Modernizing

IBM (@server

iISeries Application Data Access -
A Roadmap Cornerstone

Learn how to move your data definition
of your applications from DDS to SQL

~_
Discover the ways to enhance

your data access using SQL

Understand the iSeries

developers roadmap

Hernando Bedoya
Daniel Cruikshank
Birgitta Hauser

Sharon Hoffman

Rolf André Klaedtke
Warawich Sundarabhaka

ibm.com/redbooks Red hOOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Modernizing IBM @server iSeries Application Data
Access - A Roadmap Cornerstone

February 2005

SG24-6393-00

Note: Before using this information and the product it supports, read the information in “Notices” on
page Vii.

First Edition (February 2005)
This edition applies to Version 5, Release 3, Modification 0 of i5/0S, Program Number 5722-SS1.
© Copyright International Business Machines Corporation 2005. All rights reserved.

Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NOLICES . .. vii
Trademarks viii
Preface iX
The team that wrote thisredbook. iX
Become a published author Xi
CommeENts WEICOME. o e Xi
Part 1. Introduction and background 1
Chapter 1. iSeries Developer Roadmap - The big picture. 1
1.1 Introduction to the iSeries Developer Roadmap 2
1.1.1 Why @aroadmap.o e 2
1.1.2 Why careabout it 3
1.1.83 Thegoal e 4
1.2 Whatisintheroadmap e e e 4
1.2.1 Bettertools 5
1.2.2 Betteruserinterface e 6
1.2.3 Better architecture. e 7
1.2.4 Betterportability 8
1.2.5 Better scalability e 8
1.3 Whatisin this booK. e 9
Chapter 2. Why modernize with SQL and DB2 UDB foriSeries 11
2.1 BacKgrouNnd e 12
2.1.1 Ashortlook atthe history of SQL i 12
212 Themainparts of SQL 12
2.2 Reasonsto modernize 12
2.2.1 StandardcomplianCy e 12
2.2.2 OPBNNESS . o o ettt et et e e 13
2.2.3 Performance e 13
2.2.4 Available skills. 15
2.2.5 Functionality e 16
2.2.6 Dataintegrity.o e 17
Part 2. Data definition. 19
Chapter 3. Approachesandoptions i ... 21
3.1 Data definition considerations. 22
3.2 Accessingthedatabasedata 23
3.2.1 Native record level acCess o e 23
3.2.2 Dataaccess with SQL. 23
3.3 Methodology for the modernization. 25
3.3.1 Reverse engineering DDS to SQL DDL (stage 1)., 25
3.3.2 Creating I/O modules to access DB data (stage2)........................ 26
3.3.3 Moving business rules into the database (stage 3)............. 26
3.3.4 Externalizingdata access (stage4) 26
Chapter 4. Modernizing database definitions. 29
4.1 Reverse engineering DDSto SQLDDL i 30

© Copyright IBM Corp. 2005. All rights reserved. iii

4.1.1 Classify the existingenvironment i 30

4.1.2 Establishing a list of all DDS filestobe converted 31
4.1.3 Establishing naming conventions for SQL objects 32
4.1.4 Convertingthe DDSt0 SQLDDLttt 34
4.1.5 Reviewing the generated SQL DDLttt 36
4.1.6 Creating the new DB2 schema on the iSeriesserver...................... 40
4.1.7 Create all existing DDS logical files over the new SQL tables 43
4.1.8 Migrate data and test existing programs. 46
4.2 Comparing the SQL objects andthe DDSfiles. 48
4.2.1 SQL tables compared with physicalfiles. 48
4.2.2 SQL indexes compared with keyed logicalfiles 48
4.2.3 SQL views compared with logicalfiles 49
424 SQLAatatypPeSt e e 49
4.3 SQL system catalogs: Definitions 50
4.3.1 SQL system catalogs: Example 52
4.4 Partitioned tables 53
Part 3. Data @aCCessS 55
Chapter 5. Creating I/0 modules to access SQL objects 57
5.4 INtroducCtiono 58
5.2 Establish naming conventions. 58
5.3 Create SQL views based on business requirements 59
5.4 Create service programs to access data from the SQL views 62
5.5 Convert legacy programs t0 USE SErViCe ProgramsS. v vvi e ni et eeeeeanens 63
Chapter 6. Moving business rulestothe database 65
6.1 Database normalization 66
6.2 Referential integrity e 67
B.3 CoNStraints e e 67
6.4 Constraint coexistence considerations i 68
6.5 Column-level SeCUrity e 69
6.6 Column encryption e 69
6.7 Automatic key generation and unique identifiers oL 70
6.8 Accessing non-relationaldata. 72
6.8.1 User defined table functions for accessing non-relationaldata. 72
6.8.2 DatalinK.o e 74
6.8.3 Large Object SUPPOIt oo e 75
Chapter 7. Embedded SQL. 77
71 Howtogetstarted. e 78
7.2 Creating a SQLRPG - Program/service program/module. 79
7.3 Compile command CRTSQLRPGI i i 80
7.3.1 Missing compile options in the SQL compilecommand 80
7.3.2 Important compile options for SQL statements. 81
7.3.3 SETOPTION statement e 82
7.4 Error handling - SQLCA (SQL communications area).couiueenn... 82
7.4.1 SQLCODE e 84
74,2 SQALSTATE e e 85
7.5 Hostvariables 86
7.5.1 Singlefield hostvariable. 86
7.5.2 Hoststructure e 89
7.5.3 Hoststructure array e 89
7.5.4 Naming considerations for hostvariables. 91

iv

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

7.6 Exploiting SQL scalar functionsin RPG i 91

7.7 Static SQL without CUISOr e 94
7.7.1 Static SQL returninga single row 94
7.7.2 Processing non-Select statements with static SQL without cursor. 95

7.8 USING @ CUISOTt e e e e 98
7.8.1 The DECLARE statement. e e 99
7.8.2 The OPEN statement i e 103
7.8.3 The FETCH statement e 104
7.8.4 TYpPeS Of CUISOISottt e e e e e e e e e 107
7.8.5 Updating or deleting rows usSing a Cursorc.uuiinnnnnnnnen.. 108

7.9 Dynamic SQL 109
7.9.1 Defining the character string containing the SQL statement. 110
7.9.2 The EXECUTE IMMEDIATE statement 110
7.9.3 Combining the SQL statements PREPARE and EXECUTE. 111
7.9.4 Combining the SQL statements PREPARE and DECLARE. 113
7.9.5 The SQL descriptor area. ottt e e e 114

Chapter 8. Externalizingdataaccess 117

8.1 Trigger Programs.o i ittt e e 118
8.1.1 Activation time of trigger programs L. 119
8.1.2 Trigger eVeNtSo 121
8.1.3 External triggers 122
8.1.4 SQLANGOErS . . .ot 131
8.1.5 Getting information about triggers. 138

8.2 StOred ProCEeAUIES.ottt e 138
8.2.1 External stored procedures. e 139
8.2.2 SQL stored procedures.t e 143
8.2.3 SQL statement CREATE PROCEDURE. 144
8.2.4 Procedure signature and overloading. i 148
8.2.5 Deleting or replacing a stored procedure 151
8.2.6 Getting information about stored procedures 152

8.3 Userdefined functions 152
8.3.1 External user defined functions. 154
8.3.2 SQL user defined scalarfunctions i 159
8.3.3 User defined table functions 160
8.3.4 User defined function signature and overloading 160
8.3.5 Deleting or replacing a user defined function 162
8.3.6 Getting information about user defined functions 163

8.4 SQL programming languageottt e 163
8.4.1 Compound statement e 164
8.4.2 Control statements 164
8.4.3 Errorhandlingin SQL e 167

Chapter 9. Other considerations 171

9.1 Comparing RPGand SQL datatypes., 172
9.1.1 Characterdatatypes.ot e 173
9.1.2 Character fields with fixed and varyinglength. 176
9.1.3 Numericdata types. i e 178
9.1.4 Dateandtimedatatypes i 185

9.2 NULL values e e 190
9.2.1 Handling NULL values in RPG with native I/O 191
9.2.2 Using indicator variables in SQL. 193
9.2.3 Particular characteristics of NULL values in SQL statements. 195

Contents v

Part 4. Tools

9.3 Date andtime calculation 196

9.3.1 Converting from numeric/character date values to real date values.......... 197
9.3.2 Converting from date fields to character or numeric representation.......... 202
9.3.3 Checking foravaliddate ortime. 205
9.3.4 Retrieving currentdate andtime. 207
9.3.5 Adding and subtracting date and time values. 210
9.3.6 Calculating date and time differences. 213
9.3.7 Extracting a portion of a date, time, ortimestamp. 219
9.3.8 Additional SQL scalar functions for date calculation. 220
... 223
Chapter 10. DB2 DevelopmentTools. 225
10.1 WebSphere Development Studio Client for iSeries (WDSC) 226
10.2 iSeries Navigator. e 234
10.2.1 Database Navigator e 234
10.2.2 Run SQL SCHPtS . . o ot it 235
10.2.3 Visual Explain 235
10.2.4 Graphical iSeries System Debugger. 238
10.3 OS/400 Utilities oo e 243
10.4 DB2 Development Center. e e 243
10.5 DB2 Query Management Facility i 244
10.5.1 Migrating existing queries. e 244
10.5.2 Creating NeW QUENIESottt e e e e 248
Related publications e 255
IBM RedbookKsS e 255
Other publications e e 255
ONliNE FESOUICES . . o ittt e e e e e 256
How to get IBM RedboOKs o e 257
Help from IBM . .. e 257
INdeX . . . e e 259

Vi Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law. INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. vii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AS/400® Integrated Language Environment® RPG/400®
DB2 Universal Database™ IBM® System/38™
DB2® Language Environment® SQL/400®
DRDA® Net.Data® VisualAge®
@server® 0OS/390® WebSphere®
@server® 0OS/400® z/OS®
ibm.com® QMF™ zSeries®
iSeries™ Redbooks™

i5/0S™ Redbooks (logo) (@ ™

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

viii Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Preface

In 1978 IBM® introduced the System/38™ as part of its midrange platform hardware base.
One of the many outstanding features of this system was the built-in Relational Database
Management System (RDMS) support. The system included a utility for defining databases,
screens, and reports. This utility used a form named Data Description Specifications (DDS) to
define the database physical (PF) and logical (LF) files (base tables, views, and indexes).
This form was columnar in design and similar in style to the RPG/Ill programming language
(widely used on IBM midrange platforms).

In 1988, IBM announced the AS/400®. This was a single system that contained emulation
environments for the System/3x line of hardware products. The OS/400® operating system
also contained a built-in RDMS; however, IBM offered Structured Query Language (SQL) as
an alternative to DDS for creating databases. In addition, SQL Data Manipulation Language
(DML) statements were made available as an ad hoc query language tool. These statements
could also be embedded and compiled within high level language (HLL) programs.

SQL Data Definition Language (DDL) has become the industry standard for defining RDMS
databases. DDL statements consist of CREATE statements for defining database objects,
ALTER statements for customizing existing objects (for example, adding a constraint), and
GRANT statements for authorizing the access or permissions to database objects.

Many customers are in the process of modernizing their database definition and the database
access. This IBM Redbook will help you understand how to reverse engineer a DDS created
database, and provide tips and techniques for modernizing applications to use SQL as the
database access method.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Rochester Center.

Hernando Bedoya is an IT Specialist at the IBM ITSO, in Rochester,
Minnesota. He writes extensively and teaches IBM classes worldwide
in all areas of DB2® UDB for iSeries™. Before joining the ITSO more
than four years ago, he worked for IBM Colombia as an AS/400 IT
Specialist doing presales support for the Andean countries. He has

| 20 years experience in the computing field and has taught database
classes in Colombian universities. He holds a Masters Degree in
computer science from EAFIT, Colombia. His areas of expertise are
database technology, application development, and data
warehousing.

| Daniel R. Cruikshank has been an IT professional since 1972.

| Over his career, Dan has been involved in many application

| migrations from various platforms to the IBM iSeries family (that is,
System 38, AS/400, etc.). Since 1993, he has been focused
primarily on resolving iSeries (AS/400) application and system

| performance issues at several IBM customer accounts. In 1999 he
i also took on the role of instructor for the IBM DB2 UDB for iSeries
| SQL Optimization Workshop. More recently he has taken on
architectural and advisory roles within several major DB2 UDB for

© Copyright IBM Corp. 2005. All rights reserved. ix

iSeries reengineering projects. He is frequently called upon by the IBM Rochester Project
office to assist in critical customer situations worldwide involving SQL and DB2 UDB for
iSeries.

B Birgitta Hauser has been a Software Engineer since 1996, focusing
on RPG and SQL development on iSeries at Lunzer + Partner
GmbH in Germany. She graduated with a business economics, and
, started programming on the AS/400 in 1992. She is responsible for
the complete RPG, ILE, and Database programming conceptions for
Lunzer + Partner's own Warehouse Management Software
Package. She also works in education as a trainer for RPG and SQL
developers. Since 2002 she has frequently spoken at COMMON

: User Group in Germany. In addition, she is chief-editor of the iSeries
Nation Network (iNN, the German part of iSeries Nation) - eNews and the author of several
papers focusing on RPG and SQL.

Rolf André Klaedtke is an independent IT Specialist and owner of
RAK Software, Consulting & Publishing in Kreuzlingen, Switzerland.
Coming from a commercial background, he has accumulated
almost 20 years of experience in the IT industry, mostly as a
software developer on IBM’s S/38 and AS/400, but also as a

— Client/Server and Web developer using various DBMS, tools, and
languages. He is an author and the publisher of PowerTimes, a free
technical journal for software/Web developers, and has organized
technical conferences and user group meetings in Switzerland.

_ Sharon Hoffman is an iSeries writer and educator based in
Southern California. She has worked with IBM midrange systems
since 1981. Her background includes extensive application
development experience as well as creation and delivery of
technical education. Sharon is a Senior Technical Editor for iSeries
NEWS and also writes regularly for the magazine. In addition,
Sharon is an instructor for a variety of e-learning courses offered by
iSeries Network, and a regular speaker at iSeries industry events.

s Warawich Sundarabhaka is an Advisory IT Specialist with IBM

| Integrated Technology Services in Thailand. He has been with IBM
since 1991. He has over 20 years of experience in the computer field
and has worked with the AS/400 system since 1988. His areas of
iSeries expertise include performance management, and application
development using Java™, RPG, COBOL, and DB2 UDB for
iSeries. He has taught iSeries courses for IBM Thailand education.

Thanks to the following people for their contributions to this project:

Thomas Gray

Marvin Kulas

Joanna Miszczyk

International Technical Support Organization, Rochester Center

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Antonia Seymour
IBM Rochester iSeries Services Group

Jarek Miszczyk
Kent Milligan
IBM Rochester

George Farr
Claus Weiss
IBM Toronto

Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:
» Use the online Contact us review redbook form found at:
ibm.com/redbooks
» Send your comments in an email to:
redbook@us. ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2

3605 Highway 52N

Rochester, Minnesota 55901-7829

Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Xii Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Part 1

Introduction and
background

In this part we discuss and explain the iSeries developer roadmap. We also discuss the main
reasons why SQL is the best approach for data definition and data access in the

modernization process.

© Copyright IBM Corp. 2005. All rights reserved.

2 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

iSeries Developer Roadmap - The
big picture

From time to time, it is a good idea to lean back and have a look at the path of one’s
professional life. Where are we coming from? Where are we going? Have we reached our
goals so far? What needs still to be done?

This chapter provides a general overview of the iSeries Developer Roadmap. We explain the
reasons for the roadmap, its contents, and why it may be important to you and your
organization. It may help you to evaluate your current position and provide some guidance as
to the next steps to follow.

However, we do not cover too many details, and we provide no instructions on how to
implement its single steps in this chapter. The other chapters in this book provide more
technical details and in-depth information on how to concretely transpose the theory into
practice.

Additional information on the iSeries Developer Roadmap can be found on the following web
Site:

http://www-1.1ibm.com/servers/eserver/iseries/roadmap

Part of the information in this chapter was adapted from the above site.

© Copyright IBM Corp. 2005. All rights reserved. 1

http://www-1.ibm.com/servers/eserver/iseries/roadmap

1.1 Introduction to the iSeries Developer Roadmap

We all know that technology evolves on an almost daily basis. Just some years ago, having a
portable phone meant carrying a heavy, bulky case with an expensive phone that did not
connect you to the world from everywhere. Nowadays, almost everybody has a small,
convenient cell phone in their pocket. Many even received it for free just for signing up with a
phone company.

Programming languages and the related programming models have changed as well. From
the beginning many years ago, there were several paradigm shifts, and today graphical user
interfaces and object-oriented programming have become widely used mainstream
technologies.

The IBM @server™ iSeries and its predecessors have gained a strong reputation in the
industry for featuring a very stable, robust technology, and for being ideally suited as a
business computer system.

1.1.1 Why a roadmap

Mentioning the iSeries, in many, evokes the picture of a classical, green screen application.
There is no doubt about it that in many cases this certainly is still true, despite the fact that
IBM and its partners have been offering modern, graphically oriented development and
operating environments for the iSeries for some years now.

In the introduction of this chapter, we already pointed out that technology evolves rapidly.
Application development methodologies and database access methods are no exception to
this, and may need some serious overhaul. To help companies take the next step in
modernizing their applications and their development environments, IBM has created the
iSeries Developer Roadmap.

This roadmap has been specifically designed to take into consideration the extent to which
your shop is probably presently entrenched in a 5250 application model. The large amount of
experience accumulated in relation to the traditional programming languages that support
your green screen applications has also been accounted for. As mentioned in the opening
paragraph of this chapter, the roadmap’s aim is to help you evaluate your current position,
and to see the next steps to be taken. In the following chapters we provide the reasons why
we think the roadmap is important, and throughout the rest of this book we provide help and
guidance on the way to modernize your applications and database access.

In Figure 1-1 on page 3 you see a graphical overview of the roadmap.

2 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

@ server’

Tradifiona

Beffer
User lnferface

Beffer
Soalabilify

Beffer
Forfabilify

Beffor
Archifeciune

250 Weh Weh Wieh

Wb

FPortlets Fortla= ‘ort = Fartl

wilah ¢

RFGCOBOL

RFG/COBOL RFG/COEBOL RPGCOBOL --------- = Jaua

OBZ =nd SGEL DEZ=nd SGL

FOM

B 204 1B Corporaion
FAGE+

Re rrote Sy Remate Syaisn
Ex plo Explar
iSariea Wab

tools

igaries Web

Wieh S u] here

WebSphere

iSeries. mySeries.

Figure 1-1 iSeries Developer Roadmap: The big picture

1.1.2 Why care about it

Maybe the question is less why but when you should care about the roadmap and the issues
it is addressing. The field of Information Technology has always been a fast-changing one,
but some technologies and methodologies are here to stay. They will evolve but not go away
anytime soon.

As an individual, you may want to enhance your knowledge and learn new technologies in
order to strenghten or improve your position either in your current job or in the job market.
New programming languages and tools offer better support for the kinds of requests coming
from users you may have to satisfy, if not now yet then possibly in the near future. In short,
software development techniques, languages, and tools, as well as hardware technology, are
continually evolving and becoming more efficient, and you should as well in order not to be
left behind.

The reasoning for companies is almost the same as for individuals. Spending money for new
hardware may give you better response and execution times. But adapting your database
access methods and the architecture of your applications may gain you more flexibility when
it comes to adapting your business to a changing market. You may increase the level of
overall security and eliminate the source of errors by taking advantage of data integrity
features built into your database, contemporarily cutting down development times, because

Chapter 1. iSeries Developer Roadmap - The big picture 3

certain business rules do not have to be written in each application program anymore. Data
extraction for reports and exchange of data with other systems is easier when the tools and
systems involved use the same standard language: SQL.

The list of advantages is certainly not endless, but it is long enough to prove that having a
serious look at the roadmap and evaluating your current position and the possible next steps
to take is more than just a time-consuming exercise.

You may find that you are already at an advanced level. Fine. Isn’t it nice to receive a
confirmation that you are on the right path? If you are not at an advanced level, this book,
along with more resources available from IBM, are here to help you on your way to move into
the Web application world... in a staged, non-disruptive manner.

1.1.3 The goal

Simply put, the goal is to become a Web application-driven enterprise, taking advantage of
the scalability and flexibility gains offered by modern technologies, both in hardware and in
software engineering. Adapting your database access and software development practices is
as much a necessity as changing your business to changing market requirements.

For example, some years ago it was considered normal to order products by writing a letter or
a postcard. Then there were fax machines and now many companies accept orders 24 hours
a day during the whole year through their Web sites. Companies who did not keep up with the
changes could have faced receiving no more orders.

1.2 What is in the roadmap

4

The roadmap consists of discrete, achievable steps that move developers and applications
on the path to an excellently implemented Web future.

Many IT shops and Business Partners that use the iSeries platform today are to be found on
the left side of the chart. Typical development tasks still involve building and maintaining
green-screen applications using long-available compilers, such as RPG and COBOL, via
traditional 5250 tools such as Programming Development Manager (PDM), Source Entry
Utility (SEU), Screen Design Aid (SDA), and Report Layout Utility (RLU), some of which are
more than 20 years old.

The first step involves embracing modern tools to do the same development work previously
accomplished via PDM, SEU, SDA, and RLU (see 1.2.1, “Better tools” on page 5).

The next step (explained in 1.2.2, “Better user interface” on page 6), which is considered to
be urgent by end users (and also the most visible one), is a better user interface (Ul) than the
generations-old green screen. For most applications, this is best addressed by moving to a
browser-based user interface.

In 1.2.3, “Better architecture” on page 7, we discuss a significant step where—from scratch or
from cut-and-paste— you create a Web application, an application enhancement, or even a
new Web service. Separating the business logic from the user interface is a very important
experience, and is fundamental to a superior architecture that allows for logic reuse.

Better portability involves a move from creating business logic in traditional languages to
writing it in Java. You use simple, standard Java—referred to as Java 2 Standard Edition
(J2SE)—that accesses data in the familiar SQL ways. This step is introduced in 1.2.4, “Better
portability” on page 8.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Finally, on the far right, there is better scalability, introduced in 1.2.5, “Better scalability” on
page 8. For companies requiring highly scalable Web applications or the full object-oriented
and functional power of J2EE, the J2SE Java code is replaced with Enterprise JavaBeans
(EJBs) and Message Driven Beans.

1.2.1 Better tools

The first step in the iSeries Developer Roadmap does not involve any change to the
applications in use today. Rather, it enables the replacement of the traditional development
tools with more exciting and modern tools that support the same code base. Ultimately,
applications will still be written in a traditional language, such as RPG or COBOL, and will
continue to utilize a green-screen user interface through DDS.

Overview of the WebSphere® Studio family of tools

In June 2002, IBM introduced Eclipse technology and new Eclipse-based tools. As discussed
in the next section, Eclipse was donated by IBM to the open source community. IBM’s offer in
the tools area is known under the name WebSphere Studio and comes in different versions.
Figure 1-2 shows an overview of the WebSphere Studio family of products, which are all
based on Eclipse technology.

Enterprise Developer
AD-Integration Edition

e et

Figure 1-2 Overview of the WebSphere Studio family of products

Site Developer is IBM’s entry-level offering. It is used for building dynamic Web sites out of
non-EJB Java. Application Developer extends Site Developer and adds support for EJBs.
Application Developer - Integration Edition extends Application Developer and adds support
for JCA connectors and for workflow. Finally, the Enterprise Developer further extends the
tool and adds support for zSeries® and Enterprise Generation Language (EGL), the follow-on
to VisualAge® Generator.

Chapter 1. iSeries Developer Roadmap - The big picture 5

A few words about Eclipse

Eclipse is an open source software development project dedicated to providing a robust,
full-featured, commercial-quality, industry platform for the development of highly integrated
tools. Eclipse was developed by IBM and donated to the open source community. Eclipse can
be downloaded for free, including the source code. Eclipse has generated extraordinary
excitement both in the development and in the tools community. It is written in Java, and can
be extended by tools that are also written in Java. These tools are known as plug-ins. Out of
the box, Eclipse offers an integrated development environment (IDE) that has built-in support
for teams and projects and a robust and revolutionary user interface framework. It even
features tools built-in to create Eclipse plug-ins. Furthermore, there are extensive and
powerful tools built-in for developing Java applications with Eclipse.

Several excellent books on Eclipse have been written, and an impressive amount of free and
commercial plug-ins are available.

To download Eclipse or read more about it, go to the following Web site:

http://www.eclipse.org

To find plug-ins and other useful information on Eclipse, check out the following Web site:

http://www.eclipse-plugins.info

Tools in the iSeries development context

The traditionally used tools PDM, SEU, SDA, RLU, and the system debugger are replaced by
the Remote System Explorer (RSE) in the WebSphere Development Studio Client for iSeries.
RSE offers new tools for the development of RPG, COBOL, C, C++, CL, SQL, and DDS, and
significantly increases productivity over the host-based 3GL tools. Furthermore, RSE
introduces the same Interactive Development Environment (IDE) used further to the right of
the roadmap, which means the learning curves incurred now will be useful all the way down
the Web-enablement path.

Learning RSE also opens opportunities to access the next generation of third-party tools that
are built on top of Eclipse. Furthermore, RSE works not only with OS/400 files, commands,
and jobs, but also with IFS files and Qshell commands, and with Linux® files and commands
that reside in their own logical partition (LPAR). That is, from a Microsoft® Windows®
workstation, you can remotely access and edit files and run commands. RSE even works with
the files and commands in remote UNIX®, Windows, or Linux servers, as well as with local
Windows files and commands. Ultimately, as Java and Web services technologies are further
adopted, this consistent support across file systems and command shells will be very
important.

1.2.2 Better user interface

The next step in the roadmap deals specifically with creating better user interfaces on existing
applications. There are the following three IBM options that can be used to “re-face” the
application.

» IBM WebFacing Tool for iSeries
» WebSphere Host Access Transformation Services (HATS)
» iSeries Access for Web

All three produce a Web user interface (Ul) from a 5250 Ul, with no impact to underlying
application logic. They produce Uls that run on WebSphere Application Server - Express (or
later releases) or on any operating system that can support WebSphere Application Server.

6 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

http://www.eclipse.org
http://www.eclipse-plugins.info

The IBM WebFacing Tool for iSeries converts the display file source descriptions (DSPF
DDS), at development time, into a Web application that uses Java Server Pages (JSP). The
conversion is refined by the CODE Designer tool to add Web settings (via special comments)
into the DDS source, which affects the result of the conversion. The CODE Designer tool is
the follow-on to SDA, offering a 5250 WYSIWYG view of the application UI.

For more information on the WebFacing tool we recommend the IBM Redbook The IBM
WebFacing Tool: Converting 5250 Applications to Browser-based GUIs, SG24-6801.

HATS, the second “re-facing” option, is part of Host Integration Solution for iSeries. It
converts a 5250 or 3270 datastream, at runtime, to a browser-based interface that runs in
WebSphere Application Server. Because it is a runtime conversion, it instantly transforms
screens so that they can be displayed on the Web. HATS developers can easily refine, in a
repeatable manner, the conversion results to improve the Web Ul. The HATS development
environment plugs into WebSphere Development Studio Client for iSeries.

More information on HATS is available at the following Web site:

http://www-306.1bm.com/software/webservers/hats

At first glance, iSeries Access for Web seems similar to HATS in implementation. They both
perform 5250 to HTML conversion at execution time. However, the key strengths of iSeries
Access for Web are all of the additional things that it does, in addition to datastream
transformation. There are many “operational” capabilities inside the iSeries Access for Web
tool that allow a user to browse job queues and output queues, display message queues, etc.
While browsing a spooled file, it is possible to view the output in .pdf format and then e-mail it
to other users. It is a very powerful tool for remote operations, as well as being a
transformation tool.

Additional information on iSeries Access for Web is available here:

http://www-1.ibm.com/servers/eserver/iseries/access/web

1.2.3 Better architecture

This is the first step in the roadmap that involves re-working the application. In fact, new
business logic may have to be developed as well. The goal is to modularize the
code—splitting the business logic and user interfaces, and isolating functions such as
database access and printing. At this step the code is moved into the most current release of
its compiler language, RPG IV and ILE COBOL, for example. This is also the point at which
you would identify those functions that have historically been done inside the application
code, but should now ideally be moved to the database. Examples of this include referential
integrity, constraints, and stored procedures, just to mention a few of them.

By re-architecting the application into a modular one, you also allow for the replacement
and/or addition of modern technologies such as browser-based interfaces and distributed
database activity.

From DDS to SQL

For detailed information on how to move from DDS to SQL (that is, modernize your database
description and access), refer to Chapter 4, “Modernizing database definitions” on page 29.

Separate business logic from presentation

Separating the business logic from the presentation, especially the user interface, is a very
important step, and is fundamental to a superior architecture that allows for logic reuse,
easier maintenance, and more flexibility, for example, when it comes to adapt the business to

Chapter 1. iSeries Developer Roadmap - The big picture 7

http://www-306.ibm.com/software/webservers/hats
http://www-1.ibm.com/servers/eserver/iseries/access/web

new interfaces such as mobile clients (such as Personal Digital Assistants (PDAs) or cell
phones).

Struts

An even better architecture can be achieved through the usage of Apache’s Struts. Struts is a
very popular open source Web application framework that has become a standard, and more
and more companies are using it. Struts goes beyond the scope of this book. Please check
out the following WEB site for more information:

http://struts.apache.org

Struts implements the Model-View-Controller (MVC) design pattern. For an overview of Struts
and the MVC design pattern you may also check out the following Web site:
http://publib.boulder.ibm.com/infocenter/iadthelp/index.jsp?topic=/com.ibm.etools.struts.do
c/html/cstruse0001.htm

For even more information and detailed descriptions or tutorials, there are a number of
excellent books available.

1.2.4 Better portability

This step along the roadmap is designed for those who prefer that their application, or pieces
of their application, has the ability to move and execute on multiple platforms. This step is
also for those shops that might have a requirement to integrate some Java components into
their traditional applications.

To achieve better portability, the business logic is written in J2SE Java (Java 2 Standard
Edition), not in RPG or COBOL, which gives you the option of porting and deploying the code
to any server that runs a Java Virtual Machine (JVM). In other words, your code does not
have to reside or execute on an iSeries server. This opens interesting perspectives to
solution providers, who can extend the market for their applications.

Using Java to write the business code also allows for the incorporation of objects and
components, as well as many Java industry tools and standards that are available, such as
design patterns and the Unified Modeling Language (UML). The UML is an object-oriented
analysis and design language from the Object Management Group (OMG).

For more information on the UML and the OMG, visit the following WEB sites:
http://www.uml.org
http://www.omg.org

For a succinct description of the main concepts of the UML, we recommend the book UML
Distilled: A Brief Guide to the Standard Object Modeling Language, written by Martin Fowler
(ISBN 0-321-19368-7).

1.2.5 Better scalability

8

In this final step, the J2SE Java logic is replaced with full-blown Java 2 Enterprise Edition
(J2EE) Enterprise JavaBeans (EJBs) and Message Driven Beans (MDBs). This allows full
exploitation of the power of J2EE, for functionality and for object-oriented concepts. It also
permits the enterprise to tap into the J2EE developer community.

EJBs are beyond the scope of this book, but here is a short explanation and a pointer towards
more information.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

http://struts.apache.org
http://publib.boulder.ibm.com/infocenter/iadthelp/index.jsp?topic=/com.ibm.etools.struts.doc/html/cstruse0001.htm
http://www.uml.org
http://www.omg.org

An EJB consists of server-side Java logic that implements a business object, exposing a
simple set of methods to the rest of the application, while internally handling all the complexity
of multiple data sources and transactions.

For more information (both a high-level overview as well as implementation examples) on
Enterprise JavaBeans, we recommend the IBM Redbook EJB 2.0 Development with
WebSphere Studio Application Developer, SG24-6819.

1.3 What is in this book

The iSeries Developer Roadmap, which we introduced in this chapter, embraces
programming languages, tools, and database access, covering these topics from various
points of view.

In this book we concentrate on the database aspect of the roadmap. In Part 2, “Data
definition” on page 19, we define the terms used and look at the differences between DDS
and SQL, showing you (among other topics) how to reverse engineer DDS described files to
SQL.

In Part 3, “Data access” on page 55, we concentrate on data access; that is, we show you
how to access data using native /0 methods and embedded SQL, as well as how to
externalize data access.

The book closes with an overview of available development tools.

Chapter 1. iSeries Developer Roadmap - The big picture 9

10 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Why modernize with SQL and
DB2 UDB for iSeries

This chapter describes the benefits of moving the data definition and data access to SQL. It
provides a list of key points and discusses each one in more detail.

But let us start with some simple questions: Do you remember the 5 1/4 inch floppy disks on
earlier PCs or even the 8 inch floppy disks on the S/38? They were first replaced with 3 1/2
inch disks, and nowadays almost all software that you purchase comes on a CD-ROM.

Would you consider installing any software on any system using those small disks, except a

really small application that fits on a single one? Probably not, because besides the fact that
the initially mentioned disk drives are long gone and storage capacity was rather low, there is
at least one other good reason: Performance. Technology has evolved, and the same is true

for DB2 UDB on the IBM @server iSeries.

The list of key points that we think are the main reasons why you should consider moving
your data definitions and data access to SQL are the following:
» Standard-compliancy: SQL is a widely used standard.

» Openness: Modernizing your database provides you with more and better options to
access your database using third-party tools.

» Performance: IBM is investing money on improving database access through SQL, not
elsewhere.

» Available skills: In the long run, it might be easier to find developers on the market with
Java and SQL rather than RPG/COBOL and DDS knowledge.

» Functionality: Some new functions require SQL.

» Data integrity: Concentrating part of your business rules in the database can cut
development time and prevent bad surprises.

© Copyright IBM Corp. 2005. All rights reserved. 1

2.1 Background

To start with, let us take a very short look at the history and the components of SQL.

2.1.1 A short look at the history of SQL

In 1970, Dr. E.F. Codd, an employee of IBM, presented a relational model for databases. His
ideas were the groundwork for all modern Relational Database Management Systems
(RDBMS). The Structured English Query Language (SEQUEL) was developed in 1974 by
D.D. Chamberlin, an employee at IBM’s lab in San Jose (California) and renamed Structured
Query Language (SQL) three years later. The first commercial database with relational
capabilities was introduced with IBMs System/38, the predecessor of the AS/400 and iSeries.

The language SQL is not proprietary. This, and the fact that both the American National
Standards Institute (ANSI) and the International Standards Organization (ISO) formed SQL
Standards committees in 1986 and 1987, were major reasons for SQL to become a widely
accepted standard that is implemented in almost all RDBMSs.

At this time, three standards have been published by the ANSI-SQL group:

» SQL8Y (SQL1)
» SQL92 (SQL2)
» SQLY9 (SQL3)

2.1.2 The main parts of SQL

SQL includes a Data Definition Language (DDL) and a Data Manipulation Language (DML).
DDL contains statements to create, modify, and drop table and index definitions, as well as to
grant and revoke authorities on these objects. DML contains statements to insert, retrieve,
update, and delete database content.

For more information on SQL, you may refer to the following publications:
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

This is the iSeries Information Center Entry Page, where you can find a lot of iSeries-related
information.

2.2 Reasons to modernize

In this section we take a more detailed look at the key points enumerated in the introduction
of this chapter.

2.2.1 Standard compliancy

In the introduction above, we learned that SQL is a widely used standard. But what does that
mean to your business? Possibly a lot:

» Itis fairly easy to find books, training classes, and other resources on SQL in case you
need some advice or want to improve your knowledge of SQL.

» Most software tools support SQL, but the same is not true for DDS.

» You gain in portability. Your database definition and part of your business rules (defined
using Referential Integrity; see 2.2.6, “Data integrity” on page 17, for more details) can be
extracted easily and ported onto another platform or another DBMS, if that is required.

12 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html

Under 2.2.4, “Available skills” on page 15, we provide you with more reasons, namely the fact
that in the long run it might be easier to find human resources with knowledge of SQL rather
than DDS.

2.2.2 Openness

Modernizing your database gives you more options, such as easier access through
third-party development (Microsoft Visual Studio, Sybase PowerBuilder), reporting (Business
Objects Crystal Reports), or database design tools. Some of the tools on the market do offer
an interface for DDS-described DB2 UDB databases, but that is not the rule.

Furthermore, most Web-based application development tools offer built-in support for data
access through SQL, that is, they often generate all necessary SQL code for you. For
example, it is quite common to find configurations where the main business applications are
running on the iSeries, but where an Intel®-based server running MS Windows Server is
used for some Windows server based applications and/or for simple file serving. In such an
environment, access to DB2 UDB for iSeries is easier if it is done using SQL.

2.2.3 Performance

DB2 UDB for iSeries provides two query engines to process queries: The Classic Query
Engine (CQE) and the SQL query engine (SQE). Queries that originate from non-SQL
interfaces such as the OPNQRYF command, Query/400, and the QQQQry API are
processed by CQE.

SQL-based interfaces, such as ODBC, JDBC, CLI, Query Manager, Net.Data®,
RUNSQLSTM, and embedded or interactive SQL, run through the new SQE. The routing
decision for processing the query by either CQE or SQE is under the control of the system
and can neither be controlled nor influenced by the user or the application. However, a better
understanding of the engines and of the process that determines which path a query takes
can lead to a better understanding of a query's performance.

To fully understand the implementation of query management and processing in DB2 UDB for
iSeries, it is important to see how the queries were implemented in releases of OS/400
previous to V5R2.

Figure 2-1 on page 14 shows a high-level overview of the architecture of DB2 UDB for iSeries
before OS/400 V5R2. The optimizer and database engine are implemented at different layers
of the operating system. The interaction between the optimizer and the database engine
occurs across the Machine Interface (Ml).

Chapter 2. Why modernize with SQL and DB2 UDB for iSeries 13

14

F

4

Static Dynamic Ertvmd?d
Complied Dynamic
mhﬂdﬂd Pm::ﬂm Prepare once and
statements then reference

sSQL

Machine Interface (MI) _

Figure 2-1 Overview of the architecture of DB2 UDB for iSeries before 05/400 V5R2

Figure 2-2 on page 15 shows an overview of the DB2 UDB for iSeries architecture on OS/400
V5R2 and i5/0S™ V5R3, and where each SQE component fits. The functional separation of
each SQE component is clearly evident. In line with design objectives, this division of
responsibility enables IBM to more easily deliver functional enhancements to the individual
components of SQE, as and when required. Notice that most of the SQE Optimizer
components are implemented below the MI. This translates into enhanced performance
efficiency.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

ODBCIJDBC/ADO/DRDAXDA

|

all

= MNetwork 4
| Host Server | | CLVJDBC |
Static Dynamic Extended
Complied Prepare every Dynamic
embedded tirng Prepare once and
statements then reference
SQaL
Optimizer
Native | Query Dispatcher
(Record li0) CQEOptimizer ||| SQE Optimizer

Machine Interface (M)

DBE2 UDE (Data Storage and Management)

SLIC SQE Optimizer

‘ SQE
Statistics
Manager
CQE Database Engine | J | SQE Data Access Primitives

Figure 2-2 Overview of the architecture of DB2 UDB on OS/400 V5R2 and i5/0S V5R3

There are good reasons to assume that more resources will be invested into improving and
enhancing database access through SQL-based interfaces. This is another good reason for
considering SQL.

2.2.4 Available skills

For a business to be successful, more than a good product or services to offer are needed.
The people that run a business are one, if not the most important, asset. Constantly
improving their knowledge and skills means investing in the company, and is as important as
improving the quality of the products and services offered.

But it is also very important to look forward, trying to see the trends. Those who make the
best guess about what customers want to buy tomorrow and start preparing for that market
today, clearly have an advantage. Of course, looking into the future is not possible, but the
more flexible a business is, the better it can be adapted to new challenges. The same is true
for human resources.

Accordingly, the tools and techniques used to create software have evolved dramatically over
the years. Nobody would seriously consider writing a large business application using punch
cards anymore. Modern programming languages and tools provide possibilities that only a
few years earlier were maybe imaginable but not realizable for most of us.

Combining the above statements with the topic of this section, we think it is important to have
a look at the job market and the availability of the needed skills. Since the first release of RPG

Chapter 2. Why modernize with SQL and DB2 UDB for iSeries 15

and COBOL, many other new programming languages have come and gone; some have
remained and are widely used today. One of these languages is Java.

It appears clear that today more software developers are learning Java and SQL than RPG or
COBOL. This means that in the long run it might be easier to find software developers with
Java and SQL rather than RPG/COBOL and DDS knowledge. Modernizing the most
important applications using SQL rather than DDS is a first step to make sure that these
applications cannot only fulfill their purpose, but that there are also the necessary people with
the right skill sets to maintain and enhance them.

2.2.5 Functionality

Some functions in DB2 UDB for IBM @server iSeries require the use of SQL. Among these
are:

» New data types such as BLOB, CLOB, DBCLOB, and datalink.

— Large object data types store data ranging in size from zero bytes to 2 gigabytes. The
three large object data types have the following definitions:

e Character Large OBjects (CLOBSs): A character string made up of single-byte
characters with an associated code page. This data type is appropriate for storing
text-oriented information where the amount of information can grow beyond the
limits of a regular VARCHAR data type (upper limit of 32 K bytes). Code page
conversion of the information is supported.

* Double Byte Character Large OBjects (DBCLOBSs): A character string made up of
double-byte characters with an associated code page. This data type is appropriate
for storing text-oriented information where double-byte character sets are used.
Again, code page conversion of the information is supported.

* Binary Large OBjects (BLOBs): A binary string made up of bytes with no associated
code page. This data type can store binary data larger than VARBINARY (32 K
limit). This data type is good for storing image, voice, graphical, and other types of
business or application-specific data.

— A datalink value is an encapsulated value that contains a logical reference from the
database to a file stored outside the database.

» Auto-incrementing of keys (sequence objects and identity column attributes): Very often, a
new row in a table must receive a unique numerical value as a record ID. Instead of writing
code to create such a value, which in fact is a counter, let the database do this
automatically.

» Column-level triggers: In V5R1 IBM introduced support for SQL triggers in DB2 UDB for
iSeries, which allows you to write triggers using extensions to the SQL as defined by the
SQL standard. The greatest advantage of using SQL triggers is portability. You can often
use the same SQL trigger across other RDBMSs.

— For more information on triggers in DB2 UDB for iSeries, we recommend reading the
relevant chapter in the redbook Stored Procedures, Triggers and User Defined
Functions on DB2 Universal Database™ for iSeries, SG24-6503-01.

» Encryption and decryption functions: The ability to encrypt and decrypt data at the column
level has been enhanced with the addition of new SQL scalar functions. It is now possible
to invoke a DB2 SQL statement like the following:

INSERT INTO orders VALUES (ENCRYPT('1234-4567-8900-0001'), 'JOHN DOE')

Where the first value would represent a credit card number. Only those users and
applications with access to the encryption key (or password) can see the unencrypted (or

16 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

decrypted) credit card number. Others may access the table but have no access to the
encrypted values.

» Encoded Vector Indices: An encoded vector index (EVI) is an index object that is used by
the query optimizer and database engine to provide fast data access in decision support
and query reporting environments. EVIs are a complementary alternative to existing index
objects (binary radix tree structure - logical file or SQL index) and are a variation on
bitmap indexing. Because of their compact size and relative simplicity, EVIs provide for
faster scans of a table that can also be processed in parallel.

» DB2 SMP (parallel database processing): The DB2 UDB Symmetric Multiprocessing
feature (SMP) provides the optimizer with additional methods for retrieving data that
include parallel processing. Symmetrical multiprocessing is a form of parallelism achieved
on a single server where multiple (CPU and 1/O) processors that share memory and disk
resource work simultaneously toward achieving a single end result. This parallel
processing means that the database manager can have more than one (or all) of the
server processors working on a single query simultaneously. The performance of a
CPU-bound query can be significantly improved with this feature on multiple-processor
servers by distributing the processor load across more than one processor.

Note, however, that the parallel implementation differs for both the SQL query engine and
the Classic Query Engine.

2.2.6 Data integrity

It is general wisdom that saving data is crucial to the survival of any business. It is equally
important to make sure that the data itself is correct: What good would it be to save all the
information about an order, except the information relating to the customer itself? The
common term for this is data integrity.

Modern RDBMSs such as DB2 UDB support data integrity through the following features:

» Journaling: A journal is a chronological record of changes made to a set of data. Journals
record every change in a table so that in the case of a major failure, all the data can be
recovered using the latest save of the database and then applying the changes recorded
in the journal to the recovered database table.

» Constraints: Table constraints are used to enforce restrictions on the data allowed in
particular columns of particular tables.

— A table can have one PRIMARY KEY consisting of one or more columns.

— A set of one or more columns may be declared as UNIQUE, which means that there
may be no more than one row with a given value for certain columns, which are those
that form the key for the table (a social security number may be a unique key, because
there cannot be two people with the same social security number).

— Columns may have a CHECK constraint, which would specify the values allowed for
that column (for example, a field that holds a code representing the gender information
of an employee can contain ‘1’ for ‘Female’ or ‘2’ for ‘Male’ but not ‘3’).

» Referential integrity: Referential integrity (RI) is a type of constraint that deals with
relationships between tables. To reuse the example from the beginning of this section,
there would be a referential integrity check tying the order table to the customer table.
Each order would contain a valid customer number from the Customer table as a
FOREIGN KEY. The RI constraint would ensure that a customer cannot be deleted while
there are open orders of that particular customer in the order table.

» Commitment Control: Commitment Control is a mechanism to handle multiple table
transactions as a single unit of work. For example, the bank transfer of a salary payment
involves at least two table updates: First the deduction on the bank account of the

Chapter 2. Why modernize with SQL and DB2 UDB for iSeries 17

employer, and second the credit to the employee’s bank account. If there is a power
failure exactly in the middle between these two updates, the whole transaction would fail
and be rolled back.

» Triggers: Triggers are user-written programs that are run automatically whenever a
change is made to a table. Triggers can be defined to run BEFORE or AFTER an
INSERT, an UPDATE, or a DELETE. They are useful for tasks such as enforcing business
rules, validating input data, and keeping an audit trail. Such a program could, for example,
automatically send a message to a user when a value has been changed in a certain
table.

Traditionally, referential integrity rules and check constraints are tied into the application
program. Moving these business rules out of the application program into the database using
SQL constraints offers these advantages:

» Less coding required, because the rules do not have to be written in the program, making
the program smaller and therefore easier to understand and maintain.

» Better performance, because the DBMS handles these rules faster than a user-written
application program.

» Better portability, because the business rules are not hidden in the program but a part of
the database.

» More security: Business and data integrity rules defined in the database provide more
security because they cannot be circumvented by a faulty or incompletely written
application.

In DB2 UDB for iSeries, once these relationships and rules are defined to the database
manager, the system automatically ensures that they are enforced at all times, regardless of
the interface used to change the data (an application, the Data File Utility, Interactive SQL,
and so on).

To read more about the advanced functions supported in DB2 UDB for iSeries, refer to the
Redbook Advanced Functions and Administration on DB2 Universal Database for iSeries,
SG24-4249.

Furthermore, we recommend reading the redbook Stored Procedures, Triggers and User
Defined Functions on DB2 Universal Database for iSeries, SG24-6503, or at least the chapter
“Transaction management in stored procedures” for more information on transaction
management.

For more information on journaling on the IBM eServer iSeries, refer to the redbook Striving
for Optimal Journal Performance on DB2 Universal Database for iSeries, SG24-6286.

18 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Part 2

Data definition

In this part we discuss the issues, steps, and a methodology to modernize the data definition
of your existing database.

In Chapter 3, “Approaches and options” on page 21, we concentrate on the different
approaches and options available, and we introduce a proposed methodology that is used
throughout the book.

In Chapter 4, “Modernizing database definitions” on page 29, we concentrate on illustrating
how to reverse engineer an existing DDS-created database to SQL.

© Copyright IBM Corp. 2005. All rights reserved. 19

20 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Approaches and options

This chapter explores the issues you need to consider as you begin incorporating new
database development techniques with existing iSeries application and data definitions. It is
important to address these considerations, because most iSeries shops already have
significant investments in DDS and applications that manipulate data. Rather than abandon
this investment, we encourage you to learn about capabilities that complement and enhance
the functions that are available using traditional iSeries coding techniques in DDS, RPG,
COBOL, and other languages. In addition, while there are many benefits to using new
database functions and leveraging SQL to manipulate data, there are also many situations
where languages such as RPG or COBOL are more appropriate than any of the other
options.

This chapter gives you an overview of the different approaches and options that you have as
you begin the process of database modernization. We also introduce a methodology for this
modernization that we will be explaining throughout the book.

In this chapter, the following topics are discussed:

» Data definition considerations
» The different methods to access the database
» Methodology for the modernization

© Copyright IBM Corp. 2005. All rights reserved. 21

3.1 Data definition considerations

One of the first steps to learning SQL on the iSeries is to understand the SQL terminology.
SQL and traditional iSeries development technologies use different terminology to refer to the
exact same database structures; for example, an iSeries a physical file is a table in SQL
terms, a field is a column, a record is a row, a library is a schema, and so forth. The terms and
their SQL equivalents are found in Table 3-1.

Table 3-1 SQL terms and iSeries terms

SQL term iSeries term

Table Physical file

View Non keyed logical file
Index Keyed logical file

Column Field

Row Record

Schema Library, collection, schema
Log Journal

Isolation Level Commitment control level

Most database objects can be used interchangeably whether they are created using DDS or
SQL. For example, a physical file created using DDS can be manipulated using SQL, and
likewise, a table created using SQL Data Definition Language (DDL) has an external
definition that can be used in RPG and COBOL programs and is indistinguishable from one
created using DDS, as illustrated in Figure 3-1.

Approaches & Options

SQL Considerations:
Programs Multi-member &

’ multi-format files
/.3

SQL-created
objects

DDS-created Native*

objects

Programs

*Restrictions:

EVis, LOB columns,
UDTs, Datalinks, etc

Figure 3-1 Options and approaches

When you create a table using SQL you are creating a physical file object.

22 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

However, there are some differences between SQL and DDS data definitions. For example,
SQL views are very similar in concept to iSeries logical files, but logical files have some
capabilities, such as support for multiple formats, that are not available for views. Likewise,
views have some capabilities, such as the ability to maintain summary information, that are
not available for logical files. In Chapter 4, “Modernizing database definitions” on page 29, we
explore these issues in more detail.

There are also differences in data retrieval capabilities between SQL and languages such as
COBOL and RPG. For example, SQL does not support the concept of multi-member files, so
before you can use SQL to access any member except the first member of a multi-member
file, you will need to define an SQL Alias that points to the specific member and assigns it a
name. This will be discussed in Part 3, “Data access” on page 55.

In addition to different terminology for database structures such as files and fields, SQL does
support some data types, such as datalinks, that are not available in DDS. There are also
some restrictions on the HLL such as RPG and COBOL to define Encoded Vector Indices,
access LOB columns, and use User Defined Types or datalinks.

3.2 Accessing the database data

To access database data on the iSeries we can differentiate between two methods:

» Native database file operations or native 1/0O
» SQL

While native database file operations through high-level languages (HLL) such as RPG or
COBOL have been since the inception of the iSeries, SQL is a standard programming
language that can be used for all databases and can be embedded in all programming
languages. SQL provides not only functions to define database objects, but also to
manipulate database data.

3.2.1 Native record level access

Native record level access or native 1/O is the traditional way to access database files from
HLL like RPG or Cobol.

At compile time the physical and logical files that are used in the program must be existent,
because the file descriptions are bound into the program, module, or service program object.
It is only possible to access different files with the same structure dynamically, either through
overriding them (CL command OVRDBF) or using the keywords EXTFILE or EXTMBR for a
user-opened filed in the F-Specifications.

Through operations codes like READ or CHAIN the complete record can be accessed and
processed. You only can get access on selected fields when using a logical file with a field
selection; otherwise the whole record is read.

3.2.2 Data access with SQL

SQL statements are executed by a database manager. One of the functions of the database
manager is to transform the specification of a result table into a sequence of internal
operations that optimize data retrieval. This transformation occurs when the SQL statement is
prepared. This transformation is also known as binding.

All executable SQL statements must be prepared before they can be executed. The result of
preparation is the executable or operational form of the statement. Depending on the method

Chapter 3. Approaches and options 23

of preparing an SQL statement and the persistence of its operational, we can differentiate
between three methods:

» Static SQL
» Dynamic SQL
» Extended dynamic SQL

Figure 3-2 gives an overview over the different access methods.

Static Dynamic | Extended
Dynamic
Compiled Prepare Prepare
embedded | every once and
statements | time then
reference
Native SQL
(Record
110 .
) Optimizer
DB2 UDB
(Data Storage & Management)

Figure 3-2 Overview of database access methods

Static SQL

These SQL statements are embedded in the source code of a host application program.
These host application programs are typically written in HLL, such as COBOL or RPG.

The host application source code must be processed by an SQL pre-compiler before
compiling the host application program itself. The SQL pre-compiler checks the syntax of the
embedded SQL statements and replaces SQL statements with calls to corresponding SQL
function programs. If the tables used in the embedded SQL statements are not available at
compile time, a SQL warning is sent, but the program, module, or service program object is
nevertheless generated. In this case the access plan cannot be built at compile, time but at
runtime.

The pre-compiler is a part of the IBM licensed product DB2 Query Manager and SQL
Development Kit for AS/400 (5769-ST1), which must be available during the compile time.
The runtime support is included in the operating system. That means that compiled programs
or service programs containing embedded SQL statements can be executed even without a
SQL licence.

The SQL statements are therefore prepared before executing the program, and the
associated access plan persists beyond the execution of the host application program.

Dynamic SQL
Programs containing embedded dynamic SQL statements must be precompiled like those
containing static SQL, but unlike static SQL, the dynamic SQL statements are checked,

24 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

constructed, and prepared at run time. The source form of the statement is a character or
graphic string that is passed to the database manager by the program using the static SQL
PREPARE or EXECUTE IMMEDIATE statement. The operational form of the statement
persists for the duration of the connection or until the last SQL program leaves the call stack.

Access plans associated with dynamic SQL may not persist after a database connection or
job is ended.

Extended dynamic SQL
An extended dynamic SQL statement is neither fully static nor fully dynamic.

The QSQPRCED API (Process Extended Dynamic SQL) provides users with extended
dynamic SQL capability. Like dynamic SQL, statements can be prepared, described, and
executed using this API. Unlike dynamic SQL, SQL statements prepared into a package by
this API persist until the package or statement is explicitly dropped.

The iSeries Access Open Database Connectivity (ODBC) driver and Java Database
Connectivity (JDBC) driver both have extended dynamic SQL options available. They
interface with the QSQPRCED API on behalf of the application program.

For more information about SQL in DB2 UDB for iSeries, refer to the DB2 Universal Database
for iSeries SQL Reference in the iSeries Information Center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/db2/rbafzmst.ht
mL

3.3 Methodology for the modernization

The IBM Rochester iSeries Services Group has developed a methodology for reverse
engineering a DDS-created database along with modernizing applications to use SQL as the
database access method. We will be using this methodology in this book. This methodology
consists of four stages, which will be briefly described in this section. In the following chapters
we go into much more detail.

The four stages of the methodology are:

1. Reverse engineering DDS to SQL DDL

2. Creating I/0 modules to access DB2 data
3. Moving business rules to the database

4. Implementing advanced database functions

This methodology is based on existing applications that access the database via high level
language (HLL) I/O operations commonly referred to as native support.

3.3.1 Reverse engineering DDS to SQL DDL (stage 1)

The main objective of this stage is to replace the DDS-created physical files and access paths
with SQL-created tables and indexes. There may be some instances where programs need to
be recompiled. At this point legacy programs can continue to use native 1/O techniques.
Database changes will be done via SQL.

In Chapter 4, “Modernizing database definitions” on page 29, we cover all of the steps
involved in this first stage of the process.

Chapter 3. Approaches and options 25

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm?info/db2/rbafzmst.htmL

3.3.2 Creating I/0 modules to access DB data (stage 2)

The main goal of this stage is to minimize the impact of change on the business. This is
achieved in two ways:

» By de-coupling the database access from the application program.

» By utilizing SQL views as the only way to access the data. Adding new columns to the
database has no impact on existing views, thus eliminating the need to recreate the views
and supporting programs. These views can be accessed via service programs or directly
through ODBC or JDBC SQL statements.

The process involves a phased approach to replace native I/O operations with SQL data
access methods. The strategy of using /0O modules is to limit the SQL optimization
knowledge to the database programming group. This will allow the application programmers
to focus on solutions to business requirements without a need to understand the complexities
of database optimization.

The 1/0 modules mask the complexity of the database from the application programmer. For
example, a HLL program may be performing several read operations to multiple files to fill a
subfile. This could be replaced by a single call to an I/O module, which performs a single SQL
fetch operation to a join view and returns a single host array (multiple occurrence data
structure in RPG) to the caller.

In addition, the I/O modules allow the database programmer to take advantage of database
functions (that is, date and time data types, variable length fields, identity columns, etc.), thus
eliminating many common HLL programming requirements. This includes programming
required to format date and time data, formatting address lines, etc.

In Chapter 5, “Creating I/O modules to access SQL objects” on page 57, we cover the steps
required for this stage.

3.3.3 Moving business rules into the database (stage 3)

The objective of this stage is to start leveraging the advantages of DB2 UDB for iSeries by
moving some of the business logic into the database by using:

Referential integrity

Check constraints
Column-level security
Column encryption
Automatic key generation
Accessing non-relational data

YyVyVYyVYyYVvYyYy

Since many customers have never taken the time to truly normalize their existing DDS
database, this is a good opportunity to do so.

3.3.4 Externalizing data access (stage 4)

The objective here is to continue to replace application function with equivalent database
function. This includes the use of database triggers, user defined functions (UDF), User
Defined Types (UDT), stored procedures, etc.

Database triggers can be used to perform additional updates to auxiliary tables, possibly
eliminating overnight batch updates. They can also be used to initiate asynchronous
background tasks via data queues.

26 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

User defined functions can provide support for actions required on each row returned in a
result set. Rather than performing this operation in the HLL program, the function is executed
as the result set is being created.

Chapter 3. Approaches and options 27

28 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Modernizing database definitions

Starting from V5R1 of OS/400, IBM introduces the ability to reverse engineer database
objects created via Data Definition Specification (DDS) to SQL Data Definition Language
(DDL) schema. There are several reasons behind this enhancement, some of which are:

» Provide access to database enhancements that are only being made to SQL-created
databases.

» Provide portability capabilities to PC-based data modeling tools that only support SQL.

» Provide compatibility with other IBM DB2 Universal Database (UDB) products and
strategic application development platforms such as WebSphere Development Studio
Client.

» Provide an easy way to move the data definition to SQL.

In this chapter we describe the methods and considerations in the process of modernization
of the database definition.

Note: There is not a unique solution that fulfills all the application development
environments. We introduce some guidelines to help you to modernize your applications to
use and exploit the features of SQL.

© Copyright IBM Corp. 2005. All rights reserved. 29

4.1 Reverse engineering DDS to SQL DDL

In the methodology proposed in 3.3, “Methodology for the modernization” on page 25, the first
step is to modernize the DDS-created databases. The main objective of this stage is to
replace the DDS-created physical files and logical files (access paths) with SQL-created
tables and indexes. There may be some instances where programs need to be recompiled.
At this point legacy programs can continue to use native I/O techniques. One of the goals of
this step is to minimize the impact of the conversion to the existing programs.

The complexity of this stage is dependent on the current condition of the existing database. If
all files are fully described DDS files then there should be few, if any, exceptions. This step
requires iSeries Navigator V5R1 or later. If you are not familiar with iSeries Navigator, we
recommend that you read the redbook DB2 Universal Database for iSeries Administration
The Graphical Way on V5R3 - SG24-6092.

The following is an overview of the steps required in this stage:

Classify the existing environment.

Establish a list of all DDS files to be converted.

Establish naming conventions for SQL objects.

Convert the DDS to SQL DDL.

Review the generated SQL DDL.

Create the new DB2 Schema (collection) on the iSeries server.
Create all existing DDS logical files over the new SQL tables.
Migrate data and test existing programs.

ONOOAWND

4.1.1 Classify the existing environment

The first step in this stage is to classify and understand the existing environment that is going
to be converted to SQL. The amount of effort required in the conversion is going to be
determined by the environment. The different environments can be classified as the following
ones:

» Class 0 - Program described files.

In this environment the DDS would contain some key fields and one great big field. The
great big field would be specified in RPG in an | spec and in COBOL in the FD section.

» Class 1 - Mix of program described files and externally described.
This environment usually has no normalization in place.
» Class 2 - Externally described no referential integrity.

In this environment there is some sort of normalization, journaling is usually not used, and
the physical files or logical files have unique keys defined.

» Class 3 - Externally described and some referential integrity constraints.

In this environment there is more of a degree of normalization in place. Transaction files
usually are in 2NF and master files in 3NF. Primary and foreign key constraints are
defined, journaling is used, and commitment control is probably not.

» Class 4 - Externally described, referential integrity, and some business logic has been
moved to the database.

In this environment the database is highly normalized. Some of the business logic has
been moved to the database using R, triggers, stored procedures, UDTs, and UDFs.
Journaling and commitment control are used.

30 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Figure 4-1 illustrates the different environments and the amount of effort required for each

Classify the existing environment

= Class 0 - Program described data
> DDS contains some key fields and one GBF (great big
field)
— GBF is described in RPG | spec or COBOL FD
Class 1 - Mix of program described and externally described
> Older systems still work - no need for change
> Newer systems use DDS
— no normalization process
Class 2 - Externally described no Referential Integrity (RI)
» some normalization - no journal
> unique key PF or LF
Class 3 - Externally described some RI constraints
» Transaction files normalized to 2NF, master files 3NF
» Primary and foreign key constraints - journal, no commit

Class 4 - Externally described, Rl and some advanced
database function

» Highly normalized
> constraints and triggers being used - commitment control

environment.

Figure 4-1 Classify the existing environment

4.1.2 Establishing a list of all DDS files to be converted

After determining the environment that we have, the next step in this stage is to establish a
list of physical and logical files to be converted to SQL. If you want to do a pilot, choose a
physical file with a reasonable amount of associated logical files and programs related to it.

The list gathers statistics to determine the physical files with the fewest, most, and average
number of dependent logical files and programs. Choose a physical file with the average
number of associated logical files and programs. This will be the pilot file for re-engineering.

The Table 4-1 shows an example of this list.

Table 4-1 Example of the list of DDS files

Physical file No. of LFs No. of Start of Conversion | Length of
programs conversion | completed conversion

PF1 2 4 8/5/2004 8/6/2004 1 days

PF2 12 24 8/6/2004 8/12/2004 6 days

The iSeries system catalogs have information of the database objects. You can query the
system catalog tables to find out, for example, the number of physical files to convert using
the following SQL statement:

select count(*)from gqsys2.SYSTABLES
where table_schema = 'APILIB' and
table type = 'P' and

Chapter 4. Modernizing database definitions 31

file_type = 'D'

To find out the list of the physical files in a given library, use the following SQL statement:

select table_name, table type, file_type from qgsys2.SYSTABLES
where table_schema = 'APILIB' and
table_type = 'P' and
file_type = 'D'
order by table_name

In the previous example, we wanted to build the list of all data physical files in library APILIB.
We queried from the system catalogs, SYSTABLES, in QSYS2 schema. The TABLE_TYPE
is ‘P’ for physical file, and the FILE_TYPE is ‘D’ for data. You have to select FILE_TYPE if
your library also contains source physical files. Figure 4-2 shows result of the query.

TABLE_MNAME TABLE TYPE | FILE_TYPE
CSTMR P D

DSTRCT P D |
ITEM P 0 |
ORDERS P o
ORDLIN P D W
PARTS P D]
ETOCK P D |

Figure 4-2 List of data physical files from SYSTABLES

This query can help you find out what physical files/logical files are in a library. It can be used
to make the list of DDS files to be converted. Later in this chapter we cover the system
catalog tables in more detail.

4.1.3 Establishing naming conventions for SQL objects

DB2 UDB on iSeries provides long name support for SQL objects and column names in a
table. SQL objects and column names have a maximum length of 128 and 30 characters,
respectively. But many OS/400 utilities, commands, and interfaces only support a
10-character length. This may become an issue when using native commands to access SQL
objects, but we will show how to circumvent this issue.

To circumvent the long and short name, the FOR COLUMN clause on the CREATE TABLE
statement allows you to specify a short name for your long column names that can be used
on the interfaces that cannot support field names longer than 10 characters. If a short name is
not specified, the system will automatically generate one. The CREATE TABLE statement,
however, does not allow you to specify a short name for the table name. Again, the system
does generate a short name automatically, but the short name is not user-friendly. For
example, when you create a table named CUSTOMER_MASTER, OS/400 automatically
generates a short 10-character name, CUSTO00001, which is the first five characters of the
table name and a unique 5-digit number. It might be different each time a specific object is
created, depending on creation order and what other objects share the same 5-character
prefix. In this case you can use the RENAME TABLE SQL statement.

To circumvent the long and short name, you can use SQL DDL statements to specify your
own short name, as shown in the following examples:
» RENAME TABLE (table and view) and RENAME INDEX.

CREATE TABLE MYSCHEMA.CUSTOMER_MASTER
(CUSTOMER_NAME FOR COLUMN CUSNAM CHAR(20),

32 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

CUSTOMER_CITY FOR COLUMN CUSCTY CHAR(40))

RENAME TABLE MYSCHEMA/CUSTOMER MASTER TO SYSTEM NAME CUSTMST
» ALIAS can be used with the short table name.
CREATE ALIAS MYSCHEMA/CUSTOMER_MASTER FOR MYSCHEMA/CUSTMST

» For the column name, you can use the FOR COLUMN clause when creating the table or
view.

CREATE TABLE MYSCHEMA/CUSTOMER_MASTER (CUSTOMER_NUMBER FOR COLUMN
CUSTNO INTEGER NOT NULL WITH DEFAULT, CUSTOMER_NAME FOR COLUMN
CUSTNAM VARCHAR (50) NOT NULL WITH DEFAULT)

» For procedures and functions, you can use SPECIFIC clause at creation time.

CREATE PROCEDURE MYSCHEMA/MY_PROCEDURE (IN paraml CHARACTER (10),
OUT param2 CHARACTER (10)) LANGUAGE RPG SPECIFIC MYSCHEMA/MYPROC
NOT DETERMINISTIC NO SQL EXTERNAL NAME MYSCHEMA/MYRPG PARAMETER
STYLE GENERAL

It is important to create a glossary of reserved words for naming objects. This glossary would
contain the complete word; how it is used; and standard 2, 3, and/or 4 character
abbreviations, as shown inExample 4-1.

Example 4-1 The example of a glossary or data dictionary

Cross reference
APLIB = DB2_APP
CUSTMAST = CUSTOMER_MASTER
Standard abbreviations
Application codes - 1 to 3 characters
Table names - 2 to 4 characters
Functions - 3 to 4 characters
Examples
Account = A, AC, ACC, ACCT
Amount = AM, AMT, AMNT
Customer = C, CM, CUS, CUST
Date = D, DT, DTE
Suffix ids
X1 = binary radix index
PK = Primary key
El1 = EVI

The following are some suggested guidelines for establishing SQL table and index naming
conventions.

Note: These suggestions are not meant to replace your existing standards and
conventions. The message that we want to highlight is that there should be some naming
conventions in place.

» Avoid using the object type as part of the object name. For example, do not use the words
FILE, TABLE, or INDEX as part of the name.

» Use the table name and a suffix for SQL indexes. Do not be concerned about the length of
the name, as indexes cannot be specified in an SQL statement. On the iSeries server,
indexes provide statistics and can be used to implement a query. For example,
CUSTMST_XO001 is a radix index over CUSTMST, or CUSTMST_V001 is an Encoded
Vector index over CUSTMST.

Chapter 4. Modernizing database definitions 33

4.1.4 Converting the DDS to SQL DDL

34

Now we are ready to convert the DDS-created files to SQL. To do this we use iSeries
Navigator as the tool to convert the object definitions from DDS to SQL. The tool generates

the SQL statement from the existing database objects. This process is often referred to as
reverse engineering.

Let us illustrate how to do this conversion for our APILIB library.

» To access the iSeries Navigator tool, expand an iSeries connection and select
Databases — Database (S104RT9M) — Schemas. Then right-click the library, APILIB,
and select Generate SQL, as shown in Figure 4-3.

@ iSeries Mavigator [Z]@
File Edit Yiew Help
b 2 1 minutes old
| Environment: My Connections | AsZT: APILIE Database: S104rtSm Schema: ARILIE
EN- #/ | Name —_
-1 Basic Qperations [E=1a0 obiects
Mgssages = pliases
Printer Cutput ‘E}Constraints
o % ?rl;ters ZEDistinct Types
obs
Funci
+ @ Work Management %IUSC ons
+ % Configuration and Service Jn exelsR)
= Metwark gE Journal Receivers
+-88 Security g]ournals
+ 9‘: IUsers and Groups o Procedures
= Databases " Sequences
- S104rtom Gl 50L Packages
] [@ sch [rables
+ ql Triggers
Dal Explore @\-‘iews
SQL Perfor Cpen
+ "t‘t.\ Transactiol Cpeate Shorkcut
+-oF, File Systems Custornize this View »
+ Backup
+-{8 Application Develo|| Generate SQL...
¥ @ AFF Manager Permissions
= Remove from List
IF hs7
Add & connection Delete... ck schiemas ko display Create a new summary SQL performance r
nstall additional componer an SCHp reate a new detaie performance m
@I tall additional 0L scripk EC 1t detailed QL perf
Hlew vour database ¥ Help For related tasks
Properties
Generate the SOL For this schema and all objects within this schema.

Figure 4-3 Select a library to generate SQL DDL

» The Generate SQL window (Figure 4-4 on page 35) displays the database object to be
converted. You can remove unwanted objects being converted, such as source physical
files.

Important: You should be aware that the Generate SQL option can only convert the
SQL-supported objects. Thus:

» Unsupported objects such as multiple format logical files are not displayed and
converted in the Generate SQL window.

» Keyed logical files are converted to SQL views.

The generated SQL source can be stored in either a source physical file member on the
iSeries server or in the Run SQL scripts window or the IFS. On the Output tab, choose
either Open in Run SQL Scripts or Write to file. Then click Generate.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Generate SOL - As27(S104rt%m)

SAL will he genarated far the following objects:

Mame | Schema Type |
APILIE Schema - Add
[C5TMR AFILIB Tahle
0 DSTRCT AFILIE Tahle
dH APILIE Table Remove
£ ITEM ARILIE Tahle
[0 ORDERS APILIE Tahle j
Output l Optinnsl Formatl
+ Dpenin Run SGL Scripts
" Write to file
|Database source file =l
=

| Generate

Cancel | Help @

Figure 4-4 Generate SQL window

» The RUN SQL Scripts window (Figure 4-5) shows the generated SQL scripts. These are
SQL DDL statements, which can be saved on your PC and executed to create new
schema and other database objects from this window. You can also save the SQL scripts
in the source physical file and execute by calling the RUNSQLSTM command.

File Edit “iew Run ‘isualExplain Maonitor OCptions Connection Help
HEd R FERO O | ww @
Examples |

ﬂ Insert

- Generate SOL

- Wersion:

- Generated on:

- Relational Database:
— Standards Option:

WIRIMO 040528
08/27/04 11:25:55
S5104RT9M

DBEZ2 LIDE iSeries

REATE SCHEMA APILIE ;
- SOL1S0C 10 CRTAUT for schema APILIE ighored,

CREATE TABLE APILIE.CSTMR (

~ SQLISOE 10 REUSEDLT(*NO) in table CSTMR in APILIE ignored.
— 50L1509 10 Farmat name CSRCD for CSTMR in APILIE ighared,

CID CHAR(4) CCSID 37 NOT MULL DEFAULT ",
COID DECIMAL(Z, 0) NOT MNULL DEFAULT O,

— SOL1S0D 10 EDTCDE in column COID ignored.
CWID CHAR(4) CCSID 27 NOT MULL DEFALULT ™,

CIMIT CHAR(2) CCSID 37 MOT MULL DEFAULT ',

CLDATE MUMERIC(S, 0) MOT NULL DEFAULT O,
- SQL1S0D 10 EDTWRD in column CLDATE ignored.

CDCT DECIMALLS, 43 NOT MULL DEFAULT O,
- SOL1S0D 10 EDTWRD in column COCT ignored.

CFIRST CHAR(16) CCSID 37 NOT MULL DEFAULT ™,
CLAST CHAR(16) CCSID 37 NOT MULL DEFAULT ",
CADDR1 CHAR(Z0) CCSID 37 MOT MULL DEFALLT ',

CCREDT CHAR(2) CCSID 37 MOT MULL DEFAULT ",
CADDRZ CHAR(Z0) CCSID 37 MOT MULL DEFALLT ™,

Figure 4-5 The generated SQL scripts

Chapter 4. Modernizing database definitions

35

You can choose to generate a SQL script for an individual database object. Right-click the
desired object and repeat the steps as previously described.

Note: The Generate SQL option on iSeries Navigator really invokes an API called
QSQGNDDL on the iSeries. This API can be used directly in an CL program if you prefer.

Manage the generated sources

As mention earlier, you can choose to store the generated sources in either source physical
file members on the iSeries server or in directories on a PC or in the IFS. You should have
policies to control those sources as other applications codes. For example, if you are familiar
with the development environment on an iSeries server, you may be comfortable saving the
sources in source physical files and using OS/400 utilities to administer things such as
security and version control. If you are familiar with and use PC development tools then you
may prefer to store them and manage the SQL source code on a PC or on the IFS.

4.1.5 Reviewing the generated SQL DDL

Now that we have generated the equivalent SQL code to reverse engineer the database it is
time to review the generated SQL code. There are some changes that have to be made to
this generated code in order to be able to execute it successfully. For example, you may need
to change the name of the new schema for all the objects. We discuss those issues in this
section.

The first thing to do in this step is to look for warning messages in the generated code. These
warning messages are shown because not all of the DDS keywords have their equivalent or
can be converted to SQL, such as EDTCDE. Let us illustrate this with the following example.

Example: Converting DDS to SQL and reviewing warning messages
Example 4-2 shows the DDS description of the Order Header File ORDHDR.

Example 4-2 DDS description for physical file ORDHDR

A UNIQUE

A R ORDHDRF

A ORHNBR 5 COLHDG('ORDER NUMBER ")
A CUSNBR 5 COLHDG('CUSTOMER NUMBER ')
A ORHDTE L COLHDG('ORDER DATE ")
A ORHDLY L COLHDG('ORDER DELIVERY ")
A SRNBR 10 COLHDG('ORDER SALESREP ")
A ORHTOT 11P 2 COLHDG('ORDER TOTAL ")
A K ORHNBR

Example 4-3 shows the SQL statements generated to define the original Order Header File
ORDHDR.

Example 4-3 Created SQL script for the DDS-described physical file ORDHDR

- Generate SQL

-- Version: V5R3M0 040528

-- Generated on: 08/18/04 10:05:32
-- Relational Database: S104RT9M

-- Standards Option: DB2 UDB iSeries

36 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

CREATE TABLE ITS04710/0RDHDR (
-- SQL150B 10 REUSEDLT(*NO) in table ORDHDR in ITS04710 ignored.
-- SQL1509 10 Format name ORDHDRF for ORDHDR in ITS04710 ignored.
ORHNBR CHAR(5) CCSID 37 NOT NULL DEFAULT '' ,
CUSNBR CHAR(5) CCSID 37 NOT NULL DEFAULT '' ,
ORHDTE DATE NOT NULL DEFAULT CURRENT_DATE ,
ORHDLY DATE NOT NULL DEFAULT CURRENT_DATE ,
SRNBR CHAR(10) CCSID 37 NOT NULL DEFAULT '' ,
ORHTOT DECIMAL(11, 2) NOT NULL DEFAULT O ,
PRIMARY KEY(ORHNBR)) ;

LABEL ON TABLE ITS04710/0RDHDR
IS 'Order Header without Alias Field Definitions' ;

LABEL ON COLUMN ITS04710/0RDHDR

(ORHNBR IS 'ORDER NUMBER ",
CUSNBR IS 'CUSTOMER NUMBER ' ,
ORHDTE IS 'ORDER DATE ",
ORHDLY IS 'ORDER DELIVERY ",
SRNBR IS 'ORDER SALESREP ",
ORHTOT IS 'ORDER TOTAL ") s

LABEL ON COLUMN ITS04710/0RDHDR

(ORHNBR TEXT IS 'ORDER NUMBER' ,
CUSNBR TEXT IS 'CUSTOMER NUMBER' ,
ORHDTE TEXT IS 'ORDER DATE' ,
ORHDLY TEXT IS 'ORDER DELIVERY' ,
SRNBR TEXT IS 'ORDER SALESREP' ,
ORHTOT TEXT IS 'ORDER TOTAL') ;

Note from the previous SQL code the following SQL warning messages:
SQL1508 REUSEDLT(*NO) in table ORDHDR in ITSO4710 ignored.

While creating a physical file with CRTPF you can specify the Reuse
deleted record option (REUSEDLT). The default value is *NO. That
means that when a record is deleted only the first bit will be changed.
To delete the record physically you have to execute the CL command
RGZPFM (Reorganize Physical File Member).

For SQL tables you do not have this option. When a record is deleted
in a SQL table, the allocated storage will be reused when a new row is
written. It is not possible to reactivate deleted records.

SQL1509 Format name ORDHDRF for ORDHDR in ITSO4710 ignored.

The format name and the table name of the new SQL table will be
identical.

Note: SQL tables are always created with reuse deleted records *YES, so that it is not
possible to reactivate deleted records.

In SQL tables table name and format name are identical.

Example 4-4 on page 38 contains a modified version of the SQL script in Example 4-3 on
page 36. The table is generated with the format name, and the long column names are added
into the CREATE TABLE statement. A new statement to rename the table to a long SQL
name and to set the system name of the table to the old file name is added. All other
statements are not changed.

Chapter 4. Modernizing database definitons 37

Example 4-4 Necessary changes in the SQL script for file ORDHDR

-- Generate SQL

-- Version: V5R3M0 040528

-- Generated on: 08/18/04 10:05:32
-- Relational Database: S104RT9M

-- Standards Option: DB2 UDB iSeries

CREATE TABLE ITS04710/0RDHDRF (
Order_Number for ORHNBR CHAR(5) CCSID 37 NOT NULL DEFAULT '' ,
Customer_Number for CUSNBR CHAR(5) CCSID 37 NOT NULL DEFAULT '' ,
Order_Date for ORHDTE DATE NOT NULL DEFAULT CURRENT DATE ,
Order_Delivery for ORHDLY DATE NOT NULL DEFAULT CURRENT_DATE ,
Order_SalesRep for SRNBR CHAR(10) CCSID 37 NOT NULL DEFAULT '' ,
Order_Total for ORHTOT DECIMAL(11, 2) NOT NULL DEFAULT O ,
PRIMARY KEY(Order_ Number)) ;

RENAME TABLE ITS04710/0RDHDRF
TO Order_Header
FOR SYSTEM NAME ORDHDR;

LABEL ON TABLE ITS04710/0RDHDR
IS 'Order Header' ;

LABEL ON COLUMN ITS04710/0RDHDR

(ORHNBR IS 'ORDER NUMBER '
CUSNBR IS 'CUSTOMER NUMBER ' ,
ORHDTE IS 'ORDER DATE ",
ORHDLY IS 'ORDER DELIVERY ',
SRNBR IS 'ORDER SALESREP b,
ORHTOT IS 'ORDER TOTAL) 3

LABEL ON COLUMN ITS04710/0RDHDR

(ORHNBR TEXT IS 'ORDER NUMBER' ,
CUSNBR TEXT IS 'CUSTOMER NUMBER' ,
ORHDTE TEXT IS 'ORDER DATE' ,
ORHDLY TEXT IS 'ORDER DELIVERY' ,
SRNBR TEXT IS 'ORDER SALESREP' ,
ORHTOT TEXT IS 'ORDER TOTAL') ;

Unsupported DDS keywords

As stated above, not all of the DDS keywords have their equivalent or can be converted to
SQL. The unsupported DDS keywords and file attributes that need to be considered are
described in this section.

File-level keywords
The file-level keywords are:

» Files that use any of the following keywords: ALTSEQ, FCFO, FIFO, LIFO
These keywords will be ignored.
» Join logical files with JDFTVAL or JDUPSEQ

A LEFT OUTER JOIN clause will be generated, but the join default value will be the null
value and the JDUPSEQ keyword will be ignored.

38 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Field-level keywords
The field-level keywords are:

» Physical or logical files that use any of the following keywords: CHECK, CHKMSGID,
CMP, DATFMT, DIGIT, EDTCDE, EDTWRD, TIMFMT, RANGE, REFSHIFT, UNSIGNED,
VALUES, or ZONE

These keywords will be ignored.
» Logical files that use any of the following keywords: CCSID or TRNTBL
These keywords will be ignored.

Generally, it is not possible to stop using the existing traditional HLL programs and turn to
SQL-based applications. To co-exist with the existing applications, the SQL scripts may need
to be modified for some reasons before creating the new SQL database. Some of the issues
that you will have to address are covered in the next sections.

Record format level check

The existing HLL programs may not be able to access the new database objects in the case
of the record format level check. This problem can be solved by doing one of the following:

» Re-compile the existing HLL programs in order to know the new database definitions.

» Use the command OVRDBF to specify LVLCHK(*NO). You may need to modify your
applications, such as the CL programs, to use this option.

» Use the command CHGPF to permanently change LVLCHK(*NO). Note that
unpredictable results may be obtained in the future due to applications changed.

Record format name

The record format name of the SQL-created table is the same as the file name. In the existing
applications, the DDS files may be accessed by using either the file name or the record
format name. We recommend using the following steps to solve this issue:

1. Let us assume that we have a DDS PF named CSTMR and its record format name is
CSRCD. Let us use the record format to create the new table.

CREATE TABLE APILIB.CSRCD (...

2. Taking advantage of the SQL long name support, you can optionally re-name the CSRCD
table to have a more meaningful name such as CUSTOMER_MASTER, by using the SQL
RENAME statement.

RENAME TABLE APILIB.CSRCD TO CUSTOMER_MASTER
3. Rename the table to use the existing name.
RENAME TABLE APILIB.CUSTOMER_MASTER TO SYSTEM NAME CSTMR

Finally, the new SQL table, CSTMR, is created and has the record format named CSRCD.

Multiple member physical or logical file

SQL does not have the concept of multi-member as the DDS PF/LF file. The generated table
contains one member, and the MAXMBRS attribute cannot be changed. You may choose
one of the two following recommendations:

» Use the existing DDS PF/LF files and create an SQL alias for each physical/logical file
member to be used by SQL, as illustrated in the following example:

CREATE ALIAS MYSCHEMA/JANSALES FOR SALES(JANUARY)
CREATE ALIAS MYSCHEMA/FEBSALES FOR SALES(FEBRUARY)

Chapter 4. Modernizing database definitions 39

CREATE ALIAS MYSCHEMA/DECSALES FOR SALES (DECEMBER)
The existing HLL programs still keep running with the existing PF/LF files.

» Use the CREATE TABLE LIKE statement to create multiple tables with the identical
column definitions.

CREATE TABLE MYSCHEMA.JANSALES LIKE MYSCHEMA.SALES
CREATE TABLE MYSCHEMA.FEBSALES LIKE MYSCHEMA.SALES

CREATE TABLE MYSCHEMA.DECSALES LIKE MYSCHEMA.SALES
You need to modify the traditional programs to access new tables.

Multiple format logical file

Application developers who have been in the S/38, AS/400, and iSeries development arena
have been defining and using multiple format logical files for many years. Those developers
know the power of this feature, but they also know that SQL cannot process a multiple format
file. SQL does not understand what a multiple format logical file is.

In our conversion process there are some alternatives. You can create a view with join and/or
UNION operators. Note that even a join view with or without UNION does not provide a direct
equivalent to a multiple format logical file. However, for general purposes, joins and unions
can combine data from different tables in a way that serves to what a multiple format logical
file provides. For this issue, you may choose one of the two following proposals:

» Create DDS multiple format logical files over the new SQL tables that are used by the
existing HLL programs, which is our proposal for this first stage.

» Modify the existing applications. An example of application changes is to modify the HLL
programs to use new I/O module to access new SQL database objects, something that
will be done on our second stage of the methodology.

Keyed logical files

It is important to note that the Generate SQL option converts the keyed logical files into SQL
views. It is necessary to manually create the indexes using the CREATE INDEX SQL
statement.

Join logical file

As of V5R2, join logical files are converted into SQL views. A view does not contain key fields.
You have to generate the CREATE INDEX statements based on the DDS keyed logical file
information. Indexes can be created manually via iSeries Navigator and then reverse
engineered into SQL source.

The generated SQL scripts for join logical files will create SQL views that have definitions
equivalent to the DDS join logical file without the key values. In this case as well you have to
generate the CREATE INDEX statements based on the key values of the logical file. Note
that it is decision of the optimizer to use or not to use the indexes that you create.

4.1.6 Creating the new DB2 schema on the iSeries server

Now that we have the SQL scripts and they have been reviewed and modified to address the
issues, it is time to start creating the environment for the reengineered database. The starting
point of this step is to create a DB2 schema to contain the new database objects created by
SQL. In this section we explain the schema concept and the journaling or logging
mechanisms that it has.

40 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

On DB2 UDB for iSeries, a schema is used to group related database objects. A DB2 UDB for
iSeries schema is actually a collection of DB2 objects and OS/400 objects. When the
CREATE SCHEMA statement is executed, the following objects are created:

» 0S/400 library
» 0S/400 journal and journal receiver
» DB2 views containing schema-wide catalog

Figure 4-6 shows the journal, journal receiver, and the DB2 views created when we execute
the CREATE SCHEMA MYSCHEMA SQL statement.

The library

The library is the logical "container" of the objects and is where the objects are stored. DB2
object names have to be unique within this container. The DB2 views created as part of the
schema are a set of views that describe tables, views, indexes, packages, procedures,
functions, triggers, and constraints. These views are built over the base set of catalog tables
in libraries QSYS and QSYS2 and only include information on objects contained in that
schema.

Journal and journal receiver objects

DB2 UDB for iSeries logs change to a table through a process called journaling. The OS/400
journal records database object changes by sending information to the journal receiver. Thus,
a journal receiver is analogous to a log file found in other RDBMs. When a table is created
into the schema it is automatically journaled to the journal object created by DB2 UDB for
iSeries during execution of the CREATE SCHEMA statement.

S0L Mame | Tvpe | Cwiner | Text
@QSQJRN Journal Ak, COLLECTION - created by S0L
QSQJRNDDDI Journal Receiver Ofk, COLLECTION - created by 30L
@SVSCHKCST Wiew ol 4 S0L catalog view
@SH’SCOLUMNS Wiew alil4 AL catalog view
@SVSCST Yiew Ok SOL catalog view
QSVSCSTCOL Wi alil 4 S0L catalog view
@SVSCSTDEF‘ Wiew Oik 5L catalog view
@SVSINDEKES Wi (a]: 4 S0L catalog view
@SH’SKEVCST Wiew alil 4 AL catalog view
@SVSKE\“S Wiew Oik 5L catalog view
@SVSPACKAGE Wiew alil 4 S0L catalog view
@SVSREFCST Yiew alil 4 SL catalog view
@SVSTHBLEDEF‘ Yiew Ok SOL catalog view
@SVSTF&BLES Wiew ol 4 5L catalog view
@SVSTRIGCOL Yiew Oik 5L catalog view
@SVSTRIGDEP Wiew alil 4 S0L catalog view
@SVSTRIGGERS Wiew alil 4 AL catalog view
@SVSTRIGUF‘D Yiew Ok SOL catalog view
@SH’S\!IEWDEP Wiew alil 4 S0L catalog view
@SVSHIEWS Yiew Oik 5L catalog view

Figure 4-6 The objects after creating the schema

Chapter 4. Modernizing database definitions 41

42

Even though DB2 automatically starts journaling for the table object, it is the user's
responsibility to manage the journal and journal receiver objects. As you can imagine, these
journal receiver objects containing the database changes can become quite large, so ignoring
the auto-created journal receivers is not an option unless you have unlimited disk space.
However, the journal receiver objects should not be deleted arbitrarily to save disk space. In
addition, even though journaling can be stopped for a table, it is not recommended, since
applications accessing non-journaled objects are unable to specify an isolation level, and the
applications cannot issue commit and rollback operations.

Most iSeries customers use their journal receivers as a core part of their database backup
and recovery process. One approach would be to save a complete copy of the table backup
media once a week and then on a nightly basis just save the changes to the table (that is, the
journal receiver) to back up media and then repeat this process every week. Once the journal
receiver has been backed up, the journal receiver object can be deleted. More information
about the proper steps for saving and deleting journal receiver objects can be found in the
Backup and Recovery Guide in the iSeries Information Center. The online version of the
iSeries Information Center can be found at:

http:www.iseries.ibm.com/infocenter

It is possible to have the system automatically delete the journal receiver object by specifying
DLTRCV(*YES) on the CHGJRN CL command or setting the equivalent option on the iSeries
Navigator interface. However, this option should only be used after reading the Backup and
Recovery Guide and understanding the behavior and implications of this option.

You will also notice over time that multiple journal receiver objects will appear in the schema
created. That is because DB2 UDB for iSeries creates the journal object with the
system-managed receiver option (for example, MNGRCV(*YES)) on the CHGJRN CL
command). The graphical journal management interface in Figure 4-7 on page 43_denotes a
system-managed journal receiver with the System radio button selected in the Receivers
managed by section. With this option specified, DB2 UDB automatically creates a new journal
receiver each time the system is restarted (that is, system IPL) and whenever the attached
receiver reaches its size threshold. The current journal receiver is detached and a new one is
created.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

ORDAPPLIB.OSOJRN Journal Properties - Rchasm27(5104rt9m)
Journal meszage queue |QSYSDF'F|| j
Schema |"|_|B|_ j
Description |EDLLEETIDN - created by SOL
v Activate journal Tables...

Receivers managed by:
* System |
[¥ Delete receivers when no longer needed
e B
[Swap receivers

; Receivers...
Sequence numbering:

{* Continue
" Feset H
[~ Minimize fixed portion of entries
¥ Remaove internal entries
Augiliary storage poal: 1
Journal type: Local

Femote Jourmals. . 1

ot | ||

Figure 4-7 Journal Properties window

It is easier to back up a journal receiver when it is detached. Also, the receiver must be
detached before it can be deleted. So you can see how this option makes it easier to manage
journal receivers. Managing journal performance is a topic outside of the scope of this book,
but you can reference the redbook Striving for Optimal Journal Performance, SG24-6486, for
more information on this.

Since DB2 UDB for iSeries has no concept of table spaces and automatically stripes and
balances DB2 objects across disks, the journal and journal receiver objects are going to be
the only schema objects that require space management from an administrator's perspective.
The only other space administration task is making sure that there is enough disk space
available on the system. For more information on this topic refer to Managing DB2 UDB for
iSeries Schemas and Journals, written by Kent Milligan, and found at:

http://www7b.boulder.ibm.com/dmdd/Tibrary/techarticle/0305mi11igan/0305milligan.html

Note: The journaling function can be manually disabled for each table if journal
management is already in place.

4.1.7 Create all existing DDS logical files over the new SQL tables

After creating the new schema, we use the generated and reviewed SQL scripts to create the
database objects such as:

» Tables
» Indexes

After having created the tables, we have to create DDS logical files over all the SQL tables in
order to be accessed by the existing HLL programs. After creating the DDS logical files over

Chapter 4. Modernizing database definitions 43

http://www7b.boulder.ibm.com/dmdd/library/techarticle/0305milligan/0305milligan.html

the new SQL database ensure that all LF access paths are implicitly sharing the SQL index
access paths.

Let us illustrate this step with one example. Let us suppose that we have:

» A DDS physical file named DDS_FILE
» A DDS logical file named DDS_LF
» An RPG program named DDS_LF_RPG

The following is the source and record format information.
The physical file DDS_FILE source code is shown in Example 4-5.

Example 4-5 Physical file DDS_FILE

A R DDS_FILER
A FIELD1 9B 0

Record Format Level
Format Fields Length Identifier
DDS_FILER 1 4 35FCE265C68AE

The logical file DDS_LF source code is shown in Example 4-6.

Example 4-6 Logical file DDS_LF

A R DDS_FILER PFILE(DDS_FILE)
Record Format Level
Format Fields Length Identifier
DDS_FILER 1 4 35FCE265C68AE

The source code of the DDS_LF_RPG program is shown in Example 4-7.

Example 4-7 Program code for DDS_LF_RPG

FDDS_LF if e disk

/FREE
READ DDS_LF;
RETURN;
/END-FREE

If we execute a DSPPGMREF to the DDS_LF_RPG program we will get the result shown in
Example 4-8.

Example 4-8 DSPPGMREF of program DDS_LF _RPG

Number of record formats : 1
Record Format Format Level Identifier Field Count
DDS_FILER 35FCE265C68AE 1

Note that all the format level identifiers are in sync.

The next step is to reverse engineer the DDS PF into SQL. The new SQL table will have a
different name. This is shown in Example 4-9.

Example 4-9 Reverse engineer of the DDS physical file

CREATE TABLE DDL_TABLE (

44 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

FIELD1 INTEGER NOT NULL DEFAULT 0) ;
Record Format Level
Format Fields Length Identifier
DDL_TABLE 1 4 34EDC035C85A6

The DDL table format ID does not match the DDS PF format ID. This is expected. The next
step is to convert the original DDS PF source to a LF referencing the SQL table, as shown in
Example 4-10. (Note that this logical file must contain the original column definitions.)

Example 4-10 Logical referencing the SQL table

A R DDS_FILER PFILE(DDL_TABLE)
A FIELD1 9 0B

After creating the DDS LF DDS_FILE, the format ID remains the same as the original DDS
PF DDS_FILE; however, it is now based on the new SQL DDL table, as shown in
Example 4-11.

Example 4-11 Format IDs in sync

Based on file DDL_TABLE
Membero 0L : DDL_TABLE
Record Format List
Record Format Level

Format Fields Length Identifier
DDS_FILER 1 4 35FCE265C68AE
DDS_FILER 1 4 35FCE265C68AE Original file

The next step is to change DDS LF DDS_LF to share the format of DDS LF DDS_FILE, as
shown in Example 4-12.

Example 4-12 Logical file sharing format of physical file

A R DDS_FILER PFILE(DDL_TABLE)
A FORMAT (DDS_FILE)

After recreating the DDS LF DDS_LF, the format ID remains the same as shown below.

Example 4-13 Format IDs in sync

Based on file: DDL_TABLE
Member L0 : DDL_TABLE
Record Format List
Record Format Level

Format Fields Length Identifier
DDS_FILER 1 4 35FCE265C68AE
DDS_FILER 1 4 35FCE265C68AE Original file

The RPG program still contains the original format level ID and does not need recompiling,
nor would any programs that reference DDS PF DDS_FILE. At this point you are now taking
advantage of database enhancements made available to SQL (in essence, faster reads and
larger access path sizes).

Figure 4-8 on page 46 shows how we have moved from an existing environment to a new
environment.

Chapter 4. Modernizing database definitions 45

Green
Screen
Queues,
s . ;
Existing Environment

Green
Screen
Lueues,

e

New environment

Figure 4-8 Stage 1 - Reverse engineering

4.1.8 Migrate data and test existing programs

Now that we have created the schema, tables, and indexes, it is time to migrate the data into
the tables. An automated test tool is beneficial at this stage. Converting an entire DDS
database to SQL DDL and creating the new tables can be done in a few days. Migration of
the data and testing of the programs is time consuming.

You need to create a set of file conversion programs. A conversion program reads data from
an existing DDS file and writes it to a new SQL table. It may be a simple CL program, as
below:

CPYF FROMFILE(APILIB/CSTMR) TOFILE(NEWSCHEMA/CSTMR) MBROPT (*REPLACE)

Note: This example can be used if each new column attribute is identical to the existing
field in DDS.

In this step it is a good opportunity to do some cleansing of the data. Some of the things to
check are:

» Ensure that there are no invalid characters in the DDS numeric data. SQL checks at insert
time versus read time for DDS.

» If the DDS database contains numeric fields representing dates then verify that the dates
are valid.

To validate the data in the records, you would probably need to create HLL programs to
check the validity of the fields, such as valid date data and so on. These efforts save time
down the road.

Use the test tool to establish standard test scripts that will touch each and every file. As each
file is converted, the test script can be rerun to ensure that conversion did not introduce new
invalid data.

By doing all the previous steps we have:

» Converted all the DDS-created files into SQL-created objects (tables, indexes, views, and
alias).

» In some cases we have solved some issues by creating logical files (for example,
multiformat logical files).

46 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

» Migrated the data from the DDS objects to the SQL testing environment.
» Tested that all the application programs are running correctly.

As a last step, we may need to move this new environment (that has been a testing
environment) to a production environment. In the next section we explain considerations
regarding this movement.

Moving a schema from testing to production environment

The preferred method for moving a schema to a different schema or system (for example,
moving from a testing to a production environment) is re-running the original SQL creation
script. Note that since the table objects are created in the new schema, they will be
automatically journaled to the new journal.

Many times, however, recreating all of the DB2 objects is not feasible since the source
objects contain a large amount of data. An alternative method to use in this case is to save
and restore the schema and then manually reset the journal information afterwards. If | have
a schema named ABC with two tables, DEPARTMENT and EMPLOYEE, then here are the
steps that would need to be followed to move schema ABC into schema XYZ using the save
and restore method:

1. Use the CL command SAVLIB TEST ACCPTH(*YES).

Remember that the OS/400 container for a schema is a library. The ACCPTH(*YES)
option saves the actual index tree if any indexes exist in the schema. That will eliminate
indexes having to be rebuilt on the restore operation.

2. Create the production schema. Use the SQL statement CREATE SCHEMA PROD.

This will create the target schema object with auto-created journal and system catalog
views.

3. Use the CL command to restore the library: RSTLIB TEST OPTION(*NEW)
RSTLIB(PROD).

The *NEW option will only restore the TEST objects that do not already exist in the PROD
schema. This type of restore essentially restores everything but the objects automatically
created by DB2 UDB (journal, journal receiver, and catalog views).

4. Find a the list of DB2 objects currently journaled in TEST schema.

Since the 0OS/400 journal CL commands only accept the short DB2 object identifiers, the
short name for a DB2 UDB for iSeries object will need to be recorded in this step.

5. End journaling for all of the objects in TEST schema. Use the CL command ENDJRNPF
*ALL TEST/QSQJRN.

DB2 objects in the new schema, PROD, are currently associated with the original schema.
Eliminate this association by ending journaling for all tables. If schema TEST does not
exist on the system where schema PROD was restored, then the restore operation will
end the journal association with the original schema. Thus, the ENDJRNPF *ALL
command is not needed when schemas TEST and PROD reside on different systems.

If other objects in the schema such as indexes have been explicitly journaled by the user,
then journaling on those objects would have to be ended and restarted. For example,
journaled indexes would be stopped and restarted with ENDJRNAP and STRJRNAP CL
commands.

6. For each table in PROD schema you have to execute the following CL command:

STRIRNPF PROD/DEPT PROD/QSQJRN IMAGES(*BOTH) OMTJRNE(*OPNCLO)
STRJIRNPF PROD/EMPLOYEE PROD/QSQJRN IMAGES(*BOTH) OMTJRNE(*OPNCLO)

Chapter 4. Modernizing database definitions 47

The STRJRNPF currently does not support an *ALL option like the ENDJRNPF command.
So the command needs to be executed for each DB2 table object to associate these
tables with XYZ journal and journal receiver objects.

Note: If the journal object was altered away from its default settings with the CHGJRN
CL command or iSeries Navigator, those customizations would need to be performed
on the journal object in the PROD schema.

Save the newly configured schema to backup media, so that you do not have to do these
configuration steps again.

4.2 Comparing the SQL objects and the DDS files

When we create a table using SQL, under the covers a physical file is created. The same is
true when we create an SQL index or a SQL view—a logical file is created under the covers.
But there are some differences between SQL objects and DDS-created files that we need to
understand. In this section we address some of the differences between DDScreated objects
and SQL.

The new SQL objects reside in a schema. In 4.1.6, “Creating the new DB2 schema on the
iSeries server” on page 40, we covered the differences between a library and a schema.

4.2.1 SQL tables compared with physical files

There are some advantages of SQL tables over physical files. They are:

>

>

»

»

»

The constraint definitions can be included in the object source.

SQL does faster reads than HLL reads to a physical file. The main reason is that a cursor
reading an SQL table does not have the extra data cleansing code like a DDS PF reading.

We can use longer and more descriptive column names.
The data modeling tools have been made to support SQL.
Automatically journaling if the tables are created in a schema, as we have stated before.

There are some disadvantages of SQL tables. These are:

>

Slower writes, because the cursor created for SQL tables has more data validation code
than a cursor used for writing into a DDS PF.

No Distributed Data Management (DDM) support, but SQL can utilize Distributed
Relational Database Architecture (DRDA®) connection by using SQL CONNECT
statement.

Multiple member files. An SQL table does not support multi-member files, as we have
stated before. You can use an SQL ALIAS statement to create an alias for each physical
file member, as the example:

CREATE ALIAS MYSCHEMA/JANSALES FOR SALES(JANUARY)

4.2.2 SQL indexes compared with keyed logical files

SQL indexes and keyed logical files both cause the same internal OS/400 object to be built.
The main difference is that an SQL index can be either a binary radix tress structure or an
advanced bit mapped index structure known as an Encoded Vector Index.

48 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

The advantages of SQL indexes are:

»

Encoded Vector Index - An IBM solution for bitmap indexes. Realizing the limitations of
traditional bitmap indexes technology, IBM Research set out to find a better solution. The
result is Encoded Vector Indexes (EVIs), a patented indexing technology from IBM that
has been available for several years in the iSeries. DB2 UDB for iSeries is the first
member of the IBM DB2 family to provide EVis.

SQL indexes are created with a 64 K logical page size (since V4R2). Keyed logical files
are primarily created with a logical page size of 8 K. This change to 64 K was made to
improve the performance of queries that scan lots of key values in an index, since it brings
more key values into memory. This attribute cannot be specified during object creation or
subsequently changed. The logical page size is determined by the interface used to create
the index. Regardless of the logical page size, the overall object sizes of a SQL index and
a keyed logical file tend to be equivalent. The larger logical page size can result in more
efficient index scans and index maintenance. This is a key benefit in a query environment.
Indexes with larger logical page sizes can have an impact on the 1/O performance within
environments that have smaller, less than optimal memory pools.

The disadvantages of SQL indexes are:

>

>

Single key lookups using an index may or may not be as efficient, because it takes longer
to read a 64-K page than an 8-K page.

SQL indexes do not have a way of supporting Select/Omit filtering options as logical files
do. An SQL index cannot define a join operation like a logical file does.

4.2.3 SQL views compared with logical files

SQL views are equivalent to non-keyed logical files. SQL views have a strong advantage in
that they have more functionality and flexibility to offer in terms of the processing and data
manipulations that can be performed within the view definition versus a logical file.

The advantages of SQL views are:

>

| 2

SQL views have more flexibility in terms of selecting and processing data.
— CASE expressions and date/time functions

The grouping and join processing offered by the SQL view is far superior to anything
available on a logical file definition.

The native program can open the views as logical files to enhance native functionality.

The disadvantages of SQL views are:

>
>

SQL views cannot be keyed/ordered.
An SQL view may not be able to replace multi-format logical files.

4.2.4 SQL data types

In defining the columns of a table with SQL:

>

SQL supports more data types, such as large object (LOB), datalink columns, and
user-defined types (UDTs).

» SQL supports column names up to 30 characters in length; and table, view, and index

names up to 128 bytes in length. Longer SQL identifiers allow your object names and
definitions to be more self-describing from a documentation point of view.

Chapter 4. Modernizing database definitions 49

4.3 SQL system catalogs: Definitions

SQL cannot only be used to manipulate data but also to define databases, that is, creating,
modifying, or dropping database tables or entire databases. There are five distinct object
types involved with SQL databases:

Schemas
Aliases
Tables
Indexes
Views

vyvyvyyy

We have seen that a schema is a repository that contains SQL objects and that a schema
corresponds to a library in the iSeries. In fact, each schema is of type *LIB, that is, a library.

Creating a schema by itself would not make any sense. It is the starting point, a container
destined to be filled with tables, indexes, etc., all the objects that make up your database and
are at the heart of most applications.

But where is all the information about the database itself, the so-called metadata? Well, that
is where the term catalog comes into the picture. Catalogs are automatically created when a
schema is created, and they contain all the relevant information about the databases. Each
modification of a table in a SQL schema (that is, creating, renaming, dropping, moving, etc.) a
table updates the catalog files for that schema.

Note: Metadata is information about information. They serve to describe data, and their
use is not limited to the field of SQL or information technology. Most, if not all, SQL-based
RDBMS allow the extraction of the metadata of their content. For example, metadata is
very important to reverse engineer databases. Database design tools typically use
metadata to display database models.

To summarize, the following can be said: The structure of the database is maintained by the
DBMS in special tables that are called catalogs. The catalogs can be queried by users or
tools to display information about tables, columns, referential integrity constraints, security
rights, and any other information that composes a database.

iSeries catalog tables and views
The iSeries catalog includes the following views and tables in the QSYS2 schema.

DB2 UDB for iSeries | Corresponding ANSI/ISO name Description

name Information about...

SYSCATALOGS CATALOGS ...relational databases

SYSCHKCST CHECK_CONSTRAINTS ... check constraints

SYSCOLUMNS COLUMNS ... column attributes

SYSCST TABLE_CONSTRAINTS ... all constraints

SYSCSTCOL CONSTRAINT_COLUMN_USAGE ... the columns referenced in a
constraint

SYSCSTDEP CONSTRAINT_TABLE_USAGE ... constraint dependencies on
tables

SYSFUNCS ROUTINES ... user defined functions

50 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

DB2 UDB for iSeries
name

Corresponding ANSI/ISO name Description
Information about...

SYSINDEXES ... indexes
SYSJARCONTENTS ... jars for Java routines
SYSJAROBJECTS ... jars for Java routines
SYSKEYCST KEY_COLUMN_USAGE ... unique, primary, and foreign
keys
SYSKEYS ... index keys
SYSPACKAGE .. packages
SYSPARMS PARAMETERS ... routine parameters
SYSPROCS ROUTINES ... procedures
SYSREFCST REFERENTIAL_CONSTRAINTS ... referential constraints
SYSROUTINES ROUTINES ... functions and procedures
SYSROUTINEDEP ROUTINE_TABLE_USAGE ... function and procedure

dependencies

SYSSEQUENCES ... sequences

SYSTABLEDEP ... materialized query table
dependencies

SYSTABLES TABLES ... tables and views

SYSTRIGCOL TRIGGER_COLUMN_USAGE ... columns used in a trigger

SYSTRIGDEP TRIGGER_TABLE_USAGE ... objects used in a trigger

SYSTRIGGERS TRIGGERS ... triggers

SYSTRIGUPD TRIGGERED_UPDATE_COLUMNS | ... columns in the WHEN clause of
a trigger

SYSTYPES USER_DEFINED_TYPES ... built-in data types and distinct
types

SYSVIEWDEP VIEW_TABLE_USAGE ... view dependencies on tables

SYSVIEWS VIEWS ... definition of a view

ODBC and JDBC catalog
The catalog includes the following views and tables in the SYSIBM library.

View name

Description

SQLCOLPRIVILEGES

Information about privileges granted on columns

SQLCOLUMNS

Information about column attributes

SQLFOREIGNKEYS

Information about foreign keys

SQLPRIMARYKEYS

Information about primary keys

SQLPROCEDURECOLS

Information about procedure parameters

Chapter 4. Modernizing database definitions

51

View name Description

SQLPROCEDURES Information about procedures

SQLSCHEMAS Information about schemas

SQLSPECIALCOLUMNS Information about columns of a table that can be used to
uniquely identify a row

SQLSTATISTICS Statistical information about tables

SQLTABLEPRIVILEGES Information about privileges granted on tables

SQLTABLES Information about tables

SQLTYPEINFO Information about the types of tables

SQLUDTS Information about built-in data types and distinct types

ANS and ISO catalog views
There are two versions of some of the ANS and ISO catalog views. These are not reprinted

here. Refer to the DB2 UDB for iSeries SQL Reference VV5R3 manual that can be found in the
information center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/db2/rbafzmst.pdf

4.3.1 SQL system catalogs: Example

In “Establishing a list of all DDS files to be converted” on page 31 we showed two examples of
the use of the SQL catalog tables. Here we show another example of the use of these
catalogs.

The marketing department of a company wants to increase the size of the customer number
column CUSTNO and they want to find out in which tables the column is used. This is
important to know to be able to do an impact analysis of this change. This example further
assumes that there is not one single reference file for field definitions, but that the field may
be contained in more than one file. The field might be named either CUSTNO or CUSTNR.

Using the SQL system catalogs we would execute the following SQL statement to find out
how many files have the Customer Number field.

Example 4-14 Querying the SQL system catalogs - Example 1

SELECT COUNT(*) FROM QSYS2/SYSCOLUMNS

WHERE COLUMN_NAME LIKE €CUST%’

Now, let us find out which are the files that need to be changed.

Example 4-15 Querying the SQL system catalogs - Example 2
SELECT TABLE_NAME FROM QSYS2/SYSCOLUMNS

WHERE COLUMN_NAME LIKE €CUST%” ORDER BY TABLE_NAME

This will run the SQL statement and display the desired result, which is a list of all files that
contain a column starting with CUST, sorted by table name.

52 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/db2/rbafzmst.pdf

4.4 Partitioned tables

DB2 UDB for iSeries V5R3 supports partitioned tables using SQL. Partitioning allows for the
data to be stored in more than one member, but the table appears as one object for data
manipulation operations such as select, insert, update, and delete. A partition is the
equivalent of a database file member. Each partition can be saved, restored, exported from,
imported to, dropped, or reorganized independently of the other partitions. You must have
DB2 Multisystem (5722-SS1 option 27) installed on your iSeries server in order to take
advantage of partitioned tables support.

There are two types of partitioning: Hash partitioning and range partitioning. You specify the
type of partitioning with the PARTITION BY clause in the CREATE TABLE statement. In our
example, we create a partitioned table PAYROLL in library PRODLIB with partitioning key
EMPNUM in four partitions.

» Hash partitioning places rows at random intervals across a user-specified number of
partitions and key columns.

CREATE TABLE PRODLIB.PAYROLL(EMPNUM INT, FIRSTNAME CHAR(15), LASTNAME CHAR(15),
SALARY INT)
PARTITION BY HASH(EMPNUM) INTO 4 PARTITIONS

» Range partitioning divides the table based on user-specified ranges of column values.

CREATE TABLE PRODLIB.PAYROLL
(EMPNUM INT, FIRSTNAME CHAR(15), LASTNAME CHAR(15), SALARY INT)
PARTITION BY RANGE(EMPNUM)
STARTING FROM (MINVALUE) ENDING AT (500) INCLUSIVE,
STARTING FROM (501) ENDING AT (1000) INCLUSIVE,
STARTING FROM (1001) ENDING AT (MAXVALUE)

However, as of the beginning of V5R3, the partitioned tables support cannot take advantage
of the query optimizer for leveraging the performance advantages. The improvement will
come in the future. The partitioned tables should really only be used in V5R3 if you have a
table that is approaching the single size table limit of 4.2 billion rows or 1.7 terabytes of
storage.

For more information on partitioned tables refer to the whitepaper Table partitioning
strategies for DB2 UDB for iSeries, which can be found at:

http://www-1.1ibm.com/servers/enable/site/education/abstracts/2c52_abs.html

Chapter 4. Modernizing database definitions 53

http://www-1.ibm.com/servers/enable/site/education/abstracts/2c52_abs.html

54 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Part 3

Data access

In our journey of database modernization we have already modernized our database
definitions. We have also populated our new database objects and have tested the existing
programs. Our next step is to modernize the data access.

In this section we explain:

>

>

>

How to create 1/0O modules to access the new SQL objects
How to start moving the business rules into the database
How to take advantage of Embedded SQL to replace native /O

How to leverage and exploit the advantages of triggers, stored procedures, and user
defined functions

© Copyright IBM Corp. 2005. All rights reserved.

55

56 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Creating I/O modules to access
SQL objects

When modernizing your database the first step is to convert the DDS-based physical files to
SQL-based tables. In this conversion we want to guarantee that the existing programs keep
working with no changes. This was obtained in our first phase or stage of the methodology.

In this chapter, we move forward in the methodology and we propose the creation of SQL
views and the use of service programs to replace the native 1/0O access. We cover the steps
required in the second phase or stage proposed in our methodology in “Methodology for the
modernization” on page 25.

In this chapter we cover the following topics:

» How you can benefit from the power of SQL views in RPG programs
» Creation of service programs to replace the I/O access

© Copyright IBM Corp. 2005. All rights reserved. 57

5.1 Introduction

The main goal of this stage is to minimize the impact of change on the business. This is
achieved in two ways:

» By de-coupling the database access from the application program.

» By utilizing SQL views as the only way to access the data. Adding new columns to the
database has no impact on existing views, thus eliminating the need to recreate the views
and supporting programs. These views can be accessed via service programs or directly
through ODBC or JDBC SQL statements.

The process involves a phased approach to replace native I/0O operations with SQL data
access methods. The strategy of using I/0 modules is to limit the SQL optimization
knowledge to the database programming group. This will allow the application programmers
to focus on solutions to business requirements without a need to understand the complexities
of database optimization.

The I/O module masks the complexity of the database from the application programmer. For
example, an HLL program may be performing several read operations to multiple files to fill a
subfile. This could be replaced by a single call to an 1/0 module that performs a single SQL
fetch operation to a join view and returns a single host array (multiple occurrence data
structure in RPG) to the caller.

In addition, the I/O module allows the database programmer to take advantage of database
functions (that is, date and time data types, variable length fields, identity columns, etc.), thus
eliminating many common HLL programming requirements. This includes programming
required to format date and time data, formatting address lines, etc. Figure 5-1 illustrates the
objective of this second stage.

ODBC

JDEC

ek

Figure 5-1 Stage 2 - I/O modules to access SQL objects

The following is an overview of the steps required in this stage:

1. Establish naming conventions.

2. Create SQL views based on business requirements.

3. Create service programs to access data from the SQL views.
4. Convert selected legacy programs to use service programs.

Let us start explaining the different steps of this stage.

5.2 Establish naming conventions

One of the biggest issues in naming objects on the iSeries is the 10-character limitation of the
object name itself. Regardless of where the source resides you are still limited to 10
characters for the program and module objects. Because of the multitude of objects that can

58 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

be used to build an ILE program, some up-front planning is required to establish naming
conventions.

The following is a list of some or all of the parts making up the 1/O process:

YyVYyVYVYVYVYYVYYY

SQL table

SQL view

Service program object

I/O module source and object

Service program interface (prototype)

Wrapper program for stored procedures(source and object)
Binding directory object

Binding source language

Stored procedure to access the I/0 module

The following are some suggested guidelines for establishing naming conventions:

1.

Avoid using the object type as part of the object name. For example, do not use PGM,
MOD, etc. as part of the name.

Establish standard abbreviations for the different database functions. There are basically
four: Read, Write, Update, and Delete. Use these abbreviations to prefix the 1/0 module.
For example, the 1/0 module that contains the procedures for reading the customer
master table may be named GETCUSTMST. Keep in mind that you are limited to 10
characters.

Minimize calls to stored procedures by creating join and summary views and then creating
a single procedure to access these views. For example, CustOrderSummaryByName is a
view that groups on the customer name column and joins the customer master table to the
customer Order Header table.

Use long names for SQL stored procedures. GetCustomerName says exactly what the
stored procedure will do. Use the SPECIFIC clause in the CREATE PROCEDURE
statement to control the short name.

5. Use the same name for both external stored procedures and HLL ILE procedure names.

6. Keep application abbreviations to two or three characters.

7. Use binding directories to link modules to programs and/or service programs.

Note: These suggestions are not intended to replace existing standards and conventions.

5.3 Create SQL views based on business requirements

Let us start by looking at the differences and highlighting the benefits of the use of views. SQL
views are equivalent to non-keyed logical files. SQL views have a strong advantage in that
they have more functionality and flexibility to offer in terms of the processing and data
manipulations that can be performed within the view definition versus a logical file. The SQL
views can be used to make the I/O access in the applications more easier.

The advantages of SQL views are:

»

SQL views have more flexibility in terms of selecting and processing data.
— CASE expressions and date/time functions

The grouping and join processing offered by SQL views is far superior than anything
available on a logical file definition.

The native program can open the views as a logical files to enhance native functionality.

Chapter 5. Creating /0O modules to access SQL objects 59

60

» Can be directly accessed via ODBC/JDBC. This is very useful for new/Web/java
applications that access database objects on the iSeries server using ODBC or JDBC.

» Join views can mask the complexity of the database to the end users.

» Take advantage of the long name support. It can tell end users what they will get. For
example, the CustOrderSummaryByName view name could mean that the view joins the
customer master to the Order Header and grouped on name.

» SAQL views can be used as well to solve some of the issues encountered in the first phase
of the process such as replacing multi-format logical files.

The following example illustrates a joined view from the ORDERHDR table and the
CUSTOMER table. The view presents a summary of the order amount grouped by the
customer name.

CREATE VIEW I1TS04710.CUSTORDERSUMMARYBYNAME (
CUSTOMER_NAME, TOTAL_ORDER_AMT)
AS
SELECT CUSTOMER_NAME, SUM(ORDER_TOTAL) FROM ITS04710.ORDERHDR 0, 1TS04710.CUSTOMER C
WHERE 0.CUSTOMER_NUMBER = C.CUSTOMER_NUMBER
GROUP BY CUSTOMER_NAME ;

To use views in RPG might be very useful, because they are more powerful than (join) logical
files. In SQL views you can all use what is possible in a SQL select statement, with the
exception of ordering rows.

Accessing SQL views with native I/O

The following example is based on the Order Header File. The order total per year, based on
the order date, has to be calculated and displayed.

To solve this problem a logical file keyed with Order Date is used. Example 5-1 shows the
DDS described logical file ORDHDRLI1.

Example 5-1 DDS description for the keyed logical file ORDHDRL1

A R ORDHDRF PFILE (ORDHDR)
A K ORHDTE
A K ORHNBR

The following RPG snippet (Example 5-2) shows how the total per year can be calculated and
displayed:

» The keyed logical file is read.

» The year portion must be extracted from the order date.

» The total for all orders in the same year must be added into a extra field.

» After having read all records with the same order year, the result is displayed, and the
extra field is cleared.

Example 5-2 RPG program to calculate and display the order totals per year

FOrdHdrLl IF E K DISK

D FirstRec S N First Record
D CompYear S 4P 0 Compare Year
D OrdYear S 4P 0 Order Year
D TotYear S +2 like (OrHTot) Total/Year

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

D DspText S 50A

/Free
SetLL *Start OrdHdrlLl;
DoU %EOF (OrdHdrL1);

Read OrdHdrF;
If %EOF;
If FirstRec = *On;
Dsply DspText;
EndIf;
Leave;
EndIf;

OrdYear = %SubDt(OrHDte: *Years); //Order Year

If FirstRec = *0ff; //First Record
CompYear = OrdYear;
FirstRec = *On;

EndIf;

If OrdYear <> CompYear; //Next Year

Dsply DspText;

Clear TotYear;

CompYear = OrdYear;
EndIf;

TotYear += OrHTot; //Total per year
DspText = %Char(CompYear) + ' ' + %Char(TotYear);

EndDo;

Return;
/End-Free

While logical files can only be used with native /O, SQL views can be used with all databases

and programming languages.

Example 5-3 shows how a SQL view can be created that summarizes all orders with the
same order year.

Example 5-3 SQL view to summarize order totals per year

-- Create View OrdTotYrF (= format name)
Create View ITS04710/0rdTotYrF

(Order_Year for OrdYear,
Order Total for TotYear)
as Select Year(Order Date), Sum(Order Total)
from Order_Header

Group By Year(Order Date);

-- Rename View to Annual_Order_Total and System-Name to OrdTotYr
Rename table ITS04710/0rdTotYrF

to Annual_Order_Total

for System Name OrdTotYr;

Example 5-4 on page 62 shows how the RPG code from the previous example can be
reduced by using the new SQL view instead of logical files:

» The SQL view is sequentially read.

Chapter 5. Creating 1/0 modules to access SQL objects

61

» The total of the year is displayed.

Example 5-4 Calculate and display the order totals per year by using a SQL view

FOrdTotYr IF E DISK

K e e e e e e e e e e e e o — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —— — e — —— — — ——
D DspText S 50A

K L e e o e e e
/Free

SetLL *Start OrdTotYr;
DoU %EOF (OrdTotYr);

Read OrdTotYrF;
If %EOF;

leave;
EndIf;

DspText = %Char(OrdYear) + ' ' + %Char(TotYear);
Dsply DspText;

EndDo;

Return;
/End-Free

Note: SQL views are never sorted in a predefined sequence. The query optimizer
determines the access path that will be used to access the data.

SQL views can only be used within native 1/0, when no predefined sequence is necessary.
Alternatively, embedded SQL can be used, where an order-by sequence can be specified.

This is basically an iterative process. Begin by creating a view for each program and avoid
creating views over all the columns of the physical files. Also keep in mind that views do not
contain access paths, and thus do not add system maintenance overhead. Review the
column requirements for each program and reuse the views as needed and appropriate.

5.4 Create service programs to access data from the SQL views

Once we have defined and created the required SQL views, the next step is to externalize the
I/O modules. Externalizing the I/O means that all the native 1/0 operations (for example,
CHAIN, READ, and WRITE) and other database operations are converted or coded into
separate routines and programs that require 1/0 make requests to these routines to perform
the operation on their behalf.

Externalizing 1/0 operations provides one way of helping to ensure that your applications can
adapt quickly and relatively painlessly to changing business needs. Instead of coding a native
READ, CHAIN, etc. at each point in the program where database access is required, you
invoke a routine to perform the 1/O for you.

An application may contain more than one service program. A service program is an
Integrated Language Environment® (ILE) object that provides a means of packaging
externally supported callable routines (functions or procedures) into a separate object.

There are basically four main database operations candidates to be replaced by I/O service
programs. They are:

» Read (GET)

62 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

» Insert (PUT)
» Update
» Delete

Figure 5-2 illustrates the different modules that can be created.

2 Key 1

Table/View -
Functions Function
| (module)
Get Add Update Delete
Sequential By Key Sequential By Key Sequential By key
| Selection | Primary
1 key Access
Method
| Selection L Alternate (Procedure)

Figure 5-2 Service programs for I/O modules

5.5 Convert legacy programs to use service programs

This step involves replacing the HLL 1/O operations (READ, READE, CHAIN, etc.) with a

prototype call to the corresponding service program. The prototype is a definition of the call
interface. It is used to call the program or procedure correctly. The proposed prototype call

contains the following three parameters: Argument structure, record structure, and status

structure.

» The argument is a data structure that corresponds to the key list used in keyed access
operations. In addition, it may contain data items such as the number of rows requested

and/or returned for blocked FETCH or INSERT requests.

» The record structure parameter contains one or more rows returned from read operations.
For insert operations this parameter would contain one or more rows to be written. It is not

required for delete operations.

» The status structure parameter contains an indication of the result of the operation. This
would correspond to exceptions such as record not found, end of file reached, etc. The
structure also contains SQL-related information (that is, SQL status codes, message text,

etc.)

Chapter 5. Creating 1/0 modules to access SQL objects

64

There is no need to replace every program. The candidates for SQL rewrite are:

»

The programs that use OPNQRYF. Because the Query utility and OPNQRY do not use
new SQL query engine (SQE), it will use the Classic Query Engine (CQE).

The long-running batch programs that do massive reads or massive reads and writes.
Online transaction processing (OLTP) programs that create subfile lists.

OLTP programs that do a large numbers of inserts. It may be order entry programs that
write several item records to complete a transaction.

The programs that would benefit from join operations.
The programs that do the record existence checking.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Moving business rules to the
database

The objective of this stage in the proposed methodology is to take advantage of DB2 data
integrity functions and advanced functions that eliminate corresponding programming
techniques and may replace application functions with equivalent database function.

By moving business rules into your database, you are assured that those requirements are
enforced across all transactions and, more importantly, all interfaces. In contrast, business
rules implemented in an application are enforced only when that application is used to
change your database. Relying on application-enforced business rules opens up serious data
integrity issues when data corrections are made using tools like SQL and new Web-based
applications.

In this chapter we will explore additional DB2 UDB for iSeries features that will help us move
the business rules into the database.

© Copyright IBM Corp. 2005. All rights reserved. 65

6.1 Database normalization

Normalization is the process of removing redundant data from your tables in order to improve
storage efficiency, data integrity, and scalability. A table in a relational database is said to be
in a certain normal form if it satisfies certain constraints. Edgar Codd’s original definition
defined three such forms, but there are now other forms accepted. Each normal form
represents a stronger condition than the previous one, which means that a higher level of
normalization cannot be achieved until the previous levels have been achieved.

The First Normal Form (or 1NF) involves removal of redundant data from horizontal rows.
We want to ensure that there is no duplication of data in a given row, and that every column
stores the least amount of information possible (making the field atomic). For example,
normalization eliminates repeating groups by putting each into a separate table and
connecting them with a primary key-foreign key relationship.

The Second Normal Form (or 2NF) deals with redundancy of data in vertical columns.

The Third Normal Form deals with looking for data in the tables that is not fully dependant on
the primary key, but dependant on another value in the table. This is an ideal form for OLTP
environments.

It is not within the scope of this book to explain the normalization process. The reality is that
many of the iSeries customers have not taken the time and effort to normalize their
databases. In this stage of the modernization process it would be a good idea to take some
time and revisit the database design.

The steps involved in this stage are:
1. Eliminate unnecessary columns from the SQL tables.

In the process of normalization some unnecessary columns will be eliminated or moved to
other tables. Many tables contain columns that were intended for some purpose, however,
over the course of business these columns are no longer used or were never used at all.
This is the opportunity to identify and remove these columns.

2. Establish a data dictionary.

A data dictionary was actually started in stage 1 when we were defining standard
abbreviations for table names. The following is a list of some of the contents of the data
dictionary:

— Object naming conventions

— Column naming conventions

— Function naming conventions

— Application naming conventions
— Standard abbreviations

— All existing database columns
— Object relationships

— Business rules

3. Establish data domains.

This is the process of grouping columns with like attributes into classes or domains. We
can implement the data dictionary with established domains using Field Reference files,
since the SQL CREATE TABLE statement can now reference this file.

4. Create a logical database model.
5. Implement the model.

66 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

6.2 Referential integrity

Referential integrity constraints (also known as RI constraints or referential constraints)
implement business rules at the table level. An Rl constraint would be used in DB2 UDB for
iSeries to make sure that each new order references a customer that exists in the customer
table. A referential constraint is defined for the order table to keep the child-parent
(detail-master) data relationship in synch between the order and customer tables. With a
referential integrity constraint in place between the two tables, DB2 UDB for iSeries
guarantees that each order always refers to a valid customer.

Some of the benefits of using referential integrity are:

» It reduces application programming requirements by allowing the database to perform
existence checks and cascaded delete functions.

» It prevents data corruption from sources outside the application such as ODBC, JDBC,
DFU, SQL, etc.

The support of referential integrity in DB2 UDB for iSeries has been around for many years.
The reality is that many customers have their referential integrity coded in their application
code. In this phase it is important that combined with the normalization process of the
database, it is a good time to implement referential integrity using the database. For a more
detailed description of how to implement referential integrity in DB2 UDB for iSeries refer to
the redbook Advanced Functions and Administration on DB2 Universal Database for iSeries -
SG24-4249-03.

6.3 Constraints

DB2 UDB provides several ways to control what data can be stored in a column. These
features are called constraints or rules that the database management enforces on a data
column or set of columns.

DB2 UDB provides three types of constraints:
» Primary and unique key constraints

Use these to prevent duplicate entries on a column from being entered into the database.
Creating a primary key constraint on a table also provides equivalent functionality with a
uniquely keyed physical file object.

> Referential Integrity constraints

Use these to define relationships between tables and ensure that these relationships
remain valid. For example, an RI constraint would prevent an order from being inserted
whenever that order does not reference a valid customer number.

» Check constraints

Use these to ensure that column data does not violate rules defined for the column or only
a certain set of values are allowed into a column. The check constraint example here
enforces that the order quantity amount is always greater than zero and less than 1000.

An example of creating a table and specifying the constraints is:

CREATE TABLE orders(
ordnum INTEGER PRIMARY KEY,
ordqty INTEGER CHECK(ordqty>0 AND ordqty<999),
ordamt DECIMAL(7,2),
part_id CHAR(4),
CONSTRAINT ordpart FOREIGN KEY(part_id) REFERENCES parts(PartID)

Chapter 6. Moving business rules to the database 67

ON DELETE RESTRICT ON UPDATE RESTRICT)

Database constraints are beneficial due to the following reasons:

They centralize the definition of business rules.

Easier code re-use and better modularity.

Improved data integrity.

Improved query performance. SQE query optimizer is constraint aware.

vyvyyy

The new SQE optimizer, starting with V5R3, also has the ability to analyze the constraint
definitions to see if they can be employed to make data retrieval more intelligent and
faster. For example, if a query is executed searching for all orders with a quantity greater
than 1000, the optimizer would be able to return an empty result set without looking at any
of the data since it knows that the check constraint definition prohibited any quantity value
greater than 1000.

For a more detailed description of how to implement and define constraints in DB2 UDB for
iSeries refer to the redbook Advanced Functions and Administration on DB2 Universal
Database for iSeries - SG24-4249-03.

6.4 Constraint coexistence considerations

Before you begin using constraints to enforce business rules, you have to consider the impact
on existing applications. This is true because the same business rules that constraints
enforce generally already exist in application code. For example, a referential constraint
might require that all orders have valid customer numbers. To enforce this business rule
using RPG, before creating a new order you chain to the customer master file to verify that
the customer number exists. If it does not, you display an error message and the order is not
added.

To understand how constraints work with other application design options, you may find it
helpful to consider how you currently apply duplicate key rules. It is common practice in
iSeries shops to define duplicate key rules when a physical file is created. These rules ensure
that no matter what application modifies the file, or what errors or malicious code that
application contains, the database will never be corrupted with duplicate keys. This does not
mean that your applications cease to check for duplicate keys, but it does mean that the
database is protected even if your applications are bypassed or incorrect. Thus the duplicate
key rule, which is a primary key or unique constraint in SQL terms, ensures that the file
contains valid data regardless of how it is updated.

If you apply the same logic you currently use for imposing duplicate key rules to referential
and check constraints, it is much easier to see how you can begin using these database
features. We recommend that you begin defining referential and check constraints for
business rules that are well defined and consistently enforced by your applications. Keep in
mind that a constraint will always be enforced, so you want to avoid imposing constraints if
the existing data contains violations, or if the applications do not conform to the constraint
rules.

Once you have defined a constraint, the next question is how to deal with constraint violations
in your applications. If you have an application that checks a business rule that is also
enforced by a constraint, it is often best to leave that application code intact and accept the
slight performance penalty incurred by checking twice—once in the constraint and once in the
application code.

If you are writing new applications, consider checking for constraint violations instead of using
data validation techniques, such as chaining to a master file. However, you may find that

68 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

there are situations where the existing methods of checking for errors make more sense than
checking for constraint violations. For example, if you are already chaining to the customer
master file to retrieve the customer name, it makes sense to handle invalid customer
numbers at the same time, using the same methodology as you currently use.

Another issue to consider is how easily you can determine which constraint failed. SQL, RPG,
and COBOL all signal constraint violations. However, if multiple constraints are assigned to a
table, as is generally the case, you must retrieve the specifics concerning which constraint
failed using the Receive Program Message API. In addition, constraint violations are reported
as soon as the first violation is encountered. Therefore, if you need to validate an entire panel
of information and report all errors to the user, checking for constraint violations in your
application could be tricky.

Finally, while the duplicate key comparison works well for most constraints, some referential
constraints do more than simply prevent invalid data from being stored in a table. If you define
a constraint that cascades (for example, deleting all order line rows when the corresponding
Order Header row is deleted), you will most likely want to remove any application code that
performs the same function as the constraint.

Even if you decide never to check for constraint violations in your RPG or COBOL
applications, you may still want to impose constraints. Doing so will make your business rules
accessible to applications running on other platforms or written in languages such as Java. It
will protect your data from corruption and it will improve application portability because
constraints are a standard database capability.

6.5 Column-level security

You can restrict user update and read requests to specific columns of a table. There are two
ways to do this:

» Create a view of the table that includes only those columns to which you want your users
to have access, in the same way that it was done with logical files.

» Use the SQL GRANT/REVOKE statement to grant or revoke update authority to specific
columns of an SQL table. This option is not available and possible using a logical file.

6.6 Column encryption

Starting with V5R3, DB2 UDB for iSeries now includes encryption and decryption column
functions, so that iSeries developers do not have to write their own encryption routines.
Underneath the covers, the DB2 Encrypt and Decrypt scalar functions utilize the IBM
Cryptographic Access Provider 128-bit product (5722-AC3) to add another layer of security
around your data.

There are specific data type and length requirements that must be met in order to use the
Encryption column function. This is because the encrypted version of the data will be a binary
value and longer than the original data string. The data types must be:

» BINARY, VARBINARY
» CHAR FOR BIT DATA, VARCHAR FOR BIT DATA
» BLOB

The length of an encrypted string value is the actual string length plus an extra 8 bytes (or 16,
if BLOB or different CCSID values are used for the input) and must be rounded to an 8-byte

Chapter 6. Moving business rules to the database 69

boundary. Up to 32 byte hint data can optionally be added and stored with an encrypted
value.

In Example 6-1 you see how to set the encryption password with a 3-character hint and then
the encryption of the employee 6-character ID value as it is inserted into a DB2 UDB table.
The decrypt_char function on the SELECT statement uses the same password to return the
original employee ID value of ‘112233’ back to the application.

Example 6-1 Encrypt and decrypt functions

CREATE TABLE emp(id VARCHAR(19) FOR BIT DATA, name VARCHAR(50))
SET ENCRYPTION PASSWORD = 'protect' WITH HINT = 'sec'

INSERT INTO emp VALUES(ENCRYPT('112233'), 'BOB SANDERS')
SELECT DECRYPT CHAR(id), name FROM emp

On the iSeries server, a validation list object is a good container to safely store the encryption
passwords, because the passwords can be encrypted when they are stored in the list object.
Each validation list entry allows you to store an entry identifier along with an encrypted data
value. The encryption password is stored in the encrypted data value and the list entry
identifier could be assigned the table name or some other value that makes it easy to retrieve
the encryption password for a specific column or row. A set of OS/400 APIs is provided for
application programs to populate a validation list and retrieve values from the list.

Native program access

The new column encryption functions (Encrypt and Decrypt) can be used in HLL programs in
the following way:

» Encryption: Define and use an SQL before trigger to intercept the write request and then
have the trigger execute the encrypt function against the sensitive columns.

» Decryption: Define an SQL view containing the decrypt function and then open the SQL
view as a logical file to read unencrypted data.

6.7 Automatic key generation and unique identifiers

One of the simplest pieces of business logic that can be embedded into your DB2 object
definitions is key generation. Almost all solutions have code that generates a key value for
invoice or customer number and then inserts that value into a database table for storage.
Why not just have DB2 UDB generate that value as it inserts the row into the table?

That is exactly the functionality that the Identity column attribute and Sequence object (new in
0S/400 V5R3) can provide. Let DB2 UDB handle the key generation and locking/serialization
of that value, so the programmer can concentrate on real business logic.

Using native I/O, the relative record number can be used to access exactly one selected
record. SQL provides a scalar function RRN (file) to determine the relative record number;
however, it is not possible to generate an index over the relative record number.

Note: When using the built-in function RRN (file) in SQL to get access on one specified
relative record number, a table scan is always performed. SQL reads the complete table
and does not even stop if the row with the appropriate record number is found.

To prevent SQL from executing a table scan, a column to hold the unique identifier must be
added. Over this column an index can be built.

70 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

SQL provides three possibilities to generate unique identifiers:

» |dentity column attribute
» Sequence object
» ROWID data type

Identity column attribute

When using iSeries Navigator to create the table, select Set as identity column in the New
Column window. The identity column must be a numeric data type such as INTEGER or
DECIMAL. Start, minimal and maximal value, and increment step can be specified just like
the action at overflow. Only one identity column is allowed for one table.

When a table has an identity column, the database manager can automatically generate
sequential numeric values for the column as rows are inserted into the table.

Note: Tables containing a primary key with an identity column can be accessed by native
file access. When writing a record or row though native I/O, the identity column value is
generated and inserted.

Specify the identity column attribute when creating a table:

CREATE TABLE myschema/emp(empno INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 10 , INCREMENT BY 10),
name CHAR(30), dept# CHAR(4))

Insert a row into the table:

INSERT INTO myschema/emp (name,dept#) VALUES('MIKE','503A') or
INSERT INTO myschema/emp (name,dept#) VALUES(DEFAULT,'MIKE','503A")

Sequence object

The sequence object allows automatic generation of values. Unlike an identity column
attribute, which is bound to a specific table, a sequence object is a global and stand-alone
object that can be used by any tables in the same database.

An example of creating a sequence object named ORDER_SEQ is shown below:
CREATE SEQUENCE order _seq START WITH 10 INCREMENT BY 10

When inserting a row, the sequence number must be determined through NEXT VALUE FOR
SEQUENCE. For example, we insert a row to the ORDERS table using a value from the
sequence object:

INSERT INTO orders (ordnum,custnum) VALUES(NEXT VALUE FOR order seq, 123)

Because the sequence is an independent object and not directly tied to a particular table or
column, it can be used with multiple tables and columns. Because of its independence from
tables, a sequence can be easily changed through the SQL statement ALTER SEQUENCE.
The ALTER SEQUENCE statement only generates or updates the sequence object, but it
does not change any data.

ROWID data type

A ROWID is a value that uniquely identifies a row in a table. A column or a host variable can
have a ROWID data type. A ROWID column enables queries to be written that navigate
directly to a row in the table. Each value in a ROWID column must be unique. The database
manager maintains the values permanently, even across table reorganizations. When a row
is inserted into the table, the database manager generates a value for the ROWID column

Chapter 6. Moving business rules to the database 71

unless one is supplied. If a value is supplied, it must be a valid row ID value that was
previously generated by either DB2 UDB for OS/390® and z/OS® or DB2 UDB for iSeries.

The internal representation of a ROWID value is transparent to the user. The value is never
subject to CCSID conversion because it is considered to contain BIT data. ROWID columns
contain values of the ROWID data type, which returns a 40-byte VARCHAR value that is not
regularly ascending or descending.

A table can have only one ROWID. A row ID value can only be assigned to a column,
parameter, or host variable with a ROWID data type. For the value of the ROWID column, the
column must be defined as GENERATED BY DEFAULT or OVERRIDING SYSTEM VALUE
must be specified. A unique constraint is implicitly added to every table that has a ROWID
column that guarantees that every ROWID value is unique. A ROWID operand cannot be
directly compared to any data type. To compare the bit representation of a ROWID, first cast
the ROWID to a character string.

Note: In RPG, there is no data type that directly matches with the ROWID data type, but by
using the keyword SQLTYPE in the Definition specifications, host variables can be defined
to hold the ROWID.

The following example shows the definition of a host variable with the SQL Data type ROWID:
D MyRowId S SQLTYPE (ROWID)

6.8 Accessing non-relational data

While SQL was designed originally for relational database objects, it has been enhanced to
also support non-relational objects. Examples of some non-relational objects would be image
files, iSeries multi-format files, and S/36 files. These are all objects that SQL applications
cannot access directly.

6.8.1 User defined table functions for accessing non-relational data

In V5R2, user defined table functions (UDTFs) were added and one of their advantages is
they make it easier to access non-relational object. A UDTF can be written entirely in SQL or
implemented as an external UDTF by using one of the high-level programming languages
supported by OS/400.

If you have an existing OS/400 program that knows how to extract data out of a non-relational
object (such as an IFS stream file, data queue, or S/36 file), the program can be registered as
an external UDTF. Now, SQL programmers can have access to the data in these
non-relational objects by just invoking the UDTF. A UDTF can be referenced anywhere on an
SQL statement that a table reference is allowed.

Typically, SQL reads a S/36 record as a text field. In our example, we demonstrate
manipulating S/36 data records by using UDF and UDTF. The record layout of the S/36 file,
named S36EMP, is shown in Table 6-1.

Table 6-1 S/36 record layout

Field name From To
EMPLOYEE NO. 1 6
FIRST NAME 7 18

72 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Field name From To

LAST NAME 19 33

BIRTH DATE 34 39

The 6-character birth date field is stored in the format year/month/day (YYMMDD). We create

a UDF, named DMY, to convert this field into a date column with standard *DMY format, as
shown in Example 6-2.

Example 6-2 User defined function to return *DMY date

CREATE FUNCTION SAMPLEDBO1.DMY (DATEIN CHAR(6))

RETURNS DATE

LANGUAGE SQL

SPECIFIC SAMPLEDBO1.DMY

NOT DETERMINISTIC

READS SQL DATA

CALLED ON NULL INPUT

NO EXTERNAL ACTION

DISALLOW PARALLEL

NOT FENCED

BEGIN
DECLARE DMY DATE ;
DECLARE D CHAR (3) ;
DECLARE M CHAR (3) ;
DECLARE DM CHAR (6) ;
SET D = CONCAT (SUBSTR (DATEIN , 5,2) , '/') ;
SET M = CONCAT (SUBSTR (DATEIN , 3,2), '/') ;
SET DM = CONCAT (D , M) ;
SET DMY = CAST (CONCAT (DM , SUBSTR (DATEIN , 1, 2)) AS DATE) ;
RETURN DMY ;

END

Example 6-3 shows you how to create a UDTF, named S36UDTF, which returns rows of a
result from the S/36 data file. The user defined function, DMY, is also used in the SQL
statement to convert the date field.

Example 6-3 User-defined table function to return S/36 data as SQL table

CREATE FUNCTION SAMPLEDBO1.S36UDTF (EMPNO VARCHAR(6))

RETURNS TABLE (

EMP_NO CHAR(6) ,

FIRST_NAME CHAR(20) ,

LAST NAME CHAR(20) ,

BIRTH_DATE DATE)

LANGUAGE SQL

SPECIFIC SAMPLEDBO1.S36UDTF

NOT DETERMINISTIC

READS SQL DATA

CALLED ON NULL INPUT

NO EXTERNAL ACTION

DISALLOW PARALLEL

NOT FENCED

BEGIN

RETURN

SELECT SUBSTR (F00001 , 1 , 6) AS EMP_NO ,

SUBSTR (F00001 , 7 , 12) AS FIRST NAME ,
SUBSTR (F00001 , 19 , 15) AS LAST NAME ,
SAMPLEDBO1 . DMY(SUBSTR (F00001 , 34 , 6)) AS BIRTH_DATE

Chapter 6. Moving business rules to the database

73

FROM SAMPLEDBO1 . S36
WHERE SUBSTR (F00001
END

EMP
, 1,6) =EMPNO ;

Figure 6-1 shows how to execute the SQL statement that invokes the UDTF from the SQL

Scripts window.

SELECT * FROM TABLE(S36UDTF(°000010°)) AS X;

% Untitled - Run SOL Scripts - As27(S

104rt9m) * =Joed

I hRRER FPEFDE

Examples

File Edit “iew Run VisualExplain Monitor Options Connection Help

O @ wfwg @

| j Ingert

SELECT * FROM TABLE(S36UDTF('000010')) &5 X}

EMP_MO | FIRST_MAME

LAST_MAME | BIRTH_DATE

aooot1a Warawich

Sundarabhaka 16/08/58

4

| =l

Messages SELECT*FROM TABLE(S26UDTF{000010%) AS X

Figure 6-1 Invoking an UDTF

6.8.2 Datalink

The datalink data type provides a method of linking a row in a DB2 table with non-relational
objects in the form of Uniform Resource Locators (URLs) that are associated with that row of
data. For example, a row in the EMPLOYEE table might want a datalink to store the reference
to the IFS file containing a photograph of a employee, as shown in Figure 6-2.

[Contents of SAMPLE.EMP_PHOTO - Rehasm27(5104rt9m) =Jo&d
PHOTO_FORMAT PICTURE DL_PICTURE

L btnep 424DAAAA00000000000... [HTTP. /RCHASMR? TSOROCH,IBM.COM/GIBM/FrodData/05400/S0L/Sarmples/dh200130 by

2 47494638356 10200500, .. |HTTP. /RCHASM2? [TSOROCH.IBM.COM/GIEM/FrodDala/OS4D0/SOLSamples/dh200130 gi

3 b 424076101000080000. | HTTP: /RCHASM?7 TSOROCH B, COM/QIBM/FrodData/0S400/S0L/Sarmples/dh200140 by
P 47494636356 10201 100L... [HTTP:/RCHASM?7 ITSOROCH BM.COM/QIEM/FrodDatal OS4DI/S0L/Samples/dh200140 gif

5 btnep 424DDELED10000000000. . [HTTP: /RCHASM2? ITSORQCH B, COM/QIBM/FrodData/0S400/S0L/Sarples/db200150 by

6 o 47494636396 102010501, .. [HITP. /RCHASM?? [TSOROCH IBM.COM/QIEM/FrodDala/OS4D)/S0L/Samples/dh200150 gif

7 b 424D36FE0000000000).. |[HTTP. /RCHASM? ITSOROCH M. COM/QIBM/FrodData/0S400/SOL/Sarmples/dh200190 by

s o 47494636396 F100000L... [HITP. /RCHASM2? [TSOROCH,IBM.COM/GIEM/FrodDala/OS4D0/SGL/Samples/dh200190 gif

A r p

Figure 6-2 Example of datalink data

The idea of a datalink is that the actual data stored in the column is only a pointer to the
object. This object can be anything—an image file, a voice recording, a text file, and so on.

74 Modernizing IBM @server iSeries Appli

cation Data Acess - A Roadmap Cornerstone

This means that a row in a table can be used to contain information about the object in
traditional data types, and the object itself can be referenced using the datalink data type.

Using datalink also gives control over the objects while they are in linked status. A datalink
column can be created such that the referenced object cannot be deleted, moved, or
renamed while there is a row in the SQL table that references that object. This object is
considered linked. Once the row containing that reference is deleted, the object is unlinked,
but not deleted.

The maximum length of a datalink must be in the range of 1 through 32717. If FOR MIXED
DATA or a mixed data CCSID is specified, the range is 4 through 32717. The specified length
must be sufficient to contain both the largest expected URL and any datalink comment. If the
length specification is omitted, a length of 200 is assumed.

A DATALINK value is an encapsulated value with a set of built-in scalar functions. The
DLVALUE function creates a DATALINK value. The following functions can be used to extract
attributes from a DATALINK value.

DLCOMMENT
DLLINKTYPE
DLURLCOMPLETE
DLURLPATH
DLURLPATHONLY
DLURLSCHEME
DLURLSERVER

vVvVvyVvYyVvYyYvYyYYyvyYy

A datalink cannot be part of any index. Therefore, it cannot be included as a column of a
primary key, foreign key, or unique constraint.

Note: It is not possible to create a host variable with an equivalent data type for DATALINK
in RPG, neither through RPG data types nor by using the keyword SQLTYPE in the
Definition specifications.

The datalink scalar functions, however, can be used in embedded SQL.

For more information on datalinks refer to the redbook DB2 UDB for AS/400 Object Relational
Support, SG24-5409.

6.8.3 Large Object Support

Modern types of data have different attributes from traditional business data. For example, an
application may need to store a graphical image, which is displayed on the PC, along with the
other data types in the database. DB2 UDB for iSeries server has the capability to manage
these types of data.

The VARCHAR, VARGRAPHIC, and VARBINARY data types have a limit of 32 K bytes of
storage. While this may be sufficient for small to medium size text data, applications often
need to store large text documents. They may also need to store a wide variety of additional
data types such as audio, video, drawings, mixed text and graphics, and images. There are
three data types to store these data objects as strings of up to two gigabytes in size.

» The character large object (CLOB) data type can store up to two gigabytes of
variable-length character string. This data type is appropriate for storing text-oriented
information where the amount of information can grow beyond the limits of a regular
VARCHAR data type (upper limit of 32 K bytes). Code page conversion of the information
is supported.

Chapter 6. Moving business rules to the database 75

76

» The double byte character large object (DBCLOB) data type can store up to 1 gigabyte of
variable-length double-byte character string. This data type is appropriate for storing
text-oriented information where double-byte character sets are used. Again, code page
conversion of the information is supported.

» The binary large object (BLOB) data type can store up to 2 gigabytes of variable-length
binary string. A binary string is made up of bytes with no associated code page. This data
type can store binary data larger than VARBINARY (32 K limit). This data type is good for
storing image, voice, graphical, and other types of business or application-specific data.

Each table may have a large amount of associated LOB data. Although a single row
containing one or more LOB values cannot exceed 3.5 gigabytes, a table may contain nearly
256 gigabytes of LOB data.

You can refer to and manipulate LOBs using host variables just like any other data type.
However, host variables use the program’s storage, which may not be large enough to hold
LOB values. Other means are necessary to manipulate these large values. Locators are
useful to identify and manipulate a large object value at the database server and for
extracting pieces of the LOB value. File reference variables are useful for physically moving a
large object value (or a large part of it) to and from the client.

Large object locators

LOB locators use a small, easily managed value to refer to a much larger value. Specifically,
a LOB locator is a 4-byte value stored in a host variable that a program uses to refer to a LOB
value held in the database system. Using a LOB locator, a program can manipulate the LOB
value as if the LOB value was stored in a regular host variable. When you use the LOB
locator, there is no need to transport the LOB value from the server to the application (and
possibly back again).

The LOB locator is associated with a LOB value, not a row or physical storage location in the
database. Therefore, after selecting a LOB value in a locator, you cannot perform an
operation on the original rows or tables that have any effect on the value referenced by the
locator. The value associated with the locator is valid until the unit of work ends, or the locator
is explicitly freed, whichever comes first. The FREE LOCATOR statement releases a locator
from its associated value. In a similar way, a commit or rollback operation frees all LOB
locators associated with the transaction.

When selecting a LOB value, you have three options:

» Select the entire LOB value in a host variable. The entire LOB value is copied into the host
variable.

» Select the LOB value in a LOB locator. The LOB value remains on the server; it is not
copied to the host variable.

» Select the entire LOB value in a file reference variable. The LOB value is moved to an
Integrated File System (IFS) file.

For more information on datalinks refer to the redbook DB2 UDB for AS/400 Object Relational
Support, SG24-5409.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Embedded SQL

In our journey of database modernization we can use one of the powerful features of the
iSeries, which is Embedded SQL. Embedded SQL is the capability to code SQL statements in
programs written in RPG, COBOL, and C. Embedded SQL can be used to help us to
modernize our data access to the database.

Some other reasons for using embedded SQL in RPG programs on the iSeries are:

» Programmers with SQL knowledge can understand RPG programs without learning native
file operations.

» The same or a similar SQL code can be embedded in different programming languages.

» SQL provides a variety of scalar functions that does not exist in RPG but easily can be
exploited.

» Take advantage of SQL scalar functions, user defined functions (UDF), and user defined
table functions (UDTF), which can be used in SQL statements.

» Stored procedures can be called by using an SQL CALL statement.

» SQL can simplify the program logic when multiple rows are included in an operation, such
as UPDATE or DELETE, or multiple joins are included in a single SQL statement.

» SQL provides much more powerful possibilities to join tables, like LEFT OUTER JOIN or
EXCEPTION JOIN.

» A couple of column functions allows you to easily calculate totals, averages, minimums,
and maximums.

» SQL allows you to merge data from several tables by using the UNION statement.
» SQL provides additional isolation levels and the SAVEPOINT statement that allows a
partial ROLLBACK.

In this chapter we cover some considerations when using Embedded SQL, specially in RPG
programs.

© Copyright IBM Corp. 2005. All rights reserved. 77

7.1 How to get started

78

Source code that contains an embedded SQL statement must first be processed by an SQL
preprocessor. Its job is to replace SQL statements with calls to corresponding SQL function
programs. This preprocessor is a part of the IBM licensed product DB2 Query Manager and
SQL Development Kit for iSeries (5769-ST1), which must be available during the application
development. DB2 SQL Development Kit is part of the Enterprise Edition. The runtime
support is included in the operating system.

Source members with embedded SQL have a particular source type:

»

SQLxxx for non-ILE sources, including embedded SQL, where xxx is the appropriate
programming language. The member type for RPG/400® with embedded SQL is
SQLRPG.

SQLxxxLE for any ILE language including embedded SQL. The member type for ILE RPG
with embedded SQL is SQLRPGLE.

In this chapter we focus exclusively on ILE RPG.

To embed SQL statements in your source code you have to consider the following rules:

>

Enter your SQL statements on the C specification. SQL statements can only be used in
classical RPG style. When you are coding in RPG free format, you have to end free format
coding using the compiler directive/End-Free and restart if after the end of your SQL
statement.

Start your SQL statements using the delimiter /EXEC SQL in positions 7 through 15, with
the slash (/) in position 7.

You can start entering your SQL statements on the same line as the starting delimiter or
on the new line.

In the continuation line put C in position 6 and add a plus sign (+) in position 7 to continue
your statements on any subsequent lines.

SQL code can be inserted between position 8 and 80.

Comments can be added elsewhere in the SQL statement, either through an asterisk (*) in
position 7 for the whole row or through and starting slash followed by an asterisk (/*), and
an ending asterisk followed by a slash (*/) for shorter comments.

Use the ending delimiter /END-EXEC in positions 7 through 15, with the slash (/) in
position 7, to signal the end of your SQL statements.

Between /EXEC SQL and /END-EXEC only one SQL statement can be inserted. It is not
possible to enter several SQL statements delimited by an semi colon (;) like in source files
for RUNSQLSTM. However, you can insert multiple SQL statements starting with /EXEC

SQL and ending with /END-EXEC each.

Example 7-1 shows an embedded SQL statement to delete rows in the Order Header table
without deleting rows in the Order Details table.

Example 7-1 Deleting Order Header without corresponding Order Details with SQL

C/EXEC SQL

C+ Delete from Order_Header a

C+ where a.Order_Number in

C+ (Select b.Order_ Number

C+ from Order_Header b

C+ exception join Order_Detail ¢
C+ on b.Order_Number = c.Order_Number)

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

C/END-EXEC

7.2 Creating a SQLRPG - Program/service program/module

Creating Integrated Language Environment (ILE) objects is always a two-step process:
1. The language compiler converts the source code and creates module objects.
RPG modules are created by the CL command CRTRPGMOD.

A module is sometimes called a compilation unit since it comes from the compilation of
one source member. Modules are not executable. They must be built to either program or
service program objects.

2. The binding process creates programs or service programs by binding the module
objects.

A program is created by the CL command CRTPGM, while to create a service program
the CL command CRTSRVPGM must be used. In this way it is possible to combine
modules that are written in different programming languages into a single program or
service program.

Modules can be bound by copy or by reference to the program objects. Bind by copy
means that the module is physically copied into the program object. Every time a module
is changed all programs that contain this module must be rebound. When using bind by
reference, a module is bound into a service program and only the service program’s
signature is bound to the program object.

After a module is bound to a program or service program, the module object is no longer
needed and can be deleted.

When using CRTBNDRPG, a module is generated in the QTEMP library and then bound
to a program with the same name. If the compilation succeeds, the module will be deleted.

To compile an ILE Object with embedded SQL, an additional preceding step, the
precompilation, is necessary.

The SQL precompile creates an output source file member. By default, the precompile
process creates a temporary source file QSQLTxxxxx in QTEMP, or you can specify the
output source file as a permanent file name on the precompile command. If the precompile
process uses the QTEMP library, the system automatically deletes the file when the job
completes. A member with the same name as the program name is added to the output
source file.

This member contains the following items:

» The embedded SQL statements are commented out and replaced by calls to the SQL
run-time support.

» Parsed and syntax-checked SQL statement.
» SQL Communications Area (SQLCA) is added in the Definition specifications; if not, SET
OPTION SQLCA = *NO is specified.

By default, the precompiler calls the host language compiler. When creating a program
CRTBNDRPG is used, while for modules and service programs CRTRPGMOD is used.

Chapter 7. Embedded SQL 79

7.3 Compile command CRTSQLRPGI

If you want to generate RPG programs or modules, you have to use different compile
commands. CRTRPGMOD creates a module object, while CRTBNDRPG creates a program
object. To compile SQL program objects, there is only one single command, CRTSQLxxxl
(where xxx specifies the programming language.)

The object type that is created can be determined by the compile option OBJTYPE.

» Object type *"MODULE generates a module object.
» Object type *PGM generates a program object.
» Object type *SRVPGM generates a service program object.

Note: There is only one single command to generate programs, service programs, and
modules with embedded SQL in RPG.

The object type can be specified by option OBJTYPE (Compile type).

7.3.1 Missing compile options in the SQL compile command

There are some compile options that are important for RPG compilation, but not supported by
the SQL command CRTSQLRPGI:

» Activation group.

The CRTSQLRPGI command does not contain an option to determine the activation
group.

— Programs are always compiled with the default activation group.

— Service programs are always compiled with activation group *CALLER.

If you want to use different activation groups, especially for programs, you either have to
use the keyword ACTGRP in the Control Specifications or you have to create the module
with CRTSQLRPGI and then bind it with CRTPGM or CRTSRVPGM.

» Binding directories.

The CRTSQLRPGI command does not contain an option to specify binding directories, so
it is not possible to bind several modules or service programs to the program object.

If you have to bind several modules, you either have to use the keyword BNDDIR in the
control specifications or execute a two-step process by using CRTSQLRPGI to create the
module first and then bind it with CRTPGM or CRTSRVPGM.

> Allow NULL values.
The CRTSQLRPGI command does not contain an option to allow NULL values.
If you use both embedded SQL and native 1/O to access data, and the tables contain
NULL values, you have to specify the keyword ALWNULL in the control specification.

Example 7-2 shows the control specification to implement compiler options in the control
specifications (H-Specs).

Example 7-2 Control specifications for compiler options

H ActGrp('MYACTGRP')
H BndDir('QC2LE': 'QUSAPIBD': 'MYBNDDIR')
H ATwNull (*UsrCt1)

80 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Note: Because there are no options to set activation group, binding directory, or allow null
values in the SQL command, adequate keywords have to be entered in the control
specification.

Compiler options in the control specifications are not overwritten by the compile command.

7.3.2 Important compile options for SQL statements

Additionally, the CRTSQLRPGI command has several options that are important for
executing the SQL statements.

>

Commit (COMMIT)

Specifies the isolation level to be used. The default value is *CHG (the isolation level of
uncommitted read). Only tables, views, and packages referred to in SQL statements are
affected.

If your tables are not journaled, you have to change the value to *NONE.

Note: If you want to use commitment control for native I/O in RPG, you have to specify
the keyword COMMIT in the file definitions.

Date format (DATFMT) and date separator character (DATSEP)

The default value for date format is *JOB. Most the job date format only supports a 2-digit
year, so the valid date range is between 1940-01-01 and 2039-12-31. This can cause
problems in RPG, when dates out of this range are used. We recommend using a 4-digit
year date format, like *ISO.

Note: For fields that are defined in the Definition specifications or that are embedded in
files that are defined in the File specifications, the date and time format and separators
are determined by the keywords DATFMT and TIMFMT used in the definition or control
specifications.

Time format (TIMFMT) and time separator character(TIMSEP)

The default value for time format is *"HMS. Be careful when changing to *USA, because
RPG replaces the second portion of the date for AM or PM.

Close SQL cursor (CLOSQLCSR)

This specifies when SQL cursors are implicitly closed, SQL prepared statements are
implicitly discarded, and LOCK TABLE locks are released. SQL cursors are explicitly
closed when you issue the CLOSE, COMMIT, or ROLLBACK (without HOLD) SQL
statements.

The open data paths (ODP) are only closed when the cursors are implicitly closed. The
ODPs can be reused as long as cursors are not implicitly closed. Because there is no
overhead, by determining or creating the data path, repeated calls are much faster.

The default value is *ENDACTGRP, which means that the cursors are implicitly closed at
the end of the activation group.

SQL path (SQLPATH)

This specifies the path to be used to find procedures, functions, and user-defined types in
static SQL statements.

Chapter 7. Embedded SQL 81

The default value is *NAMING, which means that the path used depends on the naming
convention specified for the Precompiler options (OPTION) parameter.

— For *SYS naming, the path used is *LIBL, the current library list at runtime.

— For *SQL naming, the path used is "QSYS", "QSYS2", "userid", where "userid" is the
value of the USER special register. If a schema name is specified for the Default
Collection (DFTRDBCOL) parameter, the schema name takes the place of userid.

Alternatively, up to 268 libraries can be listed.

7.3.3 SET OPTION statement

The SET OPTION statement establishes the processing options to be used for SQL
statements.

In RPG, compile options can be set in the control specifications by using keywords like
ACTGRP, BNDDIR, ALWNULL, DATFMT, and TIMFMT. SQL does not consider the control
specifications, but with the SET OPTION statement provides an equivalent.

The SET OPTION statement can be embedded elsewhere in the control specification. Only
one SET OPTION statement is allowed per source member. Even if a source member
consists of several independent procedures, the SET OPTION statement can only be
embedded once, but it is valid for all procedures.

In SQL stored procedures, triggers, and User defined Functions, SET OPTION must be used
to set the compiler options.

Example 7-3 shows the control specifications and a SET OPTION statement embedded in
the same RPG source.

Example 7-3 Coexistence of compiler options in H-Specification and SQL SET OPTION statement

H ActGrp('MYACTGRP')

H BndDir('QC2LE': 'QUSAPIBD': 'MYBNDDIR')
H ATwNul1(*UsrCt1)

H DatFmt (*Eur)

C/EXEC SQL

C+ Set Option Commit = *NONE,

C+ Cl1oSQLCsr = *ENDACTGRP,
C+ DatFmt = *IS0,

C+ TimFmt = *IS0
C/End-Exec

7.4 Error handling - SQLCA (SQL communications area)

Error handling is a key element of a good application design. In this section we cover the
differences between and considerations for RPG and SQL.

RPG has several methods for dealing with errors. These are:

v

Using the (E) extender in operation codes
Using a monitor group

Defining a *PSSR routine

Registering a Condition handler program

vvyy

82 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

In SQL we have to work differently. In SQL, there are two variables used by the DBMS to
return feedback that we must be familiar with: SQLCODE and SQLSTATE. SQLCODE is the
original way in which DB2 reports error and warning conditions. Each DBMS provider
developed its own error code structure, making it difficult to build portable code that manages
error conditions. But in SQL92, the error conditions were standardized for all of us. That
standardized error condition code is called SQLSTATE; now we have a platform-independent
error code structure.

When DB2 UDB for iSeries encounters an error, the SQLCODE returned is negative, and the
first two digits of the SQLSTATE are different from '00', '01', and '02". If SQL encounters a
warning, but it is a valid condition while processing the SQL statement, the SQLCODE is a
positive number, and the first two digits of the SQLSTATE are '01' (warning condition) or ‘02’
(no data condition). When the SQL statement is processed successfully, the SQLCODE
returned is 0, and SQLSTATE is '00000'.

An SQL communication area (SQLCA) is a set of variables that may be updated at the end of
the execution of every SQL statement. A program that contains executable SQL statements
may provide one, but no more than one SQLCA (unless a stand-alone SQLCODE or a
stand-alone SQLSTATE variable is used instead), except in Java, where the SQLCA is not
applicable. Instead of using an SQLCA, the GET DIAGNOSTICS statement can be used in all
languages to return codes and other information about the previous SQL statement.

The SQL precompiler automatically places the SQLCA in the Definition specifications of the
ILE RPG for iSeries program prior to the first Calculation specification, unless a SET OPTION
SQLCA = *NO statement is found. Therefore, it is not necessary to code INCLUDE SQLCA in
the source program.

If a SET OPTION SQLCA = *NO statement is found, the SQL precompiler automatically
places SQLCODE and SQLSTATE variables in the Definition specification. They are defined
as shown in Example 7-4 when the SQLCA is not included.

Example 7-4 Defining SQLCODE and SQLSTATE

D SQLCODE S 10I 0
D SQLSTATE S 5A

The SQLCA source statements for ILE RPG for iSeries are as shown in Example 7-5.

Example 7-5 SQLCA SQL communication area

D SQLCA DS

D SQLCAID 8A INZ(X'0000000000000000")
D SQLAID 8A OVERLAY(SQLCAID)

D SQLCABC 101 0

D SQLABC 9B 0 OVERLAY (SQLCABC)

D SQLCODE 101 0

D SQLCOD 9B 0 OVERLAY (SQLCODE)

D SQLERRML 51 0

D SQLERL 4B 0 OVERLAY (SQLERRML)

D SQLERRMC 70A

D SQLERM 70A OVERLAY (SQLERRMC)

D SQLERRP 8A

D SQLERP 8A OVERLAY (SQLERRP)

D SQLERR 24A

D SQLERL 9B 0 OVERLAY (SQLERR:*NEXT)
D SQLER2 9B 0 OVERLAY (SQLERR:*NEXT)
D SQLER3 9B 0 OVERLAY (SQLERR:*NEXT)
D SQLER4 9B 0 OVERLAY (SQLERR:*NEXT)
D SQLER5 9B 0 OVERLAY (SQLERR:*NEXT)

Chapter 7. Embedded SQL 83

D SQLER6 9B 0 OVERLAY (SQLERR:*NEXT)

D SQLERRD 101 0 DIM(6) OVERLAY (SQLERR)
D SQLWRN 11A

D SQLWNO 1A OVERLAY (SQLWRN:*NEXT)

D SQLWNI 1A OVERLAY (SQLWRN:*NEXT)

D SQLWN2 1A OVERLAY (SQLWRN:*NEXT)

D SQLWN3 1A OVERLAY (SQLWRN:*NEXT)

D SQLWN4 1A OVERLAY (SQLWRN:*NEXT)

D SQLWN5 1A OVERLAY (SQLWRN:*NEXT)

D SQLWNG 1A OVERLAY (SQLWRN:*NEXT)

D SQLWN7 1A OVERLAY (SQLWRN:*NEXT)

D SQLWN8 1A OVERLAY (SQLWRN:*NEXT)

D SQLWN9 1A OVERLAY (SQLWRN:*NEXT)

D SQLWNA 1A OVERLAY (SQLWRN:*NEXT)

D SQLWARN 1A DIM(11) OVERLAY(SQLWRN)
D SQLSTATE 5A

D SQLSTT 5A OVERLAY(SQLSTATE)

Note: In Release V5R3MO0 the SQLCA was redesigned and enhanced:

» Additionally to the short RPG field names like SQLCOD, longer field names, that are
used in other languages like COBOL, are supported now.

» The numeric data type for the new fields with longer names is changed from binary data
to integer.

To write a more standardized code we recommend using the longer field names.

Table 7-1 shows the enhancements of the SQLCA.

Table 7-1 SQLCA overview enhancements

Original Fields Additional Fields

Name Definiton Name Definition
SQLAID 8A |SQLCAID 8A
SQLABC 9B 0|SQLCABC 101 0
SQLCOD 9B 0|SQLCODE 1010
SQLERL 4B 0|SQLERRML 510
SQLERM 70A |SQLERRMC 70A
SQLERP 8A |SQLERRP 8A
SQLERR 24A [SQLERRD 101 0 Dim(6)
SQLWRN 11A [SQLWARN 1A Dim(11)
SQLSTT 5A |SQLSTATE 5A

The SQLCODE (SQLCOD) and SQLSTATE (SQLSTT) values are set by the database
manager after each SQL statement is executed. If the SQLCA is used, a program should
check either the SQLCODE or SQLSTATE value to determine whether the last SQL
statement was successful.

7.4.1 SQLCODE

An SQLCODE is a return code. The return code is sent by the database manager after
completion of each SQL statement.

Each SQLCODE that is recognized by a DB2 UDB for iSeries server has a corresponding
message in the message file QSQLMSG. The message identifier for any SQLCODE is

84 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

constructed by appending the absolute value (5 digits) of the SQLCODE to SQ and changing
the third character to 'L' if the first character of the SQLCODE is '0'. For example, if the
SQLCODE is 30070, the message identifier is SQ30070. If the SQLCODE is -0204, the
message identifier is SQL0204. Lastly, if the SQLCODE is a three-digit positive number, a
zero is added before the first digit. For example, if the SQLCODE is 551, the message
identifier is SQLO551.

If the error message text contains variables, the appropriate variable texts are returned in the
field SQLERRMC (SQLERM). To get the complete message text, you only have to use
Application Programming Interface (API) QMHRTVM (Retrieve Message) or CL command
RTVMSG (Retrieve Message).

Note: If you use a cursor to read your rows, do not use SQLCODE = *Zeros to detect if a
row was returned. In some cases SQL warnings are returned (SQLCODE between 1 and
99), but the row is nevertheless retrieved. It is better to use SQLCODE <> 100 or
SQLSTATE <> 02000’ instead.

7.4.2 SQLSTATE

SQLSTATE provides application programs with common return codes for success, warning,
and error conditions found among the DB2 Universal Database products. SQLSTATE values
are particularly useful when handling errors in distributed SQL applications. SQLSTATE
values are consistent with the SQLSTATE specifications contained in the SQL 1999
standard.

In SQL functions, SQL procedures, SQL triggers, and embedded applications other than
Java, SQLSTATE values are returned in the following way:

» The last five bytes of the SQLCA
» A stand-alone SQLSTATE variable
» The GET DIAGNOSTICS statement

SQLSTATE values are comprised of a two-character class code value, followed by a
three-character subclass code value.

The class code of an SQLSTATE value indicates whether the SQL statement was executed
successfully (class codes 00 and 01) or unsuccessfully (all other class codes).

SQLSTATE is related to SQLCODE. Every SQLSTATE has one or more SQLCODEs
associated with it. An SQLSTATE can refer to more than one SQLCODE.

Table 7-2 compares SQLCODE and SQLSTATE.

Table 7-2 Comparing SQLCODE and SQLSTATE

SQLCODE / SQLCOD SQLSTATE / SQLSTT
Error < *Zeros Position 1-2 <> '01', '02', '00'
Not Found =100 ‘02000
Warning between 1 and 99 Position 1-2 ='01"

Note: SQLCODE is the original way in which DB2 reports error and warning conditions,
but the SQL standard standardizes the SQLSTATE; that is why SQLSTATE should be
preferred.

For more information on error handling in SQL refer to the redbook Stored Procedures,
Triggers and User Defined Functions on DB2 Universal Database for iSeries, SG24-6503.

Chapter 7. Embedded SQL 85

7.5 Host variables

Sometimes you like to use different values in your SQL statement instead of literal values, to
make your application more flexible and to process different rows in a table.

SQL allows you to embed such variables called host variables. A host variable in an SQL
statement must be identified by a preceding colon (:).

We can differentiate between:

» Single field host variable
» Host structure
» Host structure array

7.5.1 Single field host variable

A host variable is a single field in your program that is specified in an SQL statement, usually
as the source or target for the value of a column. Every field defined in your source code can
be used as host variable. It makes no difference if the fields are defined in the File,
Definitions, or Calculations Specifications. The host variable and column must be data type
compatible. For more information about type compatibility look at 9.1, “Comparing RPG and
SQL data types” on page 172.

Note: Array elements cannot be used as host variables.

Host variables are commonly used in SQL statements in these ways:

In a WHERE clause of a select statement

As a receiving area for column values

As a listed column in a SELECT statement

As a value in other clauses of an SQL statement:

— Inthe SET clause of an UPDATE statement

— In the VALUES clause of an INSERT statement
— As parameters in the SQL CALL statement

vyvyyy

Using host variables in a WHERE clause

You can use a host variable to specify a value in the predicate of a search condition, or to
replace a literal value in an expression.

Example 7-6 shows how the delivery date in the Order Header table can be updated with the
current date for a range of order numbers ('00005'-'00010’).

Example 7-6 Using host variables in a WHERE clause

D StartOrderNo S 5A

D EndOrderNo S 5A

K L e e o o e e e e e e e e ———
C eval StartOrderNo = '00005'

C eval EndOrderNo = '00010'

C/EXEC SQL

C+ Update Order_Header

C+ set Order_Delivery = Current Date

C+ where Order_Number between :StartOrderNo and :EndOrderNo
C/End-Exec

C Return

86 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Using Host variables as a receiving area for column values

Host variables can be used in an SELECT ... INTO or FETCH clause, to retrieve values from

the return table.

In Example 7-7 the customer number and the order total for order number ’'00005’ are
returned into the host variables Customer and Total.

Example 7-7 Using host variables as a receiving area

D OrderNo S 5A

D Customer S 5A

D Total S 11P 2

K L o e e o e e o e E E E — — — — — — — — — — — ——————
C eval OrderNo = '00005"

C/EXEC SQL

C+ Select Customer Number, Order_Total
C+ into :Customer, :Total

C+ from Order_Header

C+ where Order_Number = :OrderNo
C/End-Exec

C Return

Using host variables as a value in a SELECT clause

When specifying a list of items in the SELECT clause, you are not restricted to the column
names of tables and views.

Example 7-8 shows how the total amount can be raised by using a host variable.

Example 7-8 Using host variables as a value in a select clause

D OrderNo S 5A

D Raise S 11P 2

D Total S 11P 2

D NewTotal S 11P 2

N . N N
C eval OrderNo = '00005"

C eval Raise = 100

C/EXEC SQL

C+ Select Customer_Number, Order_Total, Order_Total + :Raise
C+ into :Customer, :Total, :NewTotal

C+ from Order_Header

C+ where Order Number = :0rderNo

C/End-Exec

C Return

Using host variables in the SET clause of an SQL statement
Example 7-9 shows how the order total can be raised by using a host variable.

Example 7-9 Using host variables in a SET clause of an SQL statement

D OrderNo S 5A
D Raise S 5P 2

Chapter 7. Embedded SQL

87

C eval OrderNo = '00005"
C eval Raise 200

C/EXEC SQL
C+ Update Order_Header
C+ set Order_Total

Order_Total + :Raise

C+ where Order_Number = :OrderNo
C/End-Exec
C Return

Using host variables in the VALUES clause of an INSERT statement

Example 7-10 shows how a row can be inserted by using host variables in the VALUES
clause.

Example 7-10 Using host variables in the values clause of an insert statement

D OrderNo S 5A
D Customer S 5A
K e e e e e e e e e e e e e e e e — — — — — — ————
C eval OrderNo = '10010"
C eval Customer = '00010"
C/EXEC SQL
C+ Insert into Order_Header
C+ (Order_Number,
C+ Customer_Number)
C+ values (:0rderNo,
C+ :Customer)
C/End-Exec
C Return

Using host variables as parameters in the CALL statement
When calling a stored procedure, parameters can be passed as host variables.

Example 7-11 shows how a stored procedure can be called using host variables as
parameters.

Example 7-11 Using host variables as parameters in the CALL statement

D OrderNo S 5A
D Customer S 5A
K L o o e e e e e
C eval OrderNo = '10010'
C eval Customer = '00010"
C/EXEC SQL
C+ CALL calcTotals(:0rderNo, :Customer)
C/End-Exec
C Return

88 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

7.5.2 Host structure

A host structure is a group of host variables used as the source or target for a set of selected
values (for example, the set of values for the columns of a row). A host structure is defined as
an internally or externally described data structure in your source code.

Host variables are commonly used in SQL statements as a receiving area for column values.

Host structures can be used in an SELECT ... INTO or FETCH clause. The INTO clause
names one or more host variables that you want to contain column values returned by SQL.

Note: When using host variables for each variable a separate pointer must be returned.
When using host structures only one pointer is returned. That could be a performance
gain.

Example 7-12 shows how an external data structure can be used to receive the complete row.

Example 7-12 Receiving SQL data in a external data structure

D DsOrdHdr E DS ExtName (OrdHdr)

C/EXEC SQL

C+ Select *

C+ into :DSOrdHdr

C+ from Order_Header

C+ where Order Number = '00020'
C/End-Exec

C Return

7.5.3 Host structure array

A host structure array is defined as a multi occurrence data structure or an array data
structure. Both types of data structures can be used on the SQL FETCH or INSERT
statement when processing multiple rows. The following list of items must be considered
when using a data structure with multiple row blocking support.

» All subfields must be valid host variables.

» All subfields must be contiguous. The first FROM position must be 1, and there cannot be
overlaps in the TO and FROM positions.

» If the date and time format and separator of date and time subfields within the host
structure are not the same as the DATFMT, DATSEP, TIMFMT, and TIMSEP parameters
on the CRTSQLRPGI command (or in the SET OPTION statement), then the host
structure array is not usable.

Blocked FETCH and blocked INSERT are the only SQL statements that allow an array data
structure. A host variable reference with a subscript like MyStructure(index).MySubfield is not
supported by SQL.

Note: To use blocked processing brings performance advantages because only one single
pointer must be returned for a group of rows.

Chapter 7. Embedded SQL 89

Host variables are commonly used in SQL statements in these ways:
» As a receiving area for column values to receive multiple rows in a single fetch

Example 7-13 shows how a number or rows can be read into an array data structure.

Example 7-13 Receiving SQL data into a host structure array

D DSOrderHeader E DS ExtName (OrdHdr) Qualified Dim(3)

D OrderNo S 5A

D Elements S 3U 0 inz(%Elem(DSOrderHeader))

D Index S 3U0

K e e e e e e e e e e e e . — — — — — — — — — — — — — — — — — — — — — — — — — —— — — — — ————— ——
C/EXEC SQL

C+ Declare CsrOrdH Cursor for

C+ Select *

C+ from Order_Header

C+ where Order_Number between '00005' and '00050'
C+ for read only

C+ optimize for 100 rows

C/End-Exec

C/EXEC SQL Open CsrOrdH
C/END-EXEC

C/EXEC SQL

C+ Fetch next from CsrOrdH
C+ for :Elements rows
C+ into :DSOrderHeader
C/END-EXEC

C/EXEC SQL Close CsrOrdH
C/END-EXEC

/Free
For Index = 1 to %Elem(DSOrderHeader);
Dsply DSOrderHeader(Index).OrHNbr;
EndFor;

Return;
/End-Free

» To insert multiple rows in a table

Example 7-14 shows how to insert multiple rows by using an array data structure.

Example 7-14 Insert multiple rows in a table

D DSOrderHeader E DS ExtName (OrdHdr) qualified Dim(3)

D OrderNo S 5A inz('10040')

D Elements S 3U 0 inz(%Elem(DSOrderHeader))

D Index S 3U0

K o e e e e o e o e
/Free

clear DSOrderHeader;

For Index = 1 to Elements;
OrderNo = %EditC(%Dec(%Int(OrderNo) + 10: 5: 0): 'X');
DSOrderHeader(Index).OrHNbr = OrderNo;
DSOrderHeader(Index).CusNbr = '00010';
DSOrderHeader(Index).0rHDte = %Date();

90 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

DSOrderHeader(Index).0OrHD1y = %Date() + %Days(7);
EndFor;

/End-Free

C/EXEC SQL
C+ Insert into Order_Header

C+ :Elements Rows

C+ values (:DSOrderHeader)
C/End-Exec

C Return

7.5.4 Naming considerations for host variables

Any valid ILE RPG for iSeries variable name can be used for a host variable with the following
restrictions.

»

Do not use host variable names or external entry names that begin with the characters
'SQ', 'sQL’, 'RDI', or 'DSN'. These names are reserved for the database manager.

The length of host variable names is limited to 64, except in RPG field names can be
defined with up to 4 096 characters.

The names of host variables should be unique within the source code of the member. If
the same name is used for more than one variable and the data types are different, the
data type of the host variable is unpredictable. This must be considered when using local
field definitions in RPG procedures. You do not have to define your host variables as
global variables, but the names should be unique in your source.

However, if a data structure has the QUALIFIED keyword, then the subfields of that data
structure can have the same name as a subfield in a different data structure or as a
stand-alone variable. The subfield of a data structure with the QUALIFIED keyword must
be referenced using the data structure name to qualify the subfield name.

7.6 Exploiting SQL scalar functions in RPG

To embed SQL statements in RPG means not only to get data access, but you easily can use
SQL scalar functions to change a host variable.

Currently RPG provides about 75 built-in functions, while SQL has about 120 scalar
functions. There are some domains where SQL delivers other, additional or better functions
than RPG does and vice versa. The following list contains functions that may be useful, but
are not available in RPG:

>

String functions

— UPPER/LOWER: To convert a string in either upper or lower case

— HEX: Returns the hexadecimal representation of a string

— REPEAT: Returns a string composed of expression repeated integer times
— REPLACE: To replace all occurrences of a search string with a new string
— LEFT / RIGHT: Returns the left- or rightmost characters of a string

— SOUNDEX: To compare a string on a phonetical base

— DIFFERENCE: Returns a value from 0 to 4 representing the difference between the
sounds of two strings based on applying the SOUNDEX function to the strings

— SPACE: Returns a number of SBCS *BLANKS

Chapter 7. Embedded SQL 91

— TRIM: To remove any desired leading and/or trailing character
» Mathematical functions
— ANTILOG/LOG10: Returns the (anti-)logarithm (base 10) of a number

— EXP: Returns a value that is the base of the natural logarithm (e) raised to a power
specified by the argument

— LN: Returns the natural logarithm of a number
— SQRT: Returns the square root of a number

— CEILING/CEIL: Or CEILING function returns the smallest integer value that is greater
than or equal to expression

— FLOOR: Returns the largest integer value less than or equal to expression
» Trigonometric functions

— ACOS/COS: Returns the (arc) cosine of the argument as an angle expressed in
radians

— COSH: Returns the hyperbolic cosine of the argument, where the argument is an angle
expressed in radians

— ASIN/SIN: Returns the (arc) sine of the argument as an angle expressed in radians

— SINH: Returns the hyperbolic sine of the argument, where the argument is an angle
expressed in radians

— ATAN/TAN: Returns the (arc) tangent of the argument as an angle expressed in
radians

— ATANH/TANH: Returns the hyperbolic (arc) tangent of a number, in radians

— ATAN2: Returns the arc tangent of x and y coordinates as an angle expressed in
radians

— COT: Returns the cotangent of the argument, where the argument is an angle
expressed in radians

— PI: Returns the value of 3.141592653589793

— RADIANS: Returns the number of radians for an argument that is expressed in
degrees

— DEGREES: Returns the number of degrees of the argument, which is an angle
expressed in radians

» Date and time functions
— DAYNAME: Returns a mixed-case character string containing the name of the day.

— MONTHNAME: Returns a mixed-case character string containing the name of the
month.

— DAYOFWEEK: Returns an integer between 1 and 7 that represents the day of the
week, where 1 is Sunday and 7 is Saturday.

— DAYOFWEEK_ISO: Returns an integer between 1 and 7 that represents the day of the
week, where 1 is Monday and 7 is Sunday.

— DAYOFYEAR: Returns an integer between 1 and 366 that represents the day of the
year where 1 is January 1.

— JULIAN_DAY: Returns an integer value representing a number of days from January
1, 4713 B.C. (the start of the Julian date calendar) to the specified date.

92 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

— MIDNIGHT_SECONDS: Returns an integer value that is greater than or equal to 0 and
less than or equal to 86 400 representing the number of seconds between midnight
and the time value specified in the argument.

— QUARTER: Returns an integer between 1 and 4 that represents the quarter of the
year.

— TIMESTAMPDIFF: Returns an estimated number of intervals, which can be years,
quarters, months, weeks, days, hours, minutes, seconds, or mircoseconds.

— WEEK: Returns an integer between 1 and 54 that represents the week of the year. The
week starts with Sunday, and January 1 is always in the first week.

— WEEK_ISO: Returns an integer between 1 and 53 that represents the week of the
year. The week starts with Monday. Week 1 is the first week of the year to contain a
Thursday, which is equivalent to the first week containing January 4.

» Other functions
— MAX()/MIN(): Returns the maximum/minimum value in a set of values
Note: While the SQL scalar function REPLACE replaces all occurrences, the

RPG-Function %REPLACE only replaces the first one. The RPG-Function %REPLACE is
an equivalent to the SQL scalar function INSERT.

For more information about SQL scalar functions look at iSeriesDB2 Universal Database for
iSeries SQL Reference manual that can be found in information center at:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/db2/rbafzmst.pdf

SQL set statement
The SQL set statement can be compared with the RPG Operations Code EVAL. It can be
used to change the value of a host variable.

Example 7-15 shows how the scalar function replace can be used to remove characters in an
string.

Example 7-15 Using the scalar function REPLACE to remove characters from a string

D MyText S 50A inz('ABC-XYZ-1234-567890-A")

K L o e e e e e e e e e e
C/EXEC SQL

C+ Set :MyText = Replace(:MyText, '-', '')

C/End-Exec

C MyText Dsply

C Return

Example 7-16 shows how the scalar function trim can be used to remove leading asterisks
(")

Example 7-16 Using the scalar function TRIM to remove leading characters

MyText?2 S 50A inz (' FxxEEERX]D3 A5')
K L e e o e e
C/EXEC SQL
C+ Set :MyText2 = Trim(leading '*' from :MyText2)
C/End-Exec
C MyText2 Dsply

Chapter 7. Embedded SQL 93

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/db2/rbafzmst.pdf

C Return

7.7 Static SQL without cursor

Because the use of SQL-described tables and views in native /O has some restrictions (that
is, they cannot be sorted), we must look for an alternate method.

With static and dynamic SQL you can embed SQL statements into your source code.

In static SQL, the statement is determined at compile time. All SQL scalar functions can be
used in the embedded SQL statements. You can integrate host variables, which are set at
runtime. The syntax is checked by the precompiler and then the SQL statements are replaced
by adequate function calls.

Static SQL is commonly used in these ways:

» To return one single row from a select statement into host variables

» To insert, update, or delete several rows using one single SQL statement
» For other actions such as:

To declare global temporary tables

To create and drop temporary aliases

To grant temporary privileges

To set path or set schema

7.7.1 Static SQL returning a single row

If the result of an SQL statement will be only one row, it can be directly returned into host
variables in one of the following manners:

» SELECT ... INTO
» SET HostVariable = SELECT ...

SELECT ... INTO
The SELECT INTO statement produces a result table consisting of at most one row, and
assigns the values in that row to host variables.

» If a single row is returned, SQLCODE is set to 0 or a value between 1 and 99, and the
appropriate values are assigned to the host variables.

» If the table is empty, the statement assigns +100 to SQLCODE and '02000' to
SQLSTATE. If you do not use indicator variables to detect NULL values, the host
variables are not updated; otherwise NULL is returned.

» |f the result consists of more than one row, SQLCODE -811 is returned, but the host
variables are updated with the results from the first row.

Example 7-17 shows how the total amount of an order is calculated and returned within a
SELECT ... INTO statement.

Example 7-17 Using SELECT ... INTO to retrieve summary values

D TotalDetail S 11P 2
C/EXEC SQL

C+ Select Sum(OrderDt1_Total)

C+ into :TotalDetail

C+ from Order_Detail

94 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

C+ where Order_Number = '00020'
C/End-Exec

C TotalDetail Dsply

C Return

SET :HostVariable = (SELECT ...)

It is possible to fill host variables directly through a select statement. This can only be used
when the result consists only of one single record.

In contrast to the SELECT ... INTO statement, SQLCODE and SQLSTATE cannot be used to
check if a record is found. If no record is found, NULL values are returned by default. You
either have to use indicator variables to detect NULL values or an SQL scalar function like
COALESCE that converts the NULL value into a default.

If the result consists of more than one row, SQLCODE -811 is returned, but in contrast to the
SELECT ... INTO statement, the host variables are not updated.

The following example shows how the total amount of an order is calculated and returned
within a SET-Statement.

Example 7-18 Using the SET statement to retrieve summary values

D TotalDetail S 11P 2

k. I WD, . S N
C/EXEC SQL

C+ Set :TotalDetail = (Select Sum(OrderDtl Total)

C+ from Order_Detail

C+ where Order Number = '00020')

C/End-Exec

C TotalDetail Dsply

C Return

7.7.2 Processing non-Select statements with static SQL without cursor

A 100 percent normalized database is a utopia. In most databases you will find a certain
degree of denormalization, which leads to some redundancies in the tables. Consequently,
you have to sometimes update several rows with the same value.

There are also other situations where you have to insert and delete a couple of rows. For
example, if you have to reorganize your tables. You write rows to history tables and delete the
original rows after.

In Example 7-20 on page 96, written with native I/O, all Order Header and corresponding
Order Detail rows with the order date of the previous year must be saved in history files and
deleted after.

The logical file over the Order Header file is described in Example 5-1 on page 60. The Order
Header history file ORDHDRH is created via CRTDUPOBJ from the Order Header File
(ORDHDR) described in Example 4-2 on page 36.

Example 7-19 on page 96 shows the DDS definition of the Order Detail file ORDDTL.

Chapter 7. Embedded SQL 95

Example 7-19 DDS definition for the Order Detail file ORDDTL

A UNIQUE

A R ORDDTLF

A ORHNBR 5 COLHDG('ORDER NUMBER ")
A PRDNBR 5 COLHDG('PRODUCT NUMBER ")
A ORDQTY 5P 0 COLHDG('ORDER DTL QUANTITY')
A ORDTOT 9p 2 COLHDG('ORDERDTL TOTAL ")

*
A K ORHNBR
A K PRDNBR

The Order Detail history file ORDDTLH is created via CRTDUPOBJ from the Order Detail File
ORDDTL.

Example 7-20 Write history files for Order Header and Order Detail with native I/O

FOrdHdrL1 UF E K DISK Rename (OrdHdrF: OrdHdrF1)

FOrdDt1 UF E K DISK

FOrdHdrH 0 E DISK Rename (OrdHdrF: OrdHdrHF)

FOrdDt1H O E DISK Rename (OrdDt1F : OrdDt1HF)

K e e e o o o o o i — — — —— —— ————— — —————— N A e R oo
D PrevYear S 4P 0 Previous Year

D KeyOrdHdrL1 DS TikeRec(OrdHdrF1: *Key) Key for ORDHDRL1
D KeyOrdDt1 DS TikeRec(OrdDt1F: *Key) Key for ORDDTL

K e e e e e e e e e e e e e e . — — — — — ——— —— ——
/Free

//0rder Header
PrevYear = %SubDt(%Date(): *Years) - 1;
SetLL (%Date(%Char(PrevYear) + '-01-01')) OrdHdrF1;

DoU %EOF(OrdHdrL1);
Read OrdHdrF1;
If %EOF or %SubDt(OrHDte: *Years) > PrevYear;
leave;
EndIf;

// Order Detail
KeyOrdDt1.0rHNbr = OrHNbr;
clear KeyOrdDt1.PrdNbr;
SetLL %KDS(KeyOrdDt1) OrdDt1F;

DoU %EOF(OrdDt1);
ReadE %KDS(KeyOrdDt1: 1) OrdDt1F;
If %EOF;
leave;
EndIf;

Write OrdDtIHF; //Write Order Detail History Record
Delete OrdDt1F; //Delete Order Detail Record
EndDo;

Write OrdHdrHF; //Write Order Header History Record
Delete OrdHdrF1; //Delete Order Header Record

EndDo;
Return;
/End-Free

96 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Example 7-21shows how this can be done in four single SQL statements.

Example 7-21 Write history files for Order Header and Order Detail with embedded SQL

D PrevYear S 4P 0

Previous Year

C eval PrevYear = %SubDt(%Date(): *Years) - 1

* Insert into Order Detail History File

C/EXEC SQL

C+ Insert into ORDDTLH

C+ Select d.*

C+ from ORDHDR h join ORDDTL d

C+ on h.ORHNBR = d.0RHNBR
C+ and year(OrHDte) = :PrevYear
C/END-EXEC

* Delete from Order Detail File

C/EXEC SQL

C+ Delete from ORDDTL d

C+ Where d.OrHNbr in (select h.OrHNbr
C+ from ORDHDR h
C+ where year(h.OrHDte) = :PrevYear)
C/END-EXEC

* Insert into Order Header History File
C/EXEC SQL

C+ Insert into ORDHDRH

C+ Select *

C+ from ORDHDR

C+ where year(OrHDte) = :PrevYear
C/END-EXEC

* Delete from Order Header File
C/EXEC SQL
C+ Delete from ORDHDR h
C+ Where year(h.OrHDte) = :PrevYear
C/END-EXEC
C Return

In static SQL you can embed almost all SQL statements that can be executed in interactive

SQL or through iSeries Navigator.

The following example shows how a summary table over the Order Header, Order Detail, and
stock tables is created containing the accumulated amounts by customer. Before creating the

new summary table, an existing one will be deleted.

Example 7-22 Creating a summary table with embedded SQL

C/EXEC SQL Drop Table I1TS04710/Summary

C/END-EXEC

C If SQLCODE = *Zeros or SQLCODE = -204
C/EXEC SQL

C+ create table ITS04710/Summary

C+ as (select year(current date)-1 as fiscal year, customer_number,
C+ sum(orderDt1_Quantity * Product price) as amount

C+ from Order_header h

C+ join Order_detail d

C+ on h.Order_Number = d.Order_Number

Chapter 7. Embedded SQL

97

C+ and year(Order_Date) = year(current date) - 1

C+ join Stock s

C+ on d.product_number = s.product_number
C+ group by customer number)

C+ with data

C/END-EXEC

C EndIf

C Return

Note: Host variables can neither be used in the DROP TABLE nor in the CREATE TABLE
statement. If a variable creation is needed, you have to use dynamic SQL.

7.8 Using a cursor

When SQL runs a select statement, the resulting rows comprise the result table. A cursor
provides a way to access a result table. It is used within an SQL program to maintain a
position in the result table. SQL uses a cursor to work with the rows in the result table and to
make them available to your program. Your program can have several cursors, although each
must have a unique name. Even if your source code consists of several independent
procedures, the cursor name must be unique in your source member.

Using a cursor can be compared with native 1/O, single record access.

Statements related to using a cursor include the following:

» A DECLARE CURSOR statement to define and name the cursor and specify the rows to
be retrieved with the embedded select statement.

When moving from RPG native I/O to embedded SQL the declare cursor statement
replaces the File specification.

Note: In your source, the DECLARE statement must always be positioned prior to the
according OPEN, FETCH, and CLOSE statements. This is independent from the order
in which these statements are executed. To put the DECLARE statement into the
Initialization Subroutine (*INZSR), that is coded at the end of the source, will cause a
compile error.

Ascending or descending sequence in SQL is determined through a ORDER BY clause in
the DECLARE statement, like it is fixed through the according logical file in the File
specification.

Note: If a predefined sequence is not absolutely necessary, do not use a ORDER BY
clause to let the optimizer evaluate all the options to find the optimal access path.

» OPEN statement to open the cursor for use within the program. The cursor must be
opened before any rows can be retrieved.

The SQL OPEN statement can be compared with a user-controlled open of the table and
an additional SETLL statement to position the pointer before the first row.

» A FETCH statement to retrieve rows from the cursor's result table or to position the cursor
on another row.

98 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

The SQL FETCH statement is the equivalent to all CHAIN, READ, READE, READP, and
READPE operations in RPG. By using a scrollable cursor, it is also possible to move the
cursor forwards and backwards in your result table.

Note: Contrary to RPG, more than one row can be received in one FETCH statement,
by using host structure arrays. The next FETCH will receive the next or previous block
or rows.

» CLOSE statement to close the cursor for use within the program.

Note: When using a serial cursor, an OPEN without a preceding CLOSE will not
reposition the cursor on the top of the result table. To be sure that the cursor is really
closed, execute a CLOSE statement before your OPEN statement.

7.8.1 The DECLARE statement

The declare statement is used to define the cursor name and the associated SELECT
statement.

An example of the DECLARE statement is shown below, which is important for embedded
static SQL. All parts written in parenthesis can be omitted. For more information look at
iSeries DB2 Universal Database for iSeries SQL Reference.

DECLARE Cursor Name (DYNAMIC (SCROLL)) CURSOR (WITH HOLD)
FOR Select Statement
(FOR READ ONLY/FOR FETCH ONLY)
(FOR UPDATE (OF Columnl, Column2,..... ColumnN))
(OPTIMIZE FOR n ROWS)
(WITH Isolation Level)

» Cursor name

Any name can be specified for the cursor, but a cursor name must be unique in the source
member where it is defined.

Note: Even if the source member contains several independent procedures, the cursor
name must be unique.

» NO SCROLL or (DYNAMIC) SCROLL

This specifies whether the cursor is scrollable or not scrollable. If neither NO SCROLL nor
SCROLL is specified a serial cursor is defined.

— NO SCROLL
Specifies that a serial cursor is defined.

In Example 7-23 a serial cursor is declared by omitting the SCROLL or NO SCROLL
keyword.

Example 7-23 Declaring a serial cursor

C/EXEC SQL

C+ Declare CsrOrdH Cursor for

C+ Select Customer Number, sum(Order Total)

C+ from Order_Header

C+ where Order_Number between :FirstOrderNo and :LastOrderNo
C+ and Year(Order_Date) = :PrevYear

C+ group by Customer_Number

Chapter 7. Embedded SQL 99

C+ order by sum(Order_Total) desc
C/End-Exec

— SCROLL

Specifies that the cursor is scrollable. The cursor may or may not have immediate
sensitivity to inserts, updates, and deletes done by other activation groups.

If DYNAMIC is not specified, the cursor is read-only, which means that the SELECT
statement cannot contain a FOR UPDATE clause.

Note: If DYNAMIC is not specified and an UPDATE is performed in your program,
the SQL precompiler will accept it. But when running your program, you will get
SQLCODE -510 (Cursor for table read only) and the rows will not be changed.

* DYNAMIC SCROLL

Specifies that the cursor is updatable if the result table is updatable, and that the
cursor will usually have immediate sensitivity to inserts, updates, and deletes done
by other application processes.

In Example 7-24 a scroll cursor is defined. All columns can be changed by a SQL
UPDATE statement.

Example 7-24 Declaring a scroll cursor

C/EXEC SQL

C+ Declare CsrOrdH DYNAMIC SCROLL Cursor for
C+ Select Order_Total

C+ from Order_Header

C+ where Order_ Number between :FirstOrderNo and :LastOrderNo
C+ and Year(Order Date) = :PrevYear
C/End-Exec

» WITHOUT HOLD or WITH HOLD

This specifies whether the cursor should be prevented from being closed as a
consequence of a commit or rollback operation. If neither WITHOUT HOLD nor WITH
HOLD is specified, the cursor is closed when a commit or rollback operation is performed.

- WITHOUT HOLD

This does not prevent the cursor from being closed as a consequence of a commit or
rollback operation. This is the default.

This must be considered when moving from native 1/0 to SQL data access. Let us
assume that in a program two cursors are defined—the first to read all Order Header
rows with a specified delivery date, and the second to update all Order Detail records
assigned to the Order Header. You either have to update all Order Details for an order
or none. You have to execute the commit after a order is completely updated. If an
error occurs or not all detail rows are updated a rollback is performed. If the cursor is
defined WITHOUT HOLD, you cannot continue with the next order, because the cursor
will be closed through the executed COMMIT or ROLLBACK. To prevent this situation,
you have to define the cursor to access the Order Header table WITH HOLD.

Note: The cursor is only closed when the SQL statements COMMIT or ROLLBACK
are executed. The cursor remains open when the RPG Operation Codes COMMIT
or ROLBK are used instead.

100 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

In the Example 7-23 on page 99 and Example 7-24 on page 100 cursors are declared
without hold.

WITH HOLD

This prevents the cursor from being closed as a consequence of a SQL commit or
rollback operation.

When WITH HOLD is specified, a commit operation commits all the changes in the
current unit of work, and releases all locks except those that are required to maintain
the cursor position.

In Example 7-25 a serial cursor WITH HOLD is defined.

Example 7-25 Declaring a serial cursor with WITH HOLD clause

C/EXE
C+ De
C+ Se
C+
C+
C+
C/End

C sqQL

clare CsrOrdH Cursor WITH HOLD for

lect Order_ Number, Order Total

from Order_Header

where Order_Number between :FirstOrderNo and :LastOrderNo
and Year(Order_Date) = :PrevYear

-Exec

» SELECT STATEMENT

Specifies the SELECT statement of the cursor that can contain references to host
variables.

If
m

dynamic SQL is used, the statement name that is defined by the PREPARE statement
ust be used.

FOR READ ONLY clause

The FOR READ ONLY or FOR FETCH ONLY clause indicates that the result table is
read-only and therefore the cursor cannot be used for positioned UPDATE and
DELETE statements.

Some result tables are read-only by nature (for example, a table based on a read-only
view or when tables are joined). FOR READ ONLY can still be specified for such
tables, but the specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ
ONLY can possibly improve the performance of FETCH operations by allowing the
database manager to do blocking and avoid exclusive locks.

Example 7-26 shows a cursor that is read only.

Example 7-26 Declaring a READ ONLY cursor

C/EXEC SQL
C+ Declare CsrOrdH Cursor WITH HOLD for
C+ Select Order_Number, Order_Total

C+
C+
C+

from Order_Header
where Order_Number between :FirstOrderNo and :LastOrderNo
and Year(Order_Date) = :PrevYear

C+ For Read Only
C/End-Exec

FOR UPDATE OF Clause

If the select statement is not read only, rows can be updated without specifying the
FOR UPDATE clause.

The FOR UPDATE OF clause identifies the columns that can be updated in a
subsequent positioned UPDATE statement. Each column name must be unqualified

Chapter 7. Embedded SQL 101

and must identify a column of the table or view identified in the first FROM clause of the
fullselect.

If the FOR UPDATE OF clause is specified and other columns than listed are updated,
a negative SQLCODE, -503 (Column cannot be updated), is returned and no update is
performed. The column names specified in the FOR UPDATE OF clause must not be
selected in the SELECT statement.

The FOR UPDATE OF clause can be compared with the RPG built-in function
%FIELDS that can be added to the UPDATE statement in RPG.

If the FOR UPDATE clause is specified without column names or not specified, all
updatable columns of the table or view identified in the first FROM clause of the
fullselect are included.

The FOR UPDATE clause must not be specified if the result table of the fullselect is
read-only or the FOR READ ONLY clause is used.

In Example 7-27 a serial cursor with an additional FOR UPDATE OF clause is defined.

Example 7-27 Declaring a serial cursor with specified FOR UPDATE OF clause

C/EXEC SQL

C+ Declare CsrOrdH Cursor WITH HOLD for

C+ Select Order_Total

C+ from Order_Header

C+ where Order_Number between :FirstOrderNo and :LastOrderNo
C+ and Year(Order_Date) = :PrevYear

C+ For Update of Order_Delivery, Order_Total

C/End-Exec

Note: In RPG you define in the File Specifications if a file is read as an update or
input file. If a file is defined as an update file, the row is locked as soon as it is read.

If you do not use commitment control, a record can be unlocked by:

v

Reading the next record

Updating or deleting the record

Using the operation code UNLOCK

Specifying a (N)-extender in your read or chain statement

vvyy

If you work with commitment control, a record is not unlocked by the operations
code UNLOCK or the (N)-extender. The record will be unlocked as soon a COMMIT
or ROLBK (Rollback) operation is executed.

In SQL a row is locked with the FETCH statement, if a UPDATE or DELETE
statement with WHERE CURRENT OF CursorName is used in your source code. If
no UPDATE or DELETE is executed, the row will not be locked with the FETCH
statement, even if the cursor is updatable.

— FOR OPTIMIZE OF clause

The optimize clause tells the database manager to assume that the program does not
intend to retrieve more than integer rows from the result table.

Without this clause, or with the keyword ALL, the database manager assumes that all
rows of the result table are to be retrieved. Optimizing for integer rows can improve
performance.

The database manager will optimize the query based on the specified number of rows.
The clause does not change the result table or the order in which the rows are fetched.

102 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Any number of rows can be fetched, but performance can possibly degrade after
integer fetches.

The value of integer must be a positive integer (not zero).

In Example 7-28 a scroll cursor is defined with the OPTIMIZE FOR clause in the
SELECT statement.

Example 7-28 Declaring a scroll cursor with OPTIMIZE for clause

C/EXEC SQL

C+ Declare CsrOrdH SCROLL Cursor for

C+ Select Order_Total

C+ from Order_Header

C+ where Order_Number between :FirstOrderNo and :LastOrderNo

C+

and Year(Order Date) = :PrevYear

C+ Optimize for 100 rows
C/End-Exec

— WITH Isolation Level

The WITH lIsolation Level clause allows us to override the isolation level that is
determined at compile time for this statement.

The isolation level can be set to:

RR - Repeatable Read
RS - Read Stability
CS - Cursor Stability

The KEEP LOCKS clause specifies that any read locks acquired will be held for a
longer duration. Normally, read locks are released when the next row is read. If the
isolation clause is associated with a cursor, the locks will be held until the cursor is
closed or until a COMMIT or ROLLBACK statement is executed. Otherwise, the
locks will be held until the completion of the SQL statement. The KEEP LOCKS
clause is only allowed on an SQL SELECT, SELECT INTO, or DECLARE CURSOR
statement. It is not allowed on updatable cursors.

UR - Uncommitted Read
NC - No Commit

In Example 7-29 a serial cursor with the for update clause and with isolation level
RS = Read Stability is defined.

Example 7-29 Declaring a serial cursor with specified isolation level

C/EXEC SQL

C+ Declare CsrOrdH Cursor WITH HOLD for

C+ Select Order_Number, Order Total

C+ from Order_Header

C+ where Order_Number between :FirstOrderNo and :LastOrderNo

C+

and Year(Order_Date) = :PrevYear

C+ For Update of Order_Delivery, Order_Total
C+ With RS
C/End-Exec

7.8.2 The OPEN statement

The open statement is used to open a cursor and position it before the first row. The cursor
name defined in your declare statement must be declared in the open statement.

Example 7-30 on page 104 shows the DECLARE statement of a serial cursor and the
appropriate OPEN statement.

Chapter 7. Embedded SQL 103

Example 7-30 Declaring and opening a serial cursor

C/EXEC SQL

C+ Declare CsrOrdH Cursor WITH HOLD for

C+ Select Order_Number, Order Total

C+ from Order_Header

C+ where Order_Number between :FirstOrderNo and :LastOrderNo
C+ and Year(Order_Date) = :PrevYear

C+ For Update of Order_Delivery, Order_Total

C+ With RS

C/End-Exec

C/EXEC SQL Open CsrOrdH
C/END-EXEC

7.8.3 The FETCH statement

The FETCH statement positions a cursor on a row of the result table. It can return zero, one,
or multiple rows, and it assigns the values of the rows returned to host variables.

We can differentiate between:

» A Single row FETCH
» A Multiple row FETCH

Single row FETCH

Below you will see the part of the FETCH statement that is important for retrieving a single
row at a time from a serial cursor. The parameters in parenthesis are optional. For more
information look at iSeries DB2 Universal Database for iSeries SQL Reference.

FETCH (Next FROM) Cursor Name
INTO :Host Variable (:Indicator)

» NEXT FROM
If no scrolling option is specified, then the NEXT FROM keyword is optional.

When using a scroll cursor you can move forwards and backwards through the result
table. Therefore you must specify one of the following options to position your cursor:

NEXT Positions the cursor on the next row of the result table
relative to the current cursor position

PRIOR Positions the cursor on the previous row of the result table
relative to the current cursor position

FIRST Positions the cursor on the first row of the result table

LAST Positions the cursor on the last row of the result table

BEFORE Positions the cursor before the first row of the result table

AFTER Positions the cursor after the last row of the result table

CURRENT Does not reposition the cursor

RELATIVE integer Positions the cursor on a record relative to the current

record depending on the value of the integer

RELATIVE :Host Variable Positions the cursor on a record relative to the current
record depending on the value of the host variable

» Cursor name

104 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

The cursor name must identify a cursor defined in a DECLARE CURSOR statement.
When the FETCH statement is executed, the cursor must be in the open state.

» INTO host variable

This identifies one or more host structures or host variables. In the operational form of
INTO, a host structure is replaced by a reference to each of its variables. The first value in
the result row is assigned to the first host variable in the list, the second value to the
second host variable, and so on.

Example 7-31shows the DECLARE statement and the appropriate OPEN and FETCH
statements.

Example 7-31 Using the FETCH statement to retrieve a single row

D CustomerNo S 5A

D TotalCustomer S 11P 2

K e e e e e e e e e e e e e o — — — — — — — — — — — — — — — — — — — —— — — — — — ——————
C/EXEC SQL

C+ Declare CsrOrdH Cursor
C+ for Select Customer_Number, sum(Order_Total)

C+ from Order_Header

C+ where Year(Order_Date) = :PrevYear
C+ group by Customer Number

C+ order by sum(Order Total) desc
C/End-Exec

C/EXEC SQL Open CsrOrdH
C/END-EXEC

C/EXEC SQL

C+ Fetch next from CsrOrdH

C+ into :CustomerNo, :TotalCustomer
C/END-EXEC

Multiple row FETCH

In the text below we show an extract of the FETCH statement that is important for retrieving
multiple rows at a time from a serial cursor. The parameters in parenthesis are optional.

FETCH (Next FROM) Cursor Name
FOR integer ROWS
INTO :Host array data structure (:Indicator Array data structure)

To fetch multiple rows at time it must be specified how many rows you want to receive.
» FOR kROWS

This evaluates the host variable or integer to an integral value k. If a host variable is
specified, it must be a numeric host variable with zero scale and it must not include an
indicator variable. The value of k must be in the range of 1 to 32767. The cursor is
positioned on the row specified by the orientation keyword (for example, NEXT), and that
row is fetched. Then the next k-1 rows are fetched (moving forward in the table), until the
end of the cursor is reached. After the fetch operation, the cursor is positioned on the last
row fetched.

The maximum value of fetched rows (32 767) matches with the maximum elements an
array data structure or a multi-occurrence data structure in RPG can have.

When a multiple-row-fetch is successfully executed, three statement information items are
available in the SQL Diagnostics Area (or the SQLCA):

— ROW_COUNT (or SQLERRD(3) of the SQLCA) shows the number of rows retrieved.

Chapter 7. Embedded SQL 105

— DB2_ROW_LENGTH (or SQLERRD(4) of the SQLCA) contains the length of the row
retrieved.

— DB2_LAST_ROW (or SQLERRD(5) of the SQLCA) contains +100 if the last row was
fetched.

» INTO host structure array

The host structure array identifies an array data structure or a multi occurrence data
structure. The first structure in the array corresponds to the first row, the second structure
in the array corresponds to the second row, and so on. In addition, the first value in the
row corresponds to the first item in the structure, the second value in the row corresponds
to the second item in the structure, and so on. The number of rows to be fetched must be
less than or equal to the dimension of the host structure array.

Example 7-32 shows the DECLARE statement, the OPEN statement, and a multiple row
fetch into the external data structure DSOrderHeader.

Example 7-32 Fetching multiple rows into a host structure array

D DSOrderHeader E DS ExtName (OrdHdr) Qualified Dim(3)

D Elements S 31 0 inz(%Elem(DSOrderHeader))

K e e e o o o o o ————— R o e e e S @
C/EXEC SQL

C+ Declare CsrOrdH Cursor for

C+ Select *

C+ from Order_Header
C+ where Order_Number between '00005' and '00050'
C/End-Exec

C/EXEC SQL Open CsrOrdH

C/END-EXEC

C/EXEC SQL

C+ Fetch next from CsrOrdH
C+ for :Elements rows
C+ into :DSOrderHeader
C/END-EXEC

The CLOSE statement

The CLOSE statement closes a cursor explicitly. If a result table was created when the cursor
was opened, that table is destroyed.

The cursor name that should be closed must be added to the CLOSE statement.

Example 7-33 shows the CLOSE statement for the cursor CsrOrdH (defined in
Example 7-32).

Example 7-33 Closing a cursor

C/EXEC SQL Close CsrOrdH
C/END-EXEC

An implicit close of the cursor is performed by the end of the activation group or the module,
depending on the option CLOSQLCSR that is set either in the compile command or the SQL
SET OPTION statement.

Note: When using serial cursors, a cursor must be closed before it can be reopened. If the
cursor is OPEN, a new OPEN will not be executed.

106 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

7.8.4 Types of cursors

The type of cursor determines the positioning methods that can be used with the cursor.

SQL distinguishes between two types of cursor:

» Serial cursor
» Scroll cursor

Serial cursor
A serial cursor is one defined without the SCROLL keyword in the DECLARE statement.

For a serial cursor, each row of the result table can be fetched only once per OPEN of the
cursor. When the cursor is opened, it is positioned before the first row in the result table.
When a FETCH is issued, the cursor is moved to the next row in the result table. That row is
then the current row. If host variables are specified (with the INTO clause on the FETCH
statement), SQL moves the current row's contents into your program's host variables.

This sequence is repeated each time a FETCH statement is issued until the end-of-data
(SQLCODE = 100 or SQLSTATE='02000") is reached. When you reach the end-of-data,
close the cursor.

Note: You cannot access any rows in the result table after you reach the end-of-data. To
use a serial cursor again, you must first close the cursor and then re-issue the OPEN
statement. You can never back up using a serial cursor. To be sure that the cursor was
really closed before you open it, execute the CLOSE statement before the OPEN
statement.

A serial cursor can be compared with the RPG cycle definitions IP (Input Primary) or UP
(Update Primary) in the File specifications.

Scroll cursor

For a scrollable cursor, the rows of the result table can be fetched many times. The cursor is
moved through the result table based on the position option specified on the FETCH
statement. When the cursor is opened, it is positioned before the first row in the result table.
When a FETCH is issued, the cursor is positioned to the row in the result table that is
specified by the position option. That row is then the current row. If host variables are
specified (with the INTO clause on the FETCH statement), SQL moves the current row's
contents into your program's host variables. Host variables cannot be specified for the
BEFORE and AFTER position options.

This sequence is repeated each time a FETCH statement is issued. The cursor does not
need to be closed when an end-of-data or beginning-of-data condition occurs. The position
options enable the program to continue fetching rows from the table. The following scroll
options are used to position the cursor when issuing a FETCH statement. These positions are
relative to the current cursor location in the result table.

NEXT Positions the cursor on the next row of the result table relative to the
current cursor position. NEXT is the default if no other cursor
orientation is specified.

PRIOR Positions the cursor on the previous row of the result table relative to
the current cursor position.

FIRST Positions the cursor on the first row of the result table.

LAST Positions the cursor on the last row of the result table.

Chapter 7. Embedded SQL 107

BEFORE Positions the cursor before the first row of the result table.
AFTER Positions the cursor after the last row of the result table.

CURRENT Does not reposition the cursor, but maintains the current cursor
position. If the cursor has been declared as DYNAMIC SCROLL and
the current row has been updated so its place within the sort order of
the result table is changed, an error is returned.

RELATIVE Host variable or integer is assigned to an integer value k. RELATIVE
positions the cursor to the row in the result table that is either k rows
after the current row if k>0, or k rows before the current row if k<0. If a
host variable is specified, it must be a numeric variable with zero scale
and it must not include an indicator variable.

Note: A scroll cursor can only be moved by a number of rows, or be positioned at the end
or beginning of the result table, but it is not possible to position by key. That means there is
no equivalent for a SETGT / READ or SETLL / READ in SQL. To achieve this functionality
you either have to DECLARE an additional cursor or you have to change the WHERE
clause in your DECLARE statement, and CLOSE and OPEN the cursor again.

7.8.5 Updating or deleting rows using a cursor
If you want to update or delete a row that is fetched by using a cursor, you have to add
WHERE CURRENT OF CursorName to your update or delete statement.

Note: If you do not add WHERE CURRENT OF CursorName, all rows are updated or
deleted.

In Example 7-34 a serial cursor is defined to read all Order_Header rows with a order date in
the previous year. If the order date was in the months between January and March, the row is
deleted; otherwise the order total is raised by 10.

Example 7-34 Using the WHERE CURRENT OF clause to update and delete rows

D PrevYear S 4P 0

D DSCsrOrdH DS

D OrderDate D

D OrderTotal 11P 2

B e e e S e o e o = o S . . . - . . . o - - - - - -
C eval PrevYear = %SubDt(%Date(): *Years) - 1

C/EXEC SQL

C+ Declare CsrOrdH Cursor WITH HOLD
C+ For Select Order_Date, Order_Total

C+ from Order_Header

C+ where Year(Order Date) = :PrevYear
C+ For Update of Order_Delivery, Order_Total
C/End-Exec

C/EXEC SQL Open CsrOrdH

C/END-EXEC

C DoU SQLSTATE = '02000'
C/EXEC SQL

C+ Fetch next from CsrOrdH

C+ into :DSCsrOrdH

C/END-EXEC

108 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

C if SQLState = '02000' or SQLCode < *Zeros

C leave

C EndIf

C if %SubDt (OrderDate: *Months) <= 3
C/EXEC SQL

C+ delete from Order_Header

C+ where Current of CsrOrdH

C/END-EXEC

C else

C eval OrderTotal += 10
C/EXEC SQL

C+ update Order_Header

C+ Set Order_Total = :0rderTotal,

C+ Order Delivery = Current Date - 1 Year
C+ where Current of CsrOrdH

C/END-EXEC

C EndIf

C EndDo

C/EXEC SQL Close CsrOrdH
C/END-EXEC

C Return

7.9 Dynamic SQL

Dynamic SQL allows you to define your SQL statements at runtime. That means you create a
text string that contains the SQL statement. Before being executed the text string must be
converted to an SQL statement.

Because the string is created at runtime, host variables are not necessary and cannot be
used. They can be directly integrated into the string. But there are some situations where you
wish to use variables. In this cases you can use parameter markers (?) that can be set in the
EXECUTE or OPEN statement.

To convert the character string containing the SQL statement to an executable SQL
statement one of the following steps is necessary:
» EXECUTE IMMEDIATE:

A string is converted to an SQL statement and executed immediately. This statement can
only be used if no cursor is needed.

» PREPARE and EXECUTE:

A string is converted and later executed. Variables can be embedded as parameter
markers and be replaced in the EXECUTE statement. EXECUTE can only be used if no
cursor is needed.

» PREPARE and DECLARE CURSOR:
A string is converted and the converted SQL statement is used to DECLARE a cursor.
Like in static SQL, either a serial or a scroll cursor can be used.

If you use a variable SELECT list a SQL Descriptor Area (SQLDA) is required where the
returned variables are described.

Chapter 7. Embedded SQL 109

7.9.1 Defining the character string containing the SQL statement

The character field to hold the SQL command can be defined as a Single Byte Character with
fixed or varying length or as a Double Byte Character with fixed or varying length. The
character string must be an executable SQL statement, which means that not only the correct
syntax, but also the integrated variables must be converted.

» Character strings must be embedded in single quotation marks (*).

To integrate a single quotation mark into a string, you have to double it. Do not use an Hex
value instead, because this can cause problems when using different EBCDIC codes.

» Date and Time fields must be converted into a character string. The character
representation requires a four-digit year format. Then the SQL scalar functions DATE or
TIME must be used to convert these character strings into valid dates.

7.9.2 The EXECUTE IMMEDIATE statement

With EXECUTE IMMEDIATE, the command string is converted and executed in a single SQL
statement. It is a combination of the PREPARE and EXECUTE statements. It can be used to
prepare and execute SQL statements that contain neither host variables nor parameter
markers.

When an EXECUTE IMMEDIATE statement is executed, the specified statement string is
parsed and checked for errors. If the SQL statement is not valid, it is not executed and the
error condition that prevents its execution is reported in the stand-alone SQLSTATE and
SQLCODE. If the SQL statement is valid, but an error occurs during its execution, that error
condition is reported in the stand-alone SQLSTATE and SQLCODE. Additional information
on the error can be retrieved from the SQL Diagnostics Area (or the SQLCA).

In Example 7-35, the Order Header table with order date from the previous year and the
appropriate Order Detail rows are saved in history tables. The names of the history tables are
dynamically built. The year of the stored order data is part of the table name. In the create
table statement the table is not only built but filled with the appropriate data.

Order Header and Order Detail rows are deleted by using static SQL.

Example 7-35 Using the EXECUTE IMMEDIATE statement

D PrevYear S 4P 0
D MySQLString S 32740A varying
K e e e e e e e e e e e e e e . — — — — — — — — e — —— — — ——
/Free
PrevYear = %SubDt(%Date(): *Years) - 1;
MyFile = 'ORDDTL' + %Char(PrevYear);

MySQLString = 'Create Table ' + %Trim(MyLib) + '/' + %Trim(MyFile) +
' as (Select d.* +
from ORDHDR h join ORDDTL d +
on h.OrHNbr = d.0rHNbr +
and year(ORHDTE)= '+ %Char(PrevYear)+')+

with Data';

/End-Free

C/EXEC SQL Execute Immediate :MySQLString
C/End-Exec
C/EXEC SQL
C+ Delete from ORDDTL d
C+ Where d.OrHNbr in (select h.OrHNbr
C+ from ORDHDR h

110 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

C/END-EXEC
/Free

MyFile '"ORDHDR' + %Char(PrevYear);
MySQLString = 'Create Table ' + %Trim(MyLib) + '/' + %Trim(MyFile) +
'as (Select * from OrdHdr +
where year(ORHDTE) = '+ %Char(PrevYear)+') +

with Data';
/End-Free
C/EXEC SQL Execute Immediate :MySQLString
C/End-Exec
C/EXEC SQL
C+ Delete from ORDHDR h
C+ Where year(h.OrHDte) = :PrevYear
C/END-EXEC
C Return

7.9.3 Combining the SQL statements PREPARE and EXECUTE

If a single SQL statement must be executed repeatedly, it will be better to prepare the SQL
statement once, using the SQL PREPARE statement, and execute the statement several
times with the SQL EXECUTE statement.

When using the EXECUTE IMMEDIATE statement instead, the PREPARE statement is
performed every time.

Parameter markers

Although a statement string cannot include references to host variables, it may include
parameter markers. These can be replaced by the values of host variables when the
prepared statement is executed. A parameter marker is a question mark (?) that is used
where a host variable could be used if the statement string were a static SQL statement.

The PREPARE statement

The PREPARE statement creates an executable form of an SQL statement from a
character-string form of the statement. The character-string form is called a statement string,
and the executable form is called a prepared statement.

The text below illustrates the parts of the PREPARE statement that are necessary to convert
a character string into a SQL string. For more information look at iSeries DB2 Universal
Database for iSeries SQL Reference.

PREPARE statement-name
FROM host variable

» Statement name

This specifies the Name of the SQL statement. The statement name must be unique in
your source member.

» Host variable

This specifies the character variable that contains the SQL string.

The EXECUTE statement
The EXECUTE statement executes a prepared SQL statement without a cursor.

Chapter 7. Embedded SQL 111

The text below shows the EXECUTE statement. For more information look at iSeries DB2
Universal Database for iSeries SQL Reference.

EXECUTE statement-name
(USING HostVariablel, HostVariable2,...... HostVariableN)

» Statement name
This specifies the name of the SQL statement that is to be executed.
» USING :HostVariable

If parameters are used, USING and the host variables that contain the values must be
listed. The host variables must be listed in the sequence they are needed.

Example 7-36 shows an example where an in INSERT statement is dynamically built once
and then executed several times.

Example 7-36 Dynamic SQL without cursor by using PREPARE and EXECUTE statements

D KeyOrHDte S 1ike(OrHDte)

D NextMonth S 1ike (OrHDte)

D DsFile DS

D MyFile 10A

D 3A overlay(MyFile) inz('ORH')
D FileYear 4S 0 overlay(MyFile: *Next)

D FileMonth 2S 0 overlay(MyFile: *Next)

D MyLib S 10A inz('ITS04710")

D MySQLString S 256A

L . Y . . N
/Free

FileYear = %SubDt(%Date(): *Years) - 1;

FileMonth = %SubDt(%Date(): *Months) - 3;

MySq1String = 'Insert into ' + %Trim(MyLib) + '/' + %Trim(MyFile) +
" Values(?, 2, 2, 2, 2, 2)";

/End-Free

C/EXEC SQL Prepare MyDynSQL from :MySQLString
C/End-Exec

/Free
KeyOrHDte = %Date(%Char(FileYear) + '-'
+ %EditC(FileMonth: 'X') + '-01'");
KeyOrHDte + %Months(1);

NextMonth
SetLL KeyOrHDte ORDHDRF1;

DoU %EOF (ORDHDRL1);
Read OrdHdrF1;
If %EOF or OrhDte >= NextMonth;
leave;
endif;
/End-Free
C/EXEC SQL
C+ Execute MyDynSQL
ct using :0rHNbr, :CusNbr, :0rHDte, :0rHDly, :SrNbr, :0rHTot
C/End-Exec
/Free
EndDo;

Return;

112 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

/End-Free

7.9.4 Combining the SQL statements PREPARE and DECLARE

If a cursor must be defined, but the SQL select statement cannot be defined at compile time,
the character string can be built at runtime. The PREPARE statement converts the character
string to an SQL string.

The DECLARE statement defines the SQL cursor using the executable SQL string instead of
an SELECT statement.

The PREPARE statement

The PREPARE statement creates an executable form of an SQL statement from a
character-string form of the statement. The character-string form is called a statement string,
and the executable form is called a prepared statement.

The text below shows the parts of the PREPARE statement that are necessary to convert a
character string into a SQL string. For more information look at iSeries DB2 Universal
Database for iSeries SQL Reference.

PREPARE statement-name
FROM host variable

» Statement name

This specifies the name of the SQL statement. The statement name must be unique in
your source member.

» Host variable

This specifies the character variable that contains the SQL string. The character string can
contain the FOR READ/FETCH ONLY clause, the OPTIMIZE clause, the UPDATE
clause, and the WITH Isolation Level clause.

The DECLARE CURSOR statement

The DECLARE statement defines the cursor for the executable SQL statement. Like in static
SQL, a serial and a scroll cursor can be created.

The text below shows the DECLARE CURSOR statement, and how it can be used with
dynamic SQL.
DECLARE Cursor Name (DYNAMIC (SCROLL)) CURSOR (WITH HOLD)

FOR Prepared SQL Statement

In Example 7-37 a SELECT statement that includes a date conversion is dynamically built.
The SQL PREPARE and DECLARE statements are executed.

Example 7-37 Using a cursor with dynamic SQL

D StartDate S D

D LastDate S D

D Customer S 5A

D OrderTotal S 11P 2

D MyString S 256A varying

D DspText S 50A

K e e e e e e e e e e e e e o — — — — — — — — — —— — — — — — —— — — ——
/Free

FirstDate = D'2004-06-01";

Chapter 7. Embedded SQL 113

LastDate = D'2004-06-30"';

MyString = 'Select Customer Number, Sum(Order Total) +
from Order_Header +
where Order Date between Date('''+%Char(FirstDate)+''') +
and Date('''+%Char(LastDate) +''') +

group by Customer_Number +
order by Sum(Order_Total) desc';

/End-Free

C/EXEC SQL Prepare MySQLStm from :MyString

C/End-Exec

C/EXEC SQL
C+ Declare CsrOrdH Cursor WITH HOLD for MySQLStm
C/End-Exec

C/EXEC SQL Open CsrOrdH

C/END-EXEC

C DoU SQLSTATE = '02000'

C/EXEC SQL

C+ Fetch next from CsrOrdH

C+ into :Customer, :OrderTotal

C/END-EXEC

C if SQLState = '02000' or SQLCode < *Zeros
C leave

C EndIf

C eval DspText = Customer + ' ' + %Char(OrderTotal)
C DspText Dsply

C EndDo

C Return

7.9.5 The SQL descriptor area

A SELECT statement with a variable SELECT list (that is, a list of columns to be returned as
part of the query) that runs dynamically requires an SQL descriptor area (SQLDA). This is
because you cannot know in advance how many or what type of variables to allocate in order
to receive the results of the SELECT.

An INCLUDE SQLDA statement can be specified at the end of the Definition specifications in
an ILE RPG for iSeries program.

Example 7-38 shows how the INCLUDE statement can be integrated. SQL_NUM is used in
the SQLDA. It must be defined as a numeric constant and include the maximum number of
selected variables.

Example 7-38 Embedding descriptor area in RPG

D SQL_NuM C const(5)
C/EXEC SQL Include SQLDA
C/END-EXEC

Example 7-39 on page 115 shows the SQLDA how it will be embedded by the precompiler in
the RPG source member.

114 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Example 7-39 SQL descriptor area

D*
D
D

*

[ws 2l ws Bl ws B ww B ws i o B wo Bl ws B w i wo B e B w B ws B w S wo Bl ws B w Bl e Bl w B w)

D*

D*
D
D
D
D
D
D
D*

SQL Descriptor area
SQLDA DS
SQLDAID 1
SQLDABC 9
SQLN 13
SQLD 15
SQL_VAR
17
19
21
33
49
65
67
SQLVAR DS
SQLTYPE 1
SQLLEN 3
SQLRES 5
SQLDATA 17
SQLIND 33
SQLNAMELEN 49
SQLNAME 51
End of SQLDA
Extended SQLDA
SQLVAR2 DS
SQLLONGL 1
SQLRSVDL 5
SQLDATAL 33
SQLTNAMELN 49
SQLTNAME 51
End of Extended SQLDA

8A
128
14B
168
80A
188
20B
32A
48*
64*
66B
96A

2B

4B
16A
32*
48*
50B
80A

4B
32A
48*
50B
80A

DIM(SQL_NUM)

Chapter 7. Embedded SQL

115

116 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Externalizing data access

In our journey of database modernization we have:

» Reversed engineered the database definition and now the database has been defined by
SQL

» Created I/O modules to access DB2 data
» Normalized and moved the business rules to the database

In the final stage of the proposed methodology we are proposing the use of stored
procedures, triggers, and user defined functions to complement and enhance the database

access.

In this chapter we discuss how triggers, stored procedures, and user defined functions can
assist you in moving more of the business logic into the database.

© Copyright IBM Corp. 2005. All rights reserved. 117

8.1 Trigger programs

Triggers are user-written programs that are directly linked with a table or physical file. They
are automatically activated by the database manager when a data change is performed,
regardless of which interface caused that data change. It does not matter if a row is changed
by native I/O, by interactive SQL, by UPDDTA, by SQLJ, etc., the trigger is activated. The
triggers are mainly intended for monitoring database changes and taking appropriate actions,
and for enforcing complex business rules.

The purposes of using triggers
The purposes are:

| 2

Enforcing business rules, regardless of how complex they are

After an order is completely delivered, you may want to copy the Order Header and the
appropriate Order Detail rows into a history table and delete the original rows.

Another example may be if you enter a order, you want to check if the desired quantity of
the product number is on stock. If so, your program will automatically reserve the
requested quantity. Hence, if you complete your order and all quantities are available, the
order will be automatically shipped. If new products are restocked, it can be checked if
there are open orders and the missing quantities can be automatically reserved and even
eventually shipped, if the order is completed.

Data validation and audit trail

You may need to ensure that, whenever a sales representative enters an order, a sales
representative is actually assigned to that particular customer. You want to also keep track
of the violation attempts. Again, a trigger can be activated on the order table to perform
the validation and track the violators in a separate table.

Integrating existing applications and advanced technologies

If you get an order entry from a client and you are out of stock for some of the ordered
products, a trigger can automatically create and send a fax or e-mail to the client, to
announce that the products can actually not be delivered. It could also send a purchase
request to the supplier.

Preserving data consistency across different database tables

In this case, triggers can complement referential integrity and check constraint support,
since they can provide a much wider and more powerful range of data validation and
business actions to be performed when data changes in your database.

With check constraints you can only compare columns from the same table. With triggers
you can compare different tables. For example, if you enter an order, you can check
whether the product is out of stock. All stocks are restored in a separate table.

The benefits of using triggers
The benefits are:

>

»

Application independence

DB2 Universal Database for iSeries activates the trigger program, regardless of the
interface you are using to access the data. Rules implemented by triggers are enforced
consistently by the system rather than by a single application.

Because the triggers are integrated into the database, no additional calls in programs or
procedures are required.

Easy maintenance

118 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

If you must change the business rules in your database environment, you only need to
update or rewrite the triggers. No change is needed to the applications (they transparently
comply with the new rules).

» Code reusability

Functions implemented at the database level are automatically available to all applications
using that database. You do not need to replicate those functions throughout the different
applications.

» Easier client/server application development

Client/server applications take advantage of triggers. In a client/server environment,
triggers may provide a way to split the application logic between the client and the server
system. In addition, client applications do not need specific code to activate the logic at the
server side. Application performance may also benefit from this implementation by
reducing data traffic across communication lines.

A maximum of 300 triggers can be added to one single table. The trigger program to be called
can be the same for each trigger or it can be a different program for each trigger. If there is
more than one trigger for a single event, activation time, or column defined, the triggers are
executed in the sequence they are created, which means that the last created trigger is
executed last. This must be considered if conflicting triggers are defined.

The activation of trigger programs is determined by the associated:

» Trigger time
» Trigger event

There are two types of triggers:

» External triggers
» SQL triggers

Trigger programs can activate additional trigger programs by executing database changes
through integrated inserts, updates, and deletes to other files (trigger cascading).

If a trigger event occurs, the database manager calls either QDBPUT (for input triggers) or
QDBUDR (for update or delete triggers). These programs start the proper trigger programs.
The QDBPUT and QDBUDR programs and the triggers are integrated in the call stack. After
having executed the trigger programs the control goes back to the running application
program. Because the triggers are embedded in the call stack, they can run under the same
commitment level, assuming that the activation group of the trigger programs is *CALLER or
the commitment control (STRCMTCTL) is started commitment definition scope (CMTSCOPE)
*JOB.

Trigger programs cannot return any parameter values to their caller. If a failure occurs, an
escape message must be sent to the caller. In SQL triggers a SIGNAL statement will do the
job. By sending an escape message, all call stack entries between the program where the
message is sent to and the sender are ended and removed from the call stack.

8.1.1 Activation time of trigger programs

Triggers are called by the database manager, when a data change is performed depending
on the trigger time and the trigger event, that are defined with the trigger.

We can differentiate between two trigger times:
» *BEFORE

Chapter 8. Externalizing data access 119

A BEFORE trigger is activated before the row is physically written to the disc. BEFORE
triggers are not used for further modifying the database because they are activated before
the trigger event is applied to the database. Consequently, they are activated before
integrity constraints are checked and may be violated by the trigger event.

BEFORE triggers can be used to change column values before an update or delete. Let
us assume that you have to save the timestamp of the creation or last update in your
table.

Example 8-1shows a before insert trigger that inserts the current timestamp and user in a
row.

Example 8-1 Before insert trigger to update insert time and user

CREATE TRIGGER ITS04710/MYTRGTABLEO1

BEFORE INSERT ON MYTRGTABLE
REFERENCING NEW Ins
FOR EACH ROW
MODE DB2ROW

BEGIN ATOMIC
set Ins.InsertTime = Current_Timestamp;
set Ins.InsertUser = User;

END;

Another example would be to generate a serial number in a table, depending on a key.

The following example shows how a serial number depending on a key value is
generated.

Example 8-2 Before insert trigger to build a serial number depending in a key

Create Trigger ITS04710/MyTrgTable02
BEFORE INSERT on ITS04710/MyTrgTable
Referencing NEW as INS
For Each Row
Mode DB2ROW
Select Coalesce(Max(a.CurrNbr) + 1 , 1)
into INS.CurrNbr
from ITS04710/MyTrgTable a
Where a.Text = INS.Text;

» *AFTER
The trigger program is called after the change operation on the specified table.

As a part of an application, AFTER triggers always see the database in a consistent state.
They can be used to execute additional actions in the database, like updating or deleting
other tables, for example, writing transaction data, history tables, or summary tables.
Further, they can be used to perform actions outside the database, for example, printing
invoices or sending e-mails.

Note: AFTER triggers are run after the integrity constraints that may be violated by the
triggering SQL operation have been checked.

BEFORE triggers are activated before integrity constraints are checked and may be
violated by the trigger event.

Example 8-3 on page 121 shows an AFTER UPDATE trigger that automatically updates the
reservations if the order quantity changes.

120 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Example 8-3 After update trigger

Create Trigger ITS04710/UpdateReservation01

AFTER UPDATE of OrderDt1 Quantity on ITS04710/0RDER _
Referencing OLD as 0
NEW as N
For Each Row
Mode DBZ2ROW

When (0.0rderDt1_Quantity <> N.OrderDt1_Quantity)
BEGIN ATOMIC

Update ITS04710/Reservation R
set Reserved Quantity = R.Reserved Quantity
0.0rderDt1_Quantity
N.OrderDt1_Quantity
Where R.Order_Number N.Order_Number
and R.Product Number = N.Product_Number;

n + 1

END;

8.1.2 Trigger events

Every trigger is associated with an event. Triggers are activated when their corresponding
event occurs in the database. The trigger event occurs when the specified action, either an
UPDATE, INSERT, or DELETE (including those caused by actions of referential constraints),
is performed on the subject table.

The database events do not include clearing, initializing, moving, applying journal changes,
removing journal changes, or changing end-of-data operations.

We can differentiate between four events:

>

Insert

An insert trigger is activated as soon a row is added into the table, for example, by using
the SQL statement INSERT, or a write in native 1/0 or the CL command CPYF (Copy File),
etc.

Update

An update trigger is activated if a database row is changed by using the SQL statement
UPDATE, or an update in native 1/O, etc. An update trigger can also be fired as the result
of a referential constraint clause ON DELETE SET NULL or ON DELETE SET DEFAULT.

While external triggers can only be defined for the whole row, an SQL trigger can be
defined on either row or column level.

Delete

A delete trigger is activated if a database row is deleted by using the SQL statement
DELETE or a delete in native I/O, etc. A delete trigger can also be fired as result of a
referential constraint clause ON DELETE CASCADE.

For example, you defined in your constraint that all Order Detail rows must be deleted if
the associated header is deleted. Additionally, you put an AFTER DELETE trigger on the
Order Detail table. When deleting the Order Header, this trigger will be fired.

Read

A read trigger can only be defined as an external trigger. An SQL trigger cannot be
activated through a READ or FETCH statement.

Chapter 8. Externalizing data access 121

8.1.3 External triggers

External triggers are programs written in any HLL language and can be used for
DDS-described physical files or SQL-defined tables. Trigger programs can contain
embedded SQL statements.

External triggers are activated on row level, which means the program is called as soon as
one column value in the row was changed. It is not possible to define external triggers at the
column level.

Because the trigger programs are called by the database manager, independent of which
interface was used, there are some recommendations for external trigger programs you have
to care about.

For trigger programs two parameters are required:

» Trigger buffer
» Length of the trigger buffer

External triggers are not automatically linked to the database table, but there are two
methods for registering the triggers:

» CL command ADDPFTRG (Add Physical File Trigger)
» Using the iSeries Navigator

Recommendations for external trigger programs
The recommendations are:

» Create the trigger program so that it runs under the user profile of the user who created it.
In this way, users who do not have the same level of authority to the program will not
encounter errors.

» Create the program with USRPRF(*OWNER) and *EXCLUDE public authority, and do not
grant authorities to the trigger program to USER(*PUBLIC). Avoid having the trigger
program altered or replaced by other users. The database invokes the trigger program
whether or not the user causing the trigger program to run has authority to the trigger
program.

» Create the program as ACTGRP(*CALLER) if the program is running in an ILE
environment. This allows the trigger program to run under the same commitment definition
as the application.

Note: The default value for the commitment definition scope (CMTSCOPE) in the
STRCMTCTL command is “ACTGRP.

If you started the commitment control with the commitment definition scope *JOB, you
can use any activation group.

» Open the table with a commit lock level the same as the application's commit lock level.
This allows the trigger program to run under the same commit lock level as the application.

» Create the program in the table’s schema. When saving and restoring your schema, the
triggers are correctly activated. When saving in different schemas, the triggers must be
recreated or added to the table.

» Use commit or rollback in the trigger program if the trigger program runs under a different
activation group than the application. If the trigger runs in the same activation group, avoid
commits and rollbacks and let it perform outside the trigger program.

122 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

» Signal an exception or send an escape message if an error occurs or is detected in the
trigger program. If an error message is not signalled from the trigger program, the
database assumes that the trigger ran successfully. This may cause the user data to end
up in an inconsistent state.

Required parameters for external triggers
When a trigger is activated, the system automatically provides the program with the following

parameter list:

» Trigger buffer:

The trigger buffer has two logical parts:

— Static area:

* A trigger template that contains the physical file name, member name, trigger
event, trigger time, commit lock level, and CCSID of the current change record and
relative record number.

» Offsets and lengths of the record areas and null byte maps. This area occupies (in
decimal) offset 0 through 95.

— Dynamic area:

Areas for the old record and old null byte map, new record, and new null byte map

» Trigger buffer length:

The length of the trigger buffer provided by DB2 UDB for iSeries. The trigger buffer length
is a 4-byte binary value. In RPG you have to define this parameter as 9B 0 or even better

as 101 0.

By defining these parameters in your trigger programs, you can take the appropriate actions
based on the kind of data change that has occurred and the characteristics of the job that

fired the trigger.

Trigger buffer
Table 8-1 shows the static part of the trigger buffer.

Table 8-1 The trigger buffer structure

Decimal | Parameter Type Description
offset
0 Physical file Name | char(10) The physical file being changed.
10 Physical file library | char(10) The library in which the physical file resides.
name
20 Physical file char (10) | The name of the physical file member.
member name
30 Trigger Event char(1) The event that caused the trigger program to be called; the possible
values can be “1” (Insert), “2” (Delete), “3” (Update), “4” (Read).
31 Trigger Time char(1) Can be “1” (After) or “2” (Before).
32 Commit level char(1) Reports the commit lock level of the interface that activated the trigger
“0!1 (*NONE)’ “1!! (*CHG), 11211 (*CS), “311 (*ALL)
33 Reserved char(3) Reserved.
36 CCSID of data binary(4) | The CCSID of the data in the new or the original records; the data is

converted to the job CCSID by the database.

Chapter 8. Externalizing data access 123

Decimal | Parameter Type Description

offset

40 Relative record binary(4) Relative record number of the record to be updated or deleted

number (*BEFORE triggers) or the relative record number of the record that was
inserted, updated, deleted, or read (*AFTER triggers).

44 Reserved char(4) Reserved.

48 Original Record binary(4) | The location of the original record. The offset value is from the beginning

offset of the trigger buffer. This field is not applicable if the original value of the
record does not apply to the operation; for example, an insert operation.

52 Old record length binary(4) | The maximum length is 32766 bytes.

56 Old record nullmap | binary(4) | The location of the null byte map of the original record. The offset value

offset is from the beginning of the trigger buffer. This field is not applicable if
the original value of the record does not apply to the change operation,
for example, an insert operation.

60 Old recordnullmap | binary(4) | The length is equal to the number of fields in the physical file.

length

64 New record offset binary(4) | The location of the new record. The offset value is from the beginning of
the trigger buffer. This field is not applicable if the new value of the
record does not apply to the change operation, for example, a delete
operation.

68 New record length binary(4) | The maximum length is 32766 bytes.

72 New record null binary(4) | The location of the null byte map of the new record. The offset value is

map offset from the beginning of the trigger buffer. This field is not applicable if the
new value of the record does not apply to the change operation, for
example, a delete operation.

76 New record null binary(4) | The length is equal to the number of fields in the physical file.

map length

80 Reserved char(16) | Reserved.

* Original record char(*) A copy of the original physical record before being updated, deleted, or
read. The original record applies only to update, delete, and read
operations.

* Original record null | char(*) This structure contains the NULL value information for each field of the

byte map original record. Each byte represents one field. The possible values for
each byte are: “0” (Not NULL) and “1” (NULL).

* New record char(*) A copy of the record that is being inserted or updated in a physical file
as a result of the change operation. The new record only applies to the
insert or update operations.

* New record null char(*) This structure contains the NULL value information for each field of the

byte map new record. Each byte represents one field. The possible values for
each byte are: “0” (Not NULL) and “1” (NULL).

If you like to use your own field names in your program, you have to define a data structure

containing position 1-80.
Note: Binary(4) means the maximum value can be saved in 4 byte. In RPG Binary(4) must
be defined as 9B 0 or better 101 0. The integer definition can hold the compete range of
binary values.

124 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

A template of the trigger buffer is saved in the library QSYSINC, file QRPGLESRC for ILE
RPG programs, QRPGSRC for RPG/400 programs, and QCBLLESRC for cobol programs,
with the member name TRGBUF.

Example 8-4 is a copy of the trigger buffer saved in the QSYSINC library for ILE RPG

programs.

Example 8-4 Trigger buffer saved in QSYSINC

DQDBTB DS

D*

D QDBFILNO2 1
D‘k

D QDBLIBNO2 11
D‘k

D QDBMNOO 21
D*

D QDBTE 31
D‘k

D QDBTT 32
D‘k

D QDBCLL 33
D*

D QDBRSV104 34
D‘k

D QDBDAC 37
D‘k

D QDBCR 41
D*

D QDBRSV204 45
D‘k

D QDBORO 49
D‘k

D QDBORL 53
D*

D QDBORNBM 57
D‘k

D QDBRNBML 61
D‘k

D QDBNRO 65
D*

D QDBNRL 69
D‘k

D QDBNRNBM 73
D‘k

D QDBRNBMLOO 77
D*

10

20

30

31

32

33

36

40B

448

48

52B

56B

60B

64B

68B

72B

76B

80B

Qdb Trigger Buffer

File Name

Library Name

Member Name

Trigger Event

Trigger Time

Commit Lock Level
Reserved 1

Data Area Ccsid

Current Rrn

Reserved 2

01d Record Offset

01d Record Len

01d Record Null Byte Map
01d Record Null Byte Map Len
New Record Offset

New Record Len

New Record Null Byte Map

New Record Null Byte Map Len

This source snippet can be easily embedded as copy member in your source code.

The following discussion refers to the most important fields in the trigger buffer, as previously

marked:
» Trigger Event (QDBTE):

This field gives you the possibility of determining the event that called the trigger. This
information is particularly valuable when a trigger is defined for different events. You may
want to identify which record image to use, depending on the event that has activated the

trigger.

— If the trigger event is INSERT, only the new record is available.

Chapter 8. Externalizing data access 125

— If the trigger event is UPDATE, the new and the old records are available.
— If the trigger event is DELETE, only the old record is available.

» Commitment Level (QDBCLL):

We do not know which interface fired the trigger. Consequently, different commitment
levels can be used. Using the SQL SET TRANSACTION statement, you can change the
commitment level for your program.

If you use native 1/O in your trigger program, you can define your files as user controlled
open and add the keyword COMMIT(Indicator). Before opening your file you can set the
indicator depending on the commitment level.

Example 8-5 shows how files can be used with conditional commit in RPG.

Example 8-5 Setting commitment level in external triggers

FOrdHdr UF E K DISK UsrOpn Commit (CmtLv1)

* Data structure QDBTB = Static part of the trigger buffer
/COPY QSYSINC/QRPGLESRC,TrgBuf

D CmtLvl S N
D NoCommit C Const('0")
K e e e e e e e e e e e e i — — — — — — ———— e ——
/Free
If QDBCLL = NoCommit;
CmtLvl = *0ff;
Else;
CmtLvl = *On;
EndIf;

Open OrdHdr;

*InLR = *On;
/End-Free

» Old record offset QDBORO:

In the variable part of the trigger buffer the record before and/or after the trigger event are
restored. Because different files have different record lengths, but always the same
parameter interface is used, the start and end point for the records are different.

Old record offset specifies the number of bytes from the begin of the trigger buffer to the
start byte of the old record.

» Old record length QDBORL:
Specifies the number of bytes that are used for the old record.
» New record offset QDBNRO:

New record offset specifies the number of bytes from the begin of the trigger buffer to the
start byte of the new record.

» New record length QDBNRL:
Specifies the number of bytes that are used for the new record.
There are two common techniques to use the trigger buffer offset information to correctly
locate the record images.
» Using a substring function
Example 8-6 on page 127 shows an AFTER INSERT trigger.

126 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

After inserting a new Order Detail record, a new reservation for the product or an update
of an existing reservation is performed. The new inserted record is moved to an external
data structure, by using the built-in function %SubSt (Substring)

Example 8-6 Retrieving old/new record in an external trigger by using built-in function %Subst()

H DEBUG Option(*NoDebuglo)

* Data structure QDBTB - Static Part of the TriggerBuffer
/COPY QSYSINC/QRPGLESRC,TrgBuf

D 81 9999
D TrgBuflLen S 10I 0
D New e ds extname (OrderDt1) qualified
D CmtLvl S N
D NoCommit C Const('0"')

k. I JBEENES. 00 G 00 W . -
C *entry plist
C parm QDBTB
C parm TrgBufLen

/Free

//Open file with the appropriate commitment level

If %0pen (Reserve)
and (QDBCLL = NoCommit and CmtLvl = *On
or QDBCLL <> NoCommit and CmtLvl = *0ff);

Close Reserve;
EndIf;

If Not %Open(Reserve);
Open Reserve;
EndIf;

//Move new Record into external datastructure
New = %Subst(QDBTB: QDBNRO + 1: QDBNRL);

//Create new or update existing reservation
Chain (New.OrHNbr: New.PrdNbr) ReserveF;
If Not %Found;

clear ReserveF;

EndIf;
OrHNbr = New.OrhNbr;
PrdNbr = New.PrdNbr;

ResQty += New.OrdQty;

If %Found(Reserve);
Update ReserveF;
else;
write ReserveF;
EndIf;

Return;
/End-Free

» Using pointers in RPG

The following example shows the same program as in Example 8-7 on page 128, with two
minor differences. The external data structure is based on a pointer, and instead of using a

Chapter 8. Externalizing data access 127

substring function to move the new record into the external data structure, a pointer is
used.

Example 8-7 Retrieving old/new record in a system trigger by using based pointers

H DEBUG Option(*NoDebuglo)

* Data structure QDBTB - Static Part of the TriggerBuffer
/COPY QSYSINC/QRPGLESRC,TrgBuf

D 81 9999

D TrgBuflLen S 10I 0

D CmtLvl S N

D NoCommit C Const('0")

* Externe Datenstrukturen

D New e ds extname(OrderDt1) qualified
D based(PtrNewRec)
*
C *entry plist
C parm QDBTB
C parm TrgBuflLen
/Free
If %0pen (Reserve)
and (QDBCLL = NoCommit and CmtLvl = *On
or QDBCLL <> NoCommit and CmtLvl = *0ff);

Close Reserve;
EndIf;

If Not %Open(Reserve);
Open Reserve;
EndIf;

PtrNewRec = %addr (QDBTB) + QDBNRO;

Chain (New.OrHNbr: New.PrdNbr) ReserveF;
If Not %Found;

clear ReserveF;
EndIf;

OrHNbr New.OrhNbr;
PrdNbr = New.PrdNbr;
ResQty += New.OrdQty;

If %Found(Reserve);
Update ReservefF;
else;
write ReserveF;
EndIf;

Return;
/End-Free

128 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Note: Please do not hard code the start of your old and new record image in your data
structure. The dynamic part of the trigger buffer could be changed.

There is a very interesting technique called Softcoding the trigger buffer that is proposed
and described in Paul Conte’s book Database Design and Programming for DB2/400. The
purpose of this technique is that if the trigger buffer is softcoded, any changes to the
underlying structure can be incorporated by simply recompiling the trigger program.

Registering an external trigger
External triggers are not automatically linked with a table, but there are two methods to
register the trigger.

CL command Add Physical File Trigger (ADDPFTRG)

The Add Physical File Trigger (ADDPFTRG) command associates a trigger program with a

physical file. Once this association is established, DB2 UDB for iSeries calls the trigger

program when a change operation is performed against the physical file, a member of the

physical file, and any logical file created over the physical file or views created by SQL.

To register an external trigger with ADDPFTRG, you have to specify the following options:

» Trigger event

» Trigger time

» Trigger program and library (*LIBL is allowed, but the actual library name is resolved and
stored in the file description)

All other options are optional or the default values can be used. For more information look at
the existing redbook Stored Procedures, Triggers and User Defined Functions in DB2 UDB
for iSeries at:

http://www.redbooks.ibm.com/redbooks/pdfs/sg246503.pdf
Example 8-8 shows registration of the trigger program in Example 8-7 on page 128.

Example 8-8 Registering a system triggers using the CL command ADDPFTRG

ADDPFTRG FILE(ITS04710/0rderDt1)
TRGTIME (*AFTER)
TRGEVENT (*INSERT)
PGM(ITS04710/HSTRGO4)
TRG(InsertReservation02)

Registering external triggers with iSeries Navigator
To register external triggers with iSeries Navigator, the following steps are necessary:
1. In the iSeries Navigator window, expand your server — Databases.

. Choose the database you are working with and expand its Schemas.

2
3. Click the schema that contains the table to which you want to add the trigger.
4. Right-click the Triggers icon and Select NEW — External.

Figure 8-1 on page 130 shows the information that has to be provided in the General tab
when registering an external trigger.

Chapter 8. Externalizing data access 129

http://www.redbooks.ibm.com/redbooks/pdfs/sg246503.pdf

Mew External Trigger - Rchasm27(5104rt9m) =JOJE3

Getetal] Everts]

Table name: |0 ORDER_DETAIL x|
Schema | TS04710 |

Prograrm name: iHSTRGDel _:]
Schems: | [ITS04710 |

Text: llnser‘t Reservation after Insert Order Detail

[Allow repested changes to & rowe
I= the trigger program thread-zate?
(% Unkhow
(" Yes
" Mo
In a mutti-threaded jokb:
{* Let system value GMLTTHDACH determine whether to run the trigger program
(" Do nat run the trigoer prooram
(™ Runthe trigger program and zend a diagnostic meszage

(™ Run the trigger program

Showe SQL (8]04 Cancel Help

Figure 8-1 General tab for external triggers

B

Figure 8-2 on page 131 shows the information required in the Events tab when registering an
external trigger.

130 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

- =

T3l Mew External Trigger - Rchasm27(5104rt9m) M= i
General EVEMS]
Trigger Matme Schetna Mame
[Insert hefore System-generated | jTsoarin |
[Insertatter InsertReservation0a] | jrsoamin ~
[Update hefore System-genersted ~| [sosme -
= r I
[~ Update after System-generated | JTsos710 a
o o
[~ Delete before System-generated | |rso4FE |
[Delete after System-generated | jmsoarin - ‘
il I Readatter [System-gerersted | ITso47in E
f
I
1 show saL [ok —| cancel | Hew |2

Figure 8-2 Events tab for external triggers

8.1.4 SQL triggers

While external triggers are written in an HLL and activated at record or row level, SQL triggers
provide much more functionality. But the greatest advantage of using SQL triggers is
portability. You can often use the same SQL trigger across other Relational Database
Management Systems (RDBMS), because the implementation of SQL triggers is based on
the SQL standard.

An SQL trigger can be generated by using the SQL statement CREATE TRIGGER.

Note: Contrary to external triggers, SQL triggers are automatically registered by executing
the CREATE TRIGGER statement.

When a trigger is created, SQL creates a temporary source file that will contain C source
code with embedded SQL statements. A program object is then created using the CRTSQLCI
and CRTPGM commands. From release V5R1 on, an Internal C Compiler is shipped with the
system. The internal compiler allows customers to create SQL triggers without having to
purchase the C Compiler, even if the user does not have the ILE C product installed.

The program is created with activation group ACTGRP(*CALLER). This makes sure that your
program runs under the same commitment control level as the program or procedure that
fired the trigger. The activation group is always considered as the Unit of Work. Besides
commitment control can be started with commitment scope on job level, the default value for
the commitment scope in the CL command STRCMTCTL (Start Commitment control) is
*ACTGRP (Activation Group).

Chapter 8. Externalizing data access 131

The SQL options used to create the program are the options that are in effect at the time the
CREATE TRIGGER statement is executed.

You can specify your compile options directly in the trigger by using the SET OPTION
statement in your trigger program.

Structure of an SQL trigger

An SQL trigger can be created by either specifying the CREATE TRIGGER SQL statement or
by using iSeries Navigator.

The CREATE TRIGGER statement is one single command, and consists of two parts:

» The control information
» The SQL trigger body

The following example shows the structure of an SQL trigger.

Example 8-9 Structure of an SQL trigger

CREATE TRIGGER TriggerName
BEFORE/AFTER INSERT/UPDATE/DELETE
ON TableName
REFERENCING 01d/New Record
FOR EACH ROW / FOR EACH STATEMENT
MODE DB2ROW / DB2SQL
SET OPTION
WHEN (search condition)

Trigger body

Trigger control information
The trigger control information is:

» Trigger name

The name, including the implicit or explicit qualifier, must not be the same as a trigger that
already exists at the current server.

Note: QTEMP cannot be used as the trigger-name schema qualifier. Do not use names
that begin with ’SQ’, SQL, ’RDI’, or 'DSN’. These names are reserved for the database
manager.

Because a trigger is directly linked to the database, it is preferable to create the trigger in
the same schema as the table is located. When saving and restoring your schema, the
triggers are correctly activated. When located in different schemas, the triggers must be
recreated or added to the table.

» Trigger time/trigger event

Trigger time BEFORE or AFTER, depending on when your trigger should be activated,
must be specified.

The trigger event that fires the trigger, INSERT, UPDATE, or DELETE must be specified.

Update triggers can be defined on column level by adding OF ColumnNamet, ...
ColumnNameN to the UPDATE event. This means that the trigger is only be fired if
changes in the listed columns are executed.

Example 8-10 on page 133 shows an AFTER UPDATE trigger that is fired when the
OrderDtl_Quantity is changed.

132 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Example 8-10 After update trigger at the column level

Create Trigger ITS04710/UpdateReservation01

AFTER UPDATE of OrderDtl_Quantity on ITS04710/0RDER DETAIL
Referencing OLD ROW as O
NEW ROW as N
For Each Row
Mode DBZ2ROW

When (0.0rderDt1_Quantity <> N.OrderDt1_Quantity)
BEGIN ATOMIC

END;

Update ITS04710/Reservation R
set Reserved Quantity = R.Reserved Quantity
0.0rderDt1_Quantity
N.OrderDt1_Quantity
Where R.Order_Number N.Order_Number
and R.Product Number = N.Product_ Number;

n + 1

» Referencing

you can specify a correlation name for the triggered record image. In your trigger program
you can get access on the values by specifying CorrelationName.Column.

The OLD ROW image is only available for update and delete triggers. The NEW ROW
image is only available for insert and update triggers.

OLD ROW AS correlation name

This specifies a correlation name that identifies the values in the row prior to the
triggering SQL operation.

NEW ROW AS correlation name

This specifies a correlation name that identifies the values in the row prior to the
triggering SQL operation.

Example 8-11 shows a before insert trigger that updates the current time and user in
the inserted row.

Example 8-11 SQL trigger with referencing old/new record

Create Trigger 1TS04710/MyTrgTable0l

Before Insert on MyTrgTable
Referencing NEW ROW as Ins
For Each Row

Mode DB2ROW

BEGIN Atomic

set Ins.InsertTime = Current_Timestamp;
set Ins.InsertUser = User;

END;

» Granularity

FOR EACH ROW

The trigger is fired with each row that is affected by the event. This method must be
selected if values from the old and new row values must be compared. For example,
you want to write a transaction file where all changes are stored.

With FOR EACH ROW Granularity, the operation sequence is:

Modify row 1
Call Trigger row 1
Modify row 2
Call Trigger row 2

Chapter 8. Externalizing data access 133

134

Modify last row
Call Trigger Tast row

FOR EACH STATEMENT

The trigger is fired only once, when all affected rows are handled. The trigger is even
fired when no records are changed by the event.

FOR EACH STATEMENT cannot be used for BEFORE triggers, for example, if you
want to write or update a summary file with the new values.

With FOR EACH STATEMENT Granularity, the operation sequence is:
Modify row 1
Modify row 2

Modify last row
Call Trigger

» Mode
— DB2ROW

The triggers are activated on each row operation.
DB2ROW is valid for both BEFORE and AFTER trigger.

The DB2ROW mode causes the trigger to be fired after each row change. Not
surprisingly, this mode can only be specified on row-level triggers. Rows that are not
yet modified by the operation appear to the trigger program to have their original
values, while rows already modified show the new values.

In DB2ROW mode, the operation sequence is:

Modify row 1
Call trigger for row 1
Modify row 2
Call trigger for row 2

Mééify last row

Call trigger for Tast row

FOR EACH STATEMENT cannot be specified for a MODE DB2ROW trigger.
DB2SQL

The DB2SQL mode waits until all of the row changes are made and then calls the
trigger. The DB2SQL mode triggers are activated after all of the row operations occur.
The DB2SQL mode specifies that the trigger program will not run for any row until after
all rows affected by the operation are modified. All rows appear to the trigger program
to have their new values.

In DB2SQL mode, the operation sequence is:
Modify row 1
Modify row 2

Modify last row
Calls trigger for row 1
Calls trigger for row 2

Calls trigger for last row

Example 8-12 on page 135 shows a trigger that is only activated once per statement.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Example 8-12 SQL trigger with FOR EACH STATEMENT clause

Create Trigger I1TS04710/InsertOrderHeaderTotal
After Insert on ITS04710/0RDER DETAIL
Referencing NEW_TABLE as NewDetail
For Each Statement
Mode DB2SQL
Set Option DbgView = *SOURCE
BEGIN ATOMIC
Declare SumTotal Decimal(7, 0);
select coalesce(sum(NewDetail.OrderDt1 Total), 0)
into SumTotal
from NewDetail;
update Order_Header
set Order_Total = Order_Total + SumTotal ;

END;

» WHEN(SearchCondition)

It is not only possible to define an SQL trigger at the column level, but you can also specify
conditions under which circumstances a trigger is executed. Each column value that is
stored in either the OLD or NEW row can be compared. For example, you define two
triggers to handle the raise and the decrease of a certain value, because different actions
are necessary.

Example 8-13 shows a trigger that is fired when the Order Detail quantity is changed, but
only if the new quantity is higher than the old one.

Example 8-13 Conditional trigger

Create Trigger ITS04710/RaiseReservation01
AFTER UPDATE of OrderDt1 Quantity on ITS04710/0RDER DETAIL
Referencing OLD ROW as O
NEW ROW as N
For Each Row
Mode DBZ2ROW
When (0.0rderDt1_Quantity < N.OrderDt1_Quantity)
BEGIN ATOMIC
Update ITS04710/Reservation R
set Reserved_Quantity = R.Reserved_Quantity
- 0.0rderDt1_Quantity
+ N.OrderDt1_Quantity
Where R.Order_Number = N.Order_Number
and R.Product_Number = N.Product_ Number;
END;

Trigger body

The trigger body contains all the executable statements. When a trigger is created, SQL
creates a temporary source file that contains C source code with embedded SQL statements
that are specified in the trigger body. A program object is then created using the CRTSQLCI
and CRTPGM commands.

If your trigger consists only of one executable statement, you simply add it to the trigger
control information.

Example 8-14 shows a BEFORE INSERT trigger, where only one single statement is
executed. The next serial number for a key is calculated and inserted in the new row.

Example 8-14 Before insert trigger with a single SQL statement

Create Trigger ITS04710/MyTrgTable02

Chapter 8. Externalizing data access 135

BEFORE INSERT on MyTrgTable
Referencing NEW as INS
For Each Row
Mode DB2ROW
Select Coalesce(Max(a.CurrNbr) + 1 , 1)
into INS.CurrNbr
from MyTrgTable a
where a.Text = INS.Text;

If several SQL statements must be executed in one single trigger program, they must be
embedded in a compound statement. A compound statement starts with BEGIN and ends
with END.

All SQL statements inside this trigger body must be ended with a semi colon (;).

For more information about SQL Programming Language, refer to “SQL programming
language” on page 163.

Example 8-15 shows a trigger where several statements are embedded in a single compound
statement. The product price is determined from the stock table, and the total, multiplying
quantity and price is calculated and updated in the new row.

Example 8-15 SQL trigger with trigger body

Create Trigger I1TS04710/CalcOrderDetailTotal
Before Insert on ITS04710/0RDER_DETAIL
Referencing NEW as N
For Each Row
Mode DB2ROW

BEGIN ATOMIC
Declare Price Decimal(5, 0);
Select coalesce(S.Product Price, 0)
into Price
from Stock S
Where S.Product_Number = N.Product_Number;
Set N.OrderDt1_Total = Price * N.OrderDtl_Quantity;
END;

Creating SQL triggers using iSeries Navigator
To generate SQL triggers with iSeries Navigator, the following steps are necessary:

In the iSeries Navigator window, expand your server and select Databases.
Choose the database you are working with and expand its Schemas.

Click the schema that contains the table to which you want to add the trigger.
Right-click the Triggers icon and select NEW — SQL.

> SRy

Figure 8-3 on page 137 shows the General tab for SQL triggers.

136 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

[3] New SOL Trigger - Rchasm27(51041t9m)

Tiing | SGL Statements |

Trigger narne: ICaIcOrderDetaiITotal

(" Update of selected columns

Ayvaiiahle columns:

Calurmm Marme Short Marme et Type

I Lerothy Addi-—= |

<

Remove =

Selected calum

Calumn Mame

Shiort Marme

i

Schema: | ITS04710 =l
Takle name: ||I|:| ORDER_DETAIL LI
Schema: [IT204710 Ed|
Text: ICaIcuIate order detail = gquartity * price
Event:
+ Inzert
" Delete
" Update

Show SGIL |

Ok | Cancel | Help #
Figure 8-3 General tab for SQL triggers
Figure 8-4 shows the Timing tab for SQL triggers.
3] New SOL Trigger - Rehasm27(51041t9m) |9 [=1 <}
General S0L Statements |
Wihen ta run:
' Before event
 after event
Run trigger:
(+ For each row
rrelation mame for ol row tﬁ;l_e;ﬂ_-specifj‘éfg? =]
Correlation name for ness Fowve: f‘d ;I
Mode:
(* DEZROW
{7 DEZSHL
TEmparars for old takle; "-Ic.: specified ;I
TriRarErsy RS ey tahle "-Ic.: specifisd ﬂ
(" Once forthe sta
Termporary fEme for old takle '\I-:vt specified ;I
Tefmporary: mame far neyy takle '\I-:vt specified ;I
Showe SQL | Ok I Cancel | Help | 2

Figure 8-4 Timing tab for SQL triggers

Figure 8-5 on page 138 shows the trigger body for SQL triggers.

Chapter 8. Externalizing data access 137

Mew SOL Trigger - Rchasm27(5104rt%m) E]@

General] Timing SGL Statements]
SGEL Statement examples:

| j Insert
Statements:
Set Option DhgYiew = *Source

BEGIN ATCMIC
Declare Price Decimal(s, 0);
Select coalesce(S Product_Price, 0)

into Price

from Stock S

‘Where S Product_Mumber = N Product_Mumber;
Set N.OrderCtl_Taotal = Price * M .OrderCil_Total;
END;

Check Syntax

Show SEIL o I Cancel Help #

Figure 8-5 SQL trigger body

8.1.5 Getting information about triggers

To determine which triggers are registered for a specific table, you can use one of the
following methods:

» CL command Display File description DSPFD

Using the CL command DSPFD with option TYPE = *TRG will list all triggers and their
characteristics.

The following example shows how all triggers on the Order Detail file can be listed.
DSPFD FILE(ORDERDTL)

TYPE (*TRG)
» Querying the system tables
SYSTRIGGERS Provides all information about the triggers
SYSTRIGDEP Provides all information about dependencies between files used in
SQL triggers
SYSTRIGCOL Provides information about columns used in SQL triggers
SYSTRIGUPD Provides information about updated columns used in SQL triggers.

For more information on triggers refer to the redbook Stored Procedures, Triggers and User
Defined Functions in DB2 UDB for iSeries, SG24-6503.

8.2 Stored procedures

Stored procedures are programs or service programs containing a specific signature, so that

they can be called from any SQL interface, such as interactive and embedded SQL, ODBC,
and JDBC.

138 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

In contrast to triggers, which are directly linked to the database tables, stored procedures
must be called explicitly by using the SQL CALL statement. When a stored procedure is
called, it is embedded in the call stack and executed. If the stored procedure ends, either
normally or abnormally, the control is returned to the caller. In this way it is possible to
interchange parameter information between caller and stored procedure.

Stored procedures can be called locally (on the same system where the application runs) or
remotely on a different system. They are the easiest way to perform a remote call and to
distribute the execution logic of an application program.

Stored procedures offer a number of powerful advantages for distributed application
development. These include the following;

» Common business functions can be encapsulated in stored procedures and made
universally accessible, promoting code re-use and consistency, and providing support for
object-oriented application design.

» Performance can be significantly improved for distributed applications that require several
SQL calls to be made by the client against a remote database. Instead of multiple trips
across the network for each of these requests, they can be combined and executed within
a stored procedure so only one single call is needed. This performance improvement can
also create subsequent benefits in reducing lock contention.

» Security can be enhanced, as developers are only able to work with the stored procedure
input and output parameters, and are prevented from viewing or altering the underlying
code that implements the business function. Stored procedures can help to control the
access to database objects.

There are two types of stored procedures:

» External stored procedures
» SQL stored procedures

8.2.1 External stored procedures

External stored procedures are programs or service programs written in an HLL with a unique
signature to be called from any SQL interface, like embedded SQL, ODBC, JDBC, etc.

Programs do not need to be registered, as long as you do not want to overload the
procedures (look at “Procedure signature and overloading” on page 148). They can be called
directly by the SQL interfaces using the SQL command CALL.

Programs or service programs are registered as stored procedures by using the SQL
command CREATE PROCEDURE.

Note: Since Release V5R3MO, procedures in service programs without return value can
be registered as stored procedures.

To register procedures in service programs, the option EXTERNAL NAME in the CREATE
PROCEDURE statement (look at “SQL statement CREATE PROCEDURE” on page 144),
must include the procedure’s entry point (procedure name).

The activation group of the program or service program is inherited to the stored procedure,
which means that if your program runs in a named activation group, the stored procedure
uses the same activation group.

Chapter 8. Externalizing data access 139

The activation group is considered a unit of work. This is especially important with regard to
the commitment control. The default value for the commitment control (CMTSCOPE) in the
CL command Start Commitment Control (STRCMTCTL) is activation group (*ACTGRP).

If your program or service program is generated with a named activation group or a new
activation group, and the commitment control is started at activation group level, commit and
rollback will lead to unexpected results.

Therefore we recommended creating programs or service programs that must be registered
as stored procedures with the activation group *CALLER. If you want to use named activation
groups, you have to start your commitment control on job level (CMTSCOPE = *JOB).

Note: Commitment control can only be started once in an job, with commitment scope
either Job or Activation group. If you have to change, you first have to end commitment
control using the CL commend ENDCMTCTL and restart it again with a different
commitment scope.

In contrast to JAVA or .Net languages, RPG cannot directly receive result sets. But

nevertheless it is possible to return result sets from RPG. There are two methods to realize

this:

» Define a cursor with WITH RETURN and open it before you end your program or
procedure.

» In your RPG program, you can fill your data into a multi-occurrence data structure or an
array data structure and then use the SQL command SET RESULT SETS to return the
data structure as result set.

Note: If you have to receive result sets within RPG you have to use the Common Level
Interface (CLI) APIs.

Registering stored procedures using iSeries Navigator
To register external stored procedures with iSeries Navigator, the following steps are
necessary:

1. In the iSeries Navigator window, expand your server, then select Databases.
2. Choose the database you are working with and expand its Schemas.

3. Right-click Procedure.

4. Select NEW — External.

Figure 8-6 on page 141 shows the General tab for external triggers.

140 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

New External Procedure in [TS04710 - Rechasm27{S104rt%m})

General | Parameters I Exteral Program I

Procedure: lU pdE mployes(2

D escription: !Updale Employes

M awimurn number of result sets: |D

[Same result reburned from successive calls with identical input [Deterministic]
[Commit changes when control retums bo caller

[Initiste new savepaint level when invoked

Data access: FNb SOL ;I

Specific name: |

aK l Cancel Help

Figure 8-6 General requirements for external triggers

Figure 8-7 on page 142 shows the Parameters window for external procedures.

Chapter 8. Externalizing data access 141

142

Mew External Procedure in ITS04710

- Rehasm27(S104rt9m)

Gereral Parameters I External Program;

" Simple, allow ol values
£ Simple, no null values allowed
 Java

Parameter Marne | Type
RAISE DECIMAL 5.2
DEFARTMENT CHARACTER 10
BIRTHYEAR DECIMAL 4.0
< | 1
FParameter style:

500

i Length | CCSID | InA0lut | Laocatar | Dezcription
IN

IM
IM

Delete |

QK J Cancel

Help

Figure 8-7 Parameter definition for external stored procedures

Figure 8-8 on page 143 shows the Program window for an external trigger.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

New External Procedure in ITS04710 - Rchasm27(S104rt9m)

General] Parameters Extermal Program l

" Program: |HSUpdE mplopes(HzU pdE mploye
Schema: |ITso4710 =l
Language: |§F|F'GLE _.ﬂ

" Java method:

k. | Cancel Help

Figure 8-8 Program information for external triggers

8.2.2 SQL stored procedures

SQL stored procedures are generated by using the SQL command CREATE PROCEDURE,
like external stored procedures. But in contrast to the external procedures that point to a
program or service program, the program code is embedded in the CREATE PROCEDURE
and written only by using SQL commands.

In the program body all SQL statements and scalar functions can be used. Additionally,
SQL/PSM language provides a couple of control statements (for more information about SQL
programming language look at “SQL programming language” on page 163).

When creating the procedure, a temporary source file is generated, containing the SQL
statements converted into API calls in the C-language. From this source member a
C-Program Object is created.

The activation group of SQL stored procedures is always “CALLER.

Creating SQL stored procedures with iSeries Navigator
To register SQL stored procedures with iSeries Navigator, the following steps are necessary:

In the iSeries Navigator window, expand your server and then select Databases.
Choose the database you are working with and expand its Schemas.

Select the Schema.

Right-click Procedure.

Select NEW — SQL.

oD~

Chapter 8. Externalizing data access 143

The General tab and the Parameters tab are identical to the external stored procedures, but
instead of external program information you have to enter your SQL statement.

Figure 8-9 shows the SQL statements for an SQL stored procedure.

New SQL Procedure in ITS04710 - Rchasm27(51041t9m)
Genelal] Parameters SOL Statements l
SOL statement examples: | A 500 Control Statements ™/ j
Inzert
Statermnents: A
Set Option Dbgview = *Source,
DatFmt =750,
TimFmt =*50
BEGIMN

Declare RAISE Decimall, 0);
Declare DEPARTMEMNT Character(10);
Declare BIRTHYEAR Decimal(4, 0);

Set RAISE =1;
Call UpdEmplayes(RAISE);

Set RAISE =2;
Set DEPARTMENT ='DEPTON';
Call UpdEmployes{RAISE. DEPARTMEMT];

Set DEPARTMEMT = 'DEPTOZ":

Set BIRTHYEAR =1964;

Call UpdEmployes(RAISE, DEPARTMEMT. BIRTHYEAR):
EMD;

ak. | Cancel Help

Figure 8-9 SQL stored procedure SQL statements

8.2.3 SQL statement CREATE PROCEDURE

The CREATE PROCEDURE statement can be used either to register programs or service
programs written in an HLL as a stored procedure or to create a SQL stored procedure.

The text below shows the most important options of the create procedure statement. For
more information see the SQL Reference.

CREATE PROCEDURE ProcedureName
(Parameter Declaration)
LANGUAGE
PARAMETER STYLE
SQL DATA
DYNAMIC RESULT SETS
EXTERNAL NAME
SPECIFIC
COMMIT ON RETURN

» Procedure name

This is the name that is used to call the stored procedure. It can be defined with up to 128
characters.

The combination of schema, procedure name, and number of parameters must be unique
on the current server.

144 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

If you want to generate external stored procedures, it is not necessary that the procedure
name and the name of the program or service program are identical. The external name of
the program or procedure must be declared with the EXTERNAL NAME option.

» Parameter declaration

When defining a parameter, you have to determine if it is input only, output only, or both
by, using one of the following modes:

— IN for input-only parameters
— OUT for output-only parameters
— INOUT for a parameter that is both input and output capable

Further, the parameter name and the data type must be specified.
Example 8-16 shows the registration of an external procedure with several input and
output parameters.

Example 8-16 Defining parameters in SQL stored procedures

Create Procedure ITS04710/GetOrderSummary
(IN OrderNo Char(5) ,
OUT OrderDate DATE ,
OUT DeliveryDate DATE ,
OUT NoOfPositions INTEGER ,
OUT NoOfProducts INTEGER ,
OUT TotalAmount DECIMAL(11, 2))
LANGUAGE RPGLE
SPECIFIC ITS04710/GetOrdSum
NOT DETERMINISTIC
NO SQL
CALLED ON NULL INPUT
EXTERNAL NAME 'ITS04710/GETORDSUM'
PARAMETER STYLE GENERAL ;

» DYNAMIC RESULT SETS Number
Must be specified when the stored procedure returns one or more result sets.

If you add WITH RETURN to your cursor declaration, it indicates that the cursor is
intended for use as a result set from a stored procedure.

You must open the cursor before it can be returned to the caller.

The result sets are scrollable if a cursor is used to return a result set and the cursor is
scrollable. If a cursor is used to return a result set, the result set starts with the current
position. Thus, if five FETCH NEXT operations have been performed prior to returning
from the procedure, the result set will start with the sixth row of the result set.

Example 8-17 shows a stored procedure that returns a single result set.

Example 8-17 Stored procedure returning a result set

Create Procedure ITS04710/RetResSet
(IN OrdYear Decimal(4, 0))
Dynamic Result Sets 1
Language SQL
Reads SQL Data
BEGIN
Declare Cl insensitive Scroll Cursor WITH RETURN
For select Month(Order Date) as ResMonth,
Supplier Name, Sum(Product Price * OrderDt1_Quantity)
from ((ORDERHDR h
join Orderdtl d on h.Order Number = d.Order_ Number)
join Stock p on d.Product_Number = p.Product_Number)

Chapter 8. Externalizing data access 145

join Supplier s on p.Supplier_Number = s.Supplier_Number
Where Year(Order_Date) = OrdYear
Group By Month(Order Date), Supplier Name
Order By Month(Order Date), Supplier Name;
OPEN C1 ;
END

Note: With embedded SQL you cannot access result sets. The only way to receive
result sets within RPG is to use the Common Level Interface (CLI) APIs.

You cannot get direct access to result sets. RPG can return result sets through an open
cursor or by using the SQL statement SET RESULT SETS.

» Language

Specifies the language in which the external program that must be registered is written.
The following languages can be specified:

- C

— C++

- CL

— COBOL or COBOLLE for ILE COBOL programs

— FORTRAN

- JAVA

- PLI

— REXX

— RPG for RPG/400 programs or RPGLE for ILE RPG programs

For SQL stored procedures, SQL must be specified.
» Parameter-Style

This option is only important for external stored procedures. Depending on the parameter
style, DB2 UDB for iSeries passes a number of additional parameters. You can specify the
required parameter style when the procedure is created. DB2 UDB for iSeries supports
the following parameter styles:

— GENERAL

Specifies that the procedure will use a parameter passing mechanism where the
procedure receives the parameters specified on the CALL. No additional parameters
are added.

— GENERAL WITH NULLS

Specifies that in addition to the parameters on the CALL statement as specified in
GENERAL, another argument is passed to the procedure. This additional argument
contains an indicator array with an element for each of the parameters of the CALL
statement.

If a NULL value was passed for the corresponding argument, the indicator variable
contains -1. If a valid value is passed, the indicator variable contains 0.

- SAaL

Specifies that in addition to the parameters on the CALL statement as specified in
GENERAL, other arguments are passed to the procedure. These are:

A CHAR(5) output parameter for SQLSTATE.

A VARCHAR(517) input parameter for the fully qualified procedure name.
A VARCHAR(128) input parameter for the specific name.

A VARCHAR(70) output parameter for the message text.

146 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Parameter style SQL cannot be used with programming language JAVA.
- DB2SQL

The DB2SQL style is a superset of the SQL parameter style.
— DB2GENERAL

Specifies that the procedure will use a parameter passing convention that is defined for
use with Java methods.

- JAVA

Specifies that the procedure will use a parameter passing convention that conforms to
the Java language and SQLJ Routines specification.

» SQL DATA

Registering a stored procedure, you have to specify if SQL statements are used, by
specifying one of the following options:

— NO SQL DATA

The stored procedure does not contain SQL statements. This must be used for your
RPG or COBOL programs or service programs that do not contain embedded SQL.

— CONTAINS SQL DATA

This option must be used if you want to register a RPG or COBOL program or service
program that contains SQL statements like SET, CALL, and COMMIT, but does not
access database data.

If you create an SQL stored procedure that only executes calls to other stored
procedures and set parameters, you have to specify this option, too.

— READS SQL DATA

This option must be used if you want to register a RPG or COBOL program, where you
get access to database data by using the select statement, but no insert, update, or
delete with SQL is performed.

If you write a SQL stored procedure that only returns result sets, you have to specify
this option, too.

— MODIFIES SQL DATA

This option must be specified if you are inserting, updating, or deleting data through
SQL in your stored procedure.

» EXTERNAL NAME

Specifies the program or service program that will be executed when the procedure is
called by the CALL statement. The program name must identify a program or service
program that exists at the application server at the time the procedure is called.

If you want to register a service program, you have to add the procedure name that is
called to the external name. It must even be specified if the service program consists only
of one single procedure with the same name.

Example 8-18 shows the registration of the procedure HSEMPLOYEE in the service
program HSEMPLOYEE.

Example 8-18 Registering a service program as stored procedure

Create Procedure ITS04710/UpdEmployee
(IN Raise Decimal(5, 2))
Language RPGLE
Not Deterministic
No SQL

Chapter 8. Externalizing data access 147

Called on NULL input
External Name 'ITS04710/HSEMPLOYEE(HSEMPLOYEE)'
Parameter Style General;

» SPECIFIC NAME

DB2 Universal Database for iSeries identifies each stored procedure with a specific name
that, combined with the specific schema, must be unique in the system. This gains
importance because multiple stored procedures with the same name but different
signatures must have different specific names or signatures. If you do not provide a
specific name, DB2 UDB for iSeries generates one automatically.

If you do not overload your procedure, the generated specific name will be the procedure
name. When overloading, the specific name will be generated by using the system
conventions, character 1-5 from the procedure name and a serial number.

» COMMIT ON RETURN

Specifies whether the database manager commits the transaction immediately on return
from the procedure.

If COMMIT ON RETURN YES is specified, the database manager issues a commit if the
procedure returns successfully. If the procedure returns with an error, a commit is not
issued.

8.2.4 Procedure signature and overloading

DB2 Universal Database for iSeries supports the concept of procedure overloading. This
means that you can have several procedures with the same name in the same schema,
provided they have different signatures. The signature is generated by executing the SQL
CREATE PROCEDURE statement.

The signature of a procedure is determined by the qualified name and the number of
parameters in the procedure. A signature is unique in one schema.

Procedures with the same name and identical number of parameters cannot coexist in the
same schema, even if the parameters have different data types. But it is possible to register
the same program or service program with the same parameters in another procedure in the
same library.

Note: You do not have to register programs as stored procedures as long as you do not
want to overload procedures. Programs can be directly called by the SQL CALL statement,
without being registered as stored procedures.

Overloading ILE Programs and procedures

Procedure overloading must used be used if you want to register ILE Programs with optional
parameters. Optional parameters are generated by using the keyword OPTIONS(*NoPass) in
the prototype declaration.

Example 8-19 on page 149 updates the table MyEmployee. Depending on the passed
parameters, different selections are performed.

If only parameter 1, RAISE is specified, all rows are updated.

If RAISE and DEPARTMENT are specified only those rows that belong to the passed
department are updated.

148 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

If all three parameters are passed, all rows with the specified department and where the year
of the birthday is equal to the passed year are updated.

The source is compiled into a module by using the CRTRPGMOD command and then bound
into a service program by using the CRTSRVPGM command.

Example 8-19 ILE RPG program with optional parameters

H DEBUG Option(*NoDebugIO)

FMyEmployeeUF E K DISK

K e e e e e e e e e e e e e e
D UpdEmployee PR ExtProc('HSEMPLOYEE'")

D ParRaise 5P 2 const

D ParDept 10A varying const options(*NoPass)

D ParBYear 4P 0 const options(*NoPass)

D UpdEmployee PI

D ParRaise 5P 2 const

D ParDept 10A varying const options(*NoPass)

D ParBYear 4P 0 const options(*NoPass)

K L o e o e e
/free

setLL *Zeros MyEmployeR;

DoU %EOF (MyEmployee);
Read MyEmployeR;

If %EOQF;
leave;
EndIf;

If ParRaise = *Zeros
or (%Parms >= 2 and EmpDept <> ParDept)
or (%Parms >= 3 and %SubDt(EmpBDay: *Y) <> ParBYear);
iter;

Endif;

EmpSal *= (1 + ParRaise/100);
Update MyEmployeR;

EndDo;

Return;
/End-Free

If we want to call the procedures with one, two, or three parameters, we have to register a
procedure with the same name but a different number of parameters.

Example 8-20 shows the CREATE PROCEDURE statement for each of these procedures.

Example 8-20 Overloading an external stored procedure

Create Procedure ITS04710/UpdEmployee
(IN Raise Decimal(5, 2))
Language RPGLE
Not Deterministic
No SQL
Called on NULL input

Chapter 8. Externalizing data access 149

External Name 'ITS04710/HSEMPLOYEE(HSEMPLOYEE)'

Parameter Style General;

Create Procedure ITS04710/UpdEmployee

(IN Raise Decimal(5, 2),
IN Department Char(10))
Language RPGLE
Not Deterministic
No SQL
Called on NULL input

External Name 'ITS04710/HSEMPLOYEE(HSEMPLOYEE)'

Parameter Style General;

Create Procedure ITS04710/UpdEmployee

(IN Raise Decimal(5, 2),
IN Department Char(10),
IN BirthYear Decimal(4,
Language RPGLE
Not Deterministic
No SQL
Called on NULL input

0))

External Name 'ITS04710/HSEMPLOYEE(HSEMPLOYEE)'

Parameter Style General;

If you list the procedures in the iSeries Navigator, you will see three procedures with the
same procedure name, but different signatures. Figure 8-10 shows the procedures listed in

the schema ITSO4710.

) iSeries Navigator

mEx

File Edit Wiew Help

> 5 3 minutes old
Environment: My Connections | Rchasmz7: Procedures Database: S104rk9m Schema: ITSO4710
EI All Objects | | 50L Name » | Specific Mame | Tvpe | Definer
= Aliases . E7 CalLUPDEMPLOYEE £) CALLUPDEMPLOYEE S0L BIRGITTA
t:; C_”“.St’a""ts ER GETORDERSUMMARY { CHAR(), DATE, DATE, IN... GETORDERSUMMARY SOL BIRGITTA
£ Distinct Types R RETRESSET (DECIMALY)) RETRESSET s0L BIRGITTA
N IFI:';;'ES”S B UPDEMPLOYEE (DECIMAL(), CHAR(), DECIMAL()) UPDEMOODNZ External BIRGITTA
- EF UPDEMPLOYEE (DECIMALL), CHARD)) URDEMO0001 External BIRGITTA
B UPDEMPLOYEE (DECIMALL)) URDEMPLOYEE External BIRGITTA

Journal Receivers
Journals
Procedures

Eﬁ' Sequences
Hil 50l Packages
[Tables

1| Triggers

@ Wigs

) QERL

1 -+
.:I,:l_I

OTEMP [se]

@ Install additional components

1 - 6 of 6 objects

55 select schemas to display

Run an SGL scripk
Map vour database

Create a new summary SQL performance
Bl Create a new detaled SOL petfarmance rc
] ? Help Far related tasks

Figure 8-10 Overloaded stored procedures

Example 8-21 on page 151 shows a procedure that calls the procedure UpdEmployee with

different parameters.

150

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Example 8-21 Calling overloaded procedures

Create Procedure ITS04710/CallUpdEmployee
Language SQL
Not Deterministic
Contains SQL
Called on NULL input

BEGIN
Declare RAISE Decimal(5, 0);
Declare DEPARTMENT Character(10);
Declare BIRTHYEAR Decimal (4, 0);

Set RAISE = 1;
Call UpdEmployee (RAISE);

Set RAISE = 2;
Set DEPARTMENT = 'DEPTO1';
Call UpdEmployee (RAISE, DEPARTMENT);

Set DEPARTMENT = 'DEPT02';

Set BIRTHYEAR = 1964;

Call UpdEmployee (RAISE, DEPARTMENT, BIRTHYEAR);
END;

8.2.5 Deleting or replacing a stored procedure
SQL does not provide a REPLACE or CHANGE PROCEDURE statement.

If you try to create a procedure with the same signature as an existing procedure (identical
name and identical number or parameters), the procedure will not be created. An error
occurs:

SQL State: 42723
Vendor Code: -454
Message: [SQL0454] Routine MYPROCEDURE in MYSCHEMA already exists.

If you create a procedure with the same name as an existing procedure, but with a different
number of parameters, the procedure is overloaded, which means that a procedure with a
different signature is created.

If you want to replace a procedure, you first have to delete the old one by using the SQL
statement DROP PROCEDURE. As long as the procedure is not overloaded, you simply
specify DROP PROCEDURE and add the ProcedureName.

There are two methods to delete overloaded procedures:

» Adding the data types and the length of the parameters of the procedure after the
ProcedureName in the DROP PROCEDURE statement

» Using the specific name or signature as follows:
DROP SPECIFIC PROCEDURE SpecificName

Example 8-22 shows how stored procedures can be deleted.

Example 8-22 Deleting stored procedures

-- Deleting a procedure that is not overloaded
DROP PROCEDURE UpdEmployee;

Chapter 8. Externalizing data access 151

-- Deleting an overloaded procedure
DROP PROCEDURE UpdEmployee(Dec(5, 2), Char(10));

DROP SPECIFIC PROCEDURE UPDEMO00004;

8.2.6 Getting information about stored procedures

Information about external and SQL stored procedures is saved in the following system

tables:

SYSPROCS Provides all information about stored procedures. The program body
for SQL stored procedures is saved in the ROUTINE_DEFINITON
column.

SYSPARMS Delivers the description of the parameters, including the order,
parameter mode, data type, and length definition.

SYSROUTINES The SYSROUTINES table contains one row for each procedure

created by the CREATE PROCEDURE statement and each function
created by the CREATE FUNCTION statement.

For more information refer to the redbook Stored Procedures, Triggers and User Defined
Functions on DB2 UDB for iSeries, SG24-6309.

8.3 User defined functions

User defined functions (UDFs) are host - language functions for performing customized,
frequently used tasks in applications. UDFs allows the programmers to modularize a
database application, creating a function that can be used in SQL.

DB2 Universal Database for iSeries comes with a rich set of built-in functions, but users and
programmers may have different particular requirements not covered by them. UDFs comes
to play a very important role by allowing users and programmers to enrich the database
manager by providing their own functions.

Some of the advantages of UDFs are:

» Customization

Functions specifically required by your application not existing in the set of DB2 built-in
functions can be created. Whether the function is a simple transformation, a trivial
calculation, or a complex multivariate analysis, you may choose a UDF to do the job.

» Flexibility

You can use functions with the same name in the same library that accepts different sets
of parameters.

» Standardization

Many of the programs that you implement use the same basic set of functions, but there
are minor differences in all the implementations. If you correctly implement your business
logic as an UDF, you can reuse those UDFs in your other applications using SQL.

» Object-relational support

UDF also provides additional functions for User-defined Distinct Type (UDT) created in the
database. UDFs act as methods for UDTs. More information on UDTs and how UDFs are
used to encapsulate methods for them are in DB2 UDB for AS/400 Object Relational
Support, SG24-5409.

152 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

» Performance

A UDF can run in the database engine and is very useful for performing calculations in the
database manager server. Another area where performance may be increased is in
dealing with Large Objects (LOBs). UDFs may be used for extracting or modifying portions
of the information contained in a LOB directly in the database manager server instead of
sending the complete LOB to the client side.

» Migration

When migrating from other database managers, there could be built-in functions that are
not defined in DB2 Universal Database for iSeries. UDFs allow us to create those
functions in order to make the migration process easier.

UDFs are useful for the following reasons:

» Supplement built-in functions: A user defined function is a mechanism with which you can
write your own extensions to SQL. The built-in functions supplied with DB2 are a useful
set of functions, but they may not satisfy all of your requirements. So, you may need to
extend SQL. For example, porting applications from other database platforms may require
coding of some platform-specific functions.

» Handle user-defined data types: You can implement the behavior of a User-defined
Distinct Type (UDT) using UDFs. When you create a distinct type, the database provides
only cast functions and comparison operators for the new type. You are responsible for
providing any additional behavior. It is best to keep the behavior of a distinct type in the
database where all of the users of the distinct type can easily access it. Therefore, UDFs
are the best implementation mechanism for UDTs.

» Provide function overloading: Function overloading means that you can have two or more
functions with the same name in the same library. For example, you can have several
instances of the SUBSTR function that accept different data types as input parameters.
Function overloading is one of the key features required by the object-oriented paradigm.

» Allow code re-use and sharing: A business logic implemented as a UDF becomes part of
the database, and it can be accessed by any interface or application using SQL.

User defined functions can be invoked:

In a SET statement to change the value of a variable
In a Select statement to convert values

In an Update statement to set new values

In a Insert statement to convert values

vyvyyy

A function is a relationship between a set of input values and a set of result values. When
invoked, a function performs some operation (for example, concatenate) based on the input
and returns a single or multiple results to the invoker. Depending on the nature of the return
value or values, user defined functions can be classified into:

» User Defined (Scalar) Functions with one single return value
» User defined table functions with a set (=table) of return values
Depending on the way they are coded, there are three different types of UDFs:

» External user defined functions
» SQL user defined functions
» Sourced user defined functions

All types of user defined functions are generated by using the SQL command CREATE
FUNCTION.

Chapter 8. Externalizing data access 153

8.3.1 External user defined functions

External UDFs are references to programs and service programs written in high-level
languages such as C, C++, ILE CL, COBOL, ILE COBOL, FORTRAN, PLI, RPG, ILE RPG, or
JAVA. Once the function is registered to the database, the database will invoke the program
or service program whenever the function is referenced in a DML statement. As in SQL
UDFs, external UDFs could return a scalar value or a table.

Some of the reasons to work with external UDFs are:

» To perform non-database functions
To access non-relational data

To reuse existing code

To leverage existing skills

vYvyy

In the following examples we create a service program, CENTER, containing two external
functions: CENTER to center a text in a character field, and RIGHTADJ to right adjust a text
in a character field.

Example 8-23 shows the prototypes for the functions CENTER and RIGHTADJ. Both
functions return an alphanumeric value.

Example 8-23 Prototypes for the functions CENTER and RIGHTADJ

* Reference fields

D Text S 20A based(DummyPtr)
* Function CENTER

D Center PR like(Text)

D ParText like(Text) const

* Function RightAdj
D RightAdj PR like(Text)
D ParText like(Text) const

Example 8-24 shows the source code for the two functions CENTER and RIGHTADJ.

Example 8-24 Source code for the functions CENTER and RIGHTADJ

H NoMain

H Debug BndDir('MYBNDDIR")
* Prototypes

D/Copy QPROLESRC,CENTER

B R R R R R R R R R R R S R

* Function CENTER

B R R R R S R

P Center B Export
D Center PI Tike(Text)
D ParText like(Text) const
D LenParText C const(%Size(ParText))
D RetText S Tike(Text)
D Start S 3U0
K L e o e o e e e e e e
/Free
Select;

When ParText = *Blanks;
Return *Blanks;

154 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

When %Len(%Trim(ParText)) = LenParText;
Return ParText;

Other;
Start = %Int((LenParText - %Len(%Trim(ParText))) / 2) + 1;
%Subst (RetText: Start) = %Trim(ParText);
Return RetText;

EndST;
/End-Free
P Center E
% % % %k %k % k% *k Kk hkkkkkkk KA AR I AR h Ak hhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhdhdhdhhdhhdhhhhdhhdhdhdhhkhhdhhhdhddxx
* Function RIGHTADJ
% % % %k %k %k k% *kkhkhkkkkkkk KA AR KA h Ak hkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhdhddhddhhdhhdhdhhdhdhdhdhhdhddxx
P RightAdj B Export
D RightAdj PI like(Text)
D ParText Tike(Text) const
D LenParText C const(%Size(ParText))
D RetText S like(Text)

= m e e e
/Free

Select;

When ParText = *Blanks;
Return *Blanks;

When %Len(%Trim(ParText)) = LenParText;
Return ParText;

Other;
EvalR RetText = %TrimR(ParText);
Return RetText;
EndST;
/End-Free
P RightAdj E

To compile this source code into a service program the following binder source is used.

Example 8-25 Binder source for service program CENTER

STRPGMEXP PGMLVL (*CURRENT) LVLCHK(*YES) +
SIGNATURE (X'00000000000000000000D9C5E3D5C5C3")
EXPORT SYMBOL (CENTER)
EXPORT SYMBOL (RIGHTADJ)
ENDPGMEXP

Example 8-26 shows the compile commands to generate the service program.

Example 8-26 Compilation service program CENTER

/* Create Module */

CRTRPGMOD MODULE (QTEMP/CENTER)
SRCFILE(ITS04710/QRPGLESRC)
SRCMBR(CENTER)

/* Create Service Program */

CRTSRVPGM SRVPGM(ITS04710/CENTER)
MODULE (QTEMP/CENTER)
SRCFILE(ITS04710/QSRVSRC)

Chapter 8. Externalizing data access 155

SRCMBR(*SRVPGM)
TEXT('Center / Right adjust textes')
ACTGRP (*CALLER)

/* Registering the service program in the binding directory */
ADDBNDDIRE BNDDIR(MYBNDDIR)

OBJ((CENTER *SRVPGM))

POSITION(*LAST)

/* Delete Module */
DLTMOD MODULE (QTEMP/CENTER)

Example 8-27 shows how these functions are called in an RPG program.

Example 8-27 Calling the procedures CENTER and RIGHTADJ from RPG

* Prototypes
D/Copy QPROLESRC,CENTER

* Field Definition

D TextIn S Tike(Text) inz('MyText')

D TextOut S like(Text)

K e e e e e e e e e e e e e o — — — — — — — — — — — — — — — — — — — — — — — — — — — — —— — — e — —— e ——
/Free

TextOut = Center(TextIn);
Dsply TextOut;

TextOut = RightAdj(TextIn);
Dsply TextOut;

Return;
/End-Free

If you want to use these functions in SQL you have to use them as user defined functions.

Example 8-28 shows the registration of the RPG function CENTER and RIGHTADJ as user
defined functions.

Note: In contrast to programs, service programs can have several entry points, one for
each exported procedure. To register user defined functions, the entry point or the function
name must be specified. This is even necessary if a service program contains only one
function with the same name as the service program, for example, EXTERNAL NAME
MySchema.MySrvPgm(MyFunction).

Example 8-28 Registering the RPG functions CENTER and RIGHTADJ as external UDFs

Create Function ITS04710/CenterText
(ParText CHAR(20))
Returns CHAR(20)
Language RPGLE
Not Deterministic
No SQL
Called on NULL Input
DisAllow Parallel
External Name 'ITS04710/CENTER(CENTER)'
Parameter Style SQL ;

Create Function ITS04710/RightAdjust

156 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

(ParText CHAR(20))

Returns CHAR(20)

Language RPGLE

Not Deterministic

No SQL

Called On NULL Input

DisAllow Parallel

External Name 'ITS04710/CENTER(RIGHTADJ)'
Parameter Style SQL ;

Example 8-29 shows how the external functions can be used with SQL.

Example 8-29 Using user defined functions CenterText and RightAdjust in SQL

Update MySchema/MyTable
SET MyChar CenterText (MyChar)
MyCharl = RightAdjust(MyCharl);

Registering an external user defined function using iSeries Navigator
In the following steps we show you how to register these user defined functions using the
iSeries Navigator.

Figure 8-11 shows the General tab for creating an external user defined function.

Mew External Function in ITS04710 - Rchasm27(5104rt9m)

General Farameters | Extemal Program

Function: |EenterT ext

Description: |Eentet Text - Call RPG function CERTER

D ata returned to invoking statemnent

(" Single value " Table
Type: |CHARACTER El
Length: ’T A |
CCSID: [A U

~ Can run in paralls!
Frogram does not call outside of itzelf (Mo Esteral Action)
Same result returned from successive callz with identical input [Deterministic]

[Attemnpt ba run in same thread as invaking statement (Mot Fenced)

[ata access: |§N0 SCL _.ﬂ

Specific name: |

Ok | Cancel | Help |

Figure 8-11 General tab for user defined functions

Figure 8-12 on page 158 shows the Parameters tab for creating a user defined function.

Chapter 8. Externalizing data access

157

158

New External Function in ITS04710 - Rchasm27(5104rt9m) 12 €3

Genegral Farameters |EHtemaI F'rograrnl

Farameter M arne I Type I Length I CCSID l Locatar I Dezcription
ParText CHARACTER 20
Delete |

[i] 1l >
Parameter style:

& 50l

 DB250L

© Java
™ Returm null on null input
I~ Fass afinal call indizator
[~ | Databiase information parameter expecte
[Pass a memony scratchpad parameter

Allocate I

Ok J Cancel Help

Figure 8-12 Parameter Definition in creating a User defined Functions

Figure 8-8 on page 143 shows the Program tab for external user defined functions.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Mew External Function in ITSO4710 - Rehasm27(5104rt9m)

General] Parameters Extemnal Program]

" Program: |EenmﬂEENTEH]
Schema: |ITso4710 =l
Language: |§F|F'GLE _ﬂ
" Java method:
Tupe returned by program: | _v_J
Length:
Scale:
=

Ok | Cancel Help

Figure 8-13 Program tab in creating a user defined function

8.3.2 SQL user defined scalar functions

SQL UDFs are functions written entirely using procedural SQL language. Their “code” is

actually SQL statements embedded within the CREATE FUNCTION statement. SQL UDFs

provide several advantages:
» They are written in SQL, making them portable to other database platforms.

» Defining the interface between the database and the function is by use of SQL declares,

with no need to worry about details of actual parameter passing.

» They allow the passing of large objects, datalinks, and UDTs as parameters, and
subsequent manipulation of them in the function itself.

Example 8-30 shows an SQL user defined function that converts a date into a text, in the

format Friday, 10th September 2004.

Example 8-30 SQL User defined scalar function to convert a date into a text string

Create Function ITS04710/CvtDateToText (MyDate DATE)
Returns Char(50)
Language SQL
Specific ITS04710/CvtDateToText
Deterministic
Contains SQL
Returns NULL on NULL Input
DisATlow PARALLEL

Set Option DbgView = *Source,

Chapter 8. Externalizing data access

159

DatFmt = *ISO

Begin
Return DayName(MyDate) concat ', ' concat
Trim(Char(DayOfMonth(MyDate))) concat
Case When DayOfMonth(MyDate) IN (1 , 21 , 31)
Then 'st'
When DayOfMonth(MyDate) IN (2 , 22)
Then 'nd'
When DayOfMonth(MyDate) = 3
Then 'rd'
else 'th'
end concat ' ' concat
MonthName (MyDate) concat ' ' concat
Char(Year(MyDate)) ;
End

8.3.3 User defined table functions

User defined table functions are UDFs that are capable of returning a set of output values.
This set of output values is known as a table or result set. User defined table functions return
a table instead of a scalar value. Examples of this type of function are:

» A function that returns the names of sales representatives in a specified region

» A function that returns all employees whose annual compensation is above the average
of the organizational unit to which they belong

» A function returning the k most profitable customers is a table UDF

Note: One very useful and important use of a table function is the ability to access data in
non-relational objects with an SQL. A table function can be written to extract data out of a
stream file in IFS, and then the invoking SQL statement is able to process that data just like
data from an SQL-created table.

For an example of an user defined table function refer to 6.8.1, “User defined table functions
for accessing non-relational data” on page 72.

8.3.4 User defined function signature and overloading

Like stored procedures, user defined functions can be overloaded, but the signatures are
determined in a different way. The signature of a user defined function depends on the
procedure name, the number, the sequence, and the data type of the parameters. The length
of the parameters is not considered in the signature.

The data type of the value returned by the function is not considered to be part of the function
signature.

The following user defined functions can coexist in the same schema:

» MyProcedure(Int)
» MyProcedure(Smallint)

160 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Note: Certain data types are considered equivalent when it comes to function signatures.

For example, DECIMAL and NUMERIC or CHAR and GRAPHIC are treated as the same
type from the signature point of view. On the other hand, CHAR and VARCHAR are
handled as different data types. If you specify an alphanumeric constant, it is treated as
VARCHAR.

Distinct types are always treated as different data types, even though they are based on
the same data type and length as the defined parameter.

Example 8-31 shows the definition of the data type DateNumISO, which represents a numeric
date defined as Decimal(8, 0).

Example 8-31 Distinct type DateNumISO

Create Type ITS04710/DateNumIso
AS Decimal(8, 0) ;

Example 8-32 shows the definition of the original user defined function CviNumToDate that
converts a numeric date into a date value.

Example 8-32 UDF CvitNumToDate - Converting numeric date to date definition

Create Function ITS04710/CvtNumToDate
(DateNum Decimal(8, 0))
Returns DATE
Language SQL
Deterministic
Contains SQL
Returns NULL on NULL Input
No External Action
Set Option DbgView = *Source,

DatFmt *1S0

BEGIN

Declare CvtDate DATE ;

Declare InvalidDate Condition For '22007' ;

Declare Continue HANDLER for InvalidDate

set CvtDate = '0001-01-01";

Set CvtDate = Date(Substring(Digits(DateNum), 1, 4) Concat '-' Concat
Substring (Digits(DateNum), 5, 2) Concat '-' Concat
Substring(Digits(DateNum), 7, 2)) ;

Return CvtDate;

END;

For numeric fields defined with the data type DateNumISO, you cannot use this function
CvtNumToDate. You either have to convert the data type or overload the original function.
This can be accomplished by creating a sourced user defined function that converts the data
type into decimal and calls the original user defined function.

Example 8-33 shows the sourced user defined function that allows you to use the
CvtNumToDate function for the data type DatNumISO.

Example 8-33 Sourced function to convert numeric dates from DatNumISQO to date

Create Function ITS04710/CvtNumToDate
(DateNum DateNumIso)
Returns DATE

Chapter 8. Externalizing data access 161

Source Specific ITS04710/CvtNumToDate;

If you list the functions in the iSeries Navigator, you will see both functions with the same
function name, but different signatures—one SQL defined and the other sourced. Figure 8-14
shows the user defined functions listed in the schema ITSO4710.

(2 {Series Mavigator g@

File Edit Yiew Help

o ’ S minutes ald
| Environment: My Connections | Rchasm27: Functions — Database: S104rt9m Schema; [TSO4710
+ G Management Central {Rchasmz7) | | 5L Name Specific Mame | Type
= #y Connections | |E& cENTERTEXT { CHAR()) CENTERTERT External
= | Rehasmzz R CENTERTEXT (VARCHARD)) CENTEOOODL Sourced
+ 15 Basic Cperations B cWTDATETOTEXT { DATE) CYTDATETOTERT 0L
: 3 E‘“;;;;:‘:;;E:“;i;tswce EE C/TDATETOTEXT { DECIMAL)) CYTDAOD0L 0L
- gf\letwork BB cwTNUMTODATE { DECIMALG) CYTHUMTODATE 0L
i g R CwTNUMTODATE { ITS04710,DATENUMISO) CYTNLIOODO1 Sourced
1@ Users snd Grougs BB RIGHTADIUST { CHARD)) RIGHTADIUST External
= 8 Datbases B RIGHTADIUST { YARCHAR()) RIGHTOOOOL Sourced
=gy S104rt9m
=[5 schemas
+ [BIRGITTA
|- [17504710
(5] Al Objects
& Aliases bl
< P >

il Add a connection Select schemas to display

""" Create a new summary SCL performance
(@) Install additional components Fuum an SCL scripk ﬁ Create a new detailed SOL perfarmance me
IMap your database b ? Help for related basks

1- 8 of § objects

Figure 8-14 User defined functions

8.3.5 Deleting or replacing a user defined function
SQL does not provide a REPLACE or CHANGE FUNCTION statement.

If you try to create a user defined function with the same signature as an existing procedure
(identical name, identical number of parameters with the same data types), the UDF will not
be created. An error occurs:

SQL State: 42723
Vendor Code: -454
Message: [SQL0454] Routine CALLUPDEMPLOYEE in ITS04710 already exists.

If you create a UDF with the same name as an existing function, but with a different number
of parameters or the same number of parameters but with different data types, the user
defined function is overloaded, which means a user defined function with a different signature
is created.

If you want to replace a user defined function, you first have to delete the old one by using the
SQL statement DROP FUNCTION. As long as the FUNCTION is not overloaded, you simply
specify DROP FUNCTION and add the FunctionName.

162 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

There are two methods to delete overloaded user defined functions:

» Adding the data types and the length of the parameters of the procedure after the
FunctionName in the DROP FUNCTION statement

» Using the specific name or signature as follows:
DROP SPECIFIC FUNCTION SpecificName

Example 8-34 shows how user defined functions can be deleted.

Example 8-34 Deleting user defined functions

-- Deleting a UDF that is not overloaded
DROP FUNCTION CvtDateToText;

-- Deleting an overloaded procedure
DROP FUNCTION CvtDateToText(Date);

DROP SPECIFIC FUNCTION CVTDA00002;

8.3.6 Getting information about user defined functions

Information about external and SQL user defined functions are saved in the following system

tables:

SYSFUNCS Provides all information about user defined functions. The program
body for SQL user defined functions is saved in the
ROUTINE_DEFINITON column.

SYSPARMS Delivers the description of the parameters, including the order,
parameter mode, data type, and length definition.

SYSROUTINES The SYSROUTINES table contains one row for each procedure

created by the CREATE PROCEDURE statement and each function
created by the CREATE FUNCTION statement.

For more information on user defined functions refer to the redbook Stored Procedures,
Triggers and User Defined Functions in DB2 UDB for iSeries, SG24-6503.

8.4 SQL programming language

Triggers, stored procedures, and user defined functions can be written by only using SQL as
a programming language, called SQL/PSM (Persistent stored modules).

Using SQL/PSM, you can use all SQL statements and scalar functions. It is possible to insert,
update, or delete multiple rows in different tables. You can use the SELECT INTO statement
to retrieve one single row or value. Furthermore, you can define and handle serial and scroll
cursors, like in embedded SQL. Variables can be defined, but in contrast to the host variables
used in embedded SQL, they must not be proceeded by a colon (:). It is even possible to
create and use SQL statements dynamically.

In embedded SQL we learned how to get access to the database data, how to modify them,
and how to use the SQL SET statement. But to control the logic program flow we used RPG
statements like the operation codes IF or DOU. If we want to move from embedded SQL to
SQL/PSM we need those control statements in SQL.

For the use in SQL triggers, SQL stored procedures, and SQL user defined functions, SQL
provides a set of control statements that allow SQL to be used in a manner similar to writing a

Chapter 8. Externalizing data access 163

program in a structured programming language. SQL control statements provide the
capability to control the logic flow, declare and set variables, and handle warnings and
exceptions. Some SQL control statements include other nested SQL statements.

8.4.1 Compound statement

As soon as more than one SQL statement must be executed in a SQL trigger, SQL stored
procedure, or SQL User defined Function, they must be embedded in a compound statement.

A compound statement begins with BEGIN and ends with END. The END clause must be
ended with a semi colon (;).

Every SQL statement embedded in the compound statement must be ended by a semi colon

()
When the compound statement is used, there is an order that must be followed:

1. Local variable declarations

2. Local cursor declarations

3. Local handler declarations

4. SQL procedure logic, all other SQL statements

If you want to compare it with RPG, the Definition specifications must be located before the
Calculation specifications.

Compound statements can be nested. Nested compound statements can be used to scope
handlers, cursors, and variables to a subset of the statements in a procedure. This can
simplify the processing done for each SQL procedure statement.

Nested compound statements can be compared with internal procedures in ILE programs. If
the same procedure is needed several times, you will transform it in your ILE program into a
exported procedure. Before copying the same nested compound statement into several
procedures, it would be better to create a stored procedure or a user defined function
containing these statements, and call it.

8.4.2 Control statements

164

In the following section we want to give you a short overview over the SQL control statements
and compare them with the RPG equivalent.

For more information on the SQL control statements refer to the SQL Reference book.

Conditional control

Both RPG and SQL provide two methods for condition handling. In he first one, IF handles a
single and even sometimes nested condition, while the SQL CASE statement or the RPG
operation code SELECT can handle multiple conditions.

Table 8-2 on page 165 shows the SQL conditional control statements and the RPG
equivalent.

Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Table 8-2 SQL conditional control statements

SQL Syntax SQL Example RPG
Syntax
IF Condition IF Month(MyDate) between 1 and 3 IF
THEN SQL-Statement; THEN Set Quartal = 1;
additional SQL-Statements;
ELSEIF Month(MyDate) between 4 and 6
ELSEIF Condition THEN Set Quartal = 2;
THEN SQL-Statement; ELSEIF
additional SQL-Statements; ELSEIF Month(MyDate) between 7 and 9
THEN Set Quartal = 3;
ELSE SQL-Statement, ELSE Set Quartal = 4; ELSE
additional SQL-Statements;
END IF; END IF; ENDIF
CASE CASE SELECT
WHEN Month(MyDate) between 1 and 3
THEN Set Quartal = 1;
WHEN Condition WHEN Month(MyDate) between 4 and 6 WHEN
THEN SQL-Statement; THEN Set Quartal = 2;
additional SQL-Statements; |WHEN Month(MyDate) between 7 and 9
THEN Set Quartal = 3;
ELSE SQL-Statement; .
additional SQL-Statements; ELSE Set Quartal = 4; BLHER
END CASE; END CASE; ENDSL

Iterative control

Both SQL and RPG provide a number of methods for iterative control, but SQL statements
and RPG operation codes differ slightly.

SQL provides four methods for iterative control:
» LOOP /END LOOP

The SQL statement LOOP allows you to execute a series of instructions repeatedly.
The SQL LOOP statement can be compared with the DO operation code in RPG.
WHILE / END WHILE

All statements embedded between WHILE and END WHILE are executed as long the
specified condition is true. It is important to note that the exit condition is checked in the
WHILE condition each time an iteration is going to start. The exit condition must be set in
some place of the iteration.

The SQL WHILE statement can be compared with the DOW (Do While) operation code in
RPG. It even can be used like the RPG FOR operation code, but the iteration must be
done in a separate statement within the WHILE statement.

REPEAT / END REPEAT

All statements embedded between REPEAT and END REPEAT are executed until the
specified condition is true. It is important to note that the exit condition is checked at the
end of the iteration, while using the WHILE statement the exit condition is checked at the
beginning of each iteration.

The SQL REPEAT statement can be compared with the DOU (Do Until) operation code in
RPG. In contrast to RPG, where the condition is specified at the beginning of the iteration
(within the DOU operation code), in the SQL REPEAT statement the UNTIL condition is
defined at the end.

» FOR/END FOR

Chapter 8. Externalizing data access 165

The SQL FOR-Statement combines the DECLARE, OPEN, iterative FETCH, and CLOSE
statements for a SERIAL cursor, in one single statement.

There is no equivalent in the RPG programming language.

Note: The SQL FOR statement and the RPG operation code FOR cannot be
compared.

Table 8-3 shows the SQL iterative control statements and compares them with RPG.

Table 8-3 SQL iterative control statements

SQL Syntax SQL Example RPG Syntax
(Label:) NextLoop:
LOOP SQL-Statement; LOOP FETCH Cursor into OutPut;
additional SQL-Statements; IF (E::\\I;:t = 3 DO/ ENDDO
’ FOR / ENDFOR
END IF;
SET Counter = Counter + 1;
END LOOP (Label); END LOOP NextlLoop;
(Label:)
WHILE Condition WHILE Counter < 10
DO SQL-Statement DO FETCH Csrl into OutPut; DOW / ENDDO
additional SQL-Statements; SET Counter = Counter + 1;
END WHILE (Label); END WHILE;
(Label:)
REPEAT SQL-Statement; REPEAT FETCH Csrl into OutPut;
additional SQL-Statements; SET Counter = Counter + 1; DOU / ENDDO
UNTIL Condition UNTIL SqiState = '02000';
END REPEAT (Label); END REPEAT;
(Label:)
FOR Variable as CURSOR FOR v1 AS cl CURSOR
FOR SELECT-Statement FOR SELECT firstnme, midinit, lastname
FROM empTloyee
DO SQL-Statement; DO SET fullname = lastname o
additional SQL-Statements; concat ', ' concat Combination of
. ’ SETLL, DO and
firstnme READ
concat ' ' concat
midinit;
INSERT INTO TNAMES
VALUE (fullname);
END FOR (Label); END FOR;

In some situations it is important to leave a loop or to skip to the next iteration. SQL provides
three control statements to achieve this functionality.

» LEAVE

LEAVE allows you to leave the iteration. It is an equivalent to the RPG operation code
LEAVE.

» ITERATE

ITERATE allows you to skip to the next iteration. It is an equivalent to the RPG operation
code ITER.

» GOTO

GOTO can be used to branch to a label. It is an equivalent to the RPG operation codes
GOTO or CABxx.

166 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Note: Use the GOTO statement sparingly. This statement interferes with the normal
sequence of processing, thus making a routine more difficult to read and maintain.
Often, another statement, such as ITERATE or LEAVE, can eliminate the need for a

GOTO statement.

Table 8-4 shows the SQL statements that allow you to skip to the next iteration or to leave it.

Table 8-4 Additional SQL iterative statements

SQL Syntax SQL Example RPG Syntax
LEAVE IF EndCond = 1 THEN LEAVE; LEAVE
ITERATE ELSEIF NextCond = 1 THEN ITERATE; ITER

END IF;
GOTO Label IF Cond = Ende THEN GOTO Exit; GOTO / CAB

Other SQL control statements
There are some other statements:

» Assignment statement SET

Allows you to change the value of a variable. The assignment statement SET can be
compared with the RPG operation code EVAL.

» CALL

Allows you to call a registered stored procedure or a program. The SQL statement CALL
can be compared with the RPG operation codes CALL or CALLP for programs.

» RETURN

RETURN is used in user defined functions (UDF) and user defined table functions (UDTF)
to return the return values.

Return can be compared with the RPG operation code RETURN where factor 2 is used to

return values.

Table 8-5 shows the syntax and examples for these statements.

Table 8-5 Additional control statements

SaL

SQL Example

RPG

SET Variable = Expression;

SET MyVar = Quantity * Price;

EVAL

(can be omitted in free

format RPG)
CALL + Parm
CALL Procedure CALL MyProc (Parml, Parm?); CALLP for programs
(Parm1, Parm2, ... ParmN); (can be omitted in free
format RPG)
RETURN expression RETURN Quantity * Price; RETURN

8.4.3 Error handling in SQL

If an error occurs and the error is not handled within the SQL trigger, stored procedure, or
user defined function, an escape message is sent to the caller. This is the common handling

on the iSeries.

Chapter 8. Externalizing data access 167

In RPG we have some methods to detect and handle errors:

» Adding the (E)-Extender to particular operation codes
» Using a monitor group

» Defining a *PSSR

» Registering ILE Condition handlers

To handle errors in embedded SQL we inquiry for the content of the SQLCODE or
SQLSTATE that was returned after executing an SQL statement. In procedural SQL there is
an additional method to handle errors, which is the use of Condition handlers.

Condition handler
A handler declaration associates a handler with an exception or completion condition in a

compound statement.
In the text below you will see the DECLARE HANDLER statement:

DECLARE Handler Type
FOR condition
SQL-Statements

A Condition handler is always fired when a condition occurs that matches the condition
specified in the handler definition.

Three different handler types can be defined:

CONTINUE If the handler is invoked successfully, the control is returned to the
SQL statement following the one that raised the exception.

EXIT If the handler is invoked successfully, the control is returned to the
caller.

UNDO If the handler is invoked successfully, a ROLLBACK is executed and

the control is returned to the caller.

There are different conditions that can be specified

NOT FOUND Identifies any condition that results in an SQLCODE of +100 or an
SQLSTATE beginning with the characters '02'.

SQLEXCEPTION Identifies any condition that results in a negative SQLCODE.

SQLWARNING Identifies any condition that results in a positive SQL return code other
than +100. The corresponding SQLSTATE value will begin with the
characters '01".

Variable It is even possible to declare a variable for a specific SQLSTATE that
can be used as condition.
SQLSTATE It is even possible to use the value of the SQL state directly in the

DECLARE HANDLER statement.
The following example shows the definition of several Condition handlers.

Example 8-35 Declare Condition handler

DECLARE not_found CONDITION FOR '02000';
DECLARE CONTINUE HANDLER
FOR not_found
SET at_end = 1;

DECLARE UNDO HANDLER
FOR SQLEXCEPTION

168 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

SET ErrMsg = 'Error Rollback';

DECLARE EXIT HANDLER
FOR SqlState value '02000';

SIGNAL and RESIGNAL statement

Until now we handled system errors, but sometimes we want to create our own exception or
escape conditions to end a program or cause a rollback. In RPG we can return a parameter
that signals the error or sends an escape message by using the APl QVIHSNDPM.

The SQL/PSM database language supports two programming constructs that can be used to
handle the user-defined errors:

» SIGNAL

The SIGNAL statement signals an error or warning condition explicitly. If a handler is
defined to handle the exception, it is called immediately by the SIGNAL statement;
otherwise the control is returned to the caller.

» RESIGNAL

The RESIGNAL statement can only be coded as part of the SQL/PSM Condition handler
and is used to re-signal an error or warning condition. It returns SQLSTATE and SQL
Message text to the invoker.

For a more complete description of error handling in stored procedures, triggers, and user
defined functions, refer to the redbook Stored Procedures, Triggers and User Defined
Functions in DB2 UDB for iSeries, SG24-6305.

Chapter 8. Externalizing data access 169

170 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

Other considerations

In this chapter we focus on additional considerations that we have to take into account when
we start programming with SQL. Additionally, we compare RPG coding with SQL coding in
areas such as:

Differences in the RPG and SQL data types
Handling of null values

Handling of data and time calculations
Handling of different data types

v

vYvyy

© Copyright IBM Corp. 2005. All rights reserved. 171

9.1 Comparing RPG and SQL data types

To move from native record level access in RPG to static or dynamic SQL it is important to
understand the differences in definition between RPG and SQL data types. There are even
data types that are supported within RPG where there is no equivalent in SQL and vice versa,
so alternate data types must be used.

In this section we address the differences and some workarounds to solve this issue.
Table 9-1compares the different RPG, DDS, and SQL data types.

Table 9-1 Comparing RPG, DDS, and SQL data types

RPG DDS SQL
Description Deta Deta
Keyword Key word Data T CCsID
Type ywe Type [Y N
Character fixed length] A - A - *iead
CHARACTER
Charact _ VARCHAR
araler?;t‘fry'”g A varying A | VARLEN [CHARVARYING
CHARACTER VARYING
Indicator N - - - -
UCS-2 fixed length o] - G - oFhuc 13488 = UCS - 2
ucs-2 1200 =UTF-16
. C varying G VARLEN |VARGRAPHIC
varying length
J
Graphic E
fixed length G - o N GRAPHIC
G 65535 oder CCSID
mit DBCS Encoding
J
VARGRAPHIC Scheme
i E
Graphic G varying VARLEN
varying Length o
GRAPHIC VARYING
G
Binary fixed length - |SQLTYPE(BINARY: Length) - - BINARY 65535
VARBINARY
Binary varying length - |SQLTYPE(BINARY: Length) - - 65535
BINARY VARYING
SQLTYPE(CLOB: Length) CcLOB
Character Large _ |SQLTYPE(CLOB_LOCATOR) i B CHAR LARGE OBJECT
Object
CHARACTER LARGE
SQLTYPE(CLOB_FILE) OBJECT
SQLTYPE(DBCLOB: Length)
Double Byte Large CCSID with DBCS
Object SQLTYPE(DBCLOB_LOCATOR) DBCLOB Encoding Scheme
SQLTYPE(DBCLOB_FILE)

172 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

9.1.1 Character data types

Character data or strings may contain one or more single-byte or double-byte characters,
depending on the format specified.

» Single-byte character set (SBCS) data

Data in which every character is represented by a single byte. Each SBCS data character
string has an associated Coded Character Set Identifier (CCSID). If necessary, an SBCS
string is converted before it is used in an operation with a character string that has a
different CCSID.

» Double-byte character set (DBCS) data

Data in which every character is represented by a character from the double-byte
character set (DBCS) that does not include the shift-out or shift-in characters. Every
DBCS graphic string has a CCSID that identifies a double-byte coded character set. If
necessary, a DBCS graphic string is converted before it is used in an operation with a
DBCS graphic string that has a different DBCS CCSID.

Character data types within RPG
The character data type represents character values and may have any of the following

formats:

A Character data type

N Indicator

G Graphic data type

C Universal Character Set 2 (USC-2) Data type

Table 9-2 summarizes the different character data-type formats.

Table 9-2 Overview RPG character data types

Data Number of Bytes / :
Data T Maximum Length ID
ata Type Definition Characters 9 ces
Character A one or more single-byte 65,535 Byte
characters
Indicator N one single byte character 1/Byte
) 32,766 Byte 65535
Graphic G gﬂzr‘;:;gfsre double-byte CCSID or DBCS
16,383 Character | Encoding Scheme
one or more double-byte 82,766 Byte 13488 =UCS - 2
e C characters 1200 =UTF-16
16,383 Character B

Character data type
The data type character is used for single-byte character representation.

You define a character field by specifying A in the Data-Type entry of the appropriate
specification. You can also define one using the LIKE keyword on the Definition specification
where the parameter is a character field.

The default initialization value is blanks.

The length of a character field must defined between 1 and 65535 bytes.

Chapter 9. Other considerations 173

Indicator

The indicator format is a special type of character data. Indicators are all one byte long and
can only contain the character values ’0’ (off) and ’1’ (on).

You define an indicator field by specifying N in the Data-Type entry of the appropriate
specification. You can also define an indicator field using the LIKE keyword on the Definition
specification where the parameter is an indicator field.

The default value of indicators is ’0’.

Note: There is no equivalent in SQL. When indicators must be saved in database files, the
appropriate column must be defined as CHARACTER with a length of one byte.

Graphic data type

The graphic format is a character string where each character is represented by 2 bytes.
Fields defined as graphic data do not contain shift-out (SO) or shift-in (SI) characters.

The length of a graphic field, in bytes, is two times the number of graphic characters in the
field. The fixed-length graphic format is a character string with a set length where each
character is represented by 2 bytes.

You define a graphic field by specifying G in the Data-Type entry of the appropriate
specification. You can also define one using the LIKE keyword on the Definition specification
where the parameter is a graphic field.

The default initialization value for graphic data is X'4040'. The value of *HIVAL is X'FFFF',
and the value of *LOVAL is X'0000'".

Universal Character Set 2 (USC-2) Data type
The UCS-2 format is a character string where each character is represented by 2 bytes.

This character set can encode the characters for many written languages. Fields defined as
UCS-2 data do not contain shift-out (SO) or shift-in (SI) characters.

The length of a UCS-2 field, in bytes, is two times the number of UCS-2 characters in the
field. The fixed-length UCS-2 format is a character string with a set length where each
character is represented by 2 bytes.

You define a UCS-2 field by specifying C in the data type entry of the appropriate
specification. You can also define one using the LIKE keyword on the Definition specification
where the parameter is a UCS-2 field.

The default initialization value for UCS-2 data is X'0020'. The value of *HIVAL is X'FFFF',
*LOVAL is X'0000', and the value of *BLANKS is X'0020'.

Note: SQL and DDS do not have different data types for graphic and unicode. Double byte
characters are always defined with GRAPHIC data type. It depends on the CCSID if
Unicode or any other DBCS is used.

Character data types within SQL
Character strings defined with SQL can have one of the following formats:

» Single byte character strings with fixed and varying length
» Graphic strings with fixed and varying length

174 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

» Binary strings with fixed and varying length
» Large objects (LOB)

— Character large objects (CLOBS)
— Double byte character large objects (DBCLOBS)
— Binary large objects (BLOBSs)

Table 9-3 Overview over SQL character data types

Table 9-3 summarizes the different SQL character data-type formats.

Number of Bytes /

length

Description Data Definition Maximum Length CCSID
Characters
) CHAR one or more single-byte
CharIZ(r:]tetrhflxed characters with fixed 32,766 Byte
¢ CHARACTER length
Sharacter varvin VARCHAR one or more single-byte
i length ying CHAR VARYING characters with varying 32,740 Byte
CHARACTER VARYING length
one or more double-byte 32,766 Byte 65535 or
Graphic GRAPHIC characters with fixed CCSID with DBCS
length 16,383 Character | Encoding Scheme
le- 32,766 Byte
Unicode GRAPHIC Characters i fxed - 13488 = UCS -2
1200 =UTF-16
length 16,383 Character
VARCHAR ingle-byt CCSIGIZfSSShODrBCS
. . one or more single-byte 32,740 Byte wit
Graph . ¢ ’
raple'rfg‘ﬁry'”g GRAPHIC VARYING characters with varying Encoding Scheme

Character large

CHAR LARGE OBJECT

single byte characters

VARGRAPHIC 16,370 Character
VARCHAR ;
. . one or more single-byte 32 740 Byt
Unicode varying . ;) yte 13488 = UCS - 2
length GRAPHIC VARYING |char){e;}cters with varying 1200 = UTF-16
VARGRAPHIC eng 16,370 Character
Binary BINARY one or more bytes 32,766 Byte 65535
i i VARBINARY i
Binary varying one gr more bytes with 32,740 Byte 65535
length BINARY VARYING varying length
CLOB

2,147,483,647 Byte

object
CHARACTER LARGE OBJECT 2 Giga byte
2,147,483,647 Byte
Double byte large - CCSID with DBCS
object DBCLOB double byte characters 2 Giga byte Encoding Scheme
1,073,741,823 Character
2,147,483,647 Byte
inary large object BLOB bytes 65535
2 Giga byte

Single byte character strings

A character string is a sequence of bytes where one character is represented by a single
byte. Character strings are defined through data type CHAR or CHARACTER and the length

Chapter 9. Other considerations

175

in bytes the string can have. This data type represents the equivalent to the character data
type A in RPG.

The maximum length a single byte character string with fixed length can have is 32766 bytes.

Note: A RPG character field can be defined up to 65 535 bytes. If you have to store
character fields that can contain more than 32766 bytes, you have to define a CLOB in
SQL.

Graphic strings
In contrast to RPG, SQL does not use different data types for unicode and other DBCS. If
unicode is used, the CCSID 13488 for UCS-2 or 1200 for UTF-16 must be associated.

Graphic strings are defined through data type GRAPHIC, the number of characters the string
can have, and the CCSID.

The length attribute for graphic strings with fixed length must be between 1 and 16383
inclusive, which corresponds to 32767 bytes. Contrary to the character strings, the maximum
length for graphical strings is identical for RPG and SQL.

Note: RPG has two different data types for double-byte characters. The UCS-2 Unicode
data type (C) matches with CCSID 13488 and 1200, while all other double-byte characters
must be defined with the graphic data type (G).

Binary strings
A binary string is a sequence of bytes. The length of a binary string is the number of bytes in
the sequence. A binary string has a CCSID of 65535.

The length attribute must be between 1 and 32766 inclusive.

Note: In RPG no data type directly matches binary strings. However, in ILE RPG, a
BINARY fixed-length binary-string variable can be declared using the SQLTYPE keyword.

The following example shows how to define a field with BINRARY data type within RPG:
D MySql1Binary S Sq1Type(BINARY: 1000)

9.1.2 Character fields with fixed and varying length

Character fields can be defined with fixed or varying length.
All values of a fixed-length character-string column have the same length.

The storage allocated for variable-length character fields is 2 bytes longer than the declared
maximum length. The left-most 2 bytes are an unsigned integer field containing the current
length in characters, graphic characters, or UCS-2 characters. The actual character data
starts at the third byte of the variable-length field.

Why you should use variable-length fields

Using variable-length fields can improve the performance of string operations, as well as
make your code easier to read since you do not have to save the current length of the field in
another variable for SUBSTRING-, or use TRIM functions to ignore the extra blanks. When
using TRIM Functions the character field is scanned backwards beginning from the last byte.

176 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

This is a disadvantage if the full field length is only occasionally used. Compared to varying
fields, the current data can be directly accessed through the length saved in the first two
bytes.

Character fields with varying length in RPG

In RPG varying character fields are defined, adding the keyword VARYING to the field
definition in the D-Specifications. The associated length is the maximum length the field can
have. The length is measured in single bytes for the character format and in double bytes for
the graphic and UCS-2 formats, and must be between 1 and 65535 bytes for single-byte
characters and between 1 and 16383 characters for double-byte characters.

Example 9-1 shows how to define character fields with varying length within RPG.

Example 9-1 Character fields with varying length within RPG

D MyVarField S 65535A varying
D MyVarGraph S 16383G varying
D MyVaruCS2 S 16383C varying

Note: When using the VARYING keyword, the length definition is always required, which
means varying fields cannot be referenced through the keyword LIKE.

Character fields with varying length in SQL
SQL used different data types for fixed and varying length fields.

Varying single byte character strings

Varying single byte character strings in SQL must be defined with either VARCHAR, CHAR
VARYING, or CHARACTER VARYING.

For a VARCHAR column, the length attribute must be between 1 and 32740 inclusive, that is,
less than the maximum length fixed character fields can have.

Note: While in RPG, varying character fields can be defined with the same maximum
length as fixed character fields. The maximum length for SQL-defined varying fields is
always shorter as the maximum length of their fix counterparts.

Varying graphic strings
A graphic string is a sequence of two-byte characters.

Varying graphic strings in SQL must be defined with either VARGRAPHIC or GRAPHIC
VARYING.

The length attribute must be between 1 and 16370 inclusive, which is the maximum number
of characters the column can hold. The maximum length a graphic field with varying length
can have differs from the maximum length a graphic field with fixed length can have.

Varying binary string
A binary string is a sequence of bytes. The length of a binary string is the number of bytes in
the sequence. A binary string has a CCSID of 65535.

Varying binary strings in SQL must be defined with either VARBINARY or BINARY
VARYING.

Chapter 9. Other considerations 177

For a VARBINARY column, the length attribute must be between 1 and 32740 inclusive,
which is less than the maximum length fixed binary fields can have.

9.1.3 Numeric data types

The numeric data type represents numeric values. We can differentiate between three main
types with some subtypes:

» Decimal with a fixed number of decimal positions

— Zoned numeric data type
— Packed numeric data type

» Binary with no decimal positions

— Binary data type in RPG
— Integer data type in RPG
— Unsigned data type in RPG

» Float with a varying number of decimal positions

— Float
— Double

Packed, zoned, and binary formats should be specified for fields when:

» Using values that have implied decimal positions, such as currency values
» Manipulating values having more than 19 digits
» Ensuring a specific number of digits for a field is important

Binary or integer format should be used for fields:
» When no decimal positions are needed

» When interacting with other programming languages like C or JAVA that do not have
native packed or decimal data types but integer data types and no decimal positions are
necessary.

Float format should be specified for fields when:

» The same variable is needed to hold very small and/or very large values that cannot be
represented in packed or zoned values. However, float format should not be used when
more than 16 digits of precision are needed.

» When interacting with other programming languages like C or JAVA that do not have
native packed or decimal data types but floating point data types and decimal positions
are required.

Zoned numeric data type

Zoned-decimal format means that each byte of storage can contain one digit or one
character. In the zoned-decimal format, each byte of storage is divided into two portions: A
4-bit zone portion and a 4-bit digit portion.

The zone portion of the low-order byte indicates the sign (positive or negative) of the decimal
number. The standard signs are used: Hexadecimal F for positive numbers and hexadecimal
D for negative numbers. In zoned-decimal format, each digit in a decimal number includes a
zone portion; however, only the low-order zone portion serves as the sign.

A decimal value is a packed or zoned decimal number with an implicit decimal point. The
position of the decimal point is determined by the precision (total number of the digits) and the
scale (number of digits to the right of the decimal point) of the number. The scale cannot be

178 Modernizing IBM @server iSeries Application Data Acess - A Roadmap Cornerstone

negative or greater than the precision. The maximum length a zoned data type can have is 63
digits, which applies to both SQL and RPG.

All values of a decimal column have the same precision and scale.

Note: The total number of digits and decimal positions decimal numbers can have are
identical in both RPG and SQL. A zoned field can have up to 63 digits.

Zoned numeric fields in RPG

To define zoned numeric fields in RPG data type S must be specified and the length and the
number of the decimal positions must be added.

Note: Keep in mind that RPG translates the numeric data types as far as possible to
packed numeric data types. If you really want to work with the zoned data type in RPG and
not with converted packed data types, you may embed your zoned numeric field into either
an internal or external data structure.

Zoned numeric data in SQL

To define zoned numeric data in SQL, the data type NUMERIC must be specified along with
the precision and the scale of the column.

Packed numeric data type

Packed-decimal format means that each byte of storage (except for the low-order byte) can
contain two decimal numbers. The low-order byte contains one digit in the left-most portion
and the sign (positive or negative) in the right-most portion. The standard signs are used:
Hexadecimal F for pos