we change the label for the user ID field from “User ID”
to “USER ID”. See Figure 7-13 on page 200.

 Chapter 7. Setting up an eClient development environment 199

Figure 7-13 IDMLogon2.jsp in WebSphere Studio Application Developer

To change the label, do the following

1. Locate the following line in IDMLogon2.jsp by searching for
“LogonJSP_UserIDPrompt”:

<label for="userid"><%=
cub.getIdmResourcesString("LogonJSP_UserIDPrompt") %>

and replace it with this:

<label for="userid">USER ID

2. Press Ctrl+S from the editor window to save the changes. Check the servers
in the bottom right pane of WebSphere Studio Application Developer to be
sure your WebSphere test environment is started. Right-click the server and
click Start if it is not started. Go back to the Web browser and enter the
following URL to log on to the eClient:

http://hostname/eClient82:9080/IDMInit

The original logon window is shown in Figure 7-14 on page 201.

200 eClient 101 Customization and Integration

Figure 7-14 Standard eClient logon window with XYZ background image

The new logon window is shown in Figure 7-15 on page 202, with the label for
the USER ID field all in uppercase. Note that the JSP is compiled by WebSphere
when the new file is accessed.

 Chapter 7. Setting up an eClient development environment 201

Figure 7-15 Modified IDMLogon2.jsp specifying uppercase label for user ID

If the user ID is not uppercase, check the following:

� Make sure you saved the new IDMLogon2.jsp file.

� Make sure you specified the correct port for your WebSphere Studio
Application Developer environment. If you are not sure, stop the WebSphere
Studio Application Developer test environment from the servers pane and try
to log on using the same URL. It should not be able to find the Web page at
all. If it does find the Web page, you are using the URL from another instance
of WebSphere Application Server.

Do not forget to put back the original code in IDMLogon2.jsp before continuing.

7.4 Deploying customized eClient to another system
If you are modifying a few JSP files, you do not need to create a new .ear file for
your Web application. You can copy the new JSPs to the installedApps directory
of the target WebSphere environment.

202 eClient 101 Customization and Integration

If you add a custom JSP or servlet to eClient, you can create a new eClient .ear
file, which can then be deployed to WebSphere. If you add a servlet, a new .ear
file must be created and deployed to WebSphere.

If you are using WebSphere Studio Application Developer for development,
WebSphere Studio Application Developer can create a new .ear file that includes
the files you modified or added to eClient using WebSphere Studio Application
Developer. To do this, select the eclient82 project in WebSphere Studio
Application Developer, right-click the project, select Export... and use the GUI to
create a new .ear file.

If you are not using WebSphere Studio Application Developer, you can use the
WebSphere Application Server Application Assembly Tool. Chapter 13, “Enabling
metadata-based content retrieval” on page 281 shows you how to add a servlet
or a custom JSP to eClient and how to use the WebSphere Application Assembly
Tool to create and deploy a new eClient .ear file.

 Chapter 7. Setting up an eClient development environment 203

204 eClient 101 Customization and Integration

Part 3 Customizing
eClient

In this part, we show you how to customize eClient with sample codes. By
demonstrating some of the customization with the sample codes, we intend to
give you a better understanding of what and how you can customize eClient for
your business needs.

Part 3

© Copyright IBM Corp. 2003. All rights reserved. 205

206 eClient 101 Customization and Integration

Chapter 8. Design and implementation
considerations

In this chapter, we discuss a variety of issues that should be considered before
starting an eClient customization project. These include high-level design and
implementation guidelines as well as tips and sample code on how to handle
general programming tasks such as reading configuration files and handling
errors.

Specifically, this chapter covers:

� Design considerations, including:

– Considerations for incorporating future upgrades of eClient
– Considerations for working with different EIP back-end servers
– EIP back-end access vs direct access to back-end servers
– Maximum length of a URL
– Variations in Web browsers

� General programming tips, including:

– Accessing configuration data using properties files
– Using cookies to maintain session status
– Invoking code on the server from JavaScript

8

© Copyright IBM Corp. 2003. All rights reserved. 207

8.1 Design considerations
Before you begin designing and implementing your customized eClient, there are
several important considerations:

� Considerations for incorporating future upgrades of eClient
� Considerations for working with different EIP back-end servers
� EIP back-end access vs direct access to back-end servers
� Maximum length of a URL
� Variations in Web browsers

In the following sections, we address each of these in detail.

8.1.1 Considerations for incorporating future upgrades of eClient
One very important factor to consider when customizing the eClient is that IBM
will continue to update and enhance eClient. This may include changes to the
servlets, tag libraries, and most importantly, to the JSPs.

Since there are many JSPs that you can modify or replace with your own, it is
important to give careful consideration to how much you customize the JSPs and
how you will merge your customization with future versions of the eClient JSPs.

Keeping your changes manageable and easy to merge into new versions of the
eClient will make it easier to take advantage of new eClient functionality provided
in future versions of the eClient.

There are several things you can do to make this task easier:

1. Minimize the number of changes you make to the eClient JSPs.

This is a very simple yet important concept. While it can be tempting to begin
making small changes to lots of the JSPs to “tweak” the user interface, it is
important to remember that if you want to take advantage of new eClient
features in future releases, most likely you will need to re-apply and re-test
every customization that you make.

2. Keep as much new code as possible out of the JSPs.

Put as much custom code into new code modules outside of the JSPs as
possible. This can be in brand-new JSPs being the view for newly added
functionality (servlets) or new tag libraries. Using tag libraries reduces
complexity in the JSPs, allows implementation reuse, and simplifies migration
to a new eClient version.

3. Clearly mark your custom code in the JSPs.

You can make it easier to find your customizations by putting comments
before and after each change. This has been done in the examples in the

208 eClient 101 Customization and Integration

redbook by inserting XYZ_CHG_BEGIN and XYZ_CHG_END before and after each
customization, where XYZ is the acronym for the fictional company.

Another alternative is to make each of your customizations configurable via a
properties file. This makes it easy to switch back to the default functionality of
the eClient, and also ensures that all changes are clearly marked. However,
this does require additional effort and results in more source code. Many of
the sample customizations in the later chapters of this redbook use this
method.

We also recommend using file comparison tools to make it easier to compare
source files.

8.1.2 Considerations for working with different EIP back-end servers
Different back-end servers provide different functionality in the eClient. The
Content Manager Version 8 back-end server provides the richest set of
functionality. Many other back-ends may provide only search-and-view
functionality. You need to be aware of this if you are considering using different
back-end repositories.

8.1.3 EIP back-end access vs direct access to back-end servers
The eClient can connect directly to a back-end server such as Content Manager
Version 7 or Content Manager Version 8. As an alternative, the eClient can also
connect to the EIP database and use federated access to the back-end servers.

It is important to note that even if you access your back-end server by connecting
to the EIP federated connector, you may see native back-end interfaces for some
functions as you drill down on documents in the eClient. For example, when you
get into the edit attributes window, the interface no longer uses the attribute
display names used in the search templates and the search results. Instead, the
system goes directly to the back-end and displays the fields in the order they are
defined in Content Manager and with the attributes names defined in Content
Manager.

In addition, if you use an EIP search template to perform a search and get a list
of folders, when you open the folder, the eClient must revert to a back-end
specific view of the folder. Therefore, you see the Content Manager Index Class
or Item Type names and the Content Manager attributes names after opening a
folder.

 Chapter 8. Design and implementation considerations 209

8.1.4 Maximum length of a URL
There are two ways to interface with servlets: by putting parameters in the URL
or by putting parameters for the servlet in the session object. Each browser has
different limits on the length of a URL. In general, you should not use more than
300 characters in a URL.

For example, if you add a new function to the action drop-down box in the eClient
search results that can act on more than one item, do not pass the list of PIDs for
all selected items in the URL directly. You may want to check the length of the
generated list from the selected items to see if you have exceeded the maximum.
You need to handle the situation when the maximum length is exceeded.

8.1.5 Variations in Web browsers
If you want to use HTML that is browser specific, for example the Netscape
<embed> tag, you should check the browser version in the session object. Be
aware that there are differences in the way Web browsers work.

The version of the requesting Web browser is available in the session object and
can therefore be checked in a custom servlet or the JSPs.

8.2 General programming tips
In many cases, your customizations may need to have configurable properties.
Two common ways to specify configuration information are via properties files
and XML files.

An example of using properties files is the IDM.properties file in the eClient
installation directory. Properties files can easily be read using class
java.util.ResourcBundle or java.util.Properties.

An example of an XML configuration file is the icmrm_logging.xml in the resource
manager application. A frequently used XML parser is the Xerces parser, also
contained in WebSphere Studio Application Developer.

8.2.1 Accessing configuration data using properties files
A properties file is similar to a Windows .ini file. A properties file contains a pair of
keywords and associated values. For example, you may have a properties file,
c:\XYZCorp\config.properties, that contains the following text:

LOG_FILE_NAME=c:\XYXCorp\eClient.log
ENABLE_PERFORMANCE_LOGGING=true
ENABLE_IDM_EDIT_ATTRIBUTES_CUSTOMIZATIONS=true

210 eClient 101 Customization and Integration

You can use the following code in your application to retrieve those values:

import java.io.FileInputStream;
import java.util.Properties;
Properties eClientProps = new Properties();
FileInputStream in = null;
String strValue = ““;
in = new FileInputStream(“C:\\XYZCorp\\config.properties”);
eClientProps.load(in);
in.close();
strValue = eClientProps.getProperty(“LOG_FILE_NAME”);

The example above (with error handling added) is included in the sample code
XYZUtils.java and is called from the modified version of IDMNoteLog.jsp. For
more information about using the properties object, see the following URL:

http://java.sun.com/docs/books/tutorial/essential/attributes/properties.htm
l

8.2.2 Using cookies to maintain session status
A cookie is a piece of data passed between a Web server and a Web browser.
The Web server sends a cookie that contains data it requires the next time the
browser accesses the server. The client returns the cookie on each subsequent
request. This is one way to maintain the state between a browser and a server.
Cookie data can be stored so that it is only valid for the current browser session,
or it can be stored for a longer period of time specified by your application.

If the browser supports cookies, these are used to associate the browser with a
session object on the server. For example when using the HttpSession support in
the servlet API, the session manager can use cookies to store a session ID on
the browser.

But you can also use the Cookies API directly to store and retrieve user-specific
data.

Example 8-1 Cookie API sample

public void doGet(HttpServletRequest req, HttpServletResponse res) {
 Cookie[] cookies = req.getCookies();
 if(cookies != null) {
 for(int i=0; i<cookies.length; i++) {
 System.out.println(cookies[i].getName()
 + "=" cookies[i].getValue());
 }
 }
}

 Chapter 8. Design and implementation considerations 211

http://java.sun.com/docs/books/tutorial/essential/attributes/properties.html

Cookies should not be used for things best kept on the server, such as
personanlization settings, or for secure information, such as credit card numbers.

The eClient provides several JavaScript utility functions, including cookie
functions, in the eclient81.js file. To store data to a cookie from JavaScript, use
code similar to the following:

setCookie("MY_VAR_NAME”, “My Cookie Value");

To retrieve data from a cookie, use code similar to the following:

var strValue = ““;
strValue = getCookie("ExtName");

If you want to initialize a field on a Web page, place the code in the init()
JavaScript function. Many of the eClient JSPs use an init() JavaScript function in
them. If not, one can be added. See IDMEditAttributes.jsp for an example.

8.2.3 Invoking code on the server from JavaScript
One way is to write a servlet wrapper that would get called in place of the eClient
servlet. It would perform a specific action, then “forward” the request to the
eClient servlet.

There are not that many scenarios where this is really required. Usually, there is
a better way to do this by changing the application design.

212 eClient 101 Customization and Integration

Chapter 9. Customizing look and feel
using style sheets

In this chapter, we describe how you can change the look and feel of eClient
using Cascading Style Sheets.

This chapter covers the following sections:

� What is Cascading Style Sheets (CSS)?
� Simple CSS example
� Using CSS for eClient
� Changing background image on eClient

9

© Copyright IBM Corp. 2003. All rights reserved. 213

9.1 What is Cascading Style Sheets (CSS)?
Cascading Style Sheets (CSS) are an industry standard method of changing the
appearance of elements of HTML pages such as labels, text, entry fields, links,
and buttons. CSS allows you to specify the margins and the background images
such as a company logo for a document. HTML specifies the content and
structure of the document such as fields, captions, links, and tables; the style
sheet defines the appearance in terms of fonts, point size, colors, highlighting,
and background images.

A style sheet is a text file (eClient uses eclient81.css) containing a list of tags and
a set of display properties for each tag. Style sheet definitions can be embedded
in HTML, but a more common use of style sheets is to define them in an external
style sheet file with a CSS extension. A link statement is used in the HTML to tell
the browser the name of the CSS file. When the browser processes the HTML
and finds the link tag for a style sheet, it reads the style sheet file and applies the
formatting rules to the HTML document.

In the HTML document, the style sheet formatting options are specified for an
element of an HTML document (label, field, table, etc.) by using the CLASS
parameter. The HTML author can identify the CLASS that is required for different
formatting style and place the formatting rule for each CLASS in the CSS file.

In the following section, we show a simple example of how style sheets and
HTML work together. In the later sections, we describe how the eClient JSPs use
the style sheets and give some examples of how to modify the appearance of the
eClient.

The style sheet standard has been promoted by Worldwide Web Consortium,
also known as W3. To learn more about style sheets, see the following URL:

http://www.w3.org/Style/

In addition, the following link from the same Web site has useful information that
helps you with colors and other style guides in your style sheet:

http://www.w3.org/MarkUp/Guide/Style

Most books on HTML usually have a significant section describing style sheets.

9.2 Simple CSS example
CSSSample.html and CSSSample.css are sample files that demonstrate the
basics of style sheets.

214 eClient 101 Customization and Integration

http://www.w3.org/Style/
http://www.w3.org/MarkUp/Guide/Style

The CSSSample.html file is what you open in a Web browser. It uses the
CSSSample.css style sheet to define the look and feel of the window. When
opening the CSSSample.html file in a browser, a window similar to Figure 9-1
appears.

Figure 9-1 CSSSample.html using CSSSample.css

The CSSSample.html file is shown in Example 9-1. It uses the style sheet
CSSSample.css, as specified on line 4 of the source code. The class=”<tag>”
entries specify the tag from the CSS file to be used to get the format data for the
element of the HTML document.

Example 9-1 CSSSample.html

<html>
 <head>
 <title>Test page for Style Sheet Example</title>
 <link rel="STYLESHEET" type="text/css" href="c:\CSSSample.css">
 </head>

 <body class="BODY">
 <TABLE>
 <tr>
 <td class="label_important" id="ClmLabel">Claim Number</td>
 <td><input type="text" class="fld" id="ClmNo" value="12345"></td>
 </tr>
 <tr>
 <td class="label_normal" id=FirstNameLabel">First Name</td>
 <td><input type="text" class="fld" id="FName" value="Jeff"></td>
 </tr>
 <tr>
 <td class="label_normal" id=FirstNameLabel">Last Name</td>
 <td><input type="text" class="fld" id="LName" value="Smith"></td>
 </tr>
 </TABLE>

 Chapter 9. Customizing look and feel using style sheets 215

 </body>
</html>

The style sheet CSSSample.css defines the styles used in the CSSSample.html
file. Its source code is shown in Example 9-2.

Example 9-2 CSSSample.css

/* Sample style sheet for redbook example. Use with CSSSample.html */

.BODY {
 background : silver;
 padding-top : 10px;
 padding-left : 10px;
}
.BODY_LOGO {
 background : White;
 padding-top : 100px;
 padding-left : 90px;
 background-image : url("c:\AARedbook\background.jpg");
}

.label_normal {
 font-family : Arial, Helvetica, sans-serif;
 color : Black;
 font-size : medium;
 font-weight : normal;
}
.label_important {
 font-family : Arial, Helvetica, sans-serif;
 color : Blue;
 font-size : large;
 font-weight : bold;
}
.fld {
 font-family : Arial, Helvetica, sans-serif;
 color : Black;
 font-size : medium;
 font-weight : normal;
}

To test how it works, paste the text from the redbook into c:\CSSSample.html and
C:\CSSSample.css. Open the CSSSample.html file in a Web browser. You can
see what it looks like initially. Modify the style sheet and the HTML file to see how
it affects the output.

216 eClient 101 Customization and Integration

Notes on the style sheet:

� The .body tag is used by the HTML file for the body of the document.

� The tag names (.body, .body_logo, .label_normal, .label_important, and .fld)
are references by the class=”<tag>” statements in the HTML file. The browser
applies the settings in the CSS file to the HTML element. The tag names for
the CLASS entries are completely up to the author.

� The color field can be a named color, such as Black, Red, and Blue. You may
also specify a hex RGB color. See http://www.w3.org/MarkUp/Guide/Style
for a list of named colors and hex values for other popular colors that can be
used.

In the following sections, we provide examples of how you can change the
sample.

9.2.1 Changing entry field text color
In the CSSSample.css file, change the color value from Black to Red for the tag
named .fld as follows:

.fld {
 font-family : Arial, Helvetica, sans-serif;
 color : Red;
 font-size : medium;
 font-weight : normal;
}

Save the CSS file. Open the CSSSample.html again from your browser to view
the changes (see Figure 9-2).

Figure 9-2 CSSSample.html with red text for .fld tag

 Chapter 9. Customizing look and feel using style sheets 217

http://www.w3.org/MarkUp/Guide/Style

9.2.2 Using background image
In the CSSSample.html file, change the line:

<body class=”BODY”>

to:

<body class="BODY_LOGO">

This triggers the HTML file to use the BODY_LOGO tag in the CSS file. The
BODY_LOGO tag in the CSS file uses a background JPG file that can be found in
the eClient icons directory. You can also use your company logo instead for
customization.

Save the HTML file. Open the CSSSample.html again from your browser to view
the changes (see Figure 9-3).

Figure 9-3 CSSSample.html using <body class=”BODY_LOGO”>

9.3 Using CSS for eClient
In the eClient, HTML is generated when the JSPs execute on the server. Each
JSP in the eClient has a section in it that creates HTML to send to the Web
browser. In the HTML portion of each eClient JSP, a line similar to line 3 in the
following code specifies the name of the style sheet to use:

<head>
<title><%= cub.getIdmResourcesString("IDMNoteLogJSP_TitleBar") %></title>

218 eClient 101 Customization and Integration

<link rel="STYLESHEET" type="text/css" href="<%= webAppName
%>/eclient81.css">

The above sample code is taken from IDMNoteLog.jsp.

All of the eClient JSPs use the eclient81.css file, which is normally located in the
c:\Program Files\IBM\cmEClient\installedApp\ IBM_eClient_82.ear\eclient82.war
directory.

Most of the tags in eclient81.css are used for various types of standard HTML
elements. There are a few interesting examples that are a little different:

� The BODY tag

There is no period at the beginning of this tag. The BODY tag is used as the
default if there is no specific class specified for the body of an HTML
document - that is, if the JSP uses <body> instead of <body
class=”MY_BODY_TAG”>. Here you can specify defaults such as background
color.

� The .BODY tags (.BODYLOGON, .BODYHOME, .BODYMINI)

These tags are used in specific JSPs that need different BODY styles. These
different tags are used primarily to specify a different background image for
different type of windows, such as logon and search windows.

� The .ODD and .EVEN tags

An interesting example of style sheet usage is how the eClient gets the
alternating lines in the search results to have a blue or white background.

The HTML for the search results uses the following code to specify a CLASS
of ODD or EVEN to the odd and even lines in the search results. The variable
i is the row number which is used to determine odd or even number of the
row. The rowType is EVEN if i is divisible by 2; otherwise, the rowType is ODD.
The tag for the class=”<tag>” line is then set to ODD or EVEN depending on
the rowType.

<% rowType = (i % 2 == 0) ? "EVEN" : "ODD"; i++; %>
<TR class="<%= rowType %>">
<TD nowrap class="<%= rowType %>">...

The browser sets the colors according to the .EVEN or .ODD tags in the
eclient81.css file.The above sample code is taken from the
IDMItemTypeList.jsp file.

 Chapter 9. Customizing look and feel using style sheets 219

9.4 Changing background image on eClient
A common change to the look and feel of the eClient is changing the logo in the
background of the eClient windows to a background specific to the project or your
company.

Since many of the examples in this redbook are created for the XYZ Insurance
company that is provided by the Content Manager sample documents, we create
a background JPG file for the eClient for the XYZ Insurance company.

Open the eclient82.css file normally located in the c:\Program
Files\IBM\cmEClient\installedApp\IBM_eClient_82.ear\eclient82.war directory.
Notice that it uses several different background JPG files as shown in
Example 9-3.

Example 9-3 eclient82.css code snippet

/* body - For Logon screen */
.BODYLOGON {
 background : White;
 padding-top : 0px;
 padding-left : 0px;
 background-image : url(icons/logon_bk.jpg);
}
/* body - Home page or Action Page */
.BODYHOME {
 background : White;
 padding-top : 0px;
 padding-left : 0px;
 background-image : url(icons/home_bk.jpg);
}
/* body - For Frame pages background */
.BODYMINI {
 background : White;
 padding-top : 0px;
 padding-left : 0px;
 background-image : url(icons/mini_bk.jpg);
 background-repeat : no-repeat;
}

If you want to customize the background images for your company or customer,
make a copy of the original logon_bk.jpg, home_bk.jpg, and mini_bk.jpg files.
and modify them to include your customized logo.

220 eClient 101 Customization and Integration

Here are some tips for modifying these files:

� Keep the graphic dimensions similar.

When modifying these files, be sure not to change the overall dimensions of
the graphics in the files. The JSPs are designed to be used with graphics in
the approximate shape of the samples. If the shape of the graphics is
changed, you may need to change the JSPs so that the text and fields
generated in the HTML do not overlay the graphics.

� Keep the color scheme the same.

The eClient uses a color scheme based on blue and white. If you use the
same color scheme as the original background, it will look good with the rest
of the eClient. If you want to change the overall color scheme of the eClient,
you need to modify the colors specified elsewhere in the CSS file.

Once you have created the new JPG files, put them in the eclient82.war\icons
directory and modify the eclient81.css file to specify the new JPG files (see the
snippet from the CSS file above) instead of the old ones. Restart the eClient
WebSphere application and the new graphics should be displayed when you log
on to the eClient.

Figure 9-4 shows an example of the new eClient logon window using the
customized XYZ Insurance company logos supplied with this redbook.

Figure 9-4 XYZ company logon window with customized graphics

 Chapter 9. Customizing look and feel using style sheets 221

Figure 9-5 shows an example of the new eClient main window using the
customized XYZ Insurance company logos supplied with the redbook.

Figure 9-5 XYZ company home window with customized graphics

Figure 9-6 shows an example of the new eClient search window using the
customized XYZ Insurance company logos supplied with the redbook.

Figure 9-6 XYZ company search window with customized graphics

222 eClient 101 Customization and Integration

For instructions on how to download samples provided in this redbook, refer to
Appendix B, “Additional material” on page 465 for details.

 Chapter 9. Customizing look and feel using style sheets 223

224 eClient 101 Customization and Integration

Chapter 10. Customizing the edit
attributes window

The edit attributes window allows a user to view and modify the metadata
associated with a document. In this chapter, we show you how to customize the
edit attributes window (IDMEditAttributes.jsp) of eClient through sample codes.

We describe the following customization to the edit attributes window:

� Implementing a combo box for specific attributes
� Making selected attributes read only or hidden
� Modifying the order of the attributes in the window
� Modifying the display name of the item type and attributes
� Re-loading the window when a combo box value is selected

10

© Copyright IBM Corp. 2003. All rights reserved. 225

10.1 Overview
The edit attributes window can be invoked from either a search results window or
from a document viewer. When invoked, it displays a window such as the one in
Figure 10-1 with item type and attributes for a document.

Figure 10-1 Standard edit attributes window for Content Manager sample data

The edit attributes window allows a user to change the item type and the attribute
values for a document. Note the following:

� The native attribute names and values for the back-end datastore are
displayed. If you use a federated logon and specify different attribute display
names in the EIP entities and search templates, they will not be displayed in
this window because eClient gets the attribute names and values directly from
the back-end connector.

� The edit attributes window does not support index class subsets. Access to
specific fields cannot be restricted as they can in the Content Manager thick
client.

� The attributes are displayed in the order they are defined in the back-end
system.

You may want to modify this window to use combo boxes, add field-level security,
re-order the fields, and hide some fields. In the following sections, through

226 eClient 101 Customization and Integration

sample codes, we show you how to make these types of changes to the edit
attributes window by customizing IDMEditAttributes.jsp. Figure 10-2 is an
example of what the same data looks like when using a customized version of
IDMEditAttributes.jsp described in this chapter.

Figure 10-2 Sample customized edit attributes window

Figure 10-2 displays the same document as Figure 10-1 on page 226. If you
compare the two figures, you see the following differences in the later sample
figure:

� The Item type is now replaced with a shorter display name. Everything in
parentheses is removed.

� You cannot see it in Figure 10-2, but all of the other Item type values in the
combo box are modified to remove the information in parentheses.

� The attribute names are now replaced with shorter display names that do not
include the information in the parentheses.

� The Policy Number field is now read-only.

� The License Plate Number field is now converted into a combo box.

 Chapter 10. Customizing the edit attributes window 227

� The Adjuster and Claimant’s first and last names are re-ordered so the last
name comes first in the list.

� The Adjustment Date field are removed from the display.

� The Adjuster’s first and last names are turned into combo boxes. In addition,
when the last name is changed, the list of first names is updated.

The sample code we provide in this chapter includes customization designed to
work with the sample data that can be created using the Content Manager First
Steps application. The Content Manager sample data includes Item types and
sample documents for the fictitious XYZ Insurance company, which maintains
policy and claim documents in Content Manager.

Using the Content Manager sample data makes it easier to configure your
system to use the sample code, because we do not have to create our own
sample data. Some of the sample data item types and attributes for the examples
may not always be logical. For example, we demonstrate the use of combo boxes
for the insurance adjuster’s last name and first name attributes, which do not
represent a real-world scenario; however, it gets across the point of how to make
this type of modification while making it easy on you to get up and running with
the example.

10.2 Configuring and using customization
There are several components of this customization example. The source files
can be downloaded from the Web. See Appendix B, “Additional material” on
page 465 for download instructions.

The following files are required for this example:

� IDMEditAttributes.jsp

The customization uses the user exit feature to keep much of the
customer-specific code in Java files instead of in the JSP. By moving as much
custom code as possible out of the JSP file, it will be easier to apply your
customization to future versions of the eClient.

� XYZEditAttrMethods.java and XYZEditAttrData.java

A majority of the customization is in these Java files. Again, we want to keep
the JSP changes as little and as simple as possible. The following methods
are implemented in XYZEditAttrMethods.java:

a. getDisplayName: Displays the name for each item type.

b. updateAttributeList: For each field being displayed, sets various attributes
such as read-only, combo box, or hidden. More details later.

228 eClient 101 Customization and Integration

To use the customization on your system, you need to:

1. Meet the prerequisites:

– Install Content Manager V8.1 or V8.2.

– Install EIP and eClient V8.2 with the latest Fix Pack.

– Install the Content Manager sample data using the Content Manager First
Steps application.

2. Import the source code and properties files into your environment:

– Using WebSphere Studio Application Developer:

i. Open the eClient project in WebSphere Studio Application Developer.

ii. Open the IDMEditAttributes.jsp with the WebSphere Studio Application
Developer editor and replace the contents by cutting and pasting the
contents of the IDMEditAttributes.jsp file provided with the redbook.

iii. Press Ctrl+S in the WebSphere Studio Application Developer editor to
save the file.

iv. Select File -> Import from the main menu.

v. Select File System from the list and click Next. Figure 10-3 on
page 230 appears.

vi. Navigate to the directory containing the com directory with the source
files. The com directory should have a subdirectory named XYZUtils,
which should contain the Java files.

vii. Browse to or enter eClient82\Java Source in the destination field.

 Chapter 10. Customizing the edit attributes window 229

Figure 10-3 Importing Java files into the eClient project

viii.Click Finish. The files are displayed in WebSphere Studio Application
Developer as shown in Figure 10-4 on page 231.

230 eClient 101 Customization and Integration

Figure 10-4 Custom Java files in WebSphere Studio Application Developer Navigator
view after import

– Using the command line:

i. Find the eclient82.war directory in the WebSphere directory structure.

ii. Replace the IDMEditAttributes.jsp file to the WebSphere Studio
Application Developer Web content directory with the sample file
provided with the redbook.

iii. Create directory com\XYZUtils.

iv. Copy XYZEditAttrMethods.java and XYZEditAttrData.java to the new
directory.

v. Open an EIP development window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 ->
development window and compile the files using the javac
command:

javac XYZEditAttrMethods.java
javac XYZEditAttrData.java

� Test the changes:

a. Start eClient and log on directly to the Content Manager Version 8 server.
Do not use a federated connector.

b. Select Search.

 Chapter 10. Customizing the edit attributes window 231

c. Select the Adjuster Report search template. If you do not see this search
template, then the Content Manager Version 8 sample data is not installed
correctly.

d. Enter * in the claim number field and click Search. You should get three
hits in the search results window.

e. Mark the check box for the first document. In our scenario, the claim
number is 6-987654.

f. Select Edit Item Attributes from the combo box in the search results.

g. It should display the edit attributes window you see in Figure 10-2 on
page 227.

10.3 Edit attributes customization overview
The following sections describe how the standard out-of-the-box
IDMEditAttributes.jsp file works. Specifically, we cover how it is invoked, how it
interacts with the IDMChangeAttributes servlet, and how the Java, HTML, and
JavaScript processing in the JSP work.

In addition, we also describe how the changes for the redbook sample are
implemented. There were 13 snippets of code that are added to the JSP, along
with several methods in a new Java file called XYZEditAttrMethods.java. We
cover all of the changes in detail and describe how they can be used together or
independently.

10.3.1 Understanding IDMEditAttributes.jsp
This section covers how the standard IDMEditAttributes.jsp works.

Invoking IDMChangeAttributes servlet
The edit attributes window can be invoked in two ways by an eClient user:

1. Invoke the edit attributes window from the search results window.

The user can mark the check box next to a document in the search results
window and select the Edit attributes option from the combo box in the
search results window.

This invokes the IDMChangeAttributes servlet from the open_update()
JavaScript function in PageComponents\heading.jsp.

2. Invoke the edit attributes window from the standard or the applet viewer.

The edit attributes window can also be invoked by choosing the edit attributes
icon on the toolbar of either viewer.

232 eClient 101 Customization and Integration

To invoke the edit attributes window, the eClient invokes the
IDMChangeAttributes servlet with the following parameters:

� srKey=<SRKey
� action=display
� itemid=<pid string>

The following code snippet from heading.jsp shows how the eClient invokes the
IDMChangeAttributes servlet:

var itemId = selectedItems[0];
var url = '<%=webAppName%>/IDMChangeAttributes';
url = url + '?srKey=<%=srKey %>';
url = url + '&action=display';
url = url + '&itemid='+itemId;
wn=generateWindowname();
setWindowname(wn);
window.open(url, wn, 'resizable=1,scrollbars=1,height=300,width=500');

The srKey is the search results key. It is a string containing the timestamp of the
folder that was created for the search results. The JSP and servlet can use it to
find out what is in the search results window. action=display informs the servlet
and JSP that the user is requesting to view the attributes window. The itemid is
the PID string of the selected document.

What the servlet does
The servlet queries the attributes for the document, the minimum and maximum
size of each attribute, whether each attribute is required, the item type for the
document, the list of all entities the user has access to, and other information.
(Note that entity and item type are interchangeable. The code often uses entity
when referring to the item type of the document.) It then invokes the JSP, which
pulls the various data elements from the request. For example, the following lines
are used to get the CMBItem object for the document, the entity (item type) for
the document, and the ArrayList containing a list of all entities the user has
access to:

<jsp:useBean id="item" scope="request" class="com.ibm.mm.beans.CMBItem"/>
<jsp:useBean id="entity" scope="request" class="java.lang.String"/>
<jsp:useBean id="entities" scope="request" class="java.util.ArrayList"/>

The JSP then goes on to build the HTML for the display of the attributes. This
includes the HTML for the display as well as the JavaScript functions that are
sent to the browser in the HTML.

Changing item type name
If the user modifies the item type from the edit attributes window’s item type list
combo box, the JavaScript function reindex is called. This builds a URL to the
IDMChangeAttributes servlet with an additional parameter of ‘?entity=”<new

 Chapter 10. Customizing the edit attributes window 233

entity name>”. Control is passed to the servlet, which gets the attribute
information for the new entity and calls the JSP again with action=display.

Saving changes
If the user makes changes and clicks Save changes, the JavaScript validate()
function is called to validate user changes. If the validation succeeds, the form is
submitted to the IDMChangeAttributes servlet, which then updates the back-end
repository.

10.3.2 Modifying IDMEditAttributes.jsp
At a high level, the JSP file is modified in general to support different functional
enhancements. The customer-specific logic is all contained in the
XYZEditAttrMethods.java class. The JSP file calls two methods in the class to
determine how the display should be modified.

The two methods that JSP file calls are:

� getItemTypeDisplayName()

It passes an item type and returns a display name for each item type. In the
example code, this method strips the first left parenthesis and anything after
it. For our example, it changes “Adjuster Report (Content Manager V8.1
Sample Item Type)” to “Adjuster Report.” For your business application, you
can modify the method to do other customization.

� updateAttributeList()

It controls the display of the attributes. When IDMEditAttributes.jsp builds a
list of attributes to display, it first builds an ArrayList of XYZEditAttrData
structures for each field. See Example 10-1 for the XYZEditAttrData class.

Example 10-1 XYZEditAttrData class

package com.XYZUtils;

public class XYZEditAttrData
{
 //
 // This data structure is used by the updateAttributeList() method in
 // XYZEditAttrMethods.java. That method is called from IDMEditAttributes.jsp
 // while generating the attribute window.
 //
 public String strAttrNameNative; // Native attribute name
 public String strAttrNameDisplay; // Attribute display name
 public String strAttrValue; // Attribute value - Don't change!
 public int intFieldDataType; // Field data type

 // Hidden/read only fields

234 eClient 101 Customization and Integration

 public int intHideField; // Do not display the field
 public int intReadOnly; // Set to 1 to make field read-only

 // Combo box related fields
 public int intComboBox; // Display combo box for this field?
 public String[] astrComboBoxValues; // Values for combo box
 // Set to 1 to reload edit attr window when value selected
 public int intReloadWhenComboValueChanges;
}

The JSP builds an ArrayList with one of the structures in Example 10-1 on
page 234 for each field to be displayed. It sets the first four fields in the structure
before calling the updateAttributeList() method in XYZEditAttrMethods.java. If
this method does nothing, then the edit attributes window appears just as it does
out of the box. Otherwise, this method can update the ArrayList to make one of
many types of changes including the following:

� To hide a field:

Set intHideField = 1

In our example, the sample code hides the Adjustment Date field.

� To set a field read-only:

Set intReadOnly = 1

In our example, the sample code sets the Policy Number field to read-only.

� To make a field a combo box:

Set intComboBox = 1

In our example, the sample code sets astrComboBoxValues to a list of values
for a combo box.

The sample code makes VIN, License Number, Adjuster First Name, and
Adjuster Last name all combo box fields and provides a list of values for each
combo box. The values for the combo boxes are hardcoded in the our
example; but this can be replaced with a database lookup in your business
application. For example, the Adjuster First Name and Adjuster Last Name
can come from an employee database. Also, the VIN number combo box can
be loaded from a database that keeps track of VIN numbers of insured under
the policy number and the VIN numbers related to claim numbers.

� To re-invoke the JSP file if the combo box value changes:

Set intReloadWhenComboValueChanges = 1

The sample code uses this for Adjuster Last Name. When the user selects a
different Adjuster Last Name from the combo box, it calls the servlet and JSP
again so that a corresponding list of the Adjuster First Name values in relation
to the selected Adjuster Last Name can be placed in the Adjuster First Name

 Chapter 10. Customizing the edit attributes window 235

combo box. Again, for our example, these values are hardcoded. You can
customize it by looking up values from a corresponding database.

� To re-order the fields:

Reorder the elements in the ArrayList.

In our example, the sample code swaps the order of the adjuster and
claimant’s first and last names.

After returning from updateAttributeList(), the JSP code uses the ArrayList to
control how each attribute is displayed. We do not include the entire source code
here, since it is too large to embed in this redbook.

To find the changes in the JSP file, search for XYZ_CHG_BEGIN in
IDMEditAttributes.jsp. Each snippet of the source code is easy to find using this
way and the source code is fully documented.

10.3.3 IDMEditAttributes.jsp code change details
There are so many code changes that we cannot include them all in this chapter.
This section describes each major piece of code. While reading this section, you
should open the following source files in an editor:

� XYZEditAttrData.java
� XYZEditAttrMethods.java
� IDMEditAttributes.jsp

As described in the previous section, XYZEditAttrData.java contains the data
structure that is used to control how each field is displayed. IDMEditAttributes.jsp
creates an ArrayList of these structures containing the field information retrieved
from the back-end system. The ArrayList is then passed to the
updateAttributeList() method in XYZEditAttrMethods.java, where it can be
modified to specify how each field should be displayed. For example, it can
specify whether the field should be hidden, marked as read-only, or should be a
combo box.

Each code change in the JSP file is documented with a comment containing the
text XYZ_CHG_BEGIN CHGxx at the beginning and XYZ_CHG_END CHGxx at the end,
where xx is the change number. You can search for these strings to see the
changes, or use a graphical file comparison utility.

There are 13 places where the source code is changed. Some are small
changes and others add up to 100 lines of new code. Table 10-1 on page 237
describes the changes.

236 eClient 101 Customization and Integration

Table 10-1 List of changes made to IDMEditAttribute.jsp

Change Number Description

CHG01 Additional import statements for new Java
classes.

CHG02 Initialization and debug options.

CHG03 JavaScript validate() function: Gets
selected values from combo box field and
places them in the right fields before
passing control to IDMChangeAttributes
servlet.

CHG04 JavaScript reindex() function. This
function is called when the user changes
the item type. Added subaction=reindex
to URL so that when the JSP is called
again we can tell if it changes the item
type.

CHG05 New JavaScript function
reload_when_combo_box_changes().
This new function is called when the user
modifies a combo box with the
intReloadWhencomboValueChanges flag
is set in XYZEditAttrData structure. It is
similar to reindex and causes the servlet
and JSP to be invoked again so that
combo box values can be refreshed.

CHG06 New Java code to process new
parameters from the URLs created in
CHG04 and CHG05.

CHG07 Calls getItemTypeDisplayName and
changes the name of the ItemType
displayed in the combo box. In the sample,
it removes everything after the
parenthesis in the item type names.

CHG08 Creates the ArrayList of XYZEditAttrData
structures and pass to the
updateAttributeList() method, which can
then control how each field is displayed.

CHG09 Adds new loop for processing the array of
attributes.

 Chapter 10. Customizing the edit attributes window 237

The most interesting changes are CHG08 and CHG13.

� CHG08 is where the modification to the user interface is specified via the call
to updateAttributeList. This is where the source code specifies that particular
fields are read-only, hidden, or combo boxes.

� CHG13 contains the source code that creates the fields of the right type:
hidden, read-only, or a combo box.

CHG05 is also important because it allows the form to be reloaded with different
combo box values when a specific combo box value is modified.

Refer to the documentation in the source code for additional details.

CHG10 Ensures that inner loop only processes
the current field from the new loop coded
in CHG09.

CHG11 Adds debug messages to stdout

CHG12 Prevents the code from creating the labels
for hidden fields.

CHG13 Creates each field as specified by the call
to updateAttributeList in CHG08.

CHG14 Adds closing bracket for new loop level
created in CHG09.

Change Number Description

238 eClient 101 Customization and Integration

Chapter 11. Adding custom functions to
the search results window

The eClient search results window allows users to select one or more documents
from a set of search results and then select an action to perform on the selected
document(s). Actions such as view, delete, edit attributes are available in the
standard eClient.

If you need to customize these actions, this chapter provides examples of how to
implement custom actions in the eClient search results window and discusses
the following topics:

� A list of scenarios where this type of functionality could be used

� A description of how to modify the eClient to implement these functions

� Three examples:

– Exporting one or more documents to the client workstation by sending
them to the browser to be saved

– Displaying TIFF documents using a TIFF plug-in viewer

– Performing a custom process against a list of selected documents

11

© Copyright IBM Corp. 2003. All rights reserved. 239

11.1 Overview
This chapter describes how to implement custom functions in the search results
window. It describes the JSPs that must be modified and/or created, and
provides sample code that can be used to implement your own custom functions.

Figure 11-1 is a typical search results window of the eClient.

Figure 11-1 eClient search results window

You can select one or more documents (by marking the check box next to the
document) and then select an action from the drop-down combo box to be
performed on the selected document(s). Some options, such as Edit item
attributes, can operate on only one selected document. Other options, such as
Delete items, can operate on multiple documents.

240 eClient 101 Customization and Integration

The following are some examples of custom actions you can create within the
drop-down combo box:

� Perform an automatic update of document attributes

For example, you can implement the Approve documents option that sets a
document attribute status to Approved and set the ApprovedBy attribute to the
current user. The updates can occur in the back-end datastore or on another
database.

� Look up data from an external system

You can implement a Get billing summary option that gets an attribute from
the selected document (such as customer number and policy number),
queries an external database for an account summary, and displays the text
output in a new window.

� Perform an operation on the document object

You can implement a Convert to text option that performs full-text OCR of a
TIFF file on the fly and displays the text in a new window.

� Perform automatic foldering or routing

You can implement a Review document function that automatically places a
document in a specific folder, or starts it in a specific workflow.

� Perform automatic export of the document object and attribute data

You can automatically export the document object and attribute data to a
server directory. This prepares the selected documents to be written to a CD
or imported to another system.

The examples in this chapter provide a framework for implementing a variety of
custom functions. Two of the examples (export and view with plug-in) open a new
browser window for each selected document. The third example opens a single
window that allows a user to specify options for the custom action and then
perform custom processing for each selected document.

11.2 Adding custom entries to combo box
There are two JSPs that need to be modified to add a custom function to the
search results combo box: IDMSearchToolbar.jsp and heading.jsp. In addition,
you probably need to create a new JSP and/or servlet to perform the custom
processing on the selected items. The sample code provided does all of the
processing in JSPs and does not use custom servlets.

IDMSearchToolbar.jsp is in the eclient82.war directory in WebSphere as shown
in Figure 11-2 on page 242. Note that the heading.jsp is in the pageComponents
subdirectory below the rest of the eClient JSPs.

 Chapter 11. Adding custom functions to the search results window 241

Figure 11-2 eClient source code location

IDMSearchToolbar.jsp contains the code that generates the list of items in the
combo box. It also contains the JavaScript function doSelected(), which is
executed when a user selects an item in the combo box. The doSelected()
function calls the appropriate JavaScript function in heading.jsp (one for each
action) to determine which documents are selected, and then performs the
selected action. The examples later in this chapter show you how to make these
changes.

The sample code shows you how to do two types of processing. In one case, a
new browser window is opened for each document. The XYZ export document
and XYZ view document with plug-in work this way. The other type of processing
opens a single JSP window that can perform an action on all of the selected
items. For example, it can add all of the items to a folder, update an attribute in
each document, or do whatever custom function you need using Java or the Java
beans.

Note that these examples are created to show concepts. They are not
extensively tested or intended to be used in production as-is.

242 eClient 101 Customization and Integration

11.3 Installing sample code
To test the sample code on your workstation you need to install updates to two
JSPs and add a new JSP to the eClient.

Follow these steps to install the sample code using the command line:

1. Copy the new IDMSearchToolbar.jsp from the redbook samples over the
standard eClient 8.2 JSP in the eclient82.war directory in the WebSphere
installedApps directory.

2. Copy the new heading.jsp over the standard eClient 8.2 JSP in the
eclient82.war\pageComponents directory in the WebSphere installedApps
directory.

3. Copy the new YXZProcessDocuments.jsp and IDMProcessDocumentList.jsp
to the eclient82.war directory in the WebSphere installedApps directory.

4. Create directory named exports below the eclient82.war directory. Temporary
document files will be stored here.

Follow these steps to install the sample code using WebSphere Studio
Application Developer:

1. Open the eClient 8.2 IDMSearchToolbar.jsp and heading.jsp with the
WebSphere Studio Application Developer editor.

2. Open the IDMSearchToolbar.jsp and heading.jsp custom files provided with
the redbook samples in Notepad or another editor. Copy and paste the new
code into the WebSphere Studio Application Developer editor for both
IDMSearchToolbar.jsp and heading.jsp. Press Ctrl+S in the WebSphere
Studio Application Developer editor for each file to save the changes.

3. Import new JSPs into eClient as follows:

a. Open the J2EE Navigator view in WebSphere Studio Application
Developer and expand eclient82 -> Web Content as shown in
Figure 11-3 on page 244.

 Chapter 11. Adding custom functions to the search results window 243

Figure 11-3 Web content in WebSphere Studio Application Developer J2EE Navigator window

b. From the menu, select File -> Import... and a window similar to
Figure 11-4 on page 245 appears.

244 eClient 101 Customization and Integration

Figure 11-4 WebSphere Studio Application Developer file import window

c. Select File system and click Next.

d. Browse to the directory where the source code is located. Select the files
you want to import into your eClient project. See Figure 11-5 on page 246.

 Chapter 11. Adding custom functions to the search results window 245

Figure 11-5 WebSphere Studio Application Developer import file selection window

e. After you select all the files to import, click Finish.

f. Go back to the J2EE Navigator window. Scroll down to the bottom and you
should see the two files that are imported. See Figure 11-6 on page 247.

246 eClient 101 Customization and Integration

Figure 11-6 WebSphere Studio Application Developer J2EE Navigator view with new files

4. After installing the new Java files or whenever any Java files are modified,
restart your WebSphere test environment.

11.4 Adding your own custom function
This section describes how to change the JSP file to implement the custom
functions mentioned in earlier section. You can use them as guidelines for
implementing your own custom modification.

 Chapter 11. Adding custom functions to the search results window 247

Do the following to implement the custom functions:

1. Add combo entries in IDMSearchToolbar.JSP.

To add new options to the combo box, add the following source code to the
HTML in IDMSearchToolbar.jsp:

<!-- XYZ_CHG_BEGIN -->
<option value="XYZExportDocs">XYZ Export Document</option>
<option value="XYZViewWithPlugin">XYZ View Document with Plugin</option>
<!-- XYZ_CHG_END -->

2. Update the function doSelected() in IDMSearchToolbar.jsp.

When the user selects something from the combo box, the JavaScript
function doSelected() is called. The docselValue is the text in the value tag of
the option statements shown above. Update the source code as follows:

function doSelected(docselValue) {
switch (docselValue) {

case 'EditAttributes' : // Edit Document Attributes
parent.ResultsBottom.openUpdate()
break;

// XYZ_BEGIN_CHG
case 'XYZExportDocs':

//
// Call the JavaScript function in heading.jsp
//
parent.ResultsBottom.XYZProcessDocuments("export");
break;

case 'XYZViewWithPlugin':
//
// Call the JavaScript function in heading.jsp
//
parent.ResultsBottom.XYZProcessDocuments(

"display_with_plugin");
break;

// XYZ_CHG_END
case 'Email': // View Version Info

parent.ResultsBottom.emailSelected()
break;

3. Add the new JavaScript function in heading.jsp to process the selected
documents.

The source file heading.jsp primarily contains a list of JavaScript functions that
run in a browser as users interact with the search results window. When a user
selects an option in the search results combo box, JavaScript in
IDMSearchToolbar.jsp calls a JavaScript function in heading.jsp to perform the
action.

248 eClient 101 Customization and Integration

For the sample code, the code that exports the document file to disk on the Web
server is nearly identical to the code for displaying a document with a TIFF
plug-in viewer. The same JavaScript function, XYZProcessDocuments(), is used
for both functions and the JavaScript passes a parameter action indicating if the
document should be viewed (display_with_plugin) or exported (export).

11.5 Using sample code
The provided sample code adds three custom options to the search results
combo box (see Figure 11-7 on page 250):

� XYZ Export Document

This option saves the document object to the Web server, sends a link of the
file to the user’s browser, prompts the user where to save the file, and exports
(saves) the file.

� XYZ View Document with Plugin

This option displays the document using the AlternaTIFF TIFF plug-in viewer.
This TIFF plug-in viewer can be downloaded for free.

� XYZ List Selected Docs

This option provides a framework that can be used to perform a custom action
on one or more selected documents. The other two samples open a new
window for each selected document, while this example executes a single
JSP that can act on a list of all selected documents.

 Chapter 11. Adding custom functions to the search results window 249

Figure 11-7 Custom functions in search results combo box

The rest of this section describes in detail the implementation of the three custom
functions.

11.5.1 Export documents option
Users can select one or more documents and choose the XYZ Export Document
option. When this option is selected, a window similar to Figure 11-8 on
page 251 is displayed for each document, giving the user the option to store the
file to their local drive or a network drive.

250 eClient 101 Customization and Integration

Figure 11-8 XYZ export documents dialog box

The following is a description of what happens when a user selects the XYZ
Export Documents option:

1. The doSelected() JavaScript function in IDMSearchToolbar.jsp is called. It is
implemented with the following code snippet:

case 'XYZExportDocs':
//
// Call the JavaScript function in heading.jsp. This will open
// a window for each document and allow the user to save the
// object file to their hard drive.
//
parent.ResultsBottom.XYZProcessDocuments("export");
break;

2. The code above calls XYZProcessDocuments() in heading.jsp.
XYZProcessDocuments() determine which documents are selected and
invokes the XYZProcessDocuments.jsp file for each document with an action
keyword in the URL set to export. See Example 11-1 for the
XYZProcessDocuments() code snippet.

Example 11-1 XYZProcessDocuments() code snippet

function XYZProcessDocuments(strAction)
{

//alert("In XYZProcessDocuments()");

// If no items in search results window
if (count == 0)

return;

//
// If more than one item in the search results window
//
if (count > 1)

 Chapter 11. Adding custom functions to the search results window 251

{
var selected = false
//
// Loop through each item in the search results window
//
for (i = 0; i < document.results.check1.length; i++)
{

// If the document is selected
if (document.results.check1[i].checked == true)
{

//
// Open the document or folder
//
var docURL = document.results.check1[i].value
selected = true;
if (docURL.indexOf("folder=") == -1)
{

//
// Invoke the XYZProcessDocuments.jsp with the following

parameters:
// srKey - Handle to the search results
// action - display_with_plugin or export
// itemId - Itemid (PID string) of document
wn=generateWindowname()+i;
setWindowname(wn);
var itemId = getItemId(docURL);

var docURL = '<%= webAppName
%>/XYZProcessDocuments.jsp?srKey=<%= srKey %>&action=' + strAction +
'&itemid='+itemId;

alert("url is " + docURL);
window.open(docURL, wn, 'resizable=1,scrollbars=1');

}
else
{

openFolder(docURL);
break;

}
}

}
//
// If no items selected, display message
//
if (selected == false)
{

alert("You must select at least one document");
}

}

252 eClient 101 Customization and Integration

else if (count == 1)
{

if (document.results.check1.checked == true)
{

var docURL = document.results.check1.value;
if (docURL.indexOf("folder=") == -1)
{

//
// Invoke the XYZProcessDocuments.jsp with the following

parameters:
// srKey - Handle to the search results
// action - display or export
// itemId - Itemid of document to export or display
wn=generateWindowname()+i;
setWindowname(wn);
var itemId = getItemId(docURL);
var docURL = '<%= webAppName %>/XYZProcessDocuments.jsp?srKey=<%=

srKey %>&action=' + strAction + '&itemid='+itemId;

window.open(docURL, wn, 'resizable=1,scrollbars=1');
}
else
{

openFolder(docURL);
}

}
}

}
// XYZ_CHG_END

3. At this point, the XYZProcessDocuments.jsp gets the control. The source
code is too large to include in the redbook, but it is documented and provided
as part of the redbook sample. Take note of the following:

– The strAction field receives an action: either export or display_with_plugin.
The same JSP is invoked for the first two examples in this chapter, but they
use a different action parameter to call the XYZProcessDocuments.jsp.

– The strItemID field receives the PID string of the document to process.

– Class XYZ_Export_Utils has a function putPartInFile() that stores the
object for a PID string to a file on the Web server. You need to modify the
location of the exported file in this function to a location on the
CLASSPATH in your system environment.

 Chapter 11. Adding custom functions to the search results window 253

11.5.2 View document with plug-in option
The second option provided allows you to view a document using a TIFF plug-in
viewer instead of the viewers that shipped with the eClient. When you select the
XYZ View Document with Plugin option, a window similar to Figure 11-9
appears.

Figure 11-9 Sample document display with the AlternaTIFF plug-in viewer

If you are using Microsoft Internet Explorer, the AlternaTIFF plug-in will be
automatically downloaded the first time you view a document with this viewer.

If you are using Netscape, you must download and install the AlternaTIFF plug-in
first prior to viewing any document with the viewer. Refer to instructions on
downloading the plug-in at http://www.alternatif.com. You need to download
alternatif-1_5_5.exe and run it to configure the plug-in for NetScape.

Note that the AlternaTIFF plug-in does not support documents compressed with
the LZW algorithm, which is used by the Content Manager First Steps sample
data. In order to use the plug-in, you need to import some TIFF files that do not
use LZW compression.

Tip: If you are not making too many changes, it may be faster to develop your
Java code in the JSP file and then move it to a Java file when it is done. With
WebSphere Studio Application Developer, you have to restart your
WebSphere test environment every time that the Java files are modified, but
with the code in your JSP, you can save the JSP and re-test.

254 eClient 101 Customization and Integration

http://www.alternatif.com

11.6 Process selected documents option
This example provides a framework to show you how to implement a custom
function in the eClient search results window that performs an action on one or
more selected documents.

The custom action, for example, can include updating a specific attribute of each
document to a specific value, adding each document to a workbasket, and
querying an external database via Java code to look up external data for each
document.

The customization consists of three parts:

1. Modify the eClient IDMSearchToolbar.jsp to add the custom function XYZ List
Selected Docs to the search results action combo box.

2. Modify the eClient heading.jsp to invoke a custom JSP when a user selects
the new action from the search results window.

3. Add a new custom JSP, XYZProcessDocumentList.jsp, which enables you to
gather additional parameters for your custom action, performs the custom
function, and displays the results to the user.

When a user selects multiple documents in the eClient search results window
and then selects the XYZ List selected documents option (see Figure 11-10 on
page 256), the sample code displays a list of PID strings that are selected from
the search results window. You can write custom Java code to perform more
meaningful action for each document.

 Chapter 11. Adding custom functions to the search results window 255

Figure 11-10 Selecting custom function from search results

The XYZ List selected documents option invokes the
XYZProcessDocumentList.jsp with an action of display. A window similar to
Figure 11-11 on page 257 appears.

256 eClient 101 Customization and Integration

Figure 11-11 XYZProcessDocumentList.jsp - Display mode

The window shown in Figure 11-11 can be modified to collect additional
information you need for your custom action. If you do not need to collect
additional information, invoke XYZProcessDocumentList.jsp from heading.jsp
and pass an action of execute instead of display.

In Figure 11-11, the Action is Add to claim folder, and Parameter 1 is set to a
claim number. Note that the sample code does not have any specific code to
implement the Add to claim folder action; it is provided as a possibility of what
you can add to customize your eClient application. The code in the JSP for the
display mode has access to all of the PID strings, so you could query the claim
number attribute of all selected documents to ensure that the claim number is the
same, and then pre-fill the Parameter 1 field with the claim number. Alternatively,
you can allow a user to enter a claim number and when the user clicks Process,
have the custom code store the claim number from the Parameter 1 field as an
attribute for each document and also add the document to the claim folder.

When the user clicks Process on the display window, JavaScript code in
XYZProcessDocumentList.jsp is invoked again, but this time with an action of
execute. The code in the JSP takes a different path for the execute action. It lists
the values from the display window in Figure 11-11 (the Action value and the
Parameter 1 value), loops through each selected document, and displays the PID
string in the browser window as shown in Figure 11-12 on page 258. You need to
place your custom code to perform the real action in the execute portion of the
JSP code.

 Chapter 11. Adding custom functions to the search results window 257

Figure 11-12 XYZProcessDocumentList.jsp - Execute mode

The rest of this section describes some of the custom code used to implement
this example:

1. In Heading.jsp, JavaScript function XYZProcessDocumentList()

This JavaScript function is called when the user selects XYZ List Selected
Docs from the search results combo box. It creates a list of item IDs and
invokes the XYZProcessDocumentList.JSP file with the action set to display.

Note that the PID strings for each document are fairly long. You can pass up
to about 15 PID strings on the URL for the JSP. If you pass more than about
15 PID strings, you exceed the maximum size of a URL. To get around this,
the PID strings are placed in a hidden field on an HTML form. See
Example 11-2 for a code snippet.

Example 11-2 XYZProcessDocumentList() code snippet

function XYZProcessDocumentList()
{

pn = parent.ResultsBottom.pageName;
var numSelected = 0;
var pidStrings = "";

//alert("In XYZProcessDocList");

// If no items in search results window
if (count == 0)

return;

258 eClient 101 Customization and Integration

//
// Create a list of selected itemids
//

if (count > 1)// More than one item in search results window
{

for (i = 0; i < document.results.check1.length; i++)
{

if (document.results.check1[i].checked == true)
{

var itemId = getItemId(document.results.check1[i].value);
selected = true;
if (numSelected > 0)
{

pidStrings += ",";
}
pidStrings += itemId;
numSelected++;

}
}

}
else if (count == 1)
{

//
// There is only one item in the search results window. If it
// is checked, then add it to pidStrings
//
if (document.results.check1.checked == true)
{

var itemId = getItemId(document.results.check1.value);
numSelected = 1;
pidStrings = itemId;

}
}
if (numSelected > 0)
{

//
// Open XYZProcessDocumentList.jsp with action = 'display'. Note that

we also
// pass in the commad delimited list of PID strings.
//

var items = pidStrings;
var url = '<%= webAppName %>/XYZProcessDocumentList.jsp?srKey=<%= srKey

%>&action=display';

var htmlcode ="<html><head><title>XYZ List Selected
Documents</title></head>" +

"<body>" +

 Chapter 11. Adding custom functions to the search results window 259

"<form name=\"XYZProcessDocumentListForm\" method=\"post\"
action=" + url + " >" +

"<input type=\"hidden\" name=\"itemids\" value="+items+">" +
 "</form></body></html>";

// Open a new window with no URL. After the window is created we'll add
the list of

// itemids to the form, set the URL, and submit the form.
wn=generateWindowname();
setWindowname(wn);
submitWindow = window.open("", wn,

'resizable=1,scrollbars=1,height=300,width=700');
submitWindow.document.write(htmlcode);
submitWindow.document.close();

// Submit the form.
submitWindow.document.XYZProcessDocumentListForm.submit();
return submitWindow;

}
else
{

alert("You must select at least one document");
}

}
// XYZ_CHG_END

2. XYZProcessDocumentList.JSP

This file is too large to include in this redbook. Refer to the redbook sample for
the complete source code. Three areas in the sample code that we want to
bring attention to are as follows:

– The strAction variable receives the action of display or execute and is used
to branch the code appropriately.

– The JavaScript validate() function is used to validate the data entered on
the display form. Example 11-3 is a code snippet that shows how to
ensure that the Parameter 1 field value is entered.

Example 11-3 validate() code snippet

//
// This function is called when the user presses 'OK' on
// the 'display' window.
//
// If you put entry fields on the form, you can validate
// what the user entered in this JavaScript function.
// Display an alert message and return false if data
// not valid, otherwise this calls the progress function
// to display the 'processing' window.

260 eClient 101 Customization and Integration

//
function validate()
{

//alert("In validate function");

var txtParam1 =
document.forms["processForm"].elements["txtParam1"].value;

if (txtParam1.length < 1)
{

alert("Parameter 1 field required");
return false;

}

// Display progress window
//progress("SearchingWait");
progress("Processing, please wait");

// Return true. If this function returns true, then the
// JavaScript function specified in href for the OK button
// is called. That function is processDocs() below which
// will re-invoke this JSP with an action of 'execute'.
return true;

}

– The JavaScript function ProcessDocs() is used to get the value from the
combo box and entry field from the HTML form and re-invoke the JSP with
an action of execute.

Hopefully, with the given sample code, you get an idea of where and how you can
customize some of the eClient search results window. As you are planning and
making your modifications, always remember to put in the proper comments and
isolate your changes so that it will be easier for you to upgrade to later versions of
the eClient.

 Chapter 11. Adding custom functions to the search results window 261

262 eClient 101 Customization and Integration

Chapter 12. Using EIP custom privileges

This chapter describes how you can implement custom privilege definitions in the
EIP System Administration client and how these privileges can be accessed by
your custom eClient application.

Specifically, this chapter covers the following topics:

� How to define custom privileges
� How to assign custom privileges to users
� How to check for user privileges

12

© Copyright IBM Corp. 2003. All rights reserved. 263

12.1 Overview
There are many predefined privileges, privilege groups, and privilege sets.
Privileges determine whether a particular user can perform a specific function,
such as deleting a document and creating a folder.

When you implement a custom function in the eClient, you may want to control
the users that can access the function. Instead of having to create a custom
method to define who can access this new function, you can create a custom
privilege using the EIP System Administration client, and use custom code to
check privileges for a particular user.

The custom privileges can be accessed via APIs if you use the Content Manager
Version 8 connector or the federated connector. This chapter describes how this
can be done and provides sample code to determine if the user has a particular
privilege.

In this chapter, we guide you through how to use the EIP System Administration
client to create a custom privilege and assign it to a user. We also show you the
Java code necessary to check for a particular privilege. You can use the privilege
to control access to your custom functions in eClient JSPs and servlets.

12.2 Defining custom privileges
To define a custom privilege, open the EIP System Administration client and
perform the following steps:

1. Create a custom privilege.

a. In the tree on the left, select Authorization -> Privileges. Right-click
Privileges and select New.

b. Enter a privilege name. For our scenario, it is XYZExportDocument. Enter
a description for the privilege. For our scenario, we entered Export
documents from the eClient. See Figure 12-1 on page 265.

c. Click Apply.

d. For our example, also add two other custom privileges:

• XYZApproveDocument
• XYZRejectDocument

264 eClient 101 Customization and Integration

Figure 12-1 Adding XYZExportDocument custom privilege

2. Create a custom privilege group and add the custom privilege to it.

a. Right-click Privilege Groups and select New.

b. Enter a privilege group name. For our scenario, it is XYZCustomPrivs.
Enter a description for the privilege group. For our scenario, we entered
Custom Privileges for XYZ Corp. See Figure 12-2 on page 266.

c. Select the custom privilege from the Available Privileges and click Add.
For our scenario, the custom privilege is the one we just created,
XYZExportDocument.

d. Click OK.

Note that the sample code accesses the privilege in the privilege group with
one API, and provides another API to check for a particular privilege in the
privilege group. For this reason, you may want to include all of your custom
privileges in one custom privilege group.

 Chapter 12. Using EIP custom privileges 265

Figure 12-2 Adding XYZCustomPrivs privilege group

3. Create a privilege set that does not allow export.

a. From the System Administration client, expand Authorization ->
Privilege Sets.

b. Right-click the AllPrivs privilege set in the window on the right and select
Copy.

c. Enter a privilege set name. For our scenario, we entered XYZTestPrivSet.
Enter a description for the privilege set.

d. From the left Privilege groups pane, select XYZCustomPrivs. From the
right Privilege pane, uncheck XYZExportDocument. See Figure 12-3 on
page 267.

e. Click OK.

266 eClient 101 Customization and Integration

Figure 12-3 Creating new privilege set with export disabled

4. Create a user using the new privilege set:

a. From the System Administration client, expand Authentication -> Users.

b. Right-click the user ICMADMIN, and select Copy.

c. Enter a user ID, description, and password.

d. Select XYZTestPrivSet from both the Privilege set and Grant privilege set
drop-down boxes. See Figure 12-4 on page 268.

e. Click OK.

A more typical production implementation of security uses access control lists.
This allows you to assign specific privileges for groups of users. Refer to IBM
Content Manager for Multiplatforms: System Administration Guide, SC27-1335
for more information on using access control lists.

 Chapter 12. Using EIP custom privileges 267

Figure 12-4 Creating test user ID using the new privilege set

12.3 Checking for privileges in a JSP
This section describes how to check for privileges with the sample code provided
in the redbook. There are three pieces of code included and described here:

� The sample code you can place in your JSP or servlet to query a custom
privilege.

� XYZPrivsData.java, a simple Java class that defines a data structure used by
XYZPrivsMethods.java.

� XYZPrivsMethods.java, a Java class that contains the code that can be called
by your custom eClient application to check to see if a custom privilege is set
or not.

268 eClient 101 Customization and Integration

12.3.1 Installing sample code
There are two ways to add XYZPrivsData.java and XYZPrivsMethods.java to
your eClient project: using WebSphere Studio Application Developer or using the
command line.

Using WebSphere Studio Application Developer
You can install the sample code using WebSphere Studio Application Developer:

1. Add the files XYZPrivsData.java and XYZPrivsMethods.java to the project.

a. Open the eClient project in WebSphere Studio Application Developer.

b. Select File -> Import.

c. Select File System, click Next.

d. Navigate to the directory containing the com directory with the source files.
The com directory should have subdirectory named XYZUtils which
should contain the Java files.

e. Browse to or enter eclient82\Java Source in the destination folder field.

f. Click Finish.

2. Copy IDMSearchToolbar-Privs.jsp to IDMSearchToolbar.jsp. You can do this
by copying it using the file system, or by cutting and pasting the code using
the WebSphere Studio Application Developer editor.

3. Restart the WebSphere test environment. Anytime the Java files are
changed, you must restart the WebSphere Studio Application Developer test
environment so the changes take effect.

Using command line
You can install the sample code using the command line:

1. Build the class files for each Java file.

2. Locate the eclient82.ear directory in the WebSphere installedApps directory.

3. Locate the eclient82.war\WEB-INF\classes directory

4. Create a com\XYZUtils directory under the classes directory

5. Copy the class files to that directory.

6. Copy IDMSearchToolbar-Privs.jsp to IDMSearchToolbar.jsp in the
eclient82.war directory.

7. Restart the WebSphere test environment. Anytime the Java files are
changed, you must restart the WebSphere Studio Application Developer test
environment so the changes take effect.

 Chapter 12. Using EIP custom privileges 269

12.3.2 Checking custom privileges
In this section, we present the code snippet that checks custom privileges.

You can use the results of the query to control access to your custom
functionality as follows:

1. Add the following to the import statement:

com.XYZUtils.XYZPrivsData,
com.XYZUtils.XYZPrivsMethods

2. Add the source code shown in Example 12-1 to your JSP or servlet.

The sample code first checks to make sure you are using the federated
connector. If not, custom privilege is not supported. After that, it uses
getPrivDefs() to load all the privileges, and then uses isAuthorized() to check
whether the custom export privilege is set. See the comments within the code
for a detailed explanation.

Example 12-1 Code snippet to check custom export privilege

// XYZ_CHG_BEGIN
//
// Check to s ee if custom privileges are set. This code works for federated
// layer only.
boolean blnExport = true;

if (connection.getDsType().equalsIgnoreCase("FED"))
{

XYZPrivsMethods XYZPrivs = new XYZPrivsMethods();
// Load privilege IDs for XYZ_PRIV_GRP_MAIN
XYZPrivs.getPrivDefs(connection,XYZPrivs.XYZ_PRIV_GRP_MAIN);
// Check to see if current user has a specified privilege.
blnExport = XYZPrivs.isAuthorized(connection, XYZPrivs.XYZ_PRIV_EXPORT_DOCS

);
}
else
{

System.out.println("Custom privileges only supported with federated
connector");
}
System.out.println("Value of blnExport is " + blnExport);

12.3.3 Source file XYZPrivsData.java
The source code for this file is available with the redbook. This file contains only a
simple data structure that is used by XYZPrivsMethods.java. Example 12-2 on
page 271 shows the source code for XYZPrivsData.java.

270 eClient 101 Customization and Integration

Example 12-2 XYZPrivsData.java

package com.XYZUtils;

public class XYZPrivsData
{
 public String strPrivName; // Name of the privilege
 public long lPrivID; // Internal ID of the privilege

// Constructor
public XYZPrivsData()
{
}

}

12.3.4 Source file XYZPrivsMethods.java
This is a Java class that contains the code that can be called by your custom
eClient application to check if a custom privilege is set or not. The source code
for this file is available with the redbook. This is the code that does the bulk of the
lookup. Note that you must set the name of your privilege group and your custom
privileges in this code. Example 12-3 shows the source code for
XYZPrivsMethods.java. See the comments within the source code for a detailed
explanation.

Example 12-3 XYZPrivsMethods.java

package com.XYZUtils;

import com.ibm.idm.beans.IDMConfigBean;
import com.ibm.mm.beans.*;
import com.ibm.mm.sdk.common.*;
import com.ibm.mm.sdk.server.*;
import java.util.ArrayList;

//
// XYZPrivsMethods
//
public class XYZPrivsMethods {

// The name(s) of custom privilege groups go here.
// These values are be used on calls to the getPrivDefs() method.
public static String XYZ_PRIV_GRP_MAIN = "XYZCustomPrivs";

//
// These are the names of the custom privileges as defined in EIP
// System Administration client. Each of them should be in the custom
// group(s) defined above. These static strings should be used in the

 Chapter 12. Using EIP custom privileges 271

// call to isAuthorized().
//
public static String XYZ_PRIV_EXPORT_DOCS = "XYZExportDocument";
public static String XYZ_PRIV_ACCEPT_DOCS = "XYZApproveDocument";
public static String XYZ_PRIV_REJECT_DOCS = "XYZRejectDocument";
public static String XYZ_PRIV_PRIV4 = "Add another custom priv

here...";
public static String XYZ_PRIV_PRIV5 = "Add another custom priv

here...";

private ArrayList alPrivs = null;
private String strLoadedPrivGroup = "";
private IDMConfigBean cvb = new IDMConfigBean();

// Constructor
public XYZPrivsMethods()
{

System.out.println("XYZPrivsMethods constructor");
}

//
// Get the list of privileges in the XYZPrivs privilege group. This must

be
// called before calling isAuthorized().
//
public void getPrivDefs(CMBConnection connection, String strPrivGroup)

throws Exception
{

alPrivs = null;

System.out.println("getPrivDefs: Getting privs for group " +
strPrivGroup);

 if (connection.getDsType().equals(cvb.CMB_DSTYPE_FED))
 {
 //System.out.println("get federated privs");
 }
 else if (connection.getDsType().equals(cvb.CMB_DSTYPE_ICM))
 {
 //System.out.println("get CM8 privs.");
 }
 else
 {
 System.out.println("getPrivDefs works only with FED or CM8 connection");
 return;
 }

//Get the list of XYZ Privileges and their ids
CMBSchemaManagement scheme = connection.getSchemaManagement();

272 eClient 101 Customization and Integration

dkDatastore dStore = connection.getDatastore();
dkDatastoreDef dStoreDef = dStore.datastoreDef();
dkDatastoreAdmin dStoreAdmin = dStoreDef.datastoreAdmin();
dkAuthorizationMgmt dAuthMgmt = dStoreAdmin.authorizationMgmt();

if (dAuthMgmt == null)
{

System.out.println("dAuthMgmt = null");
}

// Get the Privilege group specified
dkPrivilegeGroup XYZPrivGroup =

dAuthMgmt.retrievePrivilegeGroup(strPrivGroup);

if (XYZPrivGroup == null)
{

//
// Use EIP System Administration application to create
// custom privileges and a privilege group.
//
System.out.println("Cannot find privilege group '" +

strPrivGroup);
strLoadedPrivGroup = "";

}
else
{

dkCollection collPrivs = XYZPrivGroup.listPrivileges();

alPrivs = new ArrayList(collPrivs.cardinality());

dkIterator collIter = collPrivs.createIterator();
while (collIter.more())
{

 if (connection.getDsType().equals(cvb.CMB_DSTYPE_FED))
 {
 // Federated connection
 System.out.println("get federated priv");

DKPrivilegeFed XYZPrivFed = (DKPrivilegeFed) collIter.next();
System.out.println("Privilege '" + XYZPrivFed.getName() +

"' from PrivGroup '" + strPrivGroup +
"' has id " + XYZPrivFed.getID());

XYZPrivsData XYZPrivData = new XYZPrivsData();
XYZPrivData.strPrivName = XYZPrivFed.getName();
XYZPrivData.lPrivID = XYZPrivFed.getID();
alPrivs.add(XYZPrivData);

 }
 else if (connection.getDsType().equals(cvb.CMB_DSTYPE_ICM))
 {
 // Connection is to CM 8 System

 Chapter 12. Using EIP custom privileges 273

 System.out.println("get CM8 priv");
DKPrivilegeICM XYZPriv = (DKPrivilegeICM) collIter.next();
System.out.println("Privilege '" + XYZPriv.getName() +

"' from PrivGroup '" + strPrivGroup +
"' has id " + XYZPriv.getID());

XYZPrivsData XYZPrivData = new XYZPrivsData();
XYZPrivData.strPrivName = XYZPriv.getName();
XYZPrivData.lPrivID = XYZPriv.getID();
alPrivs.add(XYZPrivData);

 }
}
strLoadedPrivGroup = strPrivGroup;

}

return;
}

//
// This function finds out if the privilege name is set for the logged on

user.
//
public boolean isAuthorized(CMBConnection connection, String strMyPrivName

)
throws Exception

{
int myPrivID = (int) getPrivID(strMyPrivName);
System.out.println("In isAuthorized(name) " + strMyPrivName + " is " +

myPrivID);
if (myPrivID <= 0)
{

if (strLoadedPrivGroup.length() == 0)
{

System.out.println("getPrivDefs() must be called before
isAuthorized()");

}
else
{

System.out.println("Privilege '" +
strMyPrivName +
"' not found in group '" +
strLoadedPrivGroup + "'.");

}
return false;

}

return isAuthorized(connection, myPrivID);
}

274 eClient 101 Customization and Integration

//
// This function finds out if the privilege ID is set for the logged on

user.
//
private boolean isAuthorized(CMBConnection connection, int myPrivID)

throws Exception
{

String privSetName = null;
System.out.println("IsAuthorized(id) Checking for privid=" + myPrivID);

 if (connection.getDsType().equals(cvb.CMB_DSTYPE_FED))
 {

DKDatastoreFed dsFed = (DKDatastoreFed) connection.getDatastore();
DKDatastoreDefFed dkDef = (DKDatastoreDefFed)dsFed.datastoreDef();
DKDatastoreAdminFed dsAdminFed = (DKDatastoreAdminFed)

dkDef.datastoreAdmin();
DKUserMgmtFed dkUMgmtFed= (DKUserMgmtFed)dsAdminFed.userManagement();
DKUserDataFed udfUser = (DKUserDataFed)dkUMgmtFed.retrieveUserDef(

connection.getUserid());

DKACLMgmtFed aclMgmt = dsAdminFed.aclManagement();
// Get the users privilege set
long lPrivId = udfUser.getPrivSetCode();
DKPrivilegeSetFed privSet =

(DKPrivilegeSetFed)aclMgmt.retrievePrivilegeSet(lPrivId);

privSetName = privSet.getName();
System.out.println("Priv set is " + privSetName);

// Get list of privileges in the priv set
dkCollection collPrivs = privSet.listPrivileges();
dkIterator collIter = collPrivs.createIterator();

// See if the priv we are looking for is set
while (collIter.more())
{

DKPrivilegeFed XYZPrivFed = (DKPrivilegeFed) collIter.next();
//System.out.println(" " + XYZPrivFed.getID());
if (XYZPrivFed.getID() == myPrivID)
{

//System.out.println("Got a match -- authorized!");
return true;

}
}
return false;

 }
 else if (connection.getDsType().equals(cvb.CMB_DSTYPE_ICM))
 {

System.out.println("Checking priv for DS Type ICM");

 Chapter 12. Using EIP custom privileges 275

DKDatastoreICM dsICM =
(DKDatastoreICM) connection.getDatastore();

//System.out.println("dsICM set");
DKDatastoreDefICM dkDef =

(DKDatastoreDefICM)dsICM.datastoreDef();
//System.out.println("dkDef set");
DKDatastoreAdminICM dsAdminICM =

(DKDatastoreAdminICM) dkDef.datastoreAdmin();
//System.out.println("dsAdminICM set");
DKUserMgmtICM dkUMgmtICM =

(DKUserMgmtICM)dsAdminICM.userManagement();
//System.out.println("dkUMgmtICM set");
DKUserDefICM udfUser=

(DKUserDefICM)dkUMgmtICM.retrieveUserDef(connection.getUserid()
);

//System.out.println("udfUser set");

DKAuthorizationMgmtICM aclMgmt =
(DKAuthorizationMgmtICM)dsAdminICM.authorizationMgmt();

// Get the users privilege set
long lPrivId = udfUser.getPrivSetCode();
DKPrivilegeSetICM privSet =

(DKPrivilegeSetICM)aclMgmt.retrievePrivilegeSet(lPrivId);

privSetName = privSet.getName();
System.out.println("Priv set is " + privSetName);

// Get list of privileges in the priv set
dkCollection collPrivs = privSet.listPrivileges();
dkIterator collIter = collPrivs.createIterator();

// See if the priv we are looking for is set
while (collIter.more())
{

DKPrivilegeICM XYZPrivICM = (DKPrivilegeICM) collIter.next();
//System.out.println(" " + XYZPrivICM.getID());
if (XYZPrivICM.getID() == myPrivID)
{

System.out.println("Got a match -- authorized!");
return true;

}
}
return false;

}
 else
 {
 System.out.println("Only supported for FED or CM8 connection.");
 return false;
 }

276 eClient 101 Customization and Integration

}

//
// This function gets the privilege ID for a specified
// privilege name. The privilege name must be in the
// Privilege Group specified in the call to getPrivDefs.
//
private long getPrivID(String strMyPrivName)

throws Exception
{

if (alPrivs == null)
{

return -1;
}

for (int i = 0; i<alPrivs.size(); i++)
{

XYZPrivsData XYZPriv = (XYZPrivsData) alPrivs.get(i);
if (strMyPrivName.equalsIgnoreCase(XYZPriv.strPrivName))
{

return XYZPriv.lPrivID;
}

}
return 0;

}
}

 Chapter 12. Using EIP custom privileges 277

278 eClient 101 Customization and Integration

Part 4 Integrating
eClient

In this part, we cover e-mail integration and special topics on Information Mining
Service, Siebel integration, and single sign-on integration. The installation, setup,
configuration, and integration are presented with detailed step-by-step
instructions. In the Information Mining Service chapter (Chapter 13, “Enabling
metadata-based content retrieval” on page 281), we provide detailed sample
codes for enabling metadata-based data retrieval.

Even if you are not using Information Mining Service, we highly recommend that
you read the chapter for more in-depth knowledge about eClient customization.

Part 4

© Copyright IBM Corp. 2003. All rights reserved. 279

280 eClient 101 Customization and Integration

Chapter 13. Enabling metadata-based
content retrieval

In this chapter, we introduce extensions to eClient and the underlying data model
that helps to streamline processes such as content acquisition and content
retrieval.

This chapter covers the following Information Mining Service related topics:

� Using categories and summaries in eClient searches
� Creating categories and summaries during document import
� Searching for related items
� Organizing existing items in Content Manager

13

© Copyright IBM Corp. 2003. All rights reserved. 281

13.1 Using categories and summaries in eClient
searches

Many companies have thousands of text documents in the company databases
that are not organized according to any well-defined structure. Usually, there is
no automatic process to classify the huge amount of information that comes in
daily. An example of this information includes customer requests and news.

To search for documents in these databases, you can specify the terms that you
think appear in the documents. This may lead to large result lists and the search
query needs to be refined several times to get a meaningful set of results. It is
hard to determine the meaningful results because most of the time you just get
document names or titles, but you do not know what is actually in the documents.
In addition, it is not possible to list all documents that discuss a certain topic,
such as microelectronics, but do not contain the term microelectronics itself. This
makes the information search time-consuming and cost-intensive for both
customers and employees.

In the following sections, using our XYZ company as an example, we show you a
simple way to automatically organize your data and solve the problems
described. eClient provides a generic search interface to directly search in
Content Manager or to search in other content servers using the federated
connector. It allows one to build a query with Content Manager item attributes or
with criteria of an EIP search template.

We enhance these search capabilities so that at the end of this chapter, you can
restrict your eClient search to certain topics and the eClient search results
provide a content summary for each document.

13.1.1 Introducing the scenario
We use the press articles that are installed with the EIP sample data as
described in 6.2.1, “Setting up sample data” on page 128. To access the data, we
use the search template SearchLongBySource which is defined in the sample
database EIPSAMPL.

The articles are loaded into Content Manager. We will not simply store the
articles. We first use the Information Mining Service of EIP to determine the topic
(category) of each document, create a summary, and filter the textual content for
indexing. This information is then stored along with the original document in a
appropriate Content Manager item. The required steps to create the item type
are discussed in 13.1.2, “Creating the data model” on page 283. The document
analysis and upload is described in 13.1.3, “Loading the data” on page 286.

282 eClient 101 Customization and Integration

Because the documents are already available as text, the filter step is not
necessarily required. You could also have other document formats, such as PDF;
we do not want to limit the scenario to a certain text format.

In 13.1.4, “Searching with eClient” on page 290, we use eClient to search in the
new structure.

The customization steps in 13.1.5, “Customizing eClient” on page 294 are
required to make sure the document summaries are displayed properly on the
eClient search results window.

13.1.2 Creating the data model
Figure 13-1 shows the structure of the existing DB2 table containing the press
articles in the sample database IBMPRESS and the new Content Manager item
type to be used to store the documents along with the additional information in
database ICMNLSDB.

Figure 13-1 Sample database and category search item type

The item type has two attributes to store the category (ArticleCategory) and the
summary (ArticleSummary). Furthermore, it provides two parts to store the
textual content for indexing (ICMBASETEXT) and the original document
(ICMBASE).

IBMPRESS ICMNLSDB

document parts:
ICMBASE
ICMBASETEXT

item types (native entities):
PressArticle

attributes (native attributes):
ArticleCategory
ArticleSummarycolumns (native attributes):

LANGUAGE
CONTENT
SOURCE
ID
PUBLICATION DATE

tables (native entities):
LONG_ARTICLES

 Chapter 13. Enabling metadata-based content retrieval 283

To create the item type with the Content Manager System Administration Client,
follow these steps:

1. Log on to the System Administration Client, using server type Content
Manager and server ICMNLSDB.

2. In the tree view for database ICMNLSDB, expand the category Library
Server Parameters and select Configurations. Right-click Library Server
Configuration in the Configurations window and select Properties.

3. In the Library Server Configuration window, select the Features tab, select
the Enable Text Information Extender check box, and specify the password.
Click OK.

4. Back in the tree view for database ICMNLSDB, expand the category Data
Modeling.

5. Right-click Item Types and select New.

6. In the New Item Type Definition window, select the Definition tab and:

a. Enter the name: PressArticle.
b. Select item type classification: Document.
c. Select the Text searchable check box.
d. Click Options next to the Text searchable check box. In the Text Search

Options window, specify an index update every 1 minute. Click OK.

7. The item type definition should now look similar to Figure 13-2.

Figure 13-2 PressArticle item type definition

8. Select the Attributes tab and click the icon on the left to open the New
Attribute window (or press Alt+t).

284 eClient 101 Customization and Integration

9. In the New Attribute window, enter the name ArticleCategory and attribute
type Variable character, a minimum character length of 0, and a maximum
character length of 1024. Click Apply.

10.Now enter the name ArticleSummary, attribute type Variable character, a
minimum character length of 0, and a maximum character length of 8192.
Click OK.

11.Back in the New Item Type Definition window, select the new attributes
ArticleCategory and ArticleSummary from the list of available attributes
(hold down the Ctrl key) and click Add. The Attributes tab should now look
similar to Figure 13-3.

Figure 13-3 PressArticle item type attributes

12.Select the Document Management tab and click Add.

13.In the Define Document Management Relations window, select part type
ICMBASE, click Apply, select part type ICMBASETEXT and click OK. The
tab should look similar to Figure 13-4.

Figure 13-4 PressArticle item type parts

14.Click OK. The PressArticle item type appears in the Item Types window.

Now the data model is defined and you can start to load data.

 Chapter 13. Enabling metadata-based content retrieval 285

13.1.3 Loading the data
Using the Information Mining Service of EIP, you can automatically extract the
textual content and create the category and summary information for a document
as shown in Figure 13-5.

Figure 13-5 Creating structure using Information Mining Service

Unlike the summarizer and the document filter, the categorizer needs to be
trained before you can use it. To train the categorizer means to define the set of
available categories, assign typical text documents to each category and create
a categorization schema that allows categorization of arbitrary new text
documents.

To train the categorizer, you use the Information Structuring Tool, which is part of
the Information Mining Service. Please follow the instructions in “Running the
categorization sample” on page 155 to train the categorizer before you continue
with this scenario.

After the training, the categorizer is able to distinguish between four different
categories:

� Desktop_and_mobile_computers
� Global Financing
� Microelectronics
� Research

The application ImportPressArticles.java, which loads the data according to
Figure 13-5, can be found in the samples directory of the redbook. It is

document parts:
ICMBASETEXT
ICMBASE

IBMPRESS ICMNLSDB

columns (native attributes):
LANGUAGE
SOURCE
ID
PUBLICATION DATE
CONTENT

tables (native entities):
LONG_ARTICLES

item types (native entities):
PressArticle

attributes (native attributes):
ArticleCategory
ArticleSummary

Information Mining
Service
Categorizer
Summarizer
Document Filter

286 eClient 101 Customization and Integration

implemented using the JavaBeans API. Figure 13-6 shows the beans and how
they are connected to define the required event flow.

Figure 13-6 Loader application JavaBeans event flow

The query bean and search results bean need a connection to the EIPSAMPL
database, because this is where the federated entity and the search template
SearchLongBySource is defined, which is required to access the data in DB2
through the federated connector. The beans of the Information Mining Service
need to be connected to the EIP administration database EIPDB. The
categorization bean, for example, needs to look up the categorization model from
this database.

The search results bean populates the result list and fires a result event, which
contains the result items, to the adapter bean, which retrieves the items and
extracts the text from the item parts using the document filter. The text gets

CMBSearchReplytEvent

CMBTextAnalysisRequestEvent

CMBTextAnalysisRequestEvent

CMBTextAnalysisdReplyEvent

CM BResultEvent

CMBResultEvent

CMBInfoMiningAdapter

CMBLanguageIdentificationService

CMBSummarizationService

CMBCategorizationService

CMBSearchResults

CMBQueryService

onCMBSearchRequest()

CMBInfoMiningAdapter

ImportPressArticles sample

connect()

CMBTextAnalysisRequestEvent

CMBConnectionReplyEvent

CMBConnection (eipdb) CMBConnection (eipsampl)

CMBConnectionReplyEvent

 Chapter 13. Enabling metadata-based content retrieval 287

stored in the item in a transient object. The adapter then initiates a text analysis
request against the language identification bean. Language identification is a
required analysis before you can run summarization and categorization. The
categorization bean reads the available category structure (taxonomy) and
categorization model from the catalog we just configured using the Information
Structuring Tool, and uses this information to determine the category for each
item. The summary and category get stored in the item but transient only.

The categorization bean then invokes the adapter bean, which converts the reply
event back to a search result event, where each contained item is now enriched
with the textual content, the summary, and the category. It also contains the
language, but we ignore the language in this scenario.

Finally, the application creates items of item type PressArticle in the ICMNLSDB
database that contain all the created information; therefore, a third connection is
required.

The event flow for the text analysis is defined with the following code snippet:

queryService.addCMBSearchReplyListener(searchResults);
searchResults.addCMBResultListener(adapter1);
adapter1.addCMBTextAnalysisRequestListener(languageIdentificationService);
languageIdentificationService.addCMBTextAnalysisRequestListener(summarizati
onService);
summarizationService.addCMBTextAnalysisRequestListener(categorizationServic
e);
categorizationService.addCMBTextAnalysisReplyListener(adapter2);
adapter2.addCMBResultListener(this);

The search template can be retrieved by name (SearchLongBySource):

CMBSearchTemplate searchTemplate =
schema.getSearchTemplate(SEARCH_TEMPLATE_NAME);

A value needs to be specified for the search criteria (source):

String[] searchValues = {SEARCH_VALUE};
searchTemplate.setSearchCriterion(SEARCH_CRITERION_NAME,
CMBBaseConstant.CMB_OP_EQUAL, searchValues);

And to start the search, a request event is created with the template and fired
against the query bean:

CMBSearchRequestEvent searchRequest = new CMBSearchRequestEvent(this,
CMBSearchRequestEvent.CMB_REQUEST_SEARCH_SYNCH, searchTemplate);
queryService.onCMBSearchRequest(searchRequest);

288 eClient 101 Customization and Integration

The textual content, the category and the summary can then be obtained from
the record object contained in a result item:

CMBRecord currentRecord = currentItem.getInfoMiningRecord();
String category = (String) currentRecord.getValue("IKF_CATEGORIES");
String summary = (String) currentRecord.getValue("IKF_SUMMARY");
String content = (String) currentRecord.getValue("IKF_CONTENT");

The original document needs to be retrieved:

eipsamplDataManagement.setDataObject(currentItem);
eipsamplDataManagement.retrieveItem();
CMBObject eipsamplObject = eipsamplDataManagement.getContent(0);

Now we start to create a new item:

CMBItem item = new CMBItem();

Specify the item type name PressArticle as the entity name:

item.setEntityName(ICM_ENTITY_NAME);

And set the category and summary on the appropriate attributes ArticleCategory
and ArticleSummary:

item.addAttr(ICM_CATEGORY_ATTR_NAME, category,
CMBItem.CMB_DATATYPE_VSTRING);
item.addAttr(ICM_SUMMARY_ATTR_NAME, summary, CMBItem.CMB_DATATYPE_VSTRING);

The original document is set on an object that will become one part of the new
item:

CMBObject icmBaseObject = new CMBObject();
icmBaseObject.setData(eipsamplObject.getData());
icmBaseObject.setPartType("ICMBASE");

Another object is created for the textual content:

CMBObject icmBaseTextObject = new CMBObject();
icmBaseTextObject.setData(content.getBytes());
icmBaseTextObject.setPartType("ICMBASETEXT");

Then the data management is used to add both parts to the item and finally
create it in Content Manager:

icmDataManagement.setDataObject(item);
icmDataManagement.addContent(icmBaseObject);
icmDataManagement.addContent(icmBaseTextObject);
icmDataManagement.createItem(ICM_ENTITY_NAME);

 Chapter 13. Enabling metadata-based content retrieval 289

To compile and run the sample:

1. Open an EIP development window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window.

2. Change to the directory where you stored the redbook samples.

3. To compile the sample, run javac ImportPressArticles.java.

4. To run the sample, enter java ImportPressArticles.

The persistent identifier, the category and the summary is printed for each
document to be stored. After the application has finished, all documents are
loaded and you can run eClient to search.

13.1.4 Searching with eClient
Using eClient, you can now search in categories and get document summaries in
the search result list.

To search in the new data model, open eClient and on the Logon window, enter
ICMNLSDB(CM8) for the server as shown in Figure 13-7.

Figure 13-7 Log on to Content Manager database

The available item types are listed on the Item Type List window as shown in
Figure 13-8 on page 291. Select the new PressArticle item type.

290 eClient 101 Customization and Integration

Figure 13-8 List of available item types

Figure 13-9 shows the search form that comes up.

Figure 13-9 eClient search in category

The search can now be restricted to a certain category. To search for all research
documents that are related to WebSphere, enter that category name
(Sample/Research) in the ArticleCategory field and WebSphere in the Document
Contents field. Click Search and the result list should looks similar to
Figure 13-10 on page 292.

 Chapter 13. Enabling metadata-based content retrieval 291

Figure 13-10 eClient category search result list

All search results belong to the topic (or business segment) you are interested in
and contain the specified term. The short result list and the displayed summary
help to find the interested documents quickly.

The categories are organized hierarchically and you might want to search for all
documents assigned to the categories of a subtree. You can do that on the
Advanced Search window as shown in Figure 13-11 on page 293.

292 eClient 101 Customization and Integration

Figure 13-11 eClient advanced search in sub-categories

Choose the LIKE operator and specify the root category of the subtree with a
trailing %.

The resulting list contains all documents that belong to the subtree, starting with
the specified category as shown in Figure 13-12.

Figure 13-12 eClient sub-category search result list

 Chapter 13. Enabling metadata-based content retrieval 293

Because the summary appears in just one line, we need to customize eClient to
enhance the readability. This is discussed in 13.1.5, “Customizing eClient” on
page 294.

13.1.5 Customizing eClient
With a word wrap at the right border of the browser window, the summary shown
in the search result list would be more readable. The eClient JSP file
ItemTable.jsp is responsible for the display of item collections. You need to adapt
this file.

Follow these steps to update the file:

1. Open file ItemTable.jsp in your preferred development environment.

2. About line 1285, replace the line::

rowsColumns[row][col + 1] = "<TD class='" + rowType + "' align='left' " +
colWidth + " nowrap>" + item.getAttrValue(colName) + "</TD>";

with:

String attrValue = item.getAttrValue(colName);
if(attrValue.length() > 100)
rowsColumns[row][col + 1] = "<TD class='" + rowType + "' align='left'
width='100%' >" + attrValue + "</TD>";
else
rowsColumns[row][col + 1] = "<TD class='" + rowType + "' align='left' " +
colWidth + " nowrap>" + attrValue + "</TD>";

Now eClient needs to be updated with the JSP file. If you use the WebSphere
Application Server Application Assembly Tool, do the following steps:

1. Make sure the ItemTable.jsp file resides in a directory named
pageComponents.

2. Open the eClient .ear file using the WebSphere Application Server
Application Assembly Tool and expand the category Web Modules ->
eclient82 -> Files. You see class files, JAR files and resource files.

3. Right-click Resource Files and select Add Files. The Add Files window
appears.

4. Click Browse. Select the directory (it must appear in the File name field) that
contains the pageComponents directory and click Select.

5. From the upper-right pane in the Add Files window, select pageComponents
and click Add. The JSP file appears in the Selected Files list as
pageComponents/ItemTable.jsp.

6. Click OK and select Yes on the confirmation window to overwrite the existing
JSP file.

294 eClient 101 Customization and Integration

7. Select File -> Save to save the .ear file and then select File -> Close.

Use the WebSphere Application Server Administrative Console to uninstall
eClient and install the new version.

The new search result looks like Figure 13-13.

Figure 13-13 Customized eClient search result list

Now the summary is displayed properly and provides a good idea whether a
document is of interest or not.

 Chapter 13. Enabling metadata-based content retrieval 295

13.2 Creating categories and summaries during
document import

In 13.1, “Using categories and summaries in eClient searches” on page 282, we
discuss how to import new documents using a separate application that
automatically creates additional category and summary information.

eClient itself also supports document import. If you specify
importSupported=true in the IDM.properties file of eClient, the welcome window
provides an Import link. You can import a file from the file system and manually
specify attribute values.

In the following, we show how to change the import behavior of the eClient, so
that additional information such as categories and summaries are automatically
created and stored in the new item.

We assume the item type PressArticle has been created as described in 13.1.2,
“Creating the data model” on page 283. The provided solution itself does not
depend on this item type. It is customizable and can therefore be used with any
other item type.

It is also necessary to train the categorizer. Please follow the instructions in
“Running the categorization sample” on page 155 before you continue with this
scenario.

13.2.1 Changing eClient import behavior
Figure 13-14 on page 297 illustrates the control flow that is initiated when you
click the Import link on the eClient welcome window.

296 eClient 101 Customization and Integration

Figure 13-14 eClient import control flow

The browser sends a request to the IDMAddItem servlet. The servlet calls the
IDMAddItem JSP, which creates an HTML form where you can specify attribute
values and select the file to upload. The form is shown in Figure 13-15.

Figure 13-15 Output of IDMAdditem.jsp

If you submit the form, the browser sends the information back to the
IDMAddItem servlet, which then creates a new item in the server. Now the

IDMAddItem ServletIDMAddItem Servlet

IDMAddItem JSPIDMAddItem JSP

IDMAddItem ServletIDMAddItem Servlet

IDMAddedItem JSPIDMAddedItem JSP

BrowserBrowser

 Chapter 13. Enabling metadata-based content retrieval 297

servlet calls the IDMAddedItem JSP to create the confirmation window as shown
in Figure 13-16.

Figure 13-16 Output of IDMAddedItem.jsp

Because the values for the category attribute and the summary attribute can be
created automatically, we should add this to the control flow so the users do not
need to enter these values manually.

How can that be achieved?

According to the Model-View-Controller design of eClient (see Chapter 5,
“eClient architecture” on page 101), you cannot do that in the JSPs.

Since we also cannot change the IDMAddItem servlet itself, it would be a good
idea to configure a servlet filter, which enriches the servlet request by wrapping
the request object and returning the created values for the attributes when the
getParameter method is called on the wrapper.

But you cannot do that because of two problems. The servlet filter concept is
introduced with Servlet 2.3 in J2EE 1.3. But the eClient is currently a J2EE 1.2
application, which supports Servlet 2.2 only. The other problem is that the
getParameter method does not work because the content type of the post form
data is multipart/form-data, and the Servlet specification demands content type
application/x-www-form-urlencoded for the parameter set. The data can only be

298 eClient 101 Customization and Integration

retrieved as a data stream by calling getInputStream. You cannot provide a
wrapper for this stream.

You could solve the filter problem by changing the control flow so that a custom
servlet is called first and in this servlet the information is created and forwarded
to the IDMAddItem servlet. But you would still need to wrap the request object,
which is not possible.

You cannot create the attribute values before the item is created, but you can do
it afterwards as illustrated in Figure 13-17.

Figure 13-17 Calling custom servlet after new item has been added

After the IDMAdditem servlet created the item, it calls the custom
OrganizeAddedItem servlet. This behavior can be configured in the
IDM.properties file of the eClient. The custom servlet reads the required
information directly from the request or the session, creates the attribute values
and updates the item in the server. Then the custom servlet calls the
IDMAddedItem JSP to create the response window.

13.2.2 Implementing custom servlet
The OrganizeAddedItem servlet is provided in the redbook samples as
OrganizeAddedItem.java.

IDMAddItem ServletIDMAddItem Servlet

IDMAddItem JSPIDMAddItem JSP

IDMAddItem ServletIDMAddItem Servlet

OrganizeAddedItem ServletOrganizeAddedItem Servlet

BrowserBrowser

IDMAddedItem JSPIDMAddedItem JSP

 Chapter 13. Enabling metadata-based content retrieval 299

In the init method, the implementation first reads the servlet initialization
parameters:

� eipDatabaseName, used to connect to the Information Mining Service

� entityName, to identify the items to be updated

� categoryAttributeName, the name of the attribute to store the category

� summaryAttributeName, the name of the attribute to store the summary

� contentIndex, the index of the content part in the item

� catalogName, the name of the Information Mining Service catalog containing
the categorization schema

� responseJspUrlPattern, the URL pattern to be used to call the response JSP
after the servlet has finished

These parameters make the servlet adaptable to other databases.

Both service methods, doGet and doPost, call processRequest. Hence, the
servlet behavior is the same for both request types.

In the processRequest method, the item to be updated is retrieved from the
request object:

CMBItem item = (CMBItem)req.getAttribute("item");

And the connection object is retrieved from the session object:

CMBConnection connection =
(CMBConnection)req.getSession().getAttribute("connection");

If the item is not of the expected item type, we do not process it and forward to
the response JSP using the URL pattern previously read from an initialization
parameter:

if(!item.getEntityName().equals(entityName)) {
getServletContext().getRequestDispatcher(responseJspUrlPattern).forward(req
, resp);
}

In order to use the Information Mining Service, it needs to be connected to the
EIP database. One way to do that is to connect a CMBConnection that has the
connectToIKF property set to true. We use the same user ID as the connection
read from the session:

eipConnection = new CMBConnection();
eipConnection.setServerName(eipDatabaseName);
eipConnection.setUserid(connection.getUserid());
eipConnection.setPassword(connection.getPassword());

300 eClient 101 Customization and Integration

eipConnection.setConnectToIKF(true);
eipConnection.connect();

The service object can then be retrieved from the connection. For performance
reasons, we also retrieve and keep the catalog and taxonomy objects required
for categorization:

ikfService = eipConnection.getIKFService();
catalog = ikfService.getLibrary().getCatalog(catalogName);
taxonomy = catalog.getTaxonomy();

Then the current summary and category values and the content is read from the
item:

String category = item.getAttrValue(categoryAttributeName);
String summary = item.getAttrValue(summaryAttributeName);
CMBObject content = dataManagement.getContent(contentIndex);

We call the document filter to create the text document object required for the
analysis steps:

DKIKFTextDocument ikfDocument =
ikfFilter.getTextDocument(content.getDataStream());

If the retrieved summary is empty because the user did not specify one, we now
run the language identifier, because summarization requires the language of the
document:

DKIKFLanguageIdentificationResult langResult[] =
langIdentifier.analyze(ikfDocument);

The language is set on the document object:

ikfDocument.setLanguage(language);

And the summarizer is called to create the summary:

summary = summarizer.analyze(ikfDocument).getSummary();

If the retrieved category is empty, we determine it the same way. After the
language has been detected and set on the document, the categorizer is called:

DKIKFCategorizationResult categorizationResult[] =
categorizer.analyze(ikfDocument);

Because the resulting category object does not contain the category path, we
need to retrieve the corresponding category object from the taxonomy and use
that to get the path:

DKIKFCategory resultCategory = categorizationResult[0].getCategory();
category = taxonomy.getCategory(resultCategory).getPathAsString();

 Chapter 13. Enabling metadata-based content retrieval 301

Finally, the new attribute values are set on the item using the attribute names
retrieved from the intitalization parameters, the item is checked out, updated, and
checked in again:

item.setAttrValue(categoryAttributeName, category);
item.setAttrValue(summaryAttributeName, summary);
dataManagement.setDataObject(item);
dataManagement.checkOut();
dataManagement.updateItem();
dataManagement.checkIn();

Now the work is done and we can call the response JSP using the URL pattern
also retrieved from an initialization parameter:

getServletContext().getRequestDispatcher(responseJspUrlPattern).forward(req
, resp);

After the servlet is implemented, it needs to be added to eClient. If you use the
WebSphere Application Server Application Assembly Tool, do the following
steps:

1. Open the eClient .ear file using the WebSphere Application Server
Application Assembly Tool and expand the category Web Modules ->
eclient82 -> Files. You see class files, JAR files and resource files.

2. Right-click Class Files and select Add Files. The Add Files window appears.

3. Click Browse. Select the directory (it must appear in the File name field) that
contains the OrganizeAddedItemServlet.class file and click Select.

4. From the upper-right pane in the Add Files window, select
OrganizeAddedItemServlet.class and click Add. The file appears in the
Selected Files list.

5. Click OK.

6. Right-click Web Components and select New.

7. In the New Web Component Window, enter OrganizeAddedItemServlet as the
component name, select the component type Servlet and click Browse.

8. In the Select file for Class name window, expand the category eclient82.war
-> WEB-INF. Select the OrganizeAddedItemServlet.class file in the list on
the right. Click OK.

9. The New Web Component window now looks like Figure 13-18 on page 303.

302 eClient 101 Customization and Integration

Figure 13-18 Adding new Web component to eClient

10.Click OK. The new servlet appears in the components list.

11.Expand the new OrganizeAddedItemServlet category on the left, right-click
Initialization Parameters and select New.

12.In the New Initialization Parameter window, enter eipDatabaseName as the
parameter name and EIPDB as the parameter value. Click Apply. In the same
way, add the remaining parameters of Table 13-1.

Table 13-1 Initialization parameters for new eClient servlet

13.Close the New Initialization Parameter window. Now the parameter list looks
like Figure 13-19 on page 304.

Parameter name Parameter value

eipDatabaseName EIPDB

entityName PressArticle

categoryAttributeName ArticleCategory

summaryAttributeName ArticleSummary

contentIndex 0

catalogName Sample

responseJspUrlPattern /IDMAddedItem.jsp

 Chapter 13. Enabling metadata-based content retrieval 303

Figure 13-19 Initialization parameters list box

14.Right-click Servlet Mapping and select New.

15.In the New Servlet Mapping window, enter /OrganizeAddedItem as the URL
pattern and select the servlet OrganizeAddedItemServlet as shown in
Figure 13-20.

Figure 13-20 Adding URL pattern for new eClient servlet

16.Click OK. The new pattern appears in the URL patterns list.

17.Select File -> Save to save the .ear file and then click File -> Close.

Use the WebSphere Application Server Administrative Console to uninstall
eClient and install the new version.

Finally, you need to edit the IDM.properties file in the eClient directory and
replace the line:

Output.IDMAddItem_out=/IDMAddedItem.jsp

with this line:

Output.IDMAddItem_out=/OrganizeAddedItem

Now the eClient control flow is configured according to Figure 13-17 on page 299
and you can start to import documents. If you want to use an item type other than
PressArticle, just adapt the servlet initialization parameters accordingly.

13.2.3 Running new eClient import
From the users’ perspective, the look and feel of the eClient import has not
changed because no servlet or JSP has changed. But now, if you do not specify

304 eClient 101 Customization and Integration

the value for the category or summary attribute, the appropriate value is created
automatically.

The import form for the PressArticle item type looks like Figure 13-21.

Figure 13-21 Importing document

After you specify the file type, content type and the file to be imported, you can
now decide whether you want to specify the category and summary manually or
let eClient do it automatically. Just leave the appropriate field blank.

If you submit the form and leave both fields blank, the category and summary
information is created, stored in the item and displayed in the confirmation
window, as shown in Figure 13-22 on page 306.

 Chapter 13. Enabling metadata-based content retrieval 305

Figure 13-22 Import confirmation with category and summary

If your confirmation window looks different because the summary appears in only
one line, you might want to change that in the ItemTable.jsp file as described in
13.1.5, “Customizing eClient” on page 294.

If you want to change the created summary, you can do that with the Edit item
attributes function of eClient.

13.3 Searching for related items
When your parametric search is successful and returns a relevant document, the
next question typically is “Are there more documents like that?”. When the

306 eClient 101 Customization and Integration

content is organized using categories/taxonomies, looking for other documents in
the same category can often answer this question.

However, related documents can also be found by looking at the terms and
expressions in the document. This is useful if there are no predefined categories
or the categories do not express the “relatedness” you are looking for.

In this scenario, we add a new action to the eClient search results window that
analyzes a selected item of the result list and searches for items related to it
using an automatically created text search query.

We use the Information Mining Service of EIP to automatically extract the words
to be used in the query from the textual content of an item.

As a result, if the parametric search returns a document for a certain customer
name that discusses new information technology in the life sciences business, a
query containing the words information, technology, life and sciences (and the
customer name) will be created. This query may be restricted to certain
categories, yielding the “best of both worlds” when looking for related
information.

In the following, we assume the item type PressArticle has been created as
described in 13.1.2, “Creating the data model” on page 283 and some items
have been created as described in 13.1.3, “Loading the data” on page 286.

The provided solution itself does not depend on this item type. It is customizable
and can be used with any other text searchable item type.

13.3.1 Adding new search results action
To add the new action, you need to know how to extend the combo box on the
search results window and how to integrate the new search into eClient.

In 5.2.2, “Inspecting eClient control flow” on page 110, we discuss the control
flow of a search in eClient. The IDMSearchFrame.jsp is responsible for the
overall results window. It calls the IDMSearchToolbar.jsp to create the toolbar
containing the combo box with the available actions:

<frame noresize title="ResultsToolbar" name="ResultsToolbar" src="<%=
webAppName %>/IDMSearchToolbar.jsp ...

You need to change the IDMSearchToolbar.jsp to add the new action to the list.

We show the required changes for this scenario below. A general description of
how to add a new action to the window can be found in Chapter 11, “Adding
custom functions to the search results window” on page 239.

 Chapter 13. Enabling metadata-based content retrieval 307

According to the Model-View-Controller design of eClient (see Chapter 5.,
“eClient architecture” on page 101), the new action needs to be implemented in a
new servlet that is called when you select the action on the search results
window.

If you want to work with the related documents in the same way as with arbitrary
eClient search results, you need to use the appropriate eClient JSPs to create
the results window. That means you have to provide the search results in the
session object, where the JSPs can pick them up (see Figure 5-7 on page 111).
You do not need to deal with the result processing at all if you directly reuse the
IDMSearch servlet.

Figure 13-23 shows how the new servlet fits into the search control flow.

Figure 13-23 Reusing search IDMSearch servlet

The new FindRelatedItems servlet gets called if you select the action on the
search results window, analyzes the selected document using the Information
Mining Service, creates a new query and calls the IDMSearch servlet to process

Find related items
action

Search results
page

IDMSearch
servlet

IDMSearchFrame.jsp

IDMSearchResults.jsp

IDMUtilityBean

ItemTable.jsp

Search results
page

FindRelatedItems
servlet

308 eClient 101 Customization and Integration

the query. The IDMSearch servlet then triggers the creation of the results window
as usual.

In a manual search, the IDMSearch servlet gets called by the
IDMBasicSearch.jsp. The FindRelatedItems servlet has to use the same format
in its request to the IDMSearch servlet. However, you do not need to inspect the
JSP code to find out how the request looks. You can change the form in the JSP,
so that it calls the WebSphere Application Server snoop servlet:

<FORM NAME="searchCriteria" action="http://localhost/snoop" Method="Get">

This way, you find out that if you search for the words ibm, learning and services
using the PressArticle item type, the required URL looks like:

/IDMSearch?Document%2BContents=ibm+learning+services&attrCount=0&radioAnyAl
l=ANY&NewWindow=true&Entity=PressArticle

13.3.2 Changing JSPs
You need to change the IDMSearchToolbar.jsp to add the new action to the
combo box of the search results window and pageComponents/Heading.jsp to
implement the JavaScript function that gets called if the new action has been
selected.

Both JSPs are provided in the redbook samples.

In IDMSearchToolbar.jsp, we add the new option to the combo box (only if the
datastore is Content Manager):

<option value="FindRelatedItems">Find Related Items</option>

As is done for the other actions, we also add an entry to the switch statement in
the doSelected method that calls the JavaScript method findRelatedItems to be
defined in Heading.jsp:

case 'FindRelatedItems':
parent.ResultsBottom.findRelatedItems()
break;

In pageComponents/Heading.jsp, we implement a new findRelatedItems
function. In the function, we first determine the item that has been selected in the
search result list:

if (document.results.check1[i].checked == true) {
pidString = document.results.check1[i].value;

 Chapter 13. Enabling metadata-based content retrieval 309

Then we create a URL that calls the new FindRelatedItems servlet. The servlet
needs to know the PID of the document to be analyzed and the entity (item type)
name to create a proper URL to call the IDMSearch servlet:

var url = '<%= webAppName %>/FindRelatedItems?entityName=<%= entity
%>&pidString='+pidString;

Finally a new window is opened and the control is forwarded to the
FindRelateditems servlet to perform the analysis and search:

window.open(url, wn, 'resizable=1,scrollbars=1,height=600,width=900');

The update of eClient is described in the following section.

13.3.3 Implementing custom servlet
The FindRelatedItems servlet is provided in the redbook samples as
FindRelatedItems.java.

In the init method, the implementation first reads the servlet initialization
parameters:

� eipDatabaseName, used to connect to the Information Mining Service.

� contentIndex, the index of the content part in the item.

� maxQueryLengthFeatures, the maximum number of extracted features to be
used in the query. A feature can consist of multiple words.

These parameters make the servlet adaptable to other databases.

Both service methods, doGet and doPost, call processRequest. Hence, the
servlet behavior is the same for both request types.

In the processRequest method, the entity name and the PID of the item to be
analyzed is retrieved from the request object:

String entityName = req.getParameter("entityName");
String pidString = req.getParameter("pidString");

The connection object is retrieved from the session object:

CMBConnection connection =
(CMBConnection)req.getSession().getAttribute("connection");

In order to use the Information Mining Service, it needs to be connected to the
EIP database. One way to do that is to connect a CMBConnection that has the

310 eClient 101 Customization and Integration

connectToIKF property set to true. We use the same user ID as the connection
read from the session:

eipConnection = new CMBConnection();
eipConnection.setServerName(eipDatabaseName);
eipConnection.setUserid(connection.getUserid());
eipConnection.setPassword(connection.getPassword());
eipConnection.setConnectToIKF(true);
eipConnection.connect();

The service object can then be retrieved from the connection:

ikfService = eipConnection.getIKFService();

Then the item is retrieved from the Content Manager. To retrieve the original
document, the content part with the index specified in the servlet initialization
parameters is used:

CMBItem item = new CMBItem(pidString);
item.setConnection(currentConnection);
dataManagement.setDataObject(item);
dataManagement.retrieveItem();
CMBObject content = dataManagement.getContent(contentIndex);

We call the document filter to create the text document object required for the
analysis steps:

DKIKFTextDocument ikfDocument =
ikfFilter.getTextDocument(content.getDataStream());

Now the language identifier gets called, because information extraction requires
the language of the document:

DKIKFLanguageIdentificationResult langResult[] =
langIdentifier.analyze(ikfDocument);

The language is set on the document object:

ikfDocument.setLanguage(language);

And the information extractor is called to extract terms from the document:

infoExtractor.setFeatureTypes(DKIKFFeature.TYPE_TERM);
DKIKFFeature[] features = infoExtractor.analyze(ikfDocument).getFeatures();

Up to the specified maximum number of extracted features are stored in a
temporary query string:

int n = Math.min(maxQueryLengthFeatures, features.length);
for(int i = 0; i < n; i++) {
queryString.append(features[i].getString() + " ");
}

 Chapter 13. Enabling metadata-based content retrieval 311

Then the final query string is created by adding a plus sign before each extracted
word. This results in a basic text search query as described in the EIP
programming guide (select Working with Content Manager Version 8.2 ->
Understanding text search -> Understanding text search syntax) where each
of the specified words must occur in the document:

StringTokenizer tokenizer = new
StringTokenizer(queryString.toString().trim());
queryString = new StringBuffer();
int tokenCount = tokenizer.countTokens();
for(int i = 0; i < tokenCount; i++) {
String token = tokenizer.nextToken();
queryString.append(" +" + token);
}

Finally the URL for the IDMSearch servlet is created:

String url = "/IDMSearch?Document%2BContents=" +
URLEncoder.encode(queryString.toString().trim()) +
"&attrCount=0&radioAnyAll=ANY&NewWindow=true&Entity=" + entityName;

And the request is forwarded to the IDMSearch servlet:

getServletContext().getRequestDispatcher(url).forward(req, resp);

To compile the servlet:

1. Open an EIP development window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window.

2. Change to the directory with the redbook samples for this chapter.

3. Run javac FindRelatedItemsServlet.java

After the JSPs and the servlet are implemented, they need to be added to the
eClient. If you use the WebSphere Application Server Application Assembly Tool,
do the following steps:

1. Open the eClient .ear file using the WebSphere Application Server
Application Assembly Tool and expand the category Web Modules ->
eclient82 -> Files. You see class files, JAR files and resource files.

2. Right-click Resource Files and select Add Files. The Add Files window
appears.

3. Click Browse. Select the directory that contains the redbook samples for this
chapter (it must appear in the File name field) and click Select.

4. From the upper-right pane in the Add Files window, select
IDMSearchToolbar.jsp and the pageComponents directory containing
Heading.jsp. Click Add. The JSP files appear in the Selected Files list.

312 eClient 101 Customization and Integration

5. Click OK and select Yes on the confirmation window to overwrite the existing
JSP files.

6. Right-click Class Files and select Add Files. The Add Files window appears.

7. Click Browse. Select the directory that contains the redbook samples for this
chapter (it must appear in the File name field) and click Select.

8. From the upper-right pane in the Add Files window, select
FindRelatedItemsServlet.class and click Add. The file appears in the
Selected Files list.

9. Click OK.

10.Right-click Web Components and select New.

11.In the New Web Component window, enter FindRelatedItemsServlet as the
component name, select the component type Servlet and click Browse.

12.In the Select file for Class name window, expand the category eclient82.war
-> WEB-INF. Select the FindRelatedItemsServlet.class file in the list on the
right. Click OK.

13.The New Web Component window now looks like Figure 13-18 on page 303.

Figure 13-24 Adding new Web component FindRelatedItemsServlet

14.Click OK. The new servlet appears in the components list.

15.Expand the new FindRelatedItemsItemServlet category on the left,
right-click Initialization Parameters and select New.

16.In the New Initialization Parameter window, enter eipDatabaseName as the
parameter name and EIPDB as the parameter value. Click Apply. In the same
way, add the remaining parameters of Table 13-1 on page 303.

Table 13-2 Initialization parameters for FindRelatedItemsServlet

Parameter name Parameter value

eipDatabaseName EIPDB

 Chapter 13. Enabling metadata-based content retrieval 313

17.Close the New Initialization Parameter window. Now the parameter list looks
like Figure 13-19 on page 304.

Figure 13-25 Initialization parameters list box

18.Right-click Servlet Mapping and select New.

19.In the New Servlet Mapping window, specify /FindRelatedItems as the URL
pattern and select the servlet FindRelatedItemsServlet as shown in
Figure 13-20 on page 304.

Figure 13-26 Creating URL pattern for FindRelatedItemsServlet

20.Click OK. The new pattern appears in the URL patterns list.

21.Select File -> Save to save the .ear file and then select File -> Close.

Use the WebSphere Application Server Administrative Console to uninstall
eClient and install the new version.

The new Find related items action is now ready to be used.

13.3.4 Running new action
To run the new search results action, you first need to perform a search. Log on
to eClient with the database name ICMNLSDB and the Content Manager
connector (CM8). Perform a search with the PressArticle item type, for example a
parametric search as shown in Figure 13-27 on page 315.

contentIndex 0

maxQueryLengthFeatures 2

Parameter name Parameter value

314 eClient 101 Customization and Integration

Figure 13-27 Running parametric search

If you specify * in the ArticleCategory field and click Search, you get a result list
containing all press articles in the database. You can now select a document and
then select Find related items action from the combo box in the toolbar as
shown in Figure 13-28 on page 316.

 Chapter 13. Enabling metadata-based content retrieval 315

Figure 13-28 Running find related items for document

The related items are listed in a new window, as shown in Figure 13-29 on
page 317.

Because we reused the search servlet and JSPs, this is a real eClient search
result and you can apply all available functions to the items.

In the provided solution, the original item is part of the related items list.

316 eClient 101 Customization and Integration

Figure 13-29 List of related items

 Chapter 13. Enabling metadata-based content retrieval 317

If you want to review or work with the automatically created query, you can click
the Search PressArticle link at the top of the first search results window. This
opens the search form for the item type where the query is displayed in the
Document Contents field as shown in Figure 13-30.

Figure 13-30 Automatically created query

Although this is a very simple implementation, the automatically created queries
created for the press articles are good. For example, to find related documents,
the servlet generates queries as follows:

� +information +technology +life +science
� +open +source +project +enterprise +system
� +cancer +treatment +information +system
� +ThinkPad +notebook +small +business
� +golf +club +product +development

13.4 Organizing existing items in Content Manager
In 13.1, “Using categories and summaries in eClient searches” on page 282, we
discuss how you can prepare the data model and organize your items during
upload by creating category and summary information.

It is most likely that the items are already stored in Content Manager and you
want to organize them afterwards.

318 eClient 101 Customization and Integration

The OrganizeItems application allows you to create category, summary and
language information for existing items. You can find the application in the
organizeItems directory in the samples for this chapter.

Two steps are required to organize existing items:

1. Extend the item type with the attributes to store the additional information.
2. Run the OrganizeItems application.

Both steps are described in the following section. In the provided samples, we
use the PressArticle item type and the items created in 13.1, “Using categories
and summaries in eClient searches” on page 282.

The OrganizeItems application works with arbitrary item types.

13.4.1 Extending item type
Before you can use OrganizeItems, you need to extend the item type with the
attributes to store the additional information. For example, if you want to add
summary information to the items, you need to add a summary attribute to the
item type. This can be done with the Content Manager System Administration
Client. The attribute names can then be specified in the
OrganizeItems.properties file.

For the PressArticle item type, the attributes for category and summary
information are already there. As an example, we add an attribute for the
language information:

1. Using the System Administration Client, log on to the Content Manager
database ICMNLSDB.

2. Expand the ICMNLSDB -> Data Modeling -> Item Types category, right-click
the PressArticle item type and select Properties.

3. In the Item Type Properties window, select the Attributes tab and click the
icon on the left to open the New Attribute window (or press Alt+t).

4. In the New Attribute window, enter the name ArticleLanguage, attribute type
Character, and a character length of 5. Click OK.

5. Back in the New Item Type Definition window, select the new attribute
ArticleLanguage from the list of available attributes and click Add. The
Attributes tab should now look like Figure 13-31 on page 320.

 Chapter 13. Enabling metadata-based content retrieval 319

Figure 13-31 Adding new ArticleLanguage attribute

6. Click OK to update the item type.

For an example of how to add attributes for category and summary information,
refer to 13.1.2, “Creating the data model” on page 283.

13.4.2 Running OrganizeItems application
The OrganizeItems application resides in the organizeItems directory in the
samples directory for this chapter.

You need to edit the OrganizeItems.properties file to configure the application. It
is also available in the samples directory.

Example 13-1 shows the content of the provided file.

Example 13-1 Content of OrganizeItems.properties

contenManagerServerName=icmnlsdb
eipServerName=eipdb
userId=icmadmin
password=password

query=(/PressArticle)

contentIndex=0

categoryAttributeName=
summaryAttributeName=ArticleSummary
languageAttributeName=ArticleLanguage

infoMiningCatalogName=Sample

infoMiningSummaryMaxLength=2

320 eClient 101 Customization and Integration

It consists of the following properties:

� contenManagerServerName is the name of the Content Manager server
that contains the items to be updated.

� eipServerName is the name of the EIP server required to run the Information
Mining Service.

� userId and password are used to connect to the specified servers.

� query is a XQuery Path Expressions (XQPE) that is used to search for the
items to be updated. Information about the query language can be found in
the EIP Information Center by selecting Programming -> Working with
Content Manager Version 8.2 -> Understanding the query language.

� contentIndex specifies the index of the content object in the item.

� categoryAttributeName, summaryAttributeName and
languageAttributeName specify the names of the attributes to store the
appropriate information. You can leave the value blank if you do not want to
create and store the information.

� infoMiningCatalogName specifies the name of the Information Mining
Service catalog to be used for categorization. You need to specify a value
only if you specified a value for the categoryAttributeName.

� infoMiningSummaryMaxLength specifies the maximum length of the
summaries in sentences. You need to specify a value only if you specified a
value for the summaryAttributeName.

To compile and run the OrganizeItems application:

1. Open a command window and switch to the organizeItems directory in the
samples directory for this chapter.

2. To compile the application, run compile.

3. To run the application, enter run.

If you are using the OrganizeItems.properties file shown in Example 13-1 on
page 320, each PressArticle item is updated with a new summary and language
information. The category is not created because no value has been specified for
the categoryAttributeName. The specified query returns all items of item type
PressArticle.

The application prints the created information as shown in Figure 13-32 on
page 322.

 Chapter 13. Enabling metadata-based content retrieval 321

Figure 13-32 Output of OrganizeItems

Now, if you search with the PressArticle item type in eClient, the search form also
contains the language attribute as shown in Figure 13-33.

Figure 13-33 Search form for PressArticle with language attribute

In the eClient Search results window, the values for the ArticleLanguage attribute
are displayed in addition to the values for ArticleCategory and ArticleSummary.
The results window is shown in Figure 13-34 on page 323.

322 eClient 101 Customization and Integration

Figure 13-34 New language attribute in eClient search result

 Chapter 13. Enabling metadata-based content retrieval 323

324 eClient 101 Customization and Integration

Chapter 14. Invoking eClient from
another application

In this chapter, we integrate eClient with an existing application. Specifically, we
show how to enable any application that has the capability of launching a Web
browser to launch eClient, log on to EIP, and display search results for search
criteria specified in a URL.

This chapter includes the following sections:

� Overview
� Servlet source code
� Configuring and using the servlet
� Servlet URL syntax and source
� Invoking the servlet from an application

14

© Copyright IBM Corp. 2003. All rights reserved. 325

14.1 Overview
There are many software application integration scenarios where users of an
existing application need an easy way to view content available through eClient.
For example, users of an insurance claims processing application may use a
custom-built application to locate basic claim information from a database
regarding insurance claims. After locating the claims, they may want to have an
easy way to view documents related to the claim (claim forms, photos, policy
documents, etc.) in eClient.

If using out-of-the box eClient to access the related documents, users have to
launch eClient, log on, select search templates, and enter search criteria (such
as claim numbers) to locate the documents. Users would have a better
experience if they could simply select a custom button or menu from their Line of
Business (LOB) application that would automatically show them a list of
documents in an eClient window for the claims they are looking for without having
to explicitly log on and enter the search criteria. The LOBIntegrator servlet and
some custom code in the LOB application can provide this type of functionality.

The key component required to implement this functionality is the LOBIntegrator
servlet. This servlet provides a new URL that is part of the eClient application
and can be invoked with specific parameters to specify logon and search
parameters. The servlet parses the parameters from the URL and automatically
logs on and performs a search. The search results are displayed in the standard
eClient window, allowing users to view and manipulate the documents.

The application you are integrating with may be written in one of many
languages. For example, it may be written in Java, Visual Basic, C++, FoxPro,
PowerBuilder, or perhaps it is a 3270 application running in an emulator. The
LOBIntegrator servlet can be used with any of these types of applications. Any
application that can launch a Web browser and pass a URL to it can use the
functionality of the servlet. Later in this chapter, we provide more information on
how to invoke the LOBIntegrator servlet from your LOB application.

14.2 Servlet source code
This section lists the source code for the LOBIntegrator servlet. The servlet can
be added to eClient to allow other applications to perform automatic searches by
generating a correctly formatted URL.

If you are integrating eClient with another J2EE application, you can add this
servlet to your custom J2EE application instead of adding it to eClient. Either
way, it does the same thing. Adding it to your custom J2EE application may be
better because you avoid any customization of eClient.

326 eClient 101 Customization and Integration

Example 14-1 includes the complete source code for LOBIntegrator servlet. You
can download a soft copy of the source code from Web. See Appendix B,
“Additional material” on page 465 for download instructions.

The source code is fairly simple. The bulk of the code is in the ProcessRequest()
method. It gets the parameters from the URL, performs the initialization and
logon if necessary, and builds a URL for the standard IDMSearch servlet in
eClient to perform the search and display the search results.

Example 14-1 LOBIntegrator servlet

/*
 This 'as is' sample source code is provided with the IBM Redbook
 SG246964. The source code is for a Servlet that can be added to
 the eClient to allow an application to launch a browser with a
 specific URL that will logon, perform a search, and display the
 search results in the browser window.
*/

import java.io.IOException;
import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import java.net.URLEncoder;
import javax.servlet.http.HttpSession;

import com.ibm.mm.beans.CMBConnection;

public class LOBIntegrator extends HttpServlet {

public void init() throws ServletException {
super.init();

}

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

 processRequest(req, resp);
}

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

 processRequest(req, resp);
}

private String convertString(String strValue)
{

 Chapter 14. Invoking eClient from another application 327

String strNewValue = "";

for (int i = 0; i < strValue.length(); i++)
{

if (strValue.charAt(i) == ' ')
{

strNewValue = strNewValue + "%2B";
}
else if (strValue.charAt(i) == '(')
{

strNewValue = strNewValue + "%28";
}
else if (strValue.charAt(i) == ')')
{

strNewValue = strNewValue + "%29";
}
else
{

strNewValue = strNewValue + strValue.charAt(i);
}

}

System.out.println("Old: " + strValue);
System.out.println("New: " + strNewValue);

return strNewValue;
}

 public void processRequest(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {

 try {

String strTemp = "";
String url = "";

// Connection parameters and default values
String strServerName = "ICMNLSDB";
String strServerType = "ICM";
String strUserID = "icmadmin";
String strPassword = "password";

// Search parameters
String strSearchType = "";
String strSearchEntity = "";
String strSearchAttr1 = "";
String strSearchValue1 = "";

//

328 eClient 101 Customization and Integration

// Get parameters from the request
//
strTemp = request.getParameter("userid");
if (strTemp != null && strTemp.length() > 0)
{

strUserID = strTemp; // default is icmadmin
}

strTemp = request.getParameter("password");
if (strTemp != null && strTemp.length() > 0)
{

strPassword = strTemp; // default is password
}

strTemp = request.getParameter("serverName");
if (strTemp != null && strTemp.length() > 0)
{

strServerName = strTemp;// default is ICMNLSDB
}

strTemp = request.getParameter("serverType");
if (strTemp != null && strTemp.length() > 0)
{

strServerType = strTemp;// default is ICM
}

//
// Make sure we have a session. If not, call IDMInit and
// set URLOut so this servlet will be called afterwards
//
HttpSession session = request.getSession(false);
if(session == null) {

System.out.println("session is null, calling IDMInit");
 request.setAttribute("URLout","/LOBIntegrator");

getServletContext().getRequestDispatcher("/IDMInit").forward(request,response);
}

//
// Make sure we have a valid connection. If not, call IDMConnection
// and set URLOut so this servlet will be called afterwards
//
CMBConnection connection = (CMBConnection)

session.getAttribute("connection");

if((connection == null) || (!connection.isConnected())) {
 request.setAttribute("URLout","/LOBIntegrator");

 url = "/IDMConnection?server=" +

 Chapter 14. Invoking eClient from another application 329

 URLEncoder.encode("name=" + strServerName +
 ",type=" + strServerType) +
 "&userid=" + strUserID +
 "&password=" + strPassword +
 "&action=Login";

System.out.println("No connection, calling IDMConnection with url:
" + url);

getServletContext().getRequestDispatcher(url).forward(request,response);

}

// Remove URLout if still in request object so eClient will perform
// default processing
request.removeAttribute("URLout");

System.out.println("Connected as user " + connection.getUserid());

//
// Get the search criteria related parameters
//
strTemp = request.getParameter("searchType");
if (strTemp != null && strTemp.length() > 0)
{

strSearchType = strTemp;
}

strTemp = request.getParameter("searchEntity");
if (strTemp != null && strTemp.length() > 0)
{

strSearchEntity = strTemp;
}

strTemp = request.getParameter("searchAttr");
if (strTemp != null && strTemp.length() > 0)
{

strSearchAttr1 = strTemp;
}

strTemp = request.getParameter("searchValue");
if (strTemp != null && strTemp.length() > 0)
{

strSearchValue1 = strTemp;
}

//
// Build the search parameters based on the searchType param
//

330 eClient 101 Customization and Integration

System.out.println("strSearchType = " + strSearchType);
if (strSearchType.equalsIgnoreCase("autoclaim"))
{

//
// This special search type has the item type and entity
// hardcoded in this servlet. This means that only
// searchType and searchValue need to be passed in on the
// URL.
//
strSearchAttr1 = "Claimant Last Name (Content Manager V8.1 Sample

Attribute)";
strSearchEntity = "Auto Claim Form (Content Manager V8.1 Sample

Item Type)";

if (strSearchValue1.length() < 1)
{

System.out.println("searchValue param required for searchType
of 'autoclaim'");

}
}
else if (strSearchType.equalsIgnoreCase("generic"))
{

if (strSearchEntity.length() < 1)
{

System.out.println("searchEntity param required for searchType
of 'generic'");

}
else if (strSearchAttr1.length() < 1)
{

System.out.println("searchAttr param required for searchType of
'generic'");

}
else if (strSearchValue1.length() < 1)
{

System.out.println("searchValue param required for searchType
of 'generic'");

}
}
//
// Anything that is passed to IDMBasicSearch must be
// converted to a valid string for the servlet. This
// consists of:
// a) Converting spaces to %2B
//
strSearchEntity = URLEncoder.encode(strSearchEntity);
strSearchAttr1 = convertString(strSearchAttr1);
strSearchValue1 = convertString(strSearchValue1);

//

 Chapter 14. Invoking eClient from another application 331

// Perform the search
//
com.ibm.idm.beans.IDMUtilityBean cub =
(com.ibm.idm.beans.IDMUtilityBean)session.getAttribute("cub");
cub.setEntityNameValue(request);
cub.setSearchType("IDMBasicSearch.jsp"); // ideas from

IDMBasicSearch.jsp

url = "/IDMSearch?" +
 strSearchAttr1 + "=" + strSearchValue1 +
 "&radioAnyAll=ALL" +
 "&attrCount=0" +
 "&Entity=" + strSearchEntity +
 "&NewWindow=true";

System.out.println("Calling IDMBasicSearch with url of '" + url +
"'");

getServletContext().getRequestDispatcher(url).forward(request,
response);
 }
 catch(Exception e) {
 throw new ServletException(e);
 }
 }
}

14.3 Configuring and using the servlet
In this section, we describe how to add the IDMIntegrator servlet to eClient using
WebSphere Studio Application Developer. If you are not using WebSphere
Studio Application Developer, you can use the WebSphere Application Server
Application Assembly Tool to add the servlet to eClient.

Follow these steps to add the LOBIntegrator servlet to your application:

1. Open eClient in WebSphere Studio Application Developer, open the J2EE
Navigator view, and highlight Java Source in the Navigator pane as shown in
Figure 14-1 on page 333.

332 eClient 101 Customization and Integration

Figure 14-1 WebSphere Studio Application Developer J2EE Navigator view

2. Select File -> Import, select File System as the source and click Next.

3. Click Browse and select the directory that contains the sample code
LOBIntegrator.java provided with the redbook. In the pane on the right, select
LOBIntegrator.java as shown in Figure 14-2 on page 334.

 Chapter 14. Invoking eClient from another application 333

Figure 14-2 WebSphere Studio Application Developer import file dialog

4. Click Finish. This imports the file into WebSphere Studio Application
Developer. WebSphere Studio Application Developer analyzes the source
code and recognizes that a servlet is being imported.

5. Go back to the J2EE Navigator window. It should now look similar to
Figure 14-3 on page 335, with LOBIntegrator.java listed. Double-click Web
Deployment Descriptor and select the Servlets tab in the pane on the right,
as shown in Figure 14-3 on page 335.

334 eClient 101 Customization and Integration

Figure 14-3 WebSphere Studio Application Developer Web Deployment Descriptor

6. Click Add in the Servlets and JSPs part of the window. The Add Servlet or
JSP window, shown in Figure 14-4 on page 336, appears.

 Chapter 14. Invoking eClient from another application 335

Figure 14-4 WebSphere Studio Application Developer - Add servlet window

7. Scroll down the servlet list until you find LOBIntegrator, as shown in
Figure 14-4, and click OK.

336 eClient 101 Customization and Integration

Figure 14-5 WebSphere Studio Application Developer - Add URL mapping for LOBIntegrator

8. Click Next. Click Add in the URL Mappings section of the window (in the right
pane in Figure 14-5). This adds \LOBIntegrator to the URL mappings window.

9. Close Web Deployment Descriptor window in the upper-right pane of the
window by clicking the X in the tab along the top of the window. This saves the
descriptor back to WebSphere Studio Application Developer.

At this point, you have added the LOBIntegrator.java source file, identified it as a
servlet, and specified a URL mapping so that it can be accesseds from a Web
browser.

 Chapter 14. Invoking eClient from another application 337

Now you can test the installation. Start your test server. In Figure 14-5 on
page 337, the servers are shown in the bottom-right pane. If your test server is
not running, right-click it and click Start.

Open Internet Explorer and try one of the sample URLs described in the next
section of this chapter. We entered the following URL and Figure 14-6 is
displayed:

http://localhost:9080/eClient82/LOBIntegrator?searchType=autoclaim&searchVa
lue=*

Figure 14-6 LOBIntegrator test

14.4 Servlet URL syntax and source
This section describes the URL syntax for the LOBIntegrator servlet.

14.4.1 Servlet parameters
Table 14-1 on page 339 lists and describes each parameter. The first four
parameters specify connection information, and the other four parameters

338 eClient 101 Customization and Integration

specify the search criteria. For our example, the userid, password, serverName,
and serverType are hardcoded in the servlet.

The searchType parameter is very important. It describes the high-level type of
search being requested. If the searchType is generic, then you must specify the
SearchEntity, SearchAttr, and searchValue in the URL. If you do not want to
specify the details of the search in the URL, you can create a custom searchType
such as the autoclaim searchType in the example servlet. With a custom
searchType, you just pass in the searchValue (such as last name or claim
number) and the SearchEntity and SearchAttribute can be hardcoded in the
servlet.

Table 14-1 LOBIntegrator servlet parameters

Parameter Default Description

userid icmadmin The user ID to log on with.

password password The password to log on with.

serverName ICMNLSDB The name of the server to log on to.

serverType ICM The server type. This can be ICM for CM8, FED for
a federated connection, OD for OnDemand. It can
be any of the back-end listed in the documentation
for the setDSType method of the CMBConnection
bean.

searchType none The searchType specifies the high-level type of the
search. The servlet supports two types, autoclaim
and generic.
If autoclaim is used, then the Auto Claim Form
entity is searched for a Claimant Last Name equals
to the searchValue parameter. The SearchEntity
and SearchAttr are hardcoded in the servlet for this
searchType.
If generic is used, then nothing is hardcoded and
the SearchEntity, SearchAttr, and searchValue
parameters are used to build the search string.

SearchEntity none The name of the entity to search. Required only for
searchType = generic.

SearchAttr none The name of the attribute to search. Required only
for searchType = generic.

searchValue none The value to search for in an attribute. If
searchType is autoclaim, then this specifies the
Claimant Last Name. Otherwise, it specifies the
value for the SearchAttr parameter.

 Chapter 14. Invoking eClient from another application 339

14.4.2 Sample URLs
We include some sample URLs that can be used with the LOBIntegrator servlet if
you have documents in the NOINDEX index class or you have the Content
Manager Version 8 sample data loaded.

The first URL searches against the Content Manager Version 8 sample data and
the other two search against the NOINDEX index class.

The first example uses a searchType of autoclaim. The source code of the
servlet handles this searchType by getting the searchValue and searching
against a hardcoded item type and attribute.

The second and third examples use a searchType of generic. The generic
searchType allows you to specify the entity you are searching, as well as the
SearchAttribute and the searchValue.

You can modify the servlet to specify your own searchTypes as required. Using
specific searchTypes can make your application integration more generic and put
the logic to select the appropriate item type and attribute(s) to search on in the
servlet instead of in the URL generated by the calling application.

Once you have the LOBServlet installed and working, and have the test data
loaded in Content Manager Version 8, you can paste one of these URLs into
Internet Explorer to test the servlet.

URL Example 1: Searching using the autoclaim searchType
This example uses a searchType of autoclaim. It logs on to Content Manager
Version 8 using the hardcoded values in the servlet. It then searches against the
item type and attribute specified in the servlet for the autoclaim searchType.

The example 1 URL is as follows:

http://localhost:9080/eClient82/LOBIntegrator?searchType=autoclaim&searchVa
lue=*

The output of the URL is shown in Figure 14-7 on page 341.

340 eClient 101 Customization and Integration

Figure 14-7 Sample URL #1 displayed in Internet Explorer

Example 2: Search using the generic searchType
This example uses a searchType of generic. It searches the NOINDEX item type,
and search the Source attribute for a value of IMPORT.

Example 2 URL is as follows:

http://localhost:9080/eClient82/LOBIntegrator?searchType=generic&searchEnti
ty=NOINDEX&searchAttr=Source&searchValue=IMPORT

The output of the URL is shown in Figure 14-8 on page 342.

 Chapter 14. Invoking eClient from another application 341

Figure 14-8 Sample URL #2 displayed in Internet Explorer

Example 3: Searching using the generic searchType
This example uses a searchType of generic. It searches the NOINDEX item type
where the User ID attribute is ICMADMIN. You may need to manually create
documents with matching attributes.

Example 3 URL is as follows:

http://localhost:9080/eClient82/LOBIntegrator?searchType=generic&searchEnti
ty=NOINDEX&searchAttr=User ID&searchValue=ICMADMIN

The output of the URL is shown in Figure 14-9 on page 343.

342 eClient 101 Customization and Integration

Figure 14-9 Sample URL #3 displayed in Internet Explorer

14.5 Invoking the servlet from an application
There are many ways to invoke the servlet described in this chapter. Any
application that is capable of launching a Web browser and passing a URL to it
can use this servlet integration.

Before proceeding, first make sure the servlet is working by invoking the URLs
from a Web browser. Enter (or cut and paste) in one of the sample URLs or your
own URL to invoke the servlet and display search results in eClient. Once the
servlet works as you expected, you can invoke it through other applications.

A simple way to invoke the servlet from another application is to “shell” out to the
operating system, run iExplore.exe, and then pass the URL on the command
line. Visual Basic provides a shell() function to do this. It can be called as
shown in the example below.

Integrating with Visual Basic application using shell() function
From Visual Basic, you can use the shell() command to launch a URL, as
illustrated in Example 14-2 on page 344.

 Chapter 14. Invoking eClient from another application 343

Example 14-2 Visual Basic sample code - Launch eClient using shell() command

Call Shell("c:\Program Files\Internet Explorer\iExplore.exe
""http://localhost:9080/eClient82/LOBIntegrator?searchType=generic&searchEntity
=NOINDEX&searchAttr=Source&searchValue=IMPORT""", vbNormalFocus)

There is a sample Visual Basic application described later that implements this
code. Other application development languages usually have something similar
to the Visual Basic shell() command to let you do the same thing.

Using ActiveX Automation (improving performance)
Performance may suffer if you open a new instance of a Web browser for each
search, because the servlet has to log on to eClient for each request. You can
improve performance by re-using the Web browser window, that is by using the
same browser which re-uses the same eClient logon to send URLs for different
search requests. One way to do this is with ActiveX Automation of Internet
Explorer.

ActiveX Automation allows an application to create an instance of another
application and interact with it programatically. Many applications provide an
ActiveX Automation interface including standard desktop applications such as
Microsoft Word, Microsoft Excel, and Microsoft Internet Explorer. Other
applications, including the IBM Content Manager thick client application, provide
ActiveX Automation programming interfaces.

As an example, a programmer can use ActiveX Automation from Visual Basic
with Microsoft Word to open a document, update the contents, and print to a
printer without requiring any user interaction. The ActiveX Automation interface
for the Content Manager thick client can be used to import documents, export
documents, re-index documents, or view documents. These tasks can be done
from any application development environment that supports ActiveX
Automation, including Microsoft Visual Basic, Microsoft Visual C++,
PowerBuilder, and others.

The code shown in Example 14-3 on page 345 is for a button-clicking event in
Visual Basic. It uses a global variable called goie that contains the handle to an
ActiveX Automation instance of Internet Explorer. The CreateObject() function
creates an instance of Internet Explorer. The ActiveX object can then be used to
interact with Internet Explorer as shown via the Visible() and Navigate() methods.

Using ActiveX Automation has a major advantage over using the shell()
command, because the same instance of the eClient can be re-used over and
over for different searches. This makes the display of the search results much
faster than using the shell() command. In a stand-alone environment on a
ThinkPad T30 as in our scenario, the response time for a simple search is about

344 eClient 101 Customization and Integration

one second using ActiveX Automation and about five seconds using the shell()
command to launch a new window each time.

Example 14-3 Visual Basic sample code - Re-use browser object

Dim goie As Object ‘ Global variable
Private Sub cmdExecute2_Click()

 On Error GoTo ErrorHandler

TryAgain:
 If (goie Is Nothing) Then
 Set goie = CreateObject("internetexplorer.application")
 End If
 goie.Visible = True
 goie.Navigate (frmMain.cmd2)
 Exit Sub

ErrorHandler:
 If (Err.Number = -2147417848) Then
 ' The user closed the internet explorer window
 Set goie = Nothing
 Resume TryAgain
 End If

End Sub

We include a Visual Basic application that demonstrates the usage of the
shell() command and ActiveX Automation. Figure 14-10 on page 346 shows a
window from the sample application.

 Chapter 14. Invoking eClient from another application 345

Figure 14-10 Visual Basic application for testing the LOBIntegrator servlet

This sample application specifies the three sample URLs discussed earlier in this
chapter in the text boxes. For each URL, you can invoke the LOBIntegrator
servlet using either ActiveX Automation or using the shell() command by
clicking one of the buttons. If you use the Automation buttons, the first time you
use a button, a new Internet Explorer window is created. Subsequent calls re-use
the same window.

The sample code demonstrates invoking eClient from an external application. If
you have a Visual Basic application that you want to integrate with eClient, you
can add code similar to that for the Automate button to your application to get
search results in eClient. You first need to know what the user is looking at in the
application (in this case, claim number 12345), build a URL with a search criteria,
and pass the URL to Internet Explorer using ActiveX Automation. You can do the
similar modification with different syntax for other development languages that
support ActiveX Automation (such as C++ and PowerBuilder).

To download the source code of the sample application, see Appendix B,
“Additional material” on page 465 for download instructions.

346 eClient 101 Customization and Integration

Chapter 15. Siebel Integration

In this chapter, we discuss how to integrate IBM DB2 Content Manager Version 8
eClient with a Siebel CRM application. The integration allows Siebel end users to
retrieve and view documents stored in IBM DB2 Content Manager Version 8
system.

This chapter contains the following topics:

� Installing Siebel Integration for Content Manager
� Configuring eClient
� Configuring Siebel
� Setting up Content Manager and EIP
� Verification

15

© Copyright IBM Corp. 2003. All rights reserved. 347

15.1 Introduction
Siebel Integration for IBM Content Manager combines the strength of both the
Content Manager product portfolio and a Siebel business application. The goal of
the integration is to use the Siebel application to manage the business process,
and use the Content Manager product portfolio to manage unstructured data for
the Siebel server.

With Siebel Integration for IBM Content Manager, the unstructured data from
Siebel may be stored in one of the following back-end servers:

� Content Manager Version 7.1
� Content Manager Version 8.1
� Content Manager Version 8.2
� Content Manager OnDemand for Multiplatforms Version 7.1
� Content Manager OnDemand for OS/390 Version 2.1, Version 7.1
� Content Manager OnDemand for iSeries™ Version 4.5, Version 5.1
� Content Manager ImagePlus for OS/390 Version 3.1

With Siebel Integration for IBM Content Manager, a Siebel end user is able to:

� Search and retrieve documents that are associated with a Siebel entity, such
as a service request.

� Use an eClient viewer to view individual documents, such as attachment to a
service request.

� While viewing a document, toggle on and off document annotations that were
previously created, zoom in and out, rotate the current page, and print the
document if the system is configured to enable the print function.

In this chapter, you learn how to use Siebel Integration for IBM Content Manager
in the following environment:

� Content Manager V8.2 with WebSphere Application Server 5.0
� EIP V8.2
� eClient V8.2 with WebSphere Application Server 5.0
� Siebel V7.52 with WebSphere Application Server 4.0

15.2 Installing Siebel Integration for Content Manager
Siebel Integration for IBM Content Manager components are automatically
installed when you install the IBM DB2 Content Manager Version 8 eClient. They
include several servlets, JavaServer Pages (JSP), icons, one Cascading Style
Sheet, two Siebel Web templates, and a sample Integration Properties (IP) file.

348 eClient 101 Customization and Integration

15.2.1 Installing Siebel Web templates
There are two Siebel Web templates (EIP81Applet.swt and EIP81Body.swt) in
the C:\CMeClient\integration\siebel directory (/CMeClient/integration/siebel
directory for AIX and Sun Solaris) after installing eClient, where /CMeClient is the
directory in which eClient is installed.

To complete the installation of Siebel Integration, you must copy both Web
templates into three directories on the Siebel machine:

� SIEBELROOT\siebsrvr\WEBTEMPL
� SIEBELROOT\client\WEBTEMPL
� SIEBELROOT\tools\WEBTEMPL

where SIEBELROOT is the directory in which Siebel is installed.

15.3 Configuring eClient
After you install Siebel Integration for IBM Content Manager, you must configure
both the eClient and the Siebel CRM applications to make the two products work
together.

15.3.1 Configuring eClient application server in WebSphere
Since eClient is a Web application server deployed in WebSphere Application
Server, you should ensure that the time-out session value is appropriately set
within WebSphere for the Siebel user community.

Before continuing the following steps, make sure that your WebSphere
Application Server V5.0 server1 is running.

1. On eClient server, launch WebSphere Application Server Administrative
console by selecting Start -> Programs -> IBM WebSphere -> Application
Server V5.0 -> Administrative Console.

2. In the left Navigator pane, select Servers -> Application Servers ->
eClient_Server -> Web Container -> Session Management.

3. Find the Session timeout field as shown in Figure 15-1 on page 350.

 Chapter 15. Siebel Integration 349

Figure 15-1 Set Session timeout in WebSphere Application Server

4. Select Set Timeout, and set the value in minutes. This value must be at least
two minutes.

5. Click OK to apply the modification.

6. Click Save twice to save the change.

15.3.2 Configuring integration properties file
The Integration Properties file (hereafter referred to as the IP file) resides in the
c:\CMeClient directory on eClient server. It specifies property values that
configure your environment for integration with Siebel.

You may give the integration file any name you wish. The IP file name will be
included in the calculated field when you configure Siebel. If you want to change
the IP file name after configuring Siebel, make sure that you have the same
name in the Siebel configuration. A sample IP file Siebel.properties is provided in
the c:\CMeClient directory.

By specifying values for the required fields in the integration property file, you
ensure that only the URL that originated from an authorized Siebel server has
access to unstructured data in the Content Manager servers. It also gives a look
and feel to Web pages generated by the eClient similar to the ones generated by
Siebel.

350 eClient 101 Customization and Integration

1. Open the integration property file C:\CMeClient\Siebel.properties in a text
editor.

2. Four properties in the IP file are required:

– eClientToken

The eClientToken property is used to control access to the eClient server.
Siebel application uses an assembled URL to access eClient. The
eClientToken property is part of the assembled URL. When the URL is
sent to eClient, the eClient server then compares the token provided in the
URL with the token in the IP file. eClient only allows access to
unstructured data if these two tokens match.

The eClientToken property is case-sensitive. Valid characters are any of
the ISO8859-1 Latin 1 characters with the exception of the following
characters, which are reserved for use within the query string of a URL:

;
/
?
:
@
&
=
+
,
$

In our scenario, we set the parameter to token.

– type

The type property specifies the look and feel of Web pages that are
produced by the eClient JavaServer Pages. For Siebel Integration for IBM
Content Manager, set the type to 1.

– cssPrefix

The cssPrefix property specifies a file name prefix for the Cascading Style
Sheet file used by the eClient JavaServer Pages for integration with
Siebel. Set the cssPrefix property to alt1.

– iconPrefix

The iconPrefix property specifies a file name prefix for the icon files used
by the eClient JavaServer Pages for integration with Siebel. Set the
iconPrefix property to alt1.

3. For the server, userid, and password properties, you can either specify them
in the IP file or specify them as arguments in the URL generated in Siebel. If

 Chapter 15. Siebel Integration 351

you specify them in both places, the values defined in the Siebel take
precedence over the values in the IP file.

– server

The server property specifies the name of the federated server database.
If your Content Manager database is ICMNLSDB and the EIP database is
EIPDB, you must use EIPDB as the server property.

– userid

The userid property is used to access the federated server database.

– password

The password property is used to access the federated server database.

4. Optionally, you may specify the value for the printEnabled property. The
printEnabled property specifies whether a print capability is included in the
toolbar of the document viewers. It can be set to true or false. The default
value is true.

Example 15-1 shows a sample integration property file.

Example 15-1 Sample Siebel.properties file

eClientToken=token
type=1
cssPrefix=alt1
iconPrefix=alt1
server=EIPDB
userid=icmadmin
password=password
printEnabled=false

15.3.3 Configuring browser
If you use the eClient viewer applet to view documents, you must configure your
client browser properly. For more information, read Chapter 2, “Installing eClient”
on page 17.

Restriction: At the time of this writing, Siebel application is allowed to
connect only to the EIP federated database server. Direct connection to
a back-end server is not available.

352 eClient 101 Customization and Integration

15.4 Configuring Siebel
There are two ways to configure Siebel Integration for IBM Content Manager
depending on the version of Siebel you are using:

� Specify a URL in a calculated field of a Siebel business component. To
complete configuration, you must do three tasks:

– Customize the business objects layer.
– Customize the user interface layer.
– Configure the Siebel application.

� Use the Siebel portal framework to define a symbolic URL within the
calculated field of a Siebel business component. This option also consists of
three tasks:

– Configure a business component to handle external data using a symbolic
URL.

– Display external content within an applet.

– Configure the Siebel application.|

Siebel Integration for IBM Content Manager supports Siebel V7.0.4 and Siebel
V7.5.2. If you are using Siebel V7.0.4, the first option is the only one available. If
you are using Siebel V7.5.2, you may choose either option to configure the
integration, although the second one is highly recommended.

In this chapter, we discuss how to configure Siebel integration by using the
second option (use the Siebel portal framework to define a symbolic URL within
the calculated field of a Siebel business component). For the procedure of the
first option (specifying a URL in a calculated field of a Siebel business
component), refer to Chapter 4 of IBM Content Manager for Multiplatforms / IBM
Information Integrator for Content: Installing, Configuring, and Managing eClient,
SC27-1350.

Siebel Version V7.5.2 provides portal agents that allow you to integrate external
data (for example, unstructured data managed by Content Manager) into the
Siebel user interface. You configure a calculated field in the business component
to handle external data using a symbolic URL. You then configure an applet to
display the external HTML content inside of the applet container within a view.

Tip: Archive the Siebel repository objects (SRF files) before you start making
any changes. If you need to remove the Siebel Integration for IBM Content
Manager later, you can import these archived object definitions to restore your
Siebel application environment to the level that existed prior to this
configuration.

 Chapter 15. Siebel Integration 353

In our scenario, we set up the environment with values shown in Table 15-1 and
Table 15-2 to demonstrate how to configure Siebel integration.

Table 15-1 Environment on Siebel server machine

Table 15-2 Environment on eClient server machine

15.4.1 Configuring business component
To configure Siebel business components to handle external data using a
symbolic URL, you need to create a new calculated field in the business
component, as follows:

1. Launch Siebel Tools by selecting Start -> Programs -> Siebel Tools 7.5.2 ->
Siebel Tools.

2. In Object Explorer on the left, select Siebel Objects -> Business
Component.

Product/Environment Value

Host name SiebelHost

Siebel 7.5.2

Siebel user John Smith

Product/Environment Setting

Host name eClientHost

eClient V8.2

eClient application server eClient82

eClientToken token

Integration property file name Siebel.properties

EIP search template used for Siebel
integration

SiebelAttachment

Search criteria #1 searchBySRNumber

Search criteria #2 searchByLastName

Content Manager V8.2

EIP V8.2

WebSphere Application Server V5.0

354 eClient 101 Customization and Integration

3. In the Business Components pane on the right, select the Service Request
business component (or any business component in which you want to
implement the integration).

4. From the menu bar, select Tools -> Lock Project.

5. In Object Explorer on the left, select Business Component -> Field. All of
the fields for the Service Request business component are displayed in the
Fields pane on the right.

6. In the Fields pane, right-click the window title bar and select New Record. A
blank new record appears above all the existing records.

Set the values for the fields found in Table 15-3 and keep the default values
for the rest of the fields. See Figure 15-2 on page 356.

Table 15-3 New field definition

For the Name field, you may use any meaningful name. In the Calculated Value
field, enter the name of the symbolic URL (enclosed in double quotes) that you
want to use to submit the HTTP request for retrieving documents stored in
Content Manager server. You define the symbolic URL in “Step 3. Defining a
symbolic URL” on page 366.

Field Value

Name CMAttachment

Calculated True

Calculated Value “CMSR”

Type DTYPE_TEXT

Use Default Sensitivity True

 Chapter 15. Siebel Integration 355

Figure 15-2 Define new calculated field

7. Save the changes.

15.4.2 Displaying external content within an applet
After you create the calculated field CMSR for the Service Request business
component, you use a control in a form applet to expose it in the user interface.

Step 1. Creating a Web template object
Complete the following steps to create a Web template object:

1. Launch Siebel Tools by selecting Start -> Programs -> Siebel Tools 7.5.2 ->
Siebel Tools.

2. In Object Explorer on the left, select Siebel Objects -> Web Template.

3. Right-click the Web template window title bar, and select New Record. A
blank new record appears above all the existing records.

Important: You still have the Service Request business component locked at
this time. You must keep it locked for the rest of the configuration.

356 eClient 101 Customization and Integration

Set the values for the fields defined in Table 15-4 and keep the default values
for the rest of fields.

Table 15-4 Define a new Web template

You may use any meaningful name for the new Web template. If you do not
know the project name, click the drop-down box and select one from the list.
Select the project that is associated to the business component being
modified. For the demonstration in this chapter, we are modifying the
business component Service Request and its project is Service. The project
Service must be locked.

4. Save the changes.

Step 2. Creating a Web template file object
Complete the following steps to create a Web template file object:

1. In Siebel Tools, highlight the Web template object, CM Attachment Applet
for Service Request, which you created in Step 1.

2. In Object Explorer on the left, select Siebel Objects -> Web Template ->
Web Template File.

3. Right-click the title bar of the Web Template File window and select New
Record. A blank new record appears above all the existing records.

Set the values for the fields found in Table 15-5 and keep the default values
for all other fields.

Table 15-5 Define a Web template file

Field Value

Name CM Attachment Applet for Service
Request

Project Service

Type Applet Template - Form

Field Value

Name CM Attachment Applet for Service
Request

File Name EIP81Applet.swt

Important: You must use the same name for both the Web template file and
the Web template.

 Chapter 15. Siebel Integration 357

4. Save the changes.

Step 3. Creating an applet
Complete the following steps to create an applet:

1. In Siebel Tools, select Siebel Objects -> Applet in Object Explorer on the
left.

2. Right-click the Applet window title bar on the right and select New Record. A
blank new record appears above all the existing records.

Set the values for the fields found in Table 15-6 and keep the default values
for all other fields.

Table 15-6 Define an applet

You may use any meaningful name for the new applet. If you do not know the
project name, select one from the drop-down box. Select the project that is
associated to the business component being modified.

3. Save the changes.

Step 4. Creating an applet control
Complete the following steps to create an applet control:

1. In Siebel Tools, highlight the applet CM Attachment Applet that you created
in “Step 3. Creating an applet” on page 358.

2. In Object Explorer on the left, select Siebel Objects -> Applet -> Control.

3. Right-click the Control window title bar and select New Record. A blank new
record appears above all the existing records.

Set the values in Table 15-7 on page 359 and keep the default values for all
other fields.

Field Value

Name CM Attachment Applet

Project Service

Business Component Service Request

Class CSSFrameBase

Title CM Attachment Applet

Type Standard

358 eClient 101 Customization and Integration

Table 15-7 Define an applet control

4. Save the changes.

Step 5. Creating an applet Web template
Complete the following steps to create an applet Web template:

1. In Siebel Tools, highlight the applet CM Attachment Applet that you created
in “Step 3. Creating an applet” on page 358.

2. In Object Explorer on the left, select Siebel Objects -> Applet -> Applet
Web Template.

3. Right-click the Applet Web Templates window title bar and select New
Record. A blank new record appears above all existing records.

Set the values for the fields found in Table 15-8 on page 360 and keep the
default values for all other fields.

Field Value

Name CMAttachment

Display Format HTML Text

Field CMAttachment

Field Retrieval Type Symbolic URL

HTML Display Mode DontEncodeData

HTML Only True

HTML Row Sensitive True

HTML Type Field

Read Only True

Sort True

Text Alignment Left

Visible True

Important: You must use the same name as the one for the calculated field
defined in Table 15-3 on page 355. And you must also use the same value for
the Field field.

 Chapter 15. Siebel Integration 359

Table 15-8 Define an applet Web template

4. Save the changes.

Step 6. Creating an applet Web template item
Complete the following steps to create an applet Web template item:

1. In Siebel Tools, highlight the applet Web template that you created in “Step 5.
Creating an applet Web template” on page 359.

2. In Object Explorer on the left, select Siebel Objects -> Applet -> Applet
Web Template -> Applet Web Template Item.

3. Right-click the Applet Web Template Item window title bar and select New
Record. A blank new record appears above all existing records.

Set the values for the fields found in Table 15-9 and keep the default values
for all other fields.

Table 15-9 Define an applet Web template item

4. Save the changes.

Field Value

Name Base

Type Base

Web template CM Attachment Applet for Service
Request

Important: When you enter data in Web template field, use the name defined
in “Step 1. Creating a Web template object” on page 356.

Field Value

Name CMAttachment

Control CMAttachment

Item Identifier 1301

Type Control

Important: For the Name field, use the same name as the calculated field
defined in “Configuring business component” on page 354. For the Control
field, use the one created in “Step 4. Creating an applet control” on page 358.

360 eClient 101 Customization and Integration

Step 7. Creating a view
Complete the following steps to create a view:

1. In Siebel Tools, select Siebel Objects -> View in the Object Explorer on the
left.

2. Right-click the View window title bar and select New Record. A blank new
record appears above all existing records.

Set the values for the fields found in Table 15-10 and keep the default values
for all other fields.

Table 15-10 Define a view

You may use any meaningful name. The project contains the name of the
business component you are modifying. The newly created view will become
a new tab for the business object Service Request.

The SR Number is the Service Request Number field defined in Siebel. It is
used as the search criteria while retrieving documents from the EIP search
template.

3. Save the changes.

Step 8. Creating a view Web template
Complete the following steps to create a view Web template:

1. In Siebel Tools, highlight the view CMAttachment View for Service Request
that you created in “Step 7. Creating a view” on page 361.

2. In the Object Explorer on the left, select Siebel Objects -> View -> View Web
Template.

3. Right-click the title bar of the View Web Template window and select New
Record. A blank new record appears above all existing records.

Set the values for the fields found in Table 15-11 on page 362 and keep the
default values for all other fields.

Field Value

Name CMAttachment View for Service Request

Project Service

Business Object Service Request

Thread Applet CM Attachment Applet

Thread Field SR Number

Thread Title SR Number:

 Chapter 15. Siebel Integration 361

Table 15-11 Define a view Web template

4. Save the changes.

Step 9. Creating view Web template items.
In this section, we create two view Web template items since we want to display
two applets in the view. For each applet which is displayed in the view, you must
create a corresponding Web template item.

1. In Siebel Tools, highlight the view Web template that you created in “Step 8.
Creating a view Web template” on page 361.

2. In the Object Explorer on the left, select Siebel Objects -> View -> View Web
Template -> View Web Template Item.

3. Right-click the View Web Template Items window title bar and select New
Record. A blank new record appears above all existing records.

Set the values for the fields found in Table 15-12 and keep the default values
for all other fields.

Table 15-12 Define first view Web template item

You may name the View Web Template Item anything you wish. The Item
Identifier maps the item to a control within a Siebel Web template (.swt) file.
The Applet field provides the name of the applet being included in this view.
The Applet Mode field provides the mode to be used for the applet when
rendering the view.

4. Save the changes.

5. Right-click the View Web Template Items window title bar and select New
Record. A blank new record appears above all existing records.

Set the values for the fields found in Table 15-13 on page 363 and keep the
default values for all other fields. See Figure 15-3 on page 363.

Field Value

Name Base

Web Template View Detail

Field Value

Name Service Request Detail Applet

Item Identifier 1

Applet Service Request Detail Applet

Applet Mode Edit

362 eClient 101 Customization and Integration

Table 15-13 Define second view Web template item

The applet CM Attachment Applet was defined in “Step 3. Creating an applet”
on page 358.

6. Save the changes.

Figure 15-3 Define view Web template items

Step 10. Updating the screen object
Complete the following steps to update the screen object:

1. In Siebel Tools, select Siebel Objects -> Screen in Object Explorer on the
left.

2. Select the Service Request window. This is where you are going to add the
view created in “Step 7. Creating a view” on page 361.

Field Value

Name CM Service Request Applet

Item Identifier 2

Applet CM Attachment Applet

Applet Mode Base

 Chapter 15. Siebel Integration 363

3. From the menu bar, select Tools -> Lock Project.

4. In Object Explorer on the left, expand Screen and select Screen View.

5. Right-click the title bar of the Screen Views window and select New Record.
A blank new record appears above all existing records.

Set the values for the fields found in Table 15-14.

Table 15-14 Update the screen object

The view CMAttachment for Service Request was created in “Step 7.
Creating a view” on page 361. The Category Menu Text field provides the text
you want to display in the category menu in Siebel. The Category View bar
Text field provides the text you want to display in the category tab in Siebel.
The Menu Text field provides the text you want to display in the menu in
Siebel. The Viewbar Text field provides the text you want to display on the
viewbar tab in Siebel. The Sequence controls the location of the view tab in
the screen of the Siebel application. 1 is used in the example because we
want the integration modification to be highly visible.

6. Save the changes.

Step 11. Compiling
Before running the following steps, make sure that Siebel client is not running.
Otherwise, the compiling will fail. The compiling process makes all modifications
available to Siebel client.

1. In Siebel Tools, select Tools -> Compile Project from the menu bar.

2. Under Projects, select Locked Projects.

3. Enter the target directory for the SRF file. In our scenario, we entered
c:\sea752\client\OBJECTS\ENU\.

4. Click Compile.

5. From the menu bar, select Tools -> Unlock Project to unlock the locked
projects.

Field Value

View CMAttachment for Service Request

Category Menu Text CM Attachment

Category Viewbar Text CM Attachment

Menu Text CM Attachment

Viewbar Text CM Attachment

Sequence 1

364 eClient 101 Customization and Integration

6. Exit Siebel Tools.

15.4.3 Configuring Siebel application
Before being able to retrieve documents from a Content Manager server in the
Siebel Call Center, you need to configure the Siebel application. Follow these
steps to complete your configuration.

Step 1. Logging on to the Siebel Call Center
Complete the following steps to log on to the Siebel Call Center:

1. Select Start -> Programs -> Siebel Client 7.5 -> Siebel Call Center-ENU.

2. Enter your administrator user ID and password.

3. Select Connect to -> Server.

Step 2. Defining the external data host
Complete the following steps to define the external data host:

1. In the Siebel Call Center, select View -> Site Map -> Integration
Administration -> Host Administration from the Siebel menu bar (not the
browser menu bar).

2. Click New.

Set the values for the fields found in Table 15-15.

Table 15-15 Define external data host

The Name field specifies the host name for the machine where the eClient
server is installed. The host name should include the domain suffix.

3. Click Menu and select Save Record.

Important: You must log in to Siebel as administrator.

Field Value

Name eClientHost.ibm.com®

Virtual Name eClientHost

Authentication Type leave this field blank

Authentication Value leave this field blank

 Chapter 15. Siebel Integration 365

Step 3. Defining a symbolic URL
In this step, you define the symbolic URL referenced in the calculated value field
defined in 15.4.1, “Configuring business component” on page 354.

1. In the Siebel Call Center, select View -> Site Map -> Integration
Administration -> Symbolic URL Administration from the Siebel menu bar.

2. In the Symbolic URL Administration view, click New.

Set the values for the fields found in Table 15-16.

Table 15-16 Define a symbolic URL

The Name field defines the name of the symbolic URL that is used in
“Configuring business component” on page 354 when you defined the
calculated field. The URL field defines the URL for invoking the eClient
Integration servlet. This URL format is:

URL scheme://virtual host name/eClient application name/IDMIntegrator

In the Host Name field, you enter the virtual name defined in the “Step 2.
Defining the external data host” on page 365.

3. Click Menu and select Save Record.

Step 4. Defining required symbolic URL arguments
Complete the following steps to define required symbolic URL arguments:

1. In the Siebel Call Center, select Site Map -> Integration Administration ->
Symbolic URL Administration from the Siebel menu bar.

2. Select the symbolic URL CMSR that you created in “Step 3. Defining a
symbolic URL” on page 366.

3. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-17 on page 367.

Field Value

Name CMSR

URL http://eClientHost:80/eClient82/IDMIntegr
ator

Host Name eClientHost

Fixup Name Default

Multivalue Treatment leave this field blank

SSO Disposition IFrame

Web Application leave this field blank

366 eClient 101 Customization and Integration

Table 15-17 Define first symbolic URL argument

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter PostRequest in the first Argument value field, and leave the second
value field blank.

4. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-18.

Table 15-18 Define second symbolic URL argument

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter token in the first Argument value field, and leave the second value field
blank. token is the value assigned to the eClientToken field in the integration
properties file Siebel.properties.

5. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-19.

Table 15-19 Define third symbolic URL argument

Field Value

Name method

Required True

Argument Type Command

Argument Value PostRequest

Append as Argument True

Sequence 1

Field Value

Name eClientToken

Required True

Argument Type Constant

Argument Value token

Append as Argument True

Sequence 2

Field Value

Name IPFile

 Chapter 15. Siebel Integration 367

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter Siebel in the first Argument value field, and leave the second value field
blank.

6. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-20.

Table 15-20 Define fourth symbolic URL argument

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter SIEBELV75 in the first Argument value field, and leave the second value
field blank.

7. In the Symbolic URL Arguments view, click New.

8. Set the values for the fields found in Table 15-21 on page 369.

Required True

Argument Type Constant

Argument Value Siebel

Append as Argument True

Sequence 3

Important: Even though the integration properties file name is
Siebel.properties, we enter Siebel as the argument value. The file extension
should not be entered as part of the argument value.

Field Value

Name ReleaseLevel

Required True

Argument Type Constant

Argument Value SIEBELV75

Append as Argument True

Sequence 4

Field Value

368 eClient 101 Customization and Integration

Table 15-21 Define fifth symbolic URL argument

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter SiebelAttachment in the first Argument value field, and leave the
second value field blank. SiebelAttachment is a federated search template
that you define in the EIP database server.

9. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-22.

Table 15-22 Define sixth symbolic URL argument

searchBySRNumber is one of the federated search criteria of the search
template SiebelAttachment that you define in the EIP database server. SR
Number is a Siebel field that is presented in the Siebel service request
application. This URL symbolic argument takes the value in the SR Number
Siebel field and passes it to the EIP search template.

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter SR Number in the first Argument value field, and leave the second value
field blank.

10.In the Symbolic URL Arguments view, click New.

11.Set the values for the fields found in Table 15-23 on page 370.

Field Value

Name Entity

Required True

Argument Type Constant

Argument Value SiebelAttachment

Append as Argument True

Sequence 5

Field Value

Name searchBySRNumber

Required True

Argument Type Field

Argument Value SR Number

Append as Argument True

Sequence 6

 Chapter 15. Siebel Integration 369

Table 15-23 Define seventh symbolic URL argument

searchByLastName is another of the federated search criteria of the search
template SiebelAttachment that you define in the EIP database server.
Contact Last Name is a Siebel field that is presented in the Siebel service
request application. This URL symbolic argument takes the value in the
Contact Last Name Siebel field and passes it to the EIP search template.

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter searchByLastName in the first Argument value field, and leave the
second value field blank.

See Figure 15-4.

Figure 15-4 Define symbolic URL arguments

Field Value

Name searchByLastName

Required False

Argument Type Field

Argument Value Contact Last Name

Append as Argument True

Sequence 7

370 eClient 101 Customization and Integration

12.Click Menu and select Save Record.

Step 5. Defining symbolic URL arguments (optional)
There are three optional symbolic URL arguments: server, userid, and password.
You do not have to define them in the symbolic URL if they are specified as the
server, userid, and password properties in the integration properties file. If you
specify them in both the symbolic URL and the IP file, the values in the symbolic
URL take precedence over the values in the IP file.

1. In the Siebel Call Center, select Site Map -> Integration Administration ->
Symbolic URL Administration from the Siebel menu bar.

2. Select the symbolic URL CMSR that you created in “Step 3. Defining a
symbolic URL” on page 366.

3. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-24.

Table 15-24 Define eighth symbolic URL argument

EIPDB is the EIP database server name. Do not enter the server host name
as the argument value.

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter EIPDB in the first Argument value field, and leave the second value field
blank.

4. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-25.

Table 15-25 Define ninth symbolic URL argument

Field Value

Name server

Required True

Argument Type Constant

Argument Value EIPDB

Append as Argument True

Sequence 8

Field Value

Name userid

Required True

 Chapter 15. Siebel Integration 371

icmadmin must be a valid EIP user ID.

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter icmadmin in the first Argument value field, and leave the second value
field blank.

5. In the Symbolic URL Arguments view, click New.

Set the values for the fields found in Table 15-26.

Table 15-26 Define tenth symbolic URL argument

The Siebel Symbolic URL Administration offers two Argument value fields.
Enter password in the first Argument value field, and leave the second value
field blank.

6. Click Menu and select Save Record.

Step 6. Specifying Siebel single sign-on (optional)
Siebel V7.5.2 provides a single sign-on capability. You do not need to perform
this step unless you are using the Siebel single sign-on capability. In our
scenario, we do not do this step.

Step 7. Setting up a new view in the Siebel Call Center
Follow these steps to set up a new view in the Siebel Call Center:

1. In the Siebel Call Center, select View -> Site Map -> Application
Administration from the Siebel menu bar.

Argument Type Constant

Argument Value icmadmin

Append as Argument True

Sequence 9

Field Value

Name password

Required True

Argument Type Constant

Argument Value password

Append as Argument True

Sequence 10

Field Value

372 eClient 101 Customization and Integration

2. Select Views.

3. Click New in the View applet.

4. Set the values for the fields found in Table 15-27.

Table 15-27 Set up a new view

You have defined the view CMAttachment View for Service Request in “Step 7.
Creating a view” on page 361. In this step, you make it available in the Siebel Call
Center.

5. Click Menu and select Save Record.

Step 8. Creating a responsibility
Follow these steps to create a responsibility:

1. In the Siebel Call Center, select View -> Site Map -> Application
Administration -> Responsibilities from the Siebel menu bar.

2. Click New in the Responsibilities applet.

3. Set the values for the fields found in Table 15-28.

Table 15-28 Create a responsibility

4. Save the changes.

5. From the User applet, click New.

6. Select the user John Smith, and click OK.

7. From the View applet, click New.

8. Select the view CMAttachment View for Service Request, and click OK.

9. Save the changes.

10.Log off from the Siebel Call Center.

Field value

Name CMAttachment View for Service Request

Description CM/Siebel integration view

Field Value

Name CM Attachment Manager

Description CM Attachment Manager

Organization Default Organization

 Chapter 15. Siebel Integration 373

15.5 Setting up Content Manager and EIP
The goal of the Siebel and eClient integration is to use Siebel application to
manage the business process, and use Content Manager to manage service
request attachment files for Siebel. To manage unstructured data for Siebel, we
must have the infrastructure in Content Manager and EIP server.

In this section, we create an item type in Content Manager to hold Siebel service
request attachment files. Since the Siebel integration only works with EIP
federated server, you must also create a federated entity and a federated search
template in EIP.

15.5.1 Creating attributes in Content Manager
In this section, we create two Content Manager attributes that have the same
properties as the fields SR Number and Contact Last Name defined in Siebel. In
addition, we create the third attribute to present the service request document
sequence number.

1. Log on to Content Manager system administration client by selecting Start ->
Programs -> IBM Content Manager for Multiplatforms V8.2 -> System
Administration Client.

2. In the Navigation pane on the left, select Content Manager -> ICMNLSDB ->
Data Modeling -> Attributes.

3. Right-click Attributes, and select New to create the first field.

Set the values for the fields found in Table 15-29. See Figure 15-5 on
page 375.

Table 15-29 Define attribute Sea_SR_Num

Field Value

Name Sea_SR_Num

Display name Service Request Number

Attribute type Variable character

Character type Extended alphanumeric

Minimum 1

Maximum 64

374 eClient 101 Customization and Integration

Figure 15-5 Define attribute in Content Manager

4. Click OK to save the attribute.

5. Right-click Attributes, and select New to create the second field.

Set the values for the fields found in Table 15-30.

Table 15-30 Define attribute Sea_LastName

6. Click OK to save the attribute.

7. Right-click Attributes, and select New to create one more field.

Set the values for the fields found in Table 15-31 on page 376.

Field Value

Name Sea_LastName

Display name Last Name

Attribute type Variable character

Character type Extended alphanumeric

Minimum 1

Maximum 50

 Chapter 15. Siebel Integration 375

Table 15-31 Define attribute Sea_SR__Doc_Num

8. Click OK to save the attribute.

15.5.2 Creating item type in Content Manager
In this section, we create an item type in Content Manager system administration
client. This item type is used to hold unstructured data (service request
attachment) for Siebel application.

1. Log on to Content Manager system administration client by selecting Start ->
Programs -> IBM Content Manager for Multiplatforms V8.2 -> System
Administration Client.

2. In the Navigation pane on the left, select Content Manager -> ICMNLSDB ->
Data Modeling -> Item Types.

3. Right-click Item Types, and select New.

4. On the Definition tab, set the values for the fields found in Table 15-32. See
Figure 15-6 on page 377.

Table 15-32 Define item type - Definition

Field Value

Name Sea_SR__Doc_Num

Display name Service Request Document Sequence
Number

Attribute type Short integer

Minimum 0

Maximum 32767

Field Value

Name Sea_SR

Display name Siebel Service Request Attachment

New version policy Never create

Item type classification Document

Text Search False

376 eClient 101 Customization and Integration

Figure 15-6 Define item type Sea_SR

5. On the Attributes window, set the values for the fields found in Table 15-33.

Table 15-33 Define item type - Attributes

6. On the Document Management window, set the values for the fields found in
Table 15-34.

Table 15-34 Define item type - Document Management

Attribute Required

Sea_SR_Num True

Sea_LastName False

Sea_SR_Doc_Num False

Part type Access control
list

RMDB/Collection Version

ICMBASE PublicReadACL take default Never create

 Chapter 15. Siebel Integration 377

7. Click OK to save the item type.

15.5.3 Populating unstructured data in Content Manager
Before Siebel users are able to retrieve the unstructured data (Siebel service
request attachment) from a Content Manager server, you must import these files
into Content Manager. To import these files, you must find out the service
request number and other related information that associates to these files.

Find attribute information before populating Content Manager
1. Log on to the Siebel Call Center as user John Smith by selecting Start ->

Programs -> Siebel Client 7.5.2 -> Siebel Call Center - ENU.

2. Select the Service tab.

3. In the Show drop-down list, select All Service Requests. All service requests
are displayed in the Service Request applet.

4. Record the SR_Num and Contact Last Name for a service request. For
demonstration purposes, we use "1-229" as SR_Num and “Smith” as Contact
Last Name.

Import service request attachment files into Content Manager
5. Log on to the Content Manager window client with the user ID icmadmin by

selecting Start -> Programs -> IBM Content Manager V8 -> Client for
Windows.

6. Select File -> Import from the menu bar.

Set the values for the fields found in Table 15-35. See Figure 15-7 on
page 379.

Table 15-35 Import service request attachment file

ICMANNOTATION PublicReadACL take default Never create

ICMNOTELOG PublicReadACL take default Never create

Part type Access control
list

RMDB/Collection Version

Field Value

Files to be imported c:\temp\attachment.txt

File Type Text Document

Item Type Sea_SR

Service Request Number 1-229

378 eClient 101 Customization and Integration

Figure 15-7 Import service request attachment

7. Repeat step 7 to import more attachments for service request 1-229.

15.5.4 Preparing EIP server
You must make the Content Manager server available to the EIP server before
you continue to set up the federated entity and federated search template. Follow
these steps to add a new Content Manager server to EIP and refresh the Content
Manager inventory:

1. Log on to EIP administration client by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Administration.

2. In the Navigation pane on the left, select Enterprise Information Portal ->
EIPDB -> Servers.

3. Right-click Servers, select New -> Content Manager v8.

Last Name Smith

Search Request Document Number 1

Field Value

 Chapter 15. Siebel Integration 379

4. Enter icmnlsdb in the Server name field. See Figure 15-8.

Figure 15-8 Add Content Manager server in EIP administration client

5. Click Test Connection.

6. Enter a valid user ID and password of the Library Server, and click OK.

You should see a message: “The connection to icmnlsdb was successful.”

7. Click OK twice to save the changes.

8. Right-click the icmnlsdb server entry in the Contents of servers pane on the
right, and select Refresh Server Inventory.

9. A message is displayed: “Refreshing the inventory can take awhile. A
message will be issued when the refresh is completed. Do you want to
continue with the refresh?”. Click Yes.

10.Another message is displayed: “The inventory was refreshed for
icmnlsdb. No changes were found that affect existing search
templates.” Click OK.

11.Select Tools -> Server Inventory Viewer from the menu bar.

12.The Server inventory viewer window is displayed. Scroll down the list and
make sure that there are three entries for the item type Sea_SR.

15.5.5 Creating EIP federated entity
When you define the EIP federated entity, you map EIP federated attributes to
native attributes in the back-end server, such as Content Manager.

Important: You must enter the Library Server database name of the Content
Manager server in the Server name field. Do not use the host name of the
Content Manager server.

380 eClient 101 Customization and Integration

Complete the following steps to define the EIP federated entity.

1. Log on to EIP administration client by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Administration.

2. In the Navigation pane on the left, select Enterprise Information Portal ->
EIPDB -> Federated Entities.

3. Right-click Federated Entities, and select New -> Nonwizard.

Set the values of the Name and Description fields as shown in Table 15-36.
Keep the default values for the other fields.

Table 15-36 Define EIP federated entity

4. Click Add to define a new EIP attribute.

Set the values of the fields as found in Table 15-37.

Table 15-37 Define EIP federated attribute - SR_Num

5. Click OK to save the EIP federated attribute.

6. Click Add to define a new EIP attribute.

Set the values of the fields as found in Table 15-38.

Table 15-38 Define EIP federated attribute - LastName

Field Value

Name SiebelAttachment

Description SiebelAttachment

Field Value

Add federated attribute True

Name SR_Num

Type Variable character

Length 64

Nullable False

Queryable True

Updateable True

Text Searchable False

Field Value

Add federated attribute True

 Chapter 15. Siebel Integration 381

7. Click OK to save the EIP federated attribute.

8. Click Add again.

Set the values of the fields found in Table 15-39.

Table 15-39 Define EIP federated attribute - SR_Doc_Num

9. Click OK to save the EIP federated attribute.

10.Now, your Federated Entity Properties window should look like Figure 15-9 on
page 383.

Name SR_Num

Type Variable character

Length 50

Nullable True

Queryable True

Updateable True

Text Searchable False

Field Value

Add federated attribute True

Name SR_Doc_Num

Type Short

Minimum 0

Maximum 32767

Nullable True

Queryable True

Updateable True

Text Searchable False

Field Value

382 eClient 101 Customization and Integration

Figure 15-9 Define EIP federated entity

11.Click Map Federated Entity. The Federated Entity Mapping window is
displayed.

12.Select SiebelAttachment in the Federated entity field.

13.Select icmnlsdb in the Server field.

14.Select Sea_SR in the Native entity field.

15.There are three federated attributes and three native attributes. Map the
federated attribute to the native attribute as shown in Table 15-40. Your
federated entity mapping window looks like Figure 15-10 on page 384.

Table 15-40 Map the federated attributes to the native attributes

Federated attribute Native attribute

SiebelAttachment.SR_Num Sea_SR.Sea_SR_Num

SiebelAttachment.LastName Sea_SR.Sea_LastName

SiebelAttachment.SR_Doc_Num Sea_SR.Sea_SR_Doc_Num

 Chapter 15. Siebel Integration 383

Figure 15-10 Map federated attributes to native attributes

16.Click OK to save the federated attribute mapping.

17.Click OK to save the federated entity.

15.5.6 Creating EIP federated search template
In order to search and retrieve documents through eClient, you must define the
EIP federated search template. Complete the following steps to create a EIP
federated search template.

1. Log on to EIP administration client by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Administration.

2. In the Navigation pane on the left, select Enterprise Information Portal ->
EIPDB -> Search Templates.

3. Right-click Search Templates, and select New -> Nonwizard.

Set the values of the Name and Description fields as shown in Table 15-41.

Table 15-41 Define EIP search template

Field Value

Name SiebelAttachment

384 eClient 101 Customization and Integration

4. Since you are using user ID icmadmin in the integration properties file, you
must grant icmadmin access to this search template. Highlight user ID
icmadmin in the Available groups/users field and click Add.

5. Click Add next to the Template criteria field.

Set the values for the fields found in Table 15-42. See Figure 15-11 on
page 386.

Table 15-42 Define template criteria - searchBySRNumber

Description Attachment in IBM Content Manager -
Service Request

Field Value

Name searchBySRNumber

Type Parametric

Federated entity SiebelAttachment

Federated attribute SR_Num

Default operator equals (=)

Selected valid operators equals (=)

Display in the results only False

Restriction: The Siebel integration only supports the equal (=) operator in the
EIP search template.

Field Value

 Chapter 15. Siebel Integration 385

Figure 15-11 Define template criteria

6. Click OK to save the template criteria.

7. Click Add next to the Template criteria field.

Set the values for the fields found in Table 15-43.

Table 15-43 Define template criteria - searchByLastName

Field Value

Name searchByLastName

Type Parametric

Federated entity SiebelAttachment

Federated attribute LastName

Default operator equals (=)

Selected valid operators equals (=)

Display in the results only False

386 eClient 101 Customization and Integration

8. Click OK to save the template criteria.

9. Click Add next to the Template criteria field.

Set the values for the fields found in Table 15-44.

Table 15-44 Define template criteria - searchByDocNumber

10.Click OK to save the template criteria.

The New Search Template window looks like Figure 15-12.

Figure 15-12 Define search template

Field Value

Name searchByDocNumber

Type Parametric

Federated entity SiebelAttachment

Federated attribute SR_Doc_Num

Display in the results only True

 Chapter 15. Siebel Integration 387

11.Click OK to save the search template.

15.6 Verification
After completing the installation and configuration of Siebel Integration for IBM
Content Manager, we need to verify if it is working as we designed.

During the configuration, we:

� Modified the business component Service Request for a Siebel entity Service
Request.

� Created a view CMAttachment View for Service Request.

These modifications allow Siebel end users to retrieve and display documents
stored in Content Manager.

Before continuing the verification steps, make sure that you completed the
following setup, as described in 15.5, “Setting up Content Manager and EIP” on
page 374:

� Created a Content Manager item type Sea_SR to store attachments for the
Service Request in Siebel.

� Loaded attachment files into the Content Manager item type Sea_SR for
service request 1-229.

� Created an EIP entity SiebelAttachment that is mapped to the Content
Manager item type Sea_SR.

� Created an EIP search template SiebelAttachment to retrieve stored
attachments in Content Manager server.

Follow these steps to validate your configuration:

1. Log on to the Siebel Call Center as user John Smith by selecting Start ->
Programs -> Siebel Client 7.5 -> Siebel Call Center-ENU.

2. Select the Service tab.

3. From the Show drop-down list, select All Service Requests. All service
requests are displayed in the Service Request applet.

4. Select service request 1-229. See Figure 15-13 on page 389.

Notice that CM Attachment is the first tab in the bottom half of the window. It
was added in “Step 10. Updating the screen object” on page 363.

388 eClient 101 Customization and Integration

Figure 15-13 Service request in the Siebel Call Center

5. Click the CM Attachment tab. A list of attachment for service request 1-229 is
displayed in the SiebelAttachment pane. See Figure 15-14 on page 390.

 Chapter 15. Siebel Integration 389

Figure 15-14 Unstructured data is retrieved through eClient

6. Click the icon next to the Service Request Number to open the attachment.

If the attachment opens as expected, then the verification process is
complete.

390 eClient 101 Customization and Integration

Chapter 16. Integrating with e-mail
server

In this chapter, we describe the e-mail feature in eClient. With the e-mail feature
enabled in eClient, a user is able to mail documents stored in Content Manager
server to other users.

This chapter covers the following topics:

� Identifying e-mail server
� Configuring eClient to enable the e-mail feature
� E-mailing documents as attachment

16

© Copyright IBM Corp. 2003. All rights reserved. 391

16.1 Identifying e-mail server
Before configuring eClient, you need to identify an e-mail server that the eClient
application server uses to send stored documents. Contact the e-mail system
administrator to obtain the e-mail server name.

In this section, we discuss a quick way to identify the e-mail server that you are
connecting to if you are using Lotus® Notes® as your e-mail server.

1. Log on to Lotus Notes by selecting Start -> Programs -> Lotus
Applications -> Lotus Notes.

2. From the menu bar, select File -> Preferences -> Location Preferences.

3. Go to Servers tab.

4. The mail server name is in the Home/mail server field as shown in
Figure 16-1. In this example, D03NM129 is the mail server.

Figure 16-1 Mail server in Lotus Notes

5. Open a command window.

6. Run the command ping D03NM129.

7. This returns the fully qualified host name and IP address for the mail server.
In our example, it is d03nm129.boulder.ibm.com.

392 eClient 101 Customization and Integration

16.2 Configuring eClient to enable the e-mail feature
You must set three parameters in the IDM.properties file to enable e-mailing
documents through eClient. By default, the IDM.properties file is in the
C:\CMeClient directory.

� emailenabled: Set to true to enable e-mail; set to false to disable it.

� mailUser: Set to a valid user ID on the mail server; returned mail goes to the
user ID.

� mailHost: Set to the IP address or fully qualified host name of the SMTP mail
server.

Example 16-1 is a portion of a sample IDM.properties file.

Example 16-1 Sample IDM.properties file

emailEnabled=true
mailUser=admin@us.ibm.com
mailHost=d03nm129.boulder.ibm.com

16.3 E-mailing documents as attachment
After configuration changes are made in the IDM.properties file, you need to
make the new changes effective. If you do not have Property Daemon enabled,
you must stop the eClient application server and restart it:

1. Open a command window.

2. Run the command cd c:\CMeClient\Save.

3. Run the command stopIDMServer.bat to stop the server.

4. Run the command cd c:\CMeClient\Save.

5. Run the command startIDMServer.bat to restart the server.

Now, you are ready to e-mail stored documents in Content Manager as
attachments.

1. Open a browser and enter http://<hostname>/eClient82/IDMInit.

2. Enter the user ID and password. Select serverICMNLSDB(CM8). Click OK.

3. Log on to eClient.

4. Click Search on the eClient home page.

5. Select the NOINDEX item type.

 Chapter 16. Integrating with e-mail server 393

6. Perform a search and a list of items is displayed on the Search results
window.

7. Select the first document by selecting the check box to its left.

8. Choose the E-mail document option from the drop-down box at the top, as
shown in Figure 16-2.

Figure 16-2 Choose the e-mail document option

9. Enter valid values fo the To, From, and Subject fields. An e-mail user should
be familiar with this window. You can write an e-mail as you do in your regular
e-mail client application. See Figure 16-3 on page 395.

394 eClient 101 Customization and Integration

Figure 16-3 Send mail with attachment

10.Click Send to send the mail with an attachment. In this example, the e-mail is
sent to three persons. The e-mail contains a short message and one
attachment. The attachment is stored in and retrieved from the Content
Manager server.

If you receive the error message “java.lang.NullPointerException” in the
browser while e-mailing documents stored in the Content Manager V8 server,
check if the Resource Manager (on which the document is stored) is running. You
may do so by retrieving and displaying the same document in the eClient for a
quick verification. If you fail to retrieve the same document, it is very likely that the
Resource Manager is not running. To start the Resource Manager:

1. On the Resource Manager machine, open a command window.

2. Run the command cd C:\WebSphere\AppServer\bin.

3. Run the command startServer icmrm.

 Chapter 16. Integrating with e-mail server 395

396 eClient 101 Customization and Integration

Chapter 17. Single sign-on

In this chapter, we describe how to configure IBM Directory Server Version 5.1,
WebSphere Application Server V5.0, and Content Manager Server V8.2 to
enable the single sign-on feature in eClient V8.2 server.

This chapter covers the following topics:

� Installing and configuring Directory Server V5.1
� Configuring Content Manager V8.2 for LDAP
� Configuring Content Manager V8.2 for SSO
� Importing LDAP users into Content Manager V8.2
� Configuring WebSphere Application Server V5.0
� Verification

17

© Copyright IBM Corp. 2003. All rights reserved. 397

17.1 Introduction
The goal of single sign-on is for an enterprise to be able to have one network
identity for each user, which allows centralized management of the various roles
that a user may have in different applications, so that correct rules can be applied
without duplication of the user data and without requiring multiple identities for
the user.

Single sign-on is the process whereby users provide their credentials, user
identity, and password and/or token, once within a session. These credentials are
available to all enterprise applications for which single sign-on is enabled without
prompting the user to re-enter a user name and password.

The Lightweight Third Party Authentication (LTPA) mechanism developed by IBM
enables single sign-on between various application servers. A token, the
transient cookie LtpaToken, is generated by the authenticating server. The cookie
is encrypted using LTPA keys that must be shared among all single sign-on
participating servers. The cookie contains user authentication information, the
network domain in which it is valid for single sign-on, and an expiration date.

The token, issued to the Web user in a cookie, is called a transient cookie. This
means that the cookie resides in the browser memory, is not stored on the user’s
computer system, and expires when the user closes the browser.

The general requirements for enabling single sign-on using LTPA are as follows:

� All single sign-on participating servers have to use the same user registry (for
example the LDAP server).

� All single sign-on participating servers must be in the same DNS domain
(cookies are issued with a domain name and will not work in a domain other
than the one for which it was issued).

� The browser must be configured to accept cookies.

� Server time and time zone must be correct. The single sign-on token
expiration time is absolute.

� All servers participating in the single sign-on scenario must be configured to
share LTPA keys.

17.1.1 Introducing the scenario
For our scenario, we perform the following procedures:

� Use the IBM Directory Server V5.1 as a central repository to store user
information.

� Enable the single sign-on feature in the Content Manager V8.2 server.

398 eClient 101 Customization and Integration

� Import user information into the Content Manager V8.2 server from the LDAP
server.

� Configure LDAP user registry and enable security in the WebSphere
Application Server V5.0.

After completing the above configuration, the single sign-on feature will be
enabled in the WebSphere Application Server and the Content Manager server.
If you have two applications in WebSphere Application Server, and both of them
are single sign-on enabled, you only have to enter a user name and password
once to log on to both applications. Also, you do not need a password to log on to
the Content Manager server, since you have enabled its single sign-on.

For example, you have installed both eClient and WebSphere Portal Server. You
log on to the WebSphere Portal Server first. At this time, you must submit the
user ID and password to log on. After you log on to the WebSphere Portal Server,
log on to eClient. Since the WebSphere Application Server already has the user
credentials, you do not have to enter the password again in order to log on to
eClient.

17.2 Installing and configuring Directory Server V5.1
This section provides the steps to install and configure the IBM Directory Server
V5.1 on a Windows platform. For our scenario, we use it as the central repository
to store user information.

17.2.1 Installing Directory Server V5.1
If you are running a previous version of Directory Server, refer to the IBM
Directory Server V5.1 Installation and Configuration Guide for the upgrading
procedure. This guide may be found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.1.html

This section demonstrates the standard, first-time Directory Server V5.1
installation steps:

1. Reboot the computer where you are installing the IBM Directory Server.

2. Log on using an administrator ID.

3. Insert the CD in your CD-ROM drive. If the CD-ROM does not automatically
start the installation program:

a. Go to \ids_ismp directory on the CD.

b. Double-click setup.exe.

 Chapter 17. Single sign-on 399

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.1.html

4. Select the language which you want to use during the installation. Click OK.

5. On the Welcome window, click Next.

6. After reviewing the software license agreement, click I accept the terms in
the license agreement. Click Next.

7. Any previously installed components are displayed (including DB2). Click
Next.

8. Enter C:\LDAP in the Directory Name field. This is the installation directory.
Click Next.

9. Select the language you want to use in IBM Directory Server 5.1. Click Next.

10.Select Custom and click Next.

11.All available components are displayed on the next window as shown in
Figure 17-1.

Figure 17-1 Directory Server V5.1 components

Take the default components selection in Figure 17-1 and click Next.

12.Review the installation option and click Next to start copying files.

13.Click OK on the GSKit Installation window in Figure 17-2 on page 401.

400 eClient 101 Customization and Integration

Figure 17-2 Installing GSKit

Be patient. It may take a few minutes.

14.The installation procedure installs the embedded version of WebSphere
Application Server - Express per your selection. It is required by the Directory
Server Web Administration Tool. See Figure 17-3.

Figure 17-3 Installing WebSphere Application Server - Express

Be patient. It may take a few minutes. Do not touch the mouse or the
keyboard!

Important: Do not move the mouse and type on the keyboard during the
installation.

 Chapter 17. Single sign-on 401

15.Read the client Readme file and click Next.

16.Read the server Readme file and click Next.

17.Select Yes, restart my system, and click Next.

18.Click Finish to complete the installation and re-boot the system.

19.When the machine is booted up, the Directory Server Configuration Tool is
started automatically.

Before continuing with the rest of this section, check the following:

� IBM Directory Admin Daemon service is running in the Windows Control
Panel.

� IBM Directory Server V5.1 service is running in the Windows Control Panel.

� IBM HTTP Server 1.3.26 service is running in the Windows Control Panel.

17.2.2 Creating administrator DN and password
Complete the following steps to create an administrator DN and password:

1. In the Directory Server Configuration Tool window, select Administrator
DN/password in the Navigation pane on the left.

2. Set the values of the fields in Table 17-1.

Table 17-1 Creating administrator DN and password

3. Click OK.

4. Click OK in confirmation window.

17.2.3 Configuring database
To configure Directory Server database, complete the following steps:

1. In the Directory Server Configuration Tool window, select Configure
database in the Navigation pane on the left.

2. Select Create a new database and click Next.

3. Enter the database owner user ID and password. This user ID should have
been created on the system and it should be part of the DBA administrator

Field Value

Administrator DN cn=root

Administrator password password

Confirm password password

402 eClient 101 Customization and Integration

group. By default, the DBA administrator group is the same as the system
administrator group on the Windows system.

4. Click Next.

5. Enter LDAP in the Database name field for our scenario.

6. Click Next.

7. Select a code page and click Next.

8. Enter a database location and click Next.

9. Review the database configuration option and click Finish to start
configuration.

10.Review the configuration log as shown in Figure 17-4.

11.Click Close.

Figure 17-4 Directory Server database configuration

 Chapter 17. Single sign-on 403

17.2.4 Creating a suffix
Complete the following steps to create a new suffix:

1. Launch the IBM Directory Server Configuration Tool by selecting Start ->
Programs -> IBM Directory Server 5.1 -> Directory Configuration.

2. Select Manage suffixes in the Navigation pane on the left.

3. Enter o=ibm,c=us in the Suffix DN field. This sets the organizational unit to
IBM and the country code to US. See Figure 17-5.

Figure 17-5 Create new suffix

4. Click Add to add it to the Currents suffix DN list.

5. Click OK to save it.

6. Exit the IBM Directory Server Configuration Tool application.

17.2.5 Registering the LDAP server
Complete the following steps to register the server in Directory Server V5.1:

1. Start the LDAP application server:

a. Open a command window.

b. Run the command cd c:\LDAP\appsrv\bin.

404 eClient 101 Customization and Integration

c. Run the command serverStatus -all. This command returns the running
status of all application servers.

d. If server1 is not running, enter the command startServer.bat server1 to
start it.

2. Log on to the LDAP Web Administration Tool:

a. Open a browser.

b. Enter http://<LDAPhostname>:9080/IDSWebApp/IDSjsp/Login.jsp. This
brings up the IBM Directory Server Web Administration logon window. For
information about using the Web Administration Tool, refer to the IBM
Directory Server Version 5.1 Administration Guide, found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.1.html

3. Registering the LDAP server:

a. At this time, you only have Console Admin entry in LDAP Hostname field
on the logon window. You need to register your LDAP server in LDAP Web
Administration Tool.

b. On the logon window, enter the values of the fields in Table 17-2.

Table 17-2 Logon to LDAP Web Administration Tool

c. Click Login.

d. Select Console administration -> Manage console servers in
Navigation pane on the left.

e. Click Add in the Manage console servers window.

f. Enter the values of the fields in Table 17-3 for our scenario. See
Figure 17-6 on page 406.

Table 17-3 Add LDAP server

Field Value

LDAP Hostname Console Admin

Username superadmin

Password secret

Field Value

Hostname cm03

Port 389

Administration port 3538

SSL enabled False

 Chapter 17. Single sign-on 405

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.1.html

In the Hostname field, enter the LDAP server host name. For demonstration
purposes in our scenario, we entered cm03.

Figure 17-6 Add LDAP server

g. Click OK to save the change.

h. Click Log out in the Navigation pane on the left.

17.2.6 Creating LDAP user
Complete the following steps to create users in Directory Server:

1. Log on to the LDAP Web Administration Tool:

a. Open a browser.

b. Enter http://<LDAPhostname>:9080/IDSWebApp/IDSjsp/Login.jsp.

c. On the logon window, enter the values of the fields in Table 17-4 on
page 407.

406 eClient 101 Customization and Integration

Table 17-4 Logon values for the LDAP Web Administration Tool

d. Click Login.

2. Create the LDAP user wasadmin:

a. In the Navigation pane on the left, click Directory management ->
Manage entries.

b. In the Manage entries window on the right, select entry o=ibm,c=us.

c. Click Add in the Manage entries window.

d. Select inetOrgPerson in the Structural object class field on the Select
object class window.

e. Click Next.

f. Click Next on the Select auxiliary object classes window.

g. Set the values for the fields in Table 17-5 for our scenario. See Figure 17-7
on page 408.

Table 17-5 Set the required fields for user wasadmin

For our scenario, the user cn=wasadmin,o=ibm,c=us is not a regular user. It
will be used to connect to IBM Directory Server while you configure security in
the WebSphere Application Server.

Field Value

LDAP Hostname cm03

Username cn=root

Password password

Field Value

Relative DN cn=wasadmin

cn wasadmin

sn wasadmin

 Chapter 17. Single sign-on 407

Figure 17-7 Set required fields for LDAP user

h. Select the Other attributes tab.

i. Set the values for the fields in Table 17-6.

Table 17-6 Set the optional fields for user wasadmin

j. Click Finish to save the user wasadmin.

3. Create an organizational unit:

a. In the Navigation pane on the left, click Directory management -> Add
an entry.

b. In the Select object class window on the right, select the entry
organizationalUnit. Click Next.

c. Click Next on the Select auxiliary object classes window.

Field Value

uid wasadmin

userPassword password

408 eClient 101 Customization and Integration

d. Set the values for the fields in Table 17-7 for our scenario. See
Figure 17-8.

Table 17-7 Set the required fields for organizational unit

We are creating a tree structure for the accounting department in IBM
Directory Server. This helps better manage user information in the LDAP
server.

Figure 17-8 Add organizational unit

e. Click Finish to add the entry.

4. Adding an LDAP user in the accounting department:

a. In the Navigation pane on the left, click Directory management -> Add
an entry.

Field Value

Relative DN ou=accounting

Parent DN o=ibm,c=us

ou accounting

 Chapter 17. Single sign-on 409

b. In the Select object class window on the right, select the entry
inetOrgPerson.

c. Click Next.

d. Click Next on the Select auxiliary object classes window.

e. Set the values for the fields in Table 17-8 for our scenario.

Table 17-8 Set the required fields for user John Smith

This adds the user John Smith in the accounting department.

f. Select the Other attributes tab.

g. Set the values for the fields in Table 17-9.

Table 17-9 Set the optional fields for user wasadmin

h. Click Finish to save the user wasadmin.

i. Exit the Directory Server Web Administration Tool by clicking Log out in
the Navigation pane on the left.

17.3 Configuring Content Manager V8.2 for LDAP
Single sign-on requires synchronized user profiles between different
applications. In this chapter, you use IBM Directory Server V5.1 to manage a
single centralized user repository. Before you import users from the LDAP server
to Content Manager, you must enable the LDAP feature in the Content Manager
Library Server.

In this section, we show how to configure the Content Manager V8.2 for LDAP on
a Windows platform. Before continuing with the rest of this section, make sure
that IBM Directory Server V5.1 service is running in the Windows Control Panel.

Field Value

Relative DN cn=john

Parent DN ou=accounting,o=ibm,c=us

cn john

sn smith

Field Value

uid john

userPassword password

410 eClient 101 Customization and Integration

17.3.1 Generating the properties file
Complete the following steps to generate the properties file:

1. Launch a Content Manager System Administration Client by selecting Start
-> Programs -> IBM Content Manager for Multiplatforms V8.2 -> System
Administration Client.

2. Log on by entering icmadmin and password in the appropriate fields.

3. Select Tools -> LDAP Configuration from the menu bar.

4. Select Enable LDAP User import and authentication on the LDAP
Information tab.

5. Select the LDAP Server Information tab.

6. Set the value of the fields in Table 17-10. See Figure 17-9 on page 412.

Table 17-10 Configure LDAP server information in Content Manager

Field Value

Server Type LDAP

LDAP server hostname cm03 for our scenario (host name of LDAP
server)

Port 389

Base DN o=ibm,c=us (click Lookup from Server
and select from the list)

User Attribute cn

Description Attribute Use user DN

Search Scope Select Subtree

Referral Ignore

Authentication Schema simple

User name cn=root

Password password

 Chapter 17. Single sign-on 411

Figure 17-9 Configure LDAP server information in Content Manager

7. Click OK to save the configuration.

When the configuration is completed and saved, the cmbcmenv.properties file is
generated in the directory pointed to by the CMCOMMON environment variable.
By default, this is in C:\Program Files\IBM\Cmgmt. Example 17-1 shows a
sample cmbcmenv.properties file.

Example 17-1 Sample cmbcmenv.properties file

CMCFGDIR=C:\\Program Files\\IBM\\Cmgmt
CMCOMMON_LDAP=enabled
LDAP_DATASOURCES=disabled
LDAP_USER_AUTHENTICATION=enabled
LDAP_INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory
LDAP_SERVER_TYPE=STANDARD_LDAP
LDAP_PROVIDER_URL=ldap://cm03
LDAP_REFERRAL=ignore
LDAP_SECURITY_AUTHENTICATION=Simple
LDAP_SECURITY_PRINCIPAL=cn=root
LDAP_SECURITY_CREDENTIALS=(MDoPbWQ9IVQDERMR)
LDAP_ROOT_DN=O=IBM,C=US

412 eClient 101 Customization and Integration

LDAP_SEARCH_SCOPE=SUBTREE_SCOPE
LDAP_AUTHENTICATION_ATTRIBUTE=uid
LDAP_SECURITY_PROTOCOL=none
LDAP_PORT=389
LDAP_DESC_ATTR=DN
LDAP_IBM_SSL_KEYRING=none
LDAP_IBM_SSL_PASSWORD=none
LDAP_IBM_SSL_CIPHERS=SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
LDAP_MAX_RECORDS=5000
LDAP_SERVER_TIMEOUT=15

17.3.2 Installing properties file
The file cmbcmenv.properties is used by the Content Manager System
Administration Client to import users from the LDAP server (the IBM Directory
Server). Because the Library Server and the Resource Manager also use the
information stored in the file for user authentication, the file must be copied to
both the Library Server and the Resource Manager.

Installing the properties file on the Library Server
This step is only necessary if the LDAP integration was set up using a remote
Content Manager System Administration Client. Otherwise, go straight to
“Installing the properties file on the Resource Manager” on page 413.

To install the properties file on the Library Server, copy the cmbcmenv.properties
file generated in “Generating the properties file” on page 411 to the
CMCOMMON directory on the Library Server machine. By default, this is
C:\Program Files\IBM\Cmgmt.

Installing the properties file on the Resource Manager
Complete the following steps to install the properties file on the Resource
Manager:

1. Copy the cmbcmenv.properties file generated in “Generating the properties
file” on page 411 to the Resource Manager application server directory:

C:\WebSphere\AppServer\installedApps\cm03\icmrm.ear\icmrm.war\WEBINF\classe
s\com\ibm\mm\icmrm

where icmrm is the default Resource Manager application server name and
cm03 is the host name where the WebSphere Application Server is installed.

2. Open the cmbcmenv.properties file that resides in the Resource Manager
application server directory.

 Chapter 17. Single sign-on 413

3. Replace all the encrypted passwords to plain text passwords. When you
restart the Resource Manager application server, the passwords will be
re-encrypted.

4. Restart the Resource Manager application server.

5. Repeat the above steps for each Resource Manager if there are multiple
ones.

17.3.3 Installing user exit
The user exit file ICMXLSLG.DLL must be installed to enable LDAP integration in
the Content Manager server. The file is located in the LDAP directory of the
Content Manager installation directory. By default, this directory is
C:\ICMROOT\LDAP.

The user exit file ICMXLSLG.DLL must be copied into the Library Server DLL
directory of the Content Manager installation directory. By default, this directory
is C:\ICMROOT\ICMNLSDB\DLL.

17.4 Configuring Content Manager V8.2 for SSO
In order to have the single sign-on feature working in the Content Manager
server, three things need to happen:

� Enable the single sign-on feature in the Content Manager server.

� Create a new privilege set, which must contain the following two privileges
and any other necessary privileges:

– AllowConnectToLogon, which allows the Content Manager user to log on
with a different DB2 connection user.

– AllowTrustedLogon, which allows the Content Manager user to log on with
a different DB2 connection user and without a password.

� User IDs that are used to log on to the Content Manager server with single
sign-on must use the newly created privilege set.

17.4.1 Enabling single sign-on
You can enable Content Manager single sign-on feature during installation or
after installation. In the following, we show how to turn on this feature after
installation:

1. Launch a Content Manager System Administration Client by selecting Start
-> Programs -> IBM Content Manager for Multiplatforms V8.2 -> System
Administration Client.

414 eClient 101 Customization and Integration

2. In the Navigation pane on the left, select Library server parameters ->
Configuration.

3. The Library Server configuration is displayed in the Contents of configuration
pane on the right. Right-click it and select Properties.

4. Set the values of the fields in Table 17-11. See Figure 17-10.

Table 17-11 Enable single sign-on in Library Server

Figure 17-10 Enable single sign-on in Library Server

5. Click OK to save the change.

6. In the Navigation pane on the left, select Authentication -> Users. A list of
users is displayed in the Contents of users pane on the right. One of the users
is the connection user. By default, it is icmconct.

7. Right-click user icmconct and select Properties. The User properties
window is displayed with user icmconct’s definition.

8. Change the Privilege set field to UserDB2TrustedConnect. See Figure 17-11
on page 416. The privilege set UserDB2TrustedConnects allows Content

Field Value

Max user action Allow logon without warning

Allow trusted logon True

 Chapter 17. Single sign-on 415

Management users to connect to the DB2 database without having their own
DB2 user IDs. These users are also not required to have a password in the
Content Manager.

Figure 17-11 Grant UserDB2TrustedConnect privilege set to user icmconct

9. Click OK to save the change.

17.4.2 Creating new privilege set
Complete the following steps to create a new privilege set:

1. Launch a Content Manager System Administration Client by selecting Start
-> Programs -> IBM Content Manager for Multiplatforms V8.2 -> System
Administration Client.

2. In the Navigation pane on the left, select Authorization -> Privilege Set.

416 eClient 101 Customization and Integration

3. Right-click Privilege Set and select New. The New privilege Set Definition
window is displayed.

4. Enter ClientSSO in the Name field for our scenario.

5. Select the ClientTaskLogon entry in the Privilege groups field.

6. Check the Select all box at the top of the Privileges field. Both
AllowConnectToLogon and AllowTrustedLogon entries are then included in
the Selected privileges field. See Figure 17-12.

Figure 17-12 Adding privileges to privilege set

Important: Steps 5 and 6 must be done for every privilege set used for single
sign-on.

 Chapter 17. Single sign-on 417

7. Select the ClientTaskMinimum entry in the Privilege groups field.

The privilege group ClientTaskMinimum is selected for demonstration
purposes. When you configure your production system, you need to select
privilege groups based on your business requirements.

8. Check the Select all box at the top of Privileges field. This makes all entries in
the privilege group appear in the Selected privileges field.

9. Click OK to save the privilege set.

17.5 Importing LDAP users into Content Manager V8.2
This section provides the steps to import LDAP users into the Content Manager
server V8.2 through Content Manager System Administration Client on the
Windows platform. Before continuing the rest of this section, make sure that IBM
Directory Server V5.1 service is running in the Windows Control Panel.

1. Launch a Content Manager System Administration Client by selecting Start
-> Programs -> IBM Content Manager for Multiplatforms V8.2 -> System
Administration Client.

2. In the Navigation pane on the left, select Authentication -> Users.

3. Right-click Users and select New. The New User window is displayed.

4. Click LDAP in the Define Users tab to import a user.

5. Click Show All on the Import users from LDAP window. If you have defined
many users in LDAP server, you should enter search criteria and click Find,
instead.

6. A warning message is displayed: “Max results retrieved limited to 5000.
Continue retrieving?” Click Yes.

7. You should have at least two users (wasadmin and john) on the user list. See
Figure 17-13 on page 419.

418 eClient 101 Customization and Integration

Figure 17-13 Import LDAP users

8. Highlight user wasadmin on the user list.

9. Click OK to import the user. Notice that the user information and password
options have been grayed out on the New User window. The information for
the LDAP server is used.

10.Set the values for the fields in Table 17-12. See Figure 17-14 on page 420.

Table 17-12 Creating new Content Manager user

Field Value

Privilege set ClientSSO

Grant privilege set ClientSSO

 Chapter 17. Single sign-on 419

Figure 17-14 Creating new Content Manager user

11.Click OK to save the new user definition wasadmin.

12.Repeat the above steps to import an LDAP user named john and other LDAP
users. LDAP user john must be imported because it will be used in a later
section.

13.This should be the end of the single sign-on configuration in the Content
Manager. However, due to a problem in the Version 8.2 product at the time of
writing, you have to do one more step:

a. Open a DB2 command window by selecting Start -> Programs -> IBM
DB2 -> Command Line Tools -> Command Window.

b. Enter the following DB2 SQL statement to connect to the Library Server:

db2 connect to icmnlsdb user icmadmin using password

c. Enter the following DB2 SQL statement

db2 update ICMSTUSERS set PASSWORD=’XYZ’ where PASSWORD is NULL

where ‘XYZ’ is arbitrary. This statement populates the PASSWORD
column in the table ICMSTUSERS in the Library Server database.

420 eClient 101 Customization and Integration

17.6 Configuring WebSphere Application Server V5.0
This section discusses the Security administration, LDAP User Registry
configuration, and Lightweight Third Party Authentication (LTPA) in WebSphere
Application Server.

Before continuing the rest of this section, make sure that:

� IBM Directory Server V5.1 service is running in the Windows Control Panel.
� IBM WebSphere Application Server V5 - server1 service is running in the

Windows Control Panel.

17.6.1 Configuring LTPA
Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple
application server and machine environments. It supports forwardable
credentials, and therefore supports Single Sign-On. LTPA requires a configured
User Registry to be a central shared repository. It could be LDAP user registry, a
Windows Domain type user registry, or a custom user registry. LDAP server is
used for the discussion in this chapter.

1. Launch WebSphere Administrative Console by selecting Start -> Programs
-> IBM WebSphere -> Application Server v5.0 -> Administrative Console.

2. Enter any user ID to log on to WebSphere Administrative Console since you
have not enabled WebSphere security. The sole purpose to enter a user
name on the logon window is for logging.

3. In the Navigation pane on the left, click Security -> Authentication
Mechanisms -> LTPA.

4. Enter the password twice. This password is the password to protect LTPA
keys. You will need this password in order to import the keys into any other
SSO-enabled server.

5. Click OK to make the changes effective.

6. Click Save in the Messages box at the top of the window. See Figure 17-15
on page 422.

 Chapter 17. Single sign-on 421

Figure 17-15 Save step #1 in WebSphere

7. Click Save on the Save to Master Configuration window. Your modification
made in WebSphere Administrative Console has not been saved to the
configuration repository until now.

8. In the Navigation pane on the left, click Security -> Authentication
Mechanisms -> LTPA.

9. Click Single Signon (SSO) at the bottom of the LTPA pane on the right. The
Single sign-on window appears.

10.Set the values for the fields in Table 17-13. See Figure 17-16 on page 423.

Table 17-13 Configuring WebSphere single sign-on

The domain name (ibm.com, for example) specifies the set of all hosts to
which single sign-on applies. If this field is not defined, the Web browser

Field Value

Enabled True

Requires SSL False

Domain Name ibm.com

422 eClient 101 Customization and Integration

defaults the domain name to the host name where the Web application is
running. This means single sign-on is restricted to that application server host
name and does not work with other application server host names in the
domain.

When SSL field is checked, it specifies that single sign-on is enabled only
when requests are over HTTPS Secure Socket Layer connections.

Figure 17-16 Configuring WebSphere single sign-on

11.Click OK to make the change effective.

12.Click Save twice to save the change to WebSphere configuration repository.

17.6.2 Generating LTPA keys
Complete the following steps to generate LTPA keys:

1. In the Navigation pane on the left, click Security -> Authentication
Mechanisms -> LTPA.

2. Click Generate Keys. This launches the key generation process in the
background. You will be prompted to save the configuration after the process
is completed.

 Chapter 17. Single sign-on 423

3. Click OK to make the change effective.

4. Click Save twice to save the changes. The generated keys are stored in the
security.xml file.

5. In the Navigation pane on the left, click Security -> Authentication
Mechanisms -> LTPA.

6. In the Key File Name field, specify the name of the file where LTPA keys will
be stored when you export them. You need to export the keys in order to
enable single sign-on on another server. Specify the full path name for the key
file, in our example c:\WebSphere\Appserver\etc\SSO_ltpakeys.

7. Click Export Keys. The key has been exported to the specified file.
Example 17-2 shows a sample key file.

Example 17-2 Sample exported key file

#IBM WebSphere Application Server key file
#Thu May 01 23:40:40 CDT 2003
com.ibm.websphere.CreationDate=Thu May 01 23\:40\:40 CDT 2003
com.ibm.websphere.ltpa.version=1.0
com.ibm.websphere.ltpa.3DESKey=vQ0Pjm0XWk3YQFZe1lcgM+ON2gGrPWLbp7ji+BJPSDM\=
com.ibm.websphere.CreationHost=CM71
com.ibm.websphere.ltpa.PrivateKey=7JmY+QzBUThxt2FIJ7F+PKu7RLJcSEMjDkIs2jRp7KQIp
kEFNCCKq44mJ9GYFim/3yYKU8HP+j7EKFxsIXKWJGWc0pMIBMtrriQyKKgZHl8YyZQVR2zuqJO2C1Pr
uc5HeNcWNSKZ6oOov0wQXEGECMJCdPaY2IVkWfH1/3HqODYQGjr1hiUP5BgWO2c/UNva1XmxUJkg4Zz
zQEqSRfcg/zWPtH6NeUWPLZQ9REtKwam8hCd2xbm2+b4gfutJ9rcGiQg/uoQ8UfZyoIiR75nPclGsmY
DIrQHrO8Dt6F4u2VEFtyFF9ebiwZGtd5ZJvyz32K/3jpYJFKtuEWEBuYjSmhbB2JrVkE29Z80bfObvN
oQ\=
com.ibm.websphere.ltpa.Realm=
com.ibm.websphere.ltpa.PublicKey=AKEPdnxl4dWUTgaWQhdDzucH2squnD52GDcvTtf7bZP4DX
JTkuvvoD63NGx3szOPJgEo0JLoUPIsw/UP7z7gABbW2fKmnvluiXytn7jCSOZMy4v2HvVycjUrUycG1
+wIbZ1zaSVWgZvx4vHWKmdmkbyJ55vg7uvIX3Yu5oSUPdvhAQAB

8. Click Save twice to save the change to the configuration repository.

17.6.3 Configuring LDAP user registries
To define WebSphere’s LDAP user registries configuration, complete the
following steps:

1. In the Navigation pane on the left, click Security -> User Registries -> LDAP.
The LDAP user registries window is displayed on the right.

2. Set the values for the fields in Table 17-14 on page 425. See Figure 17-17 on
page 426.

424 eClient 101 Customization and Integration

Table 17-14 Configuring LDAP user registries

The Server User ID field is the WebSphere administrator ID in LDAP server.
We entered cn=wasadmin,o=ibm,c=us for the scenario.

For IBM Directory Server V5.1, specify IBM_Directory_Server as the Type.
For the previous version of IBM Directory Server, use SecureWay® as the
Type.

In the Host field, specify the host name of the LDAP server host name.

The default port number of the LDAP server is 389.

Specify the base DN of your LDAP configuration in the Base DN field. We
used o=ibm,c=us for the scenario.

Bind DN field specifies the Distinguished Name for the application server to
use to bind the LDAP server.

The Reuse Connection field should generally be selected. In rare situations,
when you use a router to spray the requests to multiple LDAP servers and this
router does not support affinity, we disable this check box.

Field Value

Server User ID cn=wasadmin,o=ibm,c=us

Server User Password password

Type IBM_Directory_Server

Host cm03.ibm.com

Port 389

Base Distinguished Name (DN) o=ibm,c=us

Bind Distinguished Name (DN) cn=root

Bind Password password

Search Timeout take the default

Reuse Connection True

Ignore Case True (for IBM Directory Server 5.0)

 Chapter 17. Single sign-on 425

Figure 17-17 Define LDAP user registries

3. Click OK to make the change effective.

4. Click Save twice to save the change to the WebSphere configuration
repository.

17.6.4 Enabling LTPA authentication
The following steps show you how to enable WebSphere Application Server
security and use the LTPA authentication method for WebSphere Application
Server.

1. In the Navigation pane on the left, click Security -> Global Security. The
Global security window appears on the right.

2. Set the values for the fields in Table 17-15.

Table 17-15 Enabling security for WebSphere Application Server

Field Value

Enabled True

426 eClient 101 Customization and Integration

3. Click OK to make the change effective. WebSphere Application Server
verifies the information defined in 17.6.3, “Configuring LDAP user registries”
on page 424. If all information is valid, you are prompted to save the changes.

4. Click Save twice to save the change to the WebSphere configuration
repository.

5. Log off the WebSphere Administrative Console.

17.6.5 Verifying WebSphere security configuration
You have enabled the security feature for WebSphere Application Server.
Complete the following steps to stop and restart all running WebSphere
Application Servers:

1. Open a command window on the WebSphere Application Server machine.

2. Run the command cd C:\WebSphere\AppServer\bin.

3. Run the command serverstatus -all. This command lists all available
WebSphere servers and their running status. Example 17-3 shows an output
of the command.

Example 17-3 serverStatus -all command

C:\WebSphere\AppServer\bin>serverStatus -all
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\logs\serverStatus.log
ADMU0500I: Retrieving server status for all servers
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: eClient_Server
ADMU0506I: Server name: icmrm
ADMU0506I: Server name: server1
ADMU0509I: The Application Server "eClient_Server" cannot be reached. It
 appears to be stopped.
ADMU0509I: The Application Server "icmrm" cannot be reached. It appears to be
 stopped.
ADMU0508I: The Application Server "server1" is STARTED

4. Stop all running servers. In our case, stop server1 by running the command
stopServer server1.

Enforce Java 2 Security False

Active Protocol CSI and SAS

Active Authentication Mechanism LTPA

Active User Registry LDAP

Field Value

 Chapter 17. Single sign-on 427

If the command fails because of lack of permission (see Example 17-4), use
the following command instead:

stopServer server1 -username cn=wasadmin,o=ibm,c=us -password password

Example 17-4 Failure of stopServer command

C:\WebSphere\AppServer\bin>stopServer server1
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\logs\server1\stopServer.log
ADMU3100I: Reading configuration for server: server1
ADMU0111E: Program exiting with error: javax.management.JMRuntimeException:
 ADMN0022E: Access denied for the stop operation on Server MBean due
 to insufficient or empty credentials.
ADMU0211I: Error details may be seen in the file:
 C:\WebSphere\AppServer\logs\server1\stopServer.log
ADMU1211I: To obtain a full trace of the failure, use the -trace option.

5. Restart the desired servers. For now, you want to restart server server1 by
running the command startServer server1.

6. Launch the WebSphere Administrative Console by selecting Start ->
Programs -> IBM WebSphere -> Application server v5.0 ->
Administrative Console.

7. The Administrative Console logon window is opened. It requires both user
name and password. For the scenario, enter cn=wasadmin,o=ibm,c=us and
password to log on. See Figure 17-18 on page 429.

Important: You must submit the user name and password parameters to the
stopServer command after WebSphere security is enabled.

428 eClient 101 Customization and Integration

Figure 17-18 Secured WebSphere administrative console logon window

17.7 Verification
You have completed the configuration in IBM Directory Server Version 5.1, IBM
WebSphere Application Server V5.0 and IBM Content Manager Server V8.2.
Now, log on to eClient and see how it works differently.

1. Open a command window on the eClient server machine.

2. Run the command cd C:\WebSphere\AppServer\bin.

3. Run the command serverstatus -all. This command lists all available
WebSphere servers and their running status.

4. If WebSphere server eClient_Server has not been started, enter the
command startServer eClient_Server to start it.

5. Open a browser and enter the following URL to launch eClient:

http://<eClientHostname>/eClient82/IDMInit

6. The following Network logon window is opened. See Figure 17-19 on
page 430.

 Chapter 17. Single sign-on 429

Figure 17-19 Network logon window

7. Enter the user name cn=john,ou=accounting,o=ibm,c=us and password
password.

8. Click OK to log on to WebSphere Application Server. You have to enter the
user name and password only once to log on to WebSphere Application
Server if you have multiple applications with single sign-on enabled.

9. The eClient logon window is displayed. The user name has been taken from
the user credentials in WebSphere Application Server and inserted in the
User ID field. Note that the user ID and password fields are disabled. You are
not allowed to enter data in these two fields.

10.Click Logon to log on to eClient.

If you also installed the WebSphere Portal Server, the logon attempt to the
WebSphere Portal Server with the same user name at this time would not require
entering a password again.

430 eClient 101 Customization and Integration

Part 5 Troubleshooting,
debugging, and
performance

In this part, we cover troubleshooting and debugging techniques. We include a
list of typical problems users may face and their resolutions. In addition, we give
a brief description of performance tuning for eClient.

Part 5

© Copyright IBM Corp. 2003. All rights reserved. 431

432 eClient 101 Customization and Integration

Chapter 18. Troubleshooting and
debugging

In this chapter, we provide troubleshooting and debugging tips for IBM DB2
Information Integrator for Content Version 8 and IBM DB2 Content Manager
Version 8 eClient.

This chapter covers the following specific topics:

� Isolating problems
� Tracing eClient
� Tracing EIP Java API
� Additional trace information
� Debugging your application
� Typical problems
� Support channels

18

© Copyright IBM Corp. 2003. All rights reserved. 433

18.1 Isolating problems
Content Manager eClient is a complex application. You have to install and
configure many products before you are able to launch the logon window. For our
scenario, we installed and configured the following products:

� WebSphere Application Server
� IBM HTTP Server
� EIP components
� eClient

If you want to successfully import and retrieve documents from a back-end
server, such as the Content Manager server in our scenario, you have to install
and configure these additional products:

� DB2 Universal database
� DB2 text Information Extender (if you want text search feature)
� WebSphere Application Server
� Content Manager (Library Server and Resource Manager)

In such a complex environment, it is extremely important to isolate the problem
while you are doing troubleshooting. For example, if you have problems in the
Web server but you are troubleshooting in the WebSphere Application Server,
the problem will never be resolved. Before you can fix a problem, you have to
identify which product or products cause the problem.

18.2 Tracing eClient
To troubleshoot eClient, we can configure the location, trace level and size for
trace files by setting parameters in the IDM.properties file.

18.2.1 Configuring IDM.properties file
The WorkingDir parameter determines the location of the trace files. Set this
parameter to the full path for the directory that you want to contain the trace files.
For example, in a Windows environment, set the following parameter:

WorkingDir=C:\\CMeClient\\logs

The TraceLevel parameter controls the trace level. You can set the trace level to
one of the following values in Table 18-1 on page 435.

434 eClient 101 Customization and Integration

Table 18-1 The valid TraceLevel value

The trace file name is in the format eClientTrace_yyyy.mm.dd.log. For example,
the trace file eClientTrace_2003.05.01.log is an eClient activity trace on May 1,
2003. For each day when there are activities on the eClient server, you have at
least one log file. The log files are located in the directory defined in the
WorkingDir parameter. If you set the trace level to 4, you should have additional
EIP non-visual bean trace information in the eipBeanTrace.log file.

After you make changes in the IDM.properties file, you must stop and restart the
eClient application server to make the changes effective.

18.2.2 Sample log file
In this section, we show you an eClient trace file. We set TraceLevel=1 in the
IDM.properties file while the sample trace file is created.

To create the sample log file, we go through a simple login process and
deliberately supply the wrong password information:

1. Stop the eClient_Server application server.

2. Delete every file in the C:\CMeClient\logs directory.

3. Start the eClient_Server application server.

4. Open a Web browser and enter the following URL to display the eClient logon
window:

http://localhost/eClient82/IDMInit

5. Enter icmadmin and passwd to log on. Note that the password is incorrect.

6. A message window pops up and indicates that an incorrect user ID, password
or server name has been entered.

TraceLevel Description

0 Tracing off

1 Exceptions, and errors

2 Level 1 with the addition of general information, method entry,
and method exit points

3 Level 2 with the addition of API calls

4 Level 3 with the addition of EIP non-visual bean tracing

5 Performance tracing

 Chapter 18. Troubleshooting and debugging 435

7. Open the eClient log file, which in our case is
C:\CMeClient\logs\eClientTrace_2003.05.01.log. You should see the content
of the sample log file shown in Example 18-1.

Example 18-1 Sample eClient log file

2003.05.12 14:43:32.016 com.ibm.idm.servlets.IDMConnection connect
ETT3DMQ1BXB1BYDOT0JDH5Y Servlet.Engine.Transports : 0
 com.ibm.mm.beans.CMBConnectFailedException: DGL0394A: Error in :
DKDatastoreICM.connect; [SERVER = ICMNLSDB, USERID = icmadmin]; ICM7172: The
password provided is invalid for this user ID, or it is NULL. (STATE) : [LS RC
= 7172]

In the sample log file, the Content Manager return code. is ICM7172. The
message in the eClient log file helps you pinpoint the problem.

Note that dklog.log file is also available in the C:\CMeClient\logs directory. If you
open the file, you see almost the identical information as shown in 18.3.2,
“Sample log file” on page 439. The dklog.log file is discussed in the next section.

18.3 Tracing EIP Java API
eClient is built on top of the EIP Java APIs. The logging and tracing mechanism
in EIP also provides valuable information while you troubleshoot problems in
eClient.

When you run an application that is written in EIP Java API - in this case, it is
eClient - the EIP log file dklog.log resides in the current working directory. For
eClient, the working directory is defined by the WorkingDir parameter in the
IDM.properties file, as discussed in 18.2, “Tracing eClient” on page 434. By
default, it is C:\CMeClient\logs.

18.3.1 Configuring log manager
EIP Java API has two log managers: the default and LOG4J. You can configure
and use only one of them at a time. The same configuration file,
cmblogconfig.properties, is used to control which log manager type is used and
how to configure them. By default, the file resides in the C:\Program
Files\IBM\cmgmt directory. In this section, we discuss how to configure the
default log manager.

There are four sections in the cmblogconfig.properties file:

� Section 0: Global Setting
� Section 1: Log Manager Factory Setting

436 eClient 101 Customization and Integration

� Section 2: Default Log Manager Setup
� Section 3: Log4J Log Manager Setup

Since we use the default log manager for the discussion, we focus on the first
three sections.

Section 0 (Global Setting) specifies the key(s) that control the internal behavior of
the logging facility, regardless of which log manager is to be used. The parameter
MAX_EXCEPTION_COUNT is defined in the section. By default, it is set to ON.
Its valid values are shown in Table 18-2.

Table 18-2 Values for parameter MAX_EXCEPTION_COUNT

Whether the logger logs an exception or not is determined by the logging priority
setting.

Section 1 (Log Manager Factory Setting) specifies which log manager facility is
to be used. The parameter DKLogManagerFactory is defined in the section. By
default, the default log manager is used. See Table 18-3 for a list of the valid
values.

Table 18-3 Values for parameter DKLogManagerFactory

Section 2 (Default Log Manager Setup) is to be recognized only when you
choose to use the default log manager in section 1. Four parameters are defined
in the section.

The parameter DKLogPriorit specifies the Log Priority. Its values are defined in
Table 18-4 on page 438. By default, it is set to ERROR.

Value Description

ON Limit the maximum number of exceptions per message ID sent
to the logger. The maximum number is 5.

OFF Unlimit the maximum number of exceptions per message ID sent
to the logger.

Value Description

com.ibm.mm.sdk.logtool.DKLogManager
Factory_default

Use the default log manager.

com.ibm.mm.sdk.logtool.DKLogManager
Factory_Log4J

Use the Log4J log manager.

 Chapter 18. Troubleshooting and debugging 437

Table 18-4 Values for parameter DKLogPriorit

The parameter DKLogOutputSetting specifies log output destinations. Its values
are defined in Table 18-5. By default, it is set to 1.

Table 18-5 Values for parameter DKLogOutputSetting

If you have set DKLogOutputSetting = 1, you need to set two additional
parameters: DKLogOutputFileName and DKLogOutputFileSize. The parameter
DKLogOutputFileName specifies the log file name to be used. The default name
is dklog.log. The parameter DKLogOutputFileSize specifies the log file size limit
before the log file is rolled over to a backup copy. The log file size is in MB. The
default log file size is 5 MB. If the log file size is set to 0, the log file will keep
being appended and never get to be rolled over. The rolled-over backup file name
is constructed by appending the suffix .sav to the log output file name.

Value Description

DISABLE Disable logging

FATAL Log FATAL messages

ERROR Log FATAL + ERROR messages

PERF Log FATAL + ERROR + PERFORMANCE messages

INFO Log FATAL + ERROR + PERFORMANCE + INFO messages

TRACE_NATIVE_API Log FATAL + ERROR + PERFORMANCE + INFO +
TRACE_NATIVE_API messages

TRACE_ENTRY_EXIT Log FATAL + ERROR + PERFORMANCE + INFO +
TRACE_NATIVE_API + TRACE_ENTRY_EXIT messages

TRACE Log FATAL + ERROR + PERFORMANCE + INFO +
TRACE_NATIVE_API + TRACE_ENTRY_EXIT + TRACE
messages

DEBUG Log FATAL + ERROR + PERFORMANCE + INFO +
TRACE_NATIVE_API + TRACE_ENTRY_EXIT + TRACE +
DEBUG messages

Value Description

1 log to a file

2 log to Standard Error

3 log to Standard Console

438 eClient 101 Customization and Integration

18.3.2 Sample log file
On the EIP server, do the following steps:

1. Open an EIP Development Window by selecting Start -> Programs ->
Enterprise Information Portal for Multiplatforms 8.2 -> Development
Window.

2. Run the command cd C:\CMBROOT\SAMPLES\java\icm.

3. Run the command javac SConnectDisconnectICM.java to compile the
sample code.

4. Run the command java SConnectDisconnectICM icmnlsdb icmadmin passwd
to run the sample code. Note because the password is incorrect for the user,
the command fails to complete.

5. Open the C:\CMBROOT\SAMPLES\java\icm\dklog.log file and you should
see the sample log file in Example 18-2. Note that we have the parameter
DKLogPriorit=ERROR in the cmblogconfig.properties file while running the
sample code.

Example 18-2 Sample dklog.log file

[EXC]: 05/12/2003 at 15:52:42.598 CDT @ CM71 (9.30.41.127);
com.ibm.mm.sdk.common.DKLogonFailure #
com.ibm.mm.sdk.logtool.DKLogManagerFactory_default
[USR]: admin (C:\Documents and Settings\admin) @ C:\CMBROOT\SAMPLES\java\icm
[THD]: main (677fb987)
[THG]: main = { main }
[LOC]: com.ibm.mm.sdk.server.DKDatastoreICM:logon
[MSG]: DGL0394A: Error in : DKDatastoreICM.connect; [SERVER = icmnlsdb, USERID
= icmadmin]; ICM7172: The password provided is invalid for this user ID, or it
is NULL. (STATE) : [LS RC = 7172]

at com.ibm.mm.sdk.server.DKDatastoreICM.logon(DKDatastoreICM.java:3084)
at com.ibm.mm.sdk.server.DKDatastoreICM.connect(DKDatastoreICM.java:2763)
at SConnectDisconnectICM.main(SConnectDisconnectICM.java:213)

[EXC] Provides the exception type and log manager name. In our example,
they are com.ibm.mm.sdk.common.DKLogonFailure and
com.ibm.mm.sdk.logtool.DKLogManagerFactory_default.

[USR] Provides the login user home directory and the current work
directory. In our example, they are C:\Documents and
Settings\admin and C:\CMBROOT\SAMPLES\java\icm.

[THD] Provides the name (hashcode) of the thread that reports the error.

[THG] Provides the thread group (threads and sub-thread groups within this
thread group). Both of them are main in our example.

 Chapter 18. Troubleshooting and debugging 439

[LOC] Provides the class name and the method name within which the error
occurs. In our example, it is
com.ibm.mm.sdk.server.DKDatastoreICM:logon.

[MSG] Provides the Content Manager return code and the exception type
whenever applicable. It is ICM7172 in our example.

18.4 Additional trace information
Since eClient is a WebSphere application server, you can obtain additional
information through the WebSphere logging mechanism. By default, the
WebSphere log files for eClient are in the
C:\WebSphere\AppServer\logs\eClient_Server directory.

If you have problems displaying the eClient logon window, it is possible that the
Web server has problems or has not even started. In this case, the Web server
log files and Web server plug-in log files may present tips for you to identify the
problem. By default, these log files reside in both the C:\IBMHttpServer\logs and
C:\WebSphere\AppServer\logs directories. In the C:\WebSphere\AppServer\logs
directory, pay special attention to the activity.log and http_plugin.log files.

18.5 Debugging your application
In addition to tracing, you can debug your applications using programming and
external third-party tools.

18.5.1 Debugging Java code using stdout
One way of debugging your Java source code, whether it is in a custom servlet, a
custom Java file, or Java code in a JSP, is by writing messages to the stdout file
using the System.out.println() method. For example:

String myVariable = “test”;
System.out.println(“The value of test is ‘” + myVariable + “‘”);

The output from this code will go to the stdout file.

If you use WebSphere Studio Application Developer, the stdout output goes to
the console that can be viewed in the WebSphere Studio Application Developer
Web perspective.

If you are running in the standard eClient, the location of the stdout file is
controlled by WebSphere. The default location is C:\Program
Files\IBM\CMeClient\logs\eClient_Server_stdout.log.

440 eClient 101 Customization and Integration

To check or change the location of stdout, run the WebSphere Administrative
Console. Be sure to stop your WebSphere Studio Application Developer test
environment and start the WebSphere server1 service before trying to run the
standard WebSphere Administrative Console. They cannot be run at the same
time. When the Administrative Console is up, select Troubleshooting -> Logs
and Trace -> eClient_Server. You can modify the location of stdout from that
window.

18.5.2 Debugging JavaScript code
Because JavaScript runs in a Web browser, you cannot use System.out.println()
to debug as you would for Java code in your JSP. The following are two methods
of debugging JavaScript:

1. Use the alert() statement

In most cases, adding alert() calls in the JavaScript code embedded in your
JSP files is adequate for debugging. The alert() statement displays a
message box containing the text that you pass into the function. You can
place these messages in the JavaScript contained in the JSP to trace the
execution path and display the values of variables.

2. Use JavaScript debugging facilities of your browser.

Microsoft Internet Explorer has a facility for debugging JavaScript code built
into it, as does Netscape Navigator. See the following URL for more
information or search for “Debugging client-side scripts” or “JavaScript
debugger”:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsdebug/ht
ml/vxtskDebuggingClient-SideScript.asp

For Netscape Navigator, see the following URL for information on debugging
JavaScript:

http://developer.netscape.com/software/jsdebug.html

18.6 Typical problems
In this section, we present some typical eClient problems with the problem
explanation and possible solutions on a Windows platform. The problems
discussed in this section occur in the following core system environment:

� DB2 V8.1
� WebSphere Application Server V5.0
� Content Manager V8.2
� EIP V8.2
� eClient V8.2

 Chapter 18. Troubleshooting and debugging 441

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsdebug/html/vxtskDebuggingClient-SideScript.asp
http://developer.netscape.com/software/jsdebug.html

Similar problems may also occur in other environments.

We cover the following typical problems, their explanation, and solutions in the
following sections:

� “Problem 1: eClient V8.2 cannot access Content Manager V8.1” on page 442

� “Problem 2: Cannot launch eClient logon window” on page 442

� “Problem 3: Cannot launch document” on page 444

� “Problem 4: Persistent blank window during eClient deployment” on page 445

� “Problem 5: Cannot view Chinese character sets in Netscape” on page 445

� “Problem 6: Cannot e-mail document” on page 445

� “Problem 7: eClient is not deployed automatically” on page 446

� “Problem 8: IBM_eClient_82 has unknown status in WebSphere Application
Server V5.0” on page 446

� “Problem 9: Only the Search option is available” on page 447

� “Problem 10: Cannot display IST home page properly” on page 447

Problem 1: eClient V8.2 cannot access Content Manager V8.1
eClient V8.2 is installed on a machine with the DB2 V8.1 environment. It cannot
access any content servers that are installed in a DB2 V7.1 environment.

Explanation and solution
If eClient is installed on a system with DB2 Version 8, it can only access content
servers that are installed on DB2 Version 8.

If you use eClient to access a DB2 Version 8 federated server, it can only access
federated entities that are mapped to content servers that are installed on DB2
Version 8. You can only use federated search templates that are defined on those
federated entities for search.

Problem 2: Cannot launch eClient logon window
While entering URL http://<hostname>/eClient82/IDMInit in a Web browser,
the eClient logon window is not displayed.

Explanation and solution
There could be many potential causes for the problem.

1. If you receive the error message “The page cannot be displayed” in the
browser, most likely your HTTP server is not started. To check if the HTTP
Server is running, do the following:

a. Open a Web browser on the machine where the HTTP server is installed.

442 eClient 101 Customization and Integration

b. Enter http://localhost.

c. If the HTTP server home page is displayed, it means that the HTTP server
is running. If you still receive the error message “The page cannot be
displayed” in the browser, it means that the HTTP server is not started.

2. If you have verified that the HTTP server is running and yet you receive the
errror message “Internal Server Error” while you access the eClient URL,
the first thing to check is if the eClient application server is running in
WebSphere Application Server.

a. Open a command window.

b. Run the command cd C:\WebSphere\AppServer\bin.

c. Run the command serverStatus -all. You should see something similar
to Example 18-3.

Example 18-3 Sample output of serverStatus -all command

C:\WebSphere\AppServer\bin>serverstatus -all
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\logs\serverStatus.log
ADMU0500I: Retrieving server status for all servers
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: eClient_Server
ADMU0506I: Server name: icmrm
ADMU0506I: Server name: server1
ADMU0509I: The Application Server "eClient_Server" cannot be reached. It
 appears to be stopped.
ADMU0509I: The Application Server "icmrm" cannot be reached. It appears to be
 stopped.
ADMU0508I: The Application Server "server1" is STARTED

d. In Example 18-3, the eClient application server is not running in
WebSphere Application Server. In this case, you must enter the following
command to start it:

startServer eClient_Server

3. If you have verified that the HTTP server and the eClient application server
are all running, yet you still receive the error message “Internal Server
Error” when you access the eClient URL, the problem is probably the Web
server plug-in. The Web server plug-in is responsible for directing eClient
requests from the Web server to the eClient application server.

Complete the following steps to regenerate the Web server plug-in:

a. Open a command window.

b. Run the command cd C:\WebSphere\AppServer\bin.

c. Run the command serverStatus -all. Make sure that server1 is running.

 Chapter 18. Troubleshooting and debugging 443

d. If server1 is not running, run the command startServer server1 to start it.

e. Launch WebSphere Application Server Administrative Console by
selecting Start -> Programs -> IBM WebSphere -> Application Server
v5.0 -> Administrative Console.

f. In the Navigation pane on the left, select Environment -> Update
WebServer Plugin.

g. Click OK to regenerate the Web server plug-in.

h. If your HTTP server and WebSphere application server are installed on
separate machines, you must copy the new generated Web server plug-in
from the WebSphere Application Server machine to the HTTP server
machine. For detailed information, see 3.8, “Configuring HTTP Web
server” on page 73.

4. If the Logon window is not displayed and you receive the error message “HTTP
404 - File not found” or “The page cannot be found”, make sure that you
enter the correct URL. Verify that the default name of the eClient Web
application, eclient82, is not changed in the IDM.properties file.

Problem 3: Cannot launch document
eClient cannot launch a document. Microsoft Internet Explorer may show a blank
page. Netscape Navigator launches the plug-in, but does not show the
document. For example, Adobe Acrobat provides the message “The file is
damaged and could not be repaired.”

Explanation and solution
IBM HTTP Server for Windows cannot launch in the plug-in application
documents over 64 KB that are handled by a Web browser.

At this time, there is no permanent fix for this problem in the IBM HTTP Server for
Windows. A workaround is to disable the HTTP cache-Afpa and the Afpcache
keywords. To accomplish this without using the HTTP GUI administrator:

1. Open the http.conf file located in the \IBM HTTP SERVER\conf\ directory. In
this file, you see two keywords:

AfpaEnable AfpaCache on

2. Comment out these keywords by using the pound sign:

#AfpaEnable #AfpaCache on

3. Restart the HTTP server to set these changes.

444 eClient 101 Customization and Integration

Problem 4: Persistent blank window during eClient
deployment

While deploying eClient into a WebSphere application server during installation,
a blank window hangs over five minutes.

Explanation and solution
It is possible that the eClient deployment phase has stopped due to a running
WebSphere Java process. Terminate the eClient installation program and then
terminate the WebSphere Java processes. On Windows, examine Task Manager
to ensure that you terminated all Java processes. On AIX and Solaris, use the
command ps -ef | grep java to verify that the WebSphere application Java
processes are not running.

After terminating all running WebSphere Java processes, run the eClient
installation program again.

Problem 5: Cannot view Chinese character sets in Netscape
Documents in Simplified Chinese cannot be viewed in the Netscape Navigator
4.7 browser.

Explanation and solution
The English version of Netscape Navigator 4.7 browser does not support viewing
of the double-byte character set. If you want to use a Netscape Navigator 4.7
browser to view documents in Simplified Chinese (or Traditional Chinese,
Japanese, Korean) in the eClient, you need the Simplified Chinese version of
Netscape. Also, Netscape 4.7 does not support rollover text for double-byte
character set. To view rollover text in these languages, use Microsoft Internet
Explorer.

Alternately, you may use later versions of the Netscape Navigator browser, or
Microsoft Internet Explorer.

Problem 6: Cannot e-mail document
When e-mailing documents stored in the Content Manager server, you receive
the error message “java.lang.NullPointerException” on the browser.

Explanation and solution
The Resource Manager on which the document is stored may not be running.
You may retrieve and display the same document in the eClient for a quick
verification. If you also failed while retrieving the same document, it is very likely
that the Resource Manager is not running. To start the Resource Manager:

1. On the Resource Manager machine, open a command window.

 Chapter 18. Troubleshooting and debugging 445

2. Run the command cd C:\WebSphere\AppServer\bin.

3. Run the command startServer icmrm.

Problem 7: eClient is not deployed automatically
The eClient installation was completed successfully; however, the eClient
application server is not deployed in the WebSphere Application Server.

Explanation and solution
The eClient installation procedure will automatically deploy the eClient
application server in WebSphere Application Server at your command. In order
to ensure a successful deployment, WebSphere Application Server must have a
certain running status at the time of installation, depending on the version of
WebSphere Application Server that you are using.

� If you are using WebSphere Application Server AES V4.05, stop any
WebSphere Application Server server that is running.

� If you are using WebSphere Application Server AE V4.05, the WebSphere
Application Server Administration Server (AE) service in the Windows Control
Panel must be running.

� If you are using WebSphere Application Server V5.0, the WebSphere
Application Server Administration Server (server1) must be started.

If the WebSphere Application Server was not in the proper status when you
installed the eClient, the auto deployment may fail. To manually deploy the
eClient application server:

1. Open a command window.

2. Run the command cd c:\CmeClient\Save.

3. Run the command idmwas.bat [userid] [password] to deploy it again. The
userid and password are used to log on to the WebSphere Application Server.

Problem 8: IBM_eClient_82 has unknown status in WebSphere
Application Server V5.0

After you have successfully installed the eClient, everything is working. You are
able to log on to eClient, do searches, and retrieve documents. In the
WebSphere Application Server Administrative Console, however, the eClient
enterprise application IBM_eClient_82 has unknown status.

Explanation and solution
This is a known problem in the WebSphere Application Server. There is no fix at
the time of this writing.

446 eClient 101 Customization and Integration

Problem 9: Only the Search option is available
After logging on to eClient, only the Search option is displayed on the home
page. Other options, such as Import, are not available.

Explanation and solution
Parameters in the IDM.properties file control whether a feature is available to the
eClient user. For example, to have the following four options:

� Search
� Import
� Worklists
� Create Folder

on the eClient home page, you must set the parameters in the IDM.properties file
as in Example 18-4.

Example 18-4 Sample parameters in IDM.properties file

workFlowEnabled=true
importSupported=true
CreateFolderEnabled=true

Problem 10: Cannot display IST home page properly
While launching the Information Structuring Tool, the IST home page is not
properly displayed.

Explanation and solution
If you receive the error message “Your current security settings prohibit
running ActiveX controls on this page. As a result, the page may not
display correctly.” while launching the Information Structuring Tool, most likely
you do not have the Java plug-in installed on your browser.

1. Go to the following URL and download the Java plug-in, such as Version
1.4.1_02:

http://java.sun.com/products/plugin

2. Close all browsers.

3. Install the Java plug-in.

4. Open a Web browser and launch the Information Structuring Tool.

If you receive the error message “Loading Java Applet Failed” in the browser
status bar while launching the Information Structuring Tool, make sure that you
are not using a SOCKS proxy server. To turn off the SOCKS proxy server in
Internet Explorer:

1. Select Tools -> Internet options from the menu bar.

 Chapter 18. Troubleshooting and debugging 447

http://java.sun.com/products/plugin

2. Select the Connections tab.

3. Click the LAN Settings button.

4. Uncheck Use a proxy server.

5. Close all browsers.

6. Open a browser and launch the Information Structuring Tool.

18.7 Support channels
For current product information and known problems, go to the official eClient
support Web site. You may also post your eClient questions in the EIP user
group.

18.7.1 Official support Web site
The official IBM eClient support Web site is:

http://www-3.ibm.com/software/data/cm/support.html

On this Web site, you can find:

� Frequently asked questions (FAQs)
� Hints and tips
� Technotes
� Product information
� White papers

18.7.2 Forums
The EIP user group is available at:

http://w3.ibm.com/forums/forums.htm

The eClient topics are covered in the forums.software.eip user group. You may
also check the group forums.software.contentmanager for Content Manager
related topics.

You may post your question to seek advice from others in the eClient community.
You can search through other postings for clues that may resolve your problem.

448 eClient 101 Customization and Integration

http://www-3.ibm.com/software/data/cm/support.html
http://w3.ibm.com/forums/forums.htm

Chapter 19. Performance tuning

In this chapter, we discuss performance tuning for eClient.

This chapter covers the following topics:

� Tuning recommendations
� Maintenance and monitoring for performance

19

© Copyright IBM Corp. 2003. All rights reserved. 449

19.1 Introduction
The eClient mid-tier server may be viewed as a series of three server
components (see Figure 19-1):

� Web server: Handles incoming HTTP requests from clients using browsers.

� Servlet engine: Executes the eClient servlets (which in turn call the EIP
Beans).

� Data source: The WebSphere Connection Pool to the back-end Content
Manager server.

Figure 19-1 eClient mid-tier server

Each component can process a user-defined number of requests simultaneously.
If the server component is already processing the maximum number of requests,
the new requests will wait in a queue.

The goal of eClient performance tuning is to maximize the number of requests
that can be processed efficiently with the limited system resources, in this case,
CPU and memory.

Tuning eClient involves setting the number of maximum simultaneous requests
and queue length of each server component. Tuning also involves allocating
memory resources to JVM. Optimizing performance is not easy, especially for
high-volume mid-tier eClient servers. The following are some suggestions from
the Content Manager Performance team from the Silicon Valley Lab:

� Use automated test tools to drive a multi-user test load based on your
projected workload.

C l ie n t
(b r o w s e r)

W e b s e r v e r

S e r v le t e n g in e

D a t a s o u r c e

B a c k e n d s e r v e r

M id - t ie r s e r v e r

C l ie n t
(b r o w s e r)

W e b s e r v e r

S e r v le t e n g in e

D a t a s o u r c e

B a c k e n d s e r v e r

M id - t ie r s e r v e r

450 eClient 101 Customization and Integration

� Performance tuning depends on a coordinated and interdependent tuning of
all subsystems. Change only a small number of tuning parameters and
evaluate the effect before making additional changes. Iterate running of the
test workload.

� Plan for an initial tuning period to maximize confidence and reduce risk before
going into production.

� The WebSphere Application Performance Monitoring and Tuning Workshop
class is recommended for developers and administrators of custom mid-tier
applications.

� The eClient server can be considered as a series of three components. For
each component, tune with two goals in mind:

– Maximize the number of concurrent requests.
– Avoid overloading the queue of the next component.

� Experiment with the JVM heap size, the connection pool, garbage collection,
the number of threads, cloning and clustering.

19.2 Tuning recommendations
The Content Manager Performance team has worked with many customers,
conducting a lot of research and testing on how to better tune an eClient system
for performance. We found the Content Manager Performance Tuning Guide,
produced by the team, to be very useful. In this section, we extract the
eClient-related tuning recommendations from the guide. We highly recommend
reading them before you do any eClient performance tuning.

Remember when tuning a mid-tier server, back up the configuration files before
making changes so the original values can be restored if the changes are not
effective.

The following is a list of tuning recommendations:

� If users view large documents, view many documents per login session, or
frequently manipulate images, you can improve the mid-tier server’s
scalability with the viewer applet. The applet can bypass the mid-tier server
and directly retrieve from the Resource Manager.

To enable the viewer applet, see “Enable viewer applet” on page 49.

For information on how to calculate memory usage when using the viewer
applet or mid-tier server, see Appendix A, “Calculating memory needed for an
image” on page 459.

To increase the maximum or the minimum heap size for your Java plug-in:

a. Select Start -> Settings -> Control Panel -> your Java plug-in.

 Chapter 19. Performance tuning 451

b. Locate the Java Runtime Parameters input field that is either in the
Advanced tab or the Basic tab.

c. Enter the desired heap size values in the Java Runtime Parameters input
field, for example:

-mx 25m -ms 256m

d. Click Apply.

� Turn on the WebSphere Connection Pool to maximize the number of real
users that the mid-tier server can support. As a starting point, estimate the
largest number of users that could log in concurrently, and set the maximum
pool size to one-tenth of that number.

To configure eClient to use IBM WebSphere 4 or 5 Connection pooling, see
Chapter 4 in IBM Content Manager for Multiplatforms / IBM Information
Integrator for Content: Installing, configuring, and Managing eClient,
SC27-1350.

Another good reference for configuring eClient to use WebSphere's
connection pooling is as follows:

http://www-3.ibm.com/software/data/cm/pubs/cm81/eclientpooling/WASpool.htm

� There are several eClient Java Virtual Machine (JVM) configuration
parameters that influence performance and scalability. Note that these
changes will affect all applications for WebSphere AEs (single server), while
for WebSphere AE, they will affect only the eClient application.

In the WebSphere Advanced Administrative Console Version 4, expand
WebSphere Administrative Domain -> Nodes -> hostname -> Application
Servers, click your eClient server, and do the following settings:

a. Click the JVM Settings tab. As a starting point, set the eClient
application’s Java heap sizes (both initial and maximum) to about
one-fourth of your mid-tier server’s physical memory. For example, in a
server with 2 GB RAM, set the initial and maximum heap sizes to 512 MB.
On Windows or AIX, do not use JVM heap sizes larger than 1700 MB. On
Sun Solaris, always set the minimum and maximum JVM heap size
parameters to the same value, but not larger than 512 MB.

b. For Windows and AIX, on the JVM Settings page, click Advanced JVM
Settings. The Advanced JVM Settings window opens. In the Command
line arguments field, type:

-Xgcpolicy:optavgpause

Click OK to save your changes and exit. This parameter allows concurrent
marking for garbage to be collected before the full garbage collection does
its work. This can help to reduce the duration of the garbage collection
pauses, which for high-volume systems helps smooth out response times.
The benefit of this option can be verified by using –verbosegc and

452 eClient 101 Customization and Integration

http://www-3.ibm.com/software/data/cm/pubs/cm81/eclientpooling/WASpool.htm

examining the “completed in XXX ms” garbage collection times. In one
case on performance test servers under a heavy multi-user test load, this
option reduced 1000 millisecond garbage collection pauses to about 300
milliseconds. Note: If the "completed in XXX ms" time exceeds 15% of the
"YYY ms since last AF" time, the system is spending too much time for
garbage collection.

Important: Do not use this setting on Sun Solaris.

c. For Sun Solaris, special tuning is required for optimal garbage collection
behavior. In the Advanced JVM Settings, set the following command-line
arguments, which control the Sun JVM’s “generation” garbage collection:

-XX:NewSize=128M
–XX:MaxNewSize=128M
-XX:SurvivorRatio=2
-XX:TargetSurvivorRatio=90

Click OK to save your changes and exit. The NewSize and MaxNewSize
parameters set the size for Sun JVM’s more efficient garbage collection. If
a heap smaller than 512 MB is used, these two parameters should be set
to one-fourth the heap size. The SurvivorRatio parameter sets the sizes of
the three subregions in the new generation. The TargetSurvivorRatio
parameter controls when objects are moved from the new generation into
the old generation. When 90% of the new generation is full, some of the
objects will be moved to the older generation to make room in the new
generation for new objects.

For more information, see http://java.sun.com/docs/hotspot/gc.

d. Click the Services tab. Click Web Container Service -> Edit Properties.
The Web Container Service window opens on the General tab. As a
starting point, set the minimum number of threads to 20 (50 on a server
with four or more CPUs), and set the maximum to 30 (75 on a 4+ CPU
server). If under load response times are slow but the CPUs are not
saturated, experiment with larger values for Maximum. If the CPUs are
saturated and/or response times have wild fluctuations, experiment with
values for maximum. Always make sure that Allow thread allocation
beyond maximum is not checked. This setting prevents an overloaded
server from thrashing; once the server reaches its limit, additional
requests are queued and eventually rejected, so that the requests
currently executing have a chance to complete. Also on the General tab,
consider increasing the thread inactive timeout (up to, for example, 100), if
the WebSphere Resource Analyzer shows the number of concurrent
threads swinging wildly.

e. Still in the Web Container Service window, click the Transport tab.
Consider tuning the maximum keep alives, maximum requests per keep
alive, keep alive timeout, and I/O timeout. As a starting point, set the

 Chapter 19. Performance tuning 453

http://java.sun.com/docs/hotspot/gc

maximum keep alives to about 80% of the CM Connection Pool Maximum
Threads value (see below). Then select Port -> Edit, and consider tuning
the Connection backlog, with a starting value >= ThreadsPerChild –
MaxThreadPoolSize. Larger values may be less efficient, but can help
avoid “500 Server Internal Error” messages.

f. Still in the Web Container Service window, click the Servlet Caching tab.
Disable servlet caching. Click OK to save changes and exit.

g. Important: To save changes without erasing the environment variables that
you already have, open the General tab and click Environment -> OK ->
Apply.

� On UNIX systems, if a mid-tier server’s federated database is on the same
server as the Library Server or the Resource Manager, install the database
into a separate instance. Separating the instances makes it possible to tune
various database independently and also simplifies the tuning.

� For the HTTP Server, consider tuning these parameters in the httpd.conf file:
Loglevel, Timeout, Keepalive, MaxKeepAliveRequests, KeepAliveTimeout,
MaxRequestPerChild, and ThreadsPerChild. For ThreadsPerChild, set it to
about the expected number of concurrent users.

� The Connection Pool settings can be accessed from the WebSphere Admin
Console -> WebSphere Admin Domain -> Resources -> eClient -> Data
Sources -> Connection pooling tab. As a starting point, consider setting the
maximum pool size to about one connection for every 10 expected concurrent
users. Also consider tuning the Connection Timeout, Idle Timeout, Orphan
Timeout, and Statement Cache Size parameters.

� For the eClient application JVM, monitor the heap size with the WebSphere
Resource Analyzer. If “used memory” is constantly close to the “total
memory”, then the heap size may need to be increased. Also estimate how
often garbage collection occurs, using the WebSphere Resource Analyzer’s
JVM Setting. Count the number of data samples for each rise-fall cycle and
multiply by the sampling period (default 10 seconds). It may be necessary to
reduce the sampling period to five or even one second to see the rise-fall
behavior. If garbage collection is occurring more frequently than every 10
seconds, consider increasing the heap size.

� If the heap size is already at the recommended maximum for your platform
(1700 MB for AIX or Windows, 512 MB for Sun Solaris), consider the use of
cloning the eClient. Each clone has its own JVM and JVM heap, with
WebSphere balancing the load from the HTTP Server evenly across the
clones. On performance test servers with sufficient memory and processing
power, cloning significantly increased scalability.

454 eClient 101 Customization and Integration

19.3 Maintenance and monitoring for performance
Routine maintenance tuning and monitoring for performance helps to keep
system performance within the expected boundaries. If not maintained on a
regular basis, the system performance may degrade over time.

In order to maintain system performance, we recommend the following tasks to
be done on a regular basis:

� Routine DB2 tuning (runstat/rebind and reorg)
� Performance monitoring and profile maintenance
� Tuning system parameters and configurations

For details, refer to the following publications:

� Performance Tuning for Content Manager, SG24-6949

This redbook provides detailed information on how to maintain and improve
system performance for Content Manager in general.

� IBM Content Manager V8.2 Performance Tuning Guide, by the Content
Manager Performance team, found in:

http://www.ibm.com/software/data/cm/cmgr/mp/support.html

Search for “performance tuning guide” under Whitepapers.

This white paper contains the recommendations from the Content Manager
Performance team for Content Manager including eClient.

There are two commands we want to emphasis here to keep your system up and
running smoothly, so that your eClient performance is within your expectation:
runstat/rebind and reorg.

Runstat/rebind
Routinely keep the Library Server and the Resource Manager database statistics
and execution plans up to date using runstats and rebind to maintain good
performance. For runstat to be effective, running rebind on the application is
necessary after executing runstat.

The following is a set of commands you can run from a DB2 command line
window that will create the script you need to run.

db2 connect to db user userid using password
echo db2 connect to db user userid using password >fname.bat
db2 –x “select ‘db2 runstats on table ‘concat tabschema concat
‘.’ concat tabname concat ‘with distribution and detailed
indexes all ’ from syscat.tables where tabschema=’schema ’ and type=’T ’”>>
fname.bat
echo db2 connect reset >>fname.bat

 Chapter 19. Performance tuning 455

http://www.ibm.com/software/data/cm/cmgr/mp/support.html

db2 connect reset
echo db2rbind db –l logfile all – u userid –p password >>fname.bat

Change db to the name of your database and change userid and password for
your system values. Do not forget to use capital letters for the schema name.

Run the generated file fname.bat script daily for the first few weeks and during
initial database loading. After that, run it weekly or at least monthly as routine
performance maintenance, and whenever your database has changed
significantly in size.

Note that this should be part of your database administration. Library Server
relies heavily on DB2 stored procedures and precompiled access modules to
perform its functions. This is why runstats is so important for maintaining the
performance of a Content Manager.

Reorg
Over a period of time, after many insertions, deletions, and updates to the
database table data, logically sequential data may be on non-sequential physical
data pages. This causes the database manager to perform additional read
operations to access data. Additional read operations are also required if a
significant number of rows have been deleted. In such a case, you need to
reorganize the table to match the index and to reclaim space. You can reorganize
the system catalog tables as well as database tables.

When you reorganize tables, you remove empty spaces and arrange table data
for efficient access. Reorganizing tables take a lot more time than simply
checking (reorgchk) what tables may require reorganization. It is always a good
idea to perform reorgchk first. If you have already identified the pattern as what
tables most likely need reorganization, you may schedule the reorg task on these
tables without first running reorgchk. Do not reorganize tables when there is a lot
of server activities since reorg impacts performance. DB2 locks any data in a
table that is currently being reorganized.

Use the following command from a DB2 command-line window to check:

db2 reorgchk update statistics on table all >out.txt

Where out.txt contains the result of the command.

To reorganize a specific table, use the following command from a DB2 command
line window:

db2 reorg table <table name>

where <table name> is the specific table you want to reorganize.

456 eClient 101 Customization and Integration

Part 6 Appendixes

Part 6

© Copyright IBM Corp. 2003. All rights reserved. 457

458 eClient 101 Customization and Integration

Appendix A. Calculating memory needed
for an image

This appendix describes how to calculate the approximate amount of memory
needed for displaying an image.

A

© Copyright IBM Corp. 2003. All rights reserved. 459

Introduction
Memory is consumed differently when using an applet viewer or when using
mid-tier conversion.

If users view large image documents, viewing many documents per login
session, or frequently manipulate images, you can improve the mid-tier server’s
scalability with the applet viewer. In this configuration, the applet can bypass the
mid-tier server and directly retrieve from the Resource Manager.

But how is memory used by the applet viewer or mid-tier conversion? In this
section, we describe how to calculate the approximate amount of memory
needed for displaying an image using applet viewer or using mid-tier conversion.

Note that the calculation is approximate and drawn from the experiences of the
Content Manager support team. Use them as guidelines only.

For information on how to enable viewer applet, see “Enable viewer applet” on
page 49.

Calculate memory usage for applet viewer
Table 19-1 documents the approximate viewer memory usage. Note that the
numbers mentioned are approximate and observed.

Table 19-1 Approximate viewer memory usage for applet viewer

State Peak used
memory

Stable
memory used

Comment

JRE
loaded

15 - 17 MB 3 MB

Applet
viewer
loaded

15 - 20 MB 4.5 MB Needed for the toolbars, tool icons, etc.

Document
data
loaded

File size * 2 File size First, the data is copied into small arrays. Once all data
is loaded, it is copied into one big array. Hence for the
fraction of time, file size * 2 memory is needed.

460 eClient 101 Customization and Integration

Until the document is dropped (from the end user point of view, closed), all the
converted pages will stay in memory to speed up performance.

For example, we are viewing a typical 500 KB TIFF file that is 8.5 x 11 inches in
page dimension and 200 dpi resolution with a 1-bit pixel depth. Assuming that we
have unlimited Java heap size available, and hence garbage collection never
happens, the maximum memory usage for this file will be calculated as follows:

Initially, 30 MB (out of which, almost 23 MB can be recovered if needed before
loading the document) +
1 MB during loading of the document (out of which only 500 KB can be
recovered if needed) +
14 Mb, derived from 8.5 * 200 * 11 * 200 * 4 during decompression (in
enhanced mode 1-bit image's pixel data is stored in one integer, hence 4
bytes) +
4 MB, derived from 8.5 * 96 *11 * 96 * 4 during conversion +
1 MB other overhead
= approximately 50 MB.

For the same file, concurrent peak usage will not go beyond 30 MB, since the
initial setup and the conversion process are nonconcurrent activities.

Once the first page is displayed, the data that is held back is as follows:

7 - 8 MB from initial +
4 MB from the page image +
1 - 2 MB overhead
= about 13-14 MB.

When the second document is loaded, it will have the total Java heap size minus
13 - 14 MB memory available, but it will need less concurrent peak memory since

First page
conversion

Page width *
dpi * height *
dpi * pixel
depth

Page width *
dpi * height *
dpi * pixel
depth * scale

First, the uncompressed page image data is allocated
in memory during decompression. During and after
conversion, the image data in memory can be less
than the full uncompressed due to a smaller view
scale. The scale (= screen resolution / dpi) is usually
less than 1, since the screen resolution (typically 96) is
less than the dpi resolution (typically 200)

Thumbnail
conversion

Page width *
dpi * height *
dpi * pixel
depth

Page width *
dpi * height *
dpi * pixel
depth * scale

For each thumbnail, first the complete uncompressed
image data is allocated in memory. During and after
conversion, the image data in memory will be much
less, since the thumbnail scale is much smaller than
the main page scale.

State Peak used
memory

Stable
memory used

Comment

 Appendix A. Calculating memory needed for an image 461

the initial toolbar and tools requirement is one time only. If the second document
also has similar attributes, the peak memory needed for displaying it will be about
19 - 20 MB. Once it is displayed, another 4 - 5 MB of memory will be held back.
This calculation can be similarly extended further.

To put the above in a single formula, we get:

java heap size needed = peakUsage + stableUsage where

peakUsage = greaterOf (InitialNeed, (fileSize*2 + width * dpi * height * dpi *
pixelDepth)) and

stableUsage = numberOfDocuments (average fileSize + (average width *
average dpi * average height * average dpi * average pixel depth * scale))

Note, all the above calculations and numbers are empirical and approximate,
based solely on experience and observations. Factors such as fragmentation of
the Java heap and operating system memory allocation techniques make it
impossible to make exact predictions. These values and formulae should only be
used as explanatory guidelines.

Calculate memory usage for mid-tier conversion
Table 19-2 documents the approximate amount of memory needed for each
image viewed by end users.

Table 19-2 Approximate viewer memory usage for mid-tier conversion

For example, for a 55 KB TIFF image, when viewing the first page, the amount of
peak memory (before any garbage collection kicks in) would be approximately:

55000 * 2 + 8.5 * 200 * 11 * 200 * 1 = 110000 + 3740000 = 3.85 MB

State Peak used
memory

Stable
memory used

Comment

Image
loaded

File size * 2 File size First, the data is copied into small arrays. Once all data
is loaded, it is copied into one big array. Hence for the
fraction of time, file size * 2 memory is needed.

Conversion
for each of
the image
page

Page width *
dpi * height *
dpi * pixel
depth

Page width *
dpi * height *
dpi * pixel
depth * scale

First, the uncompressed page image data is allocated
in memory during decompression. During and after
conversion, the image data in memory can be less
than the full uncompressed due to a smaller view
scale. The scale (= screen resolution / dpi) is usually
less than 1, since the screen resolution (typically 96)
is less than the dpi resolution (typically 200).

462 eClient 101 Customization and Integration

This memory amount may differ as well, depending on what the dpi is for the
image.

Note that:

� This memory consumption will be for every image being viewed by end user.

� If the document is kept open by the end user, the memory associated with all
the pages that are already converted will not be released. This is to make
sure when a user goes to a different page, it will be available quickly.

 Appendix A. Calculating memory needed for an image 463

464 eClient 101 Customization and Integration

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246964

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246964.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
6964samples.zip Zipped code samples

B

© Copyright IBM Corp. 2003. All rights reserved. 465

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 5 MB minimum
Operating System: Windows 2000/NT
Processor: 800 MHz or higher
Memory: 512 MB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

466 eClient 101 Customization and Integration

Glossary

A

abstract class. An object-oriented programming
class that represents a concept; classes derived
from it represent implementations of the concept.
You cannot construct an object of an abstract class;
that is, it cannot be instantiated.

access control list. A list consisting of one or
more user IDs or user groups and their associated
privileges. You use access control lists to control
user access to items and objects in the Content
Manager system. You use access control lists to
control user access to search templates in the
Enterprise Information Portal system.

access control. The process of ensuring that
certain functions and stored objects can be
accessed only by authorized users in authorized
ways.

action list. An approved list of the actions, defined
by a system administrator or some other workflow
coordinator, that a user can perform in a workflow or
document routing process.

address. The unique code assigned to each
device or workstation connected to a network. See
also IP address.

admission control. The process used by the
server to ensure that its bandwidth needs are not
compromised by new asset requests.

ADSM. See Tivoli Storage Manager.

aggregate bandwidth. Total throughput, in
megabits per second, that moves through a server
or server subsystem.

© Copyright IBM Corp. 2003. All rights reserved.
alias. In the Internet, a name assigned to a server
that makes the server independent of the name of its
host machine. The alias must be defined in the
domain name server.

American National Standard Code for
Information Interchange (ASCII). The standard
code, using a coded character set consisting of 7-bit
coded characters (8 bits including parity check), that
is used for information interchange among data
processing systems, data communication systems,
and associated equipment. The ASCII set consists
of control characters and graphic characters.

analog video. Video in which the information that
represents images is in a continuous-scale electrical
signal for amplitude and time.

API. See application programming interface.

application programming interface (API). A
software interface that enables applications to
communicate with each other. An API is the set of
programming language constructs or statements
that can be coded in an application program to
obtain the specific functions and services provided
by the underlying licensed program.

application server. Software that handles
communication with the client requesting an asset
and queries of the Content Manager.

archive. Persistent storage used for long-term
information retention, typically very inexpensive for
each stored unit and slow to access, and often in a
different geographic location to protect against
equipment failures and natural disasters.

ASCII. See American National Standard Code for
Information Interchange.
 467

asset group. An organizational grouping within the
multimedia file system with similar characteristics.
You can use an asset group to allocate resources of
a data pump. For example, you could establish two
asset groups representing distinct departments
whose assets should be kept separate for security or
billing purposes.

asset. A digital multimedia resource that is stored
for later retrieval as requested by an application. An
example of such a resource is a digitized video or
audio file. An asset is stored as a file in a multimedia
file system supported by the data pump.

asymmetric video compression. In multimedia
applications, the use of a powerful computer to
compress a video so that a less powerful system can
decompress it.

asynchronous transfer mode (ATM). A transfer
mode in which the information is organized into cells;
it is asynchronous in the sense that the recurrence
of cells containing information from an individual
user is not necessarily periodic. ATM is specified in
international standards such as ATM Forum UNI 3.1.

attribute group. Convenience grouping of one or
more attributes. For example, Address might include
the attributes Street, City, State, and Zip.

attribute. A unit of data that describes a certain
characteristic or property (for example, name,
address, age, and so forth) of an item, and which
can be used to locate that item. An attribute has a
type, which indicates the range of information stored
by that attribute, and a value, which is within that
range. For example, information about a file in a
multimedia file system, such as title, running time, or
encoding type (MPEG1, H.263, and so forth). For
Enterprise Information Portal, see also federated
attribute and native attribute.

audio. The sound portion of a video signal.

Audio/Video Interleaved (AVI). A RIFF (Resource
Interchange File Format) file specification that
permits audio and video data to be interleaved in a
file. The separate tracks can be accessed in
alternate chunks for playback or recording while
maintaining sequential access on the file device.

AVI. See Audio/Video Interleaved.

B

background. The conditions under which low
priority, non-interactive programs are run.

bandwidth. The difference, expressed in Hertz,
between the highest and the lowest frequencies of a
range of frequencies. In asynchronous transfer
mode (ATM), the capacity of a virtual channel,
expressed in terms of peak cell ate (PCR),
sustainable cell rate (SCR), and maximum burst size
(MBS). A measure of the capacity of a
communication transport medium (such as a TV
cable) to convey data.

base attributes. A set of indexes that is assigned
to each object. All Content Manager objects have
base attributes.

batch. An accumulation of data to be processed. A
group of records or data processing jobs brought
together for processing or transmission.

binary large object (BLOB). A sequence of bytes
with a size ranging from 0 bytes to 2 gigabytes. This
string does not have an associated code page and
character set. Image, audio, and video objects are
stored in BLOBs.

bitmap. A representation of an image by an array
of bits. A pix map with a depth of one bit plane.

BLOB. See binary large object.

block. A string of data elements recorded or
transmitted as a unit. The elements can be
characters, words, or physical records. Disk device
drivers currently use a block size of 32 KB or 256 KB
to write to the disk.

468 eClient 101 Customization and Integration

bus. A facility for transferring data between several
devices located between two end points, only one
device being able to transmit at a given moment.

C

cache. A special-purpose buffer, smaller and
faster than main storage, used to hold a copy of data
that can be accessed frequently. Use of a cache
reduces access time, but might increase memory
requirements. See also Resource Manager cache
and LAN cache.

caching proxy server. A proxy server that can
store the documents it retrieves from other servers in
a local cache. The catching proxy server can then
respond to subsequent requests for these
documents without retrieving them from other
servers, a process that can improve response time.

cardinality. The number of rows in a database
table.

category. See item type.

CGI script. A computer program that runs on a
Web server and uses the Common Gateway
Interface (CGI) to perform tasks that are not usually
done by a Web server (for example, database
access and form processing). A CGI script is a CGI
program that is written in a scripting language such
as Perl.

CGI. See Common Gateway Interface.

child component. Optional second or lower level
of a hierarchical item type. Each child component is
directly associated with the level above it.

CIF. See common interchange file.

CIU. See common interchange unit.

class. In object-oriented design or programming, a
model or template that can be instantiated to create
objects with a common definition and therefore,
common properties, operations, and behavior. An
object is an instance of a class.

Client Application for Windows. A complete
object management system provided with Content
Manager and written with Content Manager APIs. It
supports document and folder creation, storage, and
presentation, processing, and access control. You
can customize it with user exit routines and partially
invoke it with APIs.

client application. An application written with the
Content Manager APIs to customize a user
interface. An application written with the
object-oriented or Internet APIs to access content
servers from Enterprise Information Portal.

client. A computer system or process that
requests a service of another computer system or
process that is typically referred to as a server.
Multiple clients can share access to a common
server.

client/server. In communications, the model of
interaction in distributed data processing in which a
program at one site sends a request to a program at
another site and awaits a response. The requesting
program is called a client; the answering program is
called a server.

codec. A processor that can code analog audio or
video information in digital form for transmission,
and decode digital data back to analog form.

collection. A group of objects with a similar set of
management rules.

combined search. A query that combines one or
more of the following types of searches: parametric,
text, or image.

Common Gateway Interface (CGI). A standard
for the exchange of information between a Web
server and programs that are external to it. The
external programs can be written in any
programming language that is supported by the
operating system on which the Web server is
running. See CGI script.

 Glossary 469

common interchange file (CIF). A file that
contains one ImagePlus Interchange Architecture
(IPIA) data stream.

common interchange unit (CIU). The
independent unit of transfer for a common
interchange file (CIF). It is the part of the CIF that
identifies the relationship to the receiving database.
A CIF can contain multiple CIUs.

component. Generic term for a root component or
a child component.

compressed audio. A method of digitally
encoding and decoding several seconds of voice
quality audio per single videodisc frame. This
increases the storage capability to several hours of
audio per videodisc. Sometimes referred to as still
frame audio or sound over still.

compressed video. A video resulting from the
process of digitally encoding and decoding a video
image or segment using a variety of computer
techniques to reduce the amount of data required to
represent the content accurately.

compression. The process of eliminating gaps,
empty fields, redundancies, and unnecessary data
to shorten the length of records or blocks.

connection manager. A Content Manager
component that helps maintain connections to the
Library Server, rather than starting a new connection
for each query. The connection manager has an
application programming interface.

connector class. Object-oriented programming
class that provides standard access to APIs that are
native to specific content servers.

constructor. In programming languages, a
method that has the same name as a class and is
used to create and initialize objects of that class.

container. An element of the user interface that
holds objects. In the folder manager, an object that
can contain other folders or documents.

content class. See MIME type.

content server. A software system that stores
multimedia and business data and the related
metadata required for users to work with that data.
Content Manager and Content Manager ImagePlus
for OS/390 are examples of content servers.

controller. The functional component responsible
for resource management (load balancing and
admission control). The controller communicates
with one or more data pumps to initiate and
terminate connections to clients.

cursor. A named control structure used by an
application program to point to a specific row within
some ordered set of rows. The cursor is used to
retrieve rows from the set.

D

data format. See MIME type.

data pump. The combination of the disks that hold
the data and the networking hardware and software
required to deliver assets to clients.

data rate. The rate at which data is transmitted or
received from a device. Interactive applications tend
to require a high data rate, while batch applications
can usually tolerate lower data rates.

data striping. Storage process in which
information is split into blocks (a fixed amount of
data) and the blocks are written to (or read from) a
series of disks in parallel.

data transfer rate. The average number of bits,
characters, or blocks per unit time passing between
corresponding equipment in a data transmission
system. Notes: The rate is expressed in bits,
characters, or blocks per second, minute, or hour.
Corresponding equipment should be indicated; for
example, modems, intermediate equipment, or
source and sink.

datastore. Generic term for a place (such as a
database system, file, or directory) where data is
stored. In an application program, a virtual
representation of a content server.

470 eClient 101 Customization and Integration

DCA. See document content architecture.

DCE. See Distributed Computing Environment.

DDO. See dynamic data object.

decode. To convert data by reversing the effect of
some previous encoding.

decompression. Process of restoring
compressed data to its original state, so that it can
be used again.

destager. A function of the Content Manager
Resource Manager that moves objects from the
staging area to the first step in the object's migration
policy. This function has been eliminated in Content
Manager Version 8.

device driver. Software used to manage a specific
device. Other software uses the device driver as the
interface to the device for reading, writing, and
control functions.

device manager. In a Content Manager system,
the interface between the Resource Manager and
one or more physical devices.

digital audio. Audio tones represented by
machine-readable binary numbers rather than by
analog recording techniques.

digital video. Video in which the information
(usually including audio) is encoded as a sequence
of binary digits. The information is usually
compressed. It can be stored and transported just as
any other digital information. Viewing digital video
involves decompressing the video data, converting it
to an analog form, displaying the video on a monitor,
and playing the sound through an amplifier and
speakers.

digital. Pertaining to data in the form of digits.

digitize. To convert analog video and audio signals
into digital format.

digitized image. An image derived from a
scanning device or a digitizing card with a camera.

Distributed Computing Environment (DCE). The
Open Software Foundation (OSF) specification (or a
product derived from this specification) that assists
in networking. DCE provides such functions as
authentication, directory service (DS), and remote
procedure call (RPC).

document content architecture (DCA). An
architecture that guarantees information integrity for
a document being interchanged in an office system
network. DCA provides the rule for specifying form
and meaning of a document. It defines revisable
form text (changeable) and final form text
(unchangeable).

document root directory. The primary directory
where a Web server stores accessible documents.
When the server receives requests that do not point
to a specific directory, it tries to serve the request
from this directory.

document routing process. In Content Manager
a sequence of work steps, and the rules governing
those steps, through which a document or folder
travels while it is being processed.

document type definition (DTD). The rules that
specify the structure for a particular class of XML
documents. The DTD defines the structure with
elements, attributes, and notations, and it
establishes constraints for how each element,
attribute, and notation can be used within the
particular class of documents. A DTD is analogous
to a database schema in that the DTD completely
describes the structure for a particular markup
language.

 Glossary 471

document. An item that can be stored, retrieved,
and exchanged among Content Manager systems
and users as a separate unit. An item given the
“document” semantic type is expected to contain
information that forms a document, but does not
rigidly mean an implementation of a specific
document model. An item created from a
“document” (also known as “document model”)
classified item type means that the item will contain
document parts, a specific implementation of a
document model provided by Content Manager.
Document classified item types may create items
given either the document or folder semantic type.
The document parts can include varied types of
content, including for example, text, images, and
spreadsheets.

domain name server. In the Internet suite of
protocols, a server that responds to queries from
clients for name-to-address and address-to-name
mappings as well as for other information.

domain name. In the Internet suite of protocols, a
name of a host system. A domain name consists of
a sequence of subnames separated by a delimiter
character.

domain. That part of a computer network in which
the data processing resources are under common
control.

DTD. See document type definition.

duplex. Pertains to communications data that can
be sent and received at the same time. Synonymous
with full duplex and FDX. Contrast with half duplex.

dynamic data object (DDO). In an application
program, a generic representation of a stored object
that is used to move that object in to, and out of,
storage.

E

element. An object that the list manager allocates
for an application.

encode. To convert data by using a code in such a
manner that reconversion to the original form is
possible.

Ethernet. A 10-Mbps baseband local area network
that allows multiple stations to access the
transmission medium at will without prior
coordination, avoids contention by using carrier
sense and deference, and resolves contention by
using collision detection and transmission.

extended data object (XDO). In an application
program, a generic representation of a stored
complex multimedia object that is used to move that
object in to, and out of, storage. XDOs are most
often contained within DDOs.

Extensible Markup Language (XML). A standard
metalanguage for defining markup languages that
was derived from, and is a subset of, SGML. XML
omits the more complex and less-used parts of
SGML and makes it much easier to write
applications to handle document types, author and
manage structured information, and transmit and
share structured information across diverse
computing systems. The use of XML does not
require the robust applications and processing that
is necessary for SGML. XML is being developed
under the auspices of the World Wide Web
Consortium (W3C).

External Data Representation (XDR). A
standard, developed by Sun Microsystems,
Incorporated, for representing data in
machine-independent format.

F

FDDI. See Fiber Distributed Data Interface.

feature. The visual content information that is
stored in the image search server. Also, the visual
traits that image search applications use to
determine matches. The four QBIC® features are
average color, histogram color, positional color, and
texture.

472 eClient 101 Customization and Integration

federated attribute. An Enterprise Information
Portal metadata category that is mapped to native
attributes in one or more content servers. For
example, the federated attribute, policy number, can
be mapped to an attribute, policy num, in Content
Manager and to an attribute, policy ID, in Content
Manager ImagePlus for OS/390.

federated collection. A grouping of objects that
results from a federated search.

federated datastore. Virtual representation of any
number of specific content servers, such as Content
Manager.

federated entity. An Enterprise Information Portal
metadata object that is comprised of federated
attributes and optionally associated with one or
more federated text indexes.

federated search. A query issued from Enterprise
Information Portal that simultaneously searches for
data in one or more content servers, which can be
heterogeneous.

federated text index. An Enterprise Information
Portal metadata object that is mapped to one or
more native text indexes in one or more content
servers.

Fiber Distributed Data Interface. An American
National Standards Institute (ANSI) standard for a
100-Mbps LAN using optical fiber cables.

file name extension. An addition to a file name
that identifies the file type (for example, text file or
program file).

file system manager. The component that
manages the multimedia file system.

file system. In AIX, the method of partitioning a
hard drive for storage. See also multimedia file
system.

File Transfer Protocol (FTP). In the Internet suite
of protocols, an application layer protocol that uses
Transmission Control Protocol (TCP) and Telnet
services to transfer bulk-data files between
machines or hosts.

firewall. (1) In communication, a functional unit
that protects and controls the connection of one
network to other networks. The firewall (a) prevents
unwanted or unauthorized communication traffic
from entering the protected network and (b) allows
only selected communication traffic to leave the
protected network. (2) In equipment, a partition used
to control the spread of fire.

folder manager. The Content Manager model for
managing data as online documents and folders.
You can use the folder manager APIs as the primary
interface between your applications and the Content
Manager content servers.

folder. A item of any item type, regardless of
classification, with the “folder” semantic type. Any
item with the folder semantic type will contain
specific folder functionality provided by Content
Manager, in addition to all non-resource item
capabilities and any additional functionality available
from an item type classification such as document
model or resource. Folders may contain any number
of items of any type, including documents and
sub-folders. A folder is indexed by attributes.

fps. Frames per second. The number of frames
displayed per second.

fragment. The smallest unit of file system disk
space allocation. A fragment can be 512, 1024,
2048, or 4096 bytes in size. The fragment size is
defined when a file system is created.

FTP. See File Transfer Protocol.

full-motion video. Video reproduction at 30
frames per second (fps) for NTSC signals or 25 fps
for PAL® signals.

full duplex (FDX). See duplex

 Glossary 473

G

gateway. A functional unit that interconnects two
computer networks with different network
architectures. A gateway connects networks or
systems of different architectures. A bridge
interconnects networks or systems with the same or
similar architectures.

GB. See gigabyte.

gigabyte (GB). For processor storage, real and
virtual storage, and channel volume, 230, or 1 073
741 824 bytes. For disk storage capacity and
communications volume, 1 000 000 000 bytes.

H

half duplex (HD or HDX). Pertains to
communications in which data can be sent in only
one direction at a time. Contrast with duplex.

handle. A character string that represents an
object, and is used to retrieve the object.

Hertz (Hz). A unit of frequency equal to one cycle
per second. In the United States, line frequency is 60
Hz or a change in voltage polarity 120 times per
second; in Europe, line frequency is 50 Hz or a
change in voltage polarity 100 times per second.

history log. A file that keeps a record of activities
for a workflow.

home page. The initial Web page that is returned
by a Web site when you enter the address for the
Web site in a Web browser. For example, if a user
specifies the address for the IBM Web site, which is
http://www.ibm.com, the Web page that is returned
is the IBM home page. Essentially, the home page is
the entry point for accessing the contents of the Web
site.

host name. In the Internet suite of protocols, the
name given to a computer. Sometimes, host name
refers to the fully qualified domain name; other
times, it is used to mean the most specific subname
of a fully qualified domain name. For example, if
mycomputer.city.company.com is the fully qualified
domain name, either of the following might be
considered the host name:
mycomputer.city.company.com mycomputer

host. A computer, connected to a network, which
provides an access point to that network. A host can
be a client, a server, or a client and a server
simultaneously.

HTML. See Hypertext Markup Language.

HTTP (Hypertext Transfer Protocol). In the
Internet suite of protocols, the protocol that is used
to transfer and display hypertext documents

HTTP daemon. A multi-threaded Web server that
receives incoming Hypertext Transfer Protocol
(HTTP) requests.

HTTP method. An action used by the Hypertext
Transfer Protocol (HTTP). HTTP methods include
GET, POST, and PUT.

HTTPd. See HTTP daemon.

Hypertext Markup Language (HTML). A markup
language that conforms to the SGML standard and
was designed primarily to support the online display
of textual and graphical information that includes
hypertext links.

Hz. See Hertz.

I

I frame (information frame). In video
compression a frame that has been compressed
independently of any other frames. Also referred to
as a reference frame, intra frame, or still frame.

474 eClient 101 Customization and Integration

Image Object Content Architecture (IOCA). A
collection of constructs used to interchange and
present images.

index class subset. In earlier Content Manager, a
view of an index class that an application uses to
store, retrieve, and display folders and objects.

index class view. In earlier Content Manager, the
term used in the APIs for index class subset.

index class. See item type.

index. To add or edit the attribute values that
identify a specific item or object so that it can be
retrieved later.

information mining. The automated process of
extracting key information from text (summarization),
finding predominant themes in a collection of
documents (categorization), and searching for
relevant documents using powerful and flexible
queries.

inline. In Content Manager, an object that is online
and in a drive, but has no active mounts. Contrast
with mounted.

i-node. In the AIX operating system, the internal
structure that describes the individual files in the
operating system; there is one i-node for each file.
An i-node contains the node, type, owner, and
location of a file. A table of i-nodes is stored near the
beginning of a file system.

interactive video. Combining video and computer
technology so the user's actions determine the
sequence and direction the application takes.

interchange. The capability to import or export an
image with its index from one Content Manager
ImagePlus for OS/390 system to another ImagePlus
system using a common interchange file or common
interchange unit.

Internet Protocol (IP). In the Internet suite of
protocols, a connectionless protocol that routes data
through a network or interconnected networks and
acts as an intermediary between the higher protocol
layers and the physical network.

Internet. The worldwide collection of
interconnected networks that use the Internet suite
of protocols and permit public access.

intranet. A private network that integrates Internet
standards and applications (such as Web browsers)
with an organization's existing computer networking
infrastructure.

IOCA. See Image Object Content Architecture.

IP address. The unique 32-bit address that
specifies the actual location of each device or
workstation on the Internet. The address field
contains two parts: the first part is the network
address; the second part is the host number. For
example, 9.67.97.103 is an IP address.

IP multicast. Transmission of an Internet Protocol
(IP) datagram to a set of systems that form a single
multicast group. See multicast.

IP. See Internet Protocol.

ISO-9660. Format used for files on CD-ROM. Used
with DOS.

isochronous. A communications capability that
delivers a signal at a specified, bounded rate, which
is desirable for continuous data such as voice and
full-motion video.

item type classification. A categorization within
an item type that further identifies the items of that
item type. All items of the same item type have the
same item type classification. Content Manager
supplies the following item type classifications:
folder, document, object, video, image, and text;
users can also define their own item type
classifications.

 Glossary 475

item type. A template for defining and later
locating like items, consisting of a root component,
zero or more child components, and a classification.

item. In Content Manager, generic term for an
instance of an item type. For example, an item might
be a folder, document, video, or image. Generic term
for the smallest unit of information that Enterprise
Information Portal administers. Each item has an
identifier. For example, an item might be a folder or
a document.

iterator. A class or construct that you use to step
through a collection of objects one at a time.

J

JavaBeans. A platform-independent, software
component technology for building reusable Java
components called “beans.” After they are built,
these beans can be made available for use by other
software engineers or can be used in Java
applications. Using JavaBeans, software engineers
can manipulate and assemble beans in a graphical
drag-and-drop development environment.

Joint Photographic Experts Group (JPEG). A
group that worked to establish the standard for the
compression of digitized continuous-tone images.
The standard for still pictures developed by this
group.

JPEG. See Joint Photographic Experts Group.

K

Kb. See Kilobit.

KB. See Kilobyte.

kbps. Kilobits per second.

key field. See attribute.

kilobit (Kb). For processor storage, real and
virtual storage, and channel volume, 210 or 1024
bits. For disk storage capacity and communications
volume, 1000 bits.

kilobyte (KB). For processor storage, real and
virtual storage, and channel volume, 210 or 1024
bytes. For disk storage capacity and
communications volume, 1000 bytes.

L

LAN cache. An area of temporary storage on a
local Resource Manager that contains a copy of
objects stored on a remote Resource Manager.

LAN. See local area network.

latency. The time interval between the instant at
which an instruction control unit initiates a call for
data and the instant at which the actual transfer of
the data starts.

LBR. See low bit rate.

library client. The component of a Content
Manager system that provides a low-level
programming interface for the library system. The
library client includes APIs that are part of the
software developer's kit.

library object. See item.

Library Server. The component of a Content
Manager system that stores, manages, and handles
queries on items.

link. A directional relationship between two items:
the source and the target. You can use a set of links
to model one-to-many associations. Contrast with
reference.

local area network (LAN). A network in which a
set of devices are connected to one another for
communication and that can be connected to a
larger network.

low bit rate (LBR). A generic term for an
interleaved H.263/G.723 stream. Low bit rate
streams range from 6.4 kbps up to 384 kbps.

476 eClient 101 Customization and Integration

M

machine-generated data structure (MGDS). An
IBM structured data format protocol for passing
character data among the various Content Manager
ImagePlus for OS/390 programs. Data extracted
from an image and put into general data stream
(GDS) format.

management class. The term used in the APIs for
migration policy.

Management Information Base (MIB). A
collection of objects that can be accessed by means
of a network management protocol.

maximum transmission unit (MTU). In LANs, the
largest possible unit of data that can be sent on a
given physical medium in a single frame. For
example, the MTU for Ethernet is 1500 bytes.

Mb. See megabit.

MB. See megabyte.

Mbps. Megabits per second.

MCA. See Micro Channel® architecture.

media archiver. A physical device that is used for
storing audio and video stream data. The
VideoCharger is a type of media archiver.

media server. An AIX-based component of the
Content Manager system that is used for storing and
accessing video files.

megabit (Mb). (1) For processor storage, real and
virtual storage, and channel volume, 220 or 1 048
576 bits. (2) For disk storage capacity and
communications volume, 1 000 000 bits.

megabyte (MB). (1) For processor storage, real
and virtual storage, and channel volume, 220 or 1
048 576 bytes. (2) For disk storage capacity and
communications volume, 1 000 000 bytes.

method. In Java design or programming, the
software that implements the behavior specified by
an operation. Synonymous with member function in
C++.

MGDS. See machine-generated data structure.

MIB variable. A managed object that is defined in
the Management Information Base (MIB). The
managed object is defined by a textual name and a
corresponding object identifier, a syntax, an access
mode, a status, and a description of the semantics of
the managed object. The MIB Variable contains
pertinent management information that is accessible
as defined by the access mode.

MIB. See Management Information Base.

Micro Channel Architecture (MCA). The rules
that define how subsystems and adapters use the
Micro Channel bus in a computer. The architecture
defines the services that each subsystem can or
must provide.

MIDI. See Musical Instrument Digital Interface.

migration policy. A user-defined schedule for
moving objects from one storage class to the next. It
describes the retention and class transition
characteristics for a group of objects in a storage
hierarchy.

migration. The process of moving data and source
from one computer system to another computer
system without converting the data, such as when
moving to a new operating environment. Installation
of a new version or release of a program to replace
an earlier version or release.

migrator. A function of the Resource Manager that
checks migration policies and moves objects to the
next storage class when they are scheduled to
move.

MIME type. An Internet standard for identifying the
type of object being transferred across the Internet.
MIME types include several variants of audio, image,
and video. Each object has a MIME type.

 Glossary 477

mount. To place a data medium in a position to
operate.

mounted. In Content Manager, an object that is
online and in a drive, with active mounts. Contrast
with inline.

Moving Pictures Expert Group (MPEG). A group
that is working to establish a standard for
compressing and storing motion video and
animation in digital form. The standard under
development by this group.

MPEG. See Moving Pictures Expert Group.

MTU. See maximum transmission unit.

multicast. Transmission of the same data to a
selected group of destinations.

multimedia file system. A file system that is
optimized for the storage and delivery of video and
audio.

multimedia. Combining different media elements
(text, graphics, audio, still image, video, animation)
for display and control from a computer.

Multipurpose Internet Mail Extensions
(MIME). See MIME type.

Musical Instrument Digital Interface (MIDI). A
protocol that allows a synthesizer to send signals to
another synthesizer or to a computer, or a computer
to a musical instrument, or a computer to another
computer.

N

name server. See domain name server.

native attribute. A characteristic of an object that
is managed on a specific content server and that is
specific to that content server. For example, the key
field policy num might be a native attribute in a
Content Manager content server, whereas the field
policy ID might be a native attribute in an Content
Manager OnDemand content server.

native entity. An object that is managed on a
specific content server and that is comprised of
native attributes. For example, Content Manager
index classes are native entities comprised of
Content Manager key fields.

native text index. An index of the text items that
are managed on a specific content server. For
example, a single text search index on a Content
Manager content server.

network table file. A text file that contains the
system-specific configuration information for each
node in a Content Manager system. Each node in
the system must have a network table file that
identifies the node and lists the nodes that it needs
to connect to. The name of a network table is
FRNOLINT.TBL.

O

Object Linking and Embedding (OLE). A
Microsoft specification for both linking and
embedding applications so that they can be
activated from within other applications.

Object Server cache. See Resource Manager
cache.

Object Server. See Resource Manager.

object. Any digital content that a user can store,
retrieve and manipulate as a single unit, for example,
JPEG images, MP3 audio, AVI video, and a text
block from a book.

OLE. See Object Linking and Embedding.

P

package. A collection of related classes and
interfaces that provides access protection and
namespace management.

478 eClient 101 Customization and Integration

page pool. The area in the shared memory
segment from which buffers are allocated for data
that is read from or written to disk. Page pool size is
one of the file manager startup configuration
parameters.

PAL. See Phase Alternation Line.

parametric search. A query for objects that is
based on the properties of the objects.

part. See object.

patron. The term used in the Content Manager
APIs for user.

pattern-matching character. See wildcard
character.

PCI. See Peripheral Component Interconnect.

peak rate. The maximum rate encountered over a
given period of time.

performance group. A group of file systems
sharing system resources that can affect file system
performance.

Peripheral Component Interconnect (PCI). A
type of bus architecture.

persistent identifier (PID). An identifier that
uniquely identifies an object, regardless of where it
is stored. The PID consists of both an item ID and a
location.

Phase Alternation Line (PAL). The television
broadcast standard for European video outside of
France and the countries of the former Soviet Union.

PID. See persistent identifier.

pin. Keeping the program from being paged out
after it is loaded into memory.

port group. A logical name used to group one or
more ports (network devices or interfaces) of the
same network type that can be used to reach a given
end-user destination. For example, if multiple ATM
adapters in the VideoCharger Server complex are
connected to the same ATM networks, these
adapters can be configured under the same port
group. The controller selects ports as necessary to
balance the load.

port. A system or network access point for data
entry or exit. In the Internet suite of protocols, a
specific logical connector between the Transmission
Control Protocol (TCP) or the User Datagram
Protocol (UDP) and a higher-level protocol or
application.

presentation formatter. A CGI program that
defines the forms used to select and present assets
to clients.

privilege set. A collection of privileges for working
with system components and functions. The
administrator assigns privilege sets to users (user
IDs) and user groups.

privilege. The right to access a specific object in a
specific way. Privileges includes rights such as
creating, deleting, and selecting objects stored in the
system. Privileges are assigned by the
administrator.

property. A characteristic of an object that
describes the object. A property can be changed or
modified. Type style is an example of a property.

protocol gateway. A type of firewall that protects
computers in a business network from access by
users outside that network.

protocol. The meanings of, and the sequencing
rules for, requests and responses used for managing
a network, transferring data, and synchronizing the
states of network components.

 Glossary 479

proxy server. A server that receives requests
intended for another server and that acts on the
client's behalf (as the client's proxy) to obtain the
requested service. A proxy server is often used
when the client and the server are incompatible for
direct connection (for example, when the client is
unable to meet the security authentication
requirements of the server but should be permitted
some services).

purger. A function of the Resource Manager that
removes objects from the system.

Q

QBIC. See query by image content.

quality of service (Do’s). For an asynchronous
transfer mode (ATM) virtual channel or a Networking
BroadBand Services (NBBS) network connection, a
set of communication characteristics such as
end-to-end delay, jitter, and packet loss ratio.

query by image content (QBIC). A query
technology that enables searches based on visual
content, called features, rather than plain text. Using
QBIC, you can search for objects based on their
visual characteristics, such as color and texture.

query string. A character string that specifies the
properties and property values for a query. You can
create the query string in an application and pass it
to the query.

R

RAID. See Redundant Array of Independent Disks.

rank. An integer value that signifies the relevance
of a given part to the results of a query. A higher rank
signifies a closer match.

Readme file. A file that should be viewed before
the program associated with it is installed or run. A
Readme file typically contains last-minute product
information, installation information, or tips for using
the product.

real time. The processing of information that
returns a result so rapidly that the interaction
appears to be instantaneous.

Real-Time Transport Protocol (RTP). A protocol
that provides end-to-end network transport functions
suitable for applications transmitting real-time data,
such as audio, video or simulation data, over
multicast or unicast network services.

rebalance. Restriping and redistributing data
across the available hard disks after a disk or disks
have been removed from a file system.

Redundant Array of Independent Disks
(RAID). A collection of two or more disk drives that
present the image of a single disk drive to the
system. In the event of a single device failure, the
data can be read or regenerated from the other disk
drives in the array.

reference. Single direction, one-to-one
association between a root or child component and
another root component. Contrast with link.

release. To remove suspend criteria from an item.
A suspended item is released when the criteria have
been met, or when a user with proper authority
overrides the criteria and manually releases it.

Remote Method Invocation (RMI). A set of APIs
that enables distributed programming. An object in
one Java Virtual Machine (JVM) can invoke methods
on objects in other JVMs.

remote procedure call (RPC). A facility that a
client uses to request the execution of a procedure
call from a server. This facility includes a library of
procedures and an external data representation. A
client request to a service provider located in
another node.

render. To take data that is not typically
image-oriented and depict or display it as an image.
In Content Manager, word-processing documents
can be rendered as images for display purposes.

480 eClient 101 Customization and Integration

request. The part of a Web address that follows
the protocol and server host name. For example, in
the address http://www.ibm.com/dir/file.html, the
request is /dir/file.html.

ReSerVation Protocol (RSVP). A resource
reservation setup protocol designed for an
integrated services Internet. The protocol provides
receiver-initiated setup of resource reservations for
multicast and unicast data flows.

Resource Interchange File Format (RIFF). Used
for storing sound or graphics for playback on
different types of computer equipment.

Resource Manager cache. The working storage
area for the Resource Manager. Also called the
staging area.

Resource Manager. The component of a Content
Manager system that manages objects. These
objects are referred to by items stored on the Library
Server.

Response time. The elapsed time between when
a request is submitted and when the response from
that request is returned.

restriping. Redistributing and rebalancing data
across all available and defined disks in a
multimedia file system. This is typically done when a
disk is removed from a file system for repair or when
a new disk is added to a file system.

RIFF. See Resource Interchange File Format.

RLE. See Run-Length Encoding.

RMI server. A server that implements the Java
Remote Method Invocation (RMI) distributed object
model.

root component. The first or only level of a
hierarchical item type, consisting of related system-
and user-defined attributes.

RPC. See remote procedure call.

RSVP. See ReSerVation Protocol.

RTP. See Real-Time Transport Protocol.

Run-Length Encoding (RLE). A type of
compression that is based on strings of repeated,
adjacent characters or symbols, which are called
“runs.”

S

SCSI. See small computer system interface.

search criteria. In Content Manager, attribute
values that are used to retrieve a stored item. In
Enterprise Information Portal, specific fields that an
administrator defines for a search template that limit
or further define choices available to the users.

search template. A form, consisting of search
criteria designed by an administrator, for a specific
type of federated search. The administrator also
identifies the users and user groups who can access
each search template.

semantic type. The usage or rules for an item.
Base, annotation, and note are semantic types
supplied by Content Manager; users can also define
their own semantic types.

server definition. The characteristics of a specific
content server that uniquely identify it to Enterprise
Information Portal.

server inventory. The comprehensive list of native
entities and native attributes from specified content
servers.

server type definition. The list of characteristics,
as identified by the administrator, required to
uniquely identify a custom server of a certain type to
Enterprise Information Portal.

server. A functional unit that provides services to
one or more clients over a network. Examples
include a file server, a print server, and a mail server.

 Glossary 481

Simple Network Management Protocol
(SNMP). In the Internet suite of protocols, a
network management protocol that is used to
monitor routers and attached networks. SNMP is an
application layer protocol. Information on devices
managed is defined and stored in the application's
Management Information Base (MIB).

small computer system interface (SCSI). A
standard hardware interface that enables a variety of
peripheral devices to communicate with one
another.

SMIT. See System Management Interface Tool.

SMS. See system-managed storage.

SNMP. See Simple Network Management
Protocol.

SQL communication area (SQLCA). A set of
variables that provides an application program with
information about the execution of its SQL
statements or its requests from the database
manager.

SQL descriptor area (SQLDA). (1) A set of
variables that is used in the processing of certain
SQL statements. The SQLDA is intended for
dynamic SQL programs.
(2) A structure that describes input variables, output
variables, or the columns of a result table.
Term3 definition.

SQL. See Structured Query Language.

SQLCA. See SQL communication area.

SQLDA. See SQL descriptor area.

SQLVAR. Collective name for a sequence of
variables that has arbitrary number of occurrences
within an SQLDA. It is followed by four variables in
SQLDA, and has two types: base SQLVARs, and
secondary SQLVARs. Base SQLVARs are always
present. They contain the base information about
the column, parameter marker, or host variable such
as data type code, length attribute, column name,
host variable address, and indicator variable
address. Secondary SQLVARs are optional. For
user-defined types, they contain the user-defined
type name. For reference types, they contain the
target type of the reference. For LOBs, they contain
the length attribute of the host variable and a pointer
to the buffer that contains the actual length.

staging area. The working storage area for the
Resource Manager. Also referred to as Resource
Manager cache.

staging. The process of moving a stored object
from an offline or low-priority device back to an
online or higher priority device, usually on demand of
the system or on request of a user. When a user
requests an object stored in permanent storage, a
working copy is written to the staging area.

stand-alone system. A pre-configured Content
Manager system that installs all of the components
of a Content Manager system on a single personal
computer.

sticky pool. The part of the page pool that is made
available to cache the first block of frequently used
interactive files. Sticky pool size is one of the file
manager startup configuration parameters.

storage class. Identifies the type of media that an
object is stored on. It is not directly associated with
a physical location; however, it is directly associated
with the device manager. Types of storage classes
include: DASD, Fixed Disk, Optical, Stream, Tape,
TSM

storage group. Associates a storage system to a
storage class.

482 eClient 101 Customization and Integration

storage system. A generic term for storage in the
Content Manager system. See TSM volume, media
archiver, and volume.

streamed data. Any data sent over a network
connection at a specified rate. A stream can be one
data type or a combination of types. Data rates,
which are expressed in bits per second, vary for
different types of streams and networks.

stripe group. A collection of disks that are grouped
together for serving media streams. The multimedia
file system uses stripe groups to optimize delivery of
multimedia assets.

stripe width. The size of the block that data is split
into for striping.

striping. Splitting data to be written into equal
blocks and writing blocks simultaneously to separate
disk drives. Striping maximizes performance to the
disks. Reading the data back is also scheduled in
parallel, with a block being read concurrently from
each disk then reassembled at the host.

Structured Query Language (SQL). A
standardized language for defining and
manipulating data in a relational database.

subclass. A class that is derived from another
class. One or more classes might be between the
class and subclass.

superclass. A class from which a class is derived.
One or more classes might be between the class
and superclass.

suspend. To remove an object from its workflow
and define the suspension criteria needed to
activate it. Later activating the object enables it to
continue processing.

System Management Interface Tool (SMIT). An
interface tool of the AIX operating system for
installing, maintaining, configuring, and diagnosing
tasks.

system-managed storage (SMS). The Content
Manager approach to storage management. The
system determines object placement, and
automatically manages object backup, movement,
space, and security.

T

table of contents (TOC). The list of documents
and folders that are contained in a folder or
workbasket. Search results are displayed as a folder
table of contents.

Tagged Image File Format (TIFF). A file format for
storing high-quality graphics.

TCP. See Transmission Control Protocol.

TCP/IP. See Transmission Control
Protocol/Internet Protocol.

thin client. A client that has little or no installed
software but has access to software that is managed
and delivered by network servers that are attached
to it. A thin client is an alternative to a full-function
client such as a workstation.

throughput. (1) A measure of the amount of
information transmitted over a network in a given
period of time. For example, a network's data
transfer rate is usually measured in bits per second.
Throughput is a measure of performance. It is also
measured in kbps or Mbps. (2) A measure of the
amount of work over a period of time. In other words,
it is the number of workload operations that can be
accomplished per unit of time.

TIFF. See Tagged Image File Format.

Tivoli Storage Manager (TSM). A client/server
product that provides storage management and data
access services in a heterogeneous environment. It
supports various communication methods, provides
administrative facilities to manage the backup and
storage of files, and provides facilities for scheduling
backup operations.

TOC. See table of contents.

 Glossary 483

token ring. According to IEEE 802.5, network
technology that controls media access by passing a
token (special packet or frame) between
media-attached stations.

token-ring network. A network that uses a ring
topology, in which tokens are passed in a circuit from
node to node. A node that is ready to send can
capture the token and insert data for transmission.

topology. In communications, the physical or
logical arrangement of nodes in a network,
especially the relationships among nodes and the
links between them.

Transmission Control Protocol (TCP). A
communications protocol used in the Internet and in
any network that follows the Internet Engineering
Task Force (IETF) standards for internetwork
protocol. TCP provides a reliable host-to-host
protocol between hosts in packet-switched
communications networks and in interconnected
systems of such networks. It uses the Internet
Protocol (IP) as the underlying protocol.

Transmission Control Protocol/Internet Protocol
(TCP/IP). The suite of transport and application
protocols that run over the Internet Protocol.

TSM volume. A logical area of storage that is
managed by Tivoli Storage Manager.

TSM. See Tivoli Storage Manager.

U

UDP. See User Datagram Protocol.

uniform resource locator (URL). A sequence of
characters that represent information resources on a
computer or in a network such as the Internet. This
sequence of characters includes the abbreviated
name of the protocol used to access the information
resource and the information used by the protocol to
locate the information resource. For example, in the
context of the Internet, these are abbreviated names
of some protocols used to access various
information resources: HTTP, FTP, gopher, telnet,
and news.

User Datagram Protocol (UDP). In the Internet
suite of protocols, a protocol that provides
unreliable, connectionless datagram service. It
enables an application program on one machine or
process to send a datagram to an application
program on another machine or process. UDP uses
the Internet Protocol (IP) to deliver datagrams.

user exit routine. A user-written routine that
receives control at predefined user exits.

user exit. A point in an IBM-supplied program at
which a user exit routine can be given control.

user group. A group consisting of one or more
defined individual users, identified by a single group
name.

user mapping. Associating Enterprise Information
Portal user IDs and passwords to corresponding
user IDs and passwords in one or more content
servers. User mapping enables single logon to
Enterprise Information Portal and multiple content
servers.

user. A person who requires the services of
Content Manager. This term generally refers to
users of client applications, rather than the
developers of applications, who use the Content
Manager APIs. In Enterprise Information Portal,
anyone who is identified in the Enterprise
Information Portal administration program.

484 eClient 101 Customization and Integration

utility server. A Content Manager component that
is used by the database utilities for scheduling
purposes. You configure a utility server when you
configure a Resource Manager or Library Server.
There is one utility server for each Resource
Manager and each Library Server.

V

video mixing. The process of dynamically
inserting or combining multiple video objects into a
single object for distribution. An example would be
the mixing of commercials and broadcast programs
for satellite distribution.

video object. The data file containing a program
recorded for playback on a computer or television
set.

video stream. The path data follows when read
from the VideoCharger Server system to the display
unit.

video-on-demand (VOD). A service for providing
consumers with movies and other programming
almost immediately, per request.

VOD. See Video-on-demand.

volume. A representation of an actual physical
storage device or unit on which the objects in your
system are stored.

W

WAIS. See Wide Area Information Service.

WAV. A format to store digitally recorded sound.

Web server. A server that is connected to the
Internet and is dedicated to serving Web pages.

Wide Area Information Service (WAIS). A
network information system that enables clients to
search documents on the World Wide Web.

wildcard character. A special character such as
an asterisk (*) or a question mark (?) that can be
used to represent one or more characters. Any
character or set of characters can replace a wildcard
character.

work item. In earlier Content Manager workflow
and Enterprise Information Portal advanced
workflow, any work activity that is active within a
workflow.

work packet. In Enterprise Information Portal
Version 7.1, a collection of documents that is routed
from one location to another. Users access and work
with work packets through worklists.

work state. The status of an individual work item,
document, or folder.

work step. A discrete point in a workflow or
document routing process through which an
individual work item, document, or folder must pass.

workbasket. A collection of documents or folders
that are either in process or waiting to be processed.
A workbasket definition includes the rules that
govern the presentation, status, and security of its
contents.

workflow coordinator. In earlier Content Manager
workflow, a user who receives notification that a
work item in the workflow has not been processed in
some specified time. The user is selected for a
specific user group or upon creation of the workflow.

workflow state. The status of an entire workflow.

workflow. In earlier Content Manager, a sequence
of workbaskets through which a document or folder
travels while it is being processed. In Enterprise
Information Portal, a sequence of work steps, and
the rules governing those steps, through which a
work packet, document, or folder travels while it is
being processed. For example, claims approval
would describe the process that an individual
insurance claim must follow for approval.

worklist. A collection of work items, documents, or
folders that are assigned to a user.

 Glossary 485

World Wide Web (WWW). A network of servers
that contain programs and files. Many of the files
contain hypertext links to other documents available
through the network.

WWW. See World Wide Web.

X

XDO. See extended data object.

XML. See Extensible Markup Language.

486 eClient 101 Customization and Integration

acronyms
API Application programming
interface

B2B Business-to-business

CM Content Manager

CSS Cascading Style Sheet

DB2 UDB DB2 Universal Database

DBA Database Administrator

DDL Data Definition Language

DDO Dynamic Data Object

DLL Dynamically Linked Libraries

EJFS Extended Journaled File
System

FCM Fast Communication Manager

IBM International Business
Machines Corporation

IIS Internet Information Service

ITSO International Technical
Support Organization

JFS Journaled File System

JFS2 Journaled File System 2

Kb Kilobits

KB Kilobyte

kbps Kilobits per second

LAN Local Area Network

LS Library Server

Mb Megabit

MB Megabyte

Mbps Megabits per second

MTU Maximum Tran

OCR Optical character recognition

PID Persistent ID

RDBMS Relational Database
Management System

Abbreviations and

© Copyright IBM Corp. 2003. All rights reserved.
RM Resource Manager

RMI Remote Method Invocation

SQL Structured Query Language

SQLCA SQL communication area

SQLDA SQL descriptor area

TSM Tivoli Storage Management

UDF User-defined functions

WAN Wide Area Network

XQPE XQuery Path Expressions

 487

488 eClient 101 Customization and Integration

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 490. Note that some of the documents referenced here may be available
in softcopy only.

� Performance Tuning for Content Manager, SG24-6949

� WebSphere Studio Application Developer Version 5 Programming Guide,
SG24-6957

Other publications
These publications are also relevant as further information sources:

� IBM Content Manager for Multiplatforms / IBM Information Integrator for
Content: Installing, Configuring, and Managing eClient, SC27-1350

� IBM Content Manager for Multiplatforms: Planning and Installing Information
Integrator for Content, GC27-1345

� IBM Content Manager for Multiplatforms: Managing Information Integrator for
Content, SC27-1346

� IBM Content Manager for Multiplatforms / IBM Information Integrator for
Content: Workstation Application Programming Guide, SC27-1347

� IBM Content Manager for Multiplatforms: Planning and Installing Your Content
Manager System, GC27-1332

� IBM Content Manager for Multiplatforms: System Administration Guide,
SC27-1335

� IBM Content Manager V8.2 Performance Tuning Guide, by Content Manager
Performance Team, found in:

http://www.ibm.com/software/data/cm/cmgr/mp/support.html

Search for “performance tuning guide” under Whitepapers.

© Copyright IBM Corp. 2003. All rights reserved. 489

http://www.ibm.com/software/data/cm/cmgr/mp/support.html

� IBM Directory Server Version 5.1 Administration Guide and BM Directory
Server V5.1 Installation and Configuration Guide, found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.1.html

� IBM Content Manager for Multiplatforms Version 8.1: System Administration
Certification Study Guide

Online resources
These Web sites and URLs are also relevant as further information sources:

� The official IBM eClient support Web site:

http://www-3.ibm.com/software/data/cm/support.html

� Reference for configuring eClient to use WebSphere's connection pooling:

http://www-3.ibm.com/software/data/cm/pubs/cm81/eclientpooling/WASpool.htm

� Tuning garbage collection with the 1.3.1 Java Virtual Machine (JVM):

http://java.sun.com/docs/hotspot/gc

� The EIP user group is available at:

http://w3.ibm.com/forums/forums.htm

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

490 eClient 101 Customization and Integration

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.1.html
http://www-3.ibm.com/software/data/cm/support.html
http://www-3.ibm.com/software/data/cm/pubs/cm81/eclientpooling/WASpool.htm
http://java.sun.com/docs/hotspot/gc
http://w3.ibm.com/forums/forums.htm

Index

Numerics
3270 application 326

A
access CM problem 442
access control list 267
ActiveX Automation 344
add document to workflow 95
advanced workflow 15, 93
annotations editing

document 126
annotations JSPs 118
API 124, 137, 264
appearance 214
applet container 102
applet viewer 48, 86–87, 460

memory usage 460
applets 102, 114
Application Assembly Tool 103, 109, 171, 178, 182,
294, 302, 312, 332
application client container 102
application clients 102
application control flow JSPs 114
application programming interfaces 124
architecture

eClient 110
attribute 82, 138, 209

Content Manager 130
federated 130, 143–144, 146
native 143–144

authentication 426
automatic deployed problem 446
availability 54

B
back-end repositories 80
back-end servers 209
background graphics

customize 120
background image 121
basic viewer 85–86
bkgrd.gif 114

© Copyright IBM Corp. 2003. All rights reserved.
blank window problem 445
browser 210
builder tool 125

C
C++ 326
C++ API 124
C++ class 124
CacheDir 47
cannot display IST properly problem 447
Cascading Style Sheets 113, 214, 348
catalog 11, 159, 288, 301
categorization 9–10, 12, 155, 157, 321
categorization model 158–159
categorizer 286, 296, 301
category 155–157, 282, 286, 289, 291, 296, 298,
301, 307, 321
category structure 288
cell 56, 60–62, 68
change page 85
change priority

workflow document 98
change process

workflow 98
character

viewing problem 445
check-in support for document 14
checkInOutEnabled 47
check-out support for document 14
Chinese character viewing problem 445
client package 125
client/server

implementation 8
ClientIniURL 47
cloning 451
cluster 18, 52, 55, 68–72, 74, 451

creating eClient cluster server 68
start eClient cluster server 73
topology 72

clustering 10, 12
cmb.tld 109
cmb81.jar 192
cmbCC2MimeURL 47

 491

cmbcmenv.properties 412–413
CMBConnection 151
cmbicmsrvs.ini 43
cmblog4j81.jar 192
cmblogconfig.properties 436
cmbsdk81.jar 192
cmbservlet.properties 167–169, 171
CMBServletAction 167
cmbsvclient 47
cmbview81.jar 114, 192
CMBViewerConfiguration.properties 114
cme.tld 109
collection 11
color scheme 221
com.ibm.mm.sdk.client 125
com.ibm.mm.sdk.server 125
common classes 125
common object model 124
CommonStore 4
config.properties 210
configuration

access 210
Content Manager 18
federated server connection 28
WebSphere Application Server 53

connection 140, 151, 338
Connection backlog 454
Connection Pool 450–452, 454
ConnectionType 47
connector 8, 25, 32, 43, 111, 145, 209

Content Manager 111, 131, 133
content server connector 7
DB2 135, 137
EIP 21
federated 111, 130, 137–138, 144, 149–150,
231, 264
federated connector 7
toolkit 23

container 105
applet 102
application client 102
Web 105
web component 102

Content Manager
attribute 130
connector 111, 131, 133
introduction 4–5
search flow 5
topology 18

content server 124
content server connector 7
continue workflow document 98
control flow 299

eClient 110
controller 107
controller servlet 124, 128, 162, 164, 176
conversion

mid-tier 460
cookie 211–212, 398
copy items to e-clipboard 92
create folder 91
createFedFolderEnabled 48
CreateFolderEnabled 48, 91
createFolderSupported 81
criteria

search 82–83
CsIniURL 47
CSS 214
CSS class

background 120
CTE0001 20
CTE0185 20
custom function 85, 247
custom JSP tag 108, 111
custom privilege 268, 270–271
cvb.CMB_DSTYPE_FED 112

D
data access 124
data model 283, 285, 290
data object 132–133, 177
data source 450
data structure 268
database

loading 456
sharing 27
statistics 455

DB2 184
DB2 Application Development Client 20
DB2 connector 135, 137
DB2 native attribute 138
db2java.zip 192
DDO 7, 132, 136, 138, 150
debug 440
deleting document 14
deploy eClient 446
deploy problem 445–446

492 eClient 101 Customization and Integration

Deployment Manager 68, 73
destroy 105
development environment 18
Development Workstation option 23
dialog_bk.jpg 121
direct access 209
direct object retrieving 15
directRetrieveEnabled 48
disk storage 19
displayServerType 48
DKDatastoreDB2 135
DKDatastoreFed 150
DKDatastoreICM 131
dklog.log 35, 436, 439
DMWorkflowPriority.jsp 119
DNS 398
document 283

actions in workflow process 98
add to workflow 95
add to workflow process 94
annotation 348
attribute access 86
collection 155
display 85
e-mail 84
e-mail problem 445
engine 126
export option 250
filter 286, 311
import 90–91, 296
launch problem 444
navigation 126
open 84
printing 86
process selected documents option 255
re-index 84
routing 15, 93
routing JSPs 119
search 5, 282
TIFF 85
training documents 11
view with plug-in option 254
viewer 226
viewer toolkit 128
viewing 124, 326
Word 85, 89

document services bean 126
document viewer bean 126
doGet 105

doPost 105
double-byte character set 445
Dynamic Data Object 7, 136, 138, 150

E
eClient 128

application structure 109
configuration properties 110
configure 46
control flow 110
customize 113
deploy 446
document search/retrieve flow 6
Information Center 110
install 41, 66
installation verification 50
log on 80
search 81
tracing 434
upgrade 208

eclient81.css 113, 121, 214, 219, 221
eclient82 109
eclient82.ear 269
eclient82.war 243
e-clipboard 14

clear 84
copy 84
copy items to 92
paste items from 92
view 84

Eclipse SDK 182
edge component 54
edit attributes 226
edit attributes window 226
edit item attribute 84
EIP

administration database 65
backend 209
connector 21
Information Center 123, 138
install 22, 64
Java API tracing 436

eip.ear 178
eip.war 178
EIP81Applet.swt 349
EIP81Body.swt 349
EJB 54, 102
e-mail 392

 Index 493

e-mail document 84
e-mail document problem 445
emailEnabled 47
enable_search_arguments 48
enhance_mode 48
Enterprise Java Services (EJS) WLM 54
Enterprise JavaBeans 102
Enterprise JavaBeans container 102
environment

Content Manager 18
ErrorPage.jsp 114
event flow 160, 287

text analysis 288
execute 132
execution plan 455
export

LTPA key 424

F
federated attribute 8, 130, 138, 143–144, 146–147
federated connector 7, 111, 130, 137–138, 144,
149–150, 209, 231, 264, 270, 287
federated content server 7
federated database 454
federated entity 8, 139, 143–144, 147, 158, 287,
374, 379–380
federated folder 15
federated query 139, 143
federated query string 137–138
federated search 157, 164
federated server 442
federated server connection 28
fetchNext 132
file

GIF 85–86
TIFF 85–88

First Steps 59, 128
flow control 109
folder

create 91
JSPs 118
note logs 14
operation 14

FoxPro 326
framework 60
function, custom 85

G
garbage collection 451–452
generic document viewer 126
GIF 85–86, 126
graphics

customize 113, 120–121
GSKit Installation 400

H
heading.jsp 117, 243, 248, 255
heap size 451–452, 454
highlight 86
home_bk.jpg 120
host name 25
HTML 10, 106, 112–113, 126–127
HTML tag 106
HTTP 104
HTTP request 54, 105, 450
HTTP server 104, 185
HTTP Web server 53

install 54
HTTPS 104, 423
HttpServlet 105
Hypertext Markup Language 113

I
IBM Directory Server 429
IBM HTTP Server 54–55, 402, 434, 444
IBM_eClient_82 446
ICMDisplayOrderEnabled 48
icmrm_logging.xml 210
ICMServersURL 47
IDM.properties 46, 81, 86, 90, 96, 112, 114, 199,
299, 393, 434–435
IDMActionPage.jsp 111, 114
IDMAddedItem.jsp 116
IDMAddItem.jsp 118
IDMAddItemToFolder.jsp 116
IDMadminDefaults.properties 46, 48–49, 86, 88

sample 87
IDMAdvancedSearch.jsp 117
IDMBasicSearch.jsp 112, 117
IDMBlank.jsp 115
IDMChangeAttributes 232, 234
IDMChangePassword.jsp 115
IDMClipboard.jsp 116
IDMCloseSelfWindow.jsp 115
IDMCloseWindow.jsp 115

494 eClient 101 Customization and Integration

IDMDeletedItem.jsp 116
IDMDeleteItem.jsp 116
IDMDocRoutingConfirmWindow.jsp 119
IDMDocRoutingGetWork.jsp 120
IDMDocRoutingInfo.jsp 120
IDMDocRoutingSelectUser.jsp 120
IDMDocRoutingSetOwner.jsp 120
IDMEditAttributes.jsp 116, 212, 228, 231–232, 234
IDMEmail.jsp 116
IDMFolderContents.jsp 118
IDMFolderDeleteItem.jsp 118
IDMInit 80
IDMIntegrator 332
IDMItemTypeList.jsp 111, 116
IDMItemTypeListFrame.jsp 111, 116
IDMItemTypeListTitlebar.jsp 116
IDMItemVersions.jsp 116
IDMLogon.jsp 115
IDMLogon2.jsp 80, 115
IDMLogonNewPassword.jsp 115
IDMMessageBox.jsp 115
IDMNoteLog.jsp 115
IDMODAnnotationsBB.jsp 118
IDMODAnnotationsBS.jsp 118
IDMODAnnotationsBT.jsp 118
IDMODAnnotationsEntry.jsp 118
IDMODAnnotationsFrame.jsp 118
IDMODAnnotationsList.jsp 118
IDMODAnnotationsView.jsp 118
IDMPrintControl.jsp 115
IDMPrintFrameset.jsp 115
IDMProcessing.jsp 115
IDMProgressIndicator.jsp 115
IDMQueryBuilder.jsp 115
IDMResultsFrameBottom.jsp 117
IDMSearch 112, 309, 327
IDMSearchFrame.jsp 112, 117
IDMSearching.jsp 117
IDMSearchResults.jsp 112, 117
IDMSearchTemplate.jsp 112, 117
IDMSearchToolbar.jsp 117, 243, 251, 255, 269,
307, 309
IDMSearchToolbar-Privs.jsp 269
IDMUserIDMapping.jsp 115
IDMUtilityBean 112
IDMViewApplet.jsp 117
IDMViewFrames.jsp 117
IDMViewPage.jsp 117
IDMViewToolbar.jsp 117

IDMWorkflowChange.jsp 119
IDMWorkflowCheckIn.jsp 118
IDMWorkflowDelNotif.jsp 119
IDMWorkflowFrames.jsp 119
IDMWorkflowInfo.jsp 119
IDMWorkflowNotifications.jsp 119
IDMWorkflowStart.jsp 119
IDMWorkflowStartOnMultiple.jsp 119
IDMWorkflowStrings.jsp 119
IDMWorkflowSuspend.jsp 119
IDMWorkflowToolbar.jsp 119
IDMWorkflowUserVariables.jsp 119
IDMWorking.jsp 119
IDMWorkItems.jsp 118
IDMWorkLists.jsp 118
image annotation 86
image manipulation 85–86
ImageURL 47
implement

custom functions 247
import document 90–91, 296
import item 84
import LDAP users 418
importEnabled 81
importing document 14
importSupported 48, 90, 296
Information access 6
Information Center 163

EIP 123
information extraction 10
Information Integrator for Content 128

information access 6
install 22, 64
installing 19, 22
introduction 6
services 6

Information Mining Service 9, 13, 124, 128,
155–156, 162, 168, 177, 286–287, 300, 307, 310,
321

architecture 11
features 10
subcomponents 24

Information Structuring Tool 13, 36, 156, 286
initial database loading 456
install space 19
Installation Launchpad 22
Integration Properties file 348, 350
Intel Pentium 19
internal replication domain 69

 Index 495

Internet Explorer 20
IP 348, 350
IP sprayer 54
IST 36, 156

cannot display properly 447
item 93

import 84
item attribute

edit 84
item type 82, 90, 227, 290, 340

extend 319
list 111

items JSPs 116
ItemTable.jsp 113, 116
ItemTableHeader.jsp 116
ItemTabs.jsp 116

J
J2EE 102–105, 107–110, 124, 128, 182, 188, 246,
326, 332, 334
Java 102, 326
Java API 124

tracing 436
Java class 108, 124
Java Development Kit 20
Java runtime environment 102
Java Service API

Information Mining Service 12
Java Virtual Machine 452
JavaBeans 107, 124–125
JavaBeans API 140, 151, 287
JavaScript 212, 233, 248, 251, 441
JavaServer Page 13, 102–103, 106, 348
JDBC 20
JPEG 126
JPG 218
JSP 13, 102–103, 106–110, 112–114, 120,
167–168, 170, 182–183, 202, 208, 233–234, 243,
264, 294, 335, 348, 441

annotations 118
application control flow 114
document routing 119
folders 118
items 116
search 117
workflow 118

JSP tag 107–109, 127
JSP tag library 109, 124, 127

JVM 450, 452
JVM heap size 451–452

K
Korean 445

L
language identification 10, 158, 161, 288
language identifier 311
launch 88
launch document problem 444
LaunchPad 22, 42
LaunchPad.bat 54, 57
LDAP 26, 43, 398, 404, 409–411, 413, 421
LDAP user registry 421
LDAP users

create 406
import 418

library path 163
Lightweight Third Party Authentication 398, 421
Line of Business 326
load balancer 54
loading database 456
LOB 326
LOBIntegrator 326–327, 336, 338
LOBServlet 340
local connector 21, 25, 32
log file 439

sample 435
log manager

configure 436
setup 437

LOG4J 436
log4j.jar 192
logon eClient 76, 80
logon problem 442
logon_bk.jpg 120
LTPA 398, 421

configure 421
LtpaToken 398

M
mail.jsp 116
maintenance 455

performance 455
map

attributes 130

496 eClient 101 Customization and Integration

mapping
schema 7–8

max_import_file_size 47
MaxResults 47
metadata 9
Microsoft Visual C++ 20–21
Microsoft Visual Studio .NET Professional 21
mid-tier conversion 460
mid-tier server 450, 454
MIME 48, 85, 87–88, 126
mini_bk.jpg 120
mining 9
model 107
Model-View-Controller 107, 110, 127, 169, 298,
308
monitoring 455

N
native attribute 130, 143–144, 226, 383
natural language 9
Net Search Extender 21
network communication 19
Network Deployment

administrative console 64, 67
environment 18

node 56, 60–62, 68, 93, 95
synchronize changes 75

node agent 62, 64
NOINDEX 83
non-visual Java beans 125

Information Mining Service 12

O
object display

configure 48
Object Server 4
OCR 176, 241
ODBC 20
OnDemand 4
only search option available problem 447
open

document 84
operating system 19
optical character recognition 176
overloaded 453

P
page viewing 126
parametric search 306–307, 314
Paste items from e-clipboard to folder 92
PDF 10, 126
PeopleSoft 4
performance 18, 49, 54, 450

monitoring 74–75
tuning 449

Performance Monitoring Service 74
persistent data object 152
Persistent Identifier 133, 136, 139, 141, 151,
159–160
persistent session management 69
PID 7, 133, 136, 139, 141, 151
port 202
port number 25
PowerBuilder 326, 344
prefer local 69
preferred_scale 48
priority 95
privilege 264, 267–268, 270–271
privilege group 264–265, 271
privilege set 264, 267
problem

access to CM 442
cannot display IST properly 447
deploy automatically 446
e-mail document 445
isolating 434
launch document 444
logon 442
only search option available 447
persistent blank window during deployment 445
unknown status in WebSphere Application Serv-
er 446
view Chinese character 445

process 93, 95
process information

workflow 85
processor 19
product.xml 21
production environment 18
programming model

request-response 104
programming tips 210

 Index 497

Q
query 307
query option 132
query string 132, 137–139, 144, 149, 151, 312

R
rebind 455
Records Manager 4
Redbooks Web site 490

Contact us xv
re-index document 84
reIndexEnabled 47
re-indexing document 14
remote connector 21, 32, 34
Remote Method Invocation 8, 124
remove from process

workflow document 98
reorg 455–456
reorganize 456
reorgchk 456
replication 69
request object 106–107
Resource Managers

multiple 52
response object 105
result event 287
RMI 8, 22, 25, 32, 34, 124
roll-over text 445
root category 156, 293
rotate document 126
rotate image 85
runstat 455
runtime environment

Java 102

S
s021124 20
SAP 4
scalability 54
scaling

document 126
schema mapping 7, 138, 150
scroll 85
search 110, 282, 291, 306–307, 312, 314, 316,
339–340

engine 124
federated 157, 164
flow 5

JSPs 117
only option available problem 447
query 307
result 83, 292, 307, 314, 318
results bean 287
results window 226

search criteria 82–83, 130, 151, 159, 288, 346
search template 8, 111–112, 128, 130, 137, 141,
144, 157–158, 164, 176, 232, 287–288, 369–370,
374, 379, 384, 442
SearchLongBySource 141
secure HTTPS 104
Secure Socket Layer connection 423
security 267
security constraint 110
serializable interface 125
server package 125
server weight 69
service method 105
servlet 102–110, 112, 127, 163–164, 167, 177,
208, 232–233, 264, 297, 300, 302, 309–310,
312–314, 316, 326–327, 332, 334, 336, 338, 343,
348, 440

API 211
context 106
controller 162, 164, 176
engine 450
filter 298
implement 105
wrapper 212

session object 106
SessionErrorPage.jsp 115
Siebel 4

Call Center 372, 378
CRM application 347
integration 347, 349
Web template 348–349

Siebel CRM application 349
Siebel Integration for IBM Content Manager 348,
351, 353, 388
Siebel.properties 350, 367
Simplified Chinese 445
single sign-on 372, 398, 410, 414, 420–421, 424

WebSphere 15
SortChildAttributeValues 48
source criteria 142
space 19
SQL07025 20
SQL08010 20

498 eClient 101 Customization and Integration

SRItemTableHeader.jsp 116
SSL 423
stamp 86
start process 85
sticky note 86
stored procedures 4–5
streaming document services 126
style sheet 121, 214, 218
summarization 10, 12, 160
summary 282–283, 286, 289, 296, 301
support channel 448
suspend workflow document 98
swap space 19

T
tag 170, 215
tag library 108–109, 124, 127, 163, 208
taglib.tld 163
taxonomy 11, 155–156, 158, 288, 301, 307
TCP/IP 19
template search 8
templateresults.jsp 170
temporary space 19
text analysis 9, 124, 155, 157, 288
text editor 182
text overlay 86
text search feature 124
text search query 307
thrashing 453
thread 451
TIFF 85–88, 176–177, 241, 249
TIFF plug-in 88
Tivoli Performance Viewer 75–77
Tivoli Storage Manager 21
toolbar 86
TotalMaxResults 47
trace 440

eClient 434
TraceLevel 47
Traditional Chinese 445
training document 11, 156–157
troubleshooting 434
tuning performance 449, 451
tx9_26a 21
tx9_81 21

U
unicode 28

unknown status in WebSphere Application Server
problem 446
upgrade

eClient 208
URL 302, 326, 337, 339–340

maximum length 210
user registry 398, 421

V
version information

view 84
versioning 14
viewer applet 15, 48–49, 451

customize 114
viewer toolkit 114, 125, 176, 179

document 128
viewerAppletEnabled 48, 86
Visual Basic 326, 343–344
Visual C++ 344
visual Java beans 125

W
web component container 102
web components 102
Web container 54
Web Crawler 10, 23
Web server 54, 104, 450
Web server plug-in 55, 73
Web server plugin WLM 54
Web server WLM 54
web.xml 40
WebSphere Application Assembly Tool 171, 178,
182, 294, 302, 312, 332
WebSphere Application Server 13, 18, 42, 50,
57–58, 61–62, 75, 103–104, 109–110, 162–164,
399, 446

install 56
unknown status problem 446

WebSphere Application Server Network Deploy-
ment 53, 64
WebSphere configuration repository 427
WebSphere Connection Pool 450, 452
WebSphere Network Deployment 53, 74, 77

configure 60
install 55, 57

WebSphere Portal Server 399, 430
WebSphere Resource Analyzer 454
WebSphere security configuration 427

 Index 499

WebSphere Single sign-on 15
WebSphere Studio Application Developer 103,
182, 184, 195, 210, 269, 332, 337, 440
WFPageHeading.jsp 119
wildcard 82
Windows 2000 Server 19–20
Windows NT 19–20
Windows XP 19
WLM 54
Word 85
Word document 89
workbench 184
workflow 9, 25, 93, 95, 97–98

advanced 93
JSPs 118
process information 85
start process 85

workFlowEnabled 47, 81, 96
WorkingDir 47
worklist 46, 93, 95, 97–98
workload balance 74–75
workload management 54
workspace 184, 186
WR21306 20

X
Xerces parser 210
XML 108, 127, 132, 210
XML-based query language 132
XQPE 132, 321
XQuery Path Expressions 132, 321
XYZEditAttrMethods.java 232

Z
zoom 85
zooming

document 126

500 eClient 101 Customization and Integration

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

eClient 101
Custom

ization and Integration

®

SG24-6964-00 ISBN 0738499196

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

eClient 101
Customization and Integration

Basic introduction to
installing and using
eClient

eClient
customization and
integration with
sample codes

Special topics on
information mining,
Siebel and single
sign-on integration

This IBM Redbook provides a basic introduction to IBM DB2 Content
Manager Version 8 eClient. By providing helpful, easy-to-understand
sample codes and step-by-step instructions, this redbook will help you
in your next eClient integration and customization project.
We provide detailed step-by-step instructions on installing eClient,
installing eClient in a WebSphere Network Deployment environment, and
using eClient.
To prepare for eClient customization and integration, we introduce J2EE,
servlets, and JSPs. We cover the eClient architecture and inspect a basic
eClient control flow. We also provide the essential information required
to start creating applications with EIP. We include sample codes to
demonstrate the usages of APIs. In addition, we provide step-by-step
instructions on setting up an eClient development environment and
discuss design and implementation considerations.
We provide sample codes for changing the look and feel, customizing the
edit attributes window, adding customized functions in the search
results window, and using EIP privileges for access control. By
demonstrating some of the customization with the sample codes, you
should have a better understanding of what and how you can customize
eClient for your business needs.
We cover e-mail integration and special topics on Information Mining
Service, Siebel integration, and single sign-on integration. The
installation, setup, configuration, and integration are presented with
detailed step-by-step instructions. We provide detailed sample codes for
enabling metadata-based data retrieval.
Finally, we provide tips and recommendations on how to troubleshoot
problems, with a list of typical problems and their resolutions. In addition,
we give a brief introduction on performance tuning for eClient.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Getting started with eClient
	Chapter 1. Introducing Content Manager
	1.1 Introduction
	1.2 Content Manager Version 8
	1.3 Information Integrator for Content Version 8
	1.3.1 Information access
	1.3.2 Services

	1.4 Information Mining Service
	1.4.1 Features
	1.4.2 Concepts
	1.4.3 Architecture

	1.5 Content Manager Version 8 eClient

	Chapter 2. Installing eClient
	2.1 Installation overview
	2.1.1 Topology
	2.1.2 Prerequisites

	2.2 Installing Information Integrator for Content Version 8 (EIP)
	2.2.1 Hardware and software requirements
	2.2.2 Installing EIP
	2.2.3 Post-installation
	2.2.4 Configuring EIP
	2.2.5 Verifying installation

	2.3 Installing and configuring the Information Structuring Tool on WebSphere Application Server
	2.4 Installing Content Manager Version 8 eClient
	2.4.1 Preparing for installation
	2.4.2 Installing eClient
	2.4.3 Configuring eClient
	2.4.4 Verifying eClient installation

	Chapter 3. Installing eClient in a WebSphere Network Deployment environment
	3.1 Introduction
	3.1.1 Introducing the scenario
	3.1.2 What is WebSphere Network Deployment?

	3.2 Installing HTTP Web server
	3.3 Installing WebSphere Network Deployment
	3.3.1 Installing WebSphere Application Server
	3.3.2 Installing WebSphere Network Deployment
	3.3.3 Verification

	3.4 Configuring WebSphere Network Deployment
	3.5 Installing EIP
	3.6 Installing eClient
	3.7 Creating eClient cluster server
	3.7.1 Creating eClient cluster server
	3.7.2 Viewing cluster topology
	3.7.3 Starting the eClient cluster server

	3.8 Configuring HTTP Web server
	3.9 Monitoring workload balance
	3.9.1 Enabling performance monitoring for eClient
	3.9.2 Monitoring workload balance

	Chapter 4. Using eClient
	4.1 Logging on to eClient
	4.2 Searching for documents
	4.2.1 Search results

	4.3 Displaying documents
	4.4 Importing documents
	4.5 Creating folders
	4.6 Document routing
	4.6.1 Adding documents to a workflow process

	Part 2 Preparing for eClient customization and integration
	Chapter 5. eClient architecture
	5.1 Introducing J2EE
	5.1.1 What is a servlet?
	5.1.2 What is a JavaServer Page (JSP)?

	5.2 Understanding eClient architecture
	5.2.1 Overview
	5.2.2 Inspecting eClient control flow

	5.3 Customization and integration
	5.3.1 Overview
	5.3.2 eClient JSPs
	5.3.3 Customizing eClient graphics

	Chapter 6. Creating applications with EIP
	6.1 Programming interface overview
	6.2 Taking an API test drive
	6.2.1 Setting up sample data
	6.2.2 Using Content Manager connector
	6.2.3 Using DB2 connector
	6.2.4 Using federated connector to access DB2
	6.2.5 Using federated connector to search across content servers
	6.2.6 Working with Information Mining Service
	6.2.7 Working with controller servlet
	6.2.8 Working with viewer toolkit

	Chapter 7. Setting up an eClient development environment
	7.1 Development environment options
	7.2 Using simple editor and command-line utilities
	7.3 Configuring Studio Application Developer for use with eClient
	7.4 Deploying customized eClient to another system

	Part 3 Customizing eClient
	Chapter 8. Design and implementation considerations
	8.1 Design considerations
	8.1.1 Considerations for incorporating future upgrades of eClient
	8.1.2 Considerations for working with different EIP back-end servers
	8.1.3 EIP back-end access vs direct access to back-end servers
	8.1.4 Maximum length of a URL
	8.1.5 Variations in Web browsers

	8.2 General programming tips
	8.2.1 Accessing configuration data using properties files
	8.2.2 Using cookies to maintain session status
	8.2.3 Invoking code on the server from JavaScript

	Chapter 9. Customizing look and feel using style sheets
	9.1 What is Cascading Style Sheets (CSS)?
	9.2 Simple CSS example
	9.2.1 Changing entry field text color
	9.2.2 Using background image

	9.3 Using CSS for eClient
	9.4 Changing background image on eClient

	Chapter 10. Customizing the edit attributes window
	10.1 Overview
	10.2 Configuring and using customization
	10.3 Edit attributes customization overview
	10.3.1 Understanding IDMEditAttributes.jsp
	10.3.2 Modifying IDMEditAttributes.jsp
	10.3.3 IDMEditAttributes.jsp code change details

	Chapter 11. Adding custom functions to the search results window
	11.1 Overview
	11.2 Adding custom entries to combo box
	11.3 Installing sample code
	11.4 Adding your own custom function
	11.5 Using sample code
	11.5.1 Export documents option
	11.5.2 View document with plug-in option

	11.6 Process selected documents option

	Chapter 12. Using EIP custom privileges
	12.1 Overview
	12.2 Defining custom privileges
	12.3 Checking for privileges in a JSP
	12.3.1 Installing sample code
	12.3.2 Checking custom privileges
	12.3.3 Source file XYZPrivsData.java
	12.3.4 Source file XYZPrivsMethods.java

	Part 4 Integrating eClient
	Chapter 13. Enabling metadata-based content retrieval
	13.1 Using categories and summaries in eClient searches
	13.1.1 Introducing the scenario
	13.1.2 Creating the data model
	13.1.3 Loading the data
	13.1.4 Searching with eClient
	13.1.5 Customizing eClient

	13.2 Creating categories and summaries during document import
	13.2.1 Changing eClient import behavior
	13.2.2 Implementing custom servlet
	13.2.3 Running new eClient import

	13.3 Searching for related items
	13.3.1 Adding new search results action
	13.3.2 Changing JSPs
	13.3.3 Implementing custom servlet
	13.3.4 Running new action

	13.4 Organizing existing items in Content Manager
	13.4.1 Extending item type
	13.4.2 Running OrganizeItems application

	Chapter 14. Invoking eClient from another application
	14.1 Overview
	14.2 Servlet source code
	14.3 Configuring and using the servlet
	14.4 Servlet URL syntax and source
	14.4.1 Servlet parameters
	14.4.2 Sample URLs

	14.5 Invoking the servlet from an application

	Chapter 15. Siebel Integration
	15.1 Introduction
	15.2 Installing Siebel Integration for Content Manager
	15.2.1 Installing Siebel Web templates

	15.3 Configuring eClient
	15.3.1 Configuring eClient application server in WebSphere
	15.3.2 Configuring integration properties file
	15.3.3 Configuring browser

	15.4 Configuring Siebel
	15.4.1 Configuring business component
	15.4.2 Displaying external content within an applet
	15.4.3 Configuring Siebel application

	15.5 Setting up Content Manager and EIP
	15.5.1 Creating attributes in Content Manager
	15.5.2 Creating item type in Content Manager
	15.5.3 Populating unstructured data in Content Manager
	15.5.4 Preparing EIP server
	15.5.5 Creating EIP federated entity
	15.5.6 Creating EIP federated search template

	15.6 Verification

	Chapter 16. Integrating with e-mail server
	16.1 Identifying e-mail server
	16.2 Configuring eClient to enable the e-mail feature
	16.3 E-mailing documents as attachment

	Chapter 17. Single sign-on
	17.1 Introduction
	17.1.1 Introducing the scenario

	17.2 Installing and configuring Directory Server V5.1
	17.2.1 Installing Directory Server V5.1
	17.2.2 Creating administrator DN and password
	17.2.3 Configuring database
	17.2.4 Creating a suffix
	17.2.5 Registering the LDAP server
	17.2.6 Creating LDAP user

	17.3 Configuring Content Manager V8.2 for LDAP
	17.3.1 Generating the properties file
	17.3.2 Installing properties file
	17.3.3 Installing user exit

	17.4 Configuring Content Manager V8.2 for SSO
	17.4.1 Enabling single sign-on
	17.4.2 Creating new privilege set

	17.5 Importing LDAP users into Content Manager V8.2
	17.6 Configuring WebSphere Application Server V5.0
	17.6.1 Configuring LTPA
	17.6.2 Generating LTPA keys
	17.6.3 Configuring LDAP user registries
	17.6.4 Enabling LTPA authentication
	17.6.5 Verifying WebSphere security configuration

	17.7 Verification

	Part 5 Troubleshooting, debugging, and performance
	Chapter 18. Troubleshooting and debugging
	18.1 Isolating problems
	18.2 Tracing eClient
	18.2.1 Configuring IDM.properties file
	18.2.2 Sample log file

	18.3 Tracing EIP Java API
	18.3.1 Configuring log manager
	18.3.2 Sample log file

	18.4 Additional trace information
	18.5 Debugging your application
	18.5.1 Debugging Java code using stdout
	18.5.2 Debugging JavaScript code

	18.6 Typical problems
	18.7 Support channels
	18.7.1 Official support Web site
	18.7.2 Forums

	Chapter 19. Performance tuning
	19.1 Introduction
	19.2 Tuning recommendations
	19.3 Maintenance and monitoring for performance

	Part 6 Appendixes
	Appendix A. Calculating memory needed for an image
	Introduction
	Calculate memory usage for applet viewer
	Calculate memory usage for mid-tier conversion

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

