
ibm.com/redbooks

Eclipse Developmentnt
using the Graphical Editing Framework 
and the Eclipse Modeling Framework

Bill Moore
David Dean

Anna Gerber
Gunnar Wagenknecht

Philippe Vanderheyden

Understanding the GEF and EMF 
frameworks

Developing with GEF and EMF

Code examples

Front cover
 

 

 

 

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


 

 

 

 



Eclipse Development using the Graphical Editing 
Framework and the Eclipse Modeling Framework

February 2004

International Technical Support Organization

SG24-6302-00

 

 

 

 



© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (February 2004)

This edition applies to Version: 2.1.1 of the Eclipse Platform, Version 1.1.0 of the Eclipse 
Modeling Framework (EMF), and Version 2.1.1 of the Graphical Editing Framework (GEF) on 
Microsoft Windows.

Note: Before using this information and the product it supports, read the information in 
“Notices” on page vii.

 

 

 

 



Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Part 1.  EMF and GEF introduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1.  Introduction to EMF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1  What is the Eclipse Modeling Framework? . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1  Positioning of the framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2  Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3  Where to find documents and resources  . . . . . . . . . . . . . . . . . . . . . . 5

1.2  Framework basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1  Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2  Product installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3  Getting help in Eclipse  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3  Building a simple model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1  Different ways of making the model  . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2  The EclipseUML plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3  Initial project setup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.4  Modeling using the EclipseUML plug-in  . . . . . . . . . . . . . . . . . . . . . . 12
1.3.5  Modeling using Java interface annotation. . . . . . . . . . . . . . . . . . . . . 22
1.3.6  EMF features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.7  EMF model creation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.8  Code generation facility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.9  Compiling the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.10  Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 2.  EMF examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1  EMF modeling techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1  Creating new models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2  Migrating existing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2  EMF.Edit-based editors and code generation . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1  The generated plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2  Customizing code generation through GenModel properties . . . . . . 47
2.2.3  Modifying the generated code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. iii



2.3  Model instances and serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.1  Creating model instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.2  Default serialization of model instances . . . . . . . . . . . . . . . . . . . . . . 66
2.3.3  Using the XSD plug-in to customize serialization . . . . . . . . . . . . . . . 70
2.3.4  Customizing XMI serialization using an XMLMap . . . . . . . . . . . . . . . 74
2.3.5  Providing a custom resource implementation . . . . . . . . . . . . . . . . . . 75

2.4  Using JET to customize code generation . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4.1  .JET-related GenModel properties  . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4.2  Writing JET templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 3.  Introduction to GEF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1  What is the Graphical Editing Framework? . . . . . . . . . . . . . . . . . . . . . . . . 88

3.1.1  Additional documents and resources  . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1.2  Applications suitable for GEF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2  Introduction to Draw2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2.1  What is a lightweight system?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.2  Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.2.3  Figures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.4  Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.5  Major features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3  The GEF framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.1  Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.2  EditParts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.3  Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.3.4  EditPolicies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3.5  Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.6  GraphicalViewers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.3.7  RootEditParts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4  Building an editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.1  The editor class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.4.2  EditDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4.3  CommandStack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4.4  Attaching the viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.4.5  Being adaptable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4.6  Introducing the palette. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.4.7  Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.4.8  Adapting to the properties view. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.4.9  Providing an outline view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.4.10  Controlling your editor with the keyboard . . . . . . . . . . . . . . . . . . . 134

3.5  Managing your model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.5.1  Reflecting a model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.5.2  Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.5.3  Creating EditParts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

 

 

 

 

iv Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Chapter 4.  GEF examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.1  Additional concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.1.1  RootEditParts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.1.2  Coordinate systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.1.3  Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2  Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2.1  Drag and drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2.2  Palette: Implementing a sticky tool preference . . . . . . . . . . . . . . . . 144
4.2.3  Printing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.2.4  Zooming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2.5  Decorating connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2.6  Resource management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.2.7  Feedback techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.2.8  Palette-less applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2.9  Using direct edit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.2.10  Accessibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Chapter 5.  Using GEF with EMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2  Using an EMF model within a GEF-based application  . . . . . . . . . . . . . . 167

5.2.1  Mapping from the model to the graphical representation . . . . . . . . 167
5.2.2  Displaying properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.2.3  Support for editing the model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.2.4  Reflecting model changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2.5  Loading and saving model instances  . . . . . . . . . . . . . . . . . . . . . . . 178
5.2.6  Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.3  Using JET in GEF-based editor development . . . . . . . . . . . . . . . . . . . . . 180

Part 2.  Sample application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Chapter 6.  Sample requirements and design . . . . . . . . . . . . . . . . . . . . . . 187
6.1  Sample application requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.1.1  The application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.2  Sample application design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.1  Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2.2  The workflow model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.3  Sample application demo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Chapter 7.  Implementing the sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.2  Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.2.1  Mapping the EMF model to GEF EditParts . . . . . . . . . . . . . . . . . . . 204
7.2.2  Tracking model events in the editor  . . . . . . . . . . . . . . . . . . . . . . . . 207
7.2.3  Refreshing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

 

 

 

 

 Contents v



7.2.4  Factories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2.5  Policies and commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.3  The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.3.1  Modifying the WorkflowModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.3.2  Modifying the code generated from the model . . . . . . . . . . . . . . . . 216
7.3.3  Respecting model constraints in the editor . . . . . . . . . . . . . . . . . . . 216

7.4  Implementing the multi-page editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.4.1  Getting started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.4.2  Sharing an EditDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.4.3  The editor’s dirty state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.4.4  Actions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.4.5  Support for the properties view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.4.6  The outline view  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.4.7  The palette  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Appendix A.  Additional material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Locating the Web material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Using the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

System requirements for downloading the Web material . . . . . . . . . . . . . 226
How to use the Web material  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Abbreviations and acronyms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Online resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Help from IBM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

 

 

 

 

vi Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. 
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service that 
does not infringe any IBM intellectual property right may be used instead. However, it is the user's 
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not give you any license to these patents. You can send license 
inquiries, in writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions 
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES 
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer 
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may 
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at 
any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm 
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on 
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 
This information contains sample application programs in source language, which illustrates programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the 
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, 
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, 
modify, and distribute these sample programs in any form without payment to IBM for the purposes of 
developing, using, marketing, or distributing application programs conforming to IBM's application 
programming interfaces. 

 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. vii



Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

DPI®
^™
IBM®

ibm.com®
Rational Rose®
Rational®

Redbooks™
Redbooks (logo) ™

The following terms are trademarks of other companies:

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, 
other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun 
Microsystems, Inc. in the United States, other countries, or both. 

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

 

 

 

 

viii Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Preface

This redbook is written for developers who use the Eclipse SDK to develop 
plug-in code. It is intended for a technical readership and for developers who 
already have good knowledge and experience in Eclipse plug-in development. 
We expect that you understand the concepts of Eclipse views and editors, and 
have some familiarity with Draw2D.

In this redbook, we examine two frameworks that are developed by the Eclipse 
Tools Project for use with the Eclipse Platform:

� The Graphical Editing Framework (GEF)
� The Eclipse Modeling Framework (EMF)

We provide a high level introduction to these frameworks so that Eclipse plug-in 
developers can consider whether the frameworks will be useful for the 
requirements of their particular development; then we provide helpful tips and 
techniques for writing code that uses GEF and EMF. Finally, we implement a 
more detailed example to illustrate a GEF editor that uses an EMF model.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world 
working at the International Technical Support Organization, Raleigh Center.

William Moore (Bill) is a WebSphere specialist at the International Technical 
Support Organization, Raleigh Center. He writes extensively and teaches IBM® 
classes on WebSphere and related topics. Before joining the ITSO, Bill was a 
Senior AIM Consultant at the IBM Transarc lab in Sydney, Australia. He has 18 
years of application development experience on a wide range of computing 
platforms and using many different coding languages. He holds a Master of Arts 
degree in English from the University of Waikato, in Hamilton, New Zealand. His 
current areas of expertise include application development tools, object-oriented 
programming and design, and e-business application development.

Important: This redbook covers both the Graphical Editing Framework and 
the Eclipse Modeling Framework, but readers should remember that these 
frameworks can be used separately and there is no dependency between the 
two frameworks. We do write about using GEF and EMF together, but please 
remember that this is not required, and many applications you develop will not 
require both GEF and EMF. 

 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. ix



David Dean is a Technical Lead at Chordiant in Cupertino, California. For the 
last two years he has been focused on Eclipse plug-in development and in 
building a GEF-based workflow editor. His twenty years of software development 
experience include medical imaging, process control, telephony, finance, and 
Web applications. David's interests include user interfaces, graphics, and 
software development tools. He holds a BA degree in Biology from the State 
University of New York at Albany, and did post-graduate studies in Historic 
Preservation Planning at Cornell University.

Anna Gerber is currently a Research Scientist at the Distributed Systems 
Technology Centre (DSTC) in Brisbane, Australia. Anna’s research interests 
include Enterprise Modelling; in particular, model-driven development techniques 
and generation of tools such as domain-specific graphical editors from models.

Gunnar Wagenknecht is a software developer at Intershop AG in Jena, 
Germany.He has professional experience in developing Java™ Enterprise 
applications using the J2EE framework, and he developed a visual editor for 
modelling business processes during the last year. He just finished his thesis and 
is going to get a Bachelor's degree in Practical Computer Science from the 
Business Academy Thuringia in Gera, Germany after finishing the residency. His 
areas of expertise include object-oriented software architectures and Web 
application development. He has written extensively on GEF topics.

Philippe Vanderheyden is an IT Architect who has been working with 
object-oriented (OO) technologies for many years. Philippe has been working on 
a variety of projects, ranging from document publishing systems to financial 
application development and monitoring. His areas of interest include OO 
modelling, distributed enterprise systems, and Web-based application design 
and real-time transactional systems. Philippe has a good knowledge of the Java 
programming language, and Java-related technologies (JDBC, servlets, XML, 
JSP, etc.). His recent work has included building enterprise applications using 
the Enterprise Java Beans component model and the J2EE framework in 
WebSphere 5.0 cluster environment. Philippe is comfortable working with a 
diverse range of technologies and platforms. He has extensive experience of the 
UNIX® OS and has also worked for many years with Object Oriented languages 
(Java, Smalltalk, and C++).

 

 

 

 

x Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Authors: Gunnar Wagenknecht, Anna Gerber, Philippe Vanderheyden

Author: David Dean

Thanks to the following people for their contributions to this project:

Randy Hudson
Pat McCarthy
IBM Raleigh

Jim D’Anjou
IBM San Jose

Yvonne Lyon, editor
International Technical Support Organization, San Jose Center

 

 

 

 

 Preface xi



Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook 
dealing with specific products or solutions, while getting hands-on experience 
with leading-edge technologies. You'll team with IBM technical professionals, 
Business Partners and/or customers. 

Your efforts will help increase product acceptance and customer satisfaction. As 
a bonus, you'll develop a network of contacts in IBM development labs, and 
increase your productivity and marketability. 

Find out more about the residency program, browse the residency index, and 
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments 
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8  Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

 

 

 

 

xii Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html


Part 1 EMF and GEF 
introduced

In this part of the book, we describe the basics of the Graphical Editing 
Framework(GEF) and Eclipse Modeling Framework(EMF).

Part 1
 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 1



 

 

 

 

2 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Chapter 1. Introduction to EMF

In this chapter, we introduce the Eclipse Modeling Framework (EMF). We 
mention most of the sources of information that are available on the subject, and 
we build a simple model as a practical demonstration of the use of EMF.

1
 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 3



1.1  What is the Eclipse Modeling Framework?
Application development generally starts with consideration of the design model, 
then moves to more user interface oriented tasks. The Eclipse Modeling 
Framework is designed to ease the design and implementation of a structured 
model. The Java framework provides a code generation facility in order to keep 
the focus on the model itself and not on its implementation details. The key 
concepts underlying the framework are: meta-data, code generation, and default 
serialization.

1.1.1  Positioning of the framework
EMF was started as a Meta Object Facility (MOF) of the Object Management 
Group (OMG) implementation and has evolved to what it is now. EMF is an 
enhancement of MOF2.0. EMF is open source code that enhances the MOF 2.0 
Ecore model and restructures its design in a way that is easy for the user.

The Eclipse Modeling Framework is part of the Model Driven Architecture (MDA). 
It is the current implementation of a portion of the MDA in the Eclipse family 
tools. The idea behind MDA it is to be able to develop and manage the whole 
application life cycle by putting the focus to the model. The model itself is 
described in a meta-model. Then, by using mappings, the model is used to 
generate software artefacts, which will implement the real system. 

Two types of mappings are defined: Metadata Interchange, where documents 
like XML, DTD, and XSD are generated; and Metadata Interfaces, which target 
Java or any other language and generate IDL code. MDA is currently under the 
standardization process at the OMG.

1.1.2  Objectives
In this section we explain the main purpose of EMF and what it can currently be 
used for.

The problems EMF solves
EMF can be used to describe and build a model. Based on that definition, Java 
code can be generated and enhanced by the addition of higher level Java code. 
This implemented model can be used as the basis for any Java application 
development. 

 

 

 

 

4 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



When not to use EMF
At the moment, EMF implements a subset of the MDA approach. As such, 
it does not contain all the mappings we would need to make and deploy an 
application at a company wide level, where XML, EAI, EJBs, Web services, and 
other technologies have to be combined.

1.1.3  Where to find documents and resources
EMF is still under development, but several sources of information are available 
These include:

� The EMF project page:

EMF is one project of the Eclipse Tools Project, which is part of the global 
Eclipse Project, (http://www.eclipse.org). EMF is directly accessible at the 
URL: 

http://www.eclipse.org/emf

Available services range from code access and documents publishing, to 
community support, online code access using CVS, packaged code 
download, articles, user guides, tutorials, mailing list, newsgroup, and more.

� Newsgroup:

The newsgroup server is news.eclipse.org. The newsgroup name for EMF is 
eclipse.tools.emf. It shows EMF relationship within the Eclipse Tools project.

� Mailing list:

The mailing list for the EMF project is emf-dev@eclipse.org. 

1.2  Framework basics
This section provides some basic information about the Eclipse Modeling 
Framework to help you get it up and running.

1.2.1  Prerequisites
When we wrote this redbook, the current version of EMF was v1.1.0. A valid 
Eclipse product installation is a prerequisite to use EMF. As of EMF v1.0.2, 
Eclipse v2.1 is required. For the purpose of writing the redbook, Eclipse v2.1 and 
EMF v1.1.0 have been used.

Note: You should send your questions to the newsgroup rather than to the 
mailing list.

 

 

 

 

 Chapter 1. Introduction to EMF 5

http://www.eclipse.org
http://www.eclipse.org/emf


1.2.2  Product installation
Eclipse product installation is straightforward. You extract the content of the 
downloaded archive, which is platform dependent, to a folder of your choice. 
Depending on the operating system, double-click the Eclipse icon, or run the 
corresponding shell command to complete the installation process and launch 
the Eclipse Platform.

EMF is packaged in three parts: the first one is the runtime, the second contains 
the documentation, and the third contains the source code.

EMF framework installation
Download the EMF Runtime archive (for example, 
emf_1.1.0_20030620_1105VL.zip) and extract the content to the Eclipse folder.

EMF documentation installation
Download the EMF Documentation archive (for example, 
emf.doc_1.1.0_20030620_1105VL.zip) and extract the content to the Eclipse 
folder.

1.2.3  Getting help in Eclipse
EMF help can be found in the Eclipse help system.

The welcome page
1. The welcome page is the main entry point to the EMF documentation. In 

Eclipse, click Help -> Welcome... to list available welcome pages as shown 
in Figure 1-1.

Note: If Eclipse was running, while doing EMF and document installation, 
Eclipse will need to be restarted for changes to take effect.

 

 

 

 

6 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 1-1   Welcome page window

2. Select the Eclipse Modeling Framework welcome page from the list and click 
OK. Figure 1-2 shows the EMF welcome page that will be displayed.

Figure 1-2   EMF welcome page

 

 

 

 

 Chapter 1. Introduction to EMF 7



The help perspective
EMF help is also accessible directly from Help -> Help contents. Figure 1-3 
shows the help available in the EMF Programmers Guide, which includes an 
EMF overview, a user guide, and an EMF.Edit section. 

Figure 1-3   EMF help

Note: The EMF documentation package must be installed before the links in 
EMF welcome pages are clickable.

 

 

 

 

8 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



1.3  Building a simple model
In this section, we build a simple but realistic model. The purpose is to 
demonstrate the main steps of the process. Later in our redbook, we use the 
Graphical Editing Framework (GEF), to build a workflow application on top of this 
model. The workflow editor will help us to create and visualize the content of the 
model. For more information, the application requirements and design can be 
found in “Sample application requirements” on page 188.

The model
Before starting to describe the modelling process using Eclipse and EMF, we 
need to understand the complete underlying UML model that we will build. This is 
shown in Figure 1-4 and discussed in more detail in “The workflow model” on 
page 192.

Figure 1-4   The complete UML model

WorkflowElement
id [1..1]: EString
name: EString
comment: EString
x: EInt
y: EInt
width: EInt
height: EInt

0..*

Subworkflow

Nodes 0..*

Node 1

Comments
Workflow

Workflow

1

1

Workflow

1

Task ChoiceTransformation

transformationExpression: EString

LoopTask

whileCondition [1..1]: EString
ConditionalOutputPort

conditionalOutput [1..1]: EString

FaultPort

Inputs Source
Outputs1..*

1
1 1..*

Edges

Target

0..*

Edges
0..*

Edges
0..*

Port

WorkflowNode

isFinish [1..1]: EBoolean
isStart [1..1]: EBoolean

Comment

OutputPort

Workflow

CompoundTask

Edge

InputPort

Node 1

 

 

 

 

 Chapter 1. Introduction to EMF 9



1.3.1  Different ways of making the model
In EMF, the model can be created in three different ways:

� Write the XMI file directly.

� Export the XMI file, from tools like Rational® Rose® and the Omondo 
EclipseUML plug-in and load it into our project.

� Annotate Java interfaces with model properties.

To illustrate how to create a model, we demonstrate the use of the Omondo 
EclipseUML plug-in to generate the XMI and also show the use of the Java 
interface annotation mechanism.

1.3.2  The EclipseUML plug-in
The main advantage of UML is that it allows us to work at a very high level. In an 
EMF class diagram, we create classes and interfaces, we give them attributes 
and methods, and we set up their relationships.

plug-in installation
Omondo’s EclipseUML plug-in can be downloaded from the site:

http://www.eclipseuml.com 

The current version is 1.2.1. The installation is an executable jar file. On 
Microsoft® Windows®, double-click its icon. On other operating systems, run the 
following command:

java -jar eclipseuml-installer_1.1.4.jar 

Install the product in the same folder you installed the Eclipse product.

1.3.3  Initial project setup
Before doing the modeling itself, we need to create an Eclipse project 
environment to contain all the items that we are going to produce. The steps to 
take are as follows:

1. Create a new project:

a. Click File -> New -> Other..., select Plug-in Development -> Plug-in 
Project, and click Next.

Note: In our case, we did not install the versions of GEF and EMF that are 
provided with the EclipseUML plug-in, because we wanted to use the latest 
versions of GEF and EMF.

 

 

 

 

10 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.eclipseuml.com


b. Enter a project name, for example, WorkflowModel, and click Next.

c. Select Create a Java project, and click Next.

d. Select Create a blank plug-in project, and click Finish.

2. Create a Java Package:

a. Click File -> New -> Other..., select Java -> Package, and click Next.

b. Click Browse... to select the src folder in the WorkflowModel project.

c. Enter a package name, for example, com.ibm.itso.sal330r.workflow, 
and click Finish. Figure 1-5 shows a view of the Eclipse workbench after 
we have completed our initial setup tasks.

Figure 1-5   Initial project setup

Note: Our project must be a plug-in project, but it also needs to be a Java 
project, in order to allow package creation. If we had selected Create a 
simple project, package creation would not have been possible. Creating an 
EMF Project directly is another way to achieve the same result.

 

 

 

 

 Chapter 1. Introduction to EMF 11



1.3.4  Modeling using the EclipseUML plug-in
During our simple model creation, we iterate several times to achieve what we 
think is a good design. The graphical facilities of the EclipseUML plug-in are a 
great help during this process, and each intermediate diagram was used as a 
good start to support the next iteration of our modelling.

EMF class diagram creation
The whole model is contained in one EMF class diagram. Here are the steps to 
create this diagram:

1. Click File -> New -> Other..., select EMF Diagrams -> EMF Class Diagram, 
click Next:

a. Choose the parent folder, for example, WorkflowModel project. 

b. Enter an EMF model file name, file extension is ecd, for example, 
Workflow.ecd

c. Enter a package name, for example, com.ibm.itso.sal330r.workflow

d. Check the association box, click Finish. See Figure 1-6.

Two files have been created: Workflow.ecd, which contains the class diagram; 
and workflow.ecore, which contains the core model definition.

Figure 1-6   EMF class diagram window

 

 

 

 

12 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Class diagram modeling
From the modeling point of view, the class diagram is complete, once we have 
defined a set of classes (EMF interfaces), and the relationships between them. 

Interface design
We first create the root interface, which is called WorkflowElement, then we 
implement the WorkflowNode hierarchy, the Port hierarchy, and finally Workflow, 
Edge, and Comment.

To do the WorkflowElement interface creation:

1. Open the EMF class diagram editor:

a. Select Workflow.ecd in the WorkflowModel project in the navigator view of 
Eclipse. 

b. Right-click Open with -> EMF Class Diagram Editor — or simply 
double-clicking the file tree item should work fine also.

2. Create a class in the editor:

a. Click the icon for the class creation tool on the editor tool palette, click in 
the working area of the editor, and a new a window opens.

b. Enter a name, for example, WorkflowElement, and choose the boxes, 
Is an interface and Is abstract, then click Finish.

Notes: 

1. In the Eclipse,new EMF class diagram dialog, the package name in the 
advanced section corresponds to the EMF EPackage.

2. With the EclipseUML plug-in, two types of diagram can be created: UML 
and EMF models. The file for UML extension is .u?? (ex: Workflow.ucd) 
while the extension for EMF is .e?? (ex: Workflow.ecd). Available 
modeling operations and data types are adapted to the type of file you are 
working in. Remember that if you work with an EMF model, only .e?? files 
and the associated editors give you access to EMF functionality.

 

 

 

 

 Chapter 1. Introduction to EMF 13



Attribute creation
Now we add an id attribute to the WorkflowElement interface:

1. Select the WorkflowElement, by clicking close to the border of the visual in the 
editor. A rectangle should appear; right-click and choose New -> Attribute.

a. Enter the name of the attribute, for example, id.

b. Select the type of the attribute, for example, EString. Most of the EMF 
types, which are equivalent to the Java basic types, are available.

c. Choose the features you want to give to the attribute. See Figure 1-7 for an 
example and refer to 1.3.6, “EMF features” on page 24 for more 
information on the features themselves.

d. Choose the cardinality associated to the attribute, and click OK.

Figure 1-7   The new attribute window

At any point, if you realize that something is wrong or that you have forgotten 
something, do not worry; most of the time, you do not have to delete your model 
and start again. Simple corrections can be made in the property view, and more 
complex corrections can be made using either the Sample Ecore Model editor or 
the default text editor. These give you different ways of accessing the underlying 
model, and allow you to correct, enhance, or even totally redefine the model.

Available editors
To open the Sample Ecore Model or the text editor:

� Select the Workflow.ecore file, right-click and either choose Open With -> 
Sample Ecore Model Editor or Open With -> Text Editor. See Figure 1-8 
for an example of using the Ecore Model Editor.

 

 

 

 

14 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 1-8   EMF Class Diagram and Sample Ecore Model Editor together

The property view
Some properties are not directly supported by the EclipseUML plug-in, but they 
can still be changed using the property view.

To show the property view in Eclipse:

1. Click Window -> Show View -> Other...

2. Select Basic -> Properties, and click OK.

Note: The Workflow.ecd file cannot be open in the EMF Class Diagram editor 
and the text editor at the same time. To chose the editor to open the file in, 
select the file, right-click Open With -> EMF Class Diagram Editor, or Open 
With -> Text Editor.

 

 

 

 

 Chapter 1. Introduction to EMF 15



We use the property view to complete the id attribute. We have to mention that 
the id is an ID, which will be used for serialization later. We set the ID property of 
the id attribute to true as shown in Figure 1-9.

Figure 1-9   The property view with the ID attribute set to true

We complete the WorkflowElement interface by adding all the other attributes. 
Each WorkflowElement in a workflow has a name, is located at position x and y on 
the canvas, and has a height and a width. Table 1-1 shows the properties of all 
the WorkflowElement attributes.

 

 

 

 

16 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Table 1-1   WorkflowElement attribute properties

We repeat the same process to create the other classes of the Workflow model. 
See Table 1-2 for a summary of their attributes, features, and properties. For the 
classes which are not in the table, but are in the model, depicted in Figure 1-4 on 
page 9, simply create them with no attribute. Do not forget that WorkflowElement 
and WorkflowNode are two abstract classes.

Table 1-2   Interface attributes properties

Name Type Features and properties

id EString volatile="true"
lowerBound="1"
iD="true"

name EString

comment EString

x EInt defaultValueLiteral="0"

y EInt defaultValueLiteral="0"

width EInt defaultValueLiteral="-1"

height EInt defaultValueLiteral="-1"

Note: The Default Value Literal can only be set in the property editor.

Interface Name/attribute Type Features and properties

WorkflowNode (abstract)

isStart EBoolean defaultValueLiteral="false"
lowerBound="1"

isFinish EBoolean defaultValueLiteral="false"
lowerBound="1"

Transformation

transformExpression EString

LoopTask

whileCondition EString lowerBound="1"

ConditionalOutputPort

condition EString lowerBound="1"

 

 

 

 

 Chapter 1. Introduction to EMF 17



Figure 1-10 shows what the model should like after these steps.

Figure 1-10   The workflow model classes, before relationship definition

Generalization definition
Generalization or inheritance links are made using the generalization tool. Select 
the tool by clicking its icon, which is an arrow with a big triangle at the end. Click 
the specialized interface, hold the mouse button down, then move to the 
generalized interface or connect to a generalization link going to the superclass. 
Figure 1-11 shows our model with the generalization relationships added.

WorkflowElement
id [1..1]: EString
name: EString
comment: EString
x: EInt
y: EInt
width: EInt
height: EInt

Task ChoiceTransformation

transformationExpression: EString

LoopTask

whileCondition [1..1]: EString
ConditionalOutputPort

conditionalOutput [1..1]: EString

FaultPort

Port

WorkflowNode

isFinish [1..1]: EBoolean
isStart [1..1]: EBoolean

Comment

OutputPort

Workflow

CompoundTask

Edge

InputPort

 

 

 

 

18 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 1-11   Generalization relationships

Association definition 
Using the association tool, we set up the associations between the classes. We 
show how to set up the association between Workflow and Edge, then we provide 
a summary of all the other associations with their features; see Table 1-3. 

Here are the steps to set up the Workflow to Edge association:

1. Click the source interface, which is Workflow.

2. Click the target interface, which is Edge.

3. Give the association properties, see Figure 1-12.

Add ‘s’ to the association name, click Containment, select -1 as the upper 
bound cardinality, and click OK. See Figure 1-12.

WorkflowElement
id [1..1]: EString
name: EString
comment: EString
x: EInt
y: EInt
width: EInt
height: EInt

Task ChoiceTransformation

transformationExpression: EString

LoopTask

whileCondition [1..1]: EString
ConditionalOutputPort

conditionalOutput [1..1]: EString

FaultPort

Port

WorkflowNode

isFinish [1..1]: EBoolean
isStart [1..1]: EBoolean

Comment

OutputPort

Workflow

CompoundTask

Edge

InputPort

 

 

 

 

 Chapter 1. Introduction to EMF 19



Figure 1-12   Association property window

Each association has two endpoints. So far, we have defined the characteristics 
of the Workflow to Edge association, now we complete the opposite association 
end, which is called Workflow.

We complete the second association endpoint, by:

1. Clicking the 2nd Association End tab.

2. Changing the lower bound cardinality to be 1, then clicking OK.

We do the same for all the associations in the model. Any mistake can be 
corrected later, by simple double-clicking the link itself in the editor. Table 1-3 
shows the associations that you should create.

Table 1-3   Association properties

Origin End Association end Attributes

Workflow Edge edges upperBound="-1"
containment="true"

workflow  lowerBound="1"

WorkflowNode nodes upperBound="-1"
containment="true"

workflow lowerBound="1"

Comment comments upperBound="-1"
containment="true"

 

 

 

 

20 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



workflow lowerBound="1"

WorkflowNode InputPort inputs lowerBound="1"
upperBound="-1"
containment="true"

node lowerBound="1"

OutputPort outputs lowerBound="1"
upperBound="-1"
containment="true"

node lowerBound="1"

OutputPort Edge edges upperBound="-1"

source lowerBound="1"

InputPort Edge edges upperBound="-1"

target lowerBound="1"

Compound task Workflow subworkflow lowerBound="1"
containment="true"

Note: Take care, that:

1. The link between CompoundTask and Worklow is only a one-way link, 
navigable from CompoundTask to Workflow. Open the 2nd association end 
of the link and unset Navigable.

2. The Edge to OutputPort association name is called source and the one 
from Edge to InputPort is named target, because an Edge connects an 
OutputPort to the next InputPort.

Origin End Association end Attributes 

 

 

 

 Chapter 1. Introduction to EMF 21



The model will now be like that shown in Figure 1-13.

Figure 1-13   Workflow complete model

1.3.5  Modeling using Java interface annotation
To define a model by means of Java interface annotations, we need to provide 
the same set of information we gave during the graphical modeling. We need to 
create a set of interfaces, one for each of the model elements. Each interface 
contains methods. The annotation mechanism enhances the code by adding 
some @model tags in the comment of any code element.

Interface definition
The abstract=”true” attribute is used for WorkflowElement and WorkflowNode. 
Example 1-1 shows the @model tag for the WorkflowNode. All the other interfaces 
use the standard @model tag to enhance the model.

WorkflowElement
id [1..1]: EString
name: EString
comment: EString
x: EInt
y: EInt
width: EInt
height: EInt

0..*

Subworkflow

Nodes 0..*

Node 1

Comments
Workflow

Workflow

1

1

Workflow

1

Task ChoiceTransformation

transformationExpression: EString

LoopTask

whileCondition [1..1]: EString
ConditionalOutputPort

conditionalOutput [1..1]: EString

FaultPort

Inputs Source
Outputs1..*

1
1 1..*

Edges

Target

0..*

Edges
0..*

Edges
0..*

Port

WorkflowNode

isFinish [1..1]: EBoolean
isStart [1..1]: EBoolean

Comment

OutputPort

Node 1

Workflow

CompoundTask

Edge

InputPort

 

 

 

 

22 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Example 1-1   The WorkflowNode interface@model tag

package com.ibm.itso.sal330r.workflow;

import org.eclipse.emf.ecore.EObject;

/**
 * @author Vanderheyden
 *
 * @model abstract="true"
 */

public interface WorkflowElement extends EObject{

}

Adding attributes
An attribute is not added directly to the interface, instead, we have to define an 
accessor for it. Code generation completes the interface by defining the setter 
and provides the implementation of both the setter and the getter. Example 1-2 
shows the x attribute @model tag.

Example 1-2   The x attribute @model tag

/**
 * @model default="0"
 */
int getX();

Adding associations
For each reference, we have to define: 

� The type of object it gives access to. 

� If it is a containment reference.

� The name of the second association endpoint.

� If it is required or not.

See Example 1-3

Example 1-3   The WorkflowNode to OutputPort reference @model tag

package com.ibm.itso.sal330r.workflow;

import org.eclipse.emf.common.util.EList;

/**
 * @model abstract="true"

 

 

 

 

 Chapter 1. Introduction to EMF 23



 */
public interface WorkflowNode extends WorkflowElement{

/**
 * @model type="com.ibm.itso.sal330r.workflow.OutputPort" opposite="node" 

containment="true" required="true"
 */
EList getOutputs();

}

Here is a short summary of what has to be done, for those who want to do it:

1. Create an EMF project.

2. Create a Java package.

3. Create a Java interface for all the model objects.

4. Add a getter method for each attribute.

5. Add a method for each association which is navigable. Two methods are 
added for navigation navigable from both ends.

6. Create an EMF model inside the EMF project, by using the Java annotation 
mechanism.

Java annotation and the code generation process
Each @model tag annotates the Java code to provide model related information. 
Those directive are used by the code generator in order to generate the 
corresponding implementation code. The code generation process is a 
non-destructive process. No @model annotations are lost during code 
generation. Generated code will contain the @generated tag to indicate that it 
has been generated and can be replaced again.

1.3.6  EMF features
EMF features are associated with attributes and associations. The code 
generator uses them to generate the implementation code. 

EMF features for an attribute
Table 1-4 provides a short description of the EMF features that can be 
associated with an attribute.

Note: The complete rebuild of the model using the Java annotation 
mechanism is a very long process, and there is no real added value in 
providing complete instructions in the context of our redbook.

 

 

 

 

24 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Table 1-4   EMF features for an attribute

EMF features for an association
Table 1-5 provides a short description of the EMF features that can be 
associated with an association.

Table 1-5   EMF features for an association

1.3.7  EMF model creation
Once the model has been completed, by means of EMF modeling or Java 
interface definition, we can generate the corresponding code to implement it. We 
need to create a new generator model resource, which is based on our Ecore 
file, or our Java interfaces.

EMF feature Description

Transient Transient is the opposite to persistent. The attribute value is not 
supposed to be saved, persisted.

Volatile A cache behavior is implemented for attribute value. Volatile is 
a way to prevent caching.

Unique If the attribute is multi valued (upperBound=”-1”), each value 
must be unique in that case 

Changeable Indicates if an attribute can be modified.

Unsettable Indicates if an attribute can be set in a state that mean it has no 
value.

EMF feature Description

Transient The object referenced through this association will not get 
persisted.

Volatile Prevents the object caching.

Unique All referenced objects are unique. 

Changeable If true, the value of the attribute is not hard coded, fixed.

Resolve Proxies Indicates whether proxy reference should be resolved 
automatically.

Containment If true, it means that any object, called the containment, which 
is referenced by this one, called the container, are considered 
as being part of it.

 

 

 

 

 Chapter 1. Introduction to EMF 25



These are the steps to create an EMF model from an EMF class diagram:

1. Create the model:

Click File -> New -> Other..., select Eclipse Modeling Framework -> EMF 
Models, click Next.

2. Choose the parent folder, for example, WorkflowModel project, define the 
EMF model file name with a genmodel extension, for example, 
Workflow.genmodel, and click Next.

3. Select Load from an EMF core model, and click Next.

4. Choose the .ecore file for which you want to create a model. 

Click Browse Workspace..., navigate to the WorkflowModel project, select 
Workflow.ecore file, and click Next. See Figure 1-14.

Figure 1-14   Ecore file selection window

 

 

 

 

26 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



5. Choose Workflow package selection, and click Finish.

These are the steps to create an EMF model from Java interface annotations:

1. Create an EMF Model:

Click File -> New -> Other..., choose Eclipse Modeling Framework and 
EMF Models and click Next.

2. Choose the project and the package you want to contain the generator model 
resource. Define a file name for the model, for example, Workflow.genmodel, 
and click Next.

3. Select load from annotated Java and click Next.

4. Choose the package selection, and click Finish.

The workflow.ecore and Workflow.genmodel files have been created.

1.3.8  Code generation facility
Once the Workflow.genmodel has been created and opened in an EMF 
Generator editor by Eclipse, the code generation can take place:

1. Open the EMF Generator Editor:

Select the Workflow.genmodel file, right-click Open With -> EMF Generator.

2. Generate the code:

In the editor, click Generator -> Generate Model Code or select the root 
element in the tree and right-click Generate Model Code.

1.3.9  Compiling the code
Before compiling, the Java build path has to be updated, in order to resolve the 
EMF classes.

To update the Java Build Path:

1. Open project properties:

a. Select the WorkflowModel project, right-click Properties, select Java 
Build Path.

2. Open the Libraries tab:

a. Click Add Variable.

b. Select ECLIPSE_HOME - C:\Program Files\eclipse.

c. Click Extend..., select ecore.jar, common.jar and common.resource.jar, 
and click OK. See Figure 1-15.

 

 

 

 

 Chapter 1. Introduction to EMF 27



Figure 1-15   EMF jar files

3. Click the Order and Export tab 

a. Select the three jars, click Up to move them to the correct position in the 
path, click OK.

4. Compile the code, select Project -> Rebuild All.

1.3.10  Conclusion
We have demonstrated how to create an EMF model, which can be used directly 
as the model for our application. For more information on the Object, View, and 
Interaction Diagram (OVID) vocabulary used, see:

http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589 

Accordingly, our model contains all the model objects that we need and all the 
object relationships and navigation paths to easily move from one object to the 
next. The model needs to be enhanced with some convenience methods, for 
example, the connectTo() method in the Workflow object, that will even 
encapsulate more of the model specifics and give a higher level model entry 
point.

 

 

 

 

28 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589


Chapter 2. EMF examples

In this chapter we discuss Eclipse Modeling Framework (EMF) modeling 
techniques and provide examples of creating models with EMF. We also cover 
the EMF.Edit framework and provide tips and techniques for generating and 
customizing EMF-based editors. Finally, we outline how to use Java Emitter 
Templates (JET) to customize code generation from EMF models.

2

Note: The sample code we describe in this chapter is available as part of the 
redbook additional material. See Appendix A, “Additional material” on 
page 225 for details on how to obtain and work with the additional material. 
The sample code for this chapter is provided as Eclipse projects that can be 
imported into your Eclipse workbench. Each major section of this chapter has 
a matching Eclipse project in the additional material. The projects are 
cumulative and they also depend on your having completed the modelling and 
code generation described in Chapter 1, “Introduction to EMF” on page 3. You 
will need to make sure that you have created the Java build path variables 
described in 1.3.9, “Compiling the code” on page 27, otherwise you may get 
classpath errors when importing the sample projects.

 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 29



2.1  EMF modeling techniques
In this section, we focus on techniques for modeling with EMF. We begin by 
exploring examples to illustrate how to define new models using EMF. Then, we 
discuss the mapping between EMF and XML Schema and describe how a model 
expressed in XML Schema is migrated to EMF.

2.1.1  Creating new models
In this section we illustrate how to use EMF’s Ecore model concepts to create 
new models. We begin by creating a naive model of Workflow, and then refactor 
that model based on modeling tips that we provide. We discuss the motivation for 
each change to the model and describe how to generalize the refactorization to 
other models.

Creating a simple Workflow model
The model that we create in this section is a simplified version of the 
WorkflowModel used in the sample application and described in Chapter 6, 
“Sample requirements and design” on page 187. For our example, we only 
concern ourselves with modeling basic tasks and dataflow between those tasks. 
Figure 2-1 shows a model that we might create to describe this domain. 

Note: For a handy overview of the Ecore model concepts, consult the 
JavaDoc for the org.eclipse.emf.ecore package. Aside from the APIs for each 
model object, you will also find a class diagram of the Ecore model as well as 
a list of the EMF Datatypes and their corresponding Java types.

 

 

 

 

30 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 2-1   Native model of Workflow

In our model, Tasks represent units of work, and Edges represent the 
connections (flows of control and data) between them. Each Edge flows from an 
OutputPort on a Task to an InputPort on another Task, indicating that data 
resulting from the completion of the source’s Task becomes the input of the 
target’s Task. We have used the multiplicity of the references from Task to 
InputPort and OutputPort, to express the constraint that each Task must have at 
least one InputPort and at least one OutputPort. 

We construct our model as described in Chapter 1, “Introduction to EMF” on 
page 3. We use the Sample Ecore Model Editor, but you may choose to edit the 
XMI directly, or use the Omondo EclipseUML plug-in. We create an EPackage 
named workflow, and within it, create EClasses to represent Task, Edge, Port, 
OutputPort, and InputPort.

Tip: If you are using the model to drive code generation, we suggest that you 
follow Java conventions for naming model elements:

� Heed Java case conventions:

– Use lower case for package names.
– Use lower case for the initial letter of feature and operation names.
– Begin class names with an upper case letter.

� Use the plural form for names of multi-valued features and the singular 
form for single-valued features.

Port

Edge

Task Task

0..*

Inputs

Source

Outputs

1

1..*

Target

Edges

1

0..*

Edges

1..*

1 1

Task

OutputPort InputPort

 

 

 

 

 Chapter 2. EMF examples 31



Example 2-1 shows the XML Metadata Interchange (XMI) that represents the 
workflow EPackage. Each EClass is represented as an eClassifiers element 
nested within the workflow EPackage element. 

Example 2-1   XMI for model of Workflow

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="workflow"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" nsPrefix="workflow"
nsURI="http://www.redbooks.ibm.com/sal330r/example/workflow1">
<eClassifiers xsi:type="ecore:EClass" name="Task">

<eReferences name="inputs" eType="#//InputPort" lowerBound="1"
upperBound="-1" containment="true" eOpposite="#//InputPort/task"/>

<eReferences name="outputs" eType="#//OutputPort" lowerBound="1"
upperBound="-1" containment="true" eOpposite="#//OutputPort/task"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Port" abstract="true"/>
<eClassifiers xsi:type="ecore:EClass" name="Edge">

<eReferences name="target" eType="#//InputPort" lowerBound="1"
eOpposite="#//InputPort/edges"/>

<eReferences name="source" eType="#//OutputPort" lowerBound="1"
eOpposite="#//OutputPort/edges"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="InputPort"

eSuperTypes="#//Port">
<eReferences name="edges" eType="#//Edge" upperBound="-1"

eOpposite="#//Edge/target"/>
<eReferences name="task" eType="#//Task" lowerBound="1"

eOpposite="#//Task/inputs"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="OutputPort"

eSuperTypes="#//Port">
<eReferences name="edges" eType="#//Edge" upperBound="-1"

eOpposite="#//Edge/source"/>
<eReferences name="task" eType="#//Task" lowerBound="1"

eOpposite="#//Task/outputs"/>
</eClassifiers>

</ecore:EPackage>

Although we have shown associations in the Class Diagram in Figure 2-1, the 
Ecore model does not represent associations explicitly. Instead, we use an 
EReference to represent each navigable end of an association. An association 
that is navigable in both directions is represented by two EReferences, one on 
each associated class, with eOpposites that refer to each other. For example, the 
association between Edge and InputPort is navigable from both ends, and so we 
see the edges EReference in InputPort and the target EReference in Edge. 
It is important to make sure that the eOpposites of a pair of corresponding 
EReferences match, and that both EReferences have their eOpposite set. 

 

 

 

 

32 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



An association that is navigable in one direction only is represented as a single 
EReference, with no eOpposite. The multiplicity of the association ends is 
represented by the upperBound and lowerBound attributes on the eReferences 
elements representing each EReference. 

As we can see from our example, associations that represent containment, such 
as the associations between Task and Ports, are represented by an EReference 
where containment is true, on the containing class. The containment of the 
InputPorts and OutputPorts within Tasks is represented by the inputs and 
outputs eReferences inside the Task eClassifiers element.

The inheritance of ports is represented by the eSuperTypes attribute on the 
InputPort and OutputPort elements. The EClass  Port is an abstract class, which 
is indicated by the value of the abstract attribute on the eClassifiers element 
representing Port.

When we generate an EMF.Edit-based editor from our model, as described in 
the EMF documentation, and use it to create Tasks and Edges, we can 
immediately see a problem with this model. Using the generated editor, we can 
only create Tasks and Edges separately; we are missing a class that we could 
instantiate to contain all of the tasks and edges in our workflow. The solution is to 
add an additional class, Workflow, that contains both Tasks and Edges.

Figure 2-2 shows the model with the additional Workflow class.

Tip: It is often useful to design models around a containment-based hierarchy 
rooted at a single class. This approach can make it easier to work with 
instances, as you have a single entry point from which you can access all of 
the other objects in the instance (directly or indirectly), and it means that all of 
the objects will be serialized into a single XMI document by default. We 
discuss this in more detail in 2.3.2, “Default serialization of model instances” 
on page 66.

If you wish to have the flexibility of choosing whether or not to contain instance 
objects in the top-level container, make sure that any references back to the 
container have a lowerBound of zero.

 

 

 

 

 Chapter 2. EMF examples 33



Figure 2-2   Model of Workflow with additional Workflow class

Example 2-2 shows the XMI fragment that represents the Workflow class. The 
eClassifiers element is added to the contents of the workflow EPackage. 
References to the Workflow are also added to Task and Edge as eReferences 
elements within the eClassifiers representing each class, for example:
<eReferences name="workflow" eType="#//Workflow" lowerBound="1"
eOpposite="#//Workflow/edges"/>

Example 2-2   XMI fragment for Workflow class

<eClassifiers xsi:type="ecore:EClass" name="Workflow">
<eReferences name="tasks" eType="#//Task" upperBound="-1"

containment="true" eOpposite="#//Task/workflow"/>
<eReferences name="edges" eType="#//Edge" upperBound="-1"

containment="true" eOpposite="#//Edge/workflow"/>
</eClassifiers>

When we start adding detail to the classes that we use to model workflow, we 
notice that many of the elements share common features, such as name. This is 
often the case when modelling, and it is usual to create a common supertype that 
represents an abstraction of all objects in the model, and which provides these 
common features. When you are using such a model, you have the benefit of 
knowing that all objects in the model are of that type, which can be useful when 

Port

Edge

Task Task

0..*

Inputs
Source

Outputs

1

1..*

Target

Edges

1

0..*

1..*

1 1

OutputPort InputPort

Workflow

Edges

0..*
Edges

0..*

Workflow1

Workflow

1
Tasks

Task

 

 

 

 

34 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



you are working with the objects reflectively. For EMF models, this is less of an 
issue, as all model elements already have a common supertype, EObject, and a 
rich reflective API is provided to allow you to work with your model objects in this 
way.

Figure 2-3 shows the model with the added WorkflowElement class.

Figure 2-3   Model of Workflow with additional common supertype

Working with packages
EPackages are used to collect EClasses and EDataTypes together in much the 
same way that packages are used in Java. In this section, we discuss models 
that span multiple packages.

Typically packages are used to group related concepts into reusable modules. 
When creating an editor for a model, it is often necessary to store additional 
information about model objects, such as layout information or display 
properties. For the sample application described in Chapter 7, “Implementing the 
sample” on page 203, we add this information directly to the WorkflowModel; 
however, another approach is to use a separate package to represent the 
information about each diagram.

TaskTask

0..*

Inputs

Source
1

Target

Edges

1

0..*

1..*

1
1

0..*
Edges

0..*

Workflow
1

Workflow
1 Tasks

WorkflowElement
name: EString

Outputs

Port

Edges

OutputPort

Edge

1..*

Workflow Task

InputPort

 

 

 

 

 Chapter 2. EMF examples 35



We create an EPackage Diagram, and within it, classes to represent connected 
and contained nodes within that diagram, as Figure 2-4 shows. Display 
properties such as the x and y co-ordinates, width and height, are represented by 
EAttributes belonging to DiagramNode.

Figure 2-4   DiagramModel

The following examples illustrate two ways of using our DiagramModel and 
WorkflowModel together: 

� We construct a new package WorkflowDiagram, which merges concepts from 
the two packages using inheritance.

� We store the diagram information separately from the workflows, using 
references between DiagramNode and DiagramConnection and the 
appropriate classes from the WorkflowModel to maintain the relationship 
between the two models.

For the first approach, we create a new package WorkflowDiagramPackage, 
which contains classes that combine concepts from the WorkflowModel and the 
DiagramModel. For example, a Task in a Diagram is represented by a 
WorkflowDiagramTask, which inherits from both Task and DiagramNode. Notice 
that we identify types defined in another package by the Ecore file that contains 
the type, followed by the usual reference to the type itself. Also notice that the 
multiple inheritance is represented by a space separated list within the 
eSuperTypes attribute. We choose to specify the corresponding classes from 
the WorkflowModel as the primary supertypes of the classes in the 
WorkflowDiagram model, and so they appear in the eSuperTypes list first.

Example 2-3   Importing the DiagramModel and WorkflowModel

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="wfDiagram"

targetNode

0..1

Children

SourceNode

0..*

1

targetConnections

0..*

sourceConnections
0..*

Container

x: EInt
y: EInt
width: EInt
height: EInt

DiagramNode

DiagramConnection

ContainerDiagramNode

0..1

 

 

 

 

36 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="WorkflowDiagram"
nsURI="http://www.redbooks.ibm.com/sal330r/example/workflowdiagram">
<eClassifiers xsi:type="ecore:EClass" name="WorkflowDiagramTask"

eSuperTypes="workflowWithSupertype.ecore#//Task
Diagram.ecore#//DiagramNode"/>

<eClassifiers xsi:type="ecore:EClass" name="WorkflowDiagramWorkflow"
eSuperTypes="workflowWithSupertype.ecore#//Workflow

Diagram.ecore#//DiagramNode"/>
<eClassifiers xsi:type="ecore:EClass" name="WorkflowDiagramEdge"

eSuperTypes="workflowWithSupertype.ecore#//Edge
Diagram.ecore#//DiagramNode"/>

</ecore:EPackage>

In the second approach, the diagram and the workflow are more loosely coupled. 
We add references to the classes in the DiagramModel to represent the linkage 
between the two models, as shown in Example 2-4.

Example 2-4   DiagramModel with references to WorkflowModel objects

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="diagram"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="diagramwithrefs"
nsURI="http://www.redbooks.ibm.com/sal330r/example/diagram">
<eClassifiers xsi:type="ecore:EClass" name="DiagramNode">

<eReferences name="container" eType="#//ContainerDiagramNode"
eOpposite="#//ContainerDiagramNode/children"/>

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Task"/>

<eReferences name="sourceConnections" eType="#//DiagramConnection"
upperBound="-1" eOpposite="#//DiagramConnection/sourceNode"/>

<eReferences name="targetConnections" eType="#//DiagramConnection"
upperBound="-1" eOpposite="#//DiagramConnection/targetNode"/>

<eAttributes name="x" 
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eAttributes name="y"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eAttributes name="width"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>
<eAttributes name="height"
eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EInt"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="DiagramConnection">

<eReferences name="sourceNode" eType="#//DiagramNode" lowerBound="1"
eOpposite="#//DiagramNode/sourceConnections"/>

<eReferences name="targetNode" eType="#//DiagramNode"
eOpposite="#//DiagramNode/targetConnections"/>

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Edge"/>

</eClassifiers>

 

 

 

 

 Chapter 2. EMF examples 37



<eClassifiers xsi:type="ecore:EClass" name="ContainerDiagramNode"
eSuperTypes="#//DiagramNode">
<eReferences name="children" eType="#//DiagramNode" upperBound="-1"

containment="true" eOpposite="#//DiagramNode/container"/>
<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Workflow"/>

</eClassifiers>
</ecore:EPackage>

Notice that because we are referencing classes from another package, we have 
to be explicit about the type. For example, we refer to the Task class as follows:

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Task"/>

Notice also that the references are one-way references, as we do not wish to 
pollute the WorkflowModel with references to the DiagramModel.

The Ecore model also allows us to define nested packages, which are 
represented in the XMI as eSubpackages elements. For example, we could 
package the DiagramModel and the WorkflowModel together as sub-packages 
of a new package NestedWorkflowDiagram. Example 2-5 shows the XMI for our 
NestedWorkflowDiagram package, with some details omitted for brevity. Notice 
that reference strings also now include the subpackage, such as:

<eReferences name="model" eType="#//workflowsupertype/Edge"/>

Example 2-5   Using nested packages

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="nested"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="nested"
nsURI="http://www.redbooks.ibm.com/sal330r/example/nested" >
<eSubpackages name="workflowsupertype" nsPrefix="workflow"
nsURI="http://www.redbooks.ibm.com/sal330r/example/workflow3">
... contents of workflow package ...
</eSubpackages>
<eSubpackages name="diagram" nsPrefix="diagram"
nsURI="http://www.redbooks.ibm.com/sal330r/example/diagram">

... DiagramNode class ...
<eClassifiers xsi:type="ecore:EClass" name="DiagramConnection">

<eReferences name="model" eType="#//workflowsupertype/Edge"/>
<eReferences name="sourceNode" eType="#//diagram/DiagramNode"
lowerBound="1" eOpposite="#//diagram/DiagramNode/sourceConnections"/>
<eReferences name="targetNode" eType="#//diagram/DiagramNode"
eOpposite="#//diagram/DiagramNode/targetConnections"/>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="ContainerDiagramNode"
eSuperTypes="#//diagram/DiagramNode">

 

 

 

 

38 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



<eReferences name="model" eType="#//workflowsupertype/Workflow"/>
<eReferences name="children" eType="#//diagram/DiagramNode"
upperBound="-1" containment="true"
eOpposite="#//diagram/DiagramNode/container"/>

</eClassifiers>
</eSubpackages>

</ecore:EPackage>

Declaring datatypes
EMF provides datatypes such as EString and EInt, which represent the basic 
Java types that you can use for simple attributes. If you need to use a different 
Java type, you need to create an EDataType to represent it. For example, we use 
EString to represent attributes such as condition of ConditionalOutputPort and 
whileCondition for LoopTask from the WorkflowModel for the sample application. 
If we wanted to represent these conditions with a specific existing Java type 
instead, we would declare an EDataType corresponding to that type, as follows:

<eClassifiers xsi:type="ecore:EDataType" name="Condition" 
instanceClassName="com.example.Condition"/>

Adding operations
We can augment the classes in our model by adding operations to them. Aside 
from the convenience of having the signatures and skeletons generated into the 
code, there is little difference between adding the operations directly to the code 
as methods and adding the operations to the model. In both cases you will need 
to implement the methods in the generated code. A good approach is to define 
the signatures of the methods that you want to be public in your model, then 
complete the generated skeletons to implement them.

Annotating the model
The Ecore model includes an EAnnotation object that can be added to any model 
element. EAnnotations represent additional information that is associated with a 
model object, and they take the form of key and value pairs. You may choose to 
use EAnnotations to provide hints or additional information about how to use or 
represent model objects in an application, to represent additional constraints that 
are evaluated using another tool, or you may choose simply to use these 
annotations to document your model. An example of using EAnnotations to 
provide additional information about a model is described in 2.3.3, “Using the 
XSD plug-in to customize serialization” on page 70. The XSD plug-in uses 
EAnnotations to map model objects to XML.

Tip: When using nested sub-packages, be sure that each package has a 
unique nsURI.

 

 

 

 

 Chapter 2. EMF examples 39



2.1.2  Migrating existing models
The EMF documentation describes how to import from models expressed using 
annotated Java interfaces, models created using Rational Rose®, and models 
represented by an XML Schema. In this section, we discuss migrating existing 
models, focusing on migrating an XML Schema to EMF as an example. We 
provide examples to illustrate the correspondences between concepts from XML 
Schema and concepts provided by EMF Ecore.

For information about migrating models expressed using other frameworks, 
please refer to the following documents, which are linked from the documents 
section of the EMF project site at:

http://www.eclipse.org/emf/:

UML: 

� Tutorial: Generating an EMF model
� Specifying Package Information in Rose

Annotated Java interfaces:

� Tutorial: Generating an EMF model
� Using EMF (Catherine Griffin’s Eclipse Corner article)

Migrating from XML Schema to EMF is described in the Tutorial: Generating an 
EMF Model using XML Schema. The first page of the tutorial briefly outlines the 
mapping used to create EMF models from an XML Schema. In this section, we 
provide examples that illustrate this mapping. We use the purchase order XML 
Schema shown in Example 2-6 as the source for our new EMF model. Notice 
that this schema is taken from the XML Schema Part 0: Primer W3C 
Recommendation, 2 May 2001.1 The examples for this section can be found in 
the MigrateFromXMLSchema project, in the examples provided with this book.

Example 2-6   Example XML Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:annotation>

<xsd:documentation xml:lang="en">
Purchase order schema for Example.com.
Copyright 2000 Example.com. All rights reserved.

</xsd:documentation>
</xsd:annotation>
<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>

1  Copyright ©2001 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, 
document use and software licensing rules apply. http://www.w3.org/Consortium/Legal/

 

 

 

 

40 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.eclipse.org/emf/
http://www.w3.org/Consortium/Legal/
http://www.w3.org/Consortium/Legal/


<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items"  type="Items"/>

</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>
<xsd:complexType name="USAddress">

<xsd:sequence>
<xsd:element name="name"   type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city"   type="xsd:string"/>
<xsd:element name="state"  type="xsd:string"/>
<xsd:element name="zip"    type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>
<xsd:complexType name="Items">

<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">

<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">

<xsd:maxExclusive value="100"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice"  type="xsd:decimal"/>
<xsd:element ref="comment"   minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU" use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<!-- Stock Keeping Unit, a code for identifying products -->
<xsd:simpleType name="SKU">

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

 

 

 

 

 Chapter 2. EMF examples 41



When we import our model, as the tutorial describes, each namespace declared 
as a targetNamespace of an XML Schema is represented in EMF as an 
EPackage. In our case, we only have one targetNamespace, so a single 
EPackage is created, as shown in Figure 2-5.

Figure 2-5   EMF model from XML Schema

If the schema that you are importing from has a targetNamespace, then the 
nsURI of the generated EPackage is set to that URI, and the name and nsPrefix 
are derived from that URI. For example, if the targetNamespace is 
http://www.example.com, then the nsPrefix is com.example, and the name is 
example. If the targetNamespace is http://www.example.com/foo, then the 
name is foo and the nsPrefix is com.example.foo.

Example 2-7 shows how the features of the EPackage created from po.xsd are 
populated by the mapping. The purchase order schema did not have a 
targetNamespace, so the URI to the schema file is used as the nsURI instead, 
and the name of the file is used for the nsPrefix and name. 

 

 

 

 

42 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Example 2-7   EPackage from XML Schema

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="po"
nsURI="platform:/resource/MigrateFromXMLSchema/po.xsd" nsPrefix="po">
...

</ecore:EPackage>

You may notice that the XSD plug-in generates EAnnotations for each of the 
objects in the model. These annotations describe how the model maps to the 
schema, and is used to serialize model instances so that they conform to the 
XML Schema from which the EMF model was generated. We discuss how to 
modify these annotations to control serialization in 2.3.3, “Using the XSD plug-in 
to customize serialization” on page 70.

Types from the XML Schema become EClassifiers: complex types, which 
represent types that contain elements or attributes, are represented by EClasses 
in EMF. Example 2-8 shows the EClass mapped from the USAddress complex 
type. Notice that the representation of this EClass is type, because it has been 
generated from a type.

Example 2-8   EClass for the USAddress type

<eClassifiers xsi:type="ecore:EClass" name="USAddress">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="type"/>
<details key="name" value="USAddress"/>
<details key="targetNamespace"/>

</eAnnotations>
...

</eClassifiers>

Elements of this type are mapped to EReferences within the EClass representing 
the containing type. For example, the USAddress type is the type of the shipTo 
element, contained within the PurchaseOrderType. Hence, as shown in 
Example 2-9, shipTo is represented as an EReference within the EClass created 
for PurchaseOrderType. Notice that the representation is element, because the 
EReference was mapped from an element declaration in the XML Schema.

Example 2-9   EReference for element of complex type

<eReferences name="shipTo" eType="#//USAddress" lowerBound="1"
containment="true">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="shipTo"/>
<details key="targetNamespace"/>

 

 

 

 

 Chapter 2. EMF examples 43



</eAnnotations>
</eReferences>

EDataTypes are used to represent simple types that represent atomic values. 
For example, SKU is represented by EString in the model. For XML elements 
that are of a simple type, such as Comment from the purchase order schema, an 
EClass representing the element is created, and an EAttribute is used to 
represent the content. Example 2-10 shows the Comment EClass. Notice that 
the representation of the value attribute is simple-content, that is, it provides the 
actual content of the comment element.

Example 2-10   EClass from simple-typed element

<eClassifiers xsi:type="ecore:EClass" name="Comment">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="comment"/>
<details key="targetNamespace"/>

</eAnnotations>
<eAttributes name="value"

eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString">
<eAnnotations
source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="simple-content"/>
</eAnnotations>

</eAttributes>
</eClassifiers>

Every simple-typed attribute in the XML Schema maps to an EAttribute 
belonging to the EClass mapped from the containing XML element. When the 
type of the XML Schema attribute has been mapped to an EClass (which is true 
for types such as anyURI), then the attribute is mapped to an EReference 
instead. We see an example in Example 2-11. The representation is attribute 
to indicate that it was mapped from an XML attribute.

Example 2-11   EAttribute from XML attributes

<eAttributes name="orderDate" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString">
<eAnnotations

source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">
<details key="representation" value="attribute"/>
<details key="name" value="orderDate"/>
<details key="targetNamespace"/>

</eAnnotations>
</eAttributes>

 

 

 

 

44 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



2.2  EMF.Edit-based editors and code generation
The Tutorial: Generating an EMF Model describes how to use the GenModel 
wizard to create a GenModel for the WorkflowModel, and how to generate 
plug-ins that can be used to create and edit WorkflowModel instances. In this 
section, we describe the correspondences between generated plug-ins and the 
model from which they are generated, by examining the code produced for the 
model, edit, and editor plug-ins generated from the WorkflowModel. We then 
discuss how to customize these generated plug-ins using code generation 
properties. 

2.2.1  The generated plug-ins
In this section we describe the model, edit, and editor plug-ins generated for the 
WorkflowModel, and discuss the correspondences between the model and the 
generated code. The generated plug-ins are provided in the sample code 
provided with this book.

The model plug-in
In this section, we describe the code in the model plug-in generated from the 
WorkflowModel.

Packages
For each EPackage, two or three Java packages are generated. For the 
WorkflowModel, these packages are workflow, workflow.impl, and workflow.util. 
Notice that there may be a prefix used to generate package names, as discussed 
in “Package-level GenModel properties” on page 54; however, for the purposes 
of describing the generated plug-ins in this section, we will ignore it. The util 
package is optional: Its presence will depend on the code generation properties. 
The util package is generated when the code generation properties are set to 
their defaults.

Note: The JET framework is used to generate model, edit, and editor plug-ins 
from EMF models. The templates that are used to generate these plug-ins are 
located in:

<ECLIPSEHOME>/plugins/org.eclipse.emf.codegen.ecore_<EMFVERSION>
/templates

Where <ECLIPSEHOME> is the location where you installed Eclipse, and 
<EMFVERSION> is the version of the EMF plug-in that you have installed. 

We discuss the JET framework and how to customize code generation using 
templates in 2.4, “Using JET to customize code generation” on page 79.

 

 

 

 

 Chapter 2. EMF examples 45



Classes
For each EClass in the EPackage, an interface is generated in the base 
package, and a Java class that implements it is generated in the impl package. 
If the EClass inherits from another EClass, then the generated interface and 
implementation extend the interface and implementation generated for the 
supertype.

If a class has multiple supertypes, then the first supertype in the eSuperTypes list 
is considered to be the primary supertype. The generated implementation for a 
subclass extends the corresponding implementation class of the primary 
supertype, and implements methods defined in the interfaces generated for any 
other supertypes. For example, for the WorkflowDiagram model from “Working 
with packages” on page 35, WorkflowDiagramTask extends TaskImpl (the 
primary supertype), and implements the methods from DiagramNode.

Features
For each feature, getter and setter methods are generated in the class and 
interface generated from their containing class. A field to cache the value of the 
feature is also generated if the feature is not volatile. If a feature is not 
changeable, then only getter methods are generated. 

For multi-valued attributes and references, an EList is used to represent the 
feature, while single valued attributes are represented by the type of that 
attribute, for example EString, or the instanceClass of a user-defined EDataType. 
The type of the EList used to represent features will depend on the constraints in 
the model, for example, a non-containment reference is represented by an 
EObjectWithInverseResolvingEList while a containment reference is represented 
by an EObjectContainmentWithInverseEList.

The reflective methods such as eSet() are generated from all features for the 
containing class.

Operations
For each EOperation, a public method signature is generated in the interface of 
the containing class, and a skeleton implementation is generated in the 
corresponding implementation.

DataTypes
For each EEnum, an implementation is generated that extends 
org.eclipse.common.util.AbstractEnumerator. For other EDataTypes, there are 
no interfaces or implementations generated; instead, their instanceClass is used 
directly for EAttributes of that type.

 

 

 

 

46 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



The edit plug-in
ItemProviders are generated for each class in the edit plug-in in the provider 
package. In addition, an EMFPluginClass is generated for the entire plug-in. The 
ItemProviders extend org.eclipse.emf.edit.provider.ItemProviderAdaptor and 
adapt the corresponding EObject from the model. For example, 
WorkflowElementItemProvider adapts a WorkflowElement. The ItemProvider 
forwards some notifications received when the model object changes via 
fireNotifyChanged(), and filters the rest. You can control which notifications are 
filtered when you generate the plug-in, as described in 2.2.2, “Customizing code 
generation through GenModel properties” on page 47.

ItemProviders also manage property descriptors for all features of the class, as 
well as an icon and description for the class, returned by the getImage() and 
getText() methods. 

An ItemProviderAdaptorFactory is also generated for all of the generated 
ItemProviders. For the WorkflowModel, it is 
WorkflowItemProviderAdaptorFactory. Refer to The EMF.Edit framework and 
code generator overview for more information about these factories.

The editor plug-in
For each model, three classes are generated in the editor plug-in, in the 
presentation package. There is a multi-page editor, which creates several 
different JFace viewers for the model, including a TreeViewer which use the 
ItemProviders from the edit plug-in as their content and label providers. The 
editor also creates an outline view and property sheet page that displays the 
properties for the selected object from the viewers.

An ActionBarContributor is also generated, that is used to create the context 
menu to add children or siblings to selected items from the viewers in the editor.

The final class generated in the editor plug-in is a wizard, which allows you to 
create a new resource containing an instance of one of your model objects.

2.2.2  Customizing code generation through GenModel properties
The EMF Users’ Guide describes the properties defined for each of the Ecore 
objects in a model. Some of these properties affect the way in which code is 
generated from the model and are duplicated in the GenModel for that model. In 
2.2.1, “The generated plug-ins” on page 45, we examine the code generated for 
the WorkflowModel’s model, edit, and editor plug-ins. For any Ecore model, the 
generation of the model, edit, and editor plug-ins is driven by the properties 
represented in the GenModel created for that model. In this section, we examine 
those properties, and discuss the effect that changing them has on code 
generation.

 

 

 

 

 Chapter 2. EMF examples 47



If we examine the GenModel for the WorkflowModel using a text editor, we can 
see that it is described using XMI. This is because the GenModel is itself an EMF 
model, so its instances are serialized by default according to the XMI 2.0 
production rules2, as described in 2.3.2, “Default serialization of model 
instances” on page 66. 

Example 2-12 shows the top-level XMI element from the GenModel for the 
WorkflowModel. As we can see, the GenModel has properties (represented in 
the XMI as attributes) that identify the model from which the edit, and editor 
plug-ins are generated, and that specify the name and package of the generated 
plug-ins. We provide details of the effect that these properties have on code 
generation in “Top-level GenModel properties” on page 52.

Example 2-12   Top-level element for WorkflowModel GenModel

<genmodel:GenModel
xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
xmlns:genmodel="http://www.eclipse.org/emf/2002/GenModel"
modelDirectory="/WorkflowModel/src"
editDirectory="/WorkflowModel.edit/src"
editorDirectory="/WorkflowModel.editor/src"
modelPluginID="WorkflowModel" modelName="Workflow"
editPluginClass="WorkflowPackage.provider.WorkflowEditPlugin"
editorPluginClass="WorkflowPackage.presentation.WorkflowEditorPlugin">
...

</genmodel:GenModel>

Nested within the top level element of the WorkflowModel’s GenModel XMI, we 
find elements corresponding to each object from the WorkflowModel, with 
attributes representing the properties specific to each object. The nesting of the 
contents of a GenModel XMI matches the nesting within the source Ecore model, 
with elements corresponding to classes, data types, and sub-packages nested 
within the element corresponding to their containing package; and elements 
corresponding to references, attributes, and operations nested within the 
element corresponding to their containing class. 

In Example 2-13, we see a fragment of the GenModel for the WorkflowModel that 
corresponds to the Workflow class.The genClasses element corresponding to 
the Workflow class contains genFeatures elements that correspond to the name 
attribute, and to the task and edge references of the Workflow class. The effect 
on code generation of the properties represented for each class is discussed in 
“Class-level GenModel properties” on page 55.

2  For more information, refer to the XML Metadata Interchange (XMI) Specification, Version 2.0, 
which can be found at: http://www.omg.org/technology/documents/formal/xmi.htm

 

 

 

 

48 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.omg.org/technology/documents/formal/xmi.htm


Example 2-13   GenModel fragment for EClass Workflow

<genClasses ecoreClass="Workflow.ecore#//Workflow">
<genFeatures

ecoreFeature="ecore:EAttribute Workflow.ecore#//Workflow/name"/>
<genFeatures property="None" children="true"

ecoreFeature="ecore:EReference Workflow.ecore#//Workflow/task"/>
<genFeatures property="None" children="true"

ecoreFeature="ecore:EReference Workflow.ecore#//Workflow/edge"/>
</genClasses>

While you can control the generation of plug-ins by editing the GenModel XMI 
directly, you can also edit the GenModel properties with the editor provided by 
the GenModel plug-in. Figure 2-6 shows the GenModel editor displaying the 
top-level properties from the GenModel for the WorkflowModel. As the figure 
shows, the tree view provided by the GenModel editor mirrors the containment 
hierarchy from the GenModel XMI and the source model, and displays the 
properties for the selected item in the Properties view. If you do not see the 
properties, select Window -> Show View -> Other and then select Properties 
from the Basic item in the tree.

Aside: If you have installed the org.eclipse.emf.source plug-in, you can take a 
look at the file GenModel.ecore, which describes the GenModel. The zip file 
containing the file is usually installed at the following location:

<ECLIPSEHOME>/plugins/org.eclipse.emf.source_<EMFVERSION>/src/org.
eclipse.emf.codegen.ecore_<EMFVERSION>/runtime/codegen.ecoresrc.zip

Where <ECLIPSEHOME> is the location where you installed Eclipse, and 
<EMFVERSION> is the version of the EMF plug-in that you have installed.

 

 

 

 

 Chapter 2. EMF examples 49



Figure 2-6   Top-level GenModel properties for WorkflowModel

An advantage of using the GenModel editor over editing the XMI directly is that 
the properties are organized by category, as we see in Figure 2-6, where the 
properties for the WorkflowModel GenModel are categorized according to 
whether they relate to the generation of the model, edit, or editor plug-ins. There 
is also a Templates & Merge category that is not shown in the figure, which we 
discuss in 2.4, “Using JET to customize code generation” on page 79.

 

 

 

 

50 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



You can toggle between the categorized view and a flat view of the properties by 
clicking the button identified by the tree icon, as shown in Figure 2-7, with the tool 
tip Show Categories. Here we see the properties for the name attribute of the 
class Workflow. The property view allows us to view and edit all of the properties 
associated with each object in the model. The editor provides a brief description 
of each of the properties, which is displayed in the status bar whenever a 
property is selected, as shown for the Property Type property. For properties that 
have a fixed set of values, such as Property Type here, the editor provides a 
pull-down list from which you may select an alternate value. Notice that the XMI 
file representing the model may not explicitly persist a property that is unchanged 
from its default value, as shown in Example 2-13 on page 49, where none of the 
properties in the Edit category for the name attribute are present in the XMI.

Figure 2-7   Using the GenModel editor to edit properties

In addition to specifying code generation properties using the GenModel editor, 
you may provide values for some of these properties when you initially create or 
import your model from XMI or annotated Java interfaces. When you use the 
GenModel wizard to create a GenModel from your model, the values that you 
supply in your model are used to populate the GenModel, and for any properties 
for which you do not supply a value, a default value is used instead.

 

 

 

 

 Chapter 2. EMF examples 51



In the following sections, we detail the GenModel properties, organizing them 
according to the GenModel hierarchy. At each level, we provide a table that 
outlines the name of the property as it appears in the GenModel editor, the 
category to which the property belongs in the GenModel editor, the attribute used 
to represent the property in the GenModel XMI and the default value provided by 
the GenModel wizard for that property. We also discuss the effect that changing 
each property from its default has on the generation of the model, edit, and editor 
plug-ins.

Top-level GenModel properties
The properties represented at the top level for each GenModel are described in 
Table 2-1.

Table 2-1   Top-level GenModel properties

The copyrightText property provides the value for the final static field copyright in 
every generated Java class in the model and edit plug-ins. By default, the 
copyright field is set to be the empty string. Notice that this field is not generated 
in the classes for the editor plug-in.

Property Category XMI attribute Default Value

Copyright Text All copyrightText

Creation 
Commands

Edit creationCommands true

Edit Directory Edit editDirectory <PROJECT>.edit/src

Editor Directory Editor editorDirectory <PROJECT>.editor/src

Editor Plug-in 
Class

Editor editorPluginClass <basePackage of top-level 
EPackage><modelName>
EditorPlugin

Edit Plug-in Class Edit editPluginClass <basePackage of top-level 
EPackage><modelName>
EditPlugin

Generate Schema Model generateSchema false

Model Directory Model modelDirectory <PROJECT>/src

Model Name All modelName GenModel base filename

Model Plug-in 
Class

Model modelPluginClass

Model Plug-in ID All modelPluginID <PROJECT>

Non-NLS Markers All nonNLSMarkers false

 

 

 

 

52 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



The creationCommands property controls whether or not the generated edit 
plug-in includes support for creating new objects. If creationCommands is false, 
the generated editor only allows properties of existing objects to be modified, and 
the menu options for creating new child or sibling objects are not present. If 
creationCommands is true, in the edit plug-in, each ItemProvider generated from 
each class in the model contains a method collectNewChildDescriptors, which 
constructs a list of the types of children objects that can be created. These lists 
are used by the editor plug-in to construct actions that can be used to create 
children and sibling objects.

The modelName property is used to construct the default names of the edit, and 
editor plug-ins. The values of the modelDirectory, editDirectory and 
editorDirectory properties determine the projects, and path within those projects, 
into which the plug-ins are generated, while the modelPluginClass, 
editPluginClass and editorPluginClass properties determine the Java package of 
each generated plug-in.

The modelPluginID property is used as the plug-in ID of the model plug-in and is 
referenced from the edit plug-in, which depends on the model plug-in. If you 
change the value of this property, you need to delete the plugin.xml files from the 
model and edit plug-ins before regenerating the code, to ensure that they are 
updated.

Setting the generateSchema property to true means that the XML Schema for 
the model is generated whenever the model plug-in is generated. When you 
generate the schemas, you will notice new schema files appear in the project; 
XMI.xsd and <PackageName>XMI.xsd, where <PackageName> is the name of 
the top-level package from your model. For example, the XML Schema files 
generated from the WorkflowModel are XMI.xsd and WorkflowXMI.xsd. XMI.xsd 
declares XMI elements and attributes that are common to all models, while 
WorkflowXMI.xsd contains the only element and attribute declarations specific to 
serializing WorkflowModel instances.

Setting nonNLSMarkers controls whether National Language Support (NLS) 
comment markers, marking particular strings as non-translatable, are generated 
in the source of the plug-ins. Example 2-14 shows a code fragment from the 
toString method from the class PortImpl, generated as part of the model plug-in 
from the WorkflowModel. We see that the strings name and condition are 
marked as NON-NLS, that is, that they are not translatable. 

Tip: For the XML Schema generation to succeed, you must have installed the 
XSD plug-in available from http://www.eclipse.org/xsd/.

 

 

 

 

 Chapter 2. EMF examples 53

http://www.eclipse.org/xsd/


When nonNLSMarkers is true, strings that are used as keys to lookup resource 
bundles and strings based on the names of model objects (such as name and 
condition in this example), are marked as NON-NLS. However, some strings, 
such as those that represent default values for EString-typed attributes, remain 
unmarked when this property is true. For more information about 
internationalizing Eclipse plug-ins, see:

http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html

Example 2-14   Generated NON-NLS markers

public String toString() {
...
result.append(" (name: "); //$NON-NLS-1$
result.append(name);
result.append(", condition: "); //$NON-NLS-1$
result.append(condition);
...

}

Package-level GenModel properties
For each EPackage in the model, there is a corresponding genPackages 
element in the GenModel XMI, which is represented in the GenModel editor as 
an item in the tree view. The properties represented for each package are 
presented in Table 2-2.

Table 2-2   Package-level GenModel properties

The ecorePackage property identifies the corresponding EPackage from the 
source model. The prefix property is used to generate the names for the 
AdapterFactory, Package, Factory and Switch classes generated for the 
EPackage. The prefix should begin with an upper-case character so that the 
generated classes have upper-case names.

Property Category XMI attribute Default Value

Adaptor Factory Model adapterFactory true

Base Package All basePackage

Package Ecore ecorePackage EPackage name

Prefix All prefix EPackage name 
(capitalized)

Resource Type Model resource None

 

 

 

 

54 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html


If a value is specified for basePackage, that value is used as the package prefix 
for the generated plug-ins. For example, to generate the model interfaces for our 
WorkflowModel plug-in into the package com.ibm.itso.workflow, we set 
basePackage for the Workflow package to com.ibm.itso and check that the 
name of the Workflow package in the WorkflowModel is lower case to ensure 
that we follow java package naming convention. If you generate the GenModel 
from a model where the top-level package has a fully qualified Java name, the 
wizard fills in the basePackage property with the prefix from that package. 

Note, if your model contains sub-packages, these are represented in the 
GenModel as nestedGenPackages elements. The default basePrefix for each 
nestedGenPackages element is the package name constructed from the 
basePrefix and ecorePackage properties of the containing genPackages 
element. If you change the basePrefix for a sub-package, the code generated for 
the objects directly contained by that sub-package is generated into the package 
specified by the sub-package’s basePrefix and the sub-package name.

The value of adaptorFactory indicates whether an AdapterFactory and Switch is 
generated for the EPackage, in the corresponding util package.

The resource property indicates whether to generate a Resource and 
ResourceFactory implementation for the model, and the type of Resource to 
subclass when doing so. When this property is set to None, as it is by default, the 
generated editor uses an XMIResource to serialize model instances, as 
described in 2.3.2, “Default serialization of model instances” on page 66. If 
resource is set to Basic, a subclass of ResourceImpl is generated in the util 
package, which can then be modified to customize serialization to any format. 
Similarly, setting resource to XML or XMI means that the generated 
ResourceImpl is a subclass of XMLResourceImpl or XMIResourceImpl, 
respectively, and you can customize these serializations as described in 2.3.5, 
“Providing a custom resource implementation” on page 75.

Class-level GenModel properties
Classes are represented in the GenModel as genClasses elements. The 
properties for each class are shown in Table 2-3.

Table 2-3   Class-level GenModel properties

Property Category XMI attribute Default Value

Class Ecore ecoreClass EClass  name

Image Edit image true

Label Feature Edit labelFeature

Provider Type Edit provider Singleton

 

 

 

 

 Chapter 2. EMF examples 55



The ecoreClass property identifies the corresponding EClass  from the source 
model. 

The provider property indicates which item provider pattern is used to generate 
the ItemProvider for this class in the editor plug-in; Singleton, Stateful, or None. 
Refer to the Item provider implementation classes section, from The EMF.Edit 
framework and code generator overview, in the Documents section of the EMF 
project site at: http://www.eclipse.org/emf/ for details of the Singleton and 
Stateful pattern. If the property is set to None, no Item Provider is generated for 
the class.

The image property indicates whether an icon is generated for the class in the 
corresponding ItemProvider, which is returned by the getImage() method.

The labelFeature property identifies the attribute that is used to provide the 
default label for objects of this type, which is returned by the getText() method in 
the generated ItemProvider. If this property is not set, then the code generation 
will look for an attribute called name (or with name as a substring in its name) to 
use instead, and if that does not exist, it will use the first simple attribute (that is, 
an attribute that is of a simple type such as EString) from the class.

Feature-level GenModel properties
The GenModel represents each attribute and reference as a genFeatures 
element in the XMI. The properties for each feature are listed in Table 2-4.

Table 2-4   Feature-level GenModel properties

The corresponding feature (EAttribute or EReference) from the source model is 
identified by the ecoreFeature property. 

Property Category XMI attribute Default Value

Children Edit children true for containment references, 
otherwise false

Feature Ecore ecoreFeature The name of the EAttribute or 
EReference

Notify Edit notify true for attributes and containment 
references

Property Type Edit property None for containment/container 
references, Editable for normal 
references and attributes, Readonly 
for features where changeable is 
false

 

 

 

 

56 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.eclipse.org/emf/


The children property indicates whether this feature is considered to be a child of 
the containing class, for the purposes of constructing the tree view in the editor, 
and whether the context menu for the parent provides an option to create this 
feature as a child. Most features are represented as properties, and so children 
is usually false, however for containment references, children is true by default.

The notify property indicates whether the ItemProvider forwards notifications 
indicating that the feature has changed. By default, the code generated in the 
model code notifies whenever any feature changes, however the generated 
ItemProviders filter these notifications. By default, notifications of changes to 
attributes and containment references are forwarded, while non-containment 
reference changes are not.

The property indicates whether this feature is represented as a property on the 
property sheet, and whether its value can be edited via the property sheet. 
Features represented as children are usually not included in the property sheet, 
so it is usual to see containment references with None as the value for property, 
and attributes and non-containment references with this value set to Editable. 
Features that have changeable set to false in the Ecore model will be Readonly 
by default.

GenModel properties for DataTypes
EDataTypes are represented in the GenModel as genDataTypes elements. The 
ecoreDataType property identifies the associated EDataType from the model. As 
EDataTypes already reference their implementation class, the GenModel does 
not represent any other code generation properties for them. Similarly, EEnums 
are represented in the GenModel by genEnums elements, with an ecoreEnum 
property referring to the EEnum from the model. The literals are represented by 
genEnumLiterals elements nested within the corresponding genEnums element, 
again with a single property, ecoreEnumLiteral, that refers to the EEnumLiteral 
from the model.

GenModel properties for operations and parameters
Operations are represented as genOperations elements, which contain 
genParameters elements for each parameter. Apart from the ecoreOperation 
property of genOperations, and the ecoreParameter property of genParameters 
identifying the associated model objects, there are no other GenModel properties 
associated with operations or parameters. If you want to add methods to the 
generated code, it makes little difference whether you add them to the model first 
and generate skeletons, or simply add them directly to the generated code. If you 
do generate them from the model, make sure that you remove the @generated 
tag when you implement them so that your implementation is not overwritten if 
you regenerate the code.

 

 

 

 

 Chapter 2. EMF examples 57



Customization example
We can see that the properties at the top-level of the GenModel generally affect 
the names, packages, and locations of the generated model, edit, and editor 
plug-ins, while the GenModel properties at the package, class, and feature level 
affect only the types generated from those model elements. The default values 
generate three separate plug-ins, such as the plug-ins that we examined in “The 
generated plug-ins” on page 45. In the following example, we change some of 
the top-level GenModel properties in order to customize the generated plug-ins.

Our example customizes the code generation so that the model, edit, and editor 
are generated into a single plug-in, to make it easier to package for distribution. 
These are the steps that we take to generate a single plug-in called 
com.ibm.itso.sal330r.workflow, for our WorkflowModel editor:

1. In our existing WorkflowModel project, we generate the GenModel for the 
WorkflowModel and open it using the GenModel editor.

2. We change the modelPluginID to com.ibm.itso.sal330r.workflow, as shown 
in Figure 2-8. This is the identifier that is used for the plug-in containing the 
model, edit, and editor code.

3. We edit modelDirectory, editDirectory, and editorDirectory properties so that 
they are all set to /com.ibm.itso.sal330r.workflow/src. When we generate 
the plug-ins, the com.ibm.itso.sal330r.workflow project is created if it does not 
already exist. The code for all three plug-ins is generated to the src directory 
of this project, and a single plugin.xml is generated to describe the plug-in 
containing the model, edit, and editor code.

4. Edit the editPluginClass and editorPluginClass properties, as shown in 
Figure 2-8, so that they have the same package prefix.

 

 

 

 

58 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 2-8   Changing the top-level GenModel properties to generate a single plug-in

5. In order to generate the model code into the com.ibm.itso.sal330r.workflow 
package, we also edit the basePackage property on the workflow package, 
setting it to com.ibm.itso.sal330r, as shown in Figure 2-9. Notice that the 
basePackage does not include the package name workflow. When the model 
code is generated, the name of the EPackage from the model is used to 
construct the last part of the Java package name.

 

 

 

 

 Chapter 2. EMF examples 59



Figure 2-9   Changing the basePackage property

6. Select Generate All from the context menu of the top-level GenModel 
element to generate the model, edit, and editor code into the 
com.ibm.itso.sal330r.workflow plug-in. It is important to select Generate All 
the first time you generate the code, rather than choosing the model, edit, or 
editor options individually, so that plugin.xml contains all of the required 
entries for the combined plug-in. 

The resulting plug-in is located in the com.ibm.itso.sal330r.workflow project. 

Tip: Be sure to generate from the context menu of the top-level element in the 
GenModel. Generating from any item lower down in the tree will only generate 
code associated with that item and its children.

 

 

 

 

60 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



2.2.3  Modifying the generated code
Once you have generated the code for the model, edit, and editor plug-ins, there 
may still be some customizations that you need to make before you can use it. 
Common additions that you may make to the model code include implementing 
methods generated from EOperations, implementing getter and setter methods 
for volatile features, or adding methods that were not represented in the model. 

Modifying the model plug-in
In the following example, we modify the model code generated from the 
WorkflowModel to implement the getter and setter methods generated for our 
volatile attribute id, in WorkflowElementImpl. The id attribute is volatile because 
we want to generate its value to ensure that it is unique. When we generate the 
model code, skeletons are generated for the getId() and setId() methods, as 
shown in Example 2-15.

Example 2-15   Methods generated for volatile feature

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public String getId() {

// TODO: implement this method to return the 'Id' attribute
// Ensure that you remove @generated or mark it @generated NOT
throw new UnsupportedOperationException();

}
/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public void setId(String newId) {

// TODO: implement this method to set the 'Id' attribute
// Ensure that you remove @generated or mark it @generated NOT
throw new UnsupportedOperationException();

}

Important: Whenever you modify part of the generated code, be sure to 
remove the @generated tag, or change it to read @generated NOT in the 
comment that describes the method, type, or field that you are modifying. If 
you fail to do this, your changes will be discarded next time you regenerate the 
code from the model.

 

 

 

 

 Chapter 2. EMF examples 61



We modify WorkflowElementImpl to add a method to generate the id, add a field 
to cache the generated id, and use the method to set the value from within the 
getId() and setId() method, as shown in Example 2-16. We generate the id in 
both methods so that the id is never null when it is used.

Example 2-16   Modifying the getID() method

public abstract class WorkflowElementImpl extends EObjectImpl implements 
WorkflowElement {

/**
 * Prefix used for generated ids
 */
protected static final String idPrefix = "w";
/**
 * The cached value of the '{@link #getId() <em>id</em>}' attribute.
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @see #getId()
 * 
 */
protected String id;

protected static int counter = 0;
...
/**
 * Generate (and cache) an id as needed
 */
public String getId() {

if (id == null){
id = generateId();

}
return id;

}
/** 
 * Generate a random id based on the current time
 * @return the generated id
 */
public synchronized String generateId(){

long current= System.currentTimeMillis();
return idPrefix + current + counter++;

}
/**
 * Set or generate an Id
 */
public void setId(String newId) {

if (newId == null && id == null){
id = generateId();

}
else {

 

 

 

 

62 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



id = newId;
}

}
}

We remove the @generated tag from the comments to ensure our methods are 
not overwritten. Notice that volatile attributes are quite commonly not 
changeable, and are usually also transient. This means that usually you would 
not need to cache the value of the attribute or provide a setter implementation. In 
our case, although the ids are generated, and we don’t care what the value of the 
ids are while the objects are in memory, we use them in the serialization to make 
the XMI references more readable, which means that the id attribute has to be 
non-transient and changeable.

Modifying the edit plug-in
A common modification that you might want to make to an ItemProvider 
generated from a model object is to customize the getText() method. By default, 
this method returns the type of the object, followed by the value of the label 
feature for that type, and is used by the generated editor to label each item in the 
tree view displaying a model. For our WorkflowModel example, although Edges 
have a name and id, it is more useful to label them by the names of their source 
and target nodes. We modify the getText() method of EdgeItemProvider as 
shown in Example 2-17 to provide this functionality.

Example 2-17   The getText() method of EdgeItemProvider

/**
 * This returns the label text for the adapted class.
 * <!-- begin-user-doc -->
 * <!-- end-user-doc -->
 * @generated NOT
 */
public String getText(Object object) {

Edge e = (Edge)object;
String label = getString("_UI_Edge_type");
String fromNode = e.getSource().getNode().getName();
String toNode = e.getTarget().getNode().getName();
if (!(fromNode == null || fromNode.length() == 0))

label += " from " + fromNode;
if (!(toNode == null || toNode.length() == 0))

label += " to " + toNode;
return label;

}

 

 

 

 

 Chapter 2. EMF examples 63



In this case, we must take care, because the features that we are using to label 
the Edge are non-containment references. Remember from 2.2.2, “Customizing 
code generation through GenModel properties” on page 47, that notifications of 
changes to non-containment references are filtered by the ItemProvider and not 
passed to the editor by default. This means that the label will not be updated to 
reflect new values for the source or target if they change. We can override this 
behavior by setting the notify property for the source and target references of 
Edge in the GenModel to true, and then regenerating the edit code. 

You can see the result of the changes in the default WorkflowModel editor in 
Figure 2-10.

Figure 2-10   Editor using modified EdgeItemProvider

2.3  Model instances and serialization
In this section we examine how to create and serialize model instances. We 
provide examples that illustrate how to customize serialization and discuss the 
effect that different modeling techniques can have on the way in which instances 
are serialized.

2.3.1  Creating model instances
We can use the code generated for the model plug-in from our model to create 
instances of that model.

 

 

 

 

64 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Example 2-18 shows how we create a Workflow instance and a Task instance 
using the WorkflowFactory. The example also demonstrates how we use the 
methods from the generated code to set properties such as the name on the 
Task, and maintain references, in this case adding the Task to the nodes of the 
Workflow, and adding an InputPort and OutputPort to the Task.

Example 2-18   Creating instances

Map registry = EPackage.Registry.INSTANCE;
String workflowURI = WorkflowPackage.eNS_URI;
WorkflowPackage wfPackage = (WorkflowPackage) registry.get(workflowURI);
WorkflowFactory wfFactory = wfPackage.getWorkflowFactory();
Workflow workflow = wfFactory.createWorkflow();
// add a Task to the workflow
Task t1 = wfFactory.createTask();
workflow.getNodes().add(t1);
t1.setName(“Task 1”);
// add an input port and an output port to the Task
t1.getInputs().add(wfFactory.createInputPort());
t1.getOutputs().add(wfFactory.createOutputPort());
...

If we were using the reflective API to manipulate our instance objects, we would 
replace methods such as setName() and getNodes() that are specific to the 
WorkflowModel with generic eSet() and eGet() methods, for example:
t1.eSet(WorkflowPackage.eINSTANCE.getTask_Name(), "Task 2")
to set the name of the Task.

An interesting application of using the reflective APIs is to work with dynamic 
models, that is, to work with Ecore models as in-memory objects rather than 
generating code from the model and using the generated classes. Example 2-19 
shows an sample of how we can create instances of the Ecore model to 
represent a very basic model of Workflow.

Example 2-19   Creating a dynamic model

// Create the Workflow Package
EPackage workflowPackage = EcoreFactory.eINSTANCE.createEPackage();
// create the Port class
EClass portClass = EcoreFactory.eINSTANCE.createEClass();
portClass.setName("Port");
EClass inputPortClass = EcoreFactory.eINSTANCE.createEClass();
inputPortClass.setName("InputPort");
// set up inheritance
inputPortClass.getESuperTypes().add(portClass);
// create the Task class
EClass taskClass = EcoreFactory.eINSTANCE.createEClass();
taskClass.setName("Task");

 

 

 

 

 Chapter 2. EMF examples 65



// add name attribute to Task
EAttribute taskNameAttr = EcoreFactory.eINSTANCE.createEAttribute();
taskNameAttr.setName("name");
taskNameAttr.setEType(EcorePackage.eINSTANCE.getEString());
taskClass.getEAttributes().add(taskNameAttr);
// set up the reference between Task and InputPort
EReference taskToInputPortRef = EcoreFactory.eINSTANCE.createEReference();
taskToInputPortRef.setUpperBound(-1);
taskToInputPortRef.setLowerBound(1);
taskToInputPortRef.setEType(inputPortClass);
taskClass.getEReferences().add(taskToInputPortRef);
...
// add the classes to the package
workflowPackage.getEClassifiers().add(taskClass);
workflowPackage.getEClassifiers().add(portClass);
workflowPackage.getEClassifiers().add(inputPortClass);
...

We can create instances of this model using the reflective API, as Example 2-20 
demonstrates.

Example 2-20   Using the reflective API to create dynamic model instances

EFactory wfFactory = workflowPackage.getEFactoryInstance();
EObject task1 = wfFactory.create(taskClass);
task1.eSet(taskNameAttr, "Task 1");

Obviously, this dynamic approach only works for some applications — if you are 
using a model where you would normally customize the code generated from the 
model, for example, to implement EOperations, then this approach is not 
suitable.

2.3.2  Default serialization of model instances
When you create and serialize instances of an Ecore model, they are serialized 
by default as XMI 2.0. This section provides examples illustrating how EMF 
objects are represented in the XMI.

For a more complete description of XMI 2.0, please refer to the XML Metadata 
Interchange (XMI) Specification, Version 2.0, found at:

http://www.omg.org/technology/documents/formal/xmi.htm

 

 

 

 

66 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.omg.org/technology/documents/formal/xmi.htm


All of the example serializations discussed in this section can be found in the 
Serializations directory in the examples provided for this section.

Example 2-21 shows XMI representing a Workflow instance, representing a 
Workflow containing a Comment and two Tasks, each with an input, output, and 
fault port, and an Edge connecting them. You can load this example from the file 
SimpleXMIInstance.workflow.

Example 2-21   Default XMI serialization of a Workflow instance

<workflow:Workflow xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" id="w105966221898456"
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflow">
<nodes xsi:type="workflow:Task" name="Task 1" x="31" y="82"

id="w105966222103157" isStart="true">
<outputs xsi:type="workflow:FaultPort" name="fault"

id="w105966226568760"/>
<outputs name="output" id="w105966226568761" edges="w105966226568762"/>
<inputs name="input" id="w105966226568763"/>

</nodes>
<nodes xsi:type="workflow:Task" name="Task 2" x="265" y="81"

id="w105966222451558" isFinish="true">
<outputs xsi:type="workflow:FaultPort" name="fault"

id="w105966226568764"/>
<outputs name="output" id="w105966226568765"/>
<inputs name="input" id="w105966226568766" edges="w105966226568762"/>

</nodes>
<edges id="w105966226568762" target="w105966226568766"

source="w105966226568761"/>
<comments comment="This is a sample Workflow instance" x="24" y="20"

id="w105966223168759"/>
</workflow:Workflow>

As the example shows, the Workflow object is serialized to an element in the 
XMI, with attributes representing its EAttributes and non-containment 
EReferences. Containment EReferences are represented as elements, with the 
content of the contained object contained inline, as we see for the nodes 
elements from the example. When the reference can be to objects of different 
types (that is, to different subtypes of the referenced class), the xsi:type attribute 
is also serialized to identify the type of the object represented by the element. 

Note: We have already seen several examples of XMI representing model 
instances. The Ecore model is itself an EMF model, so the Ecore documents 
describing the models that we created in 2.1, “EMF modeling techniques” on 
page 30, were all examples of the default serialization of Ecore model 
instances to XMI.

 

 

 

 

 Chapter 2. EMF examples 67



Non-containment EReferences, such as the references between each edge and 
its target and source Ports, are represented as strings, that identify the object 
being referenced. By default, the strings used to identify other objects are based 
on the containing resource, type and position of the referenced object. 
Example 2-22 shows how positional references are used to serialize a Workflow. 
In Example 2-21, the id attribute is used instead of positional references. This is 
because the id property for that attribute it set to true in the model. If the id 
property is true for one of the attributes, references will refer to objects using the 
value of that attribute, if it is set, or use a positional reference if the id attribute is 
not set. If you are using an id attribute, it is important to ensure that its values are 
unique within a resource, so that the ids in the XMI are unique within the 
document, as required by the standard.

Example 2-22   Positional references

<workflow:Workflow xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflow">

<nodes xsi:type="workflow:Task" name="Task 1">
<outputs name="output" edges="//@edges.0"/>
<inputs name="input"/>

</nodes>
<nodes xsi:type="workflow:Task" name="Task 2">

<outputs name="output1"/>
<inputs name="input1" edges="//@edges.0"/>

</nodes>
<edges target="//@nodes.1/@inputs.0" source="//@nodes.0/@outputs.0"/>

</workflow:Workflow>

You can customize the way that references are represented in the XMI by 
overriding the eURIFragmentSegment() and eObjectForURIFragmentSegment() 
methods in your model implementation classes. The default positional references 
are provided by these methods in EObjectImpl, which is a superclass of all the 
implementation classes generated from a model.

When the references are to objects contained by another resource, then the 
scheme for finding the file that is the serialization of the resource (for example, 
http) and the name of the file is also added to the reference. An example of this is 
when we use cross-package references and serialize the containing Ecore 
EPackages into separate files, such as the following snippet taken from 
Example 2-4 on page 37:

<eReferences name="model"
eType="ecore:EClass WorkflowWithCommonSupertype.ecore#//Task"/>

 

 

 

 

68 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Each model instance that is created by the generated editor plug-in is added to a 
Resource, which can later be used to serialize that instance. Within any 
EMF-based application, we can use an XMIResource to serialize or deserialize 
instance objects. In the sample application discussed in Chapter 7, 
“Implementing the sample” on page 203, we use XMIResources to contain 
WorkflowModel instances. To create or get each resource, we first create a 
ResourceSet, as Example 2-23 shows.

Example 2-23   Set up the ResourceSet

// Initialize the workflow package
WorkflowPackageImpl.init();

// Register the XMI resource factory for the .workflow extension
Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
Map m = reg.getExtensionToFactoryMap();
m.put("workflow", new XMIResourceFactoryImpl());

// Obtain a new resource set
ResourceSet resSet = new ResourceSetImpl();

ResourceSets are used to group related Resources. A Resource can contain 
instances of any object from a model, and a ResourceSet is used to group 
related Resources, that is, Resources that contain objects that reference each 
other. For the Workflow example, we use Resources to contain Workflow 
instances. We can use the ResourceSet created in Example 2-23 to create a 
new Resource as shown in Example 2-24.

Example 2-24   Create an XMIResource

// Create a resource
Resource resource = 

resSet.createResource(URI.createPlatformResourceURI(path.toString()));

If we want to load from an existing resource, we use the getResource() method 
instead, as shown in Example 2-25.

Example 2-25   Load an XMIResource

// Get a resource
Resource resource =

resSet.getResource(URI.createPlatformResourceURI(path.toString()),true);

Once we have the resource, we can add objects to the contents of the resource. 
Objects contained by the same resource will be serialized to the same file. 
Example 2-26 shows how we create and add a Workflow object to a resource.

 

 

 

 

 Chapter 2. EMF examples 69



Example 2-26   Add a model object to a resource

Workflow workflow = wfFactory.createWorkflow();
resource.getContents().add(workflow);

Many models are based on an inheritance hierarchy, with a single top-level 
container. One of the advantages of this approach is that you need only add the 
top-level object to the resource explicitly. All of the other objects contained in the 
hierarchy will be serialized as elements within that top-level element. If you are 
using a model without a top-level container, then any objects that are not 
contained need to be added to the Resource explicitly. 

2.3.3  Using the XSD plug-in to customize serialization
In this section, we demonstrate how to use a custom serialization to XML, by 
annotating our model with information used by the XSD plug-in. 

Whenever we create an Ecore model from an XML Schema using the XSD 
plug-in, annotations that describe how each object is serialized to XML are 
added to the model, so that serialized model instances conform to the source 
schema. Use of these annotations is not limited to models imported from XML 
Schema; we show how to use the same annotations on any Ecore model to 
control how its instances are serialized.

We make the following changes to improve the readability of XML representing 
WorkflowModel instances:

� Use an XML element instead of an XML attribute to represent EAttributes that 
potentially have lengthy values, including:

– comment from WorkflowElement
– transformExpression from Transformation
– condition from ConditionalOutputPort
– whileCondition from LoopTask

� Use the singular form of the name of multi-valued containment EReferences 
to prevent the plural form being used for an elements that represent single 
objects. Notice that we do not make this change for non-containment 
EReferences, as the default serialization is to an XML attribute that 
represents the entire list of values, and so using the plural form of the name is 
appropriate. 

Note: Although the XML produced by using techniques described in this 
section may look very similar to the XMI described in 2.3.2, “Default 
serialization of model instances” on page 66, it is important to notice that it 
does not conform to the XMI 2.0 standard.

 

 

 

 

70 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



� For example, within Workflow:

– comments becomes comment
– edges becomes edge
– nodes becomes node

� Change the Workflow element to be lower case, to provide consistent 
capitalization throughout the document.

We begin by annotating the workflow EPackage, as shown in Example 2-27, 
indicating to the XSD plug-in that instances of this package use elements and 
attributes from the namespace http://www.redbooks.ibm.com/sal330r/workflowXSD. 
The annotations on the objects contained by the package indicate how each 
object maps to elements and attributes from this namespace.

Example 2-27   XSD annotation on workflow EPackage

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" nsPrefix="workflow"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="workflow"
nsURI="http://www.redbooks.ibm.com/sal330r/workflowXSD">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="schema"/>
<details key="targetNamespace"

value="http://www.redbooks.ibm.com/sal330r/workflowXSD"/>
</eAnnotations>
... existing content ...

</ecore:EPackage>

Example 2-28 shows the eAnnotations element we use to annotate the comment 
EAttribute of WorkflowElement, to indicate that it should be represented as an 
element, rather than as an attribute. This is achieved by setting the value of the 
representation key to element. To force serialization as an attribute, we would 
use the value attribute instead. We add similar eAnnotations to the 
eAttributes elements representing transformExpression, condition and 
whileCondition so that they are also represented as XML elements.

Example 2-28   XSD annotation on comment EAttribute

<eAttributes name="comment" eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString">
<eAnnotations

source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">
<details key="representation" value="element"/>
<details key="name" value="comment"/>
<details key="targetNamespace"/>

</eAnnotations>
</eAttributes>

 

 

 

 

 Chapter 2. EMF examples 71



We use a similar annotation to change the names of elements used to represent 
EReferences with pluralized names. For example, to use an element called node 
instead of nodes to represent each node contained by a Workflow, we add the 
EAnnotation shown in Example 2-29. We provide the new element name node as 
the value of the name key. We add similar annotations for all of the other 
multi-valued containment EReferences in our model.

Example 2-29   XSD annotation on nodes EReference

<eReferences name="nodes" eType="#//WorkflowNode" upperBound="-1"
containment="true" eOpposite="#//WorkflowNode/workflow">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="node"/>
<details key="targetNamespace"/>

</eAnnotations>
</eReferences>

We use the same technique to ensure that a lower-case element name is used 
for Workflow, however we have to be careful to make sure we specify the 
targetNamespace correctly, as the workflow element is the top-level element of 
our XML instance documents, so we cannot rely on XML namespace scoping for 
this value. Because we have constraints in the WorkflowModel that mean that all 
other objects are contained either directly or indirectly by a Workflow, we do not 
have to specify targetNamespace for any other elements, however, if you are 
using this technique to customize serialization for other models, make sure you 
specify this value for any elements that could appear as the top-level element in 
a serialized instance. Example 2-30 shows how we annotate the eClassifiers 
element representing the Workflow class. The targetNamspace that we specify in 
this annotation should match the nsURI of the containing package exactly.

Example 2-30   XSD annotation on Workflow EClass 

<eClassifiers xsi:type="ecore:EClass" name="Workflow"
eSuperTypes="#//WorkflowElement">
<eAnnotations source="http:///org/eclipse/emf/mapping/xsd2ecore/XSD2Ecore">

<details key="representation" value="element"/>
<details key="name" value="workflow"/>
<details key="targetNamespace"

value="http://www.redbooks.ibm.com/sal330r/workflowXSD"/>
</eAnnotations>
... existing content ...

</eClassifiers>

Having annotated our model, we re-generate the model plug-in as follows:

 

 

 

 

72 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



1. Create or reload the GenModel from the annotated WorkflowModel, as 
described in “Java annotation and the code generation process” on page 24. 
To reload, select Reload... from the context menu that appears when you 
right-click the GenModel file in the Navigator or Package Explorer view, and 
then open the GenModel file.

2. We modify the GenModel so the regenerated code supports our 
customizations. Refer to 2.2.2, “Customizing code generation through 
GenModel properties” on page 47 for more information about setting 
properties in the GenModel. Select the workflow package from the GenModel 
tree and set Resource Type to XML.

3. Save the GenModel and then select Generate Model Code from the 
right-click context menu of the top-level element in the GenModel. You may 
wish to select Generate All instead if you do not have an up-to-date editor 
generated from your model. If adding these annotations is the only change 
that you have made to the model since generating the edit, and editor 
plug-ins, you do not need to regenerate them.

The model plug-in now includes code that supports serializing to our custom 
XML syntax. When we run our editor and create new model instances as 
described in Chapter 1, “Introduction to EMF” on page 3, the object instances are 
represented as elements or attributes according to the annotations that we 
added to the model. If we take a look at a new instance in a text editor, such as 
the instance shown in Example 2-31, and compare this to the default serialization 
shown in Example 2-21, we can see evidence of the changes that we have made 
to the serialization format.

Example 2-31   Custom serialization of a Workflow instance

<workflow:workflow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflowXSD"
id="w105966221898456">
<node xsi:type="workflow:Task" name="Task 1" x="31" y="82"

id="w105966222103157" isStart="true">
<output xsi:type="workflow:FaultPort" name="fault"

id="w105966226568760"/>
<output name="output" id="w105966226568761" edges="w105966226568762"/>
<input name="input" id="w105966226568763"/>

</node>
<node xsi:type="workflow:Task" name="Task 2" x="265" y="81"

id="w105966222451558" isFinish="true">
<output xsi:type="workflow:FaultPort" name="fault"

id="w105966226568764"/>
<output name="output" id="w105966226568765"/>
<input name="input" id="w105966226568766" edges="w105966226568762"/>

</node>
<edge id="w105966226568762" target="w105966226568766"

 

 

 

 

 Chapter 2. EMF examples 73



source="w105966226568761"/>
<comment x="24" y="20" id="w105966223168759">

<comment>This is a sample Workflow instance</comment>
</comment>

</workflow:workflow>

You can find the completed annotated model in the WorkflowXSD folder in the 
examples for this section. This example demonstrates how to control whether 
model objects are serialized as XML elements or attributes, and allows us to 
provide names of our choosing for those elements and attributes. There are 
other annotations that are used by XSD to control feature-order and map XML 
Schema types to model objects, as discussed in 2.1.2, “Migrating existing 
models” on page 40, which you may also use to customize the serialization 
further.

2.3.4  Customizing XMI serialization using an XMLMap
When we customize the serialization using XSD annotations, we are using the 
XSD plug-in to generate an XMLMap that specifies the mapping between model 
objects and their serialization. We can perform similar customizations when we 
serialize without annotating the model.

The XMI 2.0 production rules allow features to be serialized either as elements or 
attributes. We can control whether each feature is serialized as an element or as 
an attribute by creating an XMLMap and adding appropriate mappings, as the 
following example illustrates. You can find the code for this example in the 
XMLMapExample directory in the examples for this section.

In this example, we change the serialization of the comment attribute of 
WorkflowElement, so that an XML element rather than an attribute is used to 
represent the value. We modify the execute() method within the 
WorkspaceModifyOperation in the doSave() method of the generated editor as 
shown in Example 2-32, to customize the serialization.

Example 2-32   Using an XMLMap to customize serialization of XMI

XMLMapImpl map = new XMLMapImpl();
XMLInfoImpl x = new XMLInfoImpl();
x.setXMLRepresentation(XMLInfoImpl.ELEMENT);
map.add(WorkflowPackage.eINSTANCE.getWorkflowElement_Comment(), x);
Map options = new HashMap();
options.put(XMLResource.OPTION_XML_MAP, map);
Resource savedResource =

(Resource)editingDomain.getResourceSet().getResources().get(0);
savedResources.add(savedResource);
savedResource.save(options);

 

 

 

 

74 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



We perform the following steps to customize the serialization of a type or feature 
from the model:

1. Create an XMLMap to store the information about mapping the model to XML.

2. For each model object with a custom serialization:

a. Create an XMLInfo and use the setName(), setTargetNamespace() and 
setXMLRepresentation() method to specify the how the object is 
represented in the XML.

b. Add the XMLInfo to the XMLMap, using the object for which you want to 
customize serialization as the key. We do this in the example with:
map.add(WorkflowPackage.eINSTANCE.getWorkflowElement_Comment(), x);

3. Put the XMLMap as the OPTION_XML_MAP in the options map that you use 
to save the resource.

Use the setName() method on the XMLInfoImpl to customize the name of the 
element or attribute tag used in the XML, and setTargetNamespace() to set the 
namespace for that element or attribute.

Use setXMLRepresentation() to specify whether the object is represented as an 
ELEMENT, ATTRIBUTE or CONTENT. Specifying CONTENT results in the 
value of object being contained directly by its parent. For example, we might use 
CONTENT to represent the condition attribute of a ConditionalOutputPort so that 
serialized instances look something like this:

<outputs xsi:type="workflow:ConditionalOutputPort" id="w1">
This is the condition
</outputs>

instead of looking like this:

<outputs xsi:type="workflow:ConditionalOutputPort" id="w1" condition="This 
is the condition"/>

2.3.5  Providing a custom resource implementation
When we use the XSD plug-in to customize serialization, we are using an 
XMLResource to contain our model objects rather than an XMIResource. If we 
set the Resource Type property of a package to Basic, XMI, or XML in the 
GenModel, when we generate the model plug-in from the model, a ResourceImpl 
and ResourceFactoryImpl are generated for our model in the util package. By 
modifying the implementation of the ResourceImpl generated for our model, we 
can customize the serialization. If we have chosen XMI or XML as the Resource 
Type, the generated ResourceImpl will be a subclass of XMIResource or 
XMLResource, respectively. We can override methods in that subclass to 
customize serialization to XMI or XML. If we have chosen to use a Basic 
Resource Type, then we can serialize to any format by providing the necessary 
methods to implement ResourceImpl.

 

 

 

 

 Chapter 2. EMF examples 75



Customizing XMI serialization
When customizing XMI serialization, it is important to remember that if you 
customize the serialization format too much, it will no longer be standard XMI. 
However, there are some customizations that you can make without breaking 
conformance to the XMI 2.0 standard. One such customization is to use an 
element instead of an attribute to represent features, as we demonstrate in 2.3.4, 
“Customizing XMI serialization using an XMLMap” on page 74. 

Another change that you can make while still complying with the standard is to 
modify how ids are generated in the serialization. Instead of using an attribute 
with the id property set to true in the model, you may wish to generate ids for all 
elements in the serialization. Although the ids are not accessible from the model, 
the advantage of generating them is that you can ensure that they remain 
unique. Be aware, however, that generating ids means that elements can 
potentially have a different id each time they are serialized.

The ids are mapped to objects from the model by the resource, which uses a 
map to map ids to each EObject. You can assign ids specifically to particular 
objects before you serialize by using the setID() method on the resource, as 
shown in Example 2-33.

Example 2-33   Set object ids via setID()

Resource resource = ...
EObject myobject = ....
resource.setId(myobject, “id1”);

If you want ids to be generated automatically for your objects, you can override 
the getID() in your resource implementation to do this, as Example 2-34 shows.

Example 2-34   Override getId() to generate ids

public String getId(EObject obj){

String id = super.getID(obj);
if (id == null){

id = generateID();
setID(obj,id);

}
return id;

}

 

 

 

 

76 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Customizing XML serialization
The XML that we generated in 2.3.3, “Using the XSD plug-in to customize 
serialization” on page 70, used the names of references to contained objects for 
the XML elements representing those objects. A different representation would 
be to use a name that identifies the type of the reference, particularly in a model 
where there is usually only a single reference between objects of each type. 

The mapping of element and attribute names to model objects is taken care of by 
an XMLHelper. We provide our own custom XMLHelper, to override the default 
names for references, replacing reference names with the name of the type 
instead. Example 2-35 shows how we override this method in our XMLHelper 
implementation.

Example 2-35   Customized XMLHelper

public class WorkflowXMLHelperImpl extends XMLHelperImpl implements XMLHelper {
...
public String getName(ENamedElement obj) {

XMLResource.XMLInfo info = null;
if (xmlMap != null) {

info = xmlMap.getInfo(obj);
}
if (info != null && info.getName() != null) {

return info.getName();
} else {

if (obj instanceof EReference
          && ((EReference) obj).getEType() != null)

return ((EReference) obj).getEType().getName();
else

return obj.getName();
}

}
}

To use the XMLHelper from our XMLResourceImpl, we simply override the 
method that creates the helper, to create an instance of our WorkflowXMLHelper 
instead, as Example 2-36 shows.

Note: When there are multiple references to a type from the same object, we 
have to be careful, for example in the case of CompoundTask, because it has 
two references to Workflow, we have to be able to distinguish between the 
two, so we might need to add additional information to the serialization to do 
this. Generally you would only want to use a serialization such as this one if 
the type implied the reference.

 

 

 

 

 Chapter 2. EMF examples 77



Example 2-36   Overriding the createXMLHelper() method

protected XMLHelper createXMLHelper()
{
  return new WorkflowXMLHelperImpl(this);
}

The file XMLResourceCustomization.workflow contains an example of a 
Workflow serialized using WorkflowXMLResource.

So far we have only dealt with serializing to the custom format, we would also 
have to override the getFeatureWithoutMap() method to map the types back to 
features, however we leave this an exercise for the reader.

Customizing XMLHelper allows us to use the names of the types of the 
references for element names, however because XMLHelper is creating names 
from the model itself, rather than from instances, it cannot create specific type 
names for subtypes. An example of using more specific type names for the 
WorkflowModel would be to use element names FaultPort or 
ConditionalOutputPort instead of just using OutputPort for those types, or to use 
Task, Comment or Choice instead of WorkflowNode, such as the fragment 
shown in Example 2-37.

Example 2-37   A more readable representation of contained objects

<Task name="Task 2" x="265" y="81" id="w105966222451558" isFinish="true">
<FaultPort name="fault" id="w105966226568764"/>
<OutputPort name="output" id="w105966226568765"/>

...
</Task>

The serialization would produce such elements if you added explicit references 
to each class with specific names for each reference, in the same way that we 
already have specific references to OutputPort and InputPort rather than a 
general reference to Port.

However, then you would need to maintain all of these references separately or 
lose the benefits of polymorphism, and your model would be cluttered. However, 
we could implement such a serialization by providing our own subclasses of 
XMLSaveImpl and XMLLoadImpl and use them within WorkflowResourceImpl, 
as these are the classes that actually serialize our instances, and override 
methods such as saveElement() to provide a more specific name.

These examples are provided to give you an idea of the types of things you can 
customize by providing your own XMLHelper, XMLSave or XMLLoad 
implementations. You may choose to override the methods from those classes to 
produce any XML serialization.

 

 

 

 

78 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Other serializations
To serialize to other formats, all you need to do is to implement your own 
versions of the doSave() and doLoad() methods in your ResourceImpl subclass.

2.4  Using JET to customize code generation
In this section we provide examples that illustrate how to use the Java Emitter 
Templates (JET) framework provided with EMF to customize code generation. 
We describe how JET is used to generate the model, edit, and editor plug-ins 
that we examine in “The generated plug-ins” on page 45, as well as how to 
approach customizing this code generation.

For an introduction to JET in general, refer to the two-part JET Tutorial by Remko 
Popma, available from Eclipse Corner, at:

http://eclipse.org/articles/Article-JET/jet_tutorial1.html
http://eclipse.org/articles/Article-JET/jet_tutorial2.html

2.4.1  .JET-related GenModel properties
In 2.2.1, “The generated plug-ins” on page 45, we described the model, edit, and 
editor plug-ins that are generated from EMF models. These plug-ins are 
generated using JET, and we can control this generation by setting the 
GenModel properties of the model from which we are generating the plug-ins.

The JET-related GenModel properties are described in Table 2-5. All of these 
properties are represented at the top-level of the GenModel, and are grouped by 
the GenModel editor into the Templates & Merge category. Setting these 
properties allows us to override the default JET templates used to generate the 
model, edit, and editor plug-ins. Descriptions of the properties are provided by 
the GenModel editor in the status bar whenever you select one of the properties.

 

 

 

 

 Chapter 2. EMF examples 79

http://eclipse.org/articles/Article-JET/jet_tutorial1.html
http://eclipse.org/articles/Article-JET/jet_tutorial1.html


Table 2-5   Templates and Merge GenModel properties

The most interesting of these to us are the dynamicTemplates and template 
Directory properties:

The dynamicTemplates property indicates that the precompiled templates 
provided by org.eclipse.emf.codegen.ecore.genmodel should be ignored, and 
that the template implementation should be translated and compiled from 
dynamic templates.

The templateDirectory indicates the location to look for new templates. A 
template placed in this location will override the default template with the same 
name from org.eclipse.emf.codegen.ecore.genmodel. 

2.4.2  Writing JET templates
In this section, we customize the generation of the plug-ins described in 2.2.1, 
“The generated plug-ins” on page 45. By default, these plug-ins are generated 
from templates located in:

<ECLIPSEHOME>/plugins/org.eclipse.emf.codegen.ecore_<EMFVERSION>/
templates

Where <ECLIPSEHOME> is the location where you installed Eclipse and 
<EMFVERSION> is the version of the EMF plug-in that you have installed.

The org.eclipse.emf.codegen.ecore templates directory contains sub-directories 
for the model, edit, and editor plug-ins. The files with the extension javajet are the 
templates. The file extension follows the JET convention of using the extension 
of the file that is generated by the template concatenated with jet. In this 
example, we customize the Java code generated for the model plug-in by 
providing our own version of some of the model templates.

Property XMI attribute Default

Dynamic Templates dynamicTemplates false

Force Overwrite forceOverwrite false

Redirection Pattern redirection

Runtime Jar runtimeJar false

Template Directory templateDirectory

Update Classpath updateClasspath true

 

 

 

 

80 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



The header template provides the comment that is located at the head of each 
generated class file. We begin by creating our own templates directory, and by 
supplying a new Header.javajet. To do this, perform the following steps:

1. Add a directory called templates to the WorkflowModel project.

2. Create a new text file called Header.javajet in the templates directory. If you 
prefer, you can copy the existing Header.javajet file as a basis for your 
template.

3. Edit Header.javajet to contain the comment that is to be included at the top of 
every generated class file. We edit the file to read as shown in Example 2-38:

Example 2-38   Our version of Header.javajet

/**
 * WorkflowModel
 *
 * Copyright (c) 2000, 2003 IBM Corporation and others.
 * All rights reserved. This program and the accompanying materials 
 * are made available under the terms of the Common Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/cpl-v10.html
 *
 */

4. Generate the GenModel for the WorkflowModel. This step may be skipped if 
you already have a GenModel for the WorkflowModel.

5. Edit the GenModel properties:

a. Set the dynamicTemplates property to true.

b. Set the templateDirectory property to the location of your templates 
directory, for example, /WorkflowModel/templates.

By default, the header is only generated the first time the code is generated from 
your model, so if you already have a version of the model plug-in in your project, 
you will need to override this behavior. The merging of existing content with new 
content is handled by EMF’s jmerge. The rules for merging the model, edit, and 
editor code generated from EMF models are expressed in the file 
emf-merge.xml. Copy emf-merge.xml into your templates directory from the 
org.eclipse.emf.ecore.codegen plug-in’s templates directory and modify the file 
so that it includes an additional rule to set the header each time the code is 
generated, as shown in Example 2-39.

 

 

 

 

 Chapter 2. EMF examples 81



Example 2-39   Merge rules for code generation from WorkflowModel

<merge:options ... >
... existing content ...
<merge:pull sourceGet="CompilationUnit/getHeader"

targetPut="CompilationUnit/setHeader"/>
</merge:options>

Now when you generate the model plug-in and take a look at the generated 
code, the contents of Header.javajet should appear in place of the default 
header.

JET templates use a simplified Java Server Pages (JSP) syntax. You can get a 
feel for how JET templates work by examining and modifying the templates used 
to generate the interface and implementation corresponding to each class in a 
model. Begin by making a copy of the templates into the WorkflowModel 
project’s templates directory:

1. Create a model sub-directory within the templates directory in the 
WorkflowModel project.

2. Copy the files Interface.javajet Class.javajet and from the model directory in 
the org.eclipse.emf.codegen.ecore plug-in’s templates directory to the 
directory created in the previous step.

We are mirroring the templates directory structure used by the 
org.eclipse.emf.codegen.ecore plug-in, as we are essentially replacing its 
templates with our own versions. 

At the first line in Interface.javajet, we see the tag shown in Example 2-40.

Example 2-40   The jet directive

<%@ jet package="org.eclipse.emf.codegen.ecore.templates.model" 
imports="java.util.* org.eclipse.emf.codegen.ecore.genmodel.*" 
class="Interface" %>

The tags used within JET templates are identified by an opening <% and a closing 
%>. Inside the tags, you can use Java code to script what is generated from the 
template, or you can use special tags to represent JET directives or expressions. 
The jet tag shown in Example 2-40 is a directive. Expression tags are used to 
create values based on expressions in the files generated from the templates. 

Tip: Whenever you modify a template, you may need to close and then 
re-open the GenModel file before regenerating code so that the new version of 
the template is used.

 

 

 

 

82 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Directives start with <%@ and a name that identifies them, and expressions start 
with <%=. We can see examples of each of these types of tags just a few lines 
further down in Interface.javajet, as shown in Example 2-41.

Example 2-41   JET scriptlet, directive and expression tags

<%GenClass genClass = (GenClass)argument; GenPackage genPackage = 
genClass.getGenPackage(); GenModel genModel=genPackage.getGenModel();%>
<%@ include file="../Header.javajet"%>
package <%=genPackage.getInterfacePackageName()%>;

The first tag shown in Example 2-41, is a scriptlet that declares and initializes 
variables that can be referenced from other tags in the rest of the template. In this 
case, we see genClass, which represents the class for which the interface is 
being generated using this template, genPackage, which represents its containing 
package, and genModel, which is the model that contains genPackage. 

The second tag shown in Example 2-41 is another directive; this one indicates 
that the code produced from the Header.javajet template is included at this point 
in the code generated from this Interface template. The include directive has a 
single attribute, file, that indicates the location of the file to be included. There 
are two directives that can be used within JET templates; the include directive, 
seen in this example, and the jet directive seen in Example 2-40. The jet 
directive may appear only on the first line of a template, and every template must 
have a jet directive. The attributes of the jet directive are described in the JET 
Tutorial part one, (Introduction to JET). Note Header.javajet did not have a jet 
directive, because it is just a fragment included into other templates.

The third tag from Example 2-41 is an expression tag, which in this case provides 
the expression used to get the package name for the interface that is generated 
using the template.

You may notice that the names of most of the types and methods that end up in 
the generated code come from expression tags that call methods provided by the 
GenModel. The reason for this is that the code is generated from GenModel 
objects that are provided as arguments to each template. We can change the 
structure or the literal content of the generated code by editing the templates, 
however changing the names of the methods and types in the generated code 
would require providing our own implementation of the interfaces in 
org.eclipse.emf.codegen.ecore.genmodel and then providing those objects as 
arguments to the templates. For our additions to the generated code, we edit the 
templates only. If you would like to find out more about providing different objects 
as arguments to a JET template, please refer to the JET Tutorial.

 

 

 

 

 Chapter 2. EMF examples 83



We modify the templates to add additional methods for multi-valued features to 
get an element from the list of values by position. Because 
WorkflowModelElement is the supertype of every other class in the 
WorkflowModel, and it has an name attribute, we know that every object in the 
model can have a name, hence we also add template methods to get list 
members by name.

In Interface.javajet, we can see that the section of the template that generates 
accessor methods for features is contained within a for-loop that iterates over the 
features of the class. We are adding template to generate additional methods for 
some features, so we make our additions within this loop. 

Example 2-42 shows concrete examples of the method signatures that we are 
adding to the generated interfaces. In this case, the methods are for the inputs 
feature of the class WorkflowNode.

Example 2-42   Concrete example of additional method signatures

InputPort getInputs(int index);
InputPort getInputs(String name);

To generate similar methods for all multi-valued features using the templates, we 
substitute types and methods specific to the inputs reference with expression 
tags. We use method calls on genFeature, which represents each feature, to 
provide the values. We also add @generated to indicate that these methods are 
now generated. Example 2-43 shows the code that we add to Interface.javajet to 
generate the extra methods in the interface for each generated type. We wrap the 
template for the new methods inside conditions, to make sure that we only 
generate these methods for multi-valued features, that is, features that are 
regular list types.

Example 2-43   Interface template fragment for additional methods

<%for (Iterator i=genClass.getGenFeatures().iterator(); i.hasNext();)
{GenFeature genFeature = (GenFeature)i.next();%>

... existing content ...
<%if (genFeature.isListType()) {%>
<%if (!genFeature.isMapType()){%>

/**
 * Get an item from the list by position
 * @generated
 */
<%=genFeature.getQualifiedListItemType()%> 

<%=genFeature.getGetAccessor()%>(int index);
/**
 * Get an item from the list by name
 * @generated
 */

 

 

 

 

84 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



<%=genFeature.getQualifiedListItemType()%> 
<%=genFeature.getGetAccessor()%>(String name);
<%}//if%>
<%}//if%>
<%}//for%>

We use a similar process to template the implementation of the additional 
methods in Class.javajet. Example 2-44 shows concrete examples of the 
implementation of the methods that we wish to add.

Example 2-44   Concrete example of additional methods

public InputPort getInputs(int index) {
return (InputPort) this.getInputs().get(index);

}

public InputPort getInputs(String name) {
Iterator i = this.getInputs().iterator();
while (i.hasNext()) {

InputPort input = (InputPort) i.next();
if (true == name.equals(input.getName()))

return input;
}
return null;

}

Again, we generalize by substituting expression tags for the parts of the method 
implementations that are specific to the feature. Example 2-45 shows the code 
that we add to Class.javajet. We add the method templates to the existing 
for-loop that iterates over all of the implemented features. Notice that because 
we introduce the class java.util.Iterator into the generated code in the second 
additional method, we need to use the getImportedName method from the 
GenModel to make sure it is added to the imports in the generated class.

Example 2-45   Class template fragment for additional methods

<%for (Iterator i=genClass.getImplementedGenFeatures().iterator(); 
i.hasNext();) {GenFeature genFeature = (GenFeature)i.next();%>

... existing content ...
<%if (genFeature.isListType()) {%>
<%if (!genFeature.isMapType()){%>

/**
 * Get an item from the list by index
 * @generated
 */
public <%=genFeature.getQualifiedListItemType()%> 

<%=genFeature.getGetAccessor()%>(int index){
return (<%=genFeature.getQualifiedListItemType()%>) 

 

 

 

 

 Chapter 2. EMF examples 85



this.<%=genFeature.getGetAccessor()%>().get(index);
}

/**
 * Get an item from the list by name
 * @generated
 */
public <%=genFeature.getQualifiedListItemType()%> 

<%=genFeature.getGetAccessor()%>(String name){
<%=genModel.getImportedName("java.util.Iterator")%> i = 

this.<%=genFeature.getGetAccessor()%>().iterator();
while (i.hasNext()) {

<%=genFeature.getQualifiedListItemType()%> l = 
(<%=genFeature.getQualifiedListItemType()%>) i.next();

if (name.equals(l.getName()))
return l;

}
return null;

}
<%}//if%>
<%}//if%>
<%}//for%>

Now, when you generate the model plug-in, you should see the additional 
methods in the generated interfaces and implementation classes. You may also 
notice a new project .JETEmitters appear in your workspace in the resource 
view. This project is created by default when the templates are translated, as 
described in the JET Tutorial, Part Two, and it contains the actual 
implementations of our templates.

 

 

 

 

86 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Chapter 3. Introduction to GEF

In this chapter, we provide an introduction to GEF and Draw2D. You can read 
about the basics of the frameworks and get some first tips about using them.

After the introduction, we show you how to build a graphical editor skeleton using 
our step-by-step instructions, and then explain how to map your model into GEF 
edit parts. 

3

Note: The sample code we describe in this chapter is available as part of the 
redbook additional material. See Appendix A, “Additional material” on 
page 225 for details on how to obtain and work with the additional material. 
The sample code for this chapter is provided as Eclipse projects that can be 
imported into your Eclipse workbench. Each major section of this chapter has 
a matching Eclipse project in the additional material.

 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 87



3.1  What is the Graphical Editing Framework?
The Graphical Editing Framework allows us to easily develop graphical 
representations for existing models. It is possible to develop feature rich 
graphical editors using GEF.

All graphical visualization is done via the Draw2D framework, which is a standard 
2D drawing framework based on SWT from eclipse.org.

The editing possibilities of the Graphical Editing Framework allow you to build 
graphical editors for nearly every model. With these editors, it is possible to do 
simple modifications to your model, like changing element properties or complex 
operations like changing the structure of your model in different ways at the same 
time.

All these modifications to your model can be handled in a graphical editor using 
very common functions like drag and drop, copy and paste, and actions invoked 
from menus or toolbars.

For our demonstration code and for explanations of the GEF API, we used the 
latest code releases that were available during the creation of this redbook: 
Eclipse 2.1.1 and GEF 2.1.1.

3.1.1  Additional documents and resources
Basically there are two kinds of additional resources available — one that ships 
with the Graphical Editing Framework and other freely available on the Internet.

Integrated Eclipse help
The Graphical Editing Framework SDK provides online help that is integrated 
into Eclipse. This should be used as a starting point. It is available by clicking 
Help -> Help Contents and then clicking the topic Draw2D Developers Guide 
or GEF Developer Guide on the left side of the new window.

Resources on the Web
The GEF Web site provides access to a wide range of resources related to the 
Graphical Editing Framework, including code releases, examples, and 
documentation:

http://www.eclipse.org/gef 

Note: Only the GEF SDK is shipped with the developer documentation of GEF 
and Draw2D.

 

 

 

 

88 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.eclipse.org/gef


Any questions and topics not answered by the frequently asked questions (FAQ) 
feature, available at the GEF Web site, can be discussed in the GEF newsgroup 
(eclipse.tools.gef), which is available at the Eclipse news server 
(news.eclipse.org).

A public community driven pool is available at:

http://eclipsewiki.swiki.net

The Eclipse Wiki also has a section for GEF related topics, which provides an 
additional list of answers for frequently asked questions and additional examples 
and other resources.

3.1.2  Applications suitable for GEF
We found numerous applications developed with GEF. Thanks to the authors of 
these applications, we are able to show you the following screen captures of 
sample applications using GEF. As you will see, there is no limit on using a 
graphical editor for nearly every case.

The most common case might be a modelling application. You can build 
graphical editors for modelling nearly every kind of situation (for example, 
business processes, application models, or even UI screens).

There are also graphical editors available for designing documents such as 
reports, Web sites, or forms. You can develop graphical editors for modifying 
environments (for example, configuration files of applications, servers, or 
deployment descriptors for enterprise applications — or even for routing trains). 

The possibilities are only limited by your imagination!

 

 

 

 

 Chapter 3. Introduction to GEF 89

http://eclipsewiki.swiki.net


MDE for Struts
Available as an Eclipse-based IDE or plug-in, MDE for Struts (Figure 3-1) 
enables model-driven development of Struts 1.1 applications using standard 
UML. From simple class diagrams, MDE for Struts creates JSPs, Java classes, 
struts-config.xml, validator.xml, Application Resource, ANT build scripts and 
J2EE deployment files. You can take control of the architecture by changing Java 
MetaPrograms that translate the model to code. A free evaluation version is 
available at:

http://www.metanology.com

Figure 3-1   Struts MDE

 

 

 

 

90 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://www.metanology.com


AcmeStudio
AcmeStudio (Figure 3-2) is a customizable editing environment and visualization 
tool for software architecture designs based on the Acme architectural 
description language (ADL). With AcmeStudio, you can define new Acme 
families for specific domains and customize the environment to work with those 
families by defining new diagram styles. AcmeStudio is an adaptable front-end 
that may be used in a variety of modeling and analysis applications. Written as 
an Eclipse plug-in, AcmeStudio provides the opportunity to integrate third-party 
architectural analysis tools.

AcmeStudio is being developed at the School of Computer Science at Carnegie 
Mellon University. This work is supported in part by DARPA under Grants 
N66001-99-2-8918 and F30602-00-2-0616, and by the High Dependability 
Computing Program from NASA Ames, cooperative agreement NCC-2-11298.

Figure 3-2   AcmeStudio

ThrottleSensorCruiseSensor Actuator

CruiseController MiscController ThrottleController

ExternalOut

Scheduler

Plant

Externalinputs

MiscSensor

HLAex.Plant

 

 

 

 

 Chapter 3. Introduction to GEF 91



EclipseDesigner
EclipseDesigner (Figure 3-3) is a two-way visual designer for SWT. Design 
editing can be done in Java editor or visually on a design page using property 
tables and mouse manipulations in a GEF editor. It is freely available at:

http://eclipsedesigner.sourceforge.net

Figure 3-3   EclipseDesigner

 

 

 

 

92 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://eclipsedesigner.sourceforge.net


Jeez Report Designer
Jeez Report Designer (Figure 3-4) allows visual designing of reports that can be 
executed using a report engine. It is freely available at:

http://jeez.sourceforge.net

Figure 3-4   Jeez Report Designer

3.2  Introduction to Draw2D
Draw2D provides the lightweight graphical system that GEF depends on for its 
display. It is packaged in Eclipse as a separate plug-in, org.eclipse.draw2d. 
Draw2D is hosted in a SWT canvas heavyweight control and manages the 
painting and mouse events that occur in the host canvas by delegating them to 
Draw2D figures. Figures are analogous to windows in a heavyweight graphics 
system. They can have arbitrary, nonrectangular shapes and can be nested in 
order to compose complex scenes or custom controls. 

Figures can be transparent or opaque, and can be ordered into layers, thus 
allowing parts of a diagram to be hidden or excluded from certain operations. 
Draw2D is a standalone graphics library that can be used by itself to create 
graphical views in Eclipse. A complete coverage of Draw2D in depth is beyond 
the scope of this book. Instead, we discuss some key Draw2D concepts and 
focus on the Draw2D features and classes that are most important to GEF 
developers.

 

 

 

 

 Chapter 3. Introduction to GEF 93

http://jeez.sourceforge.net


3.2.1  What is a lightweight system?
A lightweight system is a graphics systems that is hosted inside a single 
heavyweight control. The graphics objects in the lightweight system, known as 
figures in Draw2D, are treated as if they are normal windows. They can have 
focus and selection, get mouse events, have their own coordinate system, and 
have a cursor. They each get a graphics context for rendering. The advantage of 
lightweight systems is that they are much more flexible than the native 
windowing system, which is generally composed of rectangular components. 
They allow you to create and manipulate arbitrarily shaped graphics objects. 
Because they simulate a heavyweight graphics system within a single 
heavyweight window, they allow you to create a graphically complex display 
without consuming a lot of system resources.

3.2.2  Architectural overview
As we said earlier, Draw2D is a self-contained graphics library and can be used 
independently of GEF or even of Eclipse. You can see the basic structure of a 
standalone Draw2D application in Example 3-1.

Example 3-1   A standalone Draw2D application

Shell shell = new Shell();
shell.open();
shell.setText("A Draw2d application");
LightweightSystem lws = new LightweightSystem(shell);

// add your application’s root figure
IFigure panel = new Figure();
panel.setLayoutManager(new FlowLayout());
lws.setContents(panel);
...

// add your application’s figures here
panel.add(...);

while (!shell.isDisposed ()) {
if (!display.readAndDispatch ())

display.sleep ();
}

Tip: When you create a standalone Draw2D application, you need to make 
sure that your operating system is able to locate the SWT native library. 
For instance, on Microsoft Windows, make sure that the following file is added 
to your class path:
ECLIPSE_HOME\plugins\org.eclipse.swt.win32_2.1.1\os\win32\x86swt32.dll 

 

 

 

 

94 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



In Example 3-1 on page 94, the shell serves as the SWT canvas that is needed 
to host Draw2D. The LightweightSystem class provides the bridge between SWT 
and Draw2D by routing mouse and paint events to the figures it contains. A root 
figure is then added to the LightweightSystem. The root figure is configured with 
a layout manager which controls the layout of any child figures that are 
subsequently added to it.

3.2.3  Figures
In this section we go into more detail on the capabilities of figures in general, and 
introduce some of the specialized figures that Draw2D provides.

Methods
Everything that is visible in a Draw2D window is drawn on a figure. The figure 
class contains a number of methods that provide the following functionality: 

� Registering or deregistering listeners on a figure; the figure will notify listeners 
of mouse events within the figure

� Structural events, for structural changes in the figures hierarchy, and for 
movement or resizing of the figure

� Specifying the cursor to display when the mouse passes over it

� Operations to manage the figure's place in the figure hierarchy, including 
adding and removing children and accessing them or its parent figure

� Accessors for:

– The figure's layout manager
– The figure’s size and location
– The tooltips

� Setting and getting focus

� Specifying the figure's transparency and visibility

� Performing coordinate conversion, intersection, and hit testing

� Painting

� Validating

Subclasses
Draw2D provides many subclasses of figure that provide useful additional 
functionality. We describe some of these in the following sections.

 

 

 

 

 Chapter 3. Introduction to GEF 95



Shapes
Subclasses of the Shape class contain non-rectangular figures that know how to 
fill themselves and provide a border of configurable width and line style, and 
include support for XOR drawing. Some examples are the Ellipse, Polyline, 
Polygon, Rectangle, Rounded rectangle, and Triangle classes.

Widgets
Draw2D includes figures which allow you to create lightweight widgets that can 
be used when you need an input control within your Draw2D application. These 
include various buttons, Checkbox, and the text entry figure, Label.

Layers and panes 
These are figures designed to host child figures. They providing scaling, 
scrolling, and the ability to place figures into different layers.

The graphics context
Figures have a paint method that is called by the LightweightSystem when the 
figure needs to be rendered. Each figure gets a graphical context, an instance of 
the Graphics class, that is passed as argument to the figure's paint method. The 
graphics context supports graphics operations, including drawing and filling 
shapes and drawing text. It also maintains the graphics state that influences 
these operations, such as the current font, background and foreground colors, 
etc. This analogous to many other graphics systems.

3.2.4  Mechanism
This section introduces the core classes of the Draw2D architecture.

LightweightSystem
The LightweightSystem class is the heart of Draw2D. It performs the mapping 
between an SWT canvas and the Draw2D system that is hosted within it. It 
contains three main components:

� The root figure: This is an instance of the LightweightSystem$RootFigure 
class; this top level figure is the parent of your application's root figure. It 
inherits some of the graphical environment of the hosting SWT Canvas, such 
as font, background, and foreground colors.

� The event dispatcher: The SWTEventDispatcher class translates SWT 
events to the corresponding Draw2D events in the root figure. It tracks which 
figure has focus, which figure is being targeted by mouse events, and handles 
tooltip activation. It provides support for figures that want to capture the 
mouse.

 

 

 

 

96 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



� The update manager: The update manager is responsible for painting and 
updating Draw2D figures. The LightweightSystem calls the update manager's 
performUpdate() method when a paint request is received from the underlying 
SWT canvas. The update manager typically maintains a worklist of figures 
that are invalid or need repainting. The update manager tries to coalesce its 
work lists so that it can be as efficient as possible. The default update 
manager, DeferredUpdateManager, allows updates to be performed 
asynchronously by queuing work on the Display's user interface thread.

The main processes in a figure's life cycle are painting and validating. Draw2D 
asks a figure to render itself by calling the figures paint methods. The paint() 
method invokes three more specific paint methods:

� paintfigure() — The figure should render itself.

� paintclientarea() — The figure should render its children.

� paintborder() — The figure should render its border, if any. Clipping is used to 
protect the border.

Validating occurs when a figure's size or location needs to be calculated:

� validate — Asks the figure's layout manager to re-layout its children.

� revalidate — Calls invalidate; adds a figure and its predecessors to the 
update manager’s invalid list.

3.2.5  Major features
In the following sections we summarize some of the main features and 
functionality provided by Draw2D.

Borders
It is frequently necessary to provide a visual border to figures. The Draw2D 
package contains several classes, derived from the Border class, which provide 
a variety of border effects:

� GroupBoxBorder — Creates a labeled border similar to group boxes in native 
window systems

� TitleBarBorder — Creates a titled border that resembles a titled window

� CompoundBorder — A border composed of two borders

� FrameBorder — Similar to TitleBarBorder; can be used to create figures with 
titles

� FocusBorder — Surrounds a figure with a focus rectangle

� LineBorder — Creates an outline around a figure of the width you specify

 

 

 

 

 Chapter 3. Introduction to GEF 97



� MarginBorder — A border for creating padding around the edges of a figure

� SchemeBorder — A base class for borders whose borders simulate shadows 
and highlights

� ButtonBorder — Used with a Clickable figure to create lightweight button-like 
controls

� SimpleLoweredBorder and SimpleRaisedBorder

Examples of some of these border types are illustrated in Figure 3-5.

Figure 3-5   Some Draw2D border types

The Insets class is used to represent the space within a figure that is allocated to 
the border. Notice that the border does not have to be symmetrical. It can be 
occupy any combination of a figure's edges, and can be a different size on any 
edge. The paint method clips the client area so that painting is constrained to the 
area of the figure inside the inset. The border, when present, is the last part of 
the figure to be painted.

Layouts
LayoutManagers are used to manage the position and size of a figure's child 
figures. They interrogate each child figure to obtain its preferred size, and then 
apply some layout algorithm to calculate the final size and placement of the child 
figures. LayoutManagers also support constraints, which are data attached to 
each figure that gives additional guidance to the layout manager. The figure has 
accessor methods for its constraints, and the layout manager maintains a map of 
constraints for the figures it is managing. 

The constraint accessors use the Object type for constraints since the type of the 
constraint depends on the layout manager being used. For instance, the 
XYLayout layout manager requires that the figures it manages have a constraint 
of type Rectangle, and the DelegatingLayout manager expects its figures to have 
a constraint which implements the Locator interface. All Draw2D layout 
managers derive from the AbstractLayout abstract class. 

 

 

 

 

98 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



These are some of the provided layout managers:

� FlowLayout — Lays out its children into either rows or columns, which is 
configurable either by using the constructor:

public FlowLayout(boolean isHorizontal)

or by calling the method:

setHorizontal(isHorizontal)

The manager causes its children to wrap when the current row or column is 
full. There are also methods to control the alignment and spacing of rows in 
both the major and minor axes.

� DelegatingLayout — Delegates the layout of its child figures to the child 
figures' locators. The children must provide a Locator subclass as their 
constraint.

� XYLayout — Places its children at the location and dimensions specified for 
the child. The child’s constraint must be a Rectangle object that specifies this 
information.

Draw2D provides a scrollable pane via the ScrollPane class. To implement this 
functionality it uses the ScrollPaneLayout, which manages the layout of the scroll 
bars and Viewport that comprise the ScrollPane. In addition the Viewport uses 
the ViewportLayout manager to manage the viewport's visible region and 
maintain the scroll position state.

Layers
Layers are transparent figures intended specifically for use in LayerPanes. They 
override the figure's containsPoint() and findFigureAt() methods so that hit 
testing will “pass through” the layer. The FreeformLayer class adds additional 
specialization to Layer to provide a layer that can extend indefinitely in all four 
directions.

The ConnectionLayer class implements a FreeformLayer that is designed to 
contain connections. It Insures that any Connection figures added to the layer will 
have their connection router set correctly to the layer's connection router. 
Similarly, when the layer's connection router is changed, it will update the 
connection router of all its connection figures.

Note: The term “Freeform”, when used in Draw2D class names, indicates that 
the class supports figures that can expand in all directions — that is, they do 
not have a fixed size or origin, which also implies that the child figures can 
have negative coordinates. Some examples are the FreeformLayer, 
FreeformLayeredPane, and ScalableFreeformLayeredPane classes.

 

 

 

 

 Chapter 3. Introduction to GEF 99



LayerPanes are figures designed to contain layers (they can only contain layers). 
The layers in a LayerPane are stored in a map whose key is typically a String. 
LayerPanes contain methods to add, insert, remove, and reorder the layers they 
contain.

Two subclasses of LayerPane provide additional flexibility. The 
FreeformLayeredPane provides a set of layers that can expand in all directions. 
The ScalableFreeformLayeredPane adds support for zooming.

Finally, the ScalableLayeredPane provides a LayerPane that is scalable but is 
not free form but instead has a finite, fixed size.

Locators
Implementors of the Locator interface are used in Draw2D to position figures. 
The interface consists of a single method: 

void relocate(IFigure target)

Subclasses of ConnectionLocator are used for locating figures that are attached 
to a Connection. These can be used for placing arrowheads on the ends of 
connections or placing labels or other decorations or annotations on a 
Connection. The locator ensures that the figure stays “attached” to the 
Connection in the designated location as the Connection is moved.

Available locators include:

� ArrowLocator — This locator is used to position decorations, such as 
arrowheads, on the ends of connections. Any figure that implements 
RotatableDecoration can be located. Implementors of RotatableDecoration 
are given a position and a reference point so that they can rotate their visual 
representation based on the angle of the connection they are decorating.

� BendpointLocator — This locator is used to position bendpoint handles on a 
Connection

� MidpointLocator — This locator is used to place figures at the midpoint of a 
Connection

� ConnectionEndpointLocator — This locator is used to locate a figure near 
either the start or end of a connection.

� RelativeLocator — This locator is used to locate a figure using a 0 to 1 
floating point value representing its affinity for the a weighting of the figure's 
affinity for the upper left corner (0) or lower right corner (1) of a reference 
figure. This class is generally intended for calculating the placement of 
handles.

 

 

 

 

100 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Connection anchors
Draw2D provides classes that provide various styles of anchor points, which are 
used to represent the ends of a connection. The basic function of these classes 
is to contain the location of a Connection's endpoints and to register listeners that 
will be notified if the end of a connection is moved.

The AbstractConnectionAnchor class is the base class for anchors whose 
position is associated with a figure. It notifies its listeners when the figure it is 
associated with is moved.

Available anchors include:

� ChopboxAnchor — A ChopboxAnchor is located at the point on the figure's 
border where the Connection would intersect the figure, if the connection 
continued to the figure's center point.

� LabelAnchor — LabelAnchor is a subclass of ChopboxAnchor that is 
designed solely for node figures that are Draw2D Labels. Rather than 
projecting the connection to the center of the figure, the location of the anchor 
depends on the center of the Label's icon.

� EllipseAnchor — The EllipseAnchor is a variant of the ChopboxAnchor (but it 
is not a subclass). It locates the anchor on the edge of an elliptical figure at 
the point where a connection to the center of the node would intersect the 
edge.

� XYAnchor — The XYAnchor is used for anchors that are placed at a fixed 
position.

Connection routers
Connection routers are used to calculate the path that a connection takes in 
getting from one anchor to the other. AbstractRouter is the base class for 
connection routers that implement the ConnectionRouter interface. Available 
connection routers include:

� NullConnectionRouter — By default this simply draws a straight line between 
the anchors of a connection. This is shown in Figure 3-6 using a diagram 
created using the logic sample application.However Draw2D also provides 
more sophisticated routers that use different criteria to determine the path that 
a connection will take.

Figure 3-6   NullConnectionRouter

 

 

 

 

 Chapter 3. Introduction to GEF 101



� AutomaticRouter — This provides a base class for routers that want to 
prevent two connections from overlaying each other. For instance its 
FanRouter subclass spreads two connections which have the same starting 
and ending points so that they are not superimposed.

� BendpointConnectionRouter — The BendpointConnectionRouter shown in 
Figure 3-7, allows the user to manually insert bendpoints into a connection. 
The connection is routed to follow a set of points that the user specifies by 
manually dragging the Connection’s segments.

Figure 3-7   Bendpoint router

� ManhattanConnectionRouter — The ManhattanConnectionRouter 
(Figure 3-8) routes a connection using only vertical and horizontal line 
segments. It also maintains separation between Connections that would 
otherwise overlap.

Figure 3-8   Manhattan router

Summary of Draw2D’s support for connections 
Many of the features in Draw2D that we have discussed are part of Draw2D’s 
support for connections. It is worthwhile to summarize this set of features:

� PolylineConnection, a polyline figure that listens for anchor movement and 
supports start and end-point decorations, and has an associated connection 
router

� A connection layer exclusively for drawing connections

� Anchors for specifying and tracking the connection points of connections

� Routers to determine the path of connections

� Locators to find the ends and midpoint of connections, and more specialized 
ones to support connections with multiple bendpoints

 

 

 

 

102 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



� Rotatable decorations to place decorations on connections that can realign 
themselves as the angle of the connection changes.

3.3  The GEF framework
This sections covers the basic framework classes and concept of the Graphical 
Editing Framework.

3.3.1  Prerequisites
We assume that you already have good knowledge and experience in Eclipse 
plug-in development. You should have understand the concepts of Eclipse views 
and editors.

The following articles from eclipse.org are very useful for understanding terms 
and concepts mentioned in this chapter:

� Eclipse Platform Technical Overview
� Notes on the Eclipse Plug-in Architecture by Azad Bolour
� How to Use the Eclipse API by Jim des Rivieres
� Creating an Eclipse View by Dave Springgay
� Getting Started with the Graphical Editing Framework by Randy Hudson

You should have installed Eclipse SDK 2.1.1 including GEF SDK 2.1.1, and you 
should be familiar with Draw2D concepts and terms provided by the developers 
guides, which are available in the Eclipse online help.

3.3.2  EditParts
EditParts are the central elements in GEF applications. They are the controllers 
that specify how model elements are mapped to visual figures and how these 
figures behave in different situations.

Usually you will have to create an EditPart class for every model element class 
so you will have likely the same class hierarchy for the EditParts as you have for 
your model. The process of creating EditPart instances is not covered here. It will 
be explained in a later section.

EditParts are defined through the interface org.eclipse.gef.EditPart. See 
org.eclipse.gef.AbstractEditPart for an abstract base implementation of this 
interface. We strongly recommend (as do the GEF development team) that you 
do not implement the interface yourself. Instead, subclass the provided abstract 
base class AbstractEditPart.

 

 

 

 

 Chapter 3. Introduction to GEF 103



Actually there are three different types of EditParts. For now, in this section, we 
will focus on only two of them: GraphicalEditParts and ConnectionEditParts. 
GraphicalEditParts are those EditParts that provide a graphical representation 
for their model. These graphical representations are figures. 
ConnectionEditParts represent connections between GraphicalEditParts. 

The third type, TreeEditParts, is only interesting for building trees of your model 
with SWT tree widgets. This is not the primary intention of a graphical editor, but 
is probably useful for the outline view. Our redbook sample application will show 
you an introduction into this.

The EditPart interfaces provide a lot of methods. Your are not expected to call 
them, except for get/setModel, when necessary. Nearly all methods are used by 
the Graphical Editing Framework to handle the edit parts. But you can add your 
own methods, and we encourage you to add your EditPart implementations to 
ease your access to model elements and properties.

Life-cycle of EditParts
We already know that EditParts will be created somewhere and somehow by a 
factory (details about the factory will be explained later in 3.5.3, “Creating 
EditParts” on page 137). We will now focus on the methods involved in EditPart 
life-cycles.

When an EditPart was created, it is not yet visible or active. It becomes active 
when the Graphical Editing Framework gets informed about it. If an EditPart 
becomes obsolete for some reason (either the editor is closed or the model 
object represented by the EditPart was deleted) and the framework no longer 
needs it, it will be deactivated. There are two methods, EditPart#activate and 
EditPart#deactivate, which will be called by the framework when the state of an 
EditPart changes. A third method, EditPart#isActive, always returns the current 
activation state.

Note: In general, you should always subclass a provided base implementation 
rather then implementing the interface yourself. This protects you from 
unexpected API changes and reduces your work in case of API changes (for 
example, when new methods are added to the interface). It also helps your 
software to stay compatible with future versions.

Note: Although the JavaDoc of these methods indicates that an EditPart may 
be reactivated after it was obsolete, we have not experienced such situations 
during our development.

 

 

 

 

104 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



We suggest not to develop with the reuse of EditParts in mind. You should not try 
to keep track of EditPart instances across editor sessions. If an EditPart gets 
deactivated, throw it away. Allow it to get garbage collected by the virtual 
machine. By handling EditPart instances this way, you do not need to worry 
about the memory overhead. It will be solved for you and you can enjoy the 
advantages of Java.

EditPart#deactivate is a good point to release resources used by your EditPart 
(for example SWT images or fonts). We strongly suggest that you read the 
section about SWT resource management 4.2.6, “Resource management” on 
page 149.

Figures
GraphicalEditParts have a figure that is the visual part of the model. The 
GraphicalEditPart need to create the figure, update it on model changes, and 
dispose it (if necessary) if the EditPart is deactivated.

The figure is created by AbstractGraphicalEditPart#createFigure only once and 
will be cached by the abstract base implementation. Remember that you should 
always inherit from abstract base implementations if possible. 
AbstractGraphicalEditPart#createFigure is called when a figure is requested via 
AbstractGraphicalEditPart#getFigure for the first time.

Updating the figure is done in AbstractEditPart#refreshVisuals. You need to 
overwrite this method and update your figure according to the model changes 
you encountered. We will explain this later.

More about figures can be found in the Draw2D developers guide (see the 
Eclipse online help) and in 3.2.3, “Figures” on page 95 of this book.

Connections
A ConnectionEditPart, which represents a connection between two EditParts, is 
nothing more than a GraphicalEditPart, which has a source and a target EditPart. 
Connections are connected to ConnectionAnchors. These anchors should be 
provided by the EditParts the ConnectionEditPart points to/comes from. 

The recommended way is that each GraphicalEditPart that could be a source or 
a target for connections implements the NodeEditPart interface. It is the most 
common way of how application models work. Connections usually points to 
some locations of the figure, and this figure is provided by a GraphicalEditPart.

 

 

 

 

 Chapter 3. Introduction to GEF 105



3.3.3  Requests
Requests are the communication objects used in the Graphical Editing 
Framework. They contain information that might be necessary for executing the 
request later. There are several type of requests available. The three main types 
that are used most often in typical GEF applications, are CreateRequests, 
GroupRequests and LocationRequests.

Figure 3-9   Communication chain Request — EditPart — Command

Figure 3-9 shows the typical communication chain of a request and the objects 
involved. As you can see, someone (typically a tool, an action or some drag or 
drop handler) creates a request. This request is forwarded to an EditPart. The 
EditPart doesn’t process the request itself. Instead it delegates it to an EditPolicy, 
which understands the request. The EditPolicy itself creates a command for the 
request, which will be executed to fulfill the request.

CreateRequests
CreateRequests are used everywhere a new model object should be created. 
For connections the subclass CreateConnectionRequest is used. A 
CreateRequest has a CreationFactory, which you have to provide. This 
CreationFactory is responsible for creating the new model objects.

Forward
Command

Forward
Request

Command

EditPolicies

Request Creators

EditPart

Forward
Command

Forward
Request

Create Command
for Request

 

 

 

 

106 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



GroupRequests
GroupRequests are Requests that can span more than one EditPart into one 
single request. A typical GroupRequest is the ChangeBoundsRequests, which is 
responsible for moving and/or resizing EditParts.

LocationRequests
LocationRequests are requests that keep track of a location — for example, the 
SelectionRequest, which is responsible for selecting an EditPart. You can always 
determine where the user clicked into an EditPart to select it. This allows you to 
provide special behavior for different locations inside your EditPart.

3.3.4  EditPolicies
We already know that the communication inside the Graphical Editing 
Framework is done via requests and that these requests are forwarded to 
EditPolicies. What are EditPolicies, and why is this done in this way?

Actually, EditPolicies are those parts in the Graphical Editing Framework, which 
bring the editing functionallity into EditParts, This is done because it is a good 
object-oriented design. 

An EditPolicy defines what can be done with an EditPart. EditParts without 
EditPolicies will do nothing. They won’t even be selectable. EditPolicies are also 
responsible for feedback management (for example, what should be shown 
when an EditPart is moved or resized) and they are allowed to delegate work 
(forward requests) to other EditParts (for example, children).

EditPolicies are categorized into roles (see constants in interface 
org.eclipse.gef.EditPolicy) and EditParts are limited to have only one EditPolicy 
per role.

Component role
The component role is defined as EditPolicy#COMPONENT_ROLE, and the 
base class for these kind of EditPolicies is ComponentEditPolicy.

Tip: Actually, your CreationFactory implementation does not need to create 
new model objects. We suggest only submitting the type of the new model 
object and creating it later in a Command.

 

 

 

 

 Chapter 3. Introduction to GEF 107



This is the main role for all fundamental operations that involve the model 
element of an EditPart directly (for example, deletion of the model element). 
Whenever a request has nothing to do with UI interaction and only does 
something on the model element, it is best handled by a command delivered 
from a ComponentEditPolicy.

Connection role
The connection role is defined as EditPolicy#CONNECTION_ROLE, and the 
base class is ConnectionEditPolicy. It is the corresponding component role for 
ConnectionEditParts.

Container role
The container role (EditPolicy#CONTAINER_ROLE, ContainerEditPolicy) is 
responsible for operations typically performed on containers (for example, the 
creation of children). Each EditPart with children would have a 
ContainerEditPolicy. 

Layout role
The layout role (EditPolicy#LAYOUT_ROLE, LayoutEditPolicy) is responsible for 
containers that have a layout associated to them. It can calculate proper 
locations for requests and define where children should be placed.

Tree container role
The tree container role (EditPolicy#TREE_CONTAINER_ROLE, 
TreeContainerEditPolicy) is the corresponding container role for TreeEditParts.

Graphical node role
The graphical node role (EditPolicy#GRAPHICAL_NODE_ROLE, 
GraphicalNodeEditPolicy) is used for establishing and managing connections on 
EditParts. Whenever your EditPart deals with connections, it will need a 
GraphicalNodeEditPolicy.

Direct edit role
The direct edit role (EditPolicy#DIRECT_EDIT_ROLE, DirectEditPolicy) is used 
to bring direct editing behavior into EditParts. Thus, when the user double-clicks 
an EditPart, he will be able to directly edit properties on the figure.

Note: There is some overlap between ContainerEditPolicy and 
LayoutEditPolicy. ContainerEditPolicy is intended to be used in simple 
environments where it does not matter how children are placed. There is not 
any location information available inside ContainerEditPolicy.

 

 

 

 

108 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Additional roles
More documentation about additional roles is available in the GEF developers 
guide available in the Eclipse online help.

3.3.5  Commands
A command is the part that actually modifies your model. Commands simplify the 
way of modifying your model because they provide support for:

� Execution limitations
� Undo and redo
� Combining and chaining

There is nothing more to say about commands than what can be found in the 
JavaDoc. You need to implement them and you need to instantiate them. The 
abstract base class is org.eclipse.gef.commands.Command.

3.3.6  GraphicalViewers
From the Draw2D developers guide, we know that figures are drawn by a 
LightweightSystem. But that is not all. There are some more components 
involved, which we do not want to take care of when we are developing our 
editor. That is why the Graphical Editing Framework provides the 
GraphicalViewer. 

A GraphicalViewer provides a seamless (JFace-like integration of EditParts into 
the Eclipse workbench.

Typically, a JFace viewer only needs some content, a factory, and some 
configuration, and it is done. It already provides all necessary implementation for 
drag and drop support, event and update handling, and other complicated tasks. 
A GEF GraphicalViewer does exactly the same.

There are two GraphicalViewer implementations available: one that does support 
native scrolling (ScrollingGraphicalViewer) and one that does not 
(GraphicalViewerImpl). The most common case is to use a viewer that supports 
native scrolling. It is even possible to have a ScrollingGraphicalViewer never 
showing its scrollbars. Thus, we will focus on this implementation.

A GraphicalViewer can be created out of the box. It has a parameter-less 
constructor and provides the method createControl to create the SWT control of 
this viewer. You do not even need an editor for this. A GraphicalViewer can be 
used anywhere an SWT control is available.

 

 

 

 

 Chapter 3. Introduction to GEF 109



After the viewer is instantiated and the control is created, you need only to attach 
a RootEditPart (EditPartViewer#setRootEditPart) and an EditPartFactory 
(EditPartViewer#setEditPartFactory) to it, and set the content 
(EditPartViewer#setContents). The content is a model element that is the root of 
your model.

A GraphicalViewer maintains a registry of all EditParts it contains. This map can 
be accessed by EditPartViewer#getEditPartRegistry. We are responsible for the 
key and the registration process, but the Graphical Editing Framework provides a 
default implementation, which automatically registers and unregisters EditParts 
using the model element they represent as key. 

If you want to change the key mapping, you need to look at 
AbstractEditPart#registerModel and AbstractEditPart#unregisterModel.

3.3.7  RootEditParts
A RootEditPart is a special kind of an EditPart. It has absolutely no relation to 
your model and should not be understood as a typical EditPart. 

The task of a RootEditPart is to provide a suitable and homogeneous 
environment for the real EditParts that represents your model. Thus, it can be 
understood as an interface between a GraphicalViewer and your model 
EditParts.

There are several implementations available, but actually only two of them 
should be used — ScalableRootEditPart and ScalableFreeformRootEditPart. All 
other implementations are either deprecated or provide only a subset of 
functionality of the implementations mentioned above.

Both implementations provide the possibility of scalability (zoom) support and 
introduce several layers to a GraphicalViewer. The only difference is that the 
ScalableFreeformRootEditPart can be extended in all directions, which enables 
negative coordinates.

Note: Please do not be confused by RootEditPart and the root of your model. 
Both are completely different and have no relation to each other.

Important: ScalableRootEditPart and ScalableFreeformRootEditPart can only 
be used inside a ScrollingGraphicalViewer.

 

 

 

 

110 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Layers
Figure 3-10 gives an overview of the layers introduced by ScalableRootEditPart 
and ScalableFreeformRootEditPart.

Figure 3-10   Layers of ScalableRootEditPart and ScalableFreeformRootEditPart

Layers are used to separate and/or group figures of EditParts to better control 
their overlapping. Actually, all figures are placed into the primary layer. Figures 
representing connections are placed on the connection layer and so they are 
always painted above the other figures. Special figures (like drag or drop 
feedback or handles) are painted into special layers above the scalable layers. 
This is important because if you ever want to paint something in the feedback or 
handle layers, you must be aware that you need to scale this manually before 
painting.

Freeform or not
When using the ScalableFreeformRootEditPart, your editor can extend in all 
directions. Thus, it is even possible to have negative coordinates. The 
(non-freeform) ScalableRootEditPart only allows extension in positive directions.

Restriction: When using the ScalableFreeformRootEditPart, the EditPart of 
your root model object must use a figure of type FreeformFigure.

Feedback Layer

Handle Layer

Scalable Layers

Primary Layer

Connection Layer

Printable Layers

Root Layered Pane

 

 

 

 

 Chapter 3. Introduction to GEF 111



3.4  Building an editor
We now know the base classes and concepts of the Graphical Editing 
Framework, and we are ready to build our first graphical editor skeleton. In this 
section we explain how to get started and then go forward step-by-step.

3.4.1  The editor class
First, we have to create the plug-in and then define the editor extension. We do 
not describe this here because it is a common process of the Eclipse plug-in 
programming model. The Eclipse documentation provides detailed information 
about this.

By default, the editor class is created by extending org.eclipse.ui.part.EditorPart. 
This is the main class of the editor and is responsible for receiving the input, 
creating and configuring the viewer, handling the input, and saving the input.

Typically you will already have a save option in your model, so we do not discuss 
the implementation of the methods save, isSaveAsAllowed, and saveAs here.

As a result, we will have the class skeleton shown in Example 3-2.

Example 3-2   ExampleGEFEditor.java (initial stage)

/**
 * This is the example editor skeleton that is build
 * in <i>Building an editor</i> in chapter <i>Introduction to GEF</i>. 
 * 
 * @see org.eclipse.ui.part.EditorPart
 */
public class ExampleGEFEditor extends EditorPart
{

public ExampleGEFEditor()
{}

public void createPartControl(Composite parent)
{}

public void setFocus()
{

// what should be done if the editor gains focus?
// it's your part

}

Note: JavaDoc comments have been removed for readability reasons.

 

 

 

 

112 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



public void doSave(IProgressMonitor monitor)
{

// your save implementation here
}

public void doSaveAs()
{

// your save as implementation here
}

public boolean isDirty()
{

return false;
}

public boolean isSaveAsAllowed()
{

// your implementation here
return false;

}

public void gotoMarker(IMarker marker)
{}

public void init(IEditorSite site, IEditorInput input)
throws PartInitException

{}
}

3.4.2  EditDomain
Next we need an EditDomain. An EditDomain is an interface that logically 
bundles an editor, viewers, and tools. Therefore, it defines the real editor 
application.

An EditDomain provides a CommandStack, which keeps track of all executed 
commands. This is necessary for undo and redo operations and useful to 
determine if the model was modified (is dirty) or not.

Usually you will have one EditDomain per editor, but it is also possible to share 
an EditDomain across several editors in a multi-page editor. 

It is up to you when to create the EditDomain. It is possible to create it lazily. 
You can use the class EditDomain directly, however, the Graphical Editing 
Framework provides an implementation, which additionally knows about the 
editor that created it. This implementation is called DefaultEditDomain and used 
in our example shown in Example 3-3.

 

 

 

 

 Chapter 3. Introduction to GEF 113



Example 3-3   Adding EditDomain to the editor

/** the <code>EditDomain</code>, will be initialized lazily */
private EditDomain editDomain;

/**
* Returns the <code>EditDomain</code> used by this editor.
* @return the <code>EditDomain</code> used by this editor
*/
public EditDomain getEditDomain()
{

if (editDomain == null)
editDomain = new DefaultEditDomain(this);

return editDomain;
}

3.4.3  CommandStack
After adding the EditDomain, we have access to the CommandStack. We will 
use the CommandStack to indicate when an editor is dirty.

The CommandStack contains the method isDirty, which indicates if a 
CommandStack has executed commands after the last save. How does the 
CommandStack know about the last save? A CommandStack knows about this 
because we have to tell it whenever the editor is saved.

This is not done by simply delegating the editors isDirty method to the 
CommandStack; instead, we need a listener that listens to CommandStack 
changes and updates the dirty state of our editor. Whenever this state changes, 
we need to inform the Eclipse workbench. But you need not be concerned about 
this. The superclass EditorPart provides methods for the last part.

We start with the last part, as it is the easiest task. We simply add a flag for the 
dirty state and a setter that automatically fires an event, as shown in 
Example 3-4.

Example 3-4   Indicating the dirty state of our editor (part 1)

/** the dirty state */
private boolean isDirty;
    
/**
* Indicates if the editor has unsaved changes.

Note: If you ever execute a command yourself, please ensure that you 
execute it through the CommandStack.

 

 

 

 

114 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



* @see EditorPart#isDirty
*/
public boolean isDirty()
{

return isDirty;
}

/**
* Sets the dirty state of this editor. 
* 
* <p>An event will be fired immediately if the new 
* state is different than the current one.
* 
* @param dirty the new dirty state to set
*/
protected void setDirty(boolean dirty)
{

if(isDirty != dirty)
{

isDirty = dirty;
firePropertyChange(IEditorPart.PROP_DIRTY);

}
}

Now we implement the listener and attach it to the CommandStack as shown in 
Example 3-5. 

Example 3-5   The CommandStackListener

/**
* The <code>CommandStackListener</code> that listens for
* <code>CommandStack </code>changes.
*/
private CommandStackListener commandStackListener = new CommandStackListener()
{

public void commandStackChanged(EventObject event)
{

setDirty(getCommandStack().isDirty());
}

};

/**
* Returns the <code>CommandStack</code> of this editor's 
* <code>EditDomain</code>.
* 
* @return the <code>CommandStack</code>
*/
public CommandStack getCommandStack()
{

 

 

 

 

 Chapter 3. Introduction to GEF 115



return getEditDomain().getCommandStack();
}

/**
* Returns the <code>CommandStackListener</code>.
* @return the <code>CommandStackListener</code>
*/
protected CommandStackListener getCommandStackListener()
{

return commandStackListener;
}

Attaching the listener should be done when the editor gets it input, and removing 
it should be done in the editor’s dispose method. See Example 3-6.

Example 3-6   Attaching and removing the CommandStackListener

/**
* Initializes the editor.
* @see EditorPart#init
*/
public void init(IEditorSite site, IEditorInput input)

throws PartInitException
{

// store site and input
setSite(site);
setInput(input);

// add CommandStackListener
getCommandStack().addCommandStackListener(getCommandStackListener());       

}

/* (non-Javadoc)
* @see org.eclipse.ui.IWorkbenchPart#dispose()
*/
public void dispose()
{

// remove CommandStackListener
getCommandStack().removeCommandStackListener(getCommandStackListener());

// important: always call super implementation of dispose
super.dispose();

}

Do not forget to update the CommandStack when the editor content is saved. 
See Example 3-7.

 

 

 

 

116 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Example 3-7   Update CommandStack on editor save

/**
* TODO: Implement "doSave".
* @see EditorPart#doSave
*/
public void doSave(IProgressMonitor monitor)
{

// your implementation here

// update CommandStack
getCommandStack().markSaveLocation();

}

/**
* TODO: Implement "doSaveAs".
* @see EditorPart#doSaveAs
*/
public void doSaveAs()
{

// your implementation here

// update CommandStack
getCommandStack().markSaveLocation();

}

3.4.4  Attaching the viewer
The GraphicalViewer is the next element that must be integrated into our editor. 
The method createPartControl is the best location to do this. First we create a 
GraphicalViewer, then we configure this instance, and add it to the EditDomain. 
See Example 3-8.

Example 3-8   Attaching a GraphicalViewer to our editor

/** the graphical viewer */
private GraphicalViewer graphicalViewer;

/**
* Creates the controls of the editor.
* @see EditorPart#createPartControl
*/
public void createPartControl(Composite parent)
{

Note: Although we have chosen to use the ScalableFreeformRootEditPart 
here, you are free to use whatever RootEditPart you like.

 

 

 

 

 Chapter 3. Introduction to GEF 117



graphicalViewer = createGraphicalViewer(parent);
}

/**
* Creates a new <code>GraphicalViewer</code>, configures, registers 
* and initializes it.     * 
* @param parent the parent composite
* @return a new <code>GraphicalViewer</code>
*/
private GraphicalViewer createGraphicalViewer(Composite parent)
{

// create graphical viewer
GraphicalViewer viewer = new ScrollingGraphicalViewer();
viewer.createControl(parent);

// configure the viewer
viewer.getControl().setBackground(parent.getBackground());
viewer.setRootEditPart(new ScalableFreeformRootEditPart());

// hook the viewer into the EditDomain
getEditDomain().addViewer(viewer);

// acticate the viewer as selection provider for Eclipse
getSite().setSelectionProvider(viewer);

// initialize the viewer with input
viewer.setEditPartFactory(getEditPartFactory());
viewer.setContents(getContent());

return viewer;
}

/**
* Returns the <code>GraphicalViewer</code> of this editor.
* @return the <code>GraphicalViewer</code>
*/
public GraphicalViewer getGraphicalViewer()
{

return graphicalViewer;
}

/**
* Returns the content of this editor
* @return the model object
*/
protected Object getContent()
{

// todo return your model here
return null;

 

 

 

 

118 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



}

/**
* Returns the <code>EditPartFactory</code> that the 
* <code>GraphicalViewer</code> will use.
* @return the <code>EditPartFactory</code>
*/
protected EditPartFactory getEditPartFactory()
{

// todo return your EditPartFactory here
return null;

}

3.4.5  Being adaptable
One of the key concepts inside Eclipse is the IAdaptable technology. It is also 
used within the Graphical Editing Framework. That is why we have to ensure that 
our editor implements this interface so that the GEF elements we have created 
provide adaptable behavior, which may be of interest to the Graphical Editing 
Framework itself or to other Eclipse code. So far, we have created the following 
important GEF elements:

� EditDomain
� GraphicalViewer

EditDomain also provides access to a third important element, CommandStack. 
Example 3-9 shows how to provide adapter access to the elements in our sample 
editor.

Example 3-9   Overwriting the getAdapter method

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

// we need to handle common GEF elements we created
if (adapter == GraphicalViewer.class || adapter == EditPartViewer.class)

return getGraphicalViewer();
else if (adapter == CommandStack.class)

return getCommandStack();
else if (adapter == EditDomain.class)

return getEditDomain();

// the super implementation handles the rest
return super.getAdapter(adapter);

}

 

 

 

 

 Chapter 3. Introduction to GEF 119



3.4.6  Introducing the palette
The palette in GEF editors is the home for tools. But before we discuss tools, we 
need to create a palette inside our editor. The GEF palette is implemented 
reusing GEF technology; thus it has a model presented in a viewer (the 
PaletteViewer).

The palette model
The palette model is a simple model starting with a PaletteRoot. Each 
PaletteViewer needs a PaletteRoot. The PaletteRoot is a palette container 
(PaletteContainer). Palette containers are used to organize palette entries 
(PaletteEntry).

Besides the PaletteRoot, there are two additional palette containers — 
PaletteGroup and PaletteDrawer. We suggest that you use both of them to 
organize your palette. Each provides a container for palette entries, but the 
PaletteGroup cannot be collapsed, while the PaletteDrawer can be collapsed.

Additional information can be found in the GEF JavaDoc.

Attaching the palette
Attaching a palette is similar to attaching a viewer. First, we need to create a new 
PaletteViewer, as shown in Example 3-10.

Example 3-10   Creating a PaletteViewer

/**
* Creates a new <code>PaletteViewer</code>, configures, registers 
* and initializes it.
* @param parent the parent composite
* @return a new <code>PaletteViewer</code>
*/
private PaletteViewer createPaletteViewer(Composite parent)
{

// create graphical viewer
PaletteViewer viewer = new PaletteViewer();
viewer.createControl(parent);

// hook the viewer into the EditDomain (only one palette per EditDomain)
getEditDomain().setPaletteViewer(viewer);

// important: the palette is initialized via EditDomain
getEditDomain().setPaletteRoot(getPaletteRoot());

return viewer;
}

 

 

 

 

120 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



/**
* Returns the <code>PaletteRoot</code> this editor's palette uses.
* @return the <code>PaletteRoot</code>
*/
protected PaletteRoot getPaletteRoot()
{

// todo add your palette entries here
return null;

}

Next, we need to add this viewer to the editor’s composite. The SWT SashForm 
is used to have the palette’s width modifiable, as shown in Example 3-11.

Example 3-11   Adding the PaletteViewer to the editor’s composite

/**
* Creates the controls of the editor.
* @see EditorPart#createPartControl
*/
public void createPartControl(Composite parent)
{

SashForm sashForm = new SashForm(parent, SWT.HORIZONTAL);
sashForm.setWeights(new int[] {30,70});
paletteViewer = createPaletteViewer(sashForm);
graphicalViewer = createGraphicalViewer(sashForm);

}

/** the palette viewer */
private PaletteViewer paletteViewer;

/**
* Returns the <code>PaletteViewer</code> of this editor.
* @return the <code>PaletteViewer</code>
*/
public PaletteViewer getPaletteViewer()
{

return paletteViewer;
}

There are several default tools available, and we need to add them so that we 
have an initial PaletteRoot. See Example 3-12.

Example 3-12   Initial PaletteRoot with default tools

/** the palette root */
private PaletteRoot paletteRoot;

/**

 

 

 

 

 Chapter 3. Introduction to GEF 121



* Returns the <code>PaletteRoot</code> this editor's palette uses.
* @return the <code>PaletteRoot</code>
*/
protected PaletteRoot getPaletteRoot()
{

if (null == paletteRoot)
{

// create root
paletteRoot = new PaletteRoot();

List categories = new ArrayList();

// a group of default control tools
PaletteGroup controls = new PaletteGroup("Controls");

// the selection tool
ToolEntry tool = new SelectionToolEntry();
controls.add(tool);

// use selection tool as default entry
paletteRoot.setDefaultEntry(tool);

// the marquee selection tool
controls.add(new MarqueeToolEntry());

// a separator
PaletteSeparator separator =

new PaletteSeparator(
EditorExamplePlugin.PLUGIN_ID + ".palette.seperator");

separator.setUserModificationPermission(
PaletteEntry.PERMISSION_NO_MODIFICATION);

controls.add(separator);

// a tool for creating connection
controls.add(

new ConnectionCreationToolEntry(
"Connections",
"Create Connections",
null,
ImageDescriptor.createFromFile(

getClass(),
"icons/connection16.gif"),

ImageDescriptor.createFromFile(
getClass(),
"icons/connection24.gif")));

// todo add your palette drawers and entries here

// add all categroies to root

 

 

 

 

122 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



paletteRoot.addAll(categories);
}
return paletteRoot;

}

Palette customizer
It is possible to attach a palette customizer to the palette. This will enable the 
users of your editor to modify the palette to work in the way they prefer. For 
implementation details, please see our completed redbook sample application as 
described in Chapter 7, “Implementing the sample” on page 203, or the Logic 
example application provided from the GEF development team.

3.4.7  Actions
Actions are common objects in the Eclipse workbench to do something when 
user requests are initiated through menu items, toolbar buttons or context menu 
items. The Graphical Editing Framework provides a set of standard actions and 
an infrastructure for using these actions within the Graphical Editing Framework.

ActionRegistry
The class org.eclipse.gef.actions.ActionRegistry serves as a container for editor 
actions. The editor is responsible for providing and maintaining an 
ActionRegistry. See Example 3-13.

Example 3-13   Adding an ActionRegistry to the editor

/** the editor's action registry */
private ActionRegistry actionRegistry;

/**
* Returns the action registry of this editor.
* @return the action registry
*/
public ActionRegistry getActionRegistry()
{

if (actionRegistry == null)
actionRegistry = new ActionRegistry();

return actionRegistry;
}

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

 

 

 

 

 Chapter 3. Introduction to GEF 123



// we need to handle common GEF elements we created
if (adapter == GraphicalViewer.class

|| adapter == EditPartViewer.class)
return getGraphicalViewer();

else if (adapter == CommandStack.class)
return getCommandStack();

else if (adapter == EditDomain.class)
return getEditDomain();

else if (adapter == ActionRegistry.class)
return getActionRegistry();

// the super implementation handles the rest
return super.getAdapter(adapter);

}

/* (non-Javadoc)
* @see org.eclipse.ui.IWorkbenchPart#dispose()
*/
public void dispose()
{

// remove CommandStackListener
getCommandStack().removeCommandStackListener(getCommandStackListener());

// disposy the ActionRegistry (will dispose all actions)
getActionRegistry().dispose();

// important: always call super implementation of dispose
super.dispose();

}

Managing actions
As soon as we have the ActionRegistry, we are able to create actions and to 
register them.

The Graphical Editing Framework provides a set of default actions (redo, undo, 
delete, print, and save). These actions need some special handling to stay 
up-to-date with the editor, the CommandStack or the EditParts. The GEF default 
actions are not implemented as listeners to some events. Instead, they have to 
be updated manually. This can be done from within the editor as shown in 
Example 3-14.

Example 3-14   Added infrastructure for supporting different actions

/** the list of action ids that are to EditPart actions */
private List editPartActionIDs = new ArrayList();

/** the list of action ids that are to CommandStack actions */

 

 

 

 

124 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



private List stackActionIDs = new ArrayList();

/** the list of action ids that are editor actions */
private List editorActionIDs = new ArrayList();

/**
* Adds an <code>EditPart</code> action to this editor.
* 
* <p><code>EditPart</code> actions are actions that depend
* and work on the selected <code>EditPart</code>s.
* 
* @param action the <code>EditPart</code> action
*/
protected void addEditPartAction(SelectionAction action)
{

getActionRegistry().registerAction(action);
editPartActionIDs.add(action.getId());

}

/**
* Adds an <code>CommandStack</code> action to this editor.
* 
* <p><code>CommandStack</code> actions are actions that depend
* and work on the <code>CommandStack</code>.
* 
* @param action the <code>CommandStack</code> action
*/
protected void addStackAction(StackAction action)
{

getActionRegistry().registerAction(action);
stackActionIDs.add(action.getId());

}

/**
* Adds an editor action to this editor.
* 
* <p><Editor actions are actions that depend
* and work on the editor.
* 
* @param action the editor action
*/
protected void addEditorAction(EditorPartAction action)
{

getActionRegistry().registerAction(action);
editorActionIDs.add(action.getId());

}

/**
* Adds an action to this editor's <code>ActionRegistry</code>.

 

 

 

 

 Chapter 3. Introduction to GEF 125



* (This is a helper method.)
* 
* @param action the action to add.
*/
protected void addAction(IAction action)
{

getActionRegistry().registerAction(action);
}

Now that we have the action infrastructure, we must implement the automatic 
updating of the different actions. Editor actions must be updated when the editor 
changes, CommandStack actions when the CommandStack changes, and 
EditPart actions when the selection changes. Example 3-15 shows how to add 
update support for actions to our sample editor.

Example 3-15   Adding update support for the actions

/**
* Updates the specified actions.
* 
* @param actionIds the list of ids of actions to update
*/
private void updateActions(List actionIds)
{

for (Iterator ids = actionIds.iterator(); ids.hasNext();)
{

IAction action = getActionRegistry().getAction(ids.next());
if (null != action && action instanceof UpdateAction)

((UpdateAction) action).update();

}
}

/**
* The <code>CommandStackListener</code> that listens for
* <code>CommandStack </code>changes.
*/
private CommandStackListener commandStackListener =

new CommandStackListener()
{

public void commandStackChanged(EventObject event)
{

updateActions(stackActionIDs);
setDirty(getCommandStack().isDirty());

}
};

/** the selection listener */

 

 

 

 

126 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



private ISelectionListener selectionListener = new ISelectionListener()
{

public void selectionChanged(IWorkbenchPart part, ISelection selection)
{

updateActions(editPartActionIDs);
}

};

/**
* Returns the selection listener.
* 
* @return the <code>ISelectionListener</code>
*/
protected ISelectionListener getSelectionListener()
{

return selectionListener;
}

/**
* Initializes the editor.
* @see EditorPart#init
*/
public void init(IEditorSite site, IEditorInput input)

throws PartInitException
{

// store site and input
setSite(site);
setInput(input);

// add CommandStackListener
getCommandStack().addCommandStackListener(getCommandStackListener());

// add selection change listener
getSite()

.getWorkbenchWindow()

.getSelectionService()

.addSelectionListener(
getSelectionListener());

}

/* (non-Javadoc)
* @see org.eclipse.ui.IWorkbenchPart#dispose()
*/
public void dispose()
{

// remove CommandStackListener
getCommandStack().removeCommandStackListener(getCommandStackListener());

// remove selection listener

 

 

 

 

 Chapter 3. Introduction to GEF 127



getSite()
.getWorkbenchWindow()
.getSelectionService()
.removeSelectionListener(
getSelectionListener());

/ disposy the ActionRegistry (will dispose all actions)
getActionRegistry().dispose();

// important: always call super implementation of dispose
super.dispose();

}

/* (non-Javadoc)
* @see org.eclipse.ui.part.WorkbenchPart#firePropertyChange(int)
*/
protected void firePropertyChange(int propertyId)
{

super.firePropertyChange(propertyId);
updateActions(editorActionIDs);

}

Now, when all the infrastructure is ready, we are able to create and add our 
actions as shown in Example 3-16.

Example 3-16   Adding actions to the editor

/**
* Initializes the editor.
* @see EditorPart#init
*/
public void init(IEditorSite site, IEditorInput input)

throws PartInitException
{

// store site and input
setSite(site);
setInput(input);

// add CommandStackListener
getCommandStack().addCommandStackListener(getCommandStackListener());

// add selection change listener
getSite()

.getWorkbenchWindow()

.getSelectionService()

.addSelectionListener(
getSelectionListener());

// initialize actions

 

 

 

 

128 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



createActions();
}

/**
* Creates actions and registers them to the ActionRegistry.
*/
protected void createActions()
{

addStackAction(new UndoAction(this));
addStackAction(new RedoAction(this));

addEditPartAction(new DeleteAction((IWorkbenchPart) this));

addEditorAction(new SaveAction(this));
addEditorAction(new PrintAction(this));

}

3.4.8  Adapting to the properties view
EditParts are responsible for delivering IPropertySource adapters for the 
properties view, but this is not discussed here.

The Graphical Editing Framework provides a solution to cover modifications 
occurred in the properties view into the CommandStack. This enables the 
possibility to undo and redo changes.

To enable this, the editor must deliver its own IPropertySheetPage. This 
IPropertySheetPage is a default PropertySheetPage customized with an 
undoable root entry provided by GEF. See Example 3-17.

Example 3-17   Making the properties view undoable

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

// we need to handle common GEF elements we created
if (adapter == GraphicalViewer.class

|| adapter == EditPartViewer.class)
return getGraphicalViewer();

else if (adapter == CommandStack.class)
return getCommandStack();

else if (adapter == EditDomain.class)
return getEditDomain();

else if (adapter == ActionRegistry.class)
return getActionRegistry();

else if (adapter == IPropertySheetPage.class)

 

 

 

 

 Chapter 3. Introduction to GEF 129



return getPropertySheetPage();

// the super implementation handles the rest
return super.getAdapter(adapter);

}

/** the undoable <code>IPropertySheetPage</code> */
private PropertySheetPage undoablePropertySheetPage;

/**
* Returns the undoable <code>PropertySheetPage</code> for
* this editor.
* 
* @return the undoable <code>PropertySheetPage</code>
*/
protected PropertySheetPage getPropertySheetPage()
{

if (null == undoablePropertySheetPage)
{

undoablePropertySheetPage = new PropertySheetPage();
undoablePropertySheetPage.setRootEntry(

GEFPlugin.createUndoablePropertySheetEntry(getCommandStack()));
}

return undoablePropertySheetPage;
}

3.4.9  Providing an outline view
Providing an outline view is handled in the typical Eclipse way. We need to 
provide an adapter of type IContentOutlinePage. We can do this in several ways. 

One way is to create a complete SWT based outline view without using the 
Graphical Editing Framework. In many cases this is suitable and can be easily 
done, because many components, such as content and label providers or even 
tree viewers, can be reused to show a tree of your model objects.

If you do not have these reusable components available, then a second way is to 
build a tree with GEF components. The Graphical Editing Framework provides a 
TreeViewer and TreeEditParts for this case. You can also reuse actions created 
for your graphical editor. For details about implementing a model tree with the 
GEF TreeViewer and TreeEditParts, please see our redbook sample application.

A third way is to provide an overview of your graphical editor. Example 3-18 and 
Example 3-19 show a possible implementation of this.

 

 

 

 

130 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Example 3-18   An overview outline page

/**
* This is a sample implementation of an outline page showing an
* overview of a graphical editor.
* 
* @author Gunnar Wagenknecht
*/
public class OverviewOutlinePage extends Page implements IContentOutlinePage
{

/** the control of the overview */
private Canvas overview;

/** the root edit part */
private ScalableFreeformRootEditPart rootEditPart;

/** the thumbnail */
private Thumbnail thumbnail;

/ **
* Creates a new OverviewOutlinePage instance.
* @param rootEditPart the root edit part to show the overview from
*/
public OverviewOutlinePage(ScalableFreeformRootEditPart rootEditPart)
{

super();
this.rootEditPart = rootEditPart;

}

/* (non-Javadoc)
* @see ISelectionProvider#addSelectionChangedListener
* (ISelectionChangedListener)
*/
public void addSelectionChangedListener(ISelectionChangedListener listener)
{}

/* (non-Javadoc)
* @see IPage#createControl(Composite)
*/
public void createControl(Composite parent)
{

// create canvas and lws
overview = new Canvas(parent, SWT.NONE);
LightweightSystem lws = new LightweightSystem(overview);

// create thumbnail
thumbnail =

new ScrollableThumbnail((Viewport) rootEditPart.getFigure());

 

 

 

 

 Chapter 3. Introduction to GEF 131



thumbnail.setBorder(new MarginBorder(3));
thumbnail.setSource(

rootEditPart.getLayer(LayerConstants.PRINTABLE_LAYERS));
lws.setContents(thumbnail);

}

/* (non-Javadoc)
* @see org.eclipse.ui.part.IPage#dispose()
*/
public void dispose()
{

if (null != thumbnail)
thumbnail.deactivate();

super.dispose();
}

/* (non-Javadoc)
* @see org.eclipse.ui.part.IPage#getControl()
*/
public Control getControl()
{

return overview;
}

/* (non-Javadoc)
* @see org.eclipse.jface.viewers.ISelectionProvider#getSelection()
*/
public ISelection getSelection()
{

return StructuredSelection.EMPTY;
}

/* (non-Javadoc)
* @see ISelectionProvider#removeSelectionChangedListener
* (ISelectionChangedListener)
*/
public void removeSelectionChangedListener(

ISelectionChangedListener listener)
{}

/* (non-Javadoc)
* @see org.eclipse.ui.part.IPage#setFocus()
*/
public void setFocus()
{

if (getControl() != null)
getControl().setFocus();

}

 

 

 

 

132 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



/* (non-Javadoc)
* @see ISelectionProvider#setSelection(ISelection)
*/
public void setSelection(ISelection selection)
{}

}

Now this page can be used in the editor, as shown in Example 3-19.

Example 3-19   Attaching the overview to the editor

/* (non-Javadoc)
* @see org.eclipse.core.runtime.IAdaptable#getAdapter(java.lang.Class)
*/
public Object getAdapter(Class adapter)
{

// we need to handle common GEF elements we created
if (adapter == GraphicalViewer.class

|| adapter == EditPartViewer.class)
return getGraphicalViewer();

else if (adapter == CommandStack.class)
return getCommandStack();

else if (adapter == EditDomain.class)
return getEditDomain();

else if (adapter == ActionRegistry.class)
return getActionRegistry();

else if (adapter == IPropertySheetPage.class)
return getPropertySheetPage();

else if (adapter == IContentOutlinePage.class)
return getOverviewOutlinePage();

// the super implementation handles the rest
return super.getAdapter(adapter);

}

/** the overview outline page */
private OverviewOutlinePage overviewOutlinePage;

/**
* Returns the overview for the outline view.
* 
* @return the overview
*/
protected OverviewOutlinePage getOverviewOutlinePage()
{

if (null == overviewOutlinePage && null != getGraphicalViewer())
{

RootEditPart rootEditPart = getGraphicalViewer().getRootEditPart();

 

 

 

 

 Chapter 3. Introduction to GEF 133



if (rootEditPart instanceof ScalableFreeformRootEditPart)
{

overviewOutlinePage =
new OverviewOutlinePage(

(ScalableFreeformRootEditPart) rootEditPart);
}

}

return overviewOutlinePage;
}

3.4.10  Controlling your editor with the keyboard
The Graphical Editing Framework uses the concept of KeyHandlers to answer 
key strokes. By default, the anGEF GraphicalViewer does not answer key 
strokes. We have to enable this.

This is not a difficult task, because as with all other GEF concepts, there is a 
default implementation available, which provides a very feature-rich set of keys 
for interacting with a GraphicalViewer. The default implementation is the class 
org.eclipse.gef.ui.parts.GraphicalViewerKeyHandler. Example 3-20 shows how 
to use this key handler with our editor sample.

Example 3-20   Enabling our editor for keyboard interaction

/**
* Creates a new <code>GraphicalViewer</code>, configures, registers 
* and initializes it.
* @param parent the parent composite
* @return a new <code>GraphicalViewer</code>
*/
private GraphicalViewer createGraphicalViewer(Composite parent)
{

// create graphical viewer
GraphicalViewer viewer = new ScrollingGraphicalViewer();
viewer.createControl(parent);

// configure the viewer
viewer.getControl().setBackground(parent.getBackground());
viewer.setRootEditPart(new ScalableFreeformRootEditPart());
viewer.setKeyHandler(new GraphicalViewerKeyHandler(viewer));

// hook the viewer into the EditDomain
getEditDomain().addViewer(viewer);

// acticate the viewer as selection provider for Eclipse
getSite().setSelectionProvider(viewer);

 

 

 

 

134 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



// initialize the viewer with input
viewer.setEditPartFactory(getEditPartFactory());
viewer.setContents(getContent());

return viewer;
}

3.5  Managing your model
Now that the editor base is built, you probably need to start reflecting your model. 
In this section we provide an overview of things to consider and describe some 
important issues related to handling models with our editor.

3.5.1  Reflecting a model
First we have to think about the architecture of our EditParts. The easiest way is 
usually to build the EditParts according to our model, but sometimes you may 
like another kind of representation of the model.

Whether you want a simple one-to-one representation or not, you need to have 
one main EditPart. This main EditPart is also called content EditPart and serves 
as the main entry point for your representation. It is important to understand this 
because each EditPartViewer can only have one content EditPart.

A content EditPart has nothing to do with a RootEditPart, but it might be possible 
that a RootEditPart defines some restrictions on the figure of the content EditPart 
(for example ScalableFreeformRootEditPart). 

The figure of a content EditPart serves as the background figure of your 
graphical editor. Children can only be placed inside a figure.

Graphical model properties
A graphical editor presents your model in a graphical way. It is quite common for 
editors to allow users to lay out things the way they like. We have to think about 
this and decide which kind of support we will provide for layout. 

Tip: If you like to attach actions to your own key strokes, you do not need to 
overwrite the GraphicalViewerKeyHandler. It is simply possible to attach a 
parent to KeyHandlers. Thus, you simply create your own KeyHandler 
instance (not GraphicalViewerKeyHandler), configure this KeyHandler 
instance, and set it as the parent of the GraphicalViewerKeyHandler you 
created for the GraphicalViewer.

 

 

 

 

 Chapter 3. Introduction to GEF 135



The Graphical Editing Framework can use any Draw2D layout manager that is 
available. Some layouts requires the use of constraints (for example, location 
and size). These constraints belongs to a certain graphical representation of a 
model element. You have to decide if these constraints are persistent or not. If 
they are persistent, you have to find a location where you can store the constraint 
information.

The best way to do this depends on your preference and what fits best with your 
model. Mostly it is possible to store constraints together with the model element, 
either as a model property or as some kind of element annotation. If you do not 
like doing this, it is also possible to store them separately from your model.

3.5.2  Communication
If a model element is changed somehow or somewhere; a new issue arises — 
we have to ensure that all graphical representations of the model are updated 
accordingly. This requires communication between the model and the controller, 
which represents it.

It is not acceptable practice for your model to know about its controller, but a 
model can call attention to itself and to the change which has affected it.

It is up to you how you want to implement this, but a common way is to create 
some kind of event object, which is fired every time a change is done in the 
model. Then every controller can register with the model element itself or with an 
event manager and listen for such events.

As already mentioned in 3.3.2, “EditParts” on page 103, this is done best in 
EditPart#activate and EditPart#deactivate. When an EditPart receives an event 
for its model element, it has to decide whether it was a simple property change 
that only affects the figure (UI representation) or a structural change. In the first 
case, you would simply call EditPart#refreshVisual; and in the second case, you 
need to call EditPart#refreshChildren.

There are some dependencies that must be considered in event based 
communication for EditParts; for example, when connections are reconnected to 
another EditPart, both the old and the new EditParts need to be refreshed. You 
need to work out which parts need to be refreshed, but this is logically quite easy. 
For example, if a connection is reconnected to a new element, then elements 
affected by this change should also fire events in this case.

 

 

 

 

136 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



3.5.3  Creating EditParts
As mentioned in 3.3.2, “EditParts” on page 103, creating EditParts is best done 
through a factory. The EditPartFactory interface is simple to implement. It has 
only one method. In that method, you need to create an EditPart for a given 
model element in a specified context. The context might be useful if you consider 
a different UI representation than your model actually shows. Of course it is also 
necessary that you associate the specified model element with the created 
EditPart before you return the new EditPart.

You may consider building a map between the created EditParts and the model 
elements, but we do not recommend this. The EditPartViewer maintains an 
EditPart registry. EditParts register themselves to that registry. The default 
EditPart implementation already does this for you by using the model element as 
the key. Using the EditPart registry is a safe way to map between EditParts and 
the model elements.

One possible need for an EditPart registry is a domain based (global) listener 
model where there is only one listener, which does not belong to the model. This 
listener receives all the events from all model objects, and therefore it needs to 
find EditParts.

Note: If your model elements need to locate EditParts, you are probably not 
using the model-view-controller paradigm and should consider another 
solution.

 

 

 

 

 Chapter 3. Introduction to GEF 137



 

 

 

 

138 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Chapter 4. GEF examples

In this chapter, we cover some more advanced Graphical Editing Framework 
subjects and present our solutions and example code for useful or frequently 
requested techniques.

4
 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 139



4.1  Additional concepts
In this section we look at some GEF and Draw2D concepts and features in 
greater detail.

4.1.1  RootEditParts
The RootEditPart is at the root of the EditPart hierarchy. It is the link between 
your application’s root edit part and the EditPartViewer. GEF provides a few 
RootEditPart implementations that you can use. In order to clear up any potential 
confusion about which RootEditPart is appropriate for your application, we 
summarize the features of the various implementations below.

The code snippet in Example 4-1 illustrates the essential steps in initializing a 
GEF application. Notice that in an actual application, these steps may be 
distributed across more than one method. It shows an instance of the root 
EditPart being created and used to initialize the GraphicalViewer.

Example 4-1   Configuring a RootEditPart

EditDomain editDomain = new DefaultEditDomain(null);
ScalableFreeformRootEditPart root = new ScalableFreeformRootEditPart();
GraphicalViewer viewer = new ScrollingGraphicalViewer();
viewer.createControl(parent);
editDomain.addViewer(viewer);

viewer.setRootEditPart(root);
viewer.setEditPartFactory(new EditPartFactory());

In selecting a root EditPart, we can first eliminate the GraphicalRootEditPart 
class. This implementation has been deprecated and will eventually be removed 
from GEF. The equivalent functionality of this EditPart can be achieved by using 
a ScrollingGraphicalViewer with a ScalableRootEditPart.

The three root EditParts to consider using are:

� ScalableRootEditPart
� FreeformGraphicalRootEditPart
� ScalableFreeformRootEditPart

All three of these EditParts must be used with a ScrollingGraphicalViewer, and 
therefore they all support scrolling using scrollbars. The main deciding criteria 
are whether your application requires scalability or a freeform diagram. 

 

 

 

 

140 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Remember that a freeform diagram expands automatically in all directions as the 
user drags figures beyond the current bounds of the diagram. This feature is 
generally desirable whenever you want the user to control the placement of the 
figures in your application. On the other hand, if your application constrains the 
placement of graphical objects, for example, into cells of a grid, then the freeform 
feature might not be desirable. Table 4-1 summarizes the main characteristics of 
the three root EditParts.

Table 4-1   Root EditPart characteristics

4.1.2  Coordinate systems
Figures have a protected method, useLocalCoordinates(), that allows subclasses 
of figure to choose a coordinate system for their child figures that is either 
absolute or relative to the parent figure. A figure whose parent uses local 
coordinates will have a bounds whose upper left coordinate will be (0,0).

A figure’s getClientArea returns the rectangle in which child figures are visible. It 
is cropped by any border/insets that are in effect for the figure, and the origin of 
the rectangle is set to (0,0) if the figure is using local coordinates.

The figure class includes four methods for translating coordinates between 
relative and absolute coordinates:

� translateToParent() — translates a point in the figure’s coordinates to its value 
in the parent’s coordinates

� translateFromParent() — translates a point in the parent’s coordinates to its 
coordinates in this figure

� translateToRelative(), translates an absolute coordinate to a coordinate that is 
relative to this figure, that is, recursively translates from parent

� translateToAbsolute() — translates a coordinate that is relative to this figure to 
an absolute coordinate, that is, recursively translates to parent

Anchors and locator reference points work with absolute coordinates. Hit testing 
uses local coordinates.

EditPart Primary Figure Is freeform? Is scalable?

ScalableRootEditPart Viewport no yes

FreeformGraphicalRoot
EditPart

FreeformViewport yes no

ScalableFreeformRoot
EditPart

FreeformViewport yes yes

 

 

 

 

 Chapter 4. GEF examples 141



4.1.3  Layers
In 3.2, “Introduction to Draw2D” on page 93, we discussed support for graphical 
layers using the LayeredPanes and layers classes. This feature allows us to 
segregate graphical elements into layers based on their functionality, and then 
control their visibility, z-order, and targetability. In this section we look at some of 
the specific ways that layers are configured in GEF’s root EditParts, and the 
possibilities for customizing this behavior.

GEF’s root EditPart classes, ScalableRootEditPart, 
FreeformGraphicalRootEditPart, and ScalableFreeformRootEditPart classes all 
expose methods that allow subclasses to modify the structure of their layers. The 
protected methods createLayers() and createPrintableLayers() are where these 
classes set up their layers. The implementation of these methods in 
FreeformGraphicalRootEditPart is shown in Example 4-2. This is similar to the 
other EditPart classes, except that it does not include scaling support. Examining 
this code reveals the default layer organization in GEF:

� Only the primary and connection layers are printable.

� The feedback layer is on the top of the z-order, followed by the handle layer, 
and finally the printable layers.

� Within the printable layers, the connection layer is on top of the primary 
drawing layer.

Example 4-2   Layer creation methods in FreeformGraphicalRootEditPart

protected void createLayers(LayeredPane layeredPane) {
layeredPane.add(getPrintableLayers(), PRINTABLE_LAYERS);
layeredPane.add(new FreeformLayer(), HANDLE_LAYER);
layeredPane.add(new FeedbackLayer(), FEEDBACK_LAYER);

}

/**
 * Creates a layered pane and the layers that should be printed.
 * @see org.eclipse.gef.print.PrintGraphicalViewerOperation
 * @return a new LayeredPane containing the printable layers
 */
protected LayeredPane createPrintableLayers() {

FreeformLayeredPane layeredPane = new FreeformLayeredPane();
layeredPane.add(new FreeformLayer(), PRIMARY_LAYER);
layeredPane.add(new ConnectionLayer(), CONNECTION_LAYER);
return layeredPane;

}

The EditParts that support scaling, that is, ScalableRootEditPart and 
ScalableFreeformRootEditPart, also contain the method:

protected ScalableFreeformLayeredPane createScaledLayers();

 

 

 

 

142 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



By subclassing these root EditPart classes, you can gain control over the 
ordering of layers, or customize which layers are printable or scalable. There are 
probably few cases where it would be useful to modify the configuration of the 
“stock” layers. One application that has been discussed is to place connections 
under rather than over the primary figure layer. Although this can have some 
aesthetic advantages, if you are considering this, keep in mind that it will be 
possible for your figures to completely cover connections, making them difficult to 
access. It becomes more problematic when your application includes container 
nodes, because connections between nodes in a container will be occluded.

A more likely customization scenario is to create additional, custom layers, for 
example, to provide annotation layers that can be turned on and off, and 
selectively printed.

4.2  Techniques
In this section we discuss some GEF and Draw2d techniques that are useful 
when developing a GEF application.

4.2.1  Drag and drop
One of the most essential parts in today’s desktop applications is drag and drop. 
In this section we discuss drag and drop inside GEF applications.

As you might know, drag and drop is organized in SWT around Transfers. They 
are the base representation of something that is transferred between the SWT 
controls in an drag and drop operation. Basically, there is no difference 
compared with GEF.

The Graphical Editing Framework provides some classes and concepts to ease 
the development of drag and drop in GEF applications. For example, you won’t 
have to deal with SWT DragSource objects and other lower level classes.

The base concept in GEF is that you add TransferDragSourceListener and/or 
TransferDropTargetListener to an EditPartViewer. TransferDragSourceListeners 
are used to enable EditPartViewers as a source for drag operations and 
TransferDropTargetListener are used to enable EditPartViewers as target for 
drop operations.

When implementing drag and drop listeners for the viewers in your GEF 
application, be sure to inherit from the abstract base classes. A good point to 
look for further implementation information is the template drag and drop palette 
demonstrated in the Logic example application provided by GEF. Our sample 
application will also provide an introduction into implementing drag and drop.

 

 

 

 

 Chapter 4. GEF examples 143



4.2.2  Palette: Implementing a sticky tool preference
The default behavior for GEF tools is to unload a tool after it is used once. This 
causes the EditDomain’s default tool, which is typically the SelectionTool, to be 
reactivated. This behavior is desirable for some types of operations and not for 
others. In addition, sometimes a tool that is normally used sporadically needs to 
be repeated several times, and then the default behavior becomes cumbersome. 

In these cases it is useful to customize each tool’s unloading behavior based on 
the type of tool, or based on user preference. The base class for GEF tools, 
org.eclipse.gef.tools.AbstractTool, contains the method 
setUnloadWhenFinished(boolean), which is used to control the unloading 
behavior. Because tools are not instantiated until they are ready to use, setting 
this property requires gaining access to tool instances, either in the factory that 
creates them, or by obtaining them from the EditDomain as they become 
activated. 

The latter technique can be used in applications that use the GEF palette and 
whose editor class is derived from GraphicalEditorWithPalette. 

1. Create a class that implements the org.eclipse.gef.palette.PaletteListener 
interface, which contains the single method:

void activeToolChanged(PaletteViewer palette, ToolEntry tool)

Add your listener to the palette by calling the palette’s method:

public void addPaletteListener(PaletteListener paletteListener);

The code inside your listener then needs to get the actual active tool from the 
EditDomain’s getActiveTool() method. Then you can set the active tool’s 
setUnloadWhenFinished() method to set this behavior based on whatever 
criteria your application wants to use, such as a user setting or preference, or 
based on what tool is active.

4.2.3  Printing
Starting with GEF version 2.0, there is built-in support for printing from GEF 
applications. You simply need to add a PrintAction to your editor’s action registry 
as shown in Example 4-3.

Example 4-3   Adding a PrintAction

ActionRegistry registry = getActionRegistry();
IAction action;

action = new PrintAction(this); // “this” is your IEditorPart-derived editor
registry.registerAction(action);

 

 

 

 

144 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



In your application’s action bar contributor class, you can provide keyboard or 
menu access to the PrintAction by calling:

addGlobalActionKey(IWorkbenchActionConstants.PRINT);

The Draw2D class PrintOperation and its subclasses PrintFigureOperation, 
PrintGraphicalViewerOperation provide support for printing in Draw2D, ultimately 
using a Graphics context, PrinterGraphics, that is created using an instance of 
SWT’s org.eclipse.swt.printing.Printer.

The PrintGraphicalViewerOperation class locates the printable layers in your 
editor’s viewer. The current selection in your editor is saved, then disabled while 
printing, and restored after printing. Only the contents of the printable layers are 
printed. Also, the parent figure’s background color is set to white for printing, then 
restored. Figures are scaled by the ratio of the printer’s resolution (in DPI®) to 
that of the display, so that the actual size of a figure is maintained.

4.2.4  Zooming
Support for zooming was added to GEF in version 2.0. The scaling functionality 
is built into ScalableLayeredPane and ScalableFreeformLayeredPane. These 
classes support scaling by maintaining the current scaling level, and by taking 
the scaling factor into account when doing point translations and calculating their 
client area and preferred size. They use the ScaledGraphics subclass of 
Graphics as the their graphics context for painting their child figures.

The ScaledGraphics class applies the current scale factor to the normal graphics 
operations, performing transformations on point lists and rectangles before 
painting them. It also scales fonts, stretches or shrinks bitmaps, and scales the 
line width for line drawing operations.

The ZoomManager class is used to manage zoom operations on ScalableFigure 
figures, that is, ScalableLayeredPane or ScalableFreeformLayeredPane. It 
provides several methods to control the zooming operations:

� It supports a zoom style, which currently cab be either a “jump” zoom or 
animated zoom.

� You can set a list of zoom levels, which is used be the zoomIn and zoomOut 
methods to determine the next of zoom.

� It can set a view location.

� You can set the zoom level to a specified magnification, or zoom in or out one 
level.

� It supports zoom listeners — controls that allow for zooming up or down can 
register themselves as zoom listeners, so that when the zoom level changes, 
they can determine their enablement.

 

 

 

 

 Chapter 4. GEF examples 145



The root EditParts ScalableFreeformRootEditPart and ScalableRootEditPart 
contain a ZoomManager, which is accessible via their getZoomManager() 
method. You can access the ZoomManager through your editor's 
GraphicalViewer:

ZoomManager zoomManager = 
((ScalableFreeformRootEditPart)getGraphicalViewer().getRootEditPart()).
getZoomManager();

You can do this if you need to modify the ZoomManager's configuration, such as 
to set the supported zoom levels.

When you want to add zoom controls to your editor's user interface, GEF 
includes classes for zoom actions and a ContributionItem, named 
ZoomComboContributionItem. These are shown in Figure 4-1.

Figure 4-1   Zoom controls provided by GEF

The ZoomComboContributionItem creates a combo box interface that controls 
the zoom level for the active workbench part. It uses the IAdapter interface to 
locate the ZoomManager for the current IWorkbenchPart. Your editor should 
include code similar to the following, in Example 4-4, in order to allow its zoom 
level to be controlled by this mechanism.

 

 

 

 

146 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Example 4-4   Returning the ZoomManager via the IAdapter interface

public Object getAdapter(Class type) {
if (type == ZoomManager.class)

return ((ScalableFreeformRootEditPart)getGraphicalViewer()
.getRootEditPart()).getZoomManager();

return null;
}

The actions supplied by GEF, ZoomInAction, and ZoomOutAction, enable you to 
easily add menu items or tool bar buttons that let the user zoom in or out, one 
level at a time. These actions are derived from the base class ZoomAction, which 
saves the current ZoomManager and registers itself as a ZoomListener. The 
actions call ZoomManager.zoomIn() or zoomOut() each time they are invoked, 
until the minimum or maximum zoom level is reached. They detect this by 
implementing the zoomChanged() method of the ZoomListener interface. They 
then update their enablement each time the zoom level is changed.

Adding zoom support
To add zoom support to your GEF application, you must first make your root 
EditPart either ScalableFreeformRootEditPart and ScalableRootEditPart. Then 
you only need to add some user interface access to set the current zoom level.

To add the zoom combo box, add it to the tool bar manager in the class that 
implements your application's ActionBarContributor, as shown in Example 4-5:

Example 4-5   Adding ZoomComboContributionItem to the tool bar

public void contributeToToolBar(IToolBarManager toolBarManager)
    {
        super.contributeToToolBar(toolBarManager);

// other items added here...

        toolBarManager.add(new Separator());
        toolBarManager.add(new ZoomComboContributionItem(getPage()));
    }

To add the zoom actions, add code in your EditorPart-derived editor class that 
registers the actions with the action registry. See Example 4-6.

Example 4-6   Registering the zoom actions

IAction zoomIn = new ZoomInAction(zoomManager);
IAction zoomOut = new ZoomOutAction(zoomManager);
getActionRegistry().registerAction(zoomIn);
getActionRegistry().registerAction(zoomOut);

 

 

 

 

 Chapter 4. GEF examples 147



// also bind the actions to keyboard shortcuts
getSite().getKeyBindingService().registerAction(zoomIn);
getSite().getKeyBindingService().registerAction(zoomOut);

Finally, to add menu items for the zoom actions to the action bar menu, you add 
them to the MenuManager as shown in Example 4-7.

Example 4-7   Adding a menu for the zoom actions

public void contributeToMenu(IMenuManager menuManager) {
super.contributeToMenu(menuManager);

// add a "View" menu after "Edit"
MenuManager viewMenu = new MenuManager("View");
viewMenu.add(getAction(GEFActionConstants.ZOOM_IN));
viewMenu.add(getAction(GEFActionConstants.ZOOM_OUT));

}

4.2.5  Decorating connections
The connections in Draw2d, and therefore also in GEF, are generally drawn 
using the PolylineConnection figure. In many cases you will want more than a 
plain line connecting the nodes in your GEF application, and the 
PolylineConnection class has built-in support for decorating connections that you 
can take advantage of.

You can decorate the ends of a PolylineConnection by specifying a 
RotatableDecoration for either the source, target, or both ends of the connection 
figure. The RotableDecoration interface is designed to allow a figure to rotate 
itself based on the position of a specified reference point. This allows the 
decoration to stay aligned with the line it is decorating as the line changes its 
angle, such as if one of the nodes that the line connects is moved. 

The classic endpoint decoration is the arrowhead. Draw2d includes two 
implementations of RotatableDecoration; these are RotatablePolyline and 
RotatablePolygon. The default constructors for both of these classes create an 
arrowhead. These can be attached to a PolylineConnection by calling its 
setSourceDecoration or setTargetDecoration methods. 

If you want a more customized decoration, you can call either classes’ 
setTemplate method, passing it a list of points for your custom polyline or 
polygon figure. You can also control the size of your decoration by calling its 
setScale method.

 

 

 

 

148 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



PolylineConnections use a DelegatingLayout for their layout manager, meaning 
that its child figures must provide a constraint that is a subclass of Locator. 
When you place a decoration on a connection using setSourceDecoration or 
setTargetDecoration the these methods will automatically create an 
ArrowHeadLocator and set it as the constraint on the decoration. The arrowhead 
locator will ensure that the decoration is placed correctly on the ends of the 
connection.

In some applications, you may want to attach additional figures to a 
PolylineConnection. One example is to add a label to a PolylineConnection to 
display some annotation text. As the PolylineConnection has a DelegatingLayout 
manager, all you need to do is to create a Label figure and add it as a child of the 
PolylineConnection, and then set the constraint to position your label. The code 
shown in Example 4-8 places a label at the connection’s midpoint.

Example 4-8   Placing a label in the center of a connection

PolylineConnection connection = new PolylineConnection(); 
Label connectionLabel = new Label(); 
connection.add( connectionLabel ); 
connection.getLayoutManager().setConstraint( connectionLabel, 

new MidpointLocator() );

4.2.6  Resource management
When implementing your GEF application, it is important that you pay attention to 
your application’s usage of the underlying graphics system’s resources. You 
must take care to manage your use of graphics objects, including images, 
bitmaps, colors, fonts, and so on. There are several techniques that can help to 
control your application’s use of resources:

� Create static variables for resources that you will use frequently throughout 
the life span of your application. In the case of colors, the class 
org.eclipse.draw2d.ColorConstants provides many useful constants.

� Manage graphics resources that you want to create dynamically using the 
EditPart life cycle. Override the EditPart’s activate() and deactivate() methods 
to handle creating and disposing of the EditPart’s graphics resources.

� When your application has graphics objects that may not be used in every 
session, use a lazy loading scheme, deferring the object(s) creation until they 
are needed.

� If there are resources that are used across different parts of the application, 
consider implementing a cache that manages the objects. Different parts of 
your application can then share the same instance of these objects.

 

 

 

 

 Chapter 4. GEF examples 149



4.2.7  Feedback techniques
Visual feedback is an important part of a graphical editor’s user interface. GEF 
allows for a number of techniques for proving feedback to the user:

� Changing the cursor when targeting parts to indicate whether the part 
supports the tool’s operation. Similarly, the cursor graphic is changed to 
indicate where drag and drop operations are supported.

� Indication of a part’s selection and focus state. Typically, a selected part 
should be clearly differentiated from unselected parts of the same type. This 
can be accomplished by enclosing the part with a selection figure or by 
changing the part’s color or shape.

� Display of handles, graphical elements that visually indicate the targets for 
operations that allow the user to move or reshape a graphical object.

In GEF commands, most feedback effects are controlled by EditPolicies. In this 
section we examine in more detail the various EditPolicies that contribute visual 
feedback to the editor framework, and we discuss where these effects can be 
customized. EditPolicies that contribute feedback effects are subclasses of 
GraphicalEditPolicy. This base class provides access to the EditPart’s figure. It 
also declares addFeedback() and removeFeedback() methods that draw 
feedback figures on the root figure’s root feedback layer, 
LayerConstants.FEEDBACK_LAYER.

DirectEditPolicy
Direct editing allows for visual editing of graphical elements by launching a cell 
editor in response to mouse clicks on the target EditPart. Creating a direct edit 
implementation is discussed in detail in “4.2.9, “Using direct edit” on page 158”, 
and is demonstrated in our redbook sample application. 

Customizing:

� You can expose different properties of your model to editing based on where 
the user clicked.

� You can respond differently to double-clicks.

� You can create custom cell editors

Note: All EditPolicies can disallow operations by returning null when 
requested to create a command. This will cause the tool to display a 
“disallowed operation” cursor. Similarly, commands which return false from 
their canExecute() will also cause this feedback.

 

 

 

 

150 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



GraphicalNodeEditPolicy
This class provides visual feedback while creating or reconnecting connections. 
It works in conjunction with NodeEditPart-derived EditParts to provide a 
simulated connection while the connection is being dragged to a target. The 
NodeEditPart returns the best potential anchor point given the current mouse 
position. The simulated connection, drawn on the feedback layer, will snap to 
anchor proposed by the NodeEditPart. In typical implementations this will be the 
source anchor that is closest to the current mouse position.

Customizing:

� Override createDummyConnection() to return a customized figure to show 
the creation feedback, possibly by changing the color, or line style or weight.

� In your NodeEditPart-derived EditPart’s implementation of 
getTargetConnectionAnchor or getSourceConnectionAnchor, apply additional 
filtering criteria to hide anchors that are not appropriate sources or targets for 
the current request. These anchors will then be ignored.

� Add target connection feedback. The default implementation has no visual 
effect for highlighting the target connection.

LayoutEditPolicy
This is a base class for EditPolicies that place their child EditParts using some 
type of LayoutManager. Subclasses should provide visual feedback that shows 
how the layout constraints will determine where a new element can be inserted. 
Key methods include:

� showLayoutTargetFeedback — This method gives visual feedback showing 
where the current operation will place the resulting figure. Subclasses will 
typically be constraining the placement of new figures to certain locations, 
and this feedback should make those constraints clear to the user. The figure 
returned by this method is effectively a type of cursor showing where the 
insertion point for the operation is located.

� getSizeOnDropFeedback — Shows the size that the new figure will assume if 
the drag operation is completed.

Customizing:

� The default implementation of showLayoutTargetFeedback does nothing. 
Implement this in a subclass to show the insertion point for new objects.

� The default implementation of getSizeOnDropFeedback() can be changed to 
use a different shape or color, and so on.

� Override getSizeOnDropFeedback() can be used if you want to provide visual 
feedback indicating the size of the new figure is constrained to some 
minimum and/or maximum size. 

 

 

 

 

 Chapter 4. GEF examples 151



FlowLayoutEditPolicy
This EditPolicy is used in conjunction with EditParts whose figure uses a 
FlowLayout layout manager. This class provides an insertion point indicator 
which is a two pixel thick solid line.

Customizing:

� The getLineFeedback() method can be called to get the default line figure, 
and then some of its attributes can be modified, such as thickness, line style, 
or thickness. If you want to use a different figure altogether, then you will 
probably need to override the showLayoutTargetFeedback() to do the math 
required to locate and size your figure correctly.

SelectionEditPolicy
This is an abstract base for EditPolicies that provide visual feedback for the focus 
selection state of EditParts. Note that the feedback figures are drawn on the 
feedback layer (LayerConstants.FEEDBACK_LAYER). The methods in this class 
include:

� protected void showFocus()
� protected abstract void showSelection()
� showPrimarySelection()
� hideFocus()
� hideSelection()

The purpose of these methods is clear from the method names. Custom 
subclasses could be used to:

� Provide a non-standard focus or selection indicator, perhaps to conform to a 
non-rectangular figure.

� Provide an implementation for figures that can be selected but not moved.

� Render the selection indicator of the primary selection in a way that 
distinguishes it from the other selections.

SelectionHandlesEditPolicy
This EditPolicy supplies a specialization of the SelectionEditPolicy that supports 
selections with handles. Subclasses provide the list of Handles that should 
decorate the selected EditPart. For instance, GEF includes the following 
SelectionHandlesEditPolicy-derived subclasses:

� BendpointEditPolicy: This SelectionEditPolicy displays bendpoint handles 
when a Connection is selected.

� ConnectionEndpointEditPolicy: This EditPolicy displays handles on the 
ends of a Connection when it is selected to support disconnecting and 
reconnecting connections.

 

 

 

 

152 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



� NonResizableEditPolicy: This EditPolicy, which prevents resizing, 
surrounds the selected EditPart with a simple outline and places a small 
square in each corner that allows for dragging.

� ResizableEditPolicy: This class extends the NonResizableEditPolicy class 
by adding handles on each side of the selection rectangle to allow for 
resizing. Customize these classes to:

– Indicate that resizing is limited to one dimension, or may be constrained to 
maintain the part’s aspect ration. Implementing this would also require 
customizing the DragTracker to enforce these constraints.

– Provide a selection effect that is more visually harmonious with unusually 
shaped parts.

– Create a “lighter weight” visual for selection that may work better for 
showing the selection on small parts.

– Use custom handles.

4.2.8  Palette-less applications
For many applications, it may be desirable to display a GEF viewer without the 
palette. For instance this may be useful when:

� The GEF view is read-only, but the user is allowed to select objects in the 
view in order to view their properties.

� The GEF application lays out its graphical objects automatically. The user is 
not allowed to add or rearrange these objects, but may be able to modify the 
model state by selecting objects, modifying their properties, and so on.

� There are a small number of tools in the application which do not justify the 
screen real estate that the palette would consume.

The EditDomain class is designed to integrate with the palette when it is present. 
There are two methods that are used to establish its connection to the palette:

� When the EditDomain’s PaletteRoot is set by calling 
setPaletteRoot(PaletteRoot root), the EditDomain will then obtain its default 
Tool from the PaletteRoot

� Setting the EditDomain’s PaletteViewer by calling its 
setPaletteViewer(PaletteViewer palette) method will cause it to register itself 
as a listener for tool selection changes in the palette.

Therefore, the first step in creating a palette-less application is to omit setting the 
EditDomain’s PaletteRoot and PaletteViewer. This EditDomain will then return 
the SelectionTool when its getActiveTool() method is called. This can be 
achieved simply by constructing your editor as a subclass of 
org.eclipse.ui.parts.GraphicalEditor.

 

 

 

 

 Chapter 4. GEF examples 153



For some types of applications, the SelectionTool may be the only tool needed. 
In that case, there is no additional user interface needed to select tools, since the 
SectionTool is already selected by default. Other applications may have a need 
to change the active tool through some other user interface mechanism besides 
the palette. In these cases the EditDomain’s setActiveTool(Tool tool) method can 
be called by the actions you create for the tools your application requires.

In this section we demonstrate how to add a toolbar button that sets the 
EditDomain’s active tool. The action we create could also be used to make the 
tool available on the editor’s context menu if desired. For the purposes of this 
example we use the Graphical Editing Framework logic editor example program. 
We modify it so that the tool to create a “Flow Container” is available as a button 
on the tool bar, as show in Figure 4-2.

Figure 4-2   The Flow Container toolbar button

The steps required to make this change are as follows:

1. Create an Action for the tool:

 

 

 

 

154 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Create the new class AddFlowContainerAction in the package 
org.eclipse.gef.examples.logicdesigner.actions. An abbreviated version of the 
Java code appears below in Example 4-9. Notice that this is a fairly 
generic-looking action implementation. The constructor includes calls to set 
the action’s image, description, and title to the same values that were formally 
set in the palette entry. The run() method creates a new tool instance and 
uses it to call the editor’s setActiveTool method, which in turn sets the 
EditDomain’s active tool via its own setActiveTool method. 

Example 4-9   The AddFlowContainerAction class

package org.eclipse.gef.examples.logicdesigner.actions;

import org.eclipse.gef.Tool;
import org.eclipse.gef.examples.logicdesigner.LogicEditor;
import org.eclipse.gef.examples.logicdesigner.LogicMessages;
import org.eclipse.gef.examples.logicdesigner.ToolActivationListener;
import org.eclipse.gef.examples.logicdesigner.model.Circuit;
import org.eclipse.gef.examples.logicdesigner.model.LogicFlowContainer;
import org.eclipse.gef.requests.CreationFactory;
import org.eclipse.gef.requests.SimpleFactory;
import org.eclipse.gef.tools.CreationTool;
import org.eclipse.gef.ui.actions.EditorPartAction;
import org.eclipse.jface.action.Action;
import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.ui.IEditorPart;

public class AddFlowContainerAction extends EditorPartAction {
private CreationFactoryfactory;
private Tool tool;
static public StringADD_CONTAINER = “add container”; 

/**
 * @param editor
 */
public AddFlowContainerAction(IEditorPart editor) {

super(editor);

setDescription( 
LogicMessages.LogicPlugin_Tool_CreationTool_FlowContainer_Description );

setImageDescriptor( ImageDescriptor.createFromFile(Circuit.class, 
“icons/logicflow16.gif”) );

setText( LogicMessages.LogicPlugin_Tool_CreationTool_FlowContainer_Label 
);

factory = new SimpleFactory(LogicFlowContainer.class);
}

 

 

 

 

 Chapter 4. GEF examples 155



/* (non-Javadoc)
 * @see org.eclipse.jface.action.IAction#run()
 */
public void run() {

tool = new CreationTool( factory );

((LogicEditor)getEditorPart()).setActiveTool( tool );
}

protected boolean calculateEnabled() {
return getEditorPart() != null;

}

protected void init() {
super.init();

setId( ADD_CONTAINER );
}

}

2. Add the button to the action bar:

Modify the class LogicActionBarContributor in the same package, 
org.eclipse.gef.examples.logicdesigner.actions, first adding the member 
variable addFlowContainerAction, as shown in Example 4-10. Note that the 
constructor’s IEditorPart argument is passed as null. This is because there is 
no active editor when the buildActions method is called. This is the reason for 
storing a reference to the action. Its setEditorPart method is called whenever 
the active editor changes. This is done by overriding the setActiveEditor 
method, and after calling the super class implementation calling:

addFlowContainerAction.setEditorPart( editor )

The only other change we make in the LogicActionBarContributor class is 
adding the code in the contributeToToolBar method which appends a 
separator and the button for our AddFlowContainerAction action.

Example 4-10   Modifications to the LogicActionBarContributor class

private AddFlowContainerActionaddFlowContainerAction;

/**
 * @see org.eclipse.gef.ui.actions.ActionBarContributor#createActions()
 */
protected void buildActions() {

addRetargetAction(...);

// existing actions here...

 

 

 

 

156 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



addFlowContainerAction = new AddFlowContainerAction( null );
addAction( addFlowContainerAction );

}

public void contributeToToolBar(IToolBarManager tbm) {
tbm.add(..);
// existing tbm.add() calls here

tbm.add(new Separator());
tbm.add( getAction( AddFlowContainerAction.ADD_CONTAINER ) );

}

// override this so that the addFlowContainerAction instance can track the 
current editor

public void setActiveEditor(IEditorPart editor) {
super.setActiveEditor(editor);

addFlowContainerAction.setEditorPart( editor );
}

}

At this point you should have a functioning tool bar button whose function is 
identical to the palette entry that adds a flow container. 

Another user interface option for a palette-less application is to add 
commands to a menu. The AddFlowConterAction that we developed can also 
be used for this purpose. As shown in Figure 4-3, a new Tools menu item has 
been added which contains a submenu item that invokes our 
AddFlowConterAction action.

Figure 4-3   The AddFlowContainerAction added to the menu

The code fragment in Example 4-11 shows the changes you must make to 
the contributeToMenu method of the LogicActionBarContributor class. 

Example 4-11   Adding a Tools menu in contributeToMenu

public void contributeToMenu(IMenuManager menubar) {
super.contributeToMenu(menubar);

// existing menu insertion code here...

MenuManager toolsMenu = new MenuManager("Tools");

 

 

 

 

 Chapter 4. GEF examples 157



toolsMenu.add(getAction(AddFlowContainerAction.ADD_CONTAINER));
menubar.insertAfter(IWorkbenchActionConstants.M_EDIT, toolsMenu);

}

4.2.9  Using direct edit
Direct edit is a feature of the Graphical Editing Framework that allows you to 
open a cell editor on a selected EditPart using a mouse gesture. There are three 
ways for a user to invoke direct edit:

� Double-click the mouse on an EditPart. 

� Click once on an EditPart that is already selected. This method is analogous 
to the Windows Explorer file name editing capability, which opens a text edit 
box if you click selected file name, allowing you to then edit the file’s name.

� Press the F2 key when an EditPart is selected.

Figure 4-4 shows a simple Label figure when its cell editor is activated. This 
simple example can be seen in the GEF logic example application. However, 
direct edit can be used for much more visually complex EditParts in which 
clicking in areas of your EditPart invokes different cell editors, including dialogs.

Figure 4-4   A Label figure showing the selected and cell editing states

The behavior of direct edit in your application is customizable. You specify what 
cell editor to open, and your application can determine this dynamically 
depending on criteria such as where the user clicked on your EditPart as well as 
the current state of your model, and so on. Direct Edit supports activating cell 
editors derived from org.eclipse.jface.viewers.CellEditor. Eclipse includes 
several useful subclasses that provide cell editors for booleans, combo boxes, 
text, and dialogs. By subclassing the DialogCellEditor, you have full flexibility to 
create dialogs that allow for the display or editing of your EditPart’s properties.

This section outlines the steps you take to implement Direct Edit for one of your 
application’s EditParts:

this is a label

a selected label

 a label with its cell editor open

 

 

 

 

158 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



1. First modify your EditPart’s createEditPolicies to install a new edit policy with 
the key EditPolicy.DIRECT_EDIT_ROLE, as shown in Example 4-12.

Example 4-12   Install the DIRECT_EDIT_ROLE edit policy

protected void createEditPolicies(){
super.createEditPolicies();
installEditPolicy(..);

installEditPolicy(EditPolicy.DIRECT_EDIT_ROLE, new 
LabelDirectEditPolicy());
}

2. Add code in performRequest, as in Example 4-13, that invokes your 
DirectEditManager-derived edit manager class. The second argument to your 
DirectEditManager constructor determines what type of CellEditor will be 
created. For the third argument, you provide a class derived from:

org.eclipse.gef.tools.CellEditorLocator

This will calculates where you want the cell editor to appear within your 
EditPart. The example code shown here checks for a request type of 
RequestConstants.REQ_DIRECT_EDIT. The value of the request type 
allows you determine which of two mouse gestures was used to request the 
direct edit function. A request type of RequestConstants.REQ_DIRECT_EDIT 
indicates that the user single-clicked on a selected edit part, whereas the 
request type RequestConstants. REQ_OPEN indicates that the user double 
clicked on the edit part. You have the option to handle both request types as 
the same operation, ignore one of the types, or respond with different user 
interfaces for each type.

Example 4-13   Calling DirectEditManager.show() in performRequest

public void performRequest(Request request){
if (request.getType() == RequestConstants.REQ_DIRECT_EDIT) {

if(manager == null)
manager = new LogicLabelEditManager(this, 

TextCellEditor.class, new 
LabelCellEditorLocator((Label)getFigure()));

manager.show();
}

}

3. The EditPolicyclass you create must be a subclass of 
org.eclipse.gef.editpolicies.DirectEditPolicy.

Your subclass must minimally provide implementations of the two abstract 
methods:

protected abstract Command getDirectEditCommand(DirectEditRequest request);

 

 

 

 

 Chapter 4. GEF examples 159



This method constructs the command for the direct edit request. It should 
return a class, subclassed from org.eclipse.gef.commands.Command that 
updates your model with the results of the cell editing session. It should also 
support undo operations by caching the pre-edited state of you EditPart’s 
model.

protected abstract void showCurrentEditValue(DirectEditRequest request);

The showCurrentEditValue method is called to update your EditPart’s figure 
with the current value obtained from the request’s cell editor. See Figure 4-5 
for an example.

Figure 4-5   Current edit value

Tip: Normally during direct edit, your EditPart’s selection handles will be 
shown, because the EditPart had to be selected in order to enter direct edit 
mode. This may not be aesthetically desirable. There are a couple of 
approaches to address this.

In the show() method of your DirectEditManager subclass you can save the 
current selection state:

List savedSelection = source getSelectedEditParts();

Then temporarily remove the selections:

source.deselectAll();

Then override the bringDown() so that the saved selection state is restored 
when the cell editor is closed.

A second option is to customize the graphics that indicate your EditPart’s 
selected state, changing them to something that doesn’t interfere visually with 
the cell editor.

this is a label

a selected label

 a label with its cell editor open

 

 

 

 

160 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



4.2.10  Accessibility
Designing an accessible application is fundamentally about allowing for choice 
and flexibility in both input and output methods. An accessible application may 
receive input from the keyboard or serial port rather than the mouse. It needs to 
support accessibility clients that use sound, speech synthesis, or screen 
magnification to convey the output to the user.

GEF provides built-in support for accessibility, allowing you to create visual 
editors that can be controlled with little or no mouse interaction. The editor and 
palette are preconfigured to understand several keyboard navigation commands. 
Examples are the ability to select objects and palette entries, cycle through an 
object’s selection handles, and drag or resize an object using the arrow keys:

� It supports the use of keyboard commands for users with limited dexterity.

� It provides annotations for the selected part, such as name, description, help 
text, and so on. that can be used by accessibility clients which may magnify or 
speak these strings for the user.

� It maps between the EditPart in focus and the accessibility client’s view of the 
screen. This allows applications such as the Windows magnifier to track the 
user’s actions within a GEF editor. This assists sight-impaired users.

� GEF supports autoscrolling, which allows the editor to scroll automatically to 
expose parts of a diagram that may be outside of the viewable area as the 
user drags their mouse to the edge of the view.

GEF’s accessibility implementation
In this section we describe the classes that implement GEF’s accessibility 
support. We describe the roles they play and what you need to do to include 
accessibility in your GEF application.

Accessible EditParts 
Accessible EditParts are able to participate in the accessibility support that is 
included in SWT and ultimately in the underlying operating system on which that 
your GEF application is running. Accessibility client applications can listen for 
selection changes in your GEF application and then obtain accessibility 
information about the selected EditPart via the EditPartViewer. 

Tip: WIndows users can experiment with the accessibility features in the logic 
example by launching the Windows Magnifier application. Launch the 
Windows Magnifier by selecting Programs -> Accessories -> Accessibility 
->Magnifier

 

 

 

 

 Chapter 4. GEF examples 161



The AccessibleEditPart abstract class declares the methods that accessibility 
clients may use to interrogate your EditPart. These methods mirror the interface 
in org.eclipse.swt.accessibility.AccessibleAdapter, which defines the equivalent 
interface for SWT parts. The Javadoc in that class is a good source for 
documentation of the semantics of each of these methods. These methods allow 
your EditPart to enhance its accessibility by returning information such as its 
name, help string, keyboard shortcut, description, its selection and focus state, 
and by providing access to its child parts. 

When you create an EditPart, you override the getAccessibleEditPart method in 
AbstractEditPart in order make your EditPart accessible. 
AccessibleGraphicalEditPart provides much of the default behavior needed by a 
custom EditPart. You will typically need to override the methods to return your 
part’s name, description, and so on.

AccessibleGraphicalEditPart
AccessibleGraphicalEditPart is an inner class of AbstractGraphicalEditPart that 
provides GEF’s implementation for the underlying SWT accessibility API, defined 
in org.eclipse.swt.accessibility package. This an abstract class, so EditParts 
supporting accessibility must provide a concrete subclass that is returned when 
the AbstractEditPart.getAccessibleEditPart() is called.

Accessible handles
Making a handle accessible requires that the handle provide a single point, in 
absolute coordinates, at which it can be selected. Keyboard navigation can then 
use this coordinate when selecting the handle, effectively simulating a mouse 
click at that location. Accessible handles are obtained from the EditPolicies that 
are responsible for handle management, such as subclasses of 
SelectionEditPolicy. 

The AccessibleHandleProvider interface is used to collect a list of accessible 
handles for a Handle or EditPart. The AccessibleGraphicalEditPart implements 
this interface through its IAdaptable implementation. It collects a merged list of all 
the accessible handles contributed by its EditPolicy instances which also 
implement the AccessibleHandleProvider interface. Ultimately each Handle 
interface’s getAccessibleLocation method returns the coordinate that indicates 
the location of its accessible handle. The AbstractHandle class provides most 
handles with a default implementation of this method that returns the center point 
of the handle. Other handle types can override this as appropriate. 

The SelectionHandlesEditPolicy is an abstract class that is adaptable to an 
AccessibleHandleProvider, providing accessibility for subclasses that use GEF’s 
default handles. If you design your own handles, you will need to provide an 
implementation of the getAccessibleLocation that returns a point inside your 
handle.

 

 

 

 

162 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Accessible anchors
Accessible anchors work similarly to accessible handles. An EditPart provides an 
implementation of the AccessibleAnchorProvider interface by implementing the 
IAdaptable interface. The AccessibleAnchorProvider interface contains methods 
to return a list of source and target anchor locations. These points will be used to 
programmatically simulate a mouse event at that location. The targeting tool will 
then provide the same targeting behavior and feedback as if a mouse was used. 

To implement this capability in your own EditParts, you will need to traverse all 
the ConnectionAnchor-derived children of your EditPart’s parent figure, and 
return an appropriate point for each one.

AbstractTool
The AbstractTool class serves as the base class for contains the state machine 
which interprets accessible actions such as translating arrow keys into drags, 
and so on. Pressing the Enter key commits a drag

SelectionTool
When an edit part is selected, the SelectionTool’s accessibility support enables 
the user to traverse the EditPart’s available selection handles, select one, and 
perform drag operations all by using the keyboard. The keyboard commands 
supported by this class are summarized in Table 4-2.

Table 4-2   Keyboard commands provided by the SelectionTool class

ConnectionCreationTool
The keyboard handling in this class allows the user to indicate the start and end 
of connections using the Enter key. The user can cycle through the available 
anchor points of accessible EditParts by using the arrow keys. The tool will snap 
the connection to the next available anchor.

Key Action

Period Select next handle

‘>’ Select previous handle

Left Arrow Drag left

Right Arrow Drag right

Up Arrow Drag up

Down Arrow Drag down

Enter Commit the drag operation

Esc Abort the drag operation

 

 

 

 

 Chapter 4. GEF examples 163



GraphicalViewerKeyHandler 
This key handler class provides keyboard-based navigation for the 
GraphicalViewer. Table 4-3 lists the key bindings provided by the 
GraphicalViewerKeyHandler class. Note that SHIFT and CTRL keys can be used 
to modify the navigation keys. Pressing the CTRL key will cause the focus, rather 
than the selection, to move. Pressing the SHIFT key while using one of the 
navigation keys will extend the selection.

Table 4-3   Navigation key bindings defined in GraphicalViewerKeyHandler

PaletteViewerKeyHandler 
This class, the keyhandler for the palette, supports keyboard commands in the 
palette.It supports moving between palette entries and moving into and out of 
palette drawers. The commands are summarized in Table 4-4.

Table 4-4   Arrow key bindings to palette navigation

Key Action

SPACE Selects

LEFT_ARROW Navigates to EditPart on left

RIGHT_ARROW Navigates to EditPart on right

UP_ARROW Navigates to EditPart above

DOWN_ARROW Navigates to EditPart below

‘/’ or ‘?’ Navigates to EditParts’s next connection

‘\’ or ‘|’ Navigates to EditPart’s previous connection

ALT + DOWN_ARROW Navigates into a container node

ALT + UP_ARROW Navigates out of a container node

Key Action

LEFT_ARROW If the focus is on an expanded drawer, then 
collapse it, otherwise sets focus on the drawer.

RIGHT_ARROW If the focus is on a collapsed drawer, then it 
expands it. If the focus is on an expanded drawer, 
then it moves into it.

UP_ARROW If the focus is inside a drawer, it sets the focus on 
the drawer.

DOWN_ARROW It moves to the next container.

 

 

 

 

164 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Chapter 5. Using GEF with EMF

In this chapter, we discuss developing graphical editors based on EMF and GEF, 
and we provide examples of how to use the two frameworks together. We also 
discuss how to use JET to assist in developing a GEF-based editor from an EMF 
model.

5

Note: The sample code we describe in this chapter is available as part of the 
redbook additional material. See Appendix A, “Additional material” on 
page 225 for details on how to obtain and work with the additional material. 
The sample code for this chapter is provided as Eclipse projects that can be 
imported into your Eclipse workbench. 

Each major section of this chapter has a matching Eclipse project in the 
additional material. Also, be sure to import the appropriate model project for 
the editor project you want to work with. For example, to work with the 
NetworkEditor project, you need to also import the NetworkEditorModel 
project. Some of the sample projects in this chapter also expect that you have 
the SAL330RWorkflowModel project in your workspace. You may have 
created this project by working through the examples described in Chapter 1, 
“Introduction to EMF” on page 3, or you can import this from our redbook 
sample material.

 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 165



5.1  Overview
As GEF is based on an MVC architecture, every GEF-based application uses a 
model to represent the state of the diagrams being created and edited. GEF 
allows you to use any objects as model objects within your application, however, 
using an EMF model provides some advantages over using arbitrary objects:

� You can use EMF’s code generation facilities to produce consistent, efficient 
and easily customizable implementations of your model objects. If your model 
evolves during development, you can regenerate the code to reflect changes 
to the model, while preserving your customizations.

� The MVC architecture used by GEF relies on controllers that listen for model 
changes and update the view in response. If you use an EMF model, 
notification of model change is already in place, as all EMF model objects 
notify change via EMF’s notification framework.

� The implementations generated for your model objects ensure that the model 
remains consistent, for example, when a reference is updated, the opposite 
reference is also updated. 

� EMF provides support for persisting model instances, and the serialization 
format is easily customizable.

� Your applications can use the reflective API provided by EMF to work with any 
EMF model generically.

Although we can generate EMF.Edit-based editors from EMF models using the 
org.eclipse.emf.codegen.ecore plug-in, these editors use JFace viewers, such as 
the TreeViewer to display model instances, and typically provide a view that has 
a one-to-one correspondence with the model. Sometimes we may wish to create 
editors where the view is more loosely coupled with the model. This is often the 
case when we want to use a graphical notation that may hide some of the detail 
of the underlying model objects, or may impose additional or a different structure 
to the model, for visualization purposes. 

We can think about using GEF and EMF together from two different 
perspectives; using an EMF model within a GEF application, and augmenting 
EMF.Edit-based editors using GEF. In this book, we focus on the first 
perspective only, due to time constraints. The second approach deserves a book 
of its own, as integrating an EMF.Edit-based editor with GEF provides its own 
challenges. For an example of an application that uses GEF and EMF.Edit 
together, take a look at the Jeez report designer, available from:

http://jeez.sourceforge.net

 

 

 

 

166 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework

http://jeez.sourceforge.net


5.2  Using an EMF model within a GEF-based application
This section describes how to use model interfaces and implementations 
generated from an EMF model as the model within a GEF-based application. 
This is the approach that we have used for our sample application, described in 
Chapter 7, “Implementing the sample” on page 203. We assume that you have 
read Chapter 3, “Introduction to GEF” on page 87and that you have a basic 
understanding of how an arbitrary (not necessarily EMF-based) model is usually 
integrated into a GEF-based application. Because GEF can use almost any type 
of model, integrating an EMF model into an editor is much the same as 
integrating any other sort of model into a GEF-based application. When tying our 
model into our editor, we can take advantage of mechanisms provided by EMF 
for notification, reflection and serialization.

We use a simple application to illustrate our approach for using GEF and EMF 
together. The application is an editor that allows us to define networks consisting 
of nodes that may be linked together. We discuss how to implement an example 
application based on the model shown in Figure 5-1.

Figure 5-1   Simple Network Model

5.2.1  Mapping from the model to the graphical representation
In a GEF-based editor, EditParts are the controllers that bridge objects from the 
model and their representation in the view, however, there does not have to be a 
one-to-one correspondence between model objects and EditParts. Hence, the 
first step in developing our application is to decide which EditParts to provide to 
represent objects from the model.

Nodes

Network

name: EString

Network

Links

downstreamLinks 0..*

upstreamLinksLink 0..*
0..*

1

Network

Links

0..*

1

x: EInt
y: EInt

Node

 

 

 

 

 Chapter 5. Using GEF with EMF 167



Mapping to EditParts
The first EditPart that we consider is the contents EditPart. This is the part that 
contains all of the other EditParts, that is, it represents a diagram that is edited 
within our editor. In our example, the contents EditPart corresponds to the 
Network class. 

In general, if a model has a top-level element that contains all other model 
objects, as is the case with the NetworkModel, and the WorkflowModel used for 
our sample application, then the contents EditPart corresponds directly to that 
container. For models that do not have a top-level container, you can think of the 
contents EditPart as corresponding to the contents of a ResourceSet that 
contains model objects, rather than corresponding directly to an EObject from 
the model.

GEF provides two base implementations of EditPart that are used in graphical 
viewers; AbstractGraphicalEditPart and AbstractConnectionEditPart. We can 
subclass either of these classes for the EditParts that correspond to the objects 
from our model. For the NetworkEditor example, we subclass 
AbstractGraphicalEditPart as NetworkEditPart, our contents EditPart. As an 
AbstractEditPart, NetworkEditPart has methods getModel() and setModel() for 
getting and setting the corresponding model object with the EditPart. We 
implement NetworkEditPart so that the Network associated with the part is 
supplied to the constructor, as shown in Example 5-1.

Example 5-1   NetworkEditPart constructor

public NetworkEditPart(Network network) {
setModel(network);

}

We implement the getModelChildren() method for NetworkEditPart, as shown in 
Example 5-2. This method returns all of the objects directly contained by the 
EditPart’s model object, in this case, all of the Nodes contained by the Network. 
This method needs to be implemented by any EditPart that contains children 
EditParts. 

Tip: When basing an editor on an EMF model, most of the objects returned by 
the getModel() methods of the EditParts will be EObjects, however, you can 
use any object as the model for an EditPart. This is one way to provide 
EditParts that do not correspond directly to EObjects from the EMF model.

 

 

 

 

168 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Example 5-2   NetworkEditPart’s getModelChildren() method

protected List getModelChildren(){
return getNetwork().getNodes();

}

Usually, the containment hierarchy of EditParts mirrors the containment 
hierarchy present in the model, so the getModelChildren() method often returns 
the objects contained by the EditPart’s model object. When this is the case, we 
can call the methods generated by EMF for each containment EReference to 
construct a List of all contained objects, as we also see in the sample application 
in Example 7-3 on page 210. However, if your EditPart containment hierarchy 
differs from your model hierarchy, remember that this method needs to return all 
of the objects corresponding to children EditParts, and only the objects 
corresponding to children EditParts.

How you choose to map the other objects from your model to EditParts will 
depend on how each object is to be represented graphically. The graphical 
representation for some objects may be simple, but for others, it may be 
composed of multiple graphical components. These components will either be 
implemented as child EditParts, or as children of the figure that represents the 
model object in the view. An example of an appropriate use of child figures is to 
represent object attributes with simple string or number values. An EditPart is 
typically used to represent something with which the user interacts, which can be 
selected and manipulated in its own right.

One approach for mapping from the model is to provide an EditPart for each 
class, and then decide if you need any extra EditParts to represent its features. 
For the NetworkEditor, we use an AbstractGraphicalEditPart for both the 
Network and the Node class. Objects referenced by a containment reference are 
represented as child EditParts, that is, NetworkNodeEditParts are children of 
NetworkEditPart, and Links between Nodes are represented as LinkEditParts, 
which subclass AbstractConnectionEditPart. 

In addition to implementing the EditParts, we also subclass EditPartFactory as 
GraphicalEditPartFactory. It is from this class that EditParts are created and 
associated with their corresponding model objects, as shown in Example 5-3.

Note: While it is usual for an EditPart to have a direct correspondence to a 
single object in the model, this is not a requirement. You can choose to use 
more than one EditPart to represent an object from the model, use a single 
EditPart to represent multiple model objects, or even create EditParts that 
have no direct correspondence to model objects. See “Indirect mappings” on 
page 171 for examples.

 

 

 

 

 Chapter 5. Using GEF with EMF 169



Example 5-3   The createEditPart() method

public class GraphicalEditPartsFactory implements EditPartFactory{
public EditPart createEditPart(EditPart context, Object obj){

if(obj instanceof Network)
return new NetworkEditPart((Network)obj);

else if(obj instanceof Node)
return new NetworkNodeEditPart((Node)obj);

else if (obj instanceof Link)
return new LinkEditPart((Link)obj);

return null;
}

}

Figures
Each EditPart has a corresponding figure which is created and returned by the 
EditPart’s createFigure() method. For each EditPart that you implement, you will 
need to decide if you also need to provide a specialized figure to represent that 
EditPart. EditParts that have simple graphical representations can often be 
represented using one of the figures provided by Draw2D, such as a label or a 
shape. We use a layer as the figure for NetworkEditPart in the NetworkEditor, as 
Example 5-4 shows.

Example 5-4   NetworkEditPart’s createFigure() method

protected IFigure createFigure(){
FreeformLayer layer = new FreeformLayer();
layer.setLayoutManager(new FreeformLayout());
layer.setBorder(new LineBorder(1));
return layer;

}

EditParts with visual representations consisting of multiple parts will usually 
require a custom Figure to contain all of the child figures. We implement 
NodeFigure to represent NetworkNodeEditParts. The id attribute of each Node is 
represented as a child Label of the NodeFigure, as shown in Example 5-5.

Example 5-5   NodeFigure with child Label for id attribute

public class NodeFigure extends Ellipse {
protected EllipseAnchor incomingConnectionAnchor;
protected EllipseAnchor outgoingConnectionAnchor;
protected Label label;
protected XYLayout layout;
public NodeFigure() {

layout = new XYLayout();
setLayoutManager( layout );

 

 

 

 

170 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



setBackgroundColor( ColorConstants.white );
setOpaque( false);
incomingConnectionAnchor = new EllipseAnchor(this);
outgoingConnectionAnchor = new EllipseAnchor(this);
label = new Label(" ");
add(label);

}
public void setId(String id){

label.setText(id);
}
...

}

Indirect mappings
There are few restrictions on how you may map your model objects to EditParts; 
however, if you decide to map a single model object into multiple EditParts, you 
will need to contain those parts by a (possibly invisible) parent EditPart that 
corresponds to the model object. The reason why your model object can only 
correspond to a single EditPart is because the viewer uses a java.util.Map to 
map model objects to their corresponding EditParts, using the model object as 
the key. If grouping the parts is not appropriate for the graphical representation 
that you have chosen to use, this usually indicates a mismatch between the 
model and the graphical representation, and you may need to reconsider the 
representation or refactor your model.

Using this approach, when a new object is created, your EditPartFactory 
implementation can simply return an instance of the parent EditPart as the result 
of the createEditPart() method. Then the getModelChildren() method of the 
parent EditPart can construct appropriate Java objects for the children that only 
contain the data that is relevant to each child EditPart. Usually such objects 
would represent some subpart of the EObject, such as a feature or collection of 
features. Grouping the EditParts within a parent can make it easier to update the 
parts in response to model change, as only the parent EditPart needs to listen for 
changes to the model object and can then selectively update its children 
EditParts. We discuss how EditParts listen for and respond to model change in 
5.2.4, “Reflecting model changes” on page 175.

It is common for multiple model objects to be mapped to a single EditPart in the 
graphical representation, particularly where containment relationships exist in the 
model. An example is provided in the sample application and discussed in 
Chapter 7, “Implementing the sample” on page 203, where ports that are 
contained by a WorkflowNode are represented as child figures rather than as 
separate EditParts.

 

 

 

 

 Chapter 5. Using GEF with EMF 171



Sometimes, you may wish to implement EditParts that do not directly represent 
an instance of a class from the model, for example, EditParts that represent state 
that is derived from model objects. In this case, you still need to provide an object 
to the EditPart via the setModel() method, but it does not have to be an EObject 
from your model.

A common example of an EditPart that does not have a direct correspondence to 
a class from the model is a ConnectionEditPart used to represent a reference. In 
the following example, we demonstrate how you can implement this mapping. 
Figure 5-2 shows a modified version of the NetworkModel. In this model, there is 
no Link class to represent the links between nodes explicitly. Instead, the 
references upstreamLinks and downstreamLinks are used to maintain the 
relationships between nodes.

Figure 5-2   NetworkModel without the Link class

Each LinkEditPart still needs to correspond to an object so that it can be looked 
up in the EditPartRegistry of the viewer whenever refreshSourceConnections() or 
refreshTargetConnections() is called in NetworkNodeEditPart, to create or 
update the connected links. The corresponding object can be any Java object, 
and in our example, we use a String that identifies the source and target of the 
LinkEditPart as its model object.

We modify the NetworkEditor as follows:

� Modify LinkEditPart so that it takes a String argument in the constructor and 
uses that String as the model object instead of a Link.

Nodes

name: EString

Network

downstreamLinks

0..*

upstreamLinks

1 Network

0..*

x: EInt
y: EInt
id: EString

Node

0..*

 

 

 

 

172 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



� Modify GraphicalEditPartFactory so that it provides a String to the 
LinkEditPart constructor when creating a new LinkEditPart.

� Remove references to Link from the ModelCreationFactory, and use null 
instead of a ModelCreationFactory in the NetworkPaletteRoot when creating 
the tool entry for link creation.

� Provide new implementations of getModelSourceConnections() and 
getModelTargetConnections() in NetworkNodeEditPart, to return the Strings 
that we use to identify the links. The String that we use to identify a Link is 
constructed using toString() on the source and target Nodes. An example of 
how we construct the identifying String is shown in Example 5-6.

Example 5-6   Returning derived objects from getModelSourceConnections()

protected List getModelSourceConnections() {
Vector s = new Vector();
Iterator i = getNetworkNode().getDownstreamLinks().iterator();
Node n;
while(i.hasNext()){

n = (Node)i.next();
s.add(getNetworkNode().toString() + "->" + n.toString());

}
return s;

}

Remember that you can use any Java object as the model for your EditParts. 
You can create parts with more complex derivations from the model by providing 
your own objects to represent those values. You should only use this technique 
for transient or derived values, as any data that is not stored in the model will not 
be persisted by default. 

As we have seen in Example 5-6, you can then associate your custom objects 
with their corresponding EditParts from within getModelChildren(), 
getModelSourceConnections() or getModelTargetConnections(), depending on 
whether you are using child or connection EditParts to represent those objects.

Fitting the graphical representation to the model
Sometimes you may wish to modify your model so that it corresponds more 
closely to the graphical representation that you choose to use in your GEF-based 
application. 

GEF assumes that all of the information that you need to store about the 
diagrams that you are editing is represented in the model. For this reason, you 
may also need to augment your model to include information such as 
co-ordinates or dimensions. 

 

 

 

 

 Chapter 5. Using GEF with EMF 173



There are several approaches for constructing the model that you will use in your 
application (the view model) from your original model (the business model):

� Create a modified version of the original model, with the additional view 
information added directly to your original model objects. This approach is 
straightforward to implement, however, the correspondences between the 
view model and the business model are not explicit, as there is no tangible 
link between the two models. This is the approach that we use in the sample 
application.

� Use two separate models, the business model, and a new model for 
view-specific information. This is the approach used by the Omondo UML 
Editor.

� Use modelling techniques to make the link between the view and business 
model explicit. For example, create a new package that imports the business 
model, and subclasses all of the business model objects, adding the 
necessary view information in the subclasses.

We discuss examples of the latter two approaches in Chapter 1, “Introduction to 
EMF” on page 3.

5.2.2  Displaying properties
In the sample application, and also in the NetworkEditor example, we use 
reflection to construct property sheets for our model objects.“Register the 
EditPart as a property source:” on page 205 describes the implementation in 
more detail.

5.2.3  Support for editing the model
Changes to the model are made via commands. Remember that commands only 
know about model objects. It is the responsibility of EditParts to listen for 
changes made to model objects by commands and update the view accordingly. 
When you are using a hand-coded model, usually when you use commands to 
change the model, you know exactly how the changes effect the state of the 
model. An important thing to note when using an EMF model is that changes that 
are made to the model sometimes have consequences that you may not take 
into consideration when implementing undo functionality. 

For example, if you remove a reference to an object, the reference back from the 
opposite will also be removed. If you delete an object that contains others, they 
will also be deleted. This is because the EMF types are implemented to ensure 
that the model remains consistent. When you are using EMF for the first time, 
these behind the scenes changes are convenient, as they save you from having 
to enforce these constraints manually; however, they can come as a surprise if 
you are not aware of how the underlying objects behave.

 

 

 

 

174 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



If you are not expecting such changes, you can run into problems, for example 
when undoing multiple changes in the sample application, if you delete an edge 
and then the node it was connected to, the port that the edge was connected to 
will be deleted with the node, so you need to store enough information about the 
ports and the edge, so that the edge can find the right ports to reconnect to if 
those deletions are undone. When you are working with a known model it is not 
usually a problem to know how much information you need to store to facilitate 
undo, however, if you are working with models generically using the reflective 
API, the safest way to ensure that undo restores the model exactly how it was 
before the change, is to snapshot the model each time a command executes. 
You can either represent each snapshot as a separate serialization, or use diffs 
to reconstruct model state.

5.2.4  Reflecting model changes
EditParts are the representation of model objects in the editor, hence they need 
to listen for any changes that are made to their corresponding objects in the 
model and update their representation accordingly. EMF provides a Notification 
framework: Every EObject is a Notifier that can be adapted (or observed) by any 
class that implements the Adapter interface provided by 
org.eclipse.emf.common.notify. You will notice that in the implementation 
classes generated from an Ecore model, whenever the state of the object is 
modified by setting or unsetting a feature or adding or removing contained 
objects, any adapters are notified by a call to eNotify() that provides details of the 
change. Each Adapter receives these notifications via the notifyChanged() 
method. The EditParts in our Network editor adapt their corresponding model 
objects and implement notifyChanged() to respond accordingly to the changes. 

Each EditPart adds itself to the adapters of any objects that it represents in its 
activate() method, and removes itself from the adapters of those objects in its 
deactivate() method. Example 5-7 shows how NetworkEditPart adds itself as an 
adapter of the Network it represents in its activate() method.

Example 5-7   The activate() method of NetworkEditPart

public void activate(){
if (isActive())

return;
((Notifier)getNetwork()).eAdapters().add(this);
super.activate();

}

Each EditPart also implements the notifyChanged() method. Depending on what 
has changed, the EditPart may need to update its children, connections or visual 
representation to reflect the changed state of the model, by calling the 

 

 

 

 

 Chapter 5. Using GEF with EMF 175



refreshChildren(), refreshSourceConnections(), refreshTargetConnections() or 
refreshVisuals() methods. We outline the methods that we might typically call in 
our implementation of the notifyChanged() method of an EditPart, in response to 
the different types of Notification, in Table 5-1.

Table 5-1   Typical response to change Notifications

When the graphical representation corresponds closely to the model, as is the 
case in our Network editor example, the notifyChanged() method is 
straightforward, as we see in Example 5-8. In this case, the EditPart needs only 
to refresh its children when the contents of the Network that it represents 
change, or to refresh its visual representation when a feature of the Network is 
changed. 

Example 5-8   NetworkEditPart refreshing children EditParts

public void notifyChanged(Notification notification) {
int type = notification.getEventType();
switch( type ) {

case Notification.ADD:
case Notification.ADD_MANY:
case Notification.REMOVE:
case Notification.REMOVE_MANY:

refreshChildren();
break;

case Notification.SET:
refreshVisuals();
break;

}
}

Notification type Circumstances Response

ADD
ADD_MANY

Added objects are represented 
as a child EditPart

refreshChildren()

Added objects are represented 
as connected 
ConnectionEditParts

refreshSourceConnections() or 
refreshTargetConnections()

REMOVE
REMOVE_MANY

Notifier object is represented 
by a child EditPart

refreshChildren()

Notifier is represented by a 
connected ConnectionEditPart

refreshSourceConnections() or 
refreshTargetConnections()

SET
UNSET

Notifier is the model object of 
this EditPart

refreshVisuals()

 

 

 

 

176 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



If an EditPart does not use all of the features of the model object in its visual 
representation, additional code could be added so that refreshVisuals() is only 
called when features that are visualized change. If the visualization is made up of 
many parts, you may want to provide methods that will only refresh specific parts 
of the view, and use them from notifyChanged() instead of refreshVisuals().

Refreshing source or target connections is similar to refreshing children. For 
example, whenever a NetworkNodeEditPart receives notification of changes to 
its upstreamLinks or downstreamLinks features, it refreshes the connections that 
represent that link, as we see in Example 5-9. 

Example 5-9   NetworkNodeEditPart refreshing connected EditParts

public void notifyChanged(Notification notification) {
int featureId = notification.getFeatureID( NetworkPackage.class );
switch( featureId ) {

case NetworkPackage.NODE__UPSTREAM_LINKS:
refreshTargetConnections();
break;

case NetworkPackage.NODE__DOWNSTREAM_LINKS:
refreshSourceConnections();
break;

default:
refreshVisuals();
break;

}
}

In summary, EditParts need to know whenever their corresponding model 
objects change, so that they can update their children, connections, and visuals 
appropriately. We can implement this by making each EditPart an Adapter on its 
corresponding model object, and this works well if the model corresponds closely 
to the graphical representation, that is, if most EditParts correspond directly to 
model objects, and the EditPart containment hierarchy mirrors the hierarchy in 
the model. If the correspondence between objects from your model and the 
EditParts that you choose to represent them is not so close, you will need to 
customize this approach. You may wish to consider the following guidelines:

� If an EditPart represents multiple objects from the model, that EditPart needs 
to listen for changes to all of those model objects. If the group of objects that it 
represents can change, it may be necessary for the EditPart to also add or 
remove itself from the adapters of those objects in response to the objects 
being added or removed, in notifyChanged(). The sample application 
provides an example of this for WorkflowNodeEditPart, which represents 
WorkflowNodes and their Ports and which is described in 7.2.2, “Tracking 
model events in the editor” on page 207.

 

 

 

 

 Chapter 5. Using GEF with EMF 177



� For EditParts that contain or connect to EditParts that do not correspond 
directly to objects contained by the parent EditPart’s model object, the 
EditPart must listen for changes to all model objects that contribute to the 
state of objects represented by its children, and then update its children or 
connections whenever those objects change. 

� EditParts that do not directly correspond to model objects do not need to 
implement the Adapter interface as they rely on their parent to refresh them.

5.2.5  Loading and saving model instances
2.3, “Model instances and serialization” on page 64 demonstrates how to 
serialize model instances via resources. In the NetworkEditor example, we use 
the default XMI serialization provided by XMIResource, however the way that we 
load and save models from the editor is the same regardless of the type of 
resource that we choose to represent our network instances. 

We provide a class NetworkModelManager, which manages an XMIResource 
containing a network, and which provides methods that create, load and save 
that resource. Using a different serialization would simply require another 
implementation of the NetworkModelManager class that used a custom resource 
type and factory, instead of XMIResource.

The NetworkEditor class uses NetworkModelManager, creating one per file that 
is open in the multi-page editor, and provides methods to get and save the 
Network instance currently being edited via the NetworkModelManager.

Example 5-10 shows how the editor uses the NetworkModelManager instance to 
get a network from a file opened in the editor. This method is called when the 
editor is initialized from its init() method. 

Example 5-10   Getting an instance from the ModelManager

private Network create(IFile file) throws CoreException{
Network network = null;
modelManager = new NetworkModelManager();
if (file.exists()){

try{
modelManager.load(file.getFullPath());

}
catch (Exception e)
{

modelManager.createNetwork(file.getFullPath());
}
network = modelManager.getModel();
if (null == network){

throw new CoreException(
new Status(

 

 

 

 

178 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



IStatus.ERROR,
NetworkEditorPlugin.PLUGIN_ID,
0,
"Error loading the worklow.",
null));

}
}
return network;

}

The editor uses a similar mechanism to save Networks via the 
NetworkModelManager, using the following method call:
modelManager.save(file.getFullPath());

When the save() method is called, the NetworkModelManager calls the save() 
method on the Resource containing the Network, and it is serialized into an XMI 
document and saved to the path supplied.

5.2.6  Putting it all together
We complete the editor by integrating the model-specific code into a multi-page 
editor that we package as a plug-in.

We subclass MultiPageEditorPart as NetworkEditor. This class sets up 
commands, actions and the palette used in the editor. As this is standard GEF, 
and is very similar to the code described for the sample application, we do not 
describe these details of the NetworkEditor implementation here.

Finally we hook our model and corresponding EditParts into the viewer when we 
create the GraphicalViewer within the NetworkPage class, as shown in 
Example 5-11.

Example 5-11   Hooking the model into the GraphicalViewer

private void createGraphicalViewer(Composite parent){
viewer = new ScrollingGraphicalViewer();
...
// initialize the viewer with input
viewer.setEditPartFactory(new GraphicalEditPartsFactory());
viewer.setContents(getNetworkEditor().getNetwork());

}

 

 

 

 

 Chapter 5. Using GEF with EMF 179



Figure 5-3 shows a screen capture of the graphical view of the completed 
NetworkEditor application.

Figure 5-3   The NetworkEditor

5.3  Using JET in GEF-based editor development
In this section, we discuss how JET may be used to speed up development of an 
editor based on EMF and GEF.

We provide an example that generates skeletons for some classes that are used 
in a GEF editor, from a model. We can use the technique described in this 
section regardless of whether we take the approach described in 5.2, “Using an 
EMF model within a GEF-based application” on page 167, or whether we are 
using GEF to augment an EMF.Edit-based editor. You can flesh out the 
generated code into an application as described in Chapter 3, “Introduction to 
GEF” on page 87.

 

 

 

 

180 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



When developing your GEF-based application based on an EMF model, you will 
notice that you are usually creating many similar classes, for example, often you 
will create NodeEditParts for most of the classes in your model, perhaps using 
ConnectionEditParts for some of them. Often you will use a custom figure for 
your NodeEditParts. In the following example, we use JET templates to generate 
EditParts and Figures from classes in our model. This is a very basic example, to 
illustrate concepts. We do not provide a complete example due to time 
constraints, as the templates required to generate more complete 
implementations would be non-trivial. You would probably want to provide more 
detail in the templates if you wanted to generate EditParts specific to your 
application. 

Refer to the JET Tutorial, Part one for an introduction to using JET. We use a 
similar process to the example described to generate our skeleton EditParts and 
Figures from the WorkflowModel. We take the following steps:

1. To begin with, we create a project, and add a JET Nature to the project from 
the right-click context menu. This sets up the template directory.

2. In the template directory, we create a new file NodeEditPart.javajet.

3. We edit the NodeEditPart to create all of the required methods. We base the 
content of the template on the NetworkNodeEditPart from the NetworkEditor 
described in 5.2, “Using an EMF model within a GEF-based application” on 
page 167. Example 5-12 shows an excerpt from the template. Our example 
only really uses the name of the class so far to generate the skeleton, 
however you could use methods on the EClass to get more detail. For 
example, you might want to generate a skeleton notifyChanged() method with 
a switch that selected from all of the features of the class.

Example 5-12   NodeEditPart template

<%@ jet package="com.ibm.itso.sal330r.codegen" 
imports="org.eclipse.emf.ecore.*" class="NodeEditPartTemplate" %>
<%EClass eClass = (EClass) argument;%>
... imports ...
<%String name = eClass.getName();%>
public class <%=name%>EditPart 

extends AbstractGraphicalEditPart
implements NodeEditPart, Adapter

{
private IPropertySource propertySource = null;
private Notifier target;

    public <%=name%>EditPart(<%=name%> o)
    {

setModel(o);
    }

public <%=name%> get<%=name%>() {

 

 

 

 

 Chapter 5. Using GEF with EMF 181



    return (<%=name%>)getModel();
    }

/* (non-Javadoc)
 * @see 

org.eclipse.gef.editparts.AbstractGraphicalEditPart#getModelSourceConnections()
 */
protected List getModelSourceConnections() {

// TODO: implement to return the objects represented by the connections 
sourcing from this node

throw new UnsupportedOperationException();
}
/* (non-Javadoc)
 * @see 

org.eclipse.gef.editparts.AbstractGraphicalEditPart#getModelTargetConnections()
...
}

4. We also create NodeFigure.javajet, to generate a figure for each EditPart.

5. We change the JET properties for our project to ensure that the translated 
templates are compiled into the src directory. To do this, we open the 
properties of the project, select JET Settings, and then set Source 
Container to src.

6. We compile each template by selecting the template and then selecting 
Compile Template from the right-click context menu. Now, we should see the 
translated templates appear in the src directory.

7. We create a class EditPartGenerator in the com.ibm.itso.sal330r.codegen 
package that was created for the translated templates.

8. In the main method of EditPartGenerator, we add code to get classes from 
the model, and use them as arguments to the generate() method of our 
compiled templates. Example 5-13 shows the code that we add to facilitate 
this. Note that we must use the init() method on the NetworkPackage to 
initialize it before use.

Example 5-13   Using the templates

NodeEditPartTemplate n = new NodeEditPartTemplate();
NodeFigureTemplate f = new NodeFigureTemplate();
WorkflowPackageImpl.init();
Map registry = EPackage.Registry.INSTANCE;
String workflowURI = WorkflowPackage.eNS_URI;
WorkflowPackage workflowPackage = (WorkflowPackage) registry.get(workflowURI);
// Generate TaskEditPart
EClass taskClass = workflowPackage.getTask();
String result = n.generate(taskClass));

 

 

 

 

182 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



9. The result of calling generate() on the template is a string containing the text 
generated from the template. In our simple example, we print this to 
System.out, however if you were really generating code, you would want to 
create a resource containing the contents of the String. 

10.If you run the EditPartGenerator as a Java application, you will see the 
resulting code printed to the console.

Using a similar approach to the EMF codegen for the model, edit, and editor 
plug-ins, you could generate a generic graphical editor for any model using JET. 
You would probably want to use your own GenModel to represent options such 
as whether a class maps to a Node or Connection EditPart, whether it can 
contain other nodes, and possibly also to specify the type of Figure used to 
represent the class. You could then generate from instances of that model rather 
than from the application model directly.

 

 

 

 

 Chapter 5. Using GEF with EMF 183



 

 

 

 

184 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Part 2 Sample application

In this part of the book, we describe our redbook sample application. We discuss 
sample requirements and design, and show how to implement the sample.

Part 2
 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 185



 

 

 

 

186 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Chapter 6. Sample requirements and 
design

In this chapter, we introduce our redbook sample application, and describe its 
objectives. We define the requirements and explain our design decisions.

6
 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 187



6.1  Sample application requirements
In this section we introduce the sample application and describe its features.

6.1.1  The application
The problem space we have chosen to demonstrate model construction is 
workflow. It has a few key concepts that should be interesting to our readers, and 
is general enough so that all our readers should understand these concepts.

A workflow is a collection of tasks. Two types of task have been defined: simple 
and complex. 

Simple tasks
A simple task, as represented in Figure 6-1, has one input, one output, and one 
fault output. A simple task does some sort of processing on the data given to it. 
Two tasks are linked together with an edge. Data on the input is processed by 
the task and made available on the output.

Figure 6-1   Task representation 

Complex tasks
These are the complex tasks that we use in our sample application:

� Compound task: A compound task is a kind of container. It follows the 
composite pattern. It contains a containment reference to a workflow, which 
can contain other simple or compound tasks.

� Loop task: The loop task gives us the ability to iterate, as long the condition, 
a predicate, is true. 

� Choice task: The choice task implements branching.

� Transformation: Transformation has been introduced in order to enable a 
task to do a combination of its multiple inputs.

In Out

Fault

Task

Label T

 

 

 

 

188 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 6-2 shows the representation we use for complex tasks.

Figure 6-2   Complex task representation

Edge
An edge is used to link two tasks together. The output of the first task is 
redirected to the input of the second task. An edge represents both control and 
data flow. This means that once the first task has completed, the data made 
available to and the control flow is transferred to the second task. 

Compound Task (= Nested Task)

Task Task

Label O

A+B

TransformationLabel A

Label B

Choice

Task

X=2

Task

Task

X=3

True

LoopTask
While Condition

T T

 

 

 

 

 Chapter 6. Sample requirements and design 189



Multiple edges can end to a task input slot. This means that the task has to wait 
for all former tasks to reach the completion stage, before being able to process 
the multiple data set available.

Figure 6-3 shows our representation of edges.

Figure 6-3   Concurrency and edge representation

Variables and labels
The final two concepts that we introduce are the use of labels and the use of 
variables. Labels can be used to decorate any of the input, output, and fault slots 
of a task, to decorate conditions on a conditional edge from a conditional task, 
and to decorate variables.

Variables are used to store data, usually coming from the output of a task, and to 
hold the data until another task in the workflow makes use of it. Variables can be 
seen as a way to separate the control flow from the data flow. Control goes to the 
next task, while the data is held in the variable. 

Start and end tasks
In order to run the workflow, we define a start and end point as a decoration of a 
task. The start icon is a green triangle, while the stop icon is a small red square. 
See Figure 6-4 for an example.

Figure 6-4   Data flow, variable, start, and stop tasks representation

Task

Task

Task

Task

Concurrency

Task

Variable

Task

P
Label Variable P

TaskTask

 

 

 

 

190 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



6.2  Sample application design
The EMF and GEF sample application is an Eclipse plug-in. It is an editor, which 
uses a property view to capture user input, and provides an outline view to help 
the user to navigate more easily through the model. It also has multiple levels of 
undo and redo, and provides several Eclipse plug-in extension points.

These plug-in extension points are:

� The view menu, which contains the Zoom In and Zoom Out menu items
� The undo, redo tool bar

At the editor level, additional context dependent features have been defined:

� Inplace editing for compound tasks:

– A task can be added to a compound task by means of drag and drop.
– A sub-workflow can be accessed through the compound task itself.

� A separate editor tab for compound task editing:

– This provides an extended work space to work on a sub-workflow defined 
in a compound task.

� During edge creation, which is a link between two nodes, the link creation tool 
is smart enough to recognize where the link can be connected:

– No loop on a single task is allowed.

– No link from a task of a sub-workflow to a task in the main workflow is 
allowed.

– Link cursor is dynamically updated to represent the ability to connect to a 
given endpoint.

� Dynamic update of the main and properties view, to reflect the user action on 
the outline view.

� Drag and drop from the palette into the viewer.

� Right-click contextual menu:

– For example, the Choice right-click menu contains undo, delete, add 
condition to choice and save actions. 

6.2.1  Design decisions
During the design process, we made some important decisions, including these:

� There is one top level workflow per file. 

� The sub-workflow of a compound task is contained in the workflow itself. No 
reference to an external workflow or sub-workflow is supported.

 

 

 

 

 Chapter 6. Sample requirements and design 191



6.2.2  The workflow model
This section documents the WorkflowModel, shown in Figure 6-5.

Figure 6-5   The WorkflowModel

WorkflowElement
The WorkflowElement class provides features common to all elements present in 
a workflow. It is the common abstract supertype of the Workflow, WorkflowNode 
Port, Edge and Comment classes. Table 6-1 provides a summary of the 
WorkflowElement class.

Note: In Eclipse, only one editor can be opened on a workflow at a time, but 
multiple workflows can be edited in different Eclipse workflow editors.

WorkflowElement
comment: EString
height: EInt
id [1..1]: EString
name: EString
width: EInt
x: EInt
y:EInt

0..*

Subworkflow

Nodes  0..*Comments 1 Workflow
1

Task ChoiceTransformation

transformationExpression: EString

LoopTask

whileCondition [1..1]: EString
ConditionalOutputPort

conditionalOutput [1..1]: EString

FaultPort

Inputs

Source

Outputs1..*

1

1..*

Edges
Target0..*

Edges
0..*

Edges

Port

CompoundTaskInputPort

Node  1

Comment
Node  1

0..* 1

Workflow

OutputPort

WorkflowNode

isFinish [1..1]: EBoolean
isStart [1..1]: EBoolean

Edge

1

 

 

 

 

192 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Table 6-1   WorkflowElement summary

Workflow
The Workflow class represents the description of a process. A Workflow contains 
WorkflowNodes representing the steps in the process and Edges that represent 
data and control flow between the nodes. A Workflow may also contain 
comments that annotate the process described by the Workflow. Table 6-2 
provides a summary of the Workflow class.

Table 6-2   Workflow summary

WorkflowNode
The class WorkflowNode represents a step in a Workflow. WorkflowNodes have 
ports and may be connected to other WorkflowNodes via those ports. Table 6-3 
provides a summary of the WorkflowNode class.

Table 6-3   WorkflowNode summary

Owned By

Inheritance

Features name: Identifies the Workflow
comment: An optional comment string
x: Coordinate used for layout
y: Coordinate used for layout
width: Used for layout of container elements
height: Used for layout of container elements
id: Used to uniquely identify a workflow element

Constraints

Owned By

Inheritance WorkflowElement

Features nodes: The WorkflowNodes contained within this Workflow
edges: The Edges contained within the Workflow
comments: The Comments contained within the Workflow

Constraints

Owned By

Inheritance WorkflowElement

 

 

 

 

 Chapter 6. Sample requirements and design 193



Task
The class Task represents an action or unit of work within the Workflow.

The start and end icons in the documentation are different from the ones 
currently implemented. In the application, the start task’s InputPort is replaced by 
a green square and the end task’s OutputPort is replaced by a red square as 
shown in Figure 6-6.

Table 6-4 provides a summary of the Task class.

Figure 6-6   Task visual

Table 6-4   Task summary

CompoundTask
The class CompoundTask is a Task that is defined by a sub-workflow. The 
CompoundTask is complete when the sub-workflow that composes it is 
complete. As CompoundTask inherits from Task, it has a single input port, output 
port and fault port. When a CompoundTask begins, the inputs to the start nodes 
of the sub-workflow are the inputs that are received at the input port of the 
CompoundTask. Similarly, when the sub-workflow completes, the output data 
from the finishing nodes of the sub-workflow provide the data that is output from 
the output port of the CompoundTask. Figure 6-7 shows the visual 
representation of a CompoundTask.

Features isStart: Indicates whether this is the starting node of a Workflow
isFinish: Indicates whether this is the finishing node of a Workflow
workflow: A reference to the Workflow that contains the node
outputs: Output ports (including fault ports) owned by the node
inputs: Input ports owned by the node

Constraints WorkflowNodes have no more than one Fault port.

Owned By

Inheritance WorkflowNode

Features

Constraints A Task has exactly one input port and one (non-fault) output port.

Start Task End Task

 

 

 

 

194 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 6-7   Compound task visual

Table 6-5 provides a summary of the CompoundTask class.

Table 6-5   CompoundTask summary

LoopTask
The LoopTask represents actions that are repeated while a condition is true. The 
actions that are repeated are contained by the sub-workflow of the LoopTask. 
The data received at the Input of the LoopTask is provided as the input to the first 
execution of the start node in the LoopTask’s sub-workflow. For each repetition 
of the sub-workflow, the output from the previous execution becomes the input to 
the current one. The output from the finishing nodes from the final execution of 
the loop becomes the output of the LoopTask. Figure 6-8 shows the visual 
representation of the LoopTask

Figure 6-8   LoopTask visual

Table 6-6 provides a summary of the LoopTask class.

Owned By

Inheritance Task

Features subworkflow: The Workflow that defines the CompoundTask

Constraints

Compound Task (= Nested Task)

Task Task

LoopTask
While Condition

T T

 

 

 

 

 Chapter 6. Sample requirements and design 195



Table 6-6   LoopTask summary

Choice
The class Choice represents a switch between alternative execution and data 
flow paths. Data and control flow is only activated for Edges that source from 
output ports of the Choice where the condition of the OutputPort evaluates to 
true. Conditions must be unique in a Choice. The default name for a condition is 
false.

The way conditions are represented in the workflow editor differ a little bit from 
the present documentation, where a condition is drawn close to the 
corresponding edge. In the editor, they are drawn inside the Choice visual itself. 
A condition is placed in front of the corresponding ConditionalOutputPort port, 
see Figure 6-9.

Figure 6-9   Choice visual

Table 6-7 provides a summary of the Choice class.

Owned By

Inheritance CompoundTask

Features whileCondition: While this holds, the sub-workflow is repeated

Constraints

Note: The little icon on the upper right corner of the Choice is used for adding 
a condition to it. If you click it and nothing happens, check if the default false 
condition is not already defined in the Choice.

Choice

Task

X=2

Task

Task

X=3

True

 

 

 

 

196 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Table 6-7   Choice summary

Transformation
The class Transformation takes multiple inputs and performs a transformation on 
that data to produce a single result. Figure 6-10 shows the visual representation 
of a Transformation.

Figure 6-10   Transformation task visual

Table 6-8 provides a summary of the Transformation class.

Table 6-8   TransformationTask summary

Edge
The class Edge represents a connection between an output port and an input 
port, that is, a flow of data from the output of one WorkflowNode to the input of 
another. Table 6-9 provides a summary of the Edge class.

Owned By

Inheritance WorkflowNode

Features

Constraints Choice has only one input port, but may have multiple output 
ports. Non-fault OutputPorts owned by a Choice must be 
ConditionalOutputPorts.

Owned By

Inheritance WorkflowNode

Features transformExpression: Expresses how the input data is 
transformed into the output data

Constraints Transformation has only one (non-fault) output port, but may 
have multiple input ports

Label O

A+B

TransformationLabel A

Label B

 

 

 

 

 Chapter 6. Sample requirements and design 197



Table 6-9   Edge summary

Port
The abstract class Port is the common supertype for InputPort and 
OutputPort.Table 6-10 provides a summary of the Port class

Table 6-10   Port summary

InputPort
The class InputPort represents the Port at which data and control is received by 
a node in the Workflow. Table 6-11 provides a summary of the InputPort class

Table 6-11   Input Port summary

OutputPort
The class OutputPort represents the Port at which data and control is provided 
by a WorkflowNode upon completion. Table 6-12 provides a summary of the 
OutputPort class.

Owned By Workflow

Inheritance WorkflowElement

Features workflow: The containing Workflow
source: The output port from which the Edge begins
target: The input port at which the Edge terminates

Constraints

Owned By

Inheritance WorkflowElement

Features

Constraints

Owned By WorkflowNode

Inheritance Port

Features edges: The edges that target the InputPort
node: The WorkflowNode that owns the InputPort

Constraints

 

 

 

 

198 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Table 6-12   OutputPort summary

FaultPort
FaultPort represents the output of a node that terminates under exceptional 
conditions. The exception may be handled by another node if there is an Edge 
linking the FaultPort with the InputPort of the handling WorkflowNode, otherwise 
the Workflow containing the WorkflowNode that owns the FaultPort fails. 
Table 6-13 provides a summary of the FaultPort class

Table 6-13   FaultPort summary

ConditionalOutputPort

The ConditionalOutputPort class represents an output of a Choice. For any 
Choice, the conditions of its ConditionalOutputs determine the execution paths 
that are taken upon evaluation of the Choice, as only Edges sourcing from a 
ConditionalOutputPort where the condition evaluates to true will be activated 
when the Choice completes. Table 6-14 provides a summary of the 
ConditionalOutputPort class

Table 6-14   ConditionalOutputPort summary

Owned By WorkflowNode

Inheritance Port

Features node: The WorkflowNode that owns the OutputPort
edges: The edges for which the OutputPort is the source

Constraints

Owned By

Inheritance OutputPort

Features

Constraints

Owned By

Inheritance OutputPort

Features condition: The condition used to determine the execution path

Constraints

 

 

 

 

 Chapter 6. Sample requirements and design 199



Comment
The Comment class represents a free-standing comment within a Workflow. The 
text of the comment is represented in the comment attribute inherited from 
WorkflowElement. The Comment class provides a mechanism for including 
comments in the workflow that are not attached to the Ports, Edges or 
WorkflowNodes. Table 6-15 provides a summary of the Comment class.

Table 6-15   Comment summary

6.3  Sample application demo
The sample application workflow editor is the default editor for file with a 
.workflow extension.

To run the workflow sample application, we need to first create a simple project, 
than create a workflow file using the simple file creation wizard or the workflow 
wizard. The workflow wizard provides workflow file extension handling and 
control.

To create a simple project:

1. Click File -> New -> Other..., select Simple -> Project, click Next.

2. Give the project name, click Finish.

To create a workflow model with the simple file creation wizard:

1. Click File -> New -> Other..., select Simple -> File, click Next.

2. Give the file name, for example myworkflow.workflow, click Finish.

To create a workflow model with the simple file with the workflow wizard:

1. Click File -> New -> Other..., select Other -> Workflow, click Next.

2. Give the file name, for example My.workflow, click Finish.

In both cases, the workflow editor opens automatically on a new empty workflow. 
Figure 6-11 shows a workflow model built using our redbook sample application.

Owned By Workflow

Inheritance WorkflowElement

Features

Constraints

 

 

 

 

200 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 6-11   Workflow sample application window

Notes: 

1. If your starting point is the additional material, which contains the plug-in 
code, you have to run the plug-in on a Run-time Workbench. Eclipse 
automatically opens the editor on the workflow file, created during the 
simple file creation process. 

2. The Edge creation tool was considered as a composite of the model. It was 
presented in a way similar to Tasks, with an Edges menu and an Edge 
entry. Later on, it has been considered not as being a composite, but more 
like a link between two composites. As such, it was moved to the top of the 
menu, just after the Select and Marquee tools.

 

 

 

 

 Chapter 6. Sample requirements and design 201



 

 

 

 

202 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Chapter 7. Implementing the sample

In this chapter, we discuss the implementation of our workflow editor sample 
application. We describe its architecture, the model, and the multi-page editor.

7
 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 203



7.1  Overview
In this section we provide an overview of the sample application. We provide a 
summary of the packages and classes in the implementation, along with 
instructions for how to run the sample application. We also highlight notable 
sections from the JavaDoc.

7.2  Architecture
In this section we describe the architecture of the sample application. We discuss 
the techniques that we use to connect the EMF model with the editor framework.

7.2.1  Mapping the EMF model to GEF EditParts
One of the key tasks in creating a GEF application is the process of mapping 
your applications EditParts with your model. In this section we discuss the 
process that we took to bind our sample application's EMF-based model with the 
editor framework. The GEF provides a lot of flexibility as far as how its EditParts 
relate to the underlying model. There are no strict requirements on how EditParts 
map to actual objects in the model. The first step, then, is to decide what this 
mapping will be in your application. 

In general, there will probably be fewer EditParts than there are object classes in 
your model. For instance, in our sample application, we created the 
WorkflowNodeEditPart to be the base class for model elements that have 
connections. In the model, the ports are separate objects; but in the editor, we 
chose to have the WorkflowNodeEditPart represent both the node and all its 
ports. One criterion for making a determination about this mapping is to consider 
how dynamic the visual behavior of a component needs to be. 

For instance, if a model object needs a visual representation that can be moved, 
resized, or can be individually added or deleted, then it may be a good candidate 
for mapping it to its own EditPart. In our sample application, we designed the 
EditPart class hierarchy shown in Figure 7-1.

 

 

 

 

204 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Figure 7-1   The sample application’s EditPart class hierarchy

EditPart functionality
The base class for our EditParts is the WorkflowElementEditPart class, which 
provides the following three main functions needed by all its subclasses:

� Register the EditPart a listener of its model:

The WorkflowElementEditPart class implements the interface that is used by 
listeners of EMF's notification mechanism:

org.eclipse.emf.common.notify.Adapter 

Tracking changes in the model is crucial to the EditPart's function (discussed 
in detail in 7.2.2, “Tracking model events in the editor” on page 207). We 
override the EditPart's life cycle methods activate() and deactivate() to 
manage registration of the EditPart as an Adapter on its model.

� Register the EditPart as a property source:

All EditParts inherit the IAdaptable interface from their AbstractEditPart base 
class. This Eclipse interface supports a kind of multiple inheritance in which a 
class can offer a proxy object to implement an interface requested by the 
Eclipse framework. In our case we want all of our EditParts to provide an 
implementation of the IPropertySource interface. By doing so the Eclipse 
property page viewer will display the properties of our EditParts as they are 
selected, and also allow them to be edited. 

The implementation of the IPropertySource interface requires adding 
Eclipse-specific code. While we could have extended our model's objects to 
implement this interface directly, we felt that it would be preferable to keep the 
Eclipse properties handling out of the model classes. Fortunately, the 
EMF-generated classes provide a lot of metadata. This made it simple to 
create a proxy class that provides a generic IPropertySource implementor, 
WorkflowElementPropertySource, that can provide the requisite 
IPropertyDescriptor's for any of our model's classes. 

 

 

 

 

 Chapter 7. Implementing the sample 205



This also provides for editing property values. Most of the work happens in 
this class’s getPropertyDescriptors() method, shown in Example 7-1.

Example 7-1   A generic getPropertyDescriptors implementation for EMF classes

public IPropertyDescriptor[] getPropertyDescriptors() {
Iteratorit;

EClass cls = element.eClass();
Collectiondescriptors = new Vector();
 
it = cls.getEAllAttributes().iterator();
while( it.hasNext() ) {

EAttributeattr = (EAttribute)it.next();

EDataTypetype = attr.getEAttributeType();
if( attr.isID() ) {

// shouldn't be editable
descriptors.add( new PropertyDescriptor( Integer.toString( 

attr.getFeatureID() ),
 attr.getName() ) );

}
else if( type.getInstanceClass() == String.class ) {

descriptors.add( new TextPropertyDescriptor( Integer.toString( 
attr.getFeatureID() ),

 attr.getName() ) );
}
else if( type.getInstanceClass() == boolean.class ) {

descriptors.add( new CheckboxPropertyDescriptor( Integer.toString( 
attr.getFeatureID() ),

 attr.getName() ) );
}

}

return (IPropertyDescriptor[])descriptors.toArray( new 
IPropertyDescriptor[] {} );

}

Using metadata in the EAttribute and EDataType classes, we construct a 
property descriptor for each property (attribute) of a model object. The 
EAttribute provides a unique ID and displayable name for each attribute. The 
type information in the EDataType is used to create subclasses of 
PropertyDescriptor that will provide cell editors appropriate for the data type 
of each attribute. Notice the special case for ids, which are identified by 
testing the EAttribute.isID() method. This attribute is the unique ID that is 
generated for each object in the model. We don't want this attribute to be 
editable, so we create an instance of PropertyDescriptor, which results in a 
read-only entry in the property page.

 

 

 

 

206 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



� Provide a default implementation of the refreshVisuals method:

Our implementation of this method handles changes to an EditPart's size and 
position. In our sample application all of our EditParts can be moved, and 
most of them can be resized. Therefore we provide this functionality in our 
EditPart base class. The refreshVisuals() method simply applies the changed 
position and extent values in the model to the EditPart's figure by updating its 
layout constraint accordingly.

The WorkflowNodeEditPart derives from WorkflowElementEditPart and its 
purpose is to support EditParts that have connections. This is the base 
EditPart for EditParts that map to the model classes derived from the 
WorkflowNode. This class implements GEF’s NodeEditPart interface, which 
supports the connection feedback mechanism in GraphicalNodeEditPolicy. 
This gives user feedback when Connections are initially connected and also if 
they are later disconnected and reconnected.

7.2.2  Tracking model events in the editor
Once your EditPart to model mapping strategy has been designed, 
the next step is to enable your EditParts to be able to track changes in your 
model. As we have said, GEF itself does not provide nor require any specific 
event notification mechanism. If you are working with a model that does not 
include an event mechanism, one approach is to use the Java beans event 
support provided by the classes, java.beans.PropertyChangeSupport and 
java.beans.PropertyChangeListener. 

This is the approach taken in the logic example that the GEF project provides. In 
our case we are fortunate to have the full-featured notification mechanism that is 
generated automatically in EMF classes. Recall that all the EditParts in our 
sample are registered as adapters on the EMF model class(es) that they 
represent. Each EditPart then provides an override of the notification method:

public void notifyChanged(Notification notification)

This method is called when any attribute of a model class is changed, or when a 
child object is added or removed. The Notification class provides extensive 
context describing the model change that has occurred. It includes information 
such as:

� The notifier, that is, which object's property has changed, or had a child 
added or removed

� The new and previous values of the target attribute

� The data type information for the affected attribute

� An identifier for the attribute

 

 

 

 

 Chapter 7. Implementing the sample 207



This information is used to filter out events so that each EditPart only processes 
changes that are unique to properties of that particular part. Processing of more 
generic changes, for instance a change to a part's size or location, should be 
delegated to the superclasses implementations of notifyChanged(). Notice that 
the notification mechanism provided by EMF is very thorough, so that a change 
to any attribute will result in a notification event. This means that a more 
complicated model operation, in which several attributes are manipulated, results 
in a large number of notification events. Ideally the EditPart's implementation will 
filter these events accordingly so that the visual representation is maintained 
accurately while events that do not require a change to the visual representation 
are ignored.

Remember that a single EditPart may be responsible for the representation of 
more than one object in the underlying model. In our sample application this is 
the case with WorkflowNodeEditParts, which represent a WorkflowNode with 
some number of Ports. In our model the action of adding or removing a 
connection is something that happens to ports, not the WorkflowNode to which it 
is attached. Therefore our WorkflowNodeEditPart needs to perform some 
additional registration to make itself a listener on its WorkflowNode's ports. 
Otherwise it will not be notified of connection changes to its ports. This is done in 
the notifyChanged() method of the WorkflowNodeEditPart, which is a base class 
for all the EditParts in our sample application that support connections. When a 
port is added to any WorkflowNode model element, the WorkflowNodeEditPart 
adds itself as a listener on the new port.

7.2.3  Refreshing
Once we have ensured that our EditParts are receiving all the notifications they 
require to track their model, we then need to add code in our EditParts that acts 
on this information. The implications of a model event to an EditPart can be 
distilled into three general operations. The EditPart must interpret the notification 
to decide which of these operations are required:

� Updating the visual representation:

Underlying attributes of the model are often represented visually using 
colored indicators, text annotations, or other graphical effects. For example, 
in the sample application the name of an element is drawn inside a task 
rectangle or on the title bar of a compound task. The ports change color to 
indicate when a task is a start or finish task. The EditPart class provides the 
method refreshVisuals(). Its implementation should provide a full update of 
every graphical feature that is mapped to a model attribute. This method will 
be called once when the EditPart is first activated so that the model and figure 
are synchronized. Subsequently it is the responsibility of the application to 
decide when a model change event requires an update to the visualization. It 
is not required, or always advisable, to update the entire visualization if only a 

 

 

 

 

208 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



single attribute has changed. This is a judgement call depending on the 
complexity of the figure. With a detailed notification mechanism such as the 
one provided by EMF, it is easy to determine exactly what has changed in the 
model and decide whether to update details of the figure vs. calling 
refreshVisuals() to update the entire figure.

� Updating children:

In our sample application, our model has containment relationships that 
are mirrored in our EditPart hierarchy, which is a common situation in GEF 
applications. In our case the Workflow object may contain Task, 
CompoundTasks, Choice and LoopTask objects, and so on. Our model 
supports nesting, so that there are sub-workflows within CompoundTasks 
and LoopTasks. The EditParts that represent these objects maintain a 
similar structure. When a container EditPart is notified that a child model 
element has been added or removed from its model, it must interact with 
the GEF framework to synchronize by either adding or removing the 
EditParts that represent the affected model children. GEF provides the 
EditPart method refreshChildren() for this purpose. GEF provides the 
implementation of this method. Our notification just needs to call it when 
appropriate, as we do in the WorkflowNodeEditPart, shown in 
Example 7-2: 

Example 7-2   The notifyChanged() implementation in WorkflowNodeEditPart

public void notifyChanged(Notification notification) {
int type = notification.getEventType();
int featureId;

switch( type ) {
case Notification.ADD:
case Notification.ADD_MANY:

if( notification.getNewValue() instanceof Edge ) {
if( notification.getNotifier() instanceof InputPort ) {
refreshTargetConnections();

}
else {

refreshSourceConnections();
}

}
else {

// listen for connection changes on the port
if( notification.getNewValue() instanceof Port ) {

Port port = (Port)notification.getNewValue();
port.eAdapters().add( this );

}
refreshChildren();

}
break;

 

 

 

 

 Chapter 7. Implementing the sample 209



case Notification.REMOVE:
case Notification.REMOVE_MANY:

if( notification.getOldValue() instanceof Edge ) {
if( notification.getNotifier() instanceof InputPort ) {

refreshTargetConnections();
}
else {

refreshSourceConnections();
}

}
else {

if( notification.getNewValue() instanceof Port ) {
((Port)notification.getNewValue()).eAdapters().remove( this 

);
}
refreshChildren();

}
break;

We detect the addition or removal of children using the 
Notification.getEVentType() method. GEF’s refreshChildren() method it will 
need to know what parts of the model the EditPart considers to be its model’s 
children. Therefore EditParts that contain other EditParts must provide an 
implementation of the EditPart.getModelChildren, which returns a list of the 
child model elements. GEF then reconciles the model children against the list 
of EditParts that it maintains. If a there is a new child element then an EditPart 
will be created for it, or if one has been deleted than the corresponding 
EditPart will be removed. The implementation of getModelChildren() for 
CompoundTaskEditParts is show here Example 7-3:

Example 7-3   The getModelChildren implementation in CompoundTaskEditParts

protected List getModelChildren() {
List result = new ArrayList();

if( getCompoundTask().getSubworkflow() != null ) {
Iterator it;

it = getCompoundTask().getSubworkflow().getNodes().iterator();
while( it.hasNext() ) {

result.add( it.next() );
}
it = getCompoundTask().getSubworkflow().getComments().iterator();
while( it.hasNext() ) {

result.add( it.next() );
}

 

 

 

 

210 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



}

return result;
}

Notice that the Comment objects are also added here because they are 
owned by the containing workflow (but are not part of the node hierarchy). 

� Updating connections 

EditParts must notify GEF when they detect model changes indicating the 
making and breaking of connections. The mechanism for this is very similar to 
the mechanism described above for child additions and deletions. In the case 
of our sample application we do this processing in the example Example 7-2 
above. GEF provides two methods for refreshing connections, depending on 
whether the affected EditPart is the source or target of the connection. The 
methods are named EditPart.refreshSourceConnections and 
EditPart.refreshTargetConnections. As it does when refreshing children, GEF 
then asks our EditPart to provide a list of the connections for which our 
EditPart is the source or target. For our model we simply need to return the 
result of the WorkflowNode class's getOutputEdges or getInputEdges, which 
conveniently return a List as required by GEF (see Example 7-4)

Example 7-4   Returning a node’s connections

protected List getModelSourceConnections() {
return getWorkflowNode().getOutputEdges();

}

protected List getModelTargetConnections() {
return getWorkflowNode().getInputEdges();

}

7.2.4  Factories
We use two factories in order to integrate between GEF and our EMF-based 
model. First we need to use the EMF-generated factory, WorkflowFactory, 
whenever we are creating new model objects. Typically this happens when a 
creation command is either initialized by a policy or when the creation command 
is executed. The factory is made available to these functions by setting it as the 
factory for the creation tools created in the palette, as we do in the 
WorkflowPaletteRoot class. The factory is set in the constructor for the 
CreationToolEntry class. The class ModelCreationFactory, which implements 
CreationFactory, is where the EMF factory is invoked. The getNewObject() 
method in this class is where objects are actually created, as show in the snippet 
in Example 7-5.

 

 

 

 

 Chapter 7. Implementing the sample 211



Example 7-5   A snippet of the getNewObject() factory method

public Object getNewObject() {
Map registry = EPackage.Registry.INSTANCE;
String workflowURI = WorkflowPackage.eNS_URI;
WorkflowPackage workflowPackage =
(WorkflowPackage) registry.get(workflowURI);
WorkflowFactory factory = workflowPackage.getWorkflowFactory();

Object result = null;

if( targetClass.equals( Task.class ) ) {
result = factory.createTask();

}
else if( targetClass.equals( CompoundTask.class ) ) {

result = factory.createCompoundTask();
}
else if( ... ) ) {
}

return result;
}

In 7.2.3, “Refreshing” on page 208, we discussed the reconciliation process that 
GEF performs when our EditParts call refreshModelChildren, 
refreshTargetConnections or refreshSourceConnections. If GEF detects that 
there are model elements without an associated EditPart, it uses the graphical 
viewer’s factory to create the missing EditPart. In the sample application the 
class GraphicalEditPartsFactory is our implementation of EditPartFactory that 
performs this function. This simple class is what ultimately specifies how our 
model’s objects will be mapped to our application’s EditParts.

7.2.5  Policies and commands
GEF editors only become interactive when the appropriate EditPolicy 
implementations are added to EditParts. The EditPolicies are responsible for 
creating commands to operate on the model and to provide feedback behaviors 
that allow figures to be selected, dragged, added, deleted, and edited. Our 
sample uses the following EditPolicies:

� WorkflowContainerXYLayoutEditPolicy: One of the main function of this 
policy is to construct creation commands in response to a CreateRequest 
request. Most of the objects in the sample application’s model that map to 
EditParts are subclasses of WorkflowNode. The class 
CreateWorkflowNodeCommand is the command that handles creation of 
these objects. In the policy’s getCreateCommand the command is initialized 
with parent workflow, and then the factory is called to get a new child instance 
(Example 7-6). Notice the special handling when the host is a 

 

 

 

 

212 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



CompoundTask. In that case the parent workflow is obtained by calling the 
CompoundTask’s getSubworkflow() method.

Example 7-6   Initializing the CreateWorkflowNodeCommand

CreateWorkflowNodeCommand create = new CreateWorkflowNodeCommand();
if( getHost().getModel() instanceof Workflow ) {

create.setParent((Workflow)getHost().getModel());
}
else {

create.setParent(((CompoundTask)getHost().getModel()).getSubworkflow());
}
create.setChild( (WorkflowNode)request.getNewObject() );

The Comment object has its own creation command, 
CreateCommentCommand, because it is not a WorkflowNode; it has no 
connections and is always contained by a workflow.

Other functionality provided by the WorkflowContainerXYLayoutEditPolicy 
includes providing a ChangeConstraintCommand. This command is executed 
when the user changes the size or location of a model element. The policy 
also determines the SelectionHandlesEditPolicy for new EditPart children, 
making CommentEditParts nonresizeable, while the other EditParts are 
allowed to be resizeable.

� ChoiceDirectEditPolicy: This class supports the direct edit mechanism that 
the sample application uses for editing the expressions in ChoiceEditParts. It 
constructs a ChoiceExpressionCommand for a DirectEditRequest. It also 
performs some ancillary functions such as saving the current value of an 
expression and implementing the showCurrentEditValue() method to take into 
account which label the user is attempting to edit.

� CompoundHighlightEditPolicy: We created this subclass of 
GraphicalEditPolicy to provide visual feedback when a CompoundTask is the 
target of an operation, such as when a Task is being dragged into it. The 
feedback is simply to change the background color of the figure which 
contains the sub-workflow  figures.

� EdgeEditPolicy: This policy supports the deletion of Edges from the model 
by constructing a ConnectionCommand for the host Edge with null specified 
for the source and target.

� EdgeEndpointEditPolicy: We override the ConnectionEndpointEditPolicy to 
provide some extra visual feedback when an EdgeEditPart is selected. The 
feedback is simply to double the width of the connection’s polyline figure, and 
to return its width to a single pixel again when it is deselected.

 

 

 

 

 Chapter 7. Implementing the sample 213



� EdgeSelectionHandlesEditPolicy: We must provide a concrete 
implementation of the abstract base class SelectionHandlesEditPolicy that 
returns the selection handles for our connection EditParts. Since in the 
sample we do not support a bendpoint router, we just return handles for the 
start and end of the connection.

� WorkflowContainerEditPolicy: This is another container related policy.

� WorkflowNodeEditPolicy: This policy creates commands for connection 
initiation and completion (ConnectionCommand). Its superclass, 
GraphicalNodeEditPolicy, provides visual feedback while a connection is 
being drawn.

7.3  The model
In this section, we describe the model used by the sample application.

7.3.1  Modifying the WorkflowModel
In this section we describe the modifications made to the WorkflowModel in order 
to use it in the workflow editor sample application.

Choosing the naming convention for references
A reference between two classes has usually two names associated with it. One 
for each of the navigation paths between them. 

The one-to-one association names are singular and are always easily chosen. 
For the one-to-many association names, we have an extra level of freedom, 
because we can choose the Modeling or the Java naming convention to give it a 
name. The main difference between the two is that Modeling uses singular while 
Java uses plural. 

Java coding conventions are strong. By respecting them, code is generally more 
readable and understandable. It is not that those conventions are the only way or 
the best way to go, but when you follow them, code become more easily familiar 
to developers. Modeling uses different conventions, because the interests are 
not the same. 

Knowing that the convention choice has some effect on the generated code, the 
result is that you rapidly end up with some sort of decision like, do we privilegize 
the modeling or Java standpoint? When implementing the sample application, 
with Java code as the only mapping, we decide to use the Java standpoint.

 

 

 

 

214 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



To help you visualize the potential implications of the choice of one view, we use 
the Workflow to WorkflowNode association, called node(s) from Workflow to 
WorkflowNode. 

In Java, the association is implemented by a collection called nodes.See 
Example 7-7:

Example 7-7   Java reference implementation

package com.ibm.itso.sal330r.workflow.impl;

public class WorkflowImpl extends WorkflowElementImpl implements Workflow {
    /**
     * The cached value of the '{@link #getNodes() <em>Nodes</em>}' containment 
reference list.
     * <!-- begin-user-doc -->
     * <!-- end-user-doc -->
     * @see #getNodes()
     * @generated
     * @ordered
     */
    protected EList nodes = null;
    
    /**
     * <!-- begin-user-doc -->
     * <!-- end-user-doc -->
     * @generated
     */
    public EList getNodes() {

if (nodes == null) {
    nodes = new EObjectContainmentWithInverseEList(

WorkflowNode.class, 
this, 
WorkflowPackage.WORKFLOW__NODES, 
WorkflowPackage.WORKFLOW_NODE__WORKFLOW);

}
return nodes;

    }
}

In XML, if you look at a file containing the result of a workflow serialization, you 
will see an extra ‘s’ at the end of each node entity, which is unusual for an XML 
entity. You can look at any Ecore file for more examples of eClassifiers or 
eReferences XML entities. See Example 7-8.

 

 

 

 

 Chapter 7. Implementing the sample 215



Example 7-8   Workflow XMI file serialization

<?xml version="1.0" encoding="ASCII"?>
<workflow:Workflow xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:workflow="http://www.redbooks.ibm.com/sal330r/workflow" 
id="w10606325114530">
  <nodes xsi:type="workflow:Task" x="99" y="80" id="w10606325138591">
    <outputs xsi:type="workflow:FaultPort" name="fault" id="w10606325257817"/>
    <outputs name="output" id="w10606325257818"/>
    <inputs name="input" id="w10606325257819"/>
  </nodes>
  <nodes xsi:type="workflow:Choice" x="83" y="213" id="w10606325189373">
    <outputs xsi:type="workflow:FaultPort" name="fault" id="w106063252578110"/>
    <outputs xsi:type="workflow:ConditionalOutputPort" name="ConditionalPort0" 
id="w106063252578111" condition="false"/>
    <inputs name="input" id="w106063252578112"/>
  </nodes>
  <nodes xsi:type="workflow:LoopTask" x="293" y="184" id="w10606325204534">
    <outputs xsi:type="workflow:FaultPort" name="fault" id="w106063252578113"/>
    <outputs name="output" id="w106063252578114"/>
    <inputs name="input" id="w106063252578115"/>
    <subworkflow id="w106063252578116"/>
  </nodes>
</workflow:Workflow>

7.3.2  Modifying the code generated from the model
This section describes additions and customizations made to the interfaces and 
implementations generated from the WorkflowModel, in order to use this 
generated code as the model for the workflow editor sample application.

7.3.3  Respecting model constraints in the editor
In this section we use the connectTo method in the Workflow class to show 
model object relationships, and explain the execute and undo method of the 
ConnectionCommand class. We describe the containment relationship between 
Workflow and Edge and the relationship between InputPort and OutputPort and 
Edge.

Enforcing model constraint in the model implementation
WorkflowNodes have Ports. The application requires Task, CompoundTask, and 
LoopTask tasks to have only one Input and one Output. Transformations can 
have multiple Inputs, and Conditionals can have multiple Outputs. All nodes have 
a default FaultPort.

 

 

 

 

216 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



The model, as designed, tell us that the association between tasks and ports are 
inherited from the WorkflowNode, where two one-to-many associations are 
defined between WorkflowNode and InputPort on one side and WorkflowNode 
and OutputPort on the other side. The reference named outputs contains all the 
OutputPort, all the ConditionalOutputPort, and the default FaultPort ports.

With those elements in mind, we can see that we have a problem to reduce the 
visibility of the inherited methods for outputs and inputs relationships. The 
model provides methods dealing with a collection, where methods dealing only 
with one object should be defined.

Nothing prevents the following code to be written in the case of a 
CoumpoundTask:

this.getInputs().addAll(collection);

Several solutions have been investigated and evaluated. Here is a short 
description of the most important ones:

1. A model redesign to move inputs and outputs references to the subclasses, 
Task, Transformation, and Choice, would have solved the problem elegantly, 
but at a price of three times the number of references. Task would have three 
one-to-one references for the InputPort, the OutputPort, and the FaultPort 
port. Transformation would have a one-to-many reference for the InputPort, a 
one-to-one reference for the OutputPort, and a one-to-one for the FaultPort 
port. Choice would have a one-to-one reference for the InputPort, a 
one-to-many reference for the OutputPort ports, and a one-to-one for the 
FaultPort port. The main problem with this approach is that the WorkflowNode 
loses its knowledge of Ports, so there is no easy way to loop on all the ports, 
or to connect an OutputPort, or a FaultPort port to an InputPort with an Edge.

2. The Java way of manually implementing the model would have required the 
inputs and outputs associations to be left at the same place and to be 
private. The corresponding accessor methods handling the many cardinalities 
of the reference would be private or protected. All subclasses would have to 
redefine the methods accessing the collection in order to enforce the 
constraints. Unfortunately, this solution cannot be implemented easily in EMF, 
because the serialization process requires the reference to be publicly 
accessible. There is no way to have a private reference in EMF.

3. The existence of a constraint language, integrated with the code generation 
tools taking could have been a good solution. We could have kept the 
associations at the WorkflowNode level and be able to express the 
constraints.

4. The solution we implemented has the following goals:

a. To keep the model as designed in order to minimize the number of 
association and to benefit of the polymorphism for the ports

 

 

 

 

 Chapter 7. Implementing the sample 217



b. To not to use the default methods generated, including the one giving 
direct access to the underlying collection

c. To use the method we provided to support and enforce the application 
constraints

Figure 7-2 shows the resulting WorkFlowNode hierarchy.

Figure 7-2   WorkflowNode hierarchy

<interface>
WorkflowNode

isIsStart()
isIsFinish()
getOutputs()
getInputs()
connectTo(in WorkflowNode)
setFault(in FaultPort)
getFault()
addFault()
addInput()
addInput(in InputPort)
addOutput()
addOutput(in OutputPort)
getInputEdges()
getOutputEdges()
getOutput(in String)
getInput(in String)
createDefaultPort()
Init()

<interface>
Transformation

<interface>
Choice

<interface>
CompoundTask

<interface>
LoopTask

<interface>
Task

getInput()
getOutput()

 

 

 

 

218 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



The connectTo method
The algorithm to connect an OutputPort port to an InputPort port with an Edge 
consists of these steps:

1. Checking if the link does not already exist.

2. Adding the Edge to the Workflow in order to have the object created in the 
Workflow entity context, because of the containment reference between 
them.

3. Linking the OutputPort to the Edge.

4. Linking the InputPort to the Edge.

The Java code for the connectTo method is found in the WorkflowImpl class as 
shown in Example 7-9:

Example 7-9   TaskImpl connectTo method

/**
* Connects the output port to the given input port. 
* From an edge standpoint, the source is an output port 
* and the target an input port.
* 
* @param outputPort
* @param inputPort
* @param res
*/
public Edge connectTo(OutputPort outputPort, InputPort inputPort) {

// Check to see if input and output are not already 
// connected by an edge.
Edge edge = outputPort.findEdgeTo(inputPort);

if (edge == null) {
// No connection found
WorkflowFactory workflowFactory = WorkflowModelManager.getFactory();

// Create an edge
edge = workflowFactory.createEdge();
// Add the edge to the workflow, to benefit 

Note: At the moment, the design can be split into three simple implementation 
lanes. The first is one input and one output; the second is with many inputs 
and one output; and the third is the one input and many outputs. Once we 
have more than one class in a lane, basically two classes with no direct 
inheritance in between, it would be nice to create an abstract intermediate 
class in order to provide one-one, many-one, or one-many behavior.

 

 

 

 

 Chapter 7. Implementing the sample 219



// of the containment link between workflow and edge 
this.getEdges().add(edge);

// Link input and output to the edge
inputPort.getEdges().add(edge);
outputPort.getEdges().add(edge);

}
return edge;

}

The EMF eOpposite attribute of the eReferences entity is very helpful when 
making a connection between two ports with an edge, because for all the 
references with an eOpposite attribute, EMF keeps track of the changes on the 
other side of the reference. This means, for example, that if you add an Edge to 
an OutputPort:

outputPort.getEdges().add(edge);

Then EMF will do the opposite setup automatically and transparently for you:

edge.setSource(outputPort);

When creating an association in the EMF Class Diagram in the UML plug-in. 

The Navigable checkbox (see Figure 1-12 on page 20) drives the access to the 
association features. Once an association is navigable on both ends, a change 
on one side is reflected on the other side, because the eReferences’ eOpposite 
attributes are used.

7.4  Implementing the multi-page editor
When implementing a multi-page editor, there are several issues which have to 
be considered before and during development. This section gives you an 
introduction to a possible multi-page editor implementation. It also discusses 
some issues encountered during our development of the sample application.

Note: The source code of our sample application is available along with this 
book. See Appendix A, “Additional material” on page 225 for details on 
obtaining the sample code. We suggest that you study the code for 
implementation details. We tried to document it as often as possible. Because 
of that, we are not going to reproduce a lot of example code within this section. 
Instead, we give you an overview of the implementation and explain what and 
why implementation decisions were made.

 

 

 

 

220 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Our multi-page editor consists of only two pages One page is for editing a whole 
workflow and the second page is for editing compound tasks of the same 
workflow. This provides an alternative way of editing compound tasks because 
in-place editing might not be suitable in all situations.

7.4.1  Getting started
First we start creating our multi-page editor by extending 
org.eclipse.ui.parts.MultiPageEditorPart. Thus, our main editor class is the class 
WorkflowEditor, which has to be registered as an Eclipse extension in the 
plugin.xml in the regular way.

The MultiPageEditorPart uses regular IEditorPart implementations or simple 
controls as editor pages. Because we expected that there will be some code that 
is shared between our editor pages, we created an abstract editor page 
AbstractEditorPage.

7.4.2  Sharing an EditDomain

One of the most important questions is what to share within your pages. 
However you decide to do this, you will have to consider some issues.

We decided not to share a single EditDomain within our editor pages. Our 
reasons were clear, because our editor would only have two pages. The 
functionality of each page might be similar, but the concept of each page is 
different.

On one page you should be able to edit the workflow, and on the second page 
you should edit the content of compound tasks. We thought that changes on one 
page should not affect the other page except for updating the UI. Thus, we 
wanted to have completely different undo/redo stacks for each page.

If you want all your pages to be using the same undo/redo stack 
(CommandStack), you will have to share the EditDomain between your pages.

Because of some current limitations in GEF, you have to think about solutions for 
the following issues:

� If you share an EditDomain within several pages, you have to remember that 
an EditDomain can have several EditPartViewers but only one palette. 

� Thus, you might consider a concept of sharing one palette or attaching a new 
palette with every page switch.

Note: In general, we reuse as much code as possible from the concepts 
described in Chapter 3, “Introduction to GEF” on page 87.

 

 

 

 

 Chapter 7. Implementing the sample 221



7.4.3  The editor’s dirty state
You have two options for resolving this for a multi-page editor. Either you 
delegate this to every page or you implement this only once for the whole editor.

We decided to implement this directly into the multi-page editor because we think 
it might be less expensive to calculate this once for all pages rather than letting 
each page calculate this itself and asking each page.

The concept is basically the same as we would have used for a simple editor. 
The editor listens for CommandStack changes and updates its dirty state 
according to the state of the CommandStack.

Our WorkflowEditor provides a MultiPageCommandStackListener, which is 
capable of listening to multiple CommandStacks. All CommandStacks that need 
to be observed can be registered to it. We do this at the same time we create our 
pages.

7.4.4  Actions
Our multi-page editor provides one ActionRegistry for the whole editor. Thus, all 
actions are available on all pages. We don’t need to have different actions for 
different pages. Again the concept is similar to a single editor. Actions are 
registered to an ActionRegistry.

The ActionBarContributor
The GEF ActionBarContributor is not able to provide support for tracking page 
changes in a multi-page editor. If you need this, you can either implement the 
functionality from org.eclipse.ui.part.MultiPageEditorActionBarContributor or 
inherit from this class. But if you inherit from this class, you don’t have the action 
handling support provided by the GEF ActionBarContributor.

7.4.5  Support for the properties view
The base concept is similar to a single editor. Our multi-page editor uses the 
undoable property sheet root entry provided by GEF. But this is only capable of 
committing to one CommandStack. If you share only one EditDomain within all 
pages, there is no special work necessary and you can stop here.

Due to internal caching in Eclipse, it is not possible to have a separate property 
sheet page for every single page. There can be only one for the whole editor. But 
somehow the property sheet page needs to keep track of the active page to 
commit to the correct CommandStack.

 

 

 

 

222 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



We are handling this with a workaround. Our undoable property sheet page root 
entry gets a delegating CommandStack. The DelegatingCommandStack is a 
CommandStack that delegates work to a current CommandStack, which can be 
changed. Thus, we only need to update the DelegatingCommandStack when the 
current page changes, and this can be easily done from within our multi-page 
editor.

7.4.6  The outline view
We had a little bit more work to do for the outline view, but basically the concept 
is the same as seen before. The outline view is updated every time the page 
changes. Although it is strongly connected to our multi-page editor, we tried to 
keep the implementation as generic as possible to allow you to reuse it for your 
projects.

The implementation can be found in WorkflowEditorOutlinePage. It provides both 
a tree outline and an overview figure. You only need to call one method on each 
page change to reinitialize the outline view with a new content. This can be easily 
done from within our multi-page editor.

7.4.7  The palette
Each page has its own PaletteViewer. You can’t share one PaletteViewer 
instance within several pages. It is possible to have only one PaletteViewer for 
the whole editor, but this must be implemented in the multi-page editor class 
because the SWT control needs to be created there.

However, having multiple PaletteViewers is no issue because you can share a 
single PaletteRoot between them, like we did. Our multi-page editor provides the 
same PaletteRoot for every page. If you would like to have different PaletteRoots 
for your pages, this is no problem either. You just have to implement it that way.

 

 

 

 

 Chapter 7. Implementing the sample 223



 

 

 

 

224 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the 
Internet as described below. 

Locating the Web material
The Web material associated with this redbook is available in softcopy on the 
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246302

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with 
the redbook form number, SG246302.

Using the Web material
The additional Web material that accompanies this redbook includes the 
following files:

File name Description
sg246302.zip Zipped Code Samples

A
 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 225

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/


System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 15 MB minimum
Operating System: Windows
Processor: 1Ghz or higher
Memory: 1GB or higher

How to use the Web material
Unzip the contents of the Web material zip files into the plug-in folder of your 
Eclipse SDK. The material is organized around the chapters and sections of our 
redbook, and the source code can be imported into your Eclipse SDK as an 
existing project.

The additional material is organized by chapter and sections within a chapter. 
Most of the material is in the form of Eclipse projects that you can import into 
your Eclipse workbench. After you unzip the sg246302.zip file, you will have four 
main folders created:

1. emf-examples:

This folder contains Eclipse projects for the examples described in Chapter 2, 
“EMF examples” on page 29.

Each major section of Chapter 2, “EMF examples” on page 29 has a 
matching Eclipse project. The projects are cumulative and they also depend 
on your having completed the modelling and code generation described in 
Chapter 1, “Introduction to EMF” on page 3. You will need to make sure that 
you have created the Java build path variables described in 1.3.9, “Compiling 
the code” on page 27, otherwise you may get classpath errors when importing 
the sample projects.

2. gef-intro:

This folder contains Eclipse projects for the examples described in Chapter 3, 
“Introduction to GEF” on page 87. If you import the sample projects you will 
need to set up the Eclipse environment as described in “Eclipse Classpath 
settings for sample projects” on page 227.

3. emf-with-gef:

This folder contains Eclipse projects for the examples described in Chapter 5, 
“Using GEF with EMF” on page 165.

Each major section of Chapter 5, “Using GEF with EMF” on page 165 has a 
matching Eclipse project. Also be sure to import the appropriate model 
project for the editor project you want to work with. For example, to work with 

 

 

 

 

226 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



the NetworkEditor project, you must also import the NetworkEditorModel 
project. 

Some of the sample projects in this chapter also expect that you have the 
SAL330RWorkflowModel project in your workspace. You may have created 
this project by working through the examples described in Chapter 1, 
“Introduction to EMF” on page 3, or you can import this from our redbook 
sample material. If you import the SAL330RWorkflowModel project, you will 
need to set up the Eclipse environment as described in “Eclipse Classpath 
settings for sample projects” on page 227. If you create the 
SAL330RWorkflowModel project, you will need to make sure that you have 
created the Java build path variables described in 1.3.9, “Compiling the code” 
on page 27, otherwise you may get classpath errors when importing the 
sample projects.

4. sample-application:

This folder contains code for the sample application described in Chapter 7, 
“Implementing the sample” on page 203. We provide two zip files:

– workflow-sample-plugins-1.0.0.zip:

This is our redbook sample application packaged as a plug-in for install in 
Eclipse. To us this plug-in, unzip the archive to the directory where you 
installed Eclipse. You can then experiment with the functions of our 
sample workflow editor by create a new file resource with a .workflow 
extension.

– workflow-sample-src-1.0.0.zip:

This is the zipped source code for our redbook sample application. When 
you unzip this archive, two Eclipse project folders are created with projects 
that can be imported into Eclipse: SAL330RGEFDemoApplication, which 
is the sample editor code; and SAL330RWorkflowModel, which is the 
associated workflow model used by our redbook sample editor. If you 
import the sample projects, you will need to set up the Eclipse 
environment as described in “Eclipse Classpath settings for sample 
projects” on page 227.

Eclipse Classpath settings for sample projects
When you add our redbook sample application to your Eclipse workbench you 
need to make sure that all the required plug-ins can be found. There are two 
alternate ways to set up your environment to do this:

1. Import external features and plug-ins:

a. Set up your workspace with plugins as the last folder.
For example, use d:\sampleapp\plugins

b. Start Eclipse.

 

 

 

 

 Appendix A. Additional material 227



c. Choose File -> Import.

d. Check External Features and click Next.

e. Accept the default Choose from features in run-time workbench and 
click Next.

f. Select the features you need to import, including:

• org.eclipse.platform
• org.eclipse.platform.win32
• org.eclipse.jdt
• org.eclipse.emf
• org.eclipse.gef

g. Click Finish.

h. Import any missing plug-ins by choosing File -> Import... -> External 
Plug-ins and Fragments.

i. Make sure to choose Copy plug-in contents into workspace location.

j. Select all the required plug-ins and click Finish.

Note: The tasks view will list all plug-ins that are missing from the required 
classpath of the sample project you import.

2. Configure the target platform:

a. Workspace folder has no special naming requirement.

b. Start Eclipse.

c. Choose Window -> Preferences.

d. Choose Plug-in Development -> Target Platform.

e. Select this application and click either Not In Workspace or Select All.

f. Click OK.

g. Select the plugin.xml file of the imported sample project, right-click and 
choose Update Classpath.

h. Select all the plug-ins that need their classpath updated.

i. Click Finish.

 

 

 

 

228 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



acronyms
ADL Architectural Description 
Language

DTD Document Type Definition

EAI Enterprise Application 
Integration

EJB Enterprise Java Bean

EMF Eclipse Modeling Framework

FAQ Frequently Asked Questions

GEF Graphical Editing Framework

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IBM International Business 
Machines Corporation

IDE Integrated Development 
Environment

IDL Interface Definition Language

ITSO International Technical 
Support Organization

JET Java Emitter Templates

MDA Model Driven Architecture

MDE Model Driven Environment

MOF Meta Object Facility

MVC model-view-controller

NLS National Language Support

NLS National Language Support

OMG Object Modelling Group

OVID Object View and Interaction 
Diagram

SWT Standard Widget Toolkit

SWT Standard Widget Toolkit

URI Universal Resource Identifier

XSD XML Schema definition

Abbreviations and  

 

 

© Copyright IBM Corp. 2004. All rights reserved.
 

 229



 

 

 

 

230 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

Other publications
These publications are also relevant as further information sources:

� The Java Developer’s Guide to Eclipse, Sherry Shavor et al, Addison Wesley, 
ISBN: 0-321-15964-0

� Eclipse Modeling Framework, Frank Budinsky et al, Addison Wesley, ISBN: 
0131425420

Online resources
These Web sites and URLs are also relevant as further information sources:

� eclipse.org main page:

http://www.eclipse.org

� Eclipse Modeling Framework home page:

http://www.eclipse.org/emf

� Graphical Editing Framework home page:

http://www.eclipse.org/gef

� Omondo EclipseUML page:

http://www.eclipseuml.com

� Object, view and interaction design:

http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589

� Eclipse XML Schema Infoset Model:

http://www.eclipse.org/xsd

� XML Metadata Interchange:

http://www.omg.org/technology/documents/formal/xmi.htm

� JET tutorial part 1:

http://eclipse.org/articles/Article-JET/jet_tutorial1.html

 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 231

http://www.eclipse.org
http://www.eclipse.org/emf
http://www.eclipseuml.com
http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/589
http://www.eclipse.org/xsd
http://www.omg.org/technology/documents/formal/xmi.htm
http://eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/gef


� JET tutorial part 2:

http://eclipse.org/articles/Article-JET2/jet_tutorial2.html

� Eclipse Wiki:

http://eclipsewiki.swiki.net

� Metanology MDE:

http://www.metanology.com

� Eclipse designer plug-in:

http://eclipsedesigner.sourceforge.net

� eSuite project:

http://jeez.sourceforge.net

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, 
draft publications and Additional materials, as well as order hardcopy Redbooks 
or CD-ROMs, at this Web site: 

ibm.com/redbooks

Help from IBM
IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services

 

 

 

 

232 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://eclipse.org/articles/Article-JET2/jet_tutorial2.html
http://eclipsewiki.swiki.net
http://www.metanology.com
http://eclipsedesigner.sourceforge.net
http://jeez.sourceforge.net


Index

A
accessibility   161
accessible   161
ActionRegistry   123
actions   123, 222
adapters   119, 130
anchor points

Draw2D   101
ANT   90
architecture

sample   204
association   19, 23, 32
attribute   23, 44

creation   14
attributes   39, 48

B
borders

Draw2D   97

C
cache   46
canvas   93, 95
Choice   196
choice task   188
class   46, 48
class diagram   12
code generation   4, 23, 27, 29, 31, 47, 51, 58

JET   79
commands   109, 113, 150, 174, 212

keyboard   161
CommandStack   113–114, 222
Comment   67, 192, 200
complex task

tasks
complex   188

complex tasks   188
component role   107
compound task   188
CompoundTask   21, 77, 194
ConditionalOutputPort   39, 199
connection role   108

 

 

 

© Copyright IBM Corp. 2004. All rights reserved.
connection routers
Draw2D   101

connections   105
decorating   148
Draw2D   102
GEF   105

constraints   39
container role   108
control flow   189
controllers   166–167
coordinate system   94
coordinate systems   141
CreateRequests   106
cursor   94–95, 150

D
data flow   189
dataflow   30
datatypes   39
decorating connections   148
descriptors   47
design   187

sample   191
DiagramConnection   36
DiagramModel   36
DiagramNode   36, 46
direct edit   158
direct edit role   108
DirectEditPolicy   150
Directory   80
dirty state   222
displaying properties   174
documentation

EMF   6
drag and drop   143
Draw2D   87–88, 95, 136

anchor points   101
borders   97
connection routers   101
connections   102
event dispatcher   96
figures   93, 95
introduction   93

 

 233



layers   99
LayoutManagers   98
Locator   100
methods   95
update manager   97

DTD   4
dynamicTemplates   80

E
EAI   5
EAnnotation   39
EAttribute   36, 44, 46, 67
EClass   31–33, 35, 43–44, 46
eClassifiers   33
Eclipse   4
Eclipse help system   6
Eclipse Modeling Framework See EMF
Eclipse Project   5
Eclipse Tools Project   5
EclipseUML   10

modeling   12
Ecore   30, 47–48, 70
Ecore model   38
EDataType   35, 39, 44, 46
Edge   19, 31, 192, 197
edge   189
edit   47, 61
edit plug-in   47, 63
EditDomain   113, 117, 221

sharing   221
editor   14, 45, 47, 61

dirty state   222
multi-page   220

editor example   112
editor plug-in   45, 47
EditPart   140, 167, 205

figures   170
EditParts   103, 140, 204

create   137
life-cycle   104
mapping   168

EditPolicies   107, 150, 212
component role   107
connection role   108
container role   108
direct edit role   108
GEF   107
graphical node role   108

layout role   108
tree container role   108

EEnum   46
EInt   39
EJBs   5
elements   38, 43, 48, 192
EList   46
EMF   3, 165

documentation   6
examples   29
features   24
help   6
installation   6
interfaces   13
mailing list   5
model   29
model creation   25
models   35
newsgroup   5
objectives   4
prerequisites   5

EMF class diagram   12
EMF.Edit   45, 166

editors and GEF   166
EMFPluginClass   47
end task   190
EObject   35, 47, 175
EOperation   46, 61
eOpposite   32–33
EPackage   31–32, 34–36, 42, 45–46
EReference   32–33, 43–44, 67
EString   14, 39, 44
eSuperTypes   46
event dispatcher

Draw2D   96
events   93, 95, 207
examples   58

editor   112
EMF   29
GEF   139
serialization   67

exception   199

F
factories   211
factory   109
FaultPort   199
features   46

 

 

 

 

234 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



feedback   150
field   46
figures   93, 95, 105, 141, 170

GEF   105
root   96

FlowLayoutEditPolicy   152
focus   94–95
framework   4, 45

GEF   103
frameworks   165
Freeform   99
freeform   141

G
GEF   9, 87–88, 103, 165

accessibility   161
applications   89
commands   150
direct edit   158
drag and drop   143
EditParts   103
examples   139
feedback techniques   150
GraphicalViewer   109
introduction   87
printing   144
requests   106
resource management   149
techniques   143
tools   144
using an EMF model   166–167
viewer   153
zooming   145

generalization   18
generation

XML Schema   53
GenModel   45, 47–48, 73

editor   50
properties   47, 49

class-level   55
DataType-level   57
feature-level   56
operations   57
package-level   54
parameters   57
top-level   52

GenModel properties
JET-related   79

getter   46, 61
Graphical Editing Framework See GEF
graphical node role   108
GraphicalNodeEditPolicy   151
GraphicalViewer   109, 117
graphics   94
graphics context   94, 96
GroupRequests   107

H
handles   152
help

EMF   6

I
IAdaptable   119
IContentOutlinePage   130
IDE   90
IDL   4
implementation

sample   203
inheritance   18
InputPort   21, 31, 198
installation

EMF   6
instances   178

create   64
interface   13, 46, 51
interface design   13
ItemProvider   47
ItemProviderAdaptor   47
ItemProviderAdaptorFactory   47
ItemProviders   47

J
Java   4, 46, 173
Java Emitter Templates See JET
Java interface annotation   22
Java project   11
Java Server Pages See JSP
JavaDoc   204
JET   29, 45, 79, 165, 180

code generation   79
templates   80

JFace   47, 109, 166
JSP   82

 

 

 

 

 Index 235



K
key strokes   134
keyboard commands   161
KeyHandlers   134

L
labels   190
layers   96, 111, 142

Draw2D   99
layout   135
layout manager   95
layout role   108
LayoutEditPolicy   151
LayoutManagers

Draw2D   98
lightweight system   94
LightweightSystem class   95
listeners   95
LocationRequests   107
Locator

Draw2D   100
loop task   188
LoopTask   39, 195

M
mapping   5, 42, 168, 204
mappings

indirect   171
MDA   4–5
menu   47
Meta Object Facility See MOF
meta-data   4
meta-model   4
methods   46, 95
model   4, 9, 47, 61, 135, 204, 214

constraints   216
creation   10, 30
Ecore   38
editing   174
elements   35
EMF   29
events   207
instances   64, 66, 178
migrating   40
properties   10
serialization   64
Workflow   30, 33
workflow   9, 192

WorkFlowElement   35
Model Driven Architecture See MDA
model plug-in   45, 61, 64
modeling

Java interface annotation   22
MOF   4
mouse   93
mouse events   94
multi-page editor   220
MVC   166

N
namespace   42
naming convention   214
National Language Support See NLS
NLS   53
Notification   175
notifications   47, 208
Notifier   175

O
object   48
Object Management Group See OMG
Object, View and Interaction Diagram See OVID
OMG   4
Omondo   10
operations   39, 46, 48, 57
outline view   130, 223
OutputPort   21, 31, 198
OVID   28

P
packages   45
painting   93
palette   120, 153, 223

sticky tools   144
palette-less applications   153
PaletteRoot   120
PaletteViewer   120, 223
panes   96
parameters   57
patterns   56

Singleton   56
Stateful   56

plug-in   11, 47, 49, 61
development   10
Draw2D   93

 

 

 

 

236 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



edit   47, 63
editor   45, 47
installation   10
model   45, 61, 64
XSD   43, 53, 70, 75

polymorphism   78
Port   31, 33, 192, 198
presentation   47
printing   144
process   193
project   10

creation   10
properties   15, 129

display   174
properties view   222

R
Rational Rose   10, 40
Redbooks Web site   232

Contact us   xii
references   48, 214
refresh   208
rendering   94
requests   106
requirements   187
Resource   55
resource implementation   75
ResourceFactory   55
Resources   69
resources   149
ResourceSets   69
root figure   96
RootEditPart   110, 117, 140

S
sample   30, 187

architecture   204
design   191
implementation   203
requirements   188

ScaledGraphics   145
SDK   88
SelectionEditPolicy   152
SelectionHandlesEditPolicy   152
SelectionTool   144
serialization   4, 43, 64, 66, 74

customize   70
examples   67

setter   46, 61
Shape   96
signatures   39, 46
simple task   188
Singleton   56
skeletons   39
SKU   44
start task

tasks
start   190

Stateful   56
Struts   90
supertypes   46
SWT   92–93, 109, 130, 143

T
Task   31, 33, 36, 67, 194
task   188
tasks   30

choice   188
compound   188
end   190
loop   188
simple   188

techniques   143
tooltips   95
tracking   207
Transformation   197
transformation task

tasks
transformation   188

transparency   95
tree container role   108
TreeViewer   47
type   43, 46
types   36, 39

U
UML   9–10
update manager

Draw2D   97
URI   42

V
variables   190
viewers   47, 153

attaching   117

 

 

 

 

 Index 237



visibility   95

W
Web services   5
widgets   96
wizard   47, 51
Workflow   9, 19, 32, 48, 192–193

instance   67
model   9, 17, 30, 33
serialization   67

workflow   188
workflow model   192
Workflow.genmodel   27
WorkflowDiagram   36, 46
WorkflowDiagramPackage   36
WorkflowDiagramTask   36, 46
WorkflowElement   13, 47, 192

model   35
WorkflowElementEditPart   205
WorkflowModel   12, 30, 36, 39, 45, 47–48, 192, 214
WorkflowNode   21, 192–193
WorkflowNodes   193
Worklow   21

X
XMI   10, 31–32, 34, 38, 48–49, 55, 76
XMI serialization   76
XMIResource   69, 75
XML   4, 44, 55, 70
XML Metadata Interchange See XMI
XML Schema   30, 40, 44, 53, 70
XML serialization   77–78
XMLHelper   77–78
XMLLoad   78
XMLMap   74
XMLResource   75
XMLSave   78
XSD   4, 43

plug-in   43, 53, 70, 75

Z
zooming   145
ZoomManager   145

 

 

 

 

238 Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Framework



(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

Eclipse Developm
ent using the Graphical Editing Fram

ew
ork &

 the Eclipse M
odeling Fram

ew
ork 

 

 

 

 

 



 

 

 

 



 

 

 

 



®

SG24-6302-00 ISBN 0738453161

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

Eclipse Development
using the Graphical Editing Framework
and the Eclipse Modeling Framework

Understanding the 
GEF and EMF 
frameworks

Developing with GEF 
and EMF

Code examples

Eclipse Development using the Graphical Editing Framework 
and the Eclipse Modelling Framework is written for 
developers who use the Eclipse SDK to develop plug-in code. 
This IBM Redbook is intended for a technical readership and 
for developers who already have good knowledge and 
experience in Eclipse plug-in development. 

In this book, we examine two frameworks that are developed 
by the Eclipse Tools Project for use with the Eclipse Platform: 
the Graphical Editing Framework (GEF), and the Eclipse 
Modeling Framework (EMF). We cover both the Graphical 
Editing Framework and the Eclipse Modeling Framework, but 
these frameworks can be used separately, and there is no 
dependency between them. 

This book provides a high level introduction to these 
frameworks so that Eclipse plug-in developers can consider 
whether the frameworks will be useful for the requirements of 
their particular development environment. Next, tips and 
techniques are provided for writing code that uses GEF and 
EMF. Also, a detailed example is developed to illustrate a GEF 
editor that uses an EMF model.

Back cover
 

 

 

 

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 EMF and GEF introduced
	Chapter 1. Introduction to EMF
	1.1 What is the Eclipse Modeling Framework?
	1.1.1 Positioning of the framework
	1.1.2 Objectives
	1.1.3 Where to find documents and resources

	1.2 Framework basics
	1.2.1 Prerequisites
	1.2.2 Product installation
	1.2.3 Getting help in Eclipse

	1.3 Building a simple model
	1.3.1 Different ways of making the model
	1.3.2 The EclipseUML plug-in
	1.3.3 Initial project setup
	1.3.4 Modeling using the EclipseUML plug-in
	1.3.5 Modeling using Java interface annotation
	1.3.6 EMF features
	1.3.7 EMF model creation
	1.3.8 Code generation facility
	1.3.9 Compiling the code
	1.3.10 Conclusion


	Chapter 2. EMF examples
	2.1 EMF modeling techniques
	2.1.1 Creating new models
	2.1.2 Migrating existing models

	2.2 EMF.Edit-based editors and code generation
	2.2.1 The generated plug-ins
	2.2.2 Customizing code generation through GenModel properties
	2.2.3 Modifying the generated code

	2.3 Model instances and serialization
	2.3.1 Creating model instances
	2.3.2 Default serialization of model instances
	2.3.3 Using the XSD plug-in to customize serialization
	2.3.4 Customizing XMI serialization using an XMLMap
	2.3.5 Providing a custom resource implementation

	2.4 Using JET to customize code generation
	2.4.1 .JET-related GenModel properties
	2.4.2 Writing JET templates


	Chapter 3. Introduction to GEF
	3.1 What is the Graphical Editing Framework?
	3.1.1 Additional documents and resources
	3.1.2 Applications suitable for GEF

	3.2 Introduction to Draw2D
	3.2.1 What is a lightweight system?
	3.2.2 Architectural overview
	3.2.3 Figures
	3.2.4 Mechanism
	3.2.5 Major features

	3.3 The GEF framework
	3.3.1 Prerequisites
	3.3.2 EditParts
	3.3.3 Requests
	3.3.4 EditPolicies
	3.3.5 Commands
	3.3.6 GraphicalViewers
	3.3.7 RootEditParts

	3.4 Building an editor
	3.4.1 The editor class
	3.4.2 EditDomain
	3.4.3 CommandStack
	3.4.4 Attaching the viewer
	3.4.5 Being adaptable
	3.4.6 Introducing the palette
	3.4.7 Actions
	3.4.8 Adapting to the properties view
	3.4.9 Providing an outline view
	3.4.10 Controlling your editor with the keyboard

	3.5 Managing your model
	3.5.1 Reflecting a model
	3.5.2 Communication
	3.5.3 Creating EditParts


	Chapter 4. GEF examples
	4.1 Additional concepts
	4.1.1 RootEditParts
	4.1.2 Coordinate systems
	4.1.3 Layers

	4.2 Techniques
	4.2.1 Drag and drop
	4.2.2 Palette: Implementing a sticky tool preference
	4.2.3 Printing
	4.2.4 Zooming
	4.2.5 Decorating connections
	4.2.6 Resource management
	4.2.7 Feedback techniques
	4.2.8 Palette-less applications
	4.2.9 Using direct edit
	4.2.10 Accessibility


	Chapter 5. Using GEF with EMF
	5.1 Overview
	5.2 Using an EMF model within a GEF-based application
	5.2.1 Mapping from the model to the graphical representation
	5.2.2 Displaying properties
	5.2.3 Support for editing the model
	5.2.4 Reflecting model changes
	5.2.5 Loading and saving model instances
	5.2.6 Putting it all together

	5.3 Using JET in GEF-based editor development

	Part 2 Sample application
	Chapter 6. Sample requirements and design
	6.1 Sample application requirements
	6.1.1 The application

	6.2 Sample application design
	6.2.1 Design decisions
	6.2.2 The workflow model

	6.3 Sample application demo

	Chapter 7. Implementing the sample
	7.1 Overview
	7.2 Architecture
	7.2.1 Mapping the EMF model to GEF EditParts
	7.2.2 Tracking model events in the editor
	7.2.3 Refreshing
	7.2.4 Factories
	7.2.5 Policies and commands

	7.3 The model
	7.3.1 Modifying the WorkflowModel
	7.3.2 Modifying the code generated from the model
	7.3.3 Respecting model constraints in the editor

	7.4 Implementing the multi-page editor
	7.4.1 Getting started
	7.4.2 Sharing an EditDomain
	7.4.3 The editor’s dirty state
	7.4.4 Actions
	7.4.5 Support for the properties view
	7.4.6 The outline view
	7.4.7 The palette


	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material


	Abbreviations and acronyms
	Related publications
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

